Sample records for elements triso tri-structural

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Brian C.; Helmreich, Grant; Cooley, Kevin M.

    In support of fully ceramic microencapsulated (FCM) fuel development, coating development work is ongoing at Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with both UN kernels and surrogate (uranium-free) kernels. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere. The surrogate TRISO particles are necessary for separate effects testing and for utilization in the consolidation process development. This report focuses on the fabrication and characterization of surrogate TRISO particles which use 800μm in diameter ZrO 2 microspheres as the kernel.

  2. Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate.

    PubMed

    Zhu, Liyang; Duan, Wuhua; Xu, Jingming; Zhu, Yongjun

    2012-11-30

    High-temperature gas-cooled reactors (HTGRs) are advanced nuclear systems that will receive heavy use in the future. It is important to develop spent nuclear fuel reprocessing technologies for HTGR. A new method for recovering uranium from tristructural-isotropic (TRISO-) coated fuel particles with supercritical CO(2) containing tri-n-butyl phosphate (TBP) as a complexing agent was investigated. TRISO-coated fuel particles from HTGR fuel elements were first crushed to expose UO(2) pellet fuel kernels. The crushed TRISO-coated fuel particles were then treated under O(2) stream at 750°C, resulting in a mixture of U(3)O(8) powder and SiC shells. The conversion of U(3)O(8) into solid uranyl nitrate by its reaction with liquid N(2)O(4) in the presence of a small amount of water was carried out. Complete conversion was achieved after 60 min of reaction at 80°C, whereas the SiC shells were not converted by N(2)O(4). Uranyl nitrate in the converted mixture was extracted with supercritical CO(2) containing TBP. The cumulative extraction efficiency was above 98% after 20 min of online extraction at 50°C and 25 MPa, whereas the SiC shells were not extracted by TBP. The results suggest an attractive strategy for reprocessing spent nuclear fuel from HTGR to minimize the generation of secondary radioactive waste. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Diffusivities of Ag, Cs, Sr, and Kr in TRISO fuel particles and graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise Paul

    Tri-structural isotropic (TRISO) coated particles have been developed and studied since the late 1950s when the concept of coated particles was invented by Roy Huddle of the United Kingdom Atomic Energy Authority. Several decades of work by half a dozen countries on fission product transport in TRISO fuel through numerous irradiation and heating experiments have led to several recommendations of transport data and to the adoption of various sets of diffusion coefficients. In 1997, the International Atomic Energy Agency (IAEA) gathered all these historical results and issued a technical document (TECDOC-978 [IAEA]) that summarizes these sets of recommended diffusion coefficients.more » Table 1 shows the reference literature articles for the diffusivities that have historically been recommended by the American and German TRISO fuel development programs and that are summarized in the IAEA report (see section 7 for full references of these articles).« less

  4. Triso coating development progress for uranium nitride kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    2015-08-01

    In support of fully ceramic matrix (FCM) fuel development [1-2], coating development work is ongoing at the Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with UN kernels [3]. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere [4]. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels [5]. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions weremore » required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels (Table 1).« less

  5. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaise Collin

    2013-09-01

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated dependingmore » on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.« less

  6. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, Charles; Xing, Changhu; Jensen, Colby

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less

  7. Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas M. Lillo; Isabella J. van Rooyen

    2014-08-01

    The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle frommore » the AGR-1 program are reported.« less

  8. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, M. P.; King, J. C.; Gorman, B. P.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardousmore » alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.« less

  9. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    NASA Astrophysics Data System (ADS)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  10. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    DOE PAGES

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; ...

    2016-05-18

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.« less

  11. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.« less

  12. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather thanmore » graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO 2 and UC x) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required tomore » maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.« less

  14. TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket

    NASA Astrophysics Data System (ADS)

    DeMange, P.; Marian, J.; Caro, M.; Caro, A.

    2010-10-01

    A TRISO-coated fuel thermo-mechanical performance study is performed for the fusion-fission hybrid Laser Inertial Fusion Engine (LIFE) to test the viability of TRISO particles to achieve ultra-high burn-up of Pu or transuranic spent nuclear fuel blankets. Our methodology includes full elastic anisotropy, time and temperature varying material properties, and multilayer capabilities. In order to achieve fast fluences up to 30 × 10 25 n m -2 ( E > 0.18 MeV), judicious extrapolations across several orders of magnitude of existing material databases have been carried out. The results of our study indicate that failure of the pyrolytic carbon (PyC) layers occurs within the first 2 years of operation. The particles then behave as a single-SiC-layer particle and the SiC layer maintains reasonably-low tensile stresses until the end-of-life. It is also found that the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Conversely, varying the geometry of the TRISO-coated fuel particles results in little differences in terms of fuel performance.

  15. Local atomic structure of Pd and Ag in the SiC containment layer of TRISO fuel particles fissioned to 20% burn-up

    NASA Astrophysics Data System (ADS)

    Seibert, Rachel L.; Terrani, Kurt A.; Velázquez, Daniel; Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.; Terry, Jeff

    2018-03-01

    The structure and speciation of fission products within the SiC barrier layer of tristructural-isotropic (TRISO) fuel particles irradiated to 19.6% fissions per initial metal atom (FIMA) burnup in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) was investigated. As-irradiated fuel particles, as well as those subjected to simulated accident scenarios, were examined. The TRISO particles were characterized using synchrotron X-ray absorption fine-structure spectroscopy (XAFS) at the Materials Research Collaborative Access Team (MRCAT) beamline at the Advanced Photon Source. The TRISO particles were produced at Oak Ridge National Laboratory under the Advanced Gas Reactor Fuel Development and Qualification Program and sent to the ATR for irradiation. XAFS measurements on the palladium and silver K-edges were collected using the MRCAT undulator beamline. Analysis of the Pd edge indicated the formation of palladium silicides of the form PdxSi (2 ≤ x ≤ 3). In contrast, Ag was found to be metallic within the SiC shell safety tested to 1700 °C. To the best of our knowledge, this is the first result demonstrating metallic bonding of silver from fissioned samples. Knowledge of these reaction pathways will allow for better simulations of radionuclide transport in the various coating layers of TRISO fuels for next generation nuclear reactors. They may also suggest different ways to modify TRISO particles to improve their fuel performance and to mitigate potential fission product release under both normal operation and accident conditions.

  16. Local atomic structure of Pd and Ag in the SiC containment layer of TRISO fuel particles fissioned to 20% burn-up

    DOE PAGES

    Seibert, Rachel L.; Terrani, Kurt A.; Velázquez, Daniel; ...

    2018-03-01

    The structure and speciation of fission products within the SiC barrier layer of tristructural-isotropic (TRISO) fuel particles irradiated to 19.6% fissions per initial metal atom (FIMA) burnup in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) was investigated. As-irradiated fuel particles, as well as those subjected to simulated accident scenarios, were examined. The TRISO particles were characterized using synchrotron X-ray absorption fine-structure spectroscopy (XAFS) at the Materials Research Collaborative Access Team (MRCAT) beamline at the Advanced Photon Source. The TRISO particles were produced at Oak Ridge National Laboratory under the Advanced Gas Reactor Fuel Development and Qualification Programmore » and sent to the ATR for irradiation. XAFS measurements on the palladium and silver K-edges were collected using the MRCAT undulator beamline. Analysis of the Pd edge indicated the formation of palladium silicides of the form Pd xSi (2 ≤ x ≤ 3). In contrast, Ag was found to be metallic within the SiC shell safety tested to 1700 °C. To the best of our knowledge, this is the first result demonstrating metallic bonding of silver from fissioned samples. Knowledge of these reaction pathways will allow for better simulations of radionuclide transport in the various coating layers of TRISO fuels for next generation nuclear reactors. In conclusion, they may also suggest different ways to modify TRISO particles to improve their fuel performance and to mitigate potential fission product release under both normal operation and accident conditions.« less

  17. Local atomic structure of Pd and Ag in the SiC containment layer of TRISO fuel particles fissioned to 20% burn-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, Rachel L.; Terrani, Kurt A.; Velázquez, Daniel

    The structure and speciation of fission products within the SiC barrier layer of tristructural-isotropic (TRISO) fuel particles irradiated to 19.6% fissions per initial metal atom (FIMA) burnup in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) was investigated. As-irradiated fuel particles, as well as those subjected to simulated accident scenarios, were examined. The TRISO particles were characterized using synchrotron X-ray absorption fine-structure spectroscopy (XAFS) at the Materials Research Collaborative Access Team (MRCAT) beamline at the Advanced Photon Source. The TRISO particles were produced at Oak Ridge National Laboratory under the Advanced Gas Reactor Fuel Development and Qualification Programmore » and sent to the ATR for irradiation. XAFS measurements on the palladium and silver K-edges were collected using the MRCAT undulator beamline. Analysis of the Pd edge indicated the formation of palladium silicides of the form Pd xSi (2 ≤ x ≤ 3). In contrast, Ag was found to be metallic within the SiC shell safety tested to 1700 °C. To the best of our knowledge, this is the first result demonstrating metallic bonding of silver from fissioned samples. Knowledge of these reaction pathways will allow for better simulations of radionuclide transport in the various coating layers of TRISO fuels for next generation nuclear reactors. In conclusion, they may also suggest different ways to modify TRISO particles to improve their fuel performance and to mitigate potential fission product release under both normal operation and accident conditions.« less

  18. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella Van Rooyen

    2014-10-01

    The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particlesmore » It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.« less

  19. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Uddin, Rizwan

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modelingmore » of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.« less

  20. Multidimensional Multiphysics Simulation of TRISO Particle Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Hales; R. L. Williamson; S. R. Novascone

    2013-11-01

    Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite-element based nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellant comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. It is shown that the code's ability to perform large-scale parallel computations permits application to complex 3D phenomena while very efficient solutions for either 1D spherically symmetric or 2D axisymmetric geometries are straightforward. Additionally, the flexibility to easily include new physical andmore » material models and uncomplicated ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.« less

  1. Fission Product Release and Survivability of UN-Kernel LWR TRISO Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmann, Theodore M; Ferber, Mattison K; Lin, Hua-Tay

    2014-01-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from range calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 m diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated with a TRISO particle as a function of fluence. Creep and swelling of the innermore » and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by measuring the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers as a function of fluence. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.« less

  2. Fission product release and survivability of UN-kernel LWR TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. M. Besmann; M. K. Ferber; H.-T. Lin

    2014-05-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from fission product recoil calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 um diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated within a TRISO particle undergoing burnup. Creep and swelling of the inner andmore » outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by computing the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers from internal pressure and thermomechanics of the layers. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.« less

  3. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10 -4 to 10 -5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materialsmore » is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.« less

  4. Progress on Fabrication of Planar Diffusion Couples with Representative TRISO PyC/SiC Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Jolly, Brian C.; Gerczak, Tyler J.

    Release of fission products from tristructural-isotropic (TRISO) coated particle fuel limits the fuel’s operational lifetime and creates potential safety and maintenance concerns. A need for diffusion analysis in representative TRISO layers exists to provide fuel performance models with high fidelity data to improve fuel performance and efficiency. An effort has been initiated to better understand fission product transport in, and release from, quality TRISO fuel by investigating diffusion couples with representative pyrocarbon (PyC) and silicon carbide (SiC). Here planar PyC/SiC diffusion couples are being developed with representative PyC/SiC layers using a fluidized bed chemical vapor deposition (FBCVD) system identical tomore » those used to produce laboratory-scale TRISO fuel for the Advanced Gas Reactor Fuel Qualification and Development Program’s (AGR) first fuel irradiation. The diffusivity of silver, the silver and palladium system, europium, and strontium in the PyC/SiC will be studied at elevated temperatures and under high temperature neutron irradiation. The study also includes a comparative study of PyC/SiC diffusion couples with varying TRISO layer properties to understand the influence of SiC microstructure (grain size) and the PyC/SiC interface on fission product transport. The first step in accomplishing these goals is the development of the planar diffusion couples. The diffusion couple construction consists of multiple steps which includes fabrication of the primary PyC/SiC structures with targeted layer properties, introduction of fission product species and seal coating to create an isolated system. Coating development has shown planar PyC/SiC diffusion couples with similar properties to AGR TRISO fuel can be produced. A summary of the coating development process, characterization methods, and status are presented.« less

  5. Wet-chemical dissolution of TRISO-coated simulated high-temperature-reactor fuel particles

    NASA Astrophysics Data System (ADS)

    Skolo, K. P.; Jacobs, P.; Venter, J. H.; Klopper, W.; Crouse, P. L.

    2012-01-01

    Chemical etching with different mixtures of acidic solutions has been investigated to disintegrate the two outermost coatings from tri-structural isotropic coated particles containing zirconia kernels, which are used in simulated particles instead of uranium dioxide. A scanning electron microscope (SEM) was used to study the morphology of the particles after the first etching step as well as at different stages of the second etching step. SEM examination shows that the outer carbon layer can be readily removed with a CrO 3-HNO 3/H 2SO 4 solution. This finding was verified by energy dispersive spectroscopy (EDS) analysis. Etching of the silicon carbide layer in a hydrofluoric-nitric solution yielded partial removal of the coating and localized attack of the underlying coating layers. The SEM results provide evidence that the etching of the silicon carbide layer is strongly influenced by its microstructure.

  6. Utilization of TRISO Fuel with LWR Spent Fuel in Fusion-Fission Hybrid Reactor System

    NASA Astrophysics Data System (ADS)

    Acır, Adem; Altunok, Taner

    2010-10-01

    HTRs use a high performance particulate TRISO fuel with ceramic multi-layer coatings due to the high burn up capability and very neutronic performance. TRISO fuel because of capable of high burn up and very neutronic performance is conducted in a D-T fusion driven hybrid reactor. In this study, TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 68%. The neutronic effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on the fuel performance has been investigated for Flibe, Flinabe and Li20Sn80 coolants. The reactor operation time with the different first neutron wall loads is 24 months. Neutron transport calculations are evaluated by using XSDRNPM/SCALE 5 codes with 238 group cross section library. The effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on tritium breeding (TBR), energy multiplication (M), fissile fuel breeding, average burn up values are comparatively investigated. It is shown that the high burn up can be achieved with TRISO fuel in the hybrid reactor.

  7. Reactor physics behavior of transuranic-bearing TRISO-particle fuel in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; Sen, R. S.; Ougouag, A. M.

    2012-07-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) - only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space availablemore » for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is retained. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint. (authors)« less

  8. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag

    2012-04-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel,more » the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.« less

  9. Irradiation experiment on ZrC-coated fuel particles for high-temperature gas-cooled reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minato, Kazuo; Ogawa, Toru; Sawa, Kazuhiro

    2000-06-01

    The ZrC coating layer is a candidate to replace the SiC coating layer of the Triso-coated fuel particle. To compare the irradiation performance of the ZrC Triso-coated fuel particles with that of the normal Triso-coated fuel particles at high temperatures, a capsule irradiation experiment was performed, where both types of the coated fuel particles were irradiated under identical conditions. The burnup was 4.5% FIMA and the irradiation temperature was 1,400 to 1,650 C. The postirradiation measurement of the through-coating failure fractions of both types of coated fuel particles revealed better irradiation performance of the ZrC Triso-coated fuel particles. The opticalmore » microscopy and electron probe microanalysis on the polished cross section of the ZrC Triso-coated fuel particles revealed no interaction of palladium with the ZrC coating layer nor accumulation of palladium at the inner surface of the ZrC coating layer, whereas severe corrosion of the SiC coating layer was observed in the normal Triso-coated fuel particles. Although no corrosion of the ZrC coating layer was observed, additional evaluations need to be made of this layer's ability to satisfactorily retain the fission product palladium.« less

  10. Inter-comparison of Computer Codes for TRISO-based Fuel Micro-Modeling and Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Boer; Chang Keun Jo; Wen Wu

    2010-10-01

    The Next Generation Nuclear Plant (NGNP), the Deep Burn Pebble Bed Reactor (DB-PBR) and the Deep Burn Prismatic Block Reactor (DB-PMR) are all based on fuels that use TRISO particles as their fundamental constituent. The TRISO particle properties include very high durability in radiation environments, hence the designs reliance on the TRISO to form the principal barrier to radioactive materials release. This durability forms the basis for the selection of this fuel type for applications such as Deep Bun (DB), which require exposures up to four times those expected for light water reactors. It follows that the study and predictionmore » of the durability of TRISO particles must be carried as part of the safety and overall performance characterization of all the designs mentioned above. Such evaluations have been carried out independently by the performers of the DB project using independently developed codes. These codes, PASTA, PISA and COPA, incorporate models for stress analysis on the various layers of the TRISO particle (and of the intervening matrix material for some of them), model for fission products release and migration then accumulation within the SiC layer of the TRISO particle, just next to the layer, models for free oxygen and CO formation and migration to the same location, models for temperature field modeling within the various layers of the TRISO particle and models for the prediction of failure rates. All these models may be either internal to the code or external. This large number of models and the possibility of different constitutive data and model formulations and the possibility of a variety of solution techniques makes it highly unlikely that the model would give identical results in the modeling of identical situations. The purpose of this paper is to present the results of an inter-comparison between the codes and to identify areas of agreement and areas that need reconciliation. The inter-comparison has been carried out by the cooperating institutions using a set of pre-defined TRISO conditions (burnup levels, temperature or power levels, etc.) and the outcome will be tabulated in the full length paper. The areas of agreement will be pointed out and the areas that require further modeling or reconciliation will be shown. In general the agreement between the codes is good within less than one order of magnitude in the prediction of TRISO failure rates.« less

  11. Mechanical Characteristics of SiC Coating Layer in TRISO Fuel Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Hosemann; J. N. Martos; D. Frazer

    2013-11-01

    Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grainmore » structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production.« less

  12. Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code

    NASA Astrophysics Data System (ADS)

    Collin, Blaise P.

    2014-08-01

    The Idaho National Laboratory (INL) PARFUME (PARticle FUel ModEl) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  13. Evaluation of design parameters for TRISO-coated fuel particles to establish manufacturing critical limits using PARFUME

    DOE PAGES

    Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; ...

    2015-12-02

    The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varyingmore » key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. As a result, these critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.« less

  14. SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas W.

    High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must havemore » very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the retort wall and manage nozzle orifice accretions. The equipment and operating methods have yielded very good reproducibility in the TRISO coated particles batches.« less

  15. Elemental composition and structural characteristics of as-received TriTaniumTM orthodontic archwire

    NASA Astrophysics Data System (ADS)

    Ilievska, I.; Petrov, V.; Mihailov, V.; Karatodorov, S.; Andreeva, L.; Zaleski, A.; Mikli, V.; Gueorgieva, M.; Petrova, V.; Stoyanova-Ivanova, A.

    2018-03-01

    Orthodontic archwires are among the most important devices of fixed orthodontic therapy. Many types of archwires are made available on the market by various manufacturers with different elemental composition and structural characteristics. Knowing this information is important when choosing a suitable archwire for a particular stage of orthodontic treatment. The aim of our study is to characterize a new type orthodontic archwires (TriTaniumTM, American Orthodontics) before their placement in the oral cavity. To achieve the aim, we used modern methods for determining their elemental composition and structural characteristics: laser-induced plasma spectroscopy (LIBS), X-ray diffraction analysis (XRD), scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and differential scanning calorimetry (DSC). The results obtained from the qualitative elemental analysis by LIBS and the quantitative elemental analysis by EDX showed that Ni and Ti are the main elements in the archwire studied. The room-temperature XRD patterns showed peaks typical for a Ni-Ti alloy with an austenite-type structure. Monitoring the phase transitions by means of DSC measurements in the temperature range from –50 °C to +50 °C, we showed that in TriTaniumTM archwires, besides the austenite to martensite transition, there exists a rhombohedral intermediate phase (R phase). This study will be useful in assisting orthodontists in applying appropriate nickel-titanium orthodontic archwires in the clinical practice.

  16. Tri-axial tactile sensing element

    NASA Astrophysics Data System (ADS)

    Castellanos-Ramos, Julián.; Navas-González, Rafael; Vidal-Verdú, F.

    2013-05-01

    A 13 x 13 square millimetre tri-axial taxel is presented which is suitable for some medical applications, for instance in assistive robotics that involves contact with humans or in prosthetics. Finite Element Analysis is carried out to determine what structure is the best to obtain a uniform distribution of pressure on the sensing areas underneath the structure. This structure has been fabricated in plastic with a 3D printer and a commercial tactile sensor has been used to implement the sensing areas. A three axis linear motorized translation stage with a tri-axial precision force sensor is used to find the parameters of the linear regression model and characterize the proposed taxel. The results are analysed to see to what extent the goal has been reached in this specific implementation.

  17. Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, Thomas; Rooyen, Isabella Van

    2015-05-01

    Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number ofmore » nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ~23 μm along a radial direction through the 35 μm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ~24 μm in the SiC layer. Also, Pd-rich, nano-precipitates (~10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all grain boundaries and triple junctions contained precipitates with fission products and/or uranium, along with the differences in migration behavior between Pd, Ag and U, it was concluded that crystallographic grain boundary and triple junction parameters likely influence migration behavior.« less

  18. Readiness Review of BWXT for Fabrication of AGR-5/6/7 TRISO Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas William; Sharp, Michelle Tracy

    2016-02-01

    INL readiness review assessment of BWXT readiness to commence fabrication of low-enriched TRISO coated fuel particles for the AGR-5/6/7 irradiation experiments. BWXT self-identified equipment issues preventing operation. INL identified two findings. The first was that disposition codes had not been assigned and documented on BWXT forms to ensure that off-specification materials could not be used in the fabrication of TRISO particles. The second was that chemical purity specifications were not reliably passed on to chemical suppliers, which resulted in the receipt of one acetylene cylinder with suspect impurity levels.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaise Collin

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along withmore » stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.« less

  20. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    NASA Astrophysics Data System (ADS)

    Powers, Jeffrey J.

    2011-12-01

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MWth, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.

  1. Safety Testing of AGR-2 UCO Compacts 5-2-2, 2-2-2, and 5-4-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.

    2016-08-01

    Post-irradiation examination (PIE) is being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). This effort builds upon the understanding acquired throughout the AGR-1 PIE campaign, and is establishing a database for the different AGR-2 fuel designs. The AGR-2 irradiation experiment included TRISO fuel particles coated at BWX Technologies (BWXT) with a 150-mm-diameter engineering-scale coater. Two coating batches were tested in the AGR-2 irradiation experiment. Batch 93085 had 508-μm-diameter uranium dioxide (UO 2) kernels. Batch 93073 had 427-μm-diameter UCO kernels, which is a kernel design where somemore » of the uranium oxide is converted to uranium carbide during fabrication to provide a getter for oxygen liberated during fission and limit CO production. Fabrication and property data for the AGR-2 coating batches have been compiled and compared to those for AGR-1. The AGR-2 TRISO coatings were most like the AGR-1 Variant 3 TRISO deposited in the 50-mm-diameter ORNL lab-scale coater. In both cases argon-dilution of the hydrogen and methyltrichlorosilane coating gas mixture employed to deposit the SiC was used to produce a finer-grain, more equiaxed SiC microstructure. In addition to the fact that AGR-1 fuel had smaller, 350-μm-diameter UCO kernels, notable differences in the TRISO particle properties included the pyrocarbon anisotropy, which was slightly higher in the particles coated in the engineering-scale coater, and the exposed kernel defect fraction, which was higher for AGR-2 fuel due to the detected presence of particles with impact damage introduced during TRISO particle handling.« less

  2. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are very similar. The final experiment, AGR-5/6/7, is scheduled to begin irradiation in early summer 2017.« less

  3. Design Study of a Modular Gas-Cooled, Closed-Brayton Cycle Reactor for Marine Use

    DTIC Science & Technology

    1989-06-01

    materials in the core and surroundings. To investigate this design point in the marine variant I developed the program HEAT.BAS to perform a one-dimensional...helium as the working fluid. The core is a graphite moderated, epithermal spectrum reactor, using TRISO fuel particles in extruded graphite fuel elements...The fuel is highly enriched U2315 . The containment is shaped in an inverted ’T’ with two sections. The upper section contains the reactor core

  4. MICRO/NANO-STRUCTURAL EXAMINATION AND FISSION PRODUCT IDENTIFICATION IN NEUTRON IRRADIATED AGR-1 TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.

    Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retentionmore » to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows precipitates were randomly distributed along the perimeter of the IPyC-SiC interlayer but only weakly associated with kernel protrusion and buffer fractures. There has been no evidence that the general release of silver is related to cracks or significant degradation of the microstructure. The results presented in this paper provide new insights to Ag transport mechanism(s) in intact SiC layer of TRISO coated particles.« less

  5. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empiricalmore » approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nation's needs for energy and environmental safety. In addition, the outcome of the proposed study will have a broader impact on other processes that utilize spouted beds, such as coal gasification, granulation, drying, catalytic reactions, etc.« less

  6. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importancemore » of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MW th, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.« less

  7. Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel

    DOE PAGES

    Lillo, T. M.; Rooyen, I. J.

    2016-02-26

    The relationship between grain boundary character and fission product migration is identified as an important knowledge gap in order to advance the understanding of fission product release from TRISO fuel particles. Precession electron diffraction (PED), a TEM-based technique, was used in this study to quickly and efficiently provide the crystallographic information needed to identify grain boundary misorientation, grain boundary type (low or high angle) and whether the boundary is coincident site lattice (CSL) – related, in irradiated SiC. Analysis of PED data showed the grain structure of the SiC layer in an irradiated TRISO fuel particle from the AGR-1 experimentmore » to be composed mainly of twin boundaries with a small fraction of low angle grain boundaries (<10%). In general, fission products favor precipitation on random, high angle grain boundaries but can precipitate out on low angle and CSL-related grain boundaries to a limited degree. Pd is capable of precipitating out on all types of grain boundaries but most prominently on random, high angle grain boundaries. Pd-U and Pd-Ag precipitates were found on CSL-related as well as random high angle grain boundaries but not on low angle grain boundaries. In contrast, precipitates containing only Ag were found only on random, high angle grain boundaries but not on either low angle or CSL-related grain boundaries.« less

  8. Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, T. M.; Rooyen, I. J.

    The relationship between grain boundary character and fission product migration is identified as an important knowledge gap in order to advance the understanding of fission product release from TRISO fuel particles. Precession electron diffraction (PED), a TEM-based technique, was used in this study to quickly and efficiently provide the crystallographic information needed to identify grain boundary misorientation, grain boundary type (low or high angle) and whether the boundary is coincident site lattice (CSL) – related, in irradiated SiC. Analysis of PED data showed the grain structure of the SiC layer in an irradiated TRISO fuel particle from the AGR-1 experimentmore » to be composed mainly of twin boundaries with a small fraction of low angle grain boundaries (<10%). In general, fission products favor precipitation on random, high angle grain boundaries but can precipitate out on low angle and CSL-related grain boundaries to a limited degree. Pd is capable of precipitating out on all types of grain boundaries but most prominently on random, high angle grain boundaries. Pd-U and Pd-Ag precipitates were found on CSL-related as well as random high angle grain boundaries but not on low angle grain boundaries. In contrast, precipitates containing only Ag were found only on random, high angle grain boundaries but not on either low angle or CSL-related grain boundaries.« less

  9. Production of Low Enriched Uranium Nitride Kernels for TRISO Particle Irradiation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, J. W.; Silva, C. M.; Helmreich, G. W.

    2016-06-01

    A large batch of UN microspheres to be used as kernels for TRISO particle fuel was produced using carbothermic reduction and nitriding of a sol-gel feedstock bearing tailored amounts of low-enriched uranium (LEU) oxide and carbon. The process parameters, established in a previous study, produced phasepure NaCl structure UN with dissolved C on the N sublattice. The composition, calculated by refinement of the lattice parameter from X-ray diffraction, was determined to be UC 0.27N 0.73. The final accepted product weighed 197.4 g. The microspheres had an average diameter of 797±1.35 μm and a composite mean theoretical density of 89.9±0.5% formore » a solid solution of UC and UN with the same atomic ratio; both values are reported with their corresponding calculated standard error.« less

  10. Grain-boundary type and distribution in silicon carbide coatings and wafers

    NASA Astrophysics Data System (ADS)

    Cancino-Trejo, Felix; López-Honorato, Eddie; Walker, Ross C.; Ferrer, Romelia Salomon

    2018-03-01

    Silicon carbide is the main diffusion barrier against metallic fission products in TRISO (tristructural isotropic) coated fuel particles. The explanation of the accelerated diffusion of silver through SiC has remained a challenge for more than four decades. Although, it is now well accepted that silver diffuse through SiC by grain boundary diffusion, little is known about the characteristics of the grain boundaries in SiC and how these change depending on the type of sample. In this work five different types (coatings and wafers) of SiC produced by chemical vapor deposition were characterized by electron backscatter diffraction (EBSD). The SiC in TRISO particles had a higher concentration of high angle grain boundaries (aprox. 70%) compared to SiC wafers, which ranged between 30 and 60%. Similarly, SiC wafers had a higher concentration of low angle grain boundaries ranging between 15 and 30%, whereas TRISO particles only reached values of around 7%. The same trend remained when comparing the content of coincidence site lattice (CSL) boundaries, since SiC wafers showed a concentration of more than 30%, whilst TRISO particles had contents of around 20%. In all samples the largest fractions of CSL boundaries (3 ≤ Σ ≤ 17) were the Σ3 boundaries. We show that there are important differences between the SiC in TRISO particles and SiC wafers which could explain some of the differences observed in diffusion experiments in the literature.

  11. Metallic impurities-silicon carbide interaction in HTGR fuel particles

    NASA Astrophysics Data System (ADS)

    Minato, Kazuo; Ogawa, Toru; Kashimura, Satoru; Fukuda, Kousaku; Shimizu, Michio; Tayama, Yoshinobu; Takahashi, Ishio

    1990-12-01

    Corrosion of the coating layers of silicon carbide (SiC) by metallic impurities was observed in irradiated Triso-coated uranium dioxide particles for high temperature gas-cooled reactors with an optical microscope and an electron probe micro-analyzer. The SiC layers were attacked from the outside of the particles. The main element observed in the corroded areas was iron, but sometimes iron and nickel were found. These elements must have been contained as impurities in the graphite matrix in which the coated particles were dispersed. Since these elements are more stable thermodynamically in the presence of SiC than in the presence of graphite at irradiation temperatures, they were transferred to the SiC layer to form more stable silicides. During fuel manufacturing processes, intensive care should be taken to prevent the fuel from being contaminated with those elements which react with SiC.

  12. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    NASA Astrophysics Data System (ADS)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads. The applied out-of-plane shear load was resolved in two equal out-of-plane shear components to construct tri-directional shear interaction diagrams.

  13. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the uranium dioxide TRISO particles, and the moderating material is changed from beryllium oxide to graphite. These changes result in an increased core size, but the same long-term power generation potential is achieved. Additionally, small amounts of erbium are added to the hydride matrix to further extend core lifetime.

  14. Quasi-Static Compression and Low-Velocity Impact Behavior of Tri-Axial Bio-Composite Structural Panels Using a Spherical Head

    PubMed Central

    Li, Jinghao; Hunt, John F; Gong, Shaoqin; Cai, Zhiyong

    2017-01-01

    This paper presents experimental results of both quasi-static compression and low-velocity impact behavior for tri-axial bio-composite structural panels using a spherical load head. Panels were made having different core and face configurations. The results showed that panels made having either carbon fiber fabric composite faces or a foam-filled core had significantly improved impact and compressive performance over panels without either. Different localized impact responses were observed based on the location of the compression or impact relative to the tri-axial structural core; the core with a smaller structural element had better impact performance. Furthermore, during the early contact phase for both quasi-static compression and low-velocity impact tests, the panels with the same configuration had similar load-displacement responses. The experimental results show basic compression data could be used for the future design and optimization of tri-axial bio-composite structural panels for potential impact applications. PMID:28772542

  15. TRISO-Coated Fuel Durability Under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimanis, Ivar; Gorman, Brian; Butt, Darryl

    2014-03-30

    The PIs propose to examine TRISO-coated particles (SiC and ZrC coatings) in an integrated two-part study. In the first part, experiments will be performed to assess the reaction kinetics of the carbides under CO-CO2 environments at temperatures up to 1800 degree C. Kinetic model will be applied to describe the degradation. Scanning and transmission electron microscopy will be employed to establish the chemical and microstructure evolution under the imposed environmental conditions. The second part of the proposed work focuses on establishing the role of the high temperature, environmental exposure described above on the mechanical behavior of TRISO-coated particles. Electron microscopymore » and other advanced techniques will be subsequently performed to evaluate failure mechanisms. The work is expected to reveal relationships between corrosion reactions, starting material characteristics (polytype of SiC, impurity concentration, flaw distribution), flaw healing behavior, and crack growth.« less

  16. Identification of Silver and Palladium in Irradiated TRISO Coated Particles of the AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rooyen, Y. J.; Lillo, T. M.; Wu, Y. Q.

    2014-03-01

    Evidence of the release of certain metallic fission product through intact tristructural isotropic (TRISO) particles has been seen for decades around the world, as well as in the recent AGR-1 experiment at Idaho National Laboratory (INL). However, understanding the basic mechanism of transport is still lacking. This understanding is important because the TRISO coating is part of the high temperature gas reactor functional containment and critical for the safety strategy for licensing purposes. Our approach to identify fission products in irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered TEM (EFTEM),more » has led to first-of-a-kind data at the nano-scale indicating the presence of silver at triple points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in the triple junctions. In this initial study, the silver was only identified in SiC grain boundaries and triple points on the edge of the SiC-IPyC interface up to a depth of approximately 0.5 um. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries. Additionally spherical nano-sized palladium rich precipitates were found inside the SiC grains. These nano-sized Pd precipitates were distributed up to a depth of 5 um away from the SiC-IPyC interlayer. No silver was found in the center of the micron-sized fission product precipitates using these techniques, although silver was found on the outer edge of one of the Pd-U-Si containing precipitates which was facing the IPyC layer. Only Pd-U containing precipitates were identified in the IPyC layer and no silver was identified in the IPyC layer. The identification of silver alongside the grain boundaries and the findings of Pd alongside grain boundaries as well as inside the grains, provide significant knowledge for understanding silver and palladium transport in TIRSO fuel, which has been the topic of international research for the past forty years. Additionally the usefulness of the advanced electron microscopic techniques for TRISO coated particle research is demonstrated in this paper.« less

  17. Preparation of Simulated LBL Defects for Round Robin Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerczak, Tyler J.; Baldwin, Charles A.; Hunn, John D.

    2016-01-01

    A critical characteristic of the TRISO fuel design is its ability to retain fission products. During reactor operation, the TRISO layers act as barriers to release of fission products not stabilized in the kernel. Each component of the TRISO particle and compact construction plays a unique role in retaining select fission products, and layer performance is often interrelated. The IPyC, SiC, and OPyC layers are barriers to the release of fission product gases such as Kr and Xe. The SiC layer provides the primary barrier to release of metallic fission products not retained in the kernel, as transport across themore » SiC layer is rate limiting due to the greater permeability of the IPyC and OPyC layers to many metallic fission products. These attributes allow intact TRISO coatings to successfully retain most fission products released from the kernel, with the majority of released fission products during operation being due to defective, damaged, or failed coatings. This dominant release of fission products from compromised particles contributes to the overall source term in reactor; causing safety and maintenance concerns and limiting the lifetime of the fuel. Under these considerations, an understanding of the nature and frequency of compromised particles is an important part of predicting the expected fission product release and ensuring safe and efficient operation.« less

  18. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m 2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation,more » so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.« less

  19. SiC layer microstructure in AGR-1 and AGR-2 TRISO fuel particles and the influence of its variation on the effective diffusion of key fission products

    DOE PAGES

    Gerczak, Tyler J.; Hunn, John D.; Lowden, Richard A.; ...

    2016-08-15

    Tristructural isotropic (TRISO) coated particle fuel is a promising fuel form for advanced reactor concepts such as high temperature gas-cooled reactors (HTGR) and is being developed domestically under the US Department of Energy’s Nuclear Reactor Technologies Initiative in support of Advanced Reactor Technologies. The fuel development and qualification plan includes a series of fuel irradiations to demonstrate fuel performance from the laboratory to commercial scale. The first irradiation campaign, AGR-1, included four separate TRISO fuel variants composed of multiple, laboratory-scale coater batches. The second irradiation campaign, AGR-2, included TRISO fuel particles fabricated by BWX Technologies with a larger coater representativemore » of an industrial-scale system. The SiC layers of as-fabricated particles from the AGR-1 and AGR-2 irradiation campaigns have been investigated by electron backscatter diffraction (EBSD) to provide key information about the microstructural features relevant to fuel performance. The results of a comprehensive study of multiple particles from all constituent batches are reported. The observations indicate that there were microstructural differences between variants and among constituent batches in a single variant. Finally, insights on the influence of microstructure on the effective diffusivity of key fission products in the SiC layer are also discussed.« less

  20. Uranium nitride as LWR TRISO fuel: Thermodynamic modeling of U-C-N

    NASA Astrophysics Data System (ADS)

    Besmann, Theodore M.; Shin, Dongwon; Lindemer, Terrence B.

    2012-08-01

    TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will likely need to be UN instead of UO2. In support of the necessary development effort for this new fuel system, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide followed by nitriding, will be in equilibrium with carbon within the TRISO particle, and will react with minor actinides and fission products. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Measurements were used to confirm an ideal solution model of UN and UC adequately represents the UC1-xNx phase. Agreement with the data was significantly improved by effectively adjusting the Gibbs free energy of UN by +12 kJ/mol. This also required adjustment of the value for the sesquinitride by +17 kJ/mol to obtain agreement with phase equilibria. The resultant model together with reported values for other phases in the system was used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.

  1. THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; A.M. Ougouag

    2011-12-01

    The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less

  2. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carriedmore » out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.« less

  3. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputo, A.J.; Costanzo, D.A.; Lackey, W.J.

    1980-10-07

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as sicl4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  4. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less

  5. Acceptance Test Data for Candidate AGR-5/6/7 TRISO Particle Batches BWXT Coater Batches 93165 93172 Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    2017-03-01

    Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide andmore » uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlou, A. T.; Betzler, B. R.; Burke, T. P.

    Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3)more » a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)« less

  7. HIGH-TEMPERATURE SAFETY TESTING OF IRRADIATED AGR-1 TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stempien, John D.; Demkowicz, Paul A.; Reber, Edward L.

    High-Temperature Safety Testing of Irradiated AGR-1 TRISO Fuel John D. Stempien, Paul A. Demkowicz, Edward L. Reber, and Cad L. Christensen Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415, USA Corresponding Author: john.stempien@inl.gov, +1-208-526-8410 Two new safety tests of irradiated tristructural isotropic (TRISO) coated particle fuel have been completed in the Fuel Accident Condition Simulator (FACS) furnace at the Idaho National Laboratory (INL). In the first test, three fuel compacts from the first Advanced Gas Reactor irradiation experiment (AGR-1) were simultaneously heated in the FACS furnace. Prior to safety testing, each compact was irradiated in the Advanced Testmore » Reactor to a burnup of approximately 15 % fissions per initial metal atom (FIMA), a fast fluence of 3×1025 n/m2 (E > 0.18 MeV), and a time-average volume-average (TAVA) irradiation temperature of about 1020 °C. In order to simulate a core-conduction cool-down event, a temperature-versus-time profile having a peak temperature of 1700 °C was programmed into the FACS furnace controllers. Gaseous fission products (i.e., Kr-85) were carried to the Fission Gas Monitoring System (FGMS) by a helium sweep gas and captured in cold traps featuring online gamma counting. By the end of the test, a total of 3.9% of an average particle’s inventory of Kr-85 was detected in the FGMS traps. Such a low Kr-85 activity indicates that no TRISO failures (failure of all three TRISO layers) occurred during the test. If released from the compacts, condensable fission products (e.g., Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, and Sr-90) were collected on condensation plates fitted to the end of the cold finger in the FACS furnace. These condensation plates were then analyzed for fission products. In the second test, five loose UCO fuel kernels, obtained from deconsolidated particles from an irradiated AGR-1 compact, were heated in the FACS furnace to a peak temperature of 1600 °C. This test had two primary goals. First, the test was intended to assess the retention of fission products in loose kernels without the effects of the other TRISO layers (buffer, IPyC, SiC, and OPyC) or the graphitic matrix material comprising the compact. Second, this test served as an evaluation of the FACS fission product condensation plate collection efficiency.« less

  8. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOEpatents

    Caputo, Anthony J.; Costanzo, Dante A.; Lackey, Jr., Walter J.; Layton, Frank L.; Stinton, David P.

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  9. Methods for making a porous nuclear fuel element

    DOEpatents

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  10. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine

    NASA Astrophysics Data System (ADS)

    Adem, ACIR; Eşref, BAYSAL

    2018-07-01

    In this paper, neutronic analysis in a laser fusion inertial confinement fusion fission energy (LIFE) engine fuelled plutonium and minor actinides using a MCNP codes was investigated. LIFE engine fuel zone contained 10 vol% TRISO particles and 90 vol% natural lithium coolant mixture. TRISO fuel compositions have Mod①: reactor grade plutonium (RG-Pu), Mod②: weapon grade plutonium (WG-Pu) and Mod③: minor actinides (MAs). Tritium breeding ratios (TBR) were computed as 1.52, 1.62 and 1.46 for Mod①, Mod② and Mod③, respectively. The operation period was computed as ∼21 years when the reference TBR > 1.05 for a self-sustained reactor for all investigated cases. Blanket energy multiplication values (M) were calculated as 4.18, 4.95 and 3.75 for Mod①, Mod② and Mod③, respectively. The burnup (BU) values were obtained as ∼1230, ∼1550 and ∼1060 GWd tM–1, respectively. As a result, the higher BU were provided with using TRISO particles for all cases in LIFE engine.

  11. Silver (Ag) Transport Mechanisms in TRISO Coated Particles: A Critical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; ML Dunzik-Gougar; PM van Rooyen

    2014-05-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coatedmore » particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.« less

  12. Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I J van Rooyen; J H Neethling; J A A Engelbrecht

    2012-10-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coatedmore » particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerczak, Tyler J.; Smith, Kurt R.; Petrie, Christian M.

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Departmentmore » of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.« less

  14. UN TRISO Compaction in SiC for FCM Fuel Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A.; Trammell, Michael P.; Kiggans, James O.

    2016-11-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.

  15. Pre- and post-irradiation characterization and properties measurements of ZrC coated surrogate TRISO particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevamurthy, Gokul; Katoh, Yutai; Hunn, John D

    2010-09-01

    Zirconium carbide is a candidate to either replace or supplement silicon carbide as a coating material in TRISO fuel particles for high temperature gas-cooled reactor fuels. Six sets of ZrC coated surrogate microsphere samples, fabricated by the Japan Atomic Energy Agency using the fluidized bed chemical vapor deposition method, were irradiated in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. These developmental samples available for the irradiation experiment were in conditions of either as-fabricated coated particles or particles that had been heat-treated to simulate the fuel compacting process. Five sets of samples were composed of nominally stoichiometricmore » compositions, with the sixth being richer in carbon (C/Zr = 1.4). The samples were irradiated at 800 and 1250 C with fast neutron fluences of 2 and 6 dpa. Post-irradiation, the samples were retrieved from the irradiation capsules followed by microstructural examination performed at the Oak Ridge National Laboratory's Low Activation Materials Development and Analysis Laboratory. This work was supported by the US Department of Energy Office of Nuclear Energy's Advanced Gas Reactor program as part of International Nuclear Energy Research Initiative collaboration with Japan. This report includes progress from that INERI collaboration, as well as results of some follow-up examination of the irradiated specimens. Post-irradiation examination items included microstructural characterization, and nanoindentation hardness/modulus measurements. The examinations revealed grain size enhancement and softening as the primary effects of both heat-treatment and irradiation in stoichiometric ZrC with a non-layered, homogeneous grain structure, raising serious concerns on the mechanical suitability of these particular developmental coatings as a replacement for SiC in TRISO fuel. Samples with either free carbon or carbon-rich layers dispersed in the ZrC coatings experienced negligible grain size enhancement during both heat treatment and irradiation. However, these samples experienced irradiation induced softening similar to stoichiometric ZrC samples.« less

  16. Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric

    Treesearch

    Jinghao Li; John F. Hunt; Zhiyong Cai; Xianyan Zhou

    2013-01-01

    This paper presents analysis of a 3-dimensional engineered structural panel (3DESP) having a tri-axial core structure made from phenolic impregnated laminated-paper composites with and without high strength composite carbon-fiber fabric laminated to the outside of both faces. Both I-beam equations and finite element method were used to analyze four-point bending of the...

  17. Analyzing the impact of reactive transport on the repository performance of TRISO fuel

    NASA Astrophysics Data System (ADS)

    Schmidt, Gregory

    One of the largest determiners of the amount of electricity generated by current nuclear reactors is the efficiency of the thermodynamic cycle used for power generation. Current light water reactors (LWR) have an efficiency of 35% or less for the conversion of heat energy generated by the reactor to electrical energy. If this efficiency could be improved, more power could be generated from equivalent volumes of nuclear fuel. One method of improving this efficiency is to use a coolant flow that operates at a much higher temperature for electricity production. A reactor design that is currently proposed to take advantage of this efficiency is a graphite-moderated, helium-cooled reactor known as a High Temperature Gas Reactor (HTGR). There are significant differences between current LWR's and the proposed HTGR's but most especially in the composition of the nuclear fuel. For LWR's, the fuel elements consist of pellets of uranium dioxide or plutonium dioxide that are placed in long tubes made of zirconium metal alloys. For HTGR's, the fuel, known as TRISO (TRIstructural-ISOtropic) fuel, consists of an inner sphere of fissile material, a layer of dense pyrolytic carbon (PyC), a ceramic layer of silicon carbide (SiC) and a final dense outer layer of PyC. These TRISO particles are then compacted with graphite into fuel rods that are then placed in channels in graphite blocks. The blocks are then arranged in an annular fashion to form a reactor core. However, this new fuel form has unanswered questions on the environmental post-burn-up behavior. The key question for current once-through fuel operations is how these large irradiated graphite blocks with spent fuel inside will behave in a repository environment. Data in the literature to answer this question is lacking, but nevertheless this is an important question that must be answered before wide-spread adoption of HTGR's could be considered. This research has focused on answering the question of how the large quantity of graphite surrounding the spent HTGR fuel will impact the release of aqueous uranium from the TRISO fuel. In order to answer this question, the sorption and partitioning behavior of uranium to graphite under a variety of conditions was investigated. Key systematic variables that were analyzed include solution pH, dissolved carbonate concentration, uranium metal concentration and ionic strength. The kinetics and desorption characteristics of uranium/graphite partitioning were studied as well. The graphite used in these experiments was also characterized by a variety of techniques and conclusions are drawn about the relevant surface chemistry of graphite. This data was then used to generate a model for the reactive transport of uranium in a graphite matrix. This model was implemented with the software code CXTFIT and validated through the use of column studies mirroring the predicted system.

  18. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  19. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  20. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  1. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less

  2. Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Francine Joyce; Stempien, John Dennis

    2016-09-01

    Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within amore » specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.« less

  3. Irradiation performance of AGR-1 high temperature reactor fuel

    DOE PAGES

    Demkowicz, Paul A.; Hunn, John D.; Ploger, Scott A.; ...

    2015-10-23

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that itmore » was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10 –4 to 5 × 10 –4 for 154Eu and 8 × 10 –7 to 3 × 10 –5 for 90Sr. The average 134Cs fractional release from compacts was <3 × 10 –6 when all particles maintained intact SiC. An estimated four particles out of 2.98 × 10 5 in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs fractional release in two capsules to approximately 10 –5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. In conclusion, palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.« less

  4. Orthogonal model and experimental data for analyzing wood-fiber-based tri-axial ribbed structural panels in bending

    Treesearch

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2017-01-01

    This paper presents an analysis of 3-dimensional engineered structural panels (3DESP) made from wood-fiber-based laminated paper composites. Since the existing models for calculating the mechanical behavior of core configurations within sandwich panels are very complex, a new simplified orthogonal model (SOM) using an equivalent element has been developed. This model...

  5. "Yes, but Suppose Everyone Turned Gay?": The Structure of Attitudes toward Gay and Lesbian Rights among Islamic Youth in Belgium

    ERIC Educational Resources Information Center

    Hooghe, Marc; Dejaeghere, Yves; Claes, Ellen; Quintelier, Ellen

    2010-01-01

    Various quantitative studies have suggested the occurrence of hostile feelings toward LGBT rights among Islamic communities in Western societies. We know less, however, about the structure of these attitudes among Belgian Islamic youth. Based on focus groups and in-depth interviews, we try to disentangle these elements. The interviews suggest that…

  6. AGR-1 Compact 1-3-1 Post-Irradiation Examination Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul Andrew

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A seriesmore » of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).« less

  7. AGR-1 Compact 5-3-1 Post-Irradiation Examination Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul; Harp, Jason; Winston, Phil

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series ofmore » fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.« less

  8. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason Michael; Stempien, John Dennis; Demkowicz, Paul Andrew

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO 2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. Thesemore » data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO 2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO 2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less

  9. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These datamore » were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less

  10. Initial results from safety testing of US AGR-2 irradiation test fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.

    Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less

  11. Initial results from safety testing of US AGR-2 irradiation test fuel

    DOE PAGES

    Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.; ...

    2017-08-18

    Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less

  12. Numerical Analysis of Laminated, Orthotropic Composite Structures

    DTIC Science & Technology

    1975-11-01

    the meridian plane. In the first model , a nine degree-of-freedom, straight sided, tri- angular element was used. In this element, the three...E ■ 13.79 GPa v«. ■ «25» 6.. ■ 4.82 GPa ns its V . « .25, G. « 4.82 GPa nt nt vst * ,4S» 6st * 1*379 6P...means zero values of axial accelera- tion, and angular acceleration and velocity for each load increment) NLINC (Number of load increments with time

  13. Real-Time Characterization of Aerospace Structures Using Onboard Strain Measurement Technologies and Inverse Finite Element Method

    DTIC Science & Technology

    2011-09-01

    strain data provided by in-situ strain sensors. The application focus is on the stain data obtained from FBG (Fiber Bragg Grating) sensor arrays...sparsely distributed lines to simulate strain data from FBG (Fiber Bragg Grating) arrays that provide either single-core (axial) or rosette (tri...when the measured strain data are sparse, as it is often the case when FBG sensors are used. For an inverse element without strain-sensor data, the

  14. Weight optimization of large span steel truss structures with genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojolic, Cristian; Hulea, Radu; Pârv, Bianca Roxana

    2015-03-10

    The paper presents the weight optimization process of the main steel truss that supports the Slatina Sport Hall roof. The structure was loaded with self-weight, dead loads, live loads, snow, wind and temperature, grouped in eleven load cases. The optimization of the structure was made using genetic algorithms implemented in a Matlab code. A total number of four different cases were taken into consideration when trying to determine the lowest weight of the structure, depending on the types of connections with the concrete structure ( types of supports, bearing modes), and the possibility of the lower truss chord nodes tomore » change their vertical position. A number of restrictions for tension, maximum displacement and buckling were enforced on the elements, and the cross sections are chosen by the program from a user data base. The results in each of the four cases were analyzed in terms of weight, element tension, element section and displacement. The paper presents the optimization process and the conclusions drawn.« less

  15. First high temperature safety tests of AGR-1 TRISO fuel with the Fuel Accident Condition Simulator (FACS) furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul A.; Reber, Edward L.; Scates, Dawn M.

    2015-09-01

    Three TRISO fuel compacts from the AGR-1 irradiation experiment were subjected to safety tests at 1600 and 1800 °C for approximately 300 h to evaluate the fission product retention characteristics. Silver behavior was dominated by rapid release of an appreciable fraction of the compact inventory (3–34%) at the beginning of the tests, believed to be from inventory residing in the compact matrix and outer pyrocarbon (OPyC) prior to the safety test. Measurable release of silver from intact particles appears to become apparent only after ~60 h at 1800 °C. The release rate for europium and strontium was nearly constant formore » 300 h at 1600 °C (reaching maximum values of approximately 2×10⁻³ and 8×10⁻⁴ respectively), and at this temperature the release may be mostly limited to inventory in the compact matrix and OPyC prior to the safety test. The release rate for both elements increased after approximately 120 h at 1800 °C, possibly indicating additional measurable release through the intact particle coatings. Cesium fractional release from particles with intact coatings was <10⁻⁶ after 300 h at 1600 °C or 100 h at 1800 °C, but release from the rare particles that experienced SiC failure during the test could be significant. However, Kr release was still very low for 300 h 1600 °C (<2 × 10⁻⁶). At 1800 °C, krypton release increased noticeably after SiC failure, reflecting transport through the intact outer pyrocarbon layer. Nonetheless, the krypton and cesium release fractions remained less than approximately 10⁻³ after 277 h at 1800 °C.« less

  16. Evolutionary Models for Simple Biosystems

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    The concept of evolutionary development of structures constituted a real revolution in biology: it was possible to understand how the very complex structures of life can arise in an out-of-equilibrium system. The investigation of such systems has shown that indeed, systems under a flux of energy or matter can self-organize into complex patterns, think for instance to Rayleigh-Bernard convection, Liesegang rings, patterns formed by granular systems under shear. Following this line, one could characterize life as a state of matter, characterized by the slow, continuous process that we call evolution. In this paper we try to identify the organizational level of life, that spans several orders of magnitude from the elementary constituents to whole ecosystems. Although similar structures can be found in other contexts like ideas (memes) in neural systems and self-replicating elements (computer viruses, worms, etc.) in computer systems, we shall concentrate on biological evolutionary structure, and try to put into evidence the role and the emergence of network structure in such systems.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmann, Theodore M; Shin, Dongwon

    TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will need to be UN. In support of the fuel development effort, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide and it will be in equilibrium with carbon within the TRISO particle. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Selectedmore » measurements were used to fit a first order model of the UC1-xNx phase, represented by the inter-solution of UN and UC. Fit to the data was significantly improved by also adjusting the heat of formation for UN by ~12 kJ/mol and the phase equilbria was best reproduced by also adjusting the heat for U2N3 by +XXX. The determined interaction parameters yielded a slightly positive deviation from ideality, which agrees with lattice parameter measurements which show positive deviation from Vegard s law. The resultant model together with reported values for other phases in the system were used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.« less

  18. Multidimensional Fuel Performance Code: BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phasemore » field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  19. Fission product palladium-silicon carbide interaction in htgr fuel particles

    NASA Astrophysics Data System (ADS)

    Minato, Kazuo; Ogawa, Toru; Kashimura, Satoru; Fukuda, Kousaku; Shimizu, Michio; Tayama, Yoshinobu; Takahashi, Ishio

    1990-07-01

    Interaction of fission product palladium (Pd) with the silicon carbide (SiC) layer was observed in irradiated Triso-coated uranium dioxide particles for high temperature gas-cooled reactors (HTGR) with an optical microscope and electron probe microanalyzers. The SiC layers were attacked locally or the reaction product formed nodules at the attack site. Although the main element concerned with the reaction was palladium, rhodium and ruthenium were also detected at the corroded areas in some particles. Palladium was detected on both the hot and cold sides of the particles, but the corroded areas and the palladium accumulations were distributed particularly on the cold side of the particles. The observed Pd-SiC reaction depths were analyzed on the assumption that the release of palladium from the fuel kernel controls the whole Pd-SiC reaction.

  20. Detection and analysis of particles with failed SiC in AGR-1 fuel compacts

    DOE PAGES

    Hunn, John D.; Baldwin, Charles A.; Gerczak, Tyler J.; ...

    2016-04-06

    As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of 134Cs and 137Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compactmore » containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600–1800 °C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. In addition, all three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were related to either fabrication defects or showed extensive Pd corrosion through the SiC where it had been exposed by similar IPyC cracking.« less

  1. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less

  2. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less

  3. Exotic QTL improve grain quality in the tri-parental wheat population SW84

    PubMed Central

    Nedelkou, Ioanna-Pavlina; Maurer, Andreas; Schubert, Anne; Léon, Jens

    2017-01-01

    Developing the tri-parental exotic wheat population SW84 Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). Studying the genetic control of grain quality in SW84 As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. Utilizing favorable exotic QTL alleles in wheat breeding Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool. PMID:28686676

  4. Distinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses

    PubMed Central

    Chen, Augustine; Brown, Chris

    2012-01-01

    The hepadnavirus encapsidation signal, epsilon (ε), is an RNA structure located at the 5′ end of the viral pregenomic RNA. It is essential for viral replication and functions in polymerase protein binding and priming. This structure could also have potential regulatory roles in controlling the expression of viral replicative proteins. In addition to its structure, the primary sequence of this RNA element has crucial functional roles in the viral lifecycle. Although the ε elements in hepadnaviruses share common critical functions, there are some significant differences in mammalian and avian hepadnaviruses, which include both sequence and structural variations.   Here we present several covariance models for ε elements from the Hepadnaviridae. The model building included experimentally determined data from previous studies using chemical probing and NMR analysis. These models have sufficient similarity to comprise a clan. The clan has in common a highly conserved overall structure consisting of a lower-stem, bulge, upper-stem and apical-loop. The models differ in functionally critical regions—notably the two types of avian ε elements have a tetra-loop (UGUU) including a non-canonical UU base pair, while the hepatitis B virus (HBV) epsilon has a tri-loop (UGU). The avian epsilon elements have a less stable dynamic structure in the upper stem. Comparisons between these models and all other Rfam models, and searches of genomes, showed these structures are specific to the Hepadnaviridae. Two family models and the clan are available from the Rfam database. PMID:22418844

  5. Modal Test of Six-Meter Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Abraham, Nijo; Buehrle, Ralph; Templeton, Justin; Lindell, Mike; Hancock, Sean M.

    2014-01-01

    A modal test was performed on the six-meter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test article to gain a firm understanding of the dynamic characteristics of the unloaded structure within the low frequency range. The tests involved various configurations of the HIAD to understand the influence of the tri-torus, the varying pressure within the toroids and the influence of straps. The primary test was conducted utilizing an eletrodynamic shaker and the results were verified using a step relaxation technique. The analysis results show an increase in the structure's stiffness with respect to increasing pressure. The results also show the rise of coupled modes with the tri-torus configurations. During the testing activity, the attached straps exhibited a behavior that is similar to that described as fuzzy structures in the literature. Therefore extensive tests were also performed by utilizing foam to mitigate these effects as well as understand the modal parameters of these fuzzy sub structures. Results are being utilized to update the finite element model of the six-meter HIAD and to gain a better understanding of the modeling of complex inflatable structures.

  6. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Qitang; Wang, Tao; Zhu, Junfa, E-mail: jfzhu@ustc.edu.cn

    2015-03-14

    The temperature-controlled surface-assisted synthesis of halogen bonded, organometallic, and covalent nanostructures based on 1,3,5-tribromo-benzene (TriBB) was studied with scanning tunneling microscopy and X-ray photoemission spectroscopy in ultrahigh vacuum. Vapor deposition of TriBB onto a Cu(111) surface held at 90 K leads to the formation of large domains of a honeycomb-like organic monolayer structure stabilized by triangular nodes with Br⋯Br intermolecular bonds. Upon annealing the organic monolayer to ∼140 K, a new hexagonal close-packed structure with intact TriBB molecules connected by Cu adatoms is formed. Further warming up the sample to 300 K gives rise to the scission of C–Br bondsmore » and formation of C–Cu–C bonds between phenyl fragments such that stable dendritic organometallic networks are formed. Larger islands of organometallic networks are obtained by maintaining the temperature of Cu(111) at 420 K during deposition of TriBB. Simultaneously, large islands of Br atoms are formed around the organometallic networks. Annealing the more extended organometallic network (prepared at 420 K) to 520 K leads to the formation of a branched covalent organic framework (COF) which comprises structural elements of porous graphene and is surrounded by Br islands. These organometallic networks and COFs appear as small dendritic and branched domains, most likely due to the steric influence exerted by the Br islands.« less

  7. Applications of Parallel Computation in Micro-Mechanics and Finite Element Method

    NASA Technical Reports Server (NTRS)

    Tan, Hui-Qian

    1996-01-01

    This project discusses the application of parallel computations related with respect to material analyses. Briefly speaking, we analyze some kind of material by elements computations. We call an element a cell here. A cell is divided into a number of subelements called subcells and all subcells in a cell have the identical structure. The detailed structure will be given later in this paper. It is obvious that the problem is "well-structured". SIMD machine would be a better choice. In this paper we try to look into the potentials of SIMD machine in dealing with finite element computation by developing appropriate algorithms on MasPar, a SIMD parallel machine. In section 2, the architecture of MasPar will be discussed. A brief review of the parallel programming language MPL also is given in that section. In section 3, some general parallel algorithms which might be useful to the project will be proposed. And, combining with the algorithms, some features of MPL will be discussed in more detail. In section 4, the computational structure of cell/subcell model will be given. The idea of designing the parallel algorithm for the model will be demonstrated. Finally in section 5, a summary will be given.

  8. [From Paris to Strasbourgh: the development of orthopedic and gymnastic clinics (first half of the 19th century)].

    PubMed

    Quin, Gregory; Monet, Jacques

    2011-01-01

    In this contribution, we try to outline a history of the rise of orthopaedic and gymnastic clinics from 1820 to 1860 in France, and particularly in Paris. These clinics are located at the crossroads of several social processes of the 19th century: the structuring of a medical field (observed through specialization, professionalization, etc.), physical exercises legitimating process or the development of a medical interest for the female body. Several types of interests and issues--epistemological, educational, social, professional or symbolic--cross around those clinics and place them as major elements in the constitution of a history of medical engagement in the production of physical education during the nineteenth century. Divided in two parts, our presentation will try to highlight various elements of a history of those clinics' rise: their directors, a geography of the implantation in Paris and a description of their customers, looking at the various educational and rehabilitative methodologies implemented in the different clinics.

  9. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    DOE PAGES

    Gerczak, Tyler J.; Zheng, Guiqui; Field, Kevin G.; ...

    2014-10-05

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110m Ag from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent research efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermalmore » exposure environment is critical to maintaining an intact surface for diffusion analysis. In conclusion, the nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.« less

  10. Observations of Ag diffusion in ion implanted SiC

    DOE PAGES

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  11. Fully Ceramic Microencapsulated Fuel Development for LWR Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A

    2012-01-01

    The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented includingmore » the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.« less

  12. Progress in understanding fission-product behaviour in coated uranium-dioxide fuel particles

    NASA Astrophysics Data System (ADS)

    Barrachin, M.; Dubourg, R.; Kissane, M. P.; Ozrin, V.

    2009-03-01

    Supported by results of calculations performed with two analytical tools (MFPR, which takes account of physical and chemical mechanisms in calculating the chemical forms and physical locations of fission products in UO2, and MEPHISTA, a thermodynamic database), this paper presents an investigation of some important aspects of the fuel microstructure and chemical evolutions of irradiated TRISO particles. The following main conclusions can be identified with respect to irradiated TRISO fuel: first, the relatively low oxygen potential within the fuel particles with respect to PWR fuel leads to chemical speciation that is not typical of PWR fuels, e.g., the relatively volatile behaviour of barium; secondly, the safety-critical fission-product caesium is released from the urania kernel but the buffer and pyrolytic-carbon coatings could form an important chemical barrier to further migration (i.e., formation of carbides). Finally, significant releases of fission gases from the urania kernel are expected even in nominal conditions.

  13. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry for TRISO fuel compacts across a burnup range of approximately 10 to 20% FIMA and also validate the approach used in the physics simulation of the AGR 1 experiment.« less

  14. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    DOE PAGES

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; ...

    2014-09-03

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methodsmore » for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. Furthermore, the results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry for TRISO fuel compacts across a burnup range of approximately 10 to 20% FIMA and also validate the approach used in the physics simulation of the AGR 1 experiment.« less

  15. New public management in Iran's health complex: a management framework for primary health care system.

    PubMed

    Tabrizi, Jafar Sadegh; HaghGoshayie, Elaheh; Doshmangir, Leila; Yousefi, Mahmood

    2018-05-01

    New public management (NPM) was developed as a management reform to improve the efficiency and effectiveness in public organizations, especially in health sector. Using the features of private sector management, the managers of health organizations may try to implement the elements of NPM with the hope to improve the performance of their systems.AimsOur aim in the present study was to identify the elements and infrastructures suitable for implementing NPM in the Iranian health complex. In this qualitative study with conventional content analysis approach, we tried to explore the NPM elements and infrastructures in Iranian public health sector. A series of semi-structured interviews (n=48) were conducted in 2016 with a managers in public and private health complex. Three focus group discussions with nine faculty members were also conducted. A data collection form was used to collect the demographic characteristics and perspectives of the participants.FindingsFrom the perspective of managers, managerialism, decentralization, using market mechanism, performance management, customer orientation and performance budgeting were the main elements of NPM in the Iranian context. The most important infrastructures for implementing this reform were as follows: education and training, information technology, the proper use of human resources, decision support systems, top management commitment, organizational culture, flexibility of rules, rehabilitating of the aging infrastructures, and expanding the coverage of services. The NPM was generally identified to be an effective replacement for the traditional administration method. These reforms may be helpful in strengthening the public health complex and the management capacity, as well. NPM also seems to be useful in interacting the public health sector with the private sector in terms of personnel and resources, performance, reward structure, and methods of doing business.

  16. Quantity of 135I released from the AGR-1, AGR-2, and AGR-3/4 experiments and discovery of 131I at the FPMS traps during the AGR-3/4 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scates, Dawn M.

    2014-09-01

    A series of three Advanced Gas Reactor (AGR) experiments have been conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). From 2006 through 2014, these experiments supported the development and qualification of the new U.S. tristructural isotropic (TRISO) particle fuel for Very High Temperature Reactors (VHTR). Each AGR experiment consisted of multiple fueled capsules, each plumbed for independent temperature control using a mix of helium and neon gases. The gas leaving a capsule was routed to individual Fission Product Monitor (FPM) detectors. For intact fuel particles, the TRISO particle coatings provide a substantial barrier to fission productmore » release. However, particles with failed coatings, whether because of a minute percentage of initially defective particles, those which fail during irradiation, or those designed to fail (DTF) particles, can release fission products to the flowing gas stream. Because reactive fission product elements like iodine and cesium quickly deposit on cooler capsule components and piping structures as the effluent gas leaves the reactor core, only the noble fission gas isotopes of Kr and Xe tend to reach FPM detectors. The FPM system utilizes High Purity Germanium (HPGe) detectors coupled with a thallium activated sodium iodide NaI(Tl) scintillator. The HPGe detector provides individual isotopic information, while the NaI(Tl) scintillator is used as a gross count rate meter. During irradiation, the 135mXe concentration reaching the FPM detectors is from both direct fission and by decay of the accumulated 135I. About 2.5 hours after irradiation (ten 15.3 minute 135mXe half lives) the directly produced 135mXe has decayed and only the longer lived 135I remains as a source. Decay systematics dictate that 135mXe will be in secular equilibrium with its 135I parent, such that its production rate very nearly equals the decay rate of the parent, and its concentration in the flowing gas stream will appear to decay with the parent half life. This equilibrium condition enables the determination of the amount of 135I released from the fuel particles by measurement of the 135mXe at the FPM following reactor shutdown. In this paper, the 135I released will be reported and compared to similar releases for noble gases as well as the unexpected finding of 131I deposition from intentional impure gas injection into capsule 11 of experiment AGR 3/4.« less

  17. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope; R. Sonat Sen; Brian Boer

    2011-09-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code tomore » assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.« less

  18. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germanymore » produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.« less

  19. Preconceptual design of a fluoride high temperature salt-cooled engineering demonstration reactor: Motivation and overview

    DOE PAGES

    Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...

    2016-12-21

    Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less

  20. Preconceptual design of a fluoride high temperature salt-cooled engineering demonstration reactor: Motivation and overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.

    Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less

  1. Comparison of Homogeneous and Heterogeneous CFD Fuel Models for Phase I of the IAEA CRP on HTR Uncertainties Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom; Su-Jong Yoon

    2014-04-01

    Computational Fluid Dynamics (CFD) evaluation of homogeneous and heterogeneous fuel models was performed as part of the Phase I calculations of the International Atomic Energy Agency (IAEA) Coordinate Research Program (CRP) on High Temperature Reactor (HTR) Uncertainties in Modeling (UAM). This study was focused on the nominal localized stand-alone fuel thermal response, as defined in Ex. I-3 and I-4 of the HTR UAM. The aim of the stand-alone thermal unit-cell simulation is to isolate the effect of material and boundary input uncertainties on a very simplified problem, before propagation of these uncertainties are performed in subsequent coupled neutronics/thermal fluids phasesmore » on the benchmark. In many of the previous studies for high temperature gas cooled reactors, the volume-averaged homogeneous mixture model of a single fuel compact has been applied. In the homogeneous model, the Tristructural Isotropic (TRISO) fuel particles in the fuel compact were not modeled directly and an effective thermal conductivity was employed for the thermo-physical properties of the fuel compact. On the contrary, in the heterogeneous model, the uranium carbide (UCO), inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers of the TRISO fuel particles are explicitly modeled. The fuel compact is modeled as a heterogeneous mixture of TRISO fuel kernels embedded in H-451 matrix graphite. In this study, a steady-state and transient CFD simulations were performed with both homogeneous and heterogeneous models to compare the thermal characteristics. The nominal values of the input parameters are used for this CFD analysis. In a future study, the effects of input uncertainties in the material properties and boundary parameters will be investigated and reported.« less

  2. Design, Simulation and Experimental Evaluation of Tri-Phasic Piezoelectric Composite Transducers

    NASA Astrophysics Data System (ADS)

    Tamez, Juan Pedro

    Piezoelectric ceramics exhibit excellent piezoelectric and dielectric properties that is the basis of practically all transducers and piezoelectric devices, but their inherent properties, such as brittleness, non-ductility and poor shapeability may limit their applications in areas such as vibration sensing, impact detection, structural health monitoring and other reinforced structures and energy harvesting. To compensate for such limitations, the 1-3 piezoelectric composites transducers have become the material of choice for many high performance ultrasound transducers since it was invented in the late 1970's [ref. Newnham/Cross]. Extensive studies on 1-3 composites have been performed since then to improve the performance of a transducer by modifying their electromechanical coupling, bandwidth, quality factor, and flexibility and by reducing or eliminating the cross talk, i.e., induced noise between the active piezoelectric elements, especially in high power and low frequency applications. These fundamental issues, their possible solutions and their wide impact underline the motivation of the current work in this dissertation report. The motivation for this dissertation was to study and provide a foundation to designing multiphasic piezoelectric transducers that could be useful for multitude of applications. The goal was to improve the 1-3 diphasic composite transducer by eliminating the cross talk between the active piezoelectric elements while maintaining and improving the figures of merit of the design. To achieve the ultimate goal, the steps outlined below were followed: i. Understanding the theoretical and mathematical modeling for tri-phasic piezoelectric composite. ii. Implement Finite Element Analysis (FEA) and simulations of tri-phasic piezoelectric composites where the different active piezoelectric material PZT-5H and PMN-30%PT is surrounded by a vacuum phase that is enclosed by a hexagonal polymer walls. iii. Propose a redesign of the tri-phasic transducer to improve the Figures of Merit (FOM) for non-destructive evaluation (NDE) applications. iv. Explore the performance of the diphasic and tri-phasic transducer for energy harvesting applications. v. Perform analysis and quantification of the transducers in a laboratory environment to analyze their performance for Non-Destructive Testing (NDE) using pulse echo acoustics and Electro-Mechanical Impedance (EMI) measurements. The findings of this research are reported in this dissertation indicate that the measured piezoelectric properties of the fabricated tri-phasic transducers are in good agreement with those of the predicted designs. The simulation of the designed transducer has acoustic energy channeled in the d33 mode at resonance, with weak or no shear mode cross talk behavior from the other modes. The mechanical displacements measured were large and highly aligned along polar direction consistent with d33 mode. This implies that multiphasic piezoelectric transducer performs as a single device with improved mechanical and electrical response for sensing, actuation or single device transducer applications. Testing in a laboratory environment demonstrated that they can be highly useful for both the contact and air coupled noncontact Non-Destructive Evaluation (NDE) and nondestructive testing (NDT) applications.

  3. Exotic QTL improve grain quality in the tri-parental wheat population SW84.

    PubMed

    Nedelkou, Ioanna-Pavlina; Maurer, Andreas; Schubert, Anne; Léon, Jens; Pillen, Klaus

    2017-01-01

    Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool.

  4. Operation and postirradiation examination of ORR capsule OF-2: accelerated testing of HTGR fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiegs, T.N.; Thoms, K.R.

    1979-03-01

    Irradiation capsule OF-2 was a test of High-Temperature Gas-Cooled Reactor fuel types under accelerated irradiation conditions in the Oak Ridge Research Reactor. The results showed good irradiation performance of Triso-coated weak-acid-resin fissile particles and Biso-coated fertile particles. These particles had been coated by a fritted gas distributor in the 0.13-m-diam furnace. Fast-neutron damage (E > 0.18 MeV) and matrix-particle interaction caused the outer pyrocarbon coating on the Triso-coated particles to fail. Such failure depended on the optical anisotropy, density, and open porosity of the outer pyrocarbon coating, as well as on the coke yield of the matrix. Irradiation of specimensmore » with values outside prescribed limits for these properties increased the failure rate of their outer pyrocarbon coating. Good irradiation performance was observed for weak-acid-resin particles with conversions in the range from 15 to 75% UC/sub 2/.« less

  5. Influence of free carbon on the characteristics of ZrC and deposition of near-stoichiometric ZrC in TRISO coated particle fuel

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Ko, Myeong Jin; Park, Ji Yeon; Cho, Moon Sung; Kim, Weon-Ju

    2014-08-01

    Advanced TRISO coated particles with a ZrC coating layer as a main pressure boundary were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method using a chloride process. Experiments were performed to determine the effect of codeposition of graphitic carbon on the hardness and obtain the stoichiometric ZrC phase. The ZrC coating layer was composed of a mixture of ZrC and graphitic carbon phases at a low ZrCl4/CH4 ratio. A near-stoichiometric ZrC without the free carbon can be obtained by employing an impeller-driven ZrCl4 vaporizer. The codeposition of the graphitic carbon significantly lowered the hardness of ZrC while increasing the fraction of the carbon. The hardness reached its maximum when ZrC was in a slight carbon deficit without free carbon. As the graphitic carbon increased up to 12 vol%, the hardness was reduced by approximately 50% compared to the near-stoichiometric ZrC.

  6. Electron Microscopic Examination of Irradiated TRISO Coated Particles of Compact 6-3-2 of AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Rooyen, Isabella Johanna; Demkowicz, Paul Andrew; Riesterer, Jessica Lori

    2012-12-01

    The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compact 6-3-2more » has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm« less

  7. Electron Microscopic Examination of Irradiated TRISO Coated Particles of Compact 6-3-2 of AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Rooyen, Isabella Johanna; Demkowicz, Paul Andrew; Riesterer, Jessica Lori

    2012-12-01

    The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO 2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compactmore » 6-3-2 has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm« less

  8. Straight-chain halocarbon forming fluids for TRISO fuel kernel production - Tests with yttria-stabilized zirconia microspheres

    NASA Astrophysics Data System (ADS)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.

    2015-03-01

    Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.

  9. AGR-2 and AGR-3/4 Release-to-Birth Ratio Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Binh T.; Einerson, Jeffrey J.; Scates, Dawn M.

    A series of Advanced Gas Reactor (AGR) irradiation tests is being conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) in support of development and qualification of tristructural isotropic (TRISO) low enriched fuel used in the High Temperature Gas-cooled Reactor (HTGR). Each AGR test consists of multiple independently controlled and monitored capsules containing fuel compacts placed in a graphite cylinder shrouded by a steel shell. These capsules are instrumented with thermocouples embedded in the graphite enabling temperature control. AGR configuration and irradiation conditions are based on prismatic HTGR technology that is distinguished primarily through use of heliummore » coolant, a low-power-density ceramic core capable of withstanding very high temperatures, and TRISO coated particle fuel. Thus, these tests provide valuable irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, and support development and validation of fuel performance and fission product transport models and codes.« less

  10. Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel

    NASA Astrophysics Data System (ADS)

    Lillo, T. M.; van Rooyen, I. J.

    2016-05-01

    In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.

  11. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes

    PubMed Central

    Leroy, Philippe; Guilhot, Nicolas; Sakai, Hiroaki; Bernard, Aurélien; Choulet, Frédéric; Theil, Sébastien; Reboux, Sébastien; Amano, Naoki; Flutre, Timothée; Pelegrin, Céline; Ohyanagi, Hajime; Seidel, Michael; Giacomoni, Franck; Reichstadt, Mathieu; Alaux, Michael; Gicquello, Emmanuelle; Legeai, Fabrice; Cerutti, Lorenzo; Numa, Hisataka; Tanaka, Tsuyoshi; Mayer, Klaus; Itoh, Takeshi; Quesneville, Hadi; Feuillet, Catherine

    2012-01-01

    In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future. PMID:22645565

  12. Structural isomers of polyfluorinated di- and tri-alkylated phosphate ester surfactants present in industrial blends and in microwave popcorn bags.

    PubMed

    Trier, Xenia; Nielsen, Nikoline Juul; Christensen, Jan H

    2011-09-01

    In this study, we provide strategies for detecting and quantifying the structural isomers of polyfluorinated di- and tri-alkyl surfactants (PFAS) by mass spectrometry (MS). We specifically investigate polyfluorinated dialkylated phosphate ester surfactants (x:2/y:2 diPAPS, (F(CF(2))( x )CH(2)CH(2)O-P(O)(O)(-)-OCH(2)CH(2)(CF(2))( y )F)) and their thioether analogues (x:2/y:2 S-diPAPS, F(CF(2))( x )CH(2)CH(2)SCH(2)-C[CH(2)O)(2)P(O)(O)(-)]-CH(2)SCH(2)CH(2)(CF(2))( y )F), which are used for industrial applications, such as oil- and water-repellent coatings on paper and board. DiPAPS have been found in human blood and are metabolised to the persistent perfluoroalkyl carboxylic acids (PFCA) in rats. A microwave popcorn bag extract was analysed by ultrahigh-pressure liquid chromatography coupled to a negative electrospray ionisation-quadrupole time-of-flight MS. The extract contained S-diPAPS, diPAPS and trialkylated (triPAPS) impurities. TriPAPS were also present in industrial and synthetic diPAPS standards, and were verified with an 8:2/8:2/8:2 triPAPS standard. The eight elemental compositions (m/z's) of diPAPS in the extract represent 19 precursor ion structures, and the six S-diPAPS m/z's represent at least 13 structures. The diPAPS had [M-H](-) precursor ions of m/z 789, 889,…1,489 and the S-diPAPS of m/z 921, 1,021,…1,421, corresponding to fluorinated chains from C(6-18). Each m/z appeared as one to three chromatographic peaks of structural isomers, where, e.g. m/z 1,189 was present as 10:2/10:2, 8:2/12:2 and 6:2/14:2 diPAPS. The isomers formed different products ions, thus only half of the m/z 1,189 diPAPS concentration was measured with one precursor ion > product ion transition. In general, knowledge about structural isomers of poly-alkylated PFAS is needed for the estimation of types and amounts of perfluorinated degradation products, such as PFCA from diPAPS.

  13. Crystal Structure and Antitumor Activity of the Novel Zwitterionic Complex of tri-n-Butyltin(IV) with 2-Thiobarbituric Acid

    PubMed Central

    Balas, Vasilios I.; Hadjikakou, Sotiris K.; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Light, Mark E.; Hursthouse, Mike; Metsios, Apostolos K.; Karkabounas, Spyros

    2008-01-01

    A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin. PMID:18401456

  14. In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait

    NASA Astrophysics Data System (ADS)

    Zeb Gul, Jahan; Yang, Bong-Su; Yang, Young Jin; Chang, Dong Eui; Choi, Kyung Hyun

    2016-11-01

    Soft bots have the expedient ability of adopting intricate postures and fitting in complex shapes compared to mechanical robots. This paper presents a unique in situ UV curing three-dimensional (3D) printed multi-material tri-legged soft bot with spider mimicked multi-step dynamic forward gait using commercial bio metal filament (BMF) as an actuator. The printed soft bot can produce controllable forward motion in response to external signals. The fundamental properties of BMF, including output force, contractions at different frequencies, initial loading rate, and displacement-rate are verified. The tri-pedal soft bot CAD model is designed inspired by spider’s legged structure and its locomotion is assessed by simulating strain and displacement using finite element analysis. A customized rotational multi-head 3D printing system assisted with multiple wavelength’s curing lasers is used for in situ fabrication of tri-pedal soft-bot using two flexible materials (epoxy and polyurethane) in three layered steps. The size of tri-pedal soft-bot is 80 mm in diameter and each pedal’s width and depth is 5 mm × 5 mm respectively. The maximum forward speed achieved is 2.7 mm s-1 @ 5 Hz with input voltage of 3 V and 250 mA on a smooth surface. The fabricated tri-pedal soft bot proved its power efficiency and controllable locomotion at three input signal frequencies (1, 2, 5 Hz).

  15. BISON Theory Manual The Equations behind Nuclear Fuel Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Williamson, R. L.; Novascone, S. R.

    2016-09-01

    BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact,more » and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.« less

  16. Initial examination of fuel compacts and TRISO particles from the US AGR-2 irradiation test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.

    Post-irradiation examination was completed on two as-irradiated compacts from the US Advanced Gas Reactor Fuel Development and Qualification Program’s second irradiation test. These compacts were selected for examination because there were indications that they may have contained particles that released cesium through a failed or defective SiC layer. The coated particles were recovered from these compacts by electrolytic deconsolidation of the surrounding graphitic matrix in nitric acid. The leach-burn-leach (LBL) process was used to dissolve and analyze exposed metallic elements (actinides and fission products), and each particle was individually surveyed for relative cesium retention with the Irradiated Microsphere Gamma Analyzermore » (IMGA). Data from IMGA and LBL examinations provided information on fission product release during irradiation and whether any specific particles had below-average retention that could be related to coating layer defects or radiation-induced degradation. A few selected normal-retention particles and six with abnormally-low cesium inventory were analyzed using X-ray tomography to produce three-dimensional images of the internal coating structure. Four of the low-cesium particles had obviously damaged or degraded SiC, and X-ray imaging was able to guide subsequent grinding and polishing to expose the regions of interest for analysis by optical and electron microscopy. Additional particles from each compact were also sectioned and examined to study the overall radiation-induced microstructural changes in the kernel and coating layers.« less

  17. Initial examination of fuel compacts and TRISO particles from the US AGR-2 irradiation test

    DOE PAGES

    Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.; ...

    2017-10-21

    Post-irradiation examination was completed on two as-irradiated compacts from the US Advanced Gas Reactor Fuel Development and Qualification Program’s second irradiation test. These compacts were selected for examination because there were indications that they may have contained particles that released cesium through a failed or defective SiC layer. The coated particles were recovered from these compacts by electrolytic deconsolidation of the surrounding graphitic matrix in nitric acid. The leach-burn-leach (LBL) process was used to dissolve and analyze exposed metallic elements (actinides and fission products), and each particle was individually surveyed for relative cesium retention with the Irradiated Microsphere Gamma Analyzermore » (IMGA). Data from IMGA and LBL examinations provided information on fission product release during irradiation and whether any specific particles had below-average retention that could be related to coating layer defects or radiation-induced degradation. A few selected normal-retention particles and six with abnormally-low cesium inventory were analyzed using X-ray tomography to produce three-dimensional images of the internal coating structure. Four of the low-cesium particles had obviously damaged or degraded SiC, and X-ray imaging was able to guide subsequent grinding and polishing to expose the regions of interest for analysis by optical and electron microscopy. Additional particles from each compact were also sectioned and examined to study the overall radiation-induced microstructural changes in the kernel and coating layers.« less

  18. Biomimetic wall-shaped hierarchical microstructure for gecko-like attachment.

    PubMed

    Kasem, Haytam; Tsipenyuk, Alexey; Varenberg, Michael

    2015-04-21

    Most biological hairy adhesive systems involved in locomotion rely on spatula-shaped terminal elements, whose operation has been actively studied during the last decade. However, though functional principles underlying their amazing performance are now well understood, due to technical difficulties in manufacturing the complex structure of hierarchical spatulate systems, a biomimetic surface structure featuring true shear-induced dynamic attachment still remains elusive. To try bridging this gap, a novel method of manufacturing gecko-like attachment surfaces is devised based on a laser-micromachining technology. This method overcomes the inherent disadvantages of photolithography techniques and opens wide perspectives for future production of gecko-like attachment systems. Advanced smart-performance surfaces featuring thin-film-based hierarchical shear-activated elements are fabricated and found capable of generating friction force of several tens of times the contact load, which makes a significant step forward towards a true gecko-like adhesive.

  19. First stage identification of syntactic elements in an extra-terrestrial signal

    NASA Astrophysics Data System (ADS)

    Elliott, John

    2011-02-01

    By investigating the generic attributes of a representative set of terrestrial languages at varying levels of abstraction, it is our endeavour to try and isolate elements of the signal universe, which are computationally tractable for its detection and structural decipherment. Ultimately, our aim is to contribute in some way to the understanding of what 'languageness' actually is. This paper describes algorithms and software developed to characterise and detect generic intelligent language-like features in an input signal, using natural language learning techniques: looking for characteristic statistical "language-signatures" in test corpora. As a first step towards such species-independent language-detection, we present a suite of programs to analyse digital representations of a range of data, and use the results to extrapolate whether or not there are language-like structures which distinguish this data from other sources, such as music, images, and white noise.

  20. Finite Element Simulation of Low Velocity Impact Damage on an Aeronautical Carbon Composite Structure

    NASA Astrophysics Data System (ADS)

    Lemanle Sanga, Roger Pierre; Garnier, Christian; Pantalé, Olivier

    2016-12-01

    Low velocity barely visible impact damage (BVID) in laminated carbon composite structures has a major importance for aeronautical industries. This contribution leads with the development of finite element models to simulate the initiation and the propagation of internal damage inside a carbon composite structure due by a low velocity impact. Composite plates made from liquid resin infusion process (LRI) have been subjected to low energy impacts (around 25 J) using a drop weight machine. In the experimental procedure, the internal damage is evaluated using an infrared thermographic camera while the indentation depth of the face is measured by optical measurement technique. In a first time we developed a robust model using homogenised shells based on degenerated tri-dimensional brick elements and in a second time we decided to modelize the whole stacking sequence of homogeneous layers and cohesive interlaminar interfaces in order to compare and validate the obtained results. Both layer and interface damage initiation and propagation models based on the Hashin and the Benzeggagh-Kenane criteria have been used for the numerical simulations. Comparison of numerical results and experiments has shown the accuracy of the proposed models.

  1. In silico study of full-length amyloid beta 1-42 tri- and penta-oligomers in solution.

    PubMed

    Masman, Marcelo F; Eisel, Ulrich L M; Csizmadia, Imre G; Penke, Botond; Enriz, Ricardo D; Marrink, Siewert Jan; Luiten, Paul G M

    2009-08-27

    Amyloid oligomers are considered to play causal roles in the pathogenesis of amyloid-related degenerative diseases including Alzheimer's disease. Using MD simulation techniques, we explored the contributions of the different structural elements of trimeric and pentameric full-length Abeta1-42 aggregates in solution to their stability and conformational dynamics. We found that our models are stable at a temperature of 310 K, and converge toward an interdigitated side-chain packing for intermolecular contacts within the two beta-sheet regions of the aggregates: beta1 (residues 18-26) and beta2 (residues 31-42). MD simulations reveal that the beta-strand twist is a characteristic element of Abeta-aggregates, permitting a compact, interdigitated packing of side chains from neighboring beta-sheets. The beta2 portion formed a tightly organized beta-helix, whereas the beta1 portion did not show such a firm structural organization, although it maintained its beta-sheet conformation. Our simulations indicate that the hydrophobic core comprising the beta2 portion of the aggregate is a crucial stabilizing element in the Abeta aggregation process. On the basis of these structure-stability findings, the beta2 portion emerges as an optimal target for further antiamyloid drug design.

  2. [Personalist bioethics in the Romano Guardini's thought].

    PubMed

    Fayos Febrer, Rafael

    2014-01-01

    The present article tries to offer some elements of Romano Guardini's thought as a basis for a personalist bioethics. This paper is structured in two main parts. First we will expose the known critic of the Modern Age by Romano Guardini since at this time are set the basis and the principles that later on will bring forth the big bioethics 'questions as human cloning, in vitro fertilization, embryo transference, euthanasia, etc. The power without a guiding ethic rule, the modern human conception and the roll of the Estate will be analyzed too in this first part. This analysis brings to light the error in which modernity has fallen. Secondly, in a more positive way, we will try to deduce other principles from the Romano Guardini's anthropology, commenting his essay "The right to human life in develop".

  3. Conceptual design of quadriso particles with europium burnable absorber in HTRS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.; Nuclear Engineering Division

    2010-05-18

    In High Temperature Reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this study QUADRISO particles are proposed to manage the initial xcess reactivity of High Temperature Reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This echanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the nitialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, ore eutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic High Temperature Reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  4. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.

    2010-07-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  5. A novel concept of QUADRISO particles : Part II Utilization for excess reactivity control.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.

    2011-01-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  6. Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J; Qualls, A L

    2016-01-01

    INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a smallmore » version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.« less

  7. Performance modeling of Deep Burn TRISO fuel using ZrC as a load-bearing layer and an oxygen getter

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong

    2010-01-01

    The effects of design choices for the TRISO particle fuel were explored in order to determine their contribution to attaining high-burnup in Deep Burn modular helium reactor fuels containing transuranics from light water reactor spent fuel. The new design features were: (1) ZrC coating substituted for the SiC, allowing the fuel to survive higher accident temperatures; (2) pyrocarbon/SiC "alloy" substituted for the inner pyrocarbon coating to reduce layer failure and (3) pyrocarbon seal coat and thin ZrC oxygen getter coating on the kernel to eliminate CO. Fuel performance was evaluated using General Atomics Company's PISA code. The only acceptable design has a 200-μm kernel diameter coupled with at least 150-μm thick, 50% porosity buffer, a 15-μm ZrC getter over a 10-μm pyrocarbon seal coat on the kernel, an alloy inner pyrocarbon, and ZrC substituted for SiC. The code predicted that during a 1600 °C postulated accident at 70% FIMA, the ZrC failure probability is <10-4.

  8. PIE on Safety-Tested AGR-1 Compact 5-1-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactormore » (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.« less

  9. High-performance silicon photonic tri-state switch based on balanced nested Mach-Zehnder interferometer.

    PubMed

    Lu, Zeqin; Celo, Dritan; Mehrvar, Hamid; Bernier, Eric; Chrostowski, Lukas

    2017-09-25

    This work proposes a novel silicon photonic tri-state (cross/bar/blocking) switch, featuring high-speed switching, broadband operation, and crosstalk-free performance. The switch is designed based on a 2 × 2 balanced nested Mach-Zehnder interferometer structure with carrier injection phase tuning. As compared to silicon photonic dual-state (cross/bar) switches based on Mach-Zehnder interferometers with carrier injection phase tuning, the proposed switch not only has better performance in cross/bar switching but also provides an extra blocking state. The unique blocking state has a great advantage in applications of N × N switch fabrics, where idle switching elements in the fabrics can be configured to the blocking state for crosstalk suppression. According to our numerical experiments on a fully loaded 8 × 8 dilated Banyan switch fabric, the worst output crosstalk of the 8 × 8 switch can be dramatically suppressed by more than 50 dB, by assigning the blocking state to idle switching elements in the fabric. The results of this work can extend the functionality of silicon photonic switches and significantly improve the performance of on-chip N × N photonic switching technologies.

  10. Irradiation performance of HTGR fuel rods in HFIR experiments HRB-7 and -8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, K.H.; Homan, F.J.; Long, E.L. Jr.

    1977-05-01

    The HRB-7 and -8 experiments were designed as a comprehensive test of mixed thorium-uranium oxide fissile particles with Th:U ratios from 0 to 8 for HTGR recycle application. In addition, fissile particles derived from Weak-Acid Resin (WAR) were tested as a potential backup type of fissile particle for HTGR recycle. These experiments were conducted at two temperatures (1250 and 1500/sup 0/C) to determine the influence of operating temperature on the performance parameters studied. The minor objectives were comparison of advanced coating designs where ZrC replaced SiC in the Triso design, testing of fuel coated in laboratory-scale equipment with fuel coatedmore » in production-scale coaters, comparison of the performance of /sup 233/U-bearing particles with that of /sup 235/U-bearing particles, comparison of the performance of Biso coatings with Triso coatings for particles containing the same type of kernel, and testing of multijunction tungsten-rhenium thermocouples. All objectives were accomplished. As a result of these experiments the mixed thorium-uranium oxide fissile kernel was replaced by a WAR-derived particle in the reference recycle design. A tentative decision to make this change had been reached before the HRB-7 and -8 capsules were examined, and the results of the examination confirmed the accuracy of the previous decision. Even maximum dilution (Th/U approximately equal to 8) of the mixed thorium-uranium oxide kernel was insufficient to prevent amoeba of the kernels at rates that are unacceptable in a large HTGR. Other results showed the performance of /sup 233/U-bearing particles to be identical to that of /sup 235/U-bearing particles, the performance of fuel coated in production-scale equipment to be at least as good as that of fuel coated in laboratory-scale coaters, the performance of ZrC coatings to be very promising, and Biso coatings to be inferior to Triso coatings relative to fission product retention.« less

  11. Thermochemical Assessment of Oxygen Gettering by SiC or ZrC in PuO2-x TRISO Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmann, Theodore M

    2010-01-01

    Particulate nuclear fuel in a modular helium reactor is being considered for the consumption of excess plutonium and related transuranics. In particular, efforts to largely consume transuranics in a single-pass will require the fuel to undergo very high burnup. This deep burn concept will thus make the proposed plutonia TRISO fuel particularly likely to suffer kernel migration where carbon in the buffer layer and inner pyrolytic carbon layer is transported from the high temperature side of the particle to the low temperature side. This phenomenon is oberved to cause particle failure and therefore must be mitigated. The addition of SiCmore » or ZrC in the oxide kernel or in a layer in communication with the kernel will lower the oxygen potential and therefore prevent kernel migration, and this has been demonstrated with SiC. In this work a thermochemical analysis was performed to predict oxygen potential behavior in the plutonia TRISO fuel to burnups of 50% FIMA with and without the presence of oxygen gettering SiC and ZrC. Kernel migration is believed to be controlled by CO gas transporting carbon from the hot side to the cool side, and CO pressure is governed by the oxygen potential in the presence of carbon. The gettering phases significantly reduce the oxygen potential and thus CO pressure in an otherwise PuO2-x kernel, and prevent kernel migration by limiting CO gas diffusion through the buffer layer. The reduction in CO pressure can also reduce the peak pressure within the particles by ~50%, thus reducing the likelihood of pressure-induced particle failure. A model for kernel migration was used to semi-quantitatively assess the effect of controlling oxygen potential with SiC or ZrC and did demonstrated the dramatic effect of the addition of these phases on carbon transport.« less

  12. Acceptance Test Data for BWXT Coated Particle Batches 93172B and 93173B—Defective IPyC and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Helmreich, Grant W.; Dyer, John A.

    Coated particle batches J52O-16-93172B and J52O-16-93173B were produced by Babcock and Wilcox Technologies (BWXT) as part of the production campaign for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), but were not used in the final fuel composite. However, these batches may be used as demonstration production-scale coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture ofmore » 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93172A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017b]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93172B).« less

  13. Ag out-surface diffusion in crystalline SiC with an effective SiO 2 diffusion barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Xiao, H. Y.; Zhu, Z.

    2015-05-07

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope ( 110mAg) through the SiC coating layer is a safety concern. In order to understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. Our results suggestmore » little migration of buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO 2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less

  14. Ag Out-surface Diffusion In Crystalline SiC With An Effective SiO2 Diffusion Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Xiao, Haiyan Y.; Zhu, Zihua

    2015-09-01

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope (110mAg) through the SiC coating layer is a safety concern. To understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. The results suggest little migration ofmore » buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less

  15. Voltage control of nanoscale magnetoelastic elements: theory and experiments (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Carman, Gregory P.

    2015-09-01

    Electromagnetic devices rely on electrical currents to generate magnetic fields. While extremely useful this approach has limitations in the small-scale. To overcome the scaling problem, researchers have tried to use electric fields to manipulate a magnetic material's intrinsic magnetization (i.e. multiferroic). The strain mediated class of multiferroics offers up to 70% of energy transduction using available piezoelectric and magnetoelastic materials. While strain mediated multiferroic is promising, few studies exist on modeling/testing of nanoscale magnetic structures. This talk presents motivation, analytical models, and experimental data on electrical control of nanoscale single magnetic domain structures. This research is conducted in a NSF Engineering Research Center entitled Translational Applications for Nanoscale Multiferroics TANMS. The models combine micromagnetics (Landau-Lifshitz-Gilbert) with elastodynamics using the electrostatic approximation producing eight fully coupled nonlinear partial differential equations. Qualitative and quantitative verification is achieved with direct comparison to experimental data. The modeling effort guides fabrication and testing on three elements, i.e. nanoscale rings (onion states), ellipses (single domain reorientation), and superparamagnetic elements. Experimental results demonstrate electrical and deterministic control of the magnetic states in the 5-500 nm structures as measured with Photoemission Electron Microscopy PEEM, Magnetic Force Microscopy MFM, or Lorentz Transmission Electron Microscopy TEM. These data strongly suggests efficient control of nanoscale magnetic spin states is possible with voltage.

  16. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  17. Ag Transport Through Non-Irradiated and Irradiated SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Blanchard, James

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differencesmore » in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.« less

  18. Organizing the Confusion Surrounding Workaholism: New Structure, Measure, and Validation

    PubMed Central

    Shkoler, Or; Rabenu, Edna; Vasiliu, Cristinel; Sharoni, Gil; Tziner, Aharon

    2017-01-01

    Since “workaholism” was coined, a considerable body of research was conducted to shed light on its essence. After at least 40 years of studying this important phenomenon, a large variety of definitions, conceptualizations, and measures emerged. In order to try and bring more integration and consensus to this construct, the current research was conducted in two phases. We aimed to formulate a theoretical definitional framework for workaholism, capitalizing upon the Facet Theory Approach. Two basic facets were hypothesized: A. Modalities of workaholism, with three elements: cognitive, emotional, and instrumental; and B. Resources of workaholism with two elements: time and effort. Based on this definitional framework, a structured questionnaire was conceived. In the first phase, the new measure was validated with an Israeli sample comparing two statistical procedures; Factor Analysis (FA) and Smallest Space Analysis (SSA). In the second phase, we aimed to replicate the findings, and to contrast the newly-devised questionnaire with other extant workaholism measures, with a Romanian sample. Theoretical implications and future research suggestions are discussed. PMID:29097989

  19. The application of artificial intelligence in the optimal design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Poteralski, A.; Szczepanik, M.

    2016-11-01

    The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.

  20. Simulating the Effect of Contact Atomic Structure on the Spin-Dependent Transport Properties of Gold Nanowires

    NASA Astrophysics Data System (ADS)

    Ansarino, Masoud; Ravan, Bahram Abedi

    Some experimental research works report on the superb magnetoresistance properties of magnetically contacted gold nanowires. With the intention of trying to understand the spin-dependent transport mechanism of these structures, in this work we have used first-principles density functional theory methods to investigate effects of interface structure on the spintronic characteristics of Au nanowires. Monatomic chains of gold are sandwiched between two ferromagnetic electrodes of Fe and by substituting the interfacial Fe atoms with some other transition metal elements (including Cr, Mn, Co and Ni) the occurrence of possible enhancement in the electronic conductance and magnetoresistance characteristics of the device are investigated. It is observed that replacing the interfacial atoms with Ni raises the junction’s magnetoresistance ratio to as high as 2000%.

  1. Syntheses, structural, computational, and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases.

    PubMed

    Goel, Nidhi; Singh, Udai P

    2013-10-10

    Four new acid-base complexes using picric acid [(OH)(NO2)3C6H2] (PA) and N-heterocyclic bases (1,10-phenanthroline (phen)/2,2';6',2"-terpyridine (terpy)/hexamethylenetetramine (hmta)/2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz)) were prepared and characterized by elemental analysis, IR, NMR and X-ray crystallography. Crystal structures provide detailed information of the noncovalent interactions present in different complexes. The optimized structures of the complexes were calculated in terms of the density functional theory. The thermolysis of these complexes was investigated by TG-DSC and ignition delay measurements. The model-free isoconversional and model-fitting kinetic approaches have been applied to isothermal TG data for kinetics investigation of thermal decomposition of these complexes.

  2. Design and Analysis of a Novel Fully Decoupled Tri-axis Linear Vibratory Gyroscope with Matched Modes.

    PubMed

    Xia, Dunzhu; Kong, Lun; Gao, Haiyu

    2015-07-13

    We present in this paper a novel fully decoupled silicon micromachined tri-axis linear vibratory gyroscope. The proposed gyroscope structure is highly symmetrical and can be limited to an area of about 8.5 mm × 8.5 mm. It can differentially detect three axes' angular velocities at the same time. By elaborately arranging different beams, anchors and sensing frames, the drive and sense modes are fully decoupled from each other. Moreover, the quadrature error correction and frequency tuning functions are taken into consideration in the structure design for all the sense modes. Since there exists an unwanted in-plane rotational mode, theoretical analysis is implemented to eliminate it. To accelerate the mode matching process, the particle swam optimization (PSO) algorithm is adopted and a frequency split of 149 Hz is first achieved by this method. Then, after two steps of manual adjustment of the springs' dimensions, the frequency gap is further decreased to 3 Hz. With the help of the finite element method (FEM) software ANSYS, the natural frequencies of drive, yaw, and pitch/roll modes are found to be 14,017 Hz, 14,018 Hz and 14,020 Hz, respectively. The cross-axis effect and scale factor of each mode are also simulated. All the simulation results are in good accordance with the theoretical analysis, which means the design is effective and worthy of further investigation on the integration of tri-axis accelerometers on the same single chip to form an inertial measurement unit.

  3. Preparation and characterization of multi-layer biodegradable nanofibers by coaxial electrospinning and their potential for tissue engineering

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen

    As an evolution of conventional electrospinning, coaxial electrospinning became popular soon after its debut as a novel way to develop nanofibers with special structures, such as core-shell and hollow interior. In recent years, there has been an increasing interest in a modified coaxial electrospinning, tri-layer coaxial electrospinning, to develop more complex structures, such as multi-layer and nanowire-in-microtube. Previous studies have primarily concentrated on the fabrication of tri-layered inorganic fibers while studies on tri-layered coaxial polymeric fibers has not been reported until very recently. Our research focuses on the fabrication of core-shell and tri-layer structured biodegradable polymeric nanofibers with coaxial electrospinning. Different characterization methods have been applied to observe the internal structure in single nanofibers and the potential application of tri-layer coaxial electrospinning has been discussed. The material system consists of biodegradable natural polymer gelatin, synthetic polymers poly (epsilon-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA). A uniquely designed three-needle concentric spinneret is developed to perform tri-layer coaxial electrospinning. Different kinds of core-shell structured nanofibers, including gelatin/PCL, PCL/gelatin, gelatin/PLGA and PCL/PLGA, have been fabricated with a customized coaxial electrospinning apparatus. Two kinds of tri-layer coaxial nanofibers, two-component ABA structured gelatin/PCL/gelatin biodegradable nanofibers and tri-component ABC structured gelatin/PCL/PLGA biodegradable nanofibers, have been developed with the customized three needle coaxial electrospinning setup. The core-shell and tri-layered structures of electrospun nanofibers have been characterized by several commonly used techniques, such as laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). Besides the conventional methods, other newer techniques, including focused ion beam-scanning electron microscopy (FIB-SEM), super-resolution structured illumination microscopy (SR-SIM) and nanoscale-infrared spectroscopy (nano-IR), have been explored to investigate the internal structure in singles fibers. Additionally, the potential application of coaxial electrospinning in the fabrication of bioactive scaffolds for tissue engineering has been studied. Different kinds of coaxial nanofibers were fabricated and studied to determine the potential for BSA and growth factor release and some preliminary results were obtained.

  4. Crystal structures of fac-tri-chlorido-tris-(tri-methyl-phosphane-κP)rhodium(III) monohydrate and fac-tri-chlorido-tris-(tri-methyl-phosphane-κP)rhodium(III) methanol hemisolvate: rhodium structures that are isotypic with their iridium analogs.

    PubMed

    Merola, Joseph S; Franks, Marion A

    2015-02-01

    The crystal structures of two solvates of fac-tri-chlorido-tris-(tri-methyl-phosphane-κP)rhodium(III) are reported, i.e. one with water in the crystal lattice, fac-[RhCl3(Me3P)3]·H2O, and one with methanol in the crystal lattice, fac-[RhCl3(Me3P)3]·0.5CH3OH. These rhodium compounds exhibit distorted octahedral coordination spheres at the metal and are isotypic with the analogous iridium compounds previously reported by us [Merola et al. (2013 ▶). Polyhedron, 54, 67-73]. Comparison is made between the rhodium and iridium compounds, highlighting their isostructural relationships.

  5. Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design

    NASA Astrophysics Data System (ADS)

    Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric

    2001-02-01

    Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented. .

  6. Finite element analysis of heat generation from different light-polymerization sources during cementation of all-ceramic crowns.

    PubMed

    Tunc, Elif Pak

    2007-06-01

    Exothermic composite resin chemical reactions and visible light generators can produce heat during a restorative polymerization process. These thermal changes in restored teeth may cause pain and irreversible pulpitis. The purpose of this study was to analyze the temperature distribution and heat flow patterns of a crowned mandibular second premolar tooth model using 3 different light-polymerization technologies and a finite element technique. A 2-dimensional finite element model was used to simulate a clinical condition. Heat flow and thermal stress distribution in a tooth during cementation of an all-ceramic crown using 4 commercially available light-polymerization units (LPUs), each with different wavelengths (Elipar TriLight, Elipar Freelight, Apollo 95 E, and ADT 1000 PAC), were investigated. The temperature values were measured at 3, 10, 12, and 40 seconds for each light-polymerizing unit (LPU) at 6 different finite element nodes. Two-dimensional temporal and spatial distribution of the thermal stress within the tooth, including the thermal coefficients and boundary conditions of the dental materials, were obtained and evaluated. The temperature at the nodal points did not exceed 42 degrees C, which is a threshold value for tissue vitality within the recommended operating periods at the dentin and pulp surface for all LPUs, except for Elipar TriLight. In the case of Elipar TriLlight, the temperatures at the dentin and pulp surfaces were 47 degrees C and 42 degrees C, respectively. When the light-polymerization units were used according to the manufacturers' operating procedures and without prolonged operating periods, with the exception of Elipar TriLight, the investigated LPUs did not produce significant heat. However, when the operating periods were prolonged, unacceptable temperature increases were observed, especially with the high-intensity LPUs.

  7. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, T. M.; van Rooyen, I. J.; Wu, Y. Q.

    Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. Although the ultimate goal is to determine the grain boundary characteristics of fission product containing grain boundaries of neutron irradiated SiC, our work reports the effect of transmission electron microscope (TEM) lamella thickness on quality of data and establishes a baseline comparison on grain boundary characteristics determined previously using a conventional EBSD scanning electron microscope (SEM) based technique. In general, it was determined that the lamella thickness produced using the standardmore » FIB fabrication process, is sufficient to provide reliable PED measurements with thicker lamellae (~120 nm) produce higher quality orientation data. Analysis of grain boundary character from the TEM-based PED data showed a much lower fraction of low angle grain boundaries compared to SEM-based EBSD data from the SiC layer of the same TRISO-coated particle as well as a SiC layer deposited at a slightly lower temperature. The fractions of high angle and CSL-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm [12], depending on the fabrication parameters, and grain boundary fission product precipitates can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low angle, high angle and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed significantly larger than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be accurately determined but significantly larger analysis areas than those used in this study would be required.« less

  8. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key resultsmore » from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program is also discussed.« less

  9. Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program are also discussed.« less

  10. Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel

    DOE PAGES

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; ...

    2017-09-10

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program are also discussed.« less

  11. X-ray Analysis of Defects and Anomalies in AGR-5/6/7 TRISO Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    2017-06-01

    Coated particle fuel batches J52O-16-93164, 93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used for other tests. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.4%-enriched uranium carbide and uranium oxide (UCO), with the exception of Batchmore » 93164, which used similar kernels from BWXT lot J52L-16-69316. The TRISO-coatings consisted of a ~50% dense carbon buffer layer with 100-μmnominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. Each coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (e.g., 93164A). Secondary upgrading by sieving was performed on the upgraded batches to remove specific anomalies identified during analysis for Defective IPyC, and the upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B). Following this secondary upgrading, coated particle composite J52R-16-98005 was produced by BWXT as fuel for the AGR Program’s AGR-5/6/7 irradiation test in the INL ATR. This composite was comprised of coated particle fuel batches J52O-16-93165B, 93168B, 93169B, and 93170B.« less

  12. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    DOE PAGES

    Lillo, T. M.; van Rooyen, I. J.; Wu, Y. Q.

    2016-06-16

    Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. Although the ultimate goal is to determine the grain boundary characteristics of fission product containing grain boundaries of neutron irradiated SiC, our work reports the effect of transmission electron microscope (TEM) lamella thickness on quality of data and establishes a baseline comparison on grain boundary characteristics determined previously using a conventional EBSD scanning electron microscope (SEM) based technique. In general, it was determined that the lamella thickness produced using the standardmore » FIB fabrication process, is sufficient to provide reliable PED measurements with thicker lamellae (~120 nm) produce higher quality orientation data. Analysis of grain boundary character from the TEM-based PED data showed a much lower fraction of low angle grain boundaries compared to SEM-based EBSD data from the SiC layer of the same TRISO-coated particle as well as a SiC layer deposited at a slightly lower temperature. The fractions of high angle and CSL-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm [12], depending on the fabrication parameters, and grain boundary fission product precipitates can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low angle, high angle and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed significantly larger than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be accurately determined but significantly larger analysis areas than those used in this study would be required.« less

  13. Acceptance Test Data for the AGR-5/6/7 Irradiation Test Fuel Composite Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    Coated particle composite J52R-16-98005 was produced by Babcock and Wilcox Technologies (BWXT) as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). This composite was comprised of four coated particle fuel batches J52O-16-93165B (26%), 93168B (26%), 93169B (24%), and 93170B (24%), chosen based on the Quality Control (QC) data acquired for each individual candidate AGR-5/6/7 batch. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT Lot J52R-16-69317more » containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B).« less

  14. Fully conjugated tri(perylene bisimides): an approach to the construction of n-type graphene nanoribbons.

    PubMed

    Qian, Hualei; Negri, Fabrizia; Wang, Chunru; Wang, Zhaohui

    2008-12-31

    We present an experimental study encompassing synthesis and characterization of fully conjugated tri(perylene bisimides) (triPBIs), having 19 six-membered carbon rings in the core and six imide groups at the edges. Two structural isomers of triPBIs resulting from the two probable coupling positions were successfully separated by HPLC. To assist the identification of the two structural isomers, quantum-chemical calculations of electronic structure, NMR, and optical spectra were carried out. Calculations predict stable helical and nonhelical configurations for both triPBIs isomers and allow the assignment of triPBIs 6 unequivocally to the most bathochromically shifted absorption spectrum. Increasing the number of PBI units in oligo-PBIs leads to an expansion of the pi system, in turn associated with a reduction of the transport and optical band gaps, and a remarkable increase in electron affinities, which make oligo-PBIs promising n-type functional components in optoelectronic devices.

  15. Structural Embeddings: Mechanization with Method

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Rushby, John

    1999-01-01

    The most powerful tools for analysis of formal specifications are general-purpose theorem provers and model checkers, but these tools provide scant methodological support. Conversely, those approaches that do provide a well-developed method generally have less powerful automation. It is natural, therefore, to try to combine the better-developed methods with the more powerful general-purpose tools. An obstacle is that the methods and the tools often employ very different logics. We argue that methods are separable from their logics and are largely concerned with the structure and organization of specifications. We, propose a technique called structural embedding that allows the structural elements of a method to be supported by a general-purpose tool, while substituting the logic of the tool for that of the method. We have found this technique quite effective and we provide some examples of its application. We also suggest how general-purpose systems could be restructured to support this activity better.

  16. Zn(II) and Cd(II) coordination polymers with tri-tert-butoxysilanethiol and bipyridines. Synthesis, crystal structure and spectroscopy

    NASA Astrophysics Data System (ADS)

    Pladzyk, Agnieszka; Ponikiewski, Łukasz; Stanulewicz, Natalia; Hnatejko, Zbigniew

    2013-12-01

    Three new zinc(II) and cadmium(II) silanethiolate complexes [Zn{SSi(OtBu)3}2(μ-bpea)ṡCH3CN]n1, [Cd{SSi(OtBu)3}2(μ-bpea)ṡ2CHCl3]n2 and [Cd{SSi(OtBu)3}2(μ-bpey)ṡC7H8]n3 with two bypiridine derivatives, [bpea = 1,2-bis(4-pyridyl)ethane and bpey = 1,2-bis(4-pyridyl)ethylene] have been synthesized and structurally characterized by X-ray crystallography. Their structures and properties have also been established with elemental analysis, IR, TGA and photoluminescent studies. Complexes 1-3 exhibit one-dimensional (1D) chain structures in which [M{SSi(OtBu)3}2] (M = Zn, Cd) units are held together by bpea or bpey bridges, respectively. Complexes are stable up to 300 °C and display blue emissions.

  17. The periodic table and the intrinsic barrier in s(n)2 reactions.

    PubMed

    Yi, Ren; Basch, Harold; Hoz, Shmaryahu

    2002-08-23

    The identity S(N)2 reactions on nitrogen (see eq 3) with nucleophiles having the general structure H(n)()X(-) where X belongs to the group of nonmetallic elements which do not border the line separating them from the metallic elements (X = F, Cl, Br, I, O, S, Se, N, P, and C) were studied at the G2+ level. The results show that, similarly to the previously observed phenomenon for S(N)2 reaction on carbon (J. Am. Chem. Soc. 1999, 121, 7724), the Periodic Table, through the valence of the element X, controls the intrinsic barrier for the reaction. The average intrinsic barriers obtained for nitrogen substrates were 20, 27, 39, and 57 kcal/mol for the mono-, di-, tri-, and tetravalent X's, respectively. It is also concluded that the intrinsic barriers are similar for N- and C-based substrates and dimethyl substitution on both raises the intrinsic barrier by ca. 10 kcal/mol.

  18. Experiences of family carers of older people with mental health problems in the acute general hospital: a qualitative study.

    PubMed

    Clissett, Philip; Porock, Davina; Harwood, Rowan H; Gladman, John R F

    2013-12-01

    To explore the experiences of family carers of people with cognitive impairment during admission to hospital. Providing appropriate care in acute hospitals for people with co-morbid cognitive impairment, especially dementia or delirium or both, is challenging to healthcare professionals. One key element is close working with family members. Qualitative interview study. Semi-structured interviews with family carers of 34 older people who had been admitted to a UK general hospital and had co-morbid cognitive impairment. Interviews conducted in 2009 and 2010. Analysis was undertaken using Strauss and Corbin's framework. The findings elaborate a core problem, 'disruption from normal routine' and a core process, 'gaining or giving a sense of control to cope with disruption'. Family carers responded to disruption proactively by trying to make sense of the situation and attempting to gain control for themselves or the patient. They tried to stay informed, communicate with staff about the patient and plan for the future. The interaction of the core problem and the core process resulted in outcomes where family members either valued the support of hospital staff and services or were highly critical of the care provided. Family carers are not passive in the face of the disruption of hospitalization and respond both by trying to involve themselves in the care and support of their relative and by trying to work in partnership with members of staff. Nurses need to foster this relationship conscientiously. © 2013 John Wiley & Sons Ltd.

  19. Numerical simulation of a shear-thinning fluid through packed spheres

    NASA Astrophysics Data System (ADS)

    Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol

    2012-12-01

    Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.

  20. Dynamic behavior and deformation analysis of the fish cage system using mass-spring model

    NASA Astrophysics Data System (ADS)

    Lee, Chun Woo; Lee, Jihoon; Park, Subong

    2015-06-01

    Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.

  1. Sierra Structural Dynamics Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, Garth M.

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas.more » The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.« less

  2. An alternative to Guyan reduction of finite-element models

    NASA Technical Reports Server (NTRS)

    Lin, Jiguan Gene

    1988-01-01

    Structural modeling is a key part of structural system identification for large space structures. Finite-element structural models are commonly used in practice because of their general applicability and availability. The initial models generated by using a standard computer program such as NASTRAN, ANSYS, SUPERB, STARDYNE, STRUDL, etc., generally contain tens of thousands of degrees of freedom. The models must be reduced for purposes of identification. Not only does the magnitude of the identification effort grow exponentially as a function of the number of degrees of freedom, but numerical procedures may also break down because of accumulated round-off errors. Guyan reduction is usually applied after a static condensation. Misapplication of Guyan reduction can lead to serious modeling errors. It is quite unfortunate and disappointing, since the accuracy of the original detailed finite-element model one tries very hard to achieve is lost by the reduction. First, why and how Guyan reduction always causes loss of accuracy is examined. An alternative approach is then introduced. The alternative can be thought of as an improvement of Guyan reduction, the Rayleigh-Ritz method, and in particular the recent algorithm of Wilson, Yuan, and Dickens. Unlike Guyan reduction, the use of the alternative does not need any special insight, experience, or skill for partitioning the structural degrees of freedom. In addition to model condensation, this alternative approach can also be used for predicting analytically, quickly, and economically, what are those structural modes that are excitable by a force actuator at a given trial location. That is, in the excitation of the structural modes for identification, it can be used for guiding the placement of the force actuators.

  3. Tri-Lab Co-Design Milestone: In-Depth Performance Portability Analysis of Improved Integrated Codes on Advanced Architecture.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert J.; Hammond, Simon David; Richards, David

    2017-09-01

    This milestone is a tri-lab deliverable supporting ongoing Co-Design efforts impacting applications in the Integrated Codes (IC) program element Advanced Technology Development and Mitigation (ATDM) program element. In FY14, the trilabs looked at porting proxy application to technologies of interest for ATS procurements. In FY15, a milestone was completed evaluating proxy applications in multiple programming models and in FY16, a milestone was completed focusing on the migration of lessons learned back into production code development. This year, the co-design milestone focuses on extracting the knowledge gained and/or code revisions back into production applications.

  4. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    NASA Astrophysics Data System (ADS)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  5. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.

    PubMed

    Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng

    2013-10-15

    Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Producibility and Production Aspects of the Market Analysis Process

    DTIC Science & Technology

    1989-06-01

    for most TROSCOM general purpose systems and equipment are the U.S. Army Quartermaster Center and School, Fort Lee, VA ( fuels handling and storage...established a Mission Area Proponency Branch staffed with military R&D Coordinator Officers (formerly TRISOs - Technical Requirements Integration Staff...time is spent reacting, rather than acting, i.e., the amount of work required to supply numerous reports on delinquent contractors and on Technical

  7. Microstructure evolution of a ZrC coating layer in TRISO particles during high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Chun, Young Bum; Ko, Myeong Jin; Lee, Hyeon-Geun; Cho, Moon-Sung; Park, Ji Yeon; Kim, Weon-Ju

    2016-10-01

    The influence of high-temperature annealing on the microstructure of zirconium carbide (ZrC) was investigated in relation to its application as a coating layer of a nuclear fuel in a very high temperature gas cooled reactor. ZrC was deposited as a constituent coating layer of TRISO coated particles by a fluidized bed chemical vapor deposition method using a ZrCl4-CH4-Ar-H2 system. The grain growth of ZrC during high-temperature annealing was strongly influenced by the co-deposition of free carbon. Sub-stoichiometric ZrC coatings have experienced a significant grain growth during high-temperature annealing at 1800 °C and 1900 °C for 1 h. On the other hand, a dual phase of stoichiometric ZrC and free carbon experienced little grain growth. It was revealed that the free carbon of the as-deposited ZrC was primarily distributed within the ZrC grains but was redistributed to the grain boundaries after annealing. Consequently, carbon at the grain boundary retarded the grain growth of ZrC. Electron backscatter diffraction (EBSD) results showed that as-deposited ZrC had (001) a preferred orientation that kept its favored direction after significant grain growth during annealing. The hardness slightly decreased as the grain growth progressed.

  8. In silico studies on tryparedoxin peroxidase of Leishmania infantum: structural aspects.

    PubMed

    Singh, Bishal Kumar; Dubey, Vikash Kumar

    2009-09-01

    Tryparedoxin peroxidase (TryP) is a key enzyme of the trypanothione-dependent metabolism for removal of oxidative stress in leishmania. These enzymes function as antioxidants through their peroxidase and peroxynitrite reductase activities. Inhibitors of this enzyme are presumed to be antilesihmania drugs and structural studies are prerequisite of rational drug design. We have constructed three dimensional structure of TryP of Leishmania infantum using comparative modeling. Structural analysis reveals several interesting features. Moreover, it shows remarkable structural difference with human host glutathione peroxidase, an enzyme involved in similar function and TryP from Leishmania major.

  9. Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echalar, F.; Gaudichet, A.; Cachier, H.

    1995-11-15

    This report characterizes and compares trace element emissions from fires of three different types of savannas and from the southwestern amazonian rain forest. This study tries to verify a fingerprint that may characterize savanna fires or tropical biomass burning.

  10. Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy.

    PubMed

    Pereira, Jose H; McAndrew, Ryan P; Sergeeva, Oksana A; Ralston, Corie Y; King, Jonathan A; Adams, Paul D

    2017-06-16

    The human chaperonin TRiC consists of eight non-identical subunits, and its protein-folding activity is critical for cellular health. Misfolded proteins are associated with many human diseases, such as amyloid diseases, cancer, and neuropathies, making TRiC a potential therapeutic target. A detailed structural understanding of its ATP-dependent folding mechanism and substrate recognition is therefore of great importance. Of particular health-related interest is the mutation Histidine 147 to Arginine (H147R) in human TRiC subunit 5 (CCT5), which has been associated with hereditary sensory neuropathy. In this paper, we describe the crystal structures of CCT5 and the CCT5-H147R mutant, which provide important structural information for this vital protein-folding machine in humans. This first X-ray crystallographic study of a single human CCT subunit in the context of a hexadecameric complex can be expanded in the future to the other 7 subunits that form the TRiC complex.

  11. Characteristics of camel-gate structures with active doping channel profiles

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Lour, Wen-Shiung; Laih, Lih-Wen; Liu, Rong-Chau; Liu, Wen-Chau

    1996-03-01

    In this paper, we demonstrate the influence of channel doping profile on the performances of camel-gate field effect transistors (CAMFETs). For comparison, single and tri-step doping channel structures with identical doping thickness products are employed, while other parameters are kept unchanged. The results of a theoretical analysis show that the single doping channel FET with lightly doping active layer has higher barrier height and drain-source saturation current. However, the transconductance is decreased. For a tri-step doping channel structure, it is found that the output drain-source saturation current and the barrier height are enhanced. Furthermore, the relatively voltage independent performances are improved. Two CAMFETs with single and tri-step doping channel structures have been fabricated and discussed. The devices exhibit nearly voltage independent transconductances of 144 mS mm -1 and 222 mS mm -1 for single and tri-step doping channel CAMFETs, respectively. The operation gate voltage may extend to ± 1.5 V for a tri-step doping channel CAMFET. In addition, the drain current densities of > 750 and 405 mA mm -1 are obtained for the tri-step and single doping CAMFETs. These experimental results are inconsistent with theoretical analysis.

  12. A structural regression model for relationship between indoor air quality with dissatisfaction of occupants in education environment

    NASA Astrophysics Data System (ADS)

    Hosseini, Hamid Reza; Yunos, Mohd Yazid Mohd; Ismail, Sumarni; Yaman, Maheran

    2017-12-01

    This paper analysis the effects of indoor air elements on the dissatisfaction of occupants in education of environments. Tries to find the equation model for increasing the comprehension about these affects and optimizes satisfaction of occupants about indoor environment. Subsequently, increase performance of students, lecturers and staffs. As the method, a satisfaction questionnaire (SQ) and measuring environment elements (MEE) was conducted, 143 respondents at five classrooms, four staff rooms and five lectures rooms were considered. Temperature, air velocity and humidity (TVH) were used as independent variables and dissatisfaction as dependent variable. The hypothesis was tested for significant relationship between variables, and analysis was applied. Results found that indoor air quality presents direct effects on dissatisfaction of occupants and indirect effects on performance and the highest effects fallowed by temperature. These results may help to optimize the quality of efficiency and effectiveness in education environments.

  13. Review on Seismic Rehabilitation of a 56-Story RC Tall Building having Shear Wall System Based on A Nonlinear Dynamic Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Epackachi, S.; Esmaili, O.; Mirghaderi, S. R.; Taheri, A. A.

    2008-07-01

    Tehran tower is a 56 story reinforced concrete tall building consisting of three wings with identical plan dimensions each approximately 48 meters by 22 meters. The three wings are at 120 degree from each other and have no expansions/seismic Joints. This paper contains the consideration of the retrofitting of the Tehran tower based on the findings of an exhaustive investigation of the nonlinear performance evaluation efforts. It has tried to show the procedure followed, methodologies utilized, and the results obtained for life-safety and collapse-prevention evaluation of the building. More over the weak zones of the structure due to analysis results are introduced and appropriate retrofit technique for satisfaction related life-safety and collapse-prevention criteria is presented. Actually in this project to improve the local behavior of coupling panels which are located regularly in main walls and definitely have been recognized as the most vulnerable structural elements, making use of steel plates which are connected to concrete members by chemical anchors has been used as the best retrofitting method for this case. Therefore in the final section of this paper it has been tried to explain the professional practical method utilized to perform the mentioned retrofitting project.

  14. Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP

    NASA Astrophysics Data System (ADS)

    Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.

    2017-10-01

    In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.

  15. Research activities of biomedical magnesium alloys in China

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Gu, Xuenan

    2011-04-01

    The potential application of Mg alloys as bioabsorable/biodegradable implants have attracted much recent attention in China. Advances in the design and biocompatibility evaluation of bio-Mg alloys in China are reviewed in this paper. Bio-Mg alloys have been developed by alloying with the trace elements existing in human body, such as Mg-Ca, Mg-Zn and Mg-Si based systems. Additionally, novel structured Mg alloys such as porous, composited, nanocrystalline and bulk metallic glass alloys were tried. To control the biocorrosion rate of bio-Mg implant to match the self-healing/regeneration rate of the surrounding tissue in vivo, surface modification layers were coated with physical and chemical methods.

  16. Improved NASTRAN plotting

    NASA Technical Reports Server (NTRS)

    Chan, Gordon C.

    1991-01-01

    The new 1991 COSMIC/NASTRAN version, compatible with the older versions, tries to remove some old constraints and make it easier to extract information from the plot file. It also includes some useful improvements and new enhancements. New features available in the 1991 version are described. They include a new PLT1 tape with simplified ASCII plot commands and short records, combined hidden and shrunk plot, an x-y-z coordinate system on all structural plots, element offset plot, improved character size control, improved FIND and NOFIND logic, a new NASPLOT post-prosessor to perform screen plotting or generate PostScript files, and a BASIC/NASTPLOT program for PC.

  17. Chemistry of the Triangulum-Andromeda Overdensity as Seen by APOGEE

    NASA Astrophysics Data System (ADS)

    Rochford Hayes, Christian; Majewski, Steven R.; Hasselquist, Sten; Beaton, Rachael; Cunha, Katia M. L.; Smith, Verne V.; Price-Whelan, Adrian M.; APOGEE Team

    2018-06-01

    The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy or a distant extension of the Galactic disk. We test these hypotheses using chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Survey’s 14th Data Release of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph, and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4 dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about -0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H] ~ -0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity - i.e., past a Galactocentric radius of 24 kpc - albeit vertically perturbed about 7 kpc below the nominal disk midplane in this region of the Galaxy.

  18. Geochemical data for core and bottom-sediment samples collected in 2007 from Grand Lake O' the Cherokees, northeast Oklahoma

    USGS Publications Warehouse

    Fey, David L.; Becker, Mark F.; Smith, Kathleen S.

    2010-01-01

    Grand Lake O' the Cherokees is a large reservoir in northeast Oklahoma, below the confluence of the Neosho and Spring Rivers, both of which drain the Tri-State Mining District to the north. The Tri-State district covers an area of 1,200 mi2 (3,100 km2) and comprises Mississippi Valley-type lead-zinc deposits. A result of 120 years of mining activity is an estimated 75 million tons of processed mine tailings (chat) remaining in the district. Concerns of sediment quality and the possibility of human exposure to cadmium and lead through eating fish have led to several studies of the sediments in the Tri-State district. In order to record the transport and deposition of metals from the Tri-State district by the Spring and Neosho Rivers into Grand Lake O' the Cherokees, the U.S. Geological Survey collected 11 sediment cores and 15 bottom-sediment samples in September 2007. Subsamples from five selected cores and the bottom-sediment samples were analyzed for major and trace elements and forms of carbon. The sediment samples collected from the sediment-water interface had larger average concentrations of zinc, cadmium, and lead than local background. The core collected from the Spring River had the largest concentrations of mining-related elements. A core collected just south of Twin Bridges State Park, at the confluence of the Spring and Neosho Rivers, showed a mixing zone with more mining-related elements coming from the Spring River side. The element zinc showed the most definitive patterns in graphs depicting concentration-versus-depth profiles. A core collected from the main body of the reservoir showed affected sediment down to a depth of 85 cm (33 in). This core and two others appear to have penetrated to below mining-affected sediment.

  19. TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURBANK, D.A.

    This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as themore » basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.« less

  20. AGR-1 Post Irradiation Examination Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul Andrew

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests tomore » simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building on the as-fabricated fuel characterization and irradiation data. In addition to the extensive volume of results generated, the work also resulted in a number of novel analysis techniques and lessons learned that are being applied to the examination of fuel from subsequent TRISO fuel irradiations. This report provides a summary of the results obtained as part of the AGR-1 PIE campaign over its approximately 5-year duration.« less

  1. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has been fulfilled. From the result analysis, it can be concluded that the model of calculation result of neutron dose rate for HTGR-10 core has met the required radiation safety standards.

  2. Intercalation of XR5944 with the estrogen response element is modulated by the tri-nucleotide spacer sequence between half-sites

    PubMed Central

    Sidell, Neil; Mathad, Raveendra I.; Shu, Feng-jue; Zhang, Zhenjiang; Kallen, Caleb B.; Yang, Danzhou

    2011-01-01

    DNA-intercalating molecules can impair DNA replication, DNA repair, and gene transcription. We previously demonstrated that XR5944, a DNA bis-intercalator, specifically blocks binding of estrogen receptor-α (ERα) to the consensus estrogen response element (ERE). The consensus ERE sequence is AGGTCAnnnTGACCT, where nnn is known as the tri-nucleotide spacer. Recent work has shown that the tri-nucleotide spacer can modulate ERα-ERE binding affinity and ligand-mediated transcriptional responses. To further understand the mechanism by which XR5944 inhibits ERα-ERE binding, we tested its ability to interact with consensus EREs with variable tri-nucleotide spacer sequences and with natural but non-consensus ERE sequences using one dimensional nuclear magnetic resonance (1D 1H NMR) titration studies. We found that the tri-nucleotide spacer sequence significantly modulates the binding of XR5944 to EREs. Of the sequences that were tested, EREs with CGG and AGG spacers showed the best binding specificity with XR5944, while those spaced with TTT demonstrated the least specific binding. The binding stoichiometry of XR5944 with EREs was 2:1, which can explain why the spacer influences the drug-DNA interaction; each XR5944 spans four nucleotides (including portions of the spacer) when intercalating with DNA. To validate our NMR results, we conducted functional studies using reporter constructs containing consensus EREs with tri-nucleotide spacers CGG, CTG, and TTT. Results of reporter assays in MCF-7 cells indicated that XR5944 was significantly more potent in inhibiting the activity of CGG- than TTT-spaced EREs, consistent with our NMR results. Taken together, these findings predict that the anti-estrogenic effects of XR5944 will depend not only on ERE half-site composition but also on the tri-nucleotide spacer sequence of EREs located in the promoters of estrogen-responsive genes. PMID:21333738

  3. Trying something new.

    PubMed

    Condon, Barbara Backer

    2013-01-01

    Trying something new is a universal living experience of health. Although trying something new frequently occurs in healthcare, its meaning has never explicitly been studied. Parse's humanbecoming school of thought is the theoretical perspective for this study. The research question for this study is: What is the structure of the living experience of trying something new? The purpose of this study was to advance nursing science. Parse's qualitative phenomenological-hermeneutic research method was used to guide this study. Participants were 8 men and 2 women, ages 29 to 65 who utilize an outpatient mental health facility in the Midwest. Data were collected with dialogical engagement. The major finding of the study is the structure: Trying something new is engaging in capricious exploitations with vacillating sentiments, as wistful contemplation surfaces with disparate affiliations.

  4. Modal Parameter Identification and Numerical Simulation for Self-anchored Suspension Bridges Based on Ambient Vibration

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Sun, Li Guo

    2018-06-01

    This paper chooses the Nanjing-Hangzhou high speed overbridge, a self-anchored suspension bridge, as the research target, trying to identify the dynamic characteristic parameters of the bridge by using the peak-picking method to analyze the velocity response data under ambient excitation collected by 7 vibration pickup sensors set on the bridge deck. The ABAQUS is used to set up a three-dimensional finite element model for the full bridge and amends the finite element model of the suspension bridge based on the identified modal parameter, and suspender force picked by the PDV100 laser vibrometer. The study shows that the modal parameter can well be identified by analyzing the bridge vibration velocity collected by 7 survey points. The identified modal parameter and measured suspender force can be used as the basis of the amendment of the finite element model of the suspension bridge. The amended model can truthfully reflect the structural physical features and it can also be the benchmark model for the long-term health monitoring and condition assessment of the bridge.

  5. Tri-s-triazine-Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution.

    PubMed

    Ou, Honghui; Lin, Lihua; Zheng, Yun; Yang, Pengju; Fang, Yuanxing; Wang, Xinchen

    2017-06-01

    Tri-s-triazine-based crystalline carbon nitride nanosheets (CCNNSs) have been successfully extracted via a conventional and cost-effective sonication-centrifugation process. These CCNNSs possess a highly defined and unambiguous structure with minimal thickness, large aspect ratios, homogeneous tri-s-triazine-based units, and high crystallinity. These tri-s-triazine-based CCNNSs show significantly enhanced photocatalytic hydrogen generation activity under visible light than g-C 3 N 4 , poly (triazine imide)/Li + Cl - , and bulk tri-s-triazine-based crystalline carbon nitrides. A highly apparent quantum efficiency of 8.57% at 420 nm for hydrogen production from aqueous methanol feedstock can be achieved from tri-s-triazine-based CCNNSs, exceeding most of the reported carbon nitride nanosheets. Benefiting from the inherent structure of 2D crystals, the ultrathin tri-s-triazine-based CCNNSs provide a broad range of application prospects in the fields of bioimaging, and energy storage and conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Taking Part in Technology Education: Elements in Students' Motivation

    ERIC Educational Resources Information Center

    Autio, Ossi; Hietanoro, Jenni; Ruismaki, Heikki

    2011-01-01

    The purpose of this study was to determine the elements motivating comprehensive school students to study technology education. In addition, we tried to discover how students' motivation towards technology education developed over the period leading up to their school experience and the effect this might have on their future involvement with…

  7. Changing Ideas about the Periodic Table of Elements and Students' Alternative Concepts of Isotopes and Allotropes.

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen; Baumgartner, Tim; Eybe, Holger

    2003-01-01

    Investigates secondary school students' concepts of isotopes and allotropes and how the concepts are linked to the Periodic Table of Elements (PTE). Questions senior high school students with multiple choice items and interviews. Shows that students actively tried to make sense of what they had experienced. (KHR)

  8. Acceptance Test Data for BWXT Coated Particle Batch 93164A Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    2017-02-01

    Coated particle fuel batch J52O-16-93164 was produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used as demonstration production-scale coated particle fuel for other experiments. The tristructural-isotropic (TRISO) coatings were deposited in a 150-mm-diameter production-scale fluidizedbed chemical vapor deposition (CVD) furnace onto 425-μm-nominal-diameter spherical kernels from BWXT lot J52L-16-69316. Each kernel contained a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO) and was coated with four consecutive CVD layers:more » a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (i.e., 93164A).« less

  9. SILICON CARBIDE GRAIN BOUNDARY DISTRIBUTIONS, IRRADIATION CONDITIONS, AND SILVER RETENTION IN IRRADIATED AGR-1 TRISO FUEL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, T. M.; Rooyen, I. J.; Aguiar, J. A.

    Precession electron diffraction in the transmission electron microscope was used to map grain orientation and ultimately determine grain boundary misorientation angle distributions, relative fractions of grain boundary types (random high angle, low angle or coincident site lattice (CSL)-related boundaries) and the distributions of CSL-related grain boundaries in the SiC layer of irradiated TRISO-coated fuel particles. Two particles from the AGR-1 experiment exhibiting high Ag-110m retention (>80%) were compared to a particle exhibiting low Ag-110m retention (<19%). Irradiated particles with high Ag-110m retention exhibited a lower fraction of random, high angle grain boundaries compared to the low Ag-110m retention particle. Anmore » inverse relationship between the random, high angle grain boundary fraction and Ag-110m retention is found and is consistent with grain boundary percolation theory. Also, comparison of the grain boundary distributions with previously reported unirradiated grain boundary distributions, based on SEM-based EBSD for similarly fabricated particles, showed only small differences, i.e. a greater low angle grain boundary fraction in unirradiated SiC. It was, thus, concluded that SiC layers with grain boundary distributions susceptible to Ag-110m release were present prior to irradiation. Finally, irradiation parameters were found to have little effect on the association of fission product precipitates with specific grain boundary types.« less

  10. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research.

    PubMed

    Jiang, Yingxu; Zhao, Jinzhe; Li, Weitao; Yang, Yamin; Liu, Jia; Qian, Zhiyu

    2017-11-01

    Investigation of the structures and properties of antennas is important in the design of microwave ablation (MWA) system. In this study, we studied the performance of the novel tri- and single-slot antennas with frequency of 433 MHz in ex vivo conditions. The dielectric properties of liver tissue under different thermal coagulation levels were explored, which was beneficial to evaluate ablation condition of tissue and simulate temperature field. Then, the performances of the antennas were analyzed by using numerical method based on finite element method (FEM). It indicated that the present antennas with frequency of 433 MHz could produce a gourd-shaped MWA area with a longer length. Compared to antenna with frequency of 2450 MHz, the designed single-slot antenna could obtain the larger MWA area. In addition, the multiple-point ablations and a larger MWA area could be achieved simultaneously by using the present tri-slot antenna. This study has a potential for the innovative design of MWA antenna for treatment of liver tumor with a large range and a long length.

  11. Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy

    DOE PAGES

    Pereira, Jose H.; McAndrew, Ryan P.; Sergeeva, Oksana A.; ...

    2017-06-16

    The human chaperonin TRiC consists of eight non-identical subunits, and its protein-folding activity is critical for cellular health. Misfolded proteins are associated with many human diseases, such as amyloid diseases, cancer, and neuropathies, making TRiC a potential therapeutic target. A detailed structural understanding of its ATP-dependent folding mechanism and substrate recognition is therefore of great importance. Of particular health-related interest is the mutation Histidine 147 to Arginine (H147R) in human TRiC subunit 5 (CCT5), which has been associated with hereditary sensory neuropathy. In this paper, we describe the crystal structures of CCT5 and the CCT5-H147R mutant, which provide important structuralmore » information for this vital protein-folding machine in humans. This first X-ray crystallographic study of a single human CCT subunit in the context of a hexadecameric complex can be expanded in the future to the other 7 subunits that form the TRiC complex.« less

  12. Metallic conductance at the interface of tri-color titanate superlattices

    NASA Astrophysics Data System (ADS)

    Kareev, M.; Cao, Yanwei; Liu, Xiaoran; Middey, S.; Meyers, D.; Chakhalian, J.

    2013-12-01

    Ultra-thin tri-color (tri-layer) titanate superlattices ([3 u.c. LaTiO3/2 u.c. SrTiO3/3 u.c. YTiO3], u.c. = unit cells) were grown in a layer-by-layer way on single crystal TbScO3 (110) substrates by pulsed laser deposition. High sample quality and electronic structure were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [3 u.c. LaTiO3/2 u.c. SrTiO3] bi-layers and all the tri-color structures, whereas a [3 u.c. YTiO3/2 u.c. SrTiO3] bi-layer shows insulating behavior. Considering that in the bulk YTiO3 is ferromagnetic below 30 K, the tri-color titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas with Mott carriers.

  13. Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose H.; McAndrew, Ryan P.; Sergeeva, Oksana A.

    The human chaperonin TRiC consists of eight non-identical subunits, and its protein-folding activity is critical for cellular health. Misfolded proteins are associated with many human diseases, such as amyloid diseases, cancer, and neuropathies, making TRiC a potential therapeutic target. A detailed structural understanding of its ATP-dependent folding mechanism and substrate recognition is therefore of great importance. Of particular health-related interest is the mutation Histidine 147 to Arginine (H147R) in human TRiC subunit 5 (CCT5), which has been associated with hereditary sensory neuropathy. In this paper, we describe the crystal structures of CCT5 and the CCT5-H147R mutant, which provide important structuralmore » information for this vital protein-folding machine in humans. This first X-ray crystallographic study of a single human CCT subunit in the context of a hexadecameric complex can be expanded in the future to the other 7 subunits that form the TRiC complex.« less

  14. Disk-like Chemistry of the Triangulum-Andromeda Overdensity as Seen by APOGEE

    NASA Astrophysics Data System (ADS)

    Hayes, Christian R.; Majewski, Steven R.; Hasselquist, Sten; Beaton, Rachael L.; Cunha, Katia; Smith, Verne V.; Price-Whelan, Adrian M.; Anguiano, Borja; Beers, Timothy C.; Carrera, Ricardo; Fernández-Trincado, J. G.; Frinchaboy, Peter M.; García-Hernández, D. A.; Lane, Richard R.; Nidever, David L.; Nitschelm, Christian; Roman-Lopes, Alexandre; Zamora, Olga

    2018-05-01

    The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy, or a distant extension of the Galactic disk. We test these hypotheses using the chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Survey-IV’s (SDSS-IV’s) 14th Data Release (DR14) of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4 dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about ‑0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H] ∼ ‑0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity—i.e., past a Galactocentric radius of 24 kpc—albeit vertically perturbed about 7 kpc below the nominal disk midplane in this region of the Galaxy.

  15. Unexpected Actinyl Cation-Directed Structural Variation in Neptunyl(VI) A-Type Tri-lacunary Heteropolyoxotungstate Complexes

    DOE PAGES

    Berg, John M.; Gaunt, Andrew J.; May, Iain; ...

    2015-04-22

    A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW 9O 34] 9-, [AsW 9O 34] 9-, [SiW 9O 34] 10- and [GeW 9O 34] 10-) are multi-dentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO 2} 2+, {NpO 2} +, {NpO 2} 2+ & {PuO 2} 2+) in near neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two trilacunary anions, with additional cations (Na +, K + or NH 4 +) also often held within the cluster. Studies thus far have indicated that it is these additional +I cations, rather than the specific actinylmore » cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl (VI) cluster complex (NH 4) 13 [Na(NpO 2) 2(A-α- PW 9O 34) 2]·12H 2O. The anion in this complex, [Na(NpO 2) 2(PW 9O 34) 2] 13-, contains one Na + cation and two {NpO 2} 2+ cations held between two [PW 9O 34] 9- anions – with an additional partial occupancy NH 4 + or {NpO 2} 2+ cation also present. In the analogous uranium (VI) system, under similar reaction conditions that includes an excess of NH 4Cl in the parent solution, it was previously shown that [(NH 4) 2(U VIO 2) 2(A-PW 9O 34) 2] 12- is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO 2} 2+/[PW 9O 34] 9- and {UO 2} 2+/[PW 9O 34] 9- systems, both in solution and in solid state complexes crystallized from comparable salt solutions. The work revealed that varying the actinide element (Np vs. U) can indeed measurably impact structure and complex stability in the cluster chemistry of actinyl (VI) cations with A-type tri-lacunary heteropolyoxotungstate anions.« less

  16. Safety Testing of AGR-2 UCO Compacts 6-4-2 and 2-3-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Morris, Robert N.; Baldwin, Charles A.

    2017-08-01

    Post-irradiation examination (PIE) and elevated-temperature safety testing are being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). Details on this irradiation experiment have been previously reported [Collin 2014]. The AGR-2 PIE effort builds upon the understanding acquired throughout the AGR-1 PIE campaign [Demkowicz et al. 2015] and is establishing a database for the different AGR-2 fuel designs.

  17. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi

    PubMed Central

    McCormick, Susan P.; Lee, Theresa; Vaughan, Martha M.; Alexander, Nancy J.; Busman, Mark

    2018-01-01

    Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi. PMID:29649280

  18. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi.

    PubMed

    Proctor, Robert H; McCormick, Susan P; Kim, Hye-Seon; Cardoza, Rosa E; Stanley, April M; Lindo, Laura; Kelly, Amy; Brown, Daren W; Lee, Theresa; Vaughan, Martha M; Alexander, Nancy J; Busman, Mark; Gutiérrez, Santiago

    2018-04-01

    Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.

  19. DNA nanotechnology for nanophotonic applications.

    PubMed

    Samanta, Anirban; Banerjee, Saswata; Liu, Yan

    2015-02-14

    DNA nanotechnology has touched the epitome of miniaturization by integrating various nanometer size particles with nanometer precision. This enticing bottom-up approach has employed small DNA tiles, large multi-dimensional polymeric structures or more recently DNA origami to organize nanoparticles of different inorganic materials, small organic molecules or macro-biomolecules like proteins, and RNAs into fascinating patterns that are difficult to achieve by other conventional methods. Here, we are especially interested in the self-assembly of nanomaterials that are potentially attractive elements in the burgeoning field of nanophotonics. These materials include plasmonic nanoparticles, quantum dots, fluorescent organic dyes, etc. DNA based self-assembly allows excellent control over distance, orientation and stoichiometry of these nano-elements that helps to engineer intelligent systems that can potentially pave the path for future technology. Many outstanding structures have been fabricated that are capable of fine tuning optical properties, such as fluorescence intensity and lifetime modulation, enhancement of Raman scattering and emergence of circular dichroism responses. Within the limited scope of this review we have tried to give a glimpse of the development of this still nascent but highly promising field to its current status as well as the existing challenges before us.

  20. [Psychopathologic traits of patients addicted to heroin].

    PubMed

    Cabal Bravo, J C; Bobes García, J; Vázquez Fernández, A; González-Quirós Corujo, P; Bousoño García, M; García Prieto, A; González García-Portilla, P

    1989-01-01

    The aim of our work is the search for some differential psychopathologic features in the heroin addict personality, through the 16 PF of Cattell (A form), which we try to contrast with other contributions from studies carried out up to the present. Moreover, other parameters of demographic and socioeconomic interest have been evaluated. Through the results we have gotten, it seems that there is a larger number of psychopathologic elements in the personality of the heroin addict, such as greater introversion, frustration, culpability, radicalism, self-sufficiency, anxiety, over-excitement, actions influenced by their feelings, and a minor acceptance of the rules of the group, though these features do not constitute a standard structure of personality.

  1. Instability of the cored barotropic disc: the linear eigenvalue formulation

    NASA Astrophysics Data System (ADS)

    Polyachenko, E. V.

    2018-05-01

    Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.

  2. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Graeme S.; McCormick, Susan P.; Alexander, Nancy J.

    2009-08-14

    Fusarium head blight is a devastating disease of cereal crops whose worldwide incidence is increasing and at present there is no satisfactory way of combating this pathogen or its associated toxins. There is a wide variety of trichothecene mycotoxins and they all contain a 12,13-epoxytrichothecene skeleton but differ in their substitutions. Indeed, there is considerable variation in the toxin profile across the numerous Fusarium species that has been ascribed to differences in the presence or absence of biosynthetic enzymes and their relative activity. This article addresses the source of differences in acetylation at the C15 position of the trichothecene molecule.more » Here, we present the in vitro structural and biochemical characterization of TRI3, a 15-O-trichothecene acetyltransferase isolated from F. sporotrichioides and the 'in vivo' characterization of Deltatri3 mutants of deoxynivalenol (DON) producing F. graminearum strains. A kinetic analysis shows that TRI3 is an efficient enzyme with the native substrate, 15-decalonectrin, but is inactive with either DON or nivalenol. The structure of TRI3 complexed with 15-decalonectrin provides an explanation for this specificity and shows that Tri3 and Tri101 (3-O-trichothecene acetyltransferase) are evolutionarily related. The active site residues are conserved across all sequences for TRI3 orthologs, suggesting that differences in acetylation at C15 are not due to differences in Tri3. The tri3 deletion mutant shows that acetylation at C15 is required for DON biosynthesis even though DON lacks a C15 acetyl group. The enzyme(s) responsible for deacetylation at the 15 position of the trichothecene mycotoxins have not been identified.« less

  3. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    NASA Astrophysics Data System (ADS)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  4. Optimization of Focusing by Strip and Pixel Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, G J; White, D A; Thompson, C A

    Professor Kevin Webb and students at Purdue University have demonstrated the design of conducting strip and pixel arrays for focusing electromagnetic waves [1, 2]. Their key point was to design structures to focus waves in the near field using full wave modeling and optimization methods for design. Their designs included arrays of conducting strips optimized with a downhill search algorithm and arrays of conducting and dielectric pixels optimized with the iterative direct binary search method. They used a finite element code for modeling. This report documents our attempts to duplicate and verify their results. We have modeled 2D conducting stripsmore » and both conducting and dielectric pixel arrays with moment method and FDTD codes to compare with Webb's results. New designs for strip arrays were developed with optimization by the downhill simplex method with simulated annealing. Strip arrays were optimized to focus an incident plane wave at a point or at two separated points and to switch between focusing points with a change in frequency. We also tried putting a line current source at the focus point for the plane wave to see how it would work as a directive antenna. We have not tried optimizing the conducting or dielectric pixel arrays, but modeled the structures designed by Webb with the moment method and FDTD to compare with the Purdue results.« less

  5. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: discovery, synthesis, and characterization of their binding mode by protein crystallography.

    PubMed

    Patterson, Stephen; Alphey, Magnus S; Jones, Deuan C; Shanks, Emma J; Street, Ian P; Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H

    2011-10-13

    Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei , the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR-ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.

  6. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    NASA Astrophysics Data System (ADS)

    Dhote, Sharvari; Zu, Jean; Zhu, Yang

    2015-04-01

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  7. Analysis of the transient behavior of rubbing components

    NASA Technical Reports Server (NTRS)

    Quezdou, M. B.; Mullen, R. L.

    1986-01-01

    Finite element equations are developed for studying deformations and temperatures resulting from frictional heating in sliding system. The formulation is done for linear steady state motion in two dimensions. The equations include the effect of the velocity on the moving components. This gives spurious oscillations in their solutions by Galerkin finite element methods. A method called streamline upwind scheme is used to try to deal with this deficiency. The finite element program is then used to investigate the friction of heating in gas path seal.

  8. INTERLAYER MICROMECHANICS OF THE AORTIC HEART VALVE LEAFLET

    PubMed Central

    Buchanan, Rachel M.; Sacks, Michael S.

    2014-01-01

    While the mechanical behaviors of the fibrosa and ventricularis layers of the aortic valve (AV) leaflet are understood, little information exists on their mechanical interactions mediated by the GAG-rich central spongiosa layer. Parametric simulations of the interlayer interactions of the AV leaflets in flexure utilized a tri-layered finite element (FE) model of circumferentially oriented tissue sections to investigate inter-layer sliding hypothesized to occur. Simulation results indicated that the leaflet tissue functions as a tightly bonded structure when the spongiosa effective modulus was at least 25% that of the fibrosa and ventricularis layers. Novel studies that directly measured transmural strain in flexure of AV leaflet tissue specimens validated these findings. Interestingly, a smooth transmural strain distribution indicated that the layers of the leaflet indeed act as a bonded unit, consistent with our previous observations (Stella and Sacks, 2007) of a large number of transverse collagen fibers interconnecting the fibrosa and ventricularis layers. Additionally, when the tri-layered FE model was refined to match the transmural deformations, a layer-specific bimodular material model (resulting in four total moduli) accurately matched the transmural strain and moment-curvature relations simultaneously. Collectively, these results provide evidence, contrary to previous assumptions, that the valve layers function as a bonded structure in the low-strain flexure deformation mode. Most likely, this results directly from the transverse collagen fibers that bind the layers together to disable physical sliding and maintain layer residual stresses. Further, the spongiosa may function as a general dampening layer while the AV leaflets deforms as a homogenous structure despite its heterogeneous architecture. PMID:24292631

  9. Web Helpdesk - PHE

    Science.gov Websites

    You may be trying to access this site from a secured browser on the server. Please enable scripts supports this element, such as Internet Explorer 7.0 or later. Home | Contact Us | Accessibility | Privacy

  10. High mobility of large mass movements: a study by means of FEM/DEM simulations

    NASA Astrophysics Data System (ADS)

    Manzella, I.; Lisjak, A.; Grasselli, G.

    2013-12-01

    Large mass movements, such as rock avalanches and large volcanic debris avalanches are characterized by extremely long propagation, which cannot be modelled using normal sliding friction law. For this reason several studies and theories derived from field observation, physical theories and laboratory experiments, exist to try to explain their high mobility. In order to investigate more into deep some of the processes recalled by these theories, simulations have been run with a new numerical tool called Y-GUI based on the Finite Element-Discrete Element Method FEM/DEM. The FEM/DEM method is a numerical technique developed by Munjiza et al. (1995) where Discrete Element Method (DEM) algorithms are used to model the interaction between different solids, while Finite Element Method (FEM) principles are used to analyze their deformability being also able to explicitly simulate material sudden loss of cohesion (i.e. brittle failure). In particular numerical tests have been run, inspired by the small-scale experiments done by Manzella and Labiouse (2013). They consist of rectangular blocks released on a slope; each block is a rectangular discrete element made of a mesh of finite elements enabled to fragment. These simulations have highlighted the influence on the propagation of block packing, i.e. whether the elements are piled into geometrical ordinate structure before failure or they are chaotically disposed as a loose material, and of the topography, i.e. whether the slope break is smooth and regular or not. In addition the effect of fracturing, i.e. fragmentation, on the total runout have been studied and highlighted.

  11. ELECTRON PROBE MICROANALYSIS OF IRRADIATED AND 1600°C SAFETY-TESTED AGR-1 TRISO FUEL PARTICLES WITH LOW AND HIGH RETAINED 110MAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Karen E.; van Rooyen, Isabella J.

    2016-11-01

    AGR-1 fuel Compact 4-3-3 achieved 18.63% FIMA and was exposed subsequently to a safety test at 1600°C. Two particles, AGR1-433-003 and AGR1-433-007, with measured-to-calculated 110mAg inventories of <22% and 100%, respectively, were selected for comparative electron microprobe analysis to determine whether the distribution or abundance of fission products differed proximally and distally from the deformed kernel in AGR1-433-003, and how this compared to fission product distribution in AGR1-433-007. On the deformed side of AGR1-433-003, Xe, Cs, I, Eu, Sr, and Te concentrations in the kernel buffer interface near the protruded kernel were up to six times higher than on themore » opposite, non-deformed side. At the SiC-inner pyrolytic carbon (IPyC) interface proximal to the deformed kernel, Pd and Ag concentrations were 1.2 wt% and 0.04 wt% respectively, whereas on the SiC-IPyC interface distal from the kernel deformation those elements measured 0.4 and 0.01 wt%, respectively. Palladium and Ag concentrations at the SiC-IPyC interface of AGR1-433-007 were 2.05 and 0.05 wt.%, respectively. Rare earth element concentrations at the SiC-IPyC interface of AGR1-433-007 were a factor of ten higher than at the SiC-IPyC interfaces measured in particle AGR1-433-003. Palladium permeated the SiC layer of AGR1-433-007 and the non-deformed SiC layer of AGR1-433-003.« less

  12. Computer Aided Synthesis or Measurement Schemes for Telemetry applications

    DTIC Science & Technology

    1997-09-02

    5.2.5. Frame structure generation The algorithm generating the frame structure should take as inputs the sampling frequency requirements of the channels...these channels into the frame structure. Generally there can be a lot of ways to divide channels among groups. The algorithm implemented in...groups) first. The algorithm uses the function "try_permutation" recursively to distribute channels among the groups, and the function "try_subtable

  13. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nonpoint Source Pollution: Darby Duck, the Aquatic Crusader

    EPA Pesticide Factsheets

    Understanding the characteristics of water, that precious resource we are trying to protect. And understanding how it interacts with other elements in the environment, some of which pollute it and cause problems for people and animals.

  15. Computational investigation of intense short-wavelength laser interaction with rare gas clusters

    NASA Astrophysics Data System (ADS)

    Bigaouette, Nicolas

    Current Very High Temperature Reactor designs incorporate TRi-structural ISOtropic (TRISO) particle fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel by dropping a cold precursor solution into a column of hot trichloroethylene (TCE). The temperature difference drives the liquid precursor solution to precipitate the metal solution into gel spheres before reaching the bottom of a production column. Over time, gelation byproducts inhibit complete gelation and the TCE must be purified or discarded. The resulting mixed-waste stream is expensive to dispose of or recycle, and changing the forming fluid to a non-hazardous alternative could greatly improve the economics of kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacements. The physical properties of the alternatives were measured as a function of temperature between 25 °C and 80 °C. Calculated terminal velocities and heat transfer rates provided an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane were selected for further testing, and surrogate yttria-stabilized zirconia (YSZ) kernels were produced using these selected fluids. The kernels were characterized for density, geometry, composition, and crystallinity and compared to a control group of kernels produced in silicone oil. Production in 1-bromotetradecane showed positive results, producing dense (93.8 %TD) and spherical (1.03 aspect ratio) kernels, but proper gelation did not occur in the other alternative forming fluids. With many of the YSZ kernels not properly gelling within the length of the column, this project further investigated the heat transfer properties of the forming fluids and precursor solution. A sensitivity study revealed that the heat transfer properties of the precursor solution have the strongest impact on gelation time. A COMSOL heat transfer model estimated an effective thermal diffusivity range for the YSZ precursor solution as 1.13x10 -8 m2/s to 3.35x10-8 m 2/s, which is an order of magnitude smaller than the value used in previous studies. 1-bromotetradecane is recommended for further investigation with the production of uranium-based kernels.

  16. Laser-Scanner Survey of Structural Disorders: AN Instrument to Inspect the History of Parma Cathedral's Central Nave

    NASA Astrophysics Data System (ADS)

    Bruno, N.; Coïsson, E.; Cotti, M.

    2017-05-01

    This paper presents the use of laser scanner derived data for the study of the structural disorders in the central nave of the Parma Cathedral. An accurate three-dimensional model of the entire nave was realized to investigate deformations, in order to reconstruct the original conformation and the subsequent evolutions, also in comparison with previous surveys. Specifically, for the analysis presented in the paper, seven scans were performed, one for each bay: the results allowed to compare the deformations on the seven vaults, on the transverse and diagonal arches, giving first hints on the possible differences in the behaviour between the different elements. The measures on the levels of floor and pillars bases were analysed in a historical monitoring approach, in order to retrace the evolution of the differential settlements in time, since the construction of the building. Moreover, a structural analysis has been carried out on one transverse arch with distinct element analysis, with two different approaches. In one case, the structure was inserted exactly as surveyed, and then subjected to the actions. In the second case, the original geometry, before the deformation, was retraced through a parametric approach and the structural analysis basically started at the beginning of the building's life, thus trying to model not only the present structural situation, but also the path which led to the current deformation. The results were particularly meaningful as they showed that in the first case, disregarding the footsteps of history, the stress pattern inside the masonry was very different from the one obtained in the second case, which is more likely to represent the present conditions.

  17. Cs[Tf 2N]: a second polymorph with a layered structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stritzinger, Jared Tyler; Droessler, Janelle E.; Scott, Brian Lindley

    Here, the structural determination of the ionic liquid, caesium bis­[(tri­fluoro­meth­yl)sulfon­yl]imide or poly[[ μ4-bis­[(tri­fluoro­meth­yl)sulfon­yl]imido]caesium(I)], Cs[N(SO 2CF 3) 2] or Cs[Tf 2N], reveals a second polymorph that also crystallizes in a layer structure possessing monoclinic P2 1/c symmetry at 120 K instead of C2/c for the known polymorph. The caesium ions in the cationic layers are coordinated by the sulfonyl groups of the bis­triflimide mol­ecules from anion layers while the tri­fluoro­methyl groups are oriented in the opposite direction, forming a non-polar surface separating the layers.

  18. Cs[Tf 2N]: a second polymorph with a layered structure

    DOE PAGES

    Stritzinger, Jared Tyler; Droessler, Janelle E.; Scott, Brian Lindley; ...

    2018-03-23

    Here, the structural determination of the ionic liquid, caesium bis­[(tri­fluoro­meth­yl)sulfon­yl]imide or poly[[ μ4-bis­[(tri­fluoro­meth­yl)sulfon­yl]imido]caesium(I)], Cs[N(SO 2CF 3) 2] or Cs[Tf 2N], reveals a second polymorph that also crystallizes in a layer structure possessing monoclinic P2 1/c symmetry at 120 K instead of C2/c for the known polymorph. The caesium ions in the cationic layers are coordinated by the sulfonyl groups of the bis­triflimide mol­ecules from anion layers while the tri­fluoro­methyl groups are oriented in the opposite direction, forming a non-polar surface separating the layers.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loyalka, Sudarshan

    High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuelmore » was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.« less

  20. The Molecular Chaperone TRiC/CCT Binds to the Trp-Asp 40 (WD40) Repeat Protein WDR68 and Promotes Its Folding, Protein Kinase DYRK1A Binding, and Nuclear Accumulation*

    PubMed Central

    Miyata, Yoshihiko; Shibata, Takeshi; Aoshima, Masato; Tsubata, Takuichi; Nishida, Eisuke

    2014-01-01

    Trp-Asp (WD) repeat protein 68 (WDR68) is an evolutionarily conserved WD40 repeat protein that binds to several proteins, including dual specificity tyrosine phosphorylation-regulated protein kinase (DYRK1A), MAPK/ERK kinase kinase 1 (MEKK1), and Cullin4-damage-specific DNA-binding protein 1 (CUL4-DDB1). WDR68 affects multiple and diverse physiological functions, such as controlling anthocyanin synthesis in plants, tissue growth in insects, and craniofacial development in vertebrates. However, the biochemical basis and the regulatory mechanism of WDR68 activity remain largely unknown. To better understand the cellular function of WDR68, here we have isolated and identified cellular WDR68 binding partners using a phosphoproteomic approach. More than 200 cellular proteins with wide varieties of biochemical functions were identified as WDR68-binding protein candidates. Eight T-complex protein 1 (TCP1) subunits comprising the molecular chaperone TCP1 ring complex/chaperonin-containing TCP1 (TRiC/CCT) were identified as major WDR68-binding proteins, and phosphorylation sites in both WDR68 and TRiC/CCT were identified. Co-immunoprecipitation experiments confirmed the binding between TRiC/CCT and WDR68. Computer-aided structural analysis suggested that WDR68 forms a seven-bladed β-propeller ring. Experiments with a series of deletion mutants in combination with the structural modeling showed that three of the seven β-propeller blades of WDR68 are essential and sufficient for TRiC/CCT binding. Knockdown of cellular TRiC/CCT by siRNA caused an abnormal WDR68 structure and led to reduction of its DYRK1A-binding activity. Concomitantly, nuclear accumulation of WDR68 was suppressed by the knockdown of TRiC/CCT, and WDR68 formed cellular aggregates when overexpressed in the TRiC/CCT-deficient cells. Altogether, our results demonstrate that the molecular chaperone TRiC/CCT is essential for correct protein folding, DYRK1A binding, and nuclear accumulation of WDR68. PMID:25342745

  1. Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150

    PubMed Central

    Yu, Xuekui; Jih, Jonathan; Jiang, Jiansen; Zhou, Z. Hong

    2017-01-01

    Herpesviruses possess a genome-pressurized capsid. The 235-kilobase genome of human cytomegalovirus (HCMV) is by far the largest of any herpesvirus, yet it has been unclear how its capsid, which is similar in size to those of other herpesviruses, is stabilized. Here we report a HCMV atomic structure consisting of the herpesvirus-conserved capsid proteins MCP, Tri1, Tri2, and SCP and the HCMV-specific tegument protein pp150—totaling ~4000 molecules and 62 different conformers. MCPs manifest as a complex of insertions around a bacteriophage HK97 gp5–like domain, which gives rise to three classes of capsid floor–defining interactions; triplexes, composed of two “embracing” Tri2 conformers and a “third-wheeling” Tri1, fasten the capsid floor. HCMV-specific strategies include using hexon channels to accommodate the genome and pp150 helix bundles to secure the capsid via cysteine tetrad–to-SCP interactions. Our structure should inform rational design of countermeasures against HCMV, other herpesviruses, and even HIV/AIDS. PMID:28663444

  2. BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update

    NASA Astrophysics Data System (ADS)

    Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2015-09-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.

  3. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  4. Structural comparative studies on new Mn(II), Cr(III) and Ru(III) complexes derived from 2,4,6-tri-(2-pyridyl)-1,3,5-triazine (TPTZ).

    PubMed

    Al-Assy, Waleed H; El-Askalany, Abdel Moneum H; Mostafa, Mohsen M

    2013-12-01

    The structure of a new Mn(II) complex, [Mn(TPTZ)Cl2(H2O)]⋅H2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c,a = 8.7202 (3)Å, b = 11.5712 (4)Å, c = 20.8675 (9)Å, β=11 (18) × 1010, V = 2029.27 (13)Å(3), Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (Mn(II), Cr(III) and Ru(III)). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Structural comparative studies on new MnII, CrIII and RuIII complexes derived from 2,4,6-tri-(2-pyridyl)-1,3,5-triazine (TPTZ)

    NASA Astrophysics Data System (ADS)

    Al-Assy, Waleed H.; El-Askalany, Abdel Moneum H.; Mostafa, Mohsen M.

    2013-12-01

    The structure of a new MnII complex, [Mn(TPTZ)Cl2(H2O)]ṡH2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c, a = 8.7202 (3) Å, b = 11.5712 (4) Å, c = 20.8675 (9) Å, β = 11 (18) × 1010, V = 2029.27 (13) Å3, Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (MnII, CrIII and RuIII). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment.

  6. Two-dimensional cross correlation analysis of protein unfolding: Portrayal of the thermal denaturation of CMP kinases in the absence and presence of substrates

    NASA Astrophysics Data System (ADS)

    Schultz, Christian P.; Bârzu, Octavian; Mantsch, Henry H.

    2000-03-01

    The functional role of CMP kinases is to regenerate mono-phosphate nucleotides in cells by transferring phosphate residues from tri-phosphorylated nucleotides to monophosphorylated nucleotides. These enzymes possess two binding sites and maintain a highly conserved secondary structure. They are essential for cell survival. Herein we compare the infrared spectra of two similar, but not identical enzymes, the CMP kinases from Escherichia coli and Bacillus subtilis. A two-dimensional cross correlation analysis of the infrared spectra reveals differences in the denaturation behavior of the two proteins. Different secondary structure elements show different time-delayed or advanced unfolding events in the two enzymes. When bound to the active sites, the two nucleotide-substrates CMP and ATP exert a stabilizing effect on the structure of both proteins. The changes observed upon thermal denaturation are different for the two enzymes. Model 2D correlations are used to simulate the different denaturation of the two enzymes. Thermal denaturation and aggregation can be distinguished as two processes separated in time.

  7. Modelling of Indoor Environments Using Lindenmayer Systems

    NASA Astrophysics Data System (ADS)

    Peter, M.

    2017-09-01

    Documentation of the "as-built" state of building interiors has gained a lot of interest in the recent years. Various data acquisition methods exist, e.g. the extraction from photographed evacuation plans using image processing or, most prominently, indoor mobile laser scanning. Due to clutter or data gaps as well as errors during data acquisition and processing, automatic reconstruction of CAD/BIM-like models from these data sources is not a trivial task. Thus it is often tried to support reconstruction by general rules for the perpendicularity and parallelism which are predominant in man-made structures. Indoor environments of large, public buildings, however, often also follow higher-level rules like symmetry and repetition of e.g. room sizes and corridor widths. In the context of reconstruction of city city elements (e.g. street networks) or building elements (e.g. façade layouts), formal grammars have been put to use. In this paper, we describe the use of Lindenmayer systems - which originally have been developed for the computer-based modelling of plant growth - to model and reproduce the layout of indoor environments in 2D.

  8. Construction concepts and validation of the 3D printed UST_2 modular stellarator

    NASA Astrophysics Data System (ADS)

    Queral, V.

    2015-03-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.

  9. Finite difference method accelerated with sparse solvers for structural analysis of the metal-organic complexes

    NASA Astrophysics Data System (ADS)

    Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.

    2016-05-01

    Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.

  10. STS-92 Mission Specialist Wisoff has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist Peter J.K. 'Jeff' Wisoff tries on his boots. Wisoff and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Wisoff's fourth Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  11. Ca:Mg:Zn:CO3 and Ca:Mg:CO3-tri- and bi-elemental carbonate microparticles for novel injectable self-gelling hydrogel-microparticle composites for tissue regeneration.

    PubMed

    Douglas, Timothy E L; Sobczyk, Katarzyna; Łapa, Agata; Włodarczyk, Katarzyna; Brackman, Gilles; Vidiasheva, Irina; Reczyńska, Katarzyna; Pietryga, Krzysztof; Schaubroeck, David; Bliznuk, Vitaliy; Voort, Pascal Van Der; Declercq, Heidi A; Bulcke, Jan Van den; Samal, Sangram Keshari; Khalenkow, Dmitry; Parakhonskiy, Bogdan V; Van Acker, Joris; Coenye, Tom; Lewandowska-Szumieł, Małgorzata; Pamuła, Elżbieta; Skirtach, Andre G

    2017-03-24

    Injectable composites for tissue regeneration can be developed by dispersion of inorganic microparticles and cells in a hydrogel phase. In this study, multifunctional carbonate microparticles containing different amounts of calcium, magnesium and zinc were mixed with solutions of gellan gum (GG), an anionic polysaccharide, to form injectable hydrogel-microparticle composites, containing Zn, Ca and Mg. Zn and Ca were incorporated into microparticle preparations to a greater extent than Mg. Microparticle groups were heterogeneous and contained microparticles of differing shape and elemental composition. Zn-rich microparticles were 'star shaped' and appeared to consist of small crystallites, while Zn-poor, Ca- and Mg-rich microparticles were irregular in shape and appeared to contain lager crystallites. Zn-free microparticle groups exhibited the best cytocompatibility and, unexpectedly, Zn-free composites showed the highest antibacterial activity towards methicilin-resistant Staphylococcus aureus. Composites containing Zn-free microparticles were cytocompatible and therefore appear most suitable for applications as an injectable biomaterial. This study proves the principle of creating bi- and tri-elemental microparticles to induce the gelation of GG to create injectable hydrogel-microparticle composites.

  12. Lithium tri borate (LiB3O5) embedded polymer electret for mechanical sensing application

    NASA Astrophysics Data System (ADS)

    Murugan, S.; Praveen, E.; Prasad, M. V. N.; Jayakumar, K.

    2017-05-01

    Lithium tri borate (LiB3O5) particles were synthesized by precipitation assisted high temperature solid state reaction. The particles were embedded in chitosan polymer and used as an electret. This electret was characterized for the suitability as a sensing element in vibration accelerometer. It is observed that LiB3O5 embedded electret exhibiting piezoelectric property. The electret is also giving an isolation of > 999 MΩ at 100 Vdc, 250 Vdc, 500 Vdc and 1kVdc confirms compatible for intrinsically safe sensing alternative in vibration accelerometer.

  13. Genetic Divergence and Chemotype Diversity in the Fusarium Head Blight Pathogen Fusarium poae.

    PubMed

    Vanheule, Adriaan; De Boevre, Marthe; Moretti, Antonio; Scauflaire, Jonathan; Munaut, Françoise; De Saeger, Sarah; Bekaert, Boris; Haesaert, Geert; Waalwijk, Cees; van der Lee, Theo; Audenaert, Kris

    2017-08-23

    Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6 . To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae .

  14. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first threemore » vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.« less

  15. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.

    PubMed

    Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei

    2018-01-01

    Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.

  16. Utilizing Interfaces for Nano- and Micro-scale Control of Thermal Conductivity

    DTIC Science & Technology

    2015-08-17

    performance of these promising materials by 50%. Ballmilling and spark plasma sintering (SPS) processes were investigated to try to lower the thermal...samples fabricated through the spark plasma sintering ”, Mater Renew Sustain Energy, 3, 31-1 31-6 (2014). DOI: 10.1007/s40243-014-0031-8 9. O. Sologub...for doping of foreign elements (therefore no migration problems) is very striking. In further development, addition of Al as a sintering element was

  17. Magnetic and Structural Characterization of Fe-Ga Using Kerr Microscopy and Neutron Scattering

    DTIC Science & Technology

    2010-01-01

    117 4.6 Schematic of triple axes single crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right...Therefore, USANS data is one-dimensional. 4.3.3 Single Crystal Neutron Diffraction The single crystal neutron diffractometer, TriCS at Paul Scherrer...crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right) [106] 4.4 Unpolarized SANS In this section, SANS

  18. The recruitment of the U5 snRNP to nascent transcripts requires internal loop 1 of U5 snRNA.

    PubMed

    Kim, Rebecca; Paschedag, Joshua; Novikova, Natalya; Bellini, Michel

    2012-12-01

    In this study, we take advantage of the high spatial resolution offered by the nucleus and lampbrush chromosomes of the amphibian oocyte to investigate the mechanisms that regulate the intranuclear trafficking of the U5 snRNP and its recruitment to nascent transcripts. We monitor the fate of newly assembled fluorescent U5 snRNP in Xenopus oocytes depleted of U4 and/or U6 snRNAs and demonstrate that the U4/U6.U5 tri-snRNP is not required for the association of U5 snRNP with Cajal bodies, splicing speckles, and nascent transcripts. In addition, using a mutational analysis, we show that a non-functional U5 snRNP can associate with nascent transcripts, and we further characterize internal loop structure 1 of U5 snRNA as a critical element for licensing U5 snRNP to target both nascent transcripts and splicing speckles. Collectively, our data support the model where the recruitment of snRNPs onto pre-mRNAs is independent of spliceosome assembly and suggest that U5 snRNP may promote the association of the U4/U6.U5 tri-snRNP with nascent transcripts.

  19. Discovery of an Unexplored Protein Structural Scaffold of Serine Protease from Big Blue Octopus (Octopus cyanea): A New Prospective Lead Molecule.

    PubMed

    Panda, Subhamay; Kumari, Leena

    2017-01-01

    Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus venom protein as a whole or a part of their structure that may result in the development of new lead molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Selecting Telephone Systems for a School District.

    ERIC Educational Resources Information Center

    Paddock, Steve

    1989-01-01

    A tried and tested formula for selecting the right telephone system includes the following elements: determining telephone system needs, considering future growth, using written proposals to make comparisons, and shopping for quality products with excellent references. Flagstaff (Arizona) Uified School District's experience is used to illustrate…

  1. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    PubMed

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louthan, M

    2007-07-17

    Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the propertiesmore » of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.« less

  3. Sample Preparation Techniques for Grain Boundary Characterization of Annealed TRISO-Coated Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunzik-Gougar, M. L.; van Rooyen, I. J.; Hill, C. M.

    Crystallographic information about chemical vapor deposition layers of silicon carbide (SiC) is essential to understanding layer performance, especially when the layers are in non planar geometries, such as spherical. We performed electron Back Scatter Diffraction (EBSD) analysis of spherical SiC layers using a different approach to sample focus ion beam milling technique to avoid the negative impacts of traditional sample polishing and to address the need of very small samples of irradiated materials for analysis. Mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strains and result in unequal removal of SiC and surrounding layers of differentmore » material due to the hardness differences of these materials. The nature of layer interfaces is thought to play a key role in performance of the SiC; therefore, analysis of representative samples at these interfacial areas is crucial. In work reported here, a focused ion beam (FIB) was employed in a novel manner to prepare a more representative sample for EBSD analysis from TRISO layers free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron irradiated microscopic samples such as those analyzed in this work has been simplified with pre tilted mounting stages. Our study showed that although the average grain size of samples may be similar, the grain boundary characteristics may differ significantly. It was also found that low angle grain boundaries, comprises 25% in the FIB-prepared sample vs only 1-2% in the polished sample measured in the same particle. From this study it was determined that results of FIB prepared sample will provide more repeatable results, as the role of sample preparation is eliminated.« less

  4. Sample Preparation Techniques for Grain Boundary Characterization of Annealed TRISO-Coated Particles

    DOE PAGES

    Dunzik-Gougar, M. L.; van Rooyen, I. J.; Hill, C. M.; ...

    2016-08-25

    Crystallographic information about chemical vapor deposition layers of silicon carbide (SiC) is essential to understanding layer performance, especially when the layers are in non planar geometries, such as spherical. We performed electron Back Scatter Diffraction (EBSD) analysis of spherical SiC layers using a different approach to sample focus ion beam milling technique to avoid the negative impacts of traditional sample polishing and to address the need of very small samples of irradiated materials for analysis. Mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strains and result in unequal removal of SiC and surrounding layers of differentmore » material due to the hardness differences of these materials. The nature of layer interfaces is thought to play a key role in performance of the SiC; therefore, analysis of representative samples at these interfacial areas is crucial. In work reported here, a focused ion beam (FIB) was employed in a novel manner to prepare a more representative sample for EBSD analysis from TRISO layers free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron irradiated microscopic samples such as those analyzed in this work has been simplified with pre tilted mounting stages. Our study showed that although the average grain size of samples may be similar, the grain boundary characteristics may differ significantly. It was also found that low angle grain boundaries, comprises 25% in the FIB-prepared sample vs only 1-2% in the polished sample measured in the same particle. From this study it was determined that results of FIB prepared sample will provide more repeatable results, as the role of sample preparation is eliminated.« less

  5. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott A. Ploger; Paul A. Demkowicz; John D. Hunn

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplanemore » on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.« less

  6. Electron Microscopic Evaluation and Fission Product Identification of Irradiated TRISO Coated Particles from the AGR-1 Experiment: A Preliminary Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; DE Janney; BD Miller

    2014-05-01

    Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this paper a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objectives of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energymore » dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. Microstructural characterization focused on fission-product precipitates in the SiC-IPyC interface, the SiC layer and the fuel-buffer interlayer. The results provide significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentrations of Ag in precipitates with significantly higher concentrations of Pd and U. Different approaches to resolving this problem are discussed. An initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations were observed and no debonding of the SiC-IPyC interlayer as a result of irradiation was observed for the samples investigated. Lessons learned from the post-irradiation examination are described and future actions are recommended.« less

  7. A Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings

    PubMed Central

    Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian

    2013-01-01

    Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines. PMID:24084112

  8. Structured electronic physiotherapy records.

    PubMed

    Buyl, Ronald; Nyssen, Marc

    2009-07-01

    With the introduction of the electronic health record, physiotherapists too are encouraged to store their patient records in a structured digital format. The typical nature of a physiotherapy treatment requires a specific record structure to be implemented, with special attention to user-friendliness and communication with other healthcare providers. The objective of this study was to establish a framework for the electronic physiotherapy record and to define a model for the interoperability with the other healthcare providers involved in the patients' care. Although we started from the Belgian context, we used a generic approach so that the results can easily be extrapolated to other countries. The framework we establish here defines not only the different building blocks of the electronic physiotherapy record, but also describes the structure and the content of the exchanged data elements. Through a combined effort by all involved parties, we elaborated an eight-level structure for the electronic physiotherapy record. Furthermore we designed a server-based model for the exchange of data between electronic record systems held by physicians and those held by physiotherapists. Two newly defined XML messages enable data interchange: the physiotherapy prescription and the physiotherapy report. We succeeded in defining a solid, structural model for electronic physiotherapist record systems. Recent wide scale implementation of operational elements such as the electronic registry has proven to make the administrative work easier for the physiotherapist. Moreover, within the proposed framework all the necessary building blocks are present for further data exchange and communication with other healthcare parties in the future. Although we completed the design of the structure and already implemented some new aspects of the electronic physiotherapy record, the real challenge lies in persuading the end-users to start using these electronic record systems. Via a quality label certification procedure, based on adequate criteria, the Ministry of Health tries to promote the use of electronic physiotherapy records. We must keep in mind that physiotherapists will show an interest in electronic record keeping, only if this will lead to a positive return for them.

  9. Learning Factory--Integrative E-Learning

    ERIC Educational Resources Information Center

    Steininger, Peter

    2017-01-01

    Integrative E-Learning (IEP): The goal of the project is the development and testing of an integrative teaching format for the assembly of imported, tried and tested (classic) teaching elements (e.g. wallboard and flipchart, screen walls and other visualization aids, Projector, manuscripts, and workbooks, etc.), with contemporary, innovative…

  10. Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency

    NASA Astrophysics Data System (ADS)

    Zou, Hongshuo; Wang, Jiachou; Chen, Fang; Bao, Haifei; Jiao, Ding; Zhang, Kun; Song, Zhaohui; Li, Xinxin

    2017-07-01

    This paper reports a novel monolithically integrated tri-axis high-shock accelerometer with high resonant-frequency for the detection of a broad frequency-band shock signal. For the first time, a resonant-frequency as high as about 1.4 MHz is designed for all the x-, y- and z-axis accelerometers of the integrated tri-axis sensor. In order to achieve a wide frequency-band detection performance, all the three sensing structures are designed into an axially compressed/stretched tiny-beam sensing scheme, where the p  +  -doped tiny-beams are connected into a Wheatstone bridge for piezoresistive output. By using ordinary (1 1 1) silicon wafer (i.e. non-SOI wafer), a single-wafer based fabrication technique is developed to monolithically integrate the three sensing structures for the tri-axis sensor. Testing results under high-shock acceleration show that each of the integrated three-axis accelerometers exhibit about 1.4 MHz resonant-frequency and 0.2-0.4 µV/V/g sensitivity. The achieved high frequencies for all the three sensing units make the tri-axis sensor promising in high fidelity 3D high-shock detection applications.

  11. Differential conformational modulations of MreB folding upon interactions with GroEL/ES and TRiC chaperonin components

    PubMed Central

    Moparthi, Satish Babu; Carlsson, Uno; Vincentelli, Renaud; Jonsson, Bengt-Harald; Hammarström, Per; Wenger, Jérôme

    2016-01-01

    Here, we study and compare the mechanisms of action of the GroEL/GroES and the TRiC chaperonin systems on MreB client protein variants extracted from E. coli. MreB is a homologue to actin in prokaryotes. Single-molecule fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence polarization anisotropy report the binding interaction of folding MreB with GroEL, GroES and TRiC. Fluorescence resonance energy transfer (FRET) measurements on MreB variants quantified molecular distance changes occurring during conformational rearrangements within folding MreB bound to chaperonins. We observed that the MreB structure is rearranged by a binding-induced expansion mechanism in TRiC, GroEL and GroES. These results are quantitatively comparable to the structural rearrangements found during the interaction of β-actin with GroEL and TRiC, indicating that the mechanism of chaperonins is conserved during evolution. The chaperonin-bound MreB is also significantly compacted after addition of AMP-PNP for both the GroEL/ES and TRiC systems. Most importantly, our results showed that GroES may act as an unfoldase by inducing a dramatic initial expansion of MreB (even more than for GroEL) implicating a role for MreB folding, allowing us to suggest a delivery mechanism for GroES to GroEL in prokaryotes. PMID:27328749

  12. An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Kassa, Semu Mitiku; Tsegay, Teklay Hailay

    2017-08-01

    Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.

  13. Predicted and measured transmission and diffraction by a metallic mesh coating

    NASA Astrophysics Data System (ADS)

    Halman, Jennifer I.; Ramsey, Keith A.; Thomas, Michael; Griffin, Andrew

    2009-05-01

    Metallic mesh coatings are used on visible and infrared windows and domes to provide shielding from electromagnetic interference (EMI) and as heaters to de-fog or de-ice windows or domes. The periodic metallic mesh structures that provide the EMI shielding and/or resistive electrical paths for the heating elements create a diffraction pattern when optical or infrared beams are incident on the coated windows. Over the years several different mesh geometries have been used to try to reduce the effects of diffraction. We have fabricated several different mesh patterns on small coupons of BK-7 and measured the transmitted power and the diffraction patterns of each one using a CW 1064 nm laser. In this paper we will present some predictions and measurements of the diffraction patterns of several different mesh patterns.

  14. STS-92 Mission Specialist Lopez-Alegria has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist Michael E. Lopez-Alegria tries on the helmet for his launch and entry suit. Lopez-Alegria and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Lopez-Alegria's second Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  15. Transitioning of power flow in beam models with bends

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1990-01-01

    The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.

  16. A Dream of Yukawa — Non-Local Fields out of Non-Commutative Spacetime —

    NASA Astrophysics Data System (ADS)

    Naka, Shigefumi; Toyoda, Haruki; Takanashi, Takahiro; Umezawa, Eizo

    The coordinates of κ-Minkowski spacetime form Lie algebraic elements, in which time and space coordinates do not commute in spite of that space coordinates commute each other. The non-commutativity is realized by a Planck-length-scale constant κ - 1( ne 0), which is a universal constant other than the light velocity under the κ-Poincare transformation. Such a non-commutative structure can be realized by SO(1,4) generators in dS4 spacetime. In this work, we try to construct a κ-Minkowski like spacetime with commutative 4-dimensional spacetime based on Adsn+1 spacetime. Another aim of this work is to study invariant wave equations in this spacetime from the viewpoint of non-local field theory by H. Yukawa, who expected to realize elementary particle theories without divergence according to this viewpoint.

  17. Crystal Structures of Lys-63-linked tri- and di-ubiquitin Reveal a Highly Extended Chain Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, S.; Grasty, K; Hernandez-Cuebas, L

    2009-01-01

    The covalent attachment of different types of poly-ubiquitin chains signal different outcomes for the proteins so targeted. For example, a protein modified with Lys-48-linked poly-ubiquitin chains is targeted for proteasomal degradation, whereas Lys-63-linked chains encode nondegradative signals. The structural features that enable these different types of chains to encode different signals have not yet been fully elucidated. We report here the X-ray crystal structures of Lys-63-linked tri- and di-ubiquitin at resolutions of 2.3 and 1.9 {angstrom}, respectively. The tri- and di-ubiquitin species adopt essentially identical structures. In both instances, the ubiquitin chain assumes a highly extended conformation with a left-handedmore » helical twist; the helical chain contains four ubiquitin monomers per turn and has a repeat length of {approx}110 {angstrom}. Interestingly, Lys-48 ubiquitin chains also adopt a left-handed helical structure with a similar repeat length. However, the Lys-63 architecture is much more open than that of Lys-48 chains and exposes much more of the ubiquitin surface for potential recognition events. These new crystal structures are consistent with the results of solution studies of Lys-63 chain conformation, and reveal the structural basis for differential recognition of Lys-63 versus Lys-48 chains.« less

  18. All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA

    PubMed Central

    Gerbi, Susan A.; Lange, Thilo Sascha

    2002-01-01

    Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3′ end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3′-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3′ hydroxyl of U6 snRNA to a 3′ phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies. PMID:12221120

  19. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.

    2016-01-01

    An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

  20. Humorous Literature: A Doorway to Literacy.

    ERIC Educational Resources Information Center

    Fernandez, Melanie

    Many theories have been developed to try to explain humor, among them, the social theory; psychoanalytic theories based on Freud; cognitive theories which identify stages corresponding to those of Piaget; and eclectic theories which combine elements of all the theories. The developmental stages of humor parallel the intellectual and emotional…

  1. J.D., D.B., Sonny, Sunny, and Holden.

    ERIC Educational Resources Information Center

    Ducharme, Edward R.

    1968-01-01

    Several people have tried, unsuccessfully, to learn the facts about J. D. Salinger's life. The little information available from secondary sources about Salinger indicates that "The Catcher in the Rye" has autobiographical elements. Salinger's life parallels Holden's fictional adventures in that Salinger (1) was born and reared through…

  2. Chamber Optics for Testing Passive Remote Sensing Vapor Detectors

    DTIC Science & Technology

    1993-11-01

    BIOLOGICAL A DEFENSE AGENCY Aberden Proving Ground , Maryland 21010-6423 S4 2 18 94-05616 Best Available Copy Disclaimer The findings in this report are...were tried; ray tracing proved to be the most useful. Rays were iteratively traced through every element using the following paraxial equations. 8 U

  3. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri-Beam system combines the benefits of laser based material removal (speed, low-damage, automated) with detectors that collect chemical, structural, and topological information. Multi-modal sectioning information was collected after many laser scanning passes demonstrating the capability of the Tri-Beam system.

  4. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials.

    PubMed

    Mulware, Stephen Juma

    2015-01-01

    The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.

  5. Educational Publishing: Experiences from Asia and the Pacific.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Asian Centre for Educational Innovation for Development.

    This resource book on educational publishing presents examples of evaluation and planning; try-out procedures; the production process; and warehousing and distribution, all reinforced by examples of systems and structures and case studies which were presented at the 1985 Manila and Tonga Seminars. Part one, Planning, Try-out and Evaluation of…

  6. Application of Adjoint Method and Spectral-Element Method to Tomographic Inversion of Regional Seismological Structure Beneath Japanese Islands

    NASA Astrophysics Data System (ADS)

    Tsuboi, S.; Miyoshi, T.; Obayashi, M.; Tono, Y.; Ando, K.

    2014-12-01

    Recent progress in large scale computing by using waveform modeling technique and high performance computing facility has demonstrated possibilities to perform full-waveform inversion of three dimensional (3D) seismological structure inside the Earth. We apply the adjoint method (Liu and Tromp, 2006) to obtain 3D structure beneath Japanese Islands. First we implemented Spectral-Element Method to K-computer in Kobe, Japan. We have optimized SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002) by using OpenMP so that the code fits hybrid architecture of K-computer. Now we could use 82,134 nodes of K-computer (657,072 cores) to compute synthetic waveform with about 1 sec accuracy for realistic 3D Earth model and its performance was 1.2 PFLOPS. We use this optimized SPECFEM3D_GLOBE code and take one chunk around Japanese Islands from global mesh and compute synthetic seismograms with accuracy of about 10 second. We use GAP-P2 mantle tomography model (Obayashi et al., 2009) as an initial 3D model and use as many broadband seismic stations available in this region as possible to perform inversion. We then use the time windows for body waves and surface waves to compute adjoint sources and calculate adjoint kernels for seismic structure. We have performed several iteration and obtained improved 3D structure beneath Japanese Islands. The result demonstrates that waveform misfits between observed and theoretical seismograms improves as the iteration proceeds. We now prepare to use much shorter period in our synthetic waveform computation and try to obtain seismic structure for basin scale model, such as Kanto basin, where there are dense seismic network and high seismic activity. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We used F-net seismograms of the National Research Institute for Earth Science and Disaster Prevention.

  7. Tryptophan-Containing Non-Cationizable Opioid Peptides - a new chemotype with unusual structure and in vivo activity.

    PubMed

    Marco, Rossella De; Gentilucci, Luca

    2017-11-01

    Recently, a new family of opioid peptides containing tryptophan came to the spotlight for the absence of the fundamental protonable tyramine 'message' pharmacophore. Structure-activity relationship investigations led to diverse compounds, characterized by different selectivity profiles and agonist or antagonist effects. Substitution at the indole of Trp clearly impacted peripheral/central antinociceptivity. These peculiarities prompted to gather all the compounds in a new class, and to coin the definition 'Tryptophan-Containing Non-Cationizable Opioid Peptides', in short 'TryCoNCOPs'. Molecular docking analysis suggested that the TryCoNCOPs can still interact with the receptors in an agonist-like fashion. However, most TryCoNCOPs showed significant differences between the in vitro and in vivo activities, suggesting that opioid activity may be elicited also via alternative mechanisms.

  8. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    NASA Astrophysics Data System (ADS)

    Al Saadi, Hamza Salim Mohammed; Mohandas, Hoby P.; Namasivayam, Aravind

    2017-01-01

    One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC) beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP). For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  9. Hybridization of polyvinylpyrrolidone to a binary composite of curcumin/α-glucosyl stevia improves both oral absorption and photochemical stability of curcumin.

    PubMed

    Kadota, Kazunori; Okamoto, Daiki; Sato, Hideyuki; Onoue, Satomi; Otsu, Shigeyuki; Tozuka, Yuichi

    2016-12-15

    The tri-component system curcumin/α-glucosyl stevia (Stevia-G)/polyvinylpyrrolidone (PVP) was developed to improve the oral bioavailability and physicochemical properties of curcumin (CUR). The tri-component CUR formulation with Stevia-G and PVP was prepared with freeze-drying. The tri-component CUR system exhibited 13,000-fold higher solubility of CUR than the equilibrium solubility of CUR for 24h, indicating a stable tri-composite structure involving CUR. CUR could be converted into an amorphous form in the presence of Stevia-G and PVP by freeze-drying. The photo-degradation of CUR in the tri-component system was negligible even under an amorphous state of CUR. After oral administration in rats, the oral absorption of the tri-component CUR formulation (20mgCUR/kg) was 6.7-fold higher than that of crystalline CUR. The tri-component CUR formulation would therefore be a promising option to improve physicochemical properties and oral absorption of CUR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Tri-phalā (Three Myrobalans) as Described in the Second Part of the Bower Manuscript, the Nāvanītaka].

    PubMed

    Natsume, Yohko

    2015-01-01

    In India, since ancient times Tri-phalā (meaning "three fruits" in Sanskrit) has been considered to be a combination of the following fruits: -Harītakī (Terminalia chebula, Retz.), Āmalaka (Embelica officinalis Gaertn), and Vibhītaka (Terminalia belerica Roxb.). These plants are also listed in the Ayurvedic Pharmacopoeia of India. Harītakī and Āmalaka have also been used for medicinal purposes since ancient times in Japan under the Japanese names of (see text) (Kariroku) and (see text) (Annmaroku), respectively. Both have been carefully preserved as treasured drugs in the nationally important Shosoin treasure storehouse. This study attempts to clarify the description of Tri-phalā in the Nāvanītaka, which is the second part of the Bower Manuscript (Bower Ms.), and examines the reasons why these plants were combined. This paper begins with a summary description of Tri-phalā in the context of traditional Asian medicine, followed by the delineation of drug selection principles in Ayurveda. Tri-phalā formulas in the Nāvanītaka are then examined. The Carakasamhitā (CS) treats Tri-phalā as a purifier and tonic (rasāyana), describing it as a formula for rejuvenation and longevity. On the other hand, the Susrutasamhitd (SS) regards Tri-phalā as having the efficacy of balancing kapha (phlegm) and pitta (bile), and also as being a medicine to promote excretion and enhance digestive functions for better nutritional intake. It is described to have an effect of curing diseases by keeping the tridhāu (theree element) valance. Tri-phalā is thus used as an ingredient of laxatives for diseases that result from kapha imbalance and tonic. The Aşţāngahŗdayasamhitā (AHS) considers Tri-phalā to have a particular superiority among cure-all medicines with the power to dispel illness. It controls kapha and overcomes blood diseases. Tri-phalā formulas found in the Nāvanītaka were prescribed for the treatment of abdominal tumors induced by vāyu (wind) disorder as well as for coughs caused by pitta and kapha disorder. Tri-phalā was also administered to facilitate nutrient absorption, regulate bowel function, and promote excretion. Tri-phalā thus restores the balance of tridhāu by facilitating water distribution in the body. For these reasons, the optimal combination of Tri-phalā was then established to adjust kapha for most efficient purification effects.

  11. Crystal structures of 2,3,8,9,14,15-hexa-methyl-5,6,11,12,17,18-hexa-aza-tri-naphthyl-ene and 2,3,8,9,14,15-hexa-phenyl-5,6,11,12,17,18-hexa-za-tri-naphthyl-ene di-chloro-methane disolvate.

    PubMed

    Fangmann, Pia; Schmidtmann, Marc; Beckhaus, Rüdiger

    2018-02-01

    The crystal structures of two substituted HATN (hexa-aza-tri-naphthyl-ene) derivatives, namely 2,3,8,9,14,15-hexa-methyl- and 2,3,8,9,14,15-hexa-phenyl-5,6,11,12,17,18- hexa-zatri-naphthyl-ene (HATNMe 6 and HATNPh 6 ), are reported. Whereas the structure of the methyl-substituted derivative (HATNMe 6 ) contains no solvent mol-ecules (C 30 H 24 N 6 ), the hexa-phenyl-substituted structure (HATNPh 6 ) contains two mol-ecules of di-chloro-methane (C 60 H 36 N 6 ·2CH 2 Cl 2 ). This class of planar bridging ligands is known for its electron-deficient systems and its ability to form π-π stacking inter-actions. Indeed, in both crystal structures strong π-π stacking inter-actions are observed, but with different packing features. The di-chloro-methane mol-ecules in the crystal structure of HATNPh 6 are situated in the voids and are involved in C-H⋯N contacts to the nitro-gen atoms of the pyrazine units.

  12. A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for high Reynolds number laminar flows

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1988-01-01

    A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.

  13. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine.

    PubMed

    Gutsche, I; Essen, L O; Baumeister, W

    1999-10-22

    In the past decade, the eubacterial group I chaperonin GroEL became the paradigm of a protein folding machine. More recently, electron microscopy and X-ray crystallography offered insights into the structure of the thermosome, the archetype of the group II chaperonins which also comprise the chaperonin from the eukaryotic cytosol TRiC. Some structural differences from GroEL were revealed, namely the existence of a built-in lid provided by the helical protrusions of the apical domains instead of a GroES-like co-chaperonin. These structural studies provide a framework for understanding the differences in the mode of action between the group II and the group I chaperonins. In vitro analyses of the folding of non-native substrates coupled to ATP binding and hydrolysis are progressing towards establishing a functional cycle for group II chaperonins. A protein complex called GimC/prefoldin has recently been found to cooperate with TRiC in vivo, and its characterization is under way. Copyright 1999 Academic Press.

  14. Crystal structure of a mixed-ligand dinuclear Ba-Zn complex with 2-meth-oxy-ethanol having tri-phenyl-acetate and chloride bridges.

    PubMed

    Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz

    2015-07-01

    The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).

  15. Clay Portrait Boxes

    ERIC Educational Resources Information Center

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  16. Factors of the Earning Functions and Their Influence on the Intellectual Capital of an Organization

    ERIC Educational Resources Information Center

    Ileanu, Bogdan Vasile; Tanasoiu, Ovidiu Emil

    2008-01-01

    This paper tries to consider some earning function as "start point" for the construction of indicators for intellectual capital measure. The analyze combines concepts from Mincer's and Becker theories and intellectual capital definitions currently in use. The correlation, significance and relation between elements are shown using three econometric…

  17. Enacting Organizational Culture: Balloons in the Air

    ERIC Educational Resources Information Center

    Shapiro, Elayne

    2006-01-01

    This article presents an activity that encourages students to create and analyze an organizational culture. In this activity, students perform two rounds of "keeping balloons in the air" with a brief interlude to try and improve performance. Next, they conduct an in-depth discussion of elements of organizational culture that affect productivity.…

  18. Towards a Metaphysics of Complexity

    ERIC Educational Resources Information Center

    Robinson, Keith

    2005-01-01

    In this paper, I combine aspects of process philosophy and elements from philosophies of difference in order to give some indication of how we might begin to construct a metaphysics of contemporary science. I will focus on the work of Whitehead and Deleuze as representatives of each respective tradition and try to show how their work can be…

  19. Exploding Boxes

    ERIC Educational Resources Information Center

    Kinney; Jan

    2011-01-01

    How do you teach the "same old, same old" in an interesting and inexpensive way? Art teachers are forever looking for new angles on the good-old elements and principles. And, as budgets tighten, they are trying to be as frugal as possible while still holding their students' attention. Enter exploding boxes! In conceptualizing the three types of…

  20. The correlation between thermal comfort in buildings and fashion products.

    PubMed

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  1. Earthquake Response of Reinforced Concrete Building Retrofitted with Geopolymer Concrete and X-shaped Metallic Damper

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama

    2017-06-01

    A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.

  2. Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach.

    PubMed

    Freyre-González, Julio A; Alonso-Pavón, José A; Treviño-Quintanilla, Luis G; Collado-Vides, Julio

    2008-10-27

    Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, William R.; Lee, John C.; baxter, Alan

    Information and measured data from the intial Fort St. Vrain (FSV) high temperature gas reactor core is used to develop a benchmark configuration to validate computational methods for analysis of a full-core, commercial HTR configuration. Large uncertainties in the geometry and composition data for the FSV fuel and core are identified, including: (1) the relative numbers of fuel particles for the four particle types, (2) the distribution of fuel kernel diameters for the four particle types, (3) the Th:U ratio in the initial FSV core, (4) and the buffer thickness for the fissile and fertile particles. Sensitivity studies were performedmore » to assess each of these uncertainties. A number of methods were developed to assist in these studies, including: (1) the automation of MCNP5 input files for FSV using Python scripts, (2) a simple method to verify isotopic loadings in MCNP5 input files, (3) an automated procedure to conduct a coupled MCNP5-RELAP5 analysis for a full-core FSV configuration with thermal-hydraulic feedback, and (4) a methodology for sampling kernel diameters from arbitrary power law and Gaussian PDFs that preserved fuel loading and packing factor constraints. A reference FSV fuel configuration was developed based on having a single diameter kernel for each of the four particle types, preserving known uranium and thorium loadings and packing factor (58%). Three fuel models were developed, based on representing the fuel as a mixture of kernels with two diameters, four diameters, or a continuous range of diameters. The fuel particles were put into a fuel compact using either a lattice-bsed approach or a stochastic packing methodology from RPI, and simulated with MCNP5. The results of the sensitivity studies indicated that the uncertainties in the relative numbers and sizes of fissile and fertile kernels were not important nor were the distributions of kernel diameters within their diameter ranges. The uncertainty in the Th:U ratio in the intial FSV core was found to be important with a crude study. The uncertainty in the TRISO buffer thickness was estimated to be unimportant but the study was not conclusive. FSV fuel compacts and a regular FSV fuel element were analyzed with MCNP5 and compared with predictions using a modified version of HELIOS that is capable of analyzing TRISO fuel configurations. The HELIOS analyses were performed by SSP. The eigenvalue discrepancies between HELIOS and MCNP5 are currently on the order of 1% but these are still being evaluated. Full-core FSV configurations were developed for two initial critical configurations - a cold, clean critical loading and a critical configuration at 70% power. MCNP5 predictions are compared to experimental data and the results are mixed. Analyses were also done for the pulsed neutron experiments that were conducted by GA for the initial FSV core. MCNP5 was used to model these experiments and reasonable agreement with measured results has been observed.« less

  4. Managers and leaders: are they different?

    PubMed

    Zaleznik, Abraham

    2004-01-01

    The traditional view of management, back in 1977 when Abraham Zaleznik wrote this article, centered on organizational structure and processes. Managerial development at the time focused exclusively on building competence, control, and the appropriate balance of power. That view, Zaleznik argued, omitted the essential leadership elements of inspiration, vision, and human passion which drive corporate success. The difference between managers and leaders, he wrote, lies in the conceptions they hold, deep in their psyches, of chaos and order. Managers embrace process, seek stability and control, and instinctively try to resolve problems quickly--sometimes before they fully understand a problems significance. Leaders, in contrast, tolerate chaos and lack of structure and are willing to delay closure to understand the issues more fully. In this way, Zaleznik argued, business leaders have much more in common with artists, scientists, and other creative thinkers than they do with managers. Organizations need both managers and leaders to succeed, but developing both requires a reduced focus on logic and strategic exercises in favor of an environment where creativity and imagination are permitted to flourish.

  5. The association between the social and communication elements of autism, and repetitive/restrictive behaviours and activities: a review of the literature.

    PubMed

    Kuenssberg, Renate; McKenzie, Karen; Jones, Jill

    2011-01-01

    Research continues to try and pinpoint the etiological role of particular genes and brain structure in autistic spectrum disorder (ASD), but despite a host of biological, genetic and neuropsychological research, the symptom profile of pervasive developmental disorders (PDDs) are not yet linked to etiological theory. Debate continues around whether or not there is one single dimension that incorporates the three criteria domains of social difficulties, communication deficits and repetitive or restrictive interests and behaviours as a unitary 'ASD' concept, or whether PDD as they are currently described represent the co-occurrence of separate sub-domains of developmental difficulties. Although the three criteria need to be met for a diagnosis of PDD to be made, the association between them remains unclear. This review highlights that the majority of the literature that looks at the triad of impairments suggests the symptom structure does not match that proposed by diagnostic manuals, and that the triad may no longer fit as the best way to conceptualize ASD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A Balanced Tri-band PD Based on Microstrip-slotline Transition Structure Embedded Complementary Split-ring Resonators

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Li, Xiao Yan; Wei, Feng

    2017-12-01

    A balanced tri-band equal power divider (PD) is proposed based on a balanced stepped-impedance microstrip-slotline transition structure in this paper. Multi-band differential-mode (DM) responses can be realized by embedding multiple complementary split-ring resonators (CSRRs) into the slotline resonator. It is found that a high and wideband common-mode (CM) suppression can be achieved. Moreover, the center frequencies of the DM passbands are independent from the CM ones, which significantly simplifies the design procedure. In order to validate its practicalbility, a balanced PD with three DM passbands centred at 1.57, 2.5 and 3.5 GHz is fabricated and a good agreement between the simulated and measured results is observed. To our best knowledge, a balanced tri-band PD is the first ever reported.

  7. Esthetic Rehabilitation of the Smile with No-Prep Porcelain Laminates and Partial Veneers

    PubMed Central

    Farias-Neto, Arcelino; Gomes, Edna Maria da Cunha Ferreira; Sánchez-Ayala, Alfonso; Sánchez-Ayala, Alejandro; Vilanova, Larissa Soares Reis

    2015-01-01

    Rehabilitation of patients with anterior conoid teeth may present a challenge for the clinician, especially when trying to mimic the nature with composite resins. This clinical report exemplifies how a patient with conoid upper lateral incisors was rehabilitated with minimally invasive adhesive restorations. Following diagnostic wax-up and cosmetic mock-up, no-prep veneers and ceramic fragments (partial veneers) were constructed with feldspathic porcelain. This restorative material presents excellent reproduction of the optical properties of the dental structure, especially at minimal thicknesses. In this paper, the details about the treatment are described. A very pleasing outcome was achieved, confirming that minimally invasive adhesive restorations are an excellent option for situations in which the dental elements are healthy, and can be modified exclusively by adding material and the patient does not want to suffer any wear on the teeth. PMID:26568893

  8. Imaging of oral pathological tissue using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  9. Stages as models of scene geometry.

    PubMed

    Nedović, Vladimir; Smeulders, Arnold W M; Redert, André; Geusebroek, Jan-Mark

    2010-09-01

    Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently, we identify geometric scene categorization as the first step toward robust and efficient depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile, which roughly correspond to a large majority of broadcast video frames. Stage information serves as a first approximation of global depth, narrowing down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation, and perform stage classification on two diverse data sets of television broadcasts. Classification results demonstrate that stages can often be efficiently learned from low-dimensional image representations.

  10. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives.

    PubMed

    Reddy, Guda Mallikarjuna; Garcia, Jarem Raul; Reddy, Vemulapati Hanuman; de Andrade, Ageo Meier; Camilo, Alexandre; Pontes Ribeiro, Renan Augusto; de Lazaro, Sergio Ricardo

    2016-11-10

    Trisubstituted thiazoles were synthesized and studied for their antimicrobial activity and supported by theoretical calculations. In addition, MIC, MBC and MFC were also tested. Moreover, the present study was analyzed to scrutinize comprehensive structure-activity relationships. In fact, LUMO orbital energy and orbital orientation was reliable to explain their antibacterial and antifungal assay. Amongst the tested compounds, tri-methyl-substituted thiazole compound showed higher antimicrobial activity and low MIC value due to highest LUMO energy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-03-01

    The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b

  12. Novel carbon-ion fuel cells. Final report, October 1, 1993--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocks, F.H.

    1997-01-01

    Mixed lanthanide dicarbides having the fluorite crystal structure have been synthesized using the elemental lanthanide metals and elemental carbon that was 99.9% pure carbon-13 isotope. A two step process of first, arc furnace melting of the components, followed by an annealing step in a high vacuum furnace, was adopted as the standard method of fabricating small cast ingots of the dicarbides. The crystal structure of the various lanthanide dicarbides produced were confirmed by x-ray diffraction under protective atmospheres at both room temperature at Duke University and at high temperature at Oak Ridge National Laboratory. After more than 15 combinations ofmore » cerium or lanthanum with dopants were tried, low temperature x-ray diffraction showed that Ce{sub .5}Er{sub .5}C{sub 2} had been successfully stabilized and had the desired fluorite crystal structure at room temperature. The fluorite crystal structure lanthanide dicarbide cast ingots were further prepared by having flat and clean surfaces ground onto their surfaces by high-speed milling machines inside argon gas atmosphere gloveboxes. The surfaces thus created were then coated with carbon-12 by the arc evaporation method under low pressure argon gas. The coated ingots were then allowed to have carbon diffusion occur from the surface coating of carbon-12 into the ingot of dicarbide that had been synthesized from carbon-13. After the diffusion run, the cast ingots were slit down the axis perpendicular to the carbon coating. The fracture surface created was then squared and polished by high,speed milling in a glove box with a argon atmosphere. The high diffusion co-efficient of carbon in lanthanide dicarbides having the fluorite crystal structure would make possible the manufacture of a carbon-ion electrolyte for use in a battery or a fuel cell that could consume solid carbon as it`s feedstock.« less

  13. Hypochondria as an actual neurosis.

    PubMed

    Nissen, Bernd

    2017-09-27

    Freud defined hypochondria as an actual neurosis. In this paper the actual neurosis will be interpreted as unbound traumatic elements which threaten the self. In severe hypochondria, breakdowns have occurred, as outlined by Winnicott. The nameless traumatic elements of the breakdown have been encapsulated. The moment these encapsulated elements are liberated, an actual dynamic takes place which threatens the self with annihilation. Projective identification is not possible because no idea of containment exists. The self tries to evacuate these elements projectively, thus triggering a disintegrative regression. However, the object of this projection, which becomes a malign introject, is felt to remove the remaining psychical elements, forcing the worthless residue back into the self. In a final re-introjection, the self is threatened by unintegration. To save the self, these elements are displaced into an organ which becomes hypochondriacal, an autistoid object, protecting itself against unintegration and decomposition. An autistoid dynamic develops between the hypochondriac organ, the ego and the introject. Two short clinical vignettes illustrate the regressive dynamical and metapsychological considerations. Copyright © 2017 Institute of Psychoanalysis.

  14. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  15. Two new polytypes of 2,4,6-tri­bromo­benzo­nitrile

    PubMed Central

    Britton, Doyle; Noland, Wayland E.; Tritch, Kenneth J.

    2016-01-01

    Three polymorphs of 2,4,6-tri­bromo­benzo­nitrile (RCN), C7H2Br3N, two of which are novel and one of which is a redetermination of the original structure first determined by Carter & Britton [(1972). Acta Cryst. B28, 945–950] are found to be polytypic. Each has a layer structure which differs only in the stacking of the layers. Each layer is composed of mol­ecules associated through C≡N⋯Br contacts which form R 2 2(10) rings. Two such rings are associated with each N atom; one with each ortho-Br atom. No new polytypes of 1,3,5-tri­bromo-2-iso­cyano­benzene (RNC) were found but a re-determination of the original structure by Carter et al. [(1977). Cryst. Struct. Commun. 6, 543–548] is presented. RNC was found to be isostructural with one of the novel polytypes of RCN. Unit cells were determined for 23 RCN samples and 11 RNC samples. Polytypes could not be distinguished based on crystal habits. In all four structures, each mol­ecule of the asymmetric unit lies across a mirror plane. PMID:26958382

  16. ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2018-01-01

    Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:

  17. Crystal structures of three 3,4,5-tri-meth-oxy-benzamide-based derivatives.

    PubMed

    Gomes, Ligia R; Low, John Nicolson; Oliveira, Catarina; Cagide, Fernando; Borges, Fernanda

    2016-05-01

    The crystal structures of three benzamide derivatives, viz. N-(6-hy-droxy-hex-yl)-3,4,5-tri-meth-oxy-benzamide, C16H25NO5, (1), N-(6-anilinohex-yl)-3,4,5-tri-meth-oxy-benzamide, C22H30N2O4, (2), and N-(6,6-di-eth-oxy-hex-yl)-3,4,5-tri-meth-oxy-benzamide, C20H33NO6, (3), are described. These compounds differ only in the substituent at the end of the hexyl chain and the nature of these substituents determines the differences in hydrogen bonding between the mol-ecules. In each mol-ecule, the m-meth-oxy substituents are virtually coplanar with the benzyl ring, while the p-meth-oxy substituent is almost perpendicular. The carbonyl O atom of the amide rotamer is trans related with the amidic H atom. In each structure, the benzamide N-H donor group and O acceptor atoms link the mol-ecules into C(4) chains. In 1, a terminal -OH group links the mol-ecules into a C(3) chain and the combined effect of the C(4) and C(3) chains is a ribbon made up of screw related R 2 (2)(17) rings in which the ⋯O-H⋯ chain lies in the centre of the ribbon and the tri-meth-oxy-benzyl groups forms the edges. In 2, the combination of the benzamide C(4) chain and the hydrogen bond formed by the terminal N-H group to an O atom of the 4-meth-oxy group link the mol-ecules into a chain of R 2 (2)(17) rings. In 3, the mol-ecules are linked only by C(4) chains.

  18. Anthropology for the Classroom. The Social Science Teacher; Volume 3 Number 1, 1973.

    ERIC Educational Resources Information Center

    Townley, Charles, Ed.

    This report of a conference attended by teachers and anthropologists concerns itself with the desirability and practicalities of teaching anthropology at the elementary and secondary levels in Britain. The papers reflect the varied objectives of a group trying to introduce a new element into school curricula. The president of the Royal…

  19. Meet Joan Marcano | NREL

    Science.gov Websites

    solving a puzzle every time you go to the river. There are so many different variables that can be different products like hydrogen. "I have to put all these pieces together as well-what sort of genetic elements and what sort of genes am I going to put in combination. I might try different variations and

  20. How William F. Cody Helped Save the Buffalo without Really Trying

    ERIC Educational Resources Information Center

    Nesheim, David

    2007-01-01

    Most historians have focused their attention on two elements about the restoration of the American bison: western ranchers who started the earliest private herds and eastern conservationists who raised funds and lobbied for the creation of the first national preserves. However, no one was a more effective popularizer than William F. Cody, despite…

  1. Elements from Theatre Art as Learning Tools in Medical Education

    ERIC Educational Resources Information Center

    Alraek, Torild Jacobsen; Baerheim, Anders

    2005-01-01

    For the project, an actress created a patient character, staging a consultation among a group of 36 medical students. The consultation process was monitored by a teacher and was stopped by "timeout" at any critical incidence. Students reflected on possible strategies and, one at a time tried out their own or someone else's proposal. The project…

  2. A Curriculum Development Route Map for a Technology Enhanced Learning Era

    ERIC Educational Resources Information Center

    Castañeda, Linda; Prendes, Paz

    2013-01-01

    In this paper we are trying to present a model of analysis that includes a comprehensive perspective of the state of the art in the specialized literature about curriculum development. From this theoretical approach, we get a complete curriculum overview. Including insights into: what are the curriculum principal elements, what we already know…

  3. A Qualitative Study of Fitness Instructors' Experiences Leading an Exercise Program for Children with Juvenile Idiopathic Arthritis

    ERIC Educational Resources Information Center

    Hutzal, Carolyn E.; Wright, F. Virginia; Stephens, Samantha; Schneiderman-Walker, Jane; Feldman, Brian M.

    2009-01-01

    Children with arthritis face challenges when they try to increase their physical activity. The study's objective was to identify elements of a successful community-based exercise program for children with arthritis by investigating the perspectives of fitness instructors who led the program. This qualitative study used a phenomenological approach.…

  4. A non-destructive crossbar architecture of multi-level memory-based resistor

    NASA Astrophysics Data System (ADS)

    Sahebkarkhorasani, Seyedmorteza

    Nowadays, researchers are trying to shrink the memory cell in order to increase the capacity of the memory system and reduce the hardware costs. In recent years, there has been a revolution in electronics by using fundamentals of physics to build a new memory for computer application in order to increase the capacity and decrease the power consumption. Increasing the capacity of the memory causes a growth in the chip area. From 1971 to 2012 semiconductor manufacturing process improved from 6mum to 22 mum. In May 2008, S.Williams stated that "it is time to stop shrinking". In his paper, he declared that the process of shrinking memory element has recently become very slow and it is time to use another alternative in order to create memory elements [9]. In this project, we present a new design of a memory array using the new element named Memristor [3]. Memristor is a two-terminal passive electrical element that relates the charge and magnetic flux to each other. The device remained unknown since 1971 when it was discovered by Chua and introduced as the fourth fundamental passive element like capacitor, inductor and resistor [3]. Memristor has a dynamic resistance and it can retain its previous value even after disconnecting the power supply. Due to this interesting behavior of the Memristor, it can be a good replacement for all of the Non-Volatile Memories (NVMs) in the near future. Combination of this newly introduced element with the nanowire crossbar architecture would be a great structure which is called Crossbar Memristor. Some frameworks have recently been introduced in literature that utilized Memristor crossbar array, but there are many challenges to implement the Memristor crossbar array due to fabrication and device limitations. In this work, we proposed a simple design of Memristor crossbar array architecture which uses input feedback in order to preserve its data after each read operation.

  5. Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits.

    PubMed

    Shang, Kuanping; Pathak, Shibnath; Liu, Guangyao; Feng, Shaoqi; Li, Siwei; Lai, Weicheng; Yoo, S J B

    2017-05-01

    We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.

  6. Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.

    2015-03-01

    Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.

  7. The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses.

    PubMed

    Weakley, Jonathon J S; Till, Kevin; Read, Dale B; Roe, Gregory A B; Darrall-Jones, Joshua; Phibbs, Padraic J; Jones, Ben

    2017-09-01

    Investigate the acute and short-term (i.e., 24 h) effects of traditional (TRAD), superset (SS), and tri-set (TRI) resistance training protocols on perceptions of intensity and physiological responses. Fourteen male participants completed a familiarisation session and three resistance training protocols (i.e., TRAD, SS, and TRI) in a randomised-crossover design. Rating of perceived exertion, lactate concentration ([Lac]), creatine kinase concentration ([CK]), countermovement jump (CMJ), testosterone, and cortisol concentrations was measured pre, immediately, and 24-h post the resistance training sessions with magnitude-based inferences assessing changes/differences within/between protocols. TRI reported possible to almost certainly greater efficiency and rate of perceived exertion, although session perceived load was very likely lower. SS and TRI had very likely to almost certainly greater lactate responses during the protocols, with changes in [CK] being very likely and likely increased at 24 h, respectively. At 24-h post-training, CMJ variables in the TRAD protocol had returned to baseline; however, SS and TRI were still possibly to likely reduced. Possible increases in testosterone immediately post SS and TRI protocols were reported, with SS showing possible increases at 24-h post-training. TRAD and SS showed almost certain and likely decreases in cortisol immediately post, respectively, with TRAD reporting likely decreases at 24-h post-training. SS and TRI can enhance training efficiency and reduce training time. However, acute and short-term physiological responses differ between protocols. Athletes can utilise SS and TRI resistance training, but may require additional recovery post-training to minimise effects of fatigue.

  8. GIS Modeling of Air Toxics Releases from TRI-Reporting and Non-TRI-Reporting Facilities: Impacts for Environmental Justice

    PubMed Central

    Dolinoy, Dana C.; Miranda, Marie Lynn

    2004-01-01

    The Toxics Release Inventory (TRI) requires facilities with 10 or more full-time employees that process > 25,000 pounds in aggregate or use > 10,000 pounds of any one TRI chemical to report releases annually. However, little is known about releases from non-TRI-reporting facilities, nor has attention been given to the very localized equity impacts associated with air toxics releases. Using geographic information systems and industrial source complex dispersion modeling, we developed methods for characterizing air releases from TRI-reporting as well as non-TRI-reporting facilities at four levels of geographic resolution. We characterized the spatial distribution and concentration of air releases from one representative industry in Durham County, North Carolina (USA). Inclusive modeling of all facilities rather than modeling of TRI sites alone significantly alters the magnitude and spatial distribution of modeled air concentrations. Modeling exposure receptors at more refined levels of geographic resolution reveals localized, neighborhood-level exposure hot spots that are not apparent at coarser geographic scales. Multivariate analysis indicates that inclusive facility modeling at fine levels of geographic resolution reveals exposure disparities by income and race. These new methods significantly enhance the ability to model air toxics, perform equity analysis, and clarify conflicts in the literature regarding environmental justice findings. This work has substantial implications for how to structure TRI reporting requirements, as well as methods and types of analysis that will successfully elucidate the spatial distribution of exposure potentials across geographic, income, and racial lines. PMID:15579419

  9. [The ENCODE project and functional genomics studies].

    PubMed

    Ding, Nan; Qu, Hongzhu; Fang, Xiangdong

    2014-03-01

    Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.

  10. The tunable optical magneto-electric effect in patterned manganese oxide superlattices

    NASA Astrophysics Data System (ADS)

    Pei, H. Y.; Zhang, Y. J.; Guo, S. J.; Ren, L. X.; Yan, H.; Chen, C. L.; Jin, K. X.; Luo, B. C.

    2018-05-01

    The optical magneto-electric (OME) effect has been widely investigated in magnetic materials, but obtaining the large and tunable OME effect is an ongoing challenge. We here design a tri-color superlattice composed of manganese oxides, Pr0.9Ca0.1MnO3, La0.9Sr0.1MnO3, and La0.9Sb0.1MnO3, where the space-inversion and time-reversal symmetries are broken. With the aid of the grating structure, the OME effect for near-infrared light in tri-color superlattices is investigated systematically through the Bragg diffraction method. The relative change of diffracted light intensity of the order n = ±1 has a strong dependence on the magnetization and polarization of the tri-color superlattice, whether the superlattice is irradiated in reflection or transmission geometries. Otherwise, the relative change of diffracted light intensity increases with the increase in the superlattice period and with the decrease in the grating period. The maximum relative change of diffracted light intensity in tri-color superlattices with the grating structure patterned is as large as 8.27%. These results pave the way for designing next-generation OME devices based on manganese oxides.

  11. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    PubMed

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, J.; Calva-Vasquez, G.; Solis, C.

    Particle induced X-ray emission (PIeXE) and Rutherford backscattering (RBS) elemental analyses of tree rings and soils from forests around the Mexico City Metropolitan Area (MCMA) were performed. The aim was to estimate the impact of pollution on the forests. Cores from Pinus montezumae and Abies religiosa trees, in four forests around the MCMA (Desierto de los Leones, Iztapopocatepetl, Villa del Carbon and Zoquiapan) and a reference site (El Chico). Differences were observed in samples from the different forests, showing higher values in the areas closest to the MCMA. A correlation of several elements with ring width was found using clustermore » analysis. Additionally, soil analyses from different depths in the forests were carried out, trying to relate the elemental concentrations measured in the tree rings with cation mobility. In this case, samples taken in 1993 and 1999 were analyzed, showing elemental mobility to the various depths.« less

  13. Experimental and Simulation Investigation of Tri-Sector Cylindrical Dielectric Resonator Antenna in composite forms for Wireless Applications

    NASA Astrophysics Data System (ADS)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2016-11-01

    In this article, a tri-sector cylindrical dielectric resonator antenna (t-CDRA) has been introduced by splitting CDRA into three uniform sectors and all three uniform sectors are packed together in a compact way on a metallic ground plane. A coaxial probe feed is used to excite the proposed composite t-CDRA at the center position. Multi-segmentation approach has been applied for further improvement in bandwidth of proposed t-CDRA. The proposed composite t-CDRA has been designed using HFSS simulation software and analyzed using theoretical analysis. The prototype of t-CDRA, three elements t-CDRA and three elements dual segment t-CDRA has been fabricated for measurement. The input characteristics, near field, far field distribution of the proposed t-CDRAs have been studied through HFSS simulation software and their results are compared with corresponding experimental results. Proposed segmented t-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 85 % with monopole-like radiation pattern. The peak gain of segmented t-CDRA has 5.1 dBi with 98.5 % radiation efficiency. The proposed segmented t-CDRA may find suitable applications in 5.0 GHz WLAN and WiMAX band.

  14. Clutter and target discrimination in forward-looking ground penetrating radar using sparse structured basis pursuits

    NASA Astrophysics Data System (ADS)

    Camilo, Joseph A.; Malof, Jordan M.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.

    2015-05-01

    Forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has recently been investigated for buried threat detection. FLGPR offers greater standoff than other downward-looking modalities such as electromagnetic induction and downward-looking GPR, but it suffers from high false alarm rates due to surface and ground clutter. A stepped frequency FLGPR system consists of multiple radars with varying polarizations and bands, each of which interacts differently with subsurface materials and therefore might potentially be able to discriminate clutter from true buried targets. However, it is unclear which combinations of bands and polarizations would be most useful for discrimination or how to fuse them. This work applies sparse structured basis pursuit, a supervised statistical model which searches for sets of bands that are collectively effective for discriminating clutter from targets. The algorithm works by trying to minimize the number of selected items in a dictionary of signals; in this case the separate bands and polarizations make up the dictionary elements. A structured basis pursuit algorithm is employed to gather groups of modes together in collections to eliminate whole polarizations or sensors. The approach is applied to a large collection of FLGPR data for data around emplaced target and non-target clutter. The results show that a sparse structure basis pursuits outperforms a conventional CFAR anomaly detector while also pruning out unnecessary bands of the FLGPR sensor.

  15. High-strength cellular ceramic composites with 3D microarchitecture.

    PubMed

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  16. On the Production of China Universities' Non-Institutionalized Power Structure and the Dialectical Analysis

    ERIC Educational Resources Information Center

    Liu, Yuting

    2011-01-01

    By analyzing reasons for and problems in China universities' non-institutionalized power structure, this paper tries to prove the limits of non-institutionalized power structure making up for institutionalized power structure in universities, with the hope of revealing the deep reasons for the institutionalized structure imbalance in universities.

  17. Development of micro-electromechanical system (MEMS) cochlear biomodel

    NASA Astrophysics Data System (ADS)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-01

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  18. Development of micro-electromechanical system (MEMS) cochlear biomodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. Inmore » this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.« less

  19. Leaflet escape in a new bileaflet mechanical valve: TRI technologies.

    PubMed

    Bottio, Tomaso; Casarotto, Dino; Thiene, Gaetano; Caprili, Luca; Angelini, Annalisa; Gerosa, Gino

    2003-05-13

    Leaflet escape is a mode of structural valve failure for mechanical prostheses. This complication previously has been reported for both monoleaflet and bileaflet valve models. We report 2 leaflet escape occurrences observed in 2 patients who underwent valve replacement with a TRI Technologies valve prosthesis. At the University of Padua, between November 2000 and February 2002, 36 TRI Technologies valve prostheses (26 aortic and 10 mitral) were implanted in 34 patients (12 women and 22 men) with a mean age of 59.9+/-10.3 years (range, 30 to 75 years). There were 5 deaths: 3 in hospital, 1 early after discharge, and 1 late. Two patients experienced a catastrophic prosthetic leaflet escape; the first patient was a 52-year-old man who died 10 days after aortic valve and ascending aorta replacement, and the second was a 58-year-old man who underwent a successful emergency reoperation 20 months after mitral valve replacement. Examination of the explanted prostheses showed in both cases a leaflet escape caused by a leaflet's pivoting system fracture. Prophylactic replacement was then successfully accomplished so far in 12 patients, without evidence of structural valve failure in any of them. Among other significant postoperative complications, we observed 3 major thromboembolisms, 1 hemorrhage, and 1 paravalvular leak. These catastrophes prompted us to interrupt the implantation program, and they cast a shadow on the durability of the TRI Technologies valve prosthesis because of its high risk of structural failure.

  20. Dynamics of a discrete chain of bi-stable elements: A biomimetic shock absorbing mechanism

    NASA Astrophysics Data System (ADS)

    Cohen, T.; Givli, S.

    2014-03-01

    A biomimetic shock absorbing mechanism, inspired by the bi-stable elongation behavior of the giant protein titin, is examined. A bi-stable element, composed of three mass particles with monotonous interaction forces, is suggested to facilitate an internal degree of freedom of finite mass which contributes significantly to dissipation upon unlocking of an internal link. An essential feature of the suggested element is that it undergoes reversible rapture and therefore retrieves its initial configuration once unloaded. The quasistatic and dynamic behaviors are investigated showing similarity to the common tri-linear bi-stable response, with two steady phases separated by a spinodal region. The dynamic behavior of a chain of elements is also examined, for several loading scenarios, showing that the suggested mechanism serves as an efficient shock absorber in a sub-critical dampening environment, as compared with a simple mass on spring system. Propagation of shock waves and refraction waves in an element chain is observed and the effect of natural imperfections is considered.

  1. Single-crystal diffraction instrument TriCS at SINQ

    NASA Astrophysics Data System (ADS)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  2. Perspective analysis of tri gate germanium tunneling field-effect transistor with dopant segregation region at source/drain

    NASA Astrophysics Data System (ADS)

    Liu, Liang-kui; Shi, Cheng; Zhang, Yi-bo; Sun, Lei

    2017-04-01

    A tri gate Ge-based tunneling field-effect transistor (TFET) has been numerically studied with technology computer aided design (TCAD) tools. Dopant segregated Schottky source/drain is applied to the device structure design (DS-TFET). The characteristics of the DS-TFET are compared and analyzed comprehensively. It is found that the performance of n-channel tri gate DS-TFET with a positive bias is insensitive to the dopant concentration and barrier height at n-type drain, and that the dopant concentration and barrier height at a p-type source considerably affect the device performance. The domination of electron current in the entire BTBT current of this device accounts for this phenomenon and the tri-gate DS-TFET is proved to have a higher performance than its dual-gate counterpart.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualls, A. L.; Brown, Nicholas R.; Betzler, Benjamin R.

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF 2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologiesmore » include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR concept, and it will demonstrate key operational features of that design. The FHR DR will be closely scaled to the SmAHTR concept in power and flows, so any technologies demonstrated will be directly applicable to a reactor concept of that size. The FHR DR is not a commercial prototype design, but rather a DR that serves a cost and risk mitigation function for a later commercial prototype. It is expected to have a limited operational lifetime compared to a commercial plant. It is designed to be a low-cost reactor compared to more mature advanced prototype DRs. A primary reason to build the FHR DR is to learn about salt reactor technologies and demonstrate solutions to remaining technical gaps.« less

  4. Design and implementation of scalable tape archiver

    NASA Technical Reports Server (NTRS)

    Nemoto, Toshihiro; Kitsuregawa, Masaru; Takagi, Mikio

    1996-01-01

    In order to reduce costs, computer manufacturers try to use commodity parts as much as possible. Mainframes using proprietary processors are being replaced by high performance RISC microprocessor-based workstations, which are further being replaced by the commodity microprocessor used in personal computers. Highly reliable disks for mainframes are also being replaced by disk arrays, which are complexes of disk drives. In this paper we try to clarify the feasibility of a large scale tertiary storage system composed of 8-mm tape archivers utilizing robotics. In the near future, the 8-mm tape archiver will be widely used and become a commodity part, since recent rapid growth of multimedia applications requires much larger storage than disk drives can provide. We designed a scalable tape archiver which connects as many 8-mm tape archivers (element archivers) as possible. In the scalable archiver, robotics can exchange a cassette tape between two adjacent element archivers mechanically. Thus, we can build a large scalable archiver inexpensively. In addition, a sophisticated migration mechanism distributes frequently accessed tapes (hot tapes) evenly among all of the element archivers, which improves the throughput considerably. Even with the failures of some tape drives, the system dynamically redistributes hot tapes to the other element archivers which have live tape drives. Several kinds of specially tailored huge archivers are on the market, however, the 8-mm tape scalable archiver could replace them. To maintain high performance in spite of high access locality when a large number of archivers are attached to the scalable archiver, it is necessary to scatter frequently accessed cassettes among the element archivers and to use the tape drives efficiently. For this purpose, we introduce two cassette migration algorithms, foreground migration and background migration. Background migration transfers cassettes between element archivers to redistribute frequently accessed cassettes, thus balancing the load of each archiver. Background migration occurs the robotics are idle. Both migration algorithms are based on access frequency and space utility of each element archiver. To normalize these parameters according to the number of drives in each element archiver, it is possible to maintain high performance even if some tape drives fail. We found that the foreground migration is efficient at reducing access response time. Beside the foreground migration, the background migration makes it possible to track the transition of spatial access locality quickly.

  5. The Crystal Structure and Conformations of an Unbranched Mixed Tri-Ubiquitin Chain Containing K48 and K63 Linkages.

    PubMed

    Padala, Prasanth; Soudah, Nadine; Giladi, Moshe; Haitin, Yoni; Isupov, Michail N; Wiener, Reuven

    2017-12-08

    The ability of ubiquitin to function in a wide range of cellular processes is ascribed to its capacity to cause a diverse spectrum of modifications. While a target protein can be modified with monoubiquitin, it can also be modified with ubiquitin chains. The latter include seven types of homotypic chains as well as mixed ubiquitin chains. In a mixed chain, not all the isopeptide bonds are restricted to a specific lysine of ubiquitin, resulting in a chain possessing more than one type of linkage. While structural characterization of homotypic chains has been well elucidated, less is known about mixed chains. Here we present the crystal structure of a mixed tri-ubiquitin chain at 3.1-Å resolution. In the structure, the proximal ubiquitin is connected to the middle ubiquitin via K48 and these two ubiquitins adopt a compact structure as observed in K48 di-ubiquitin. The middle ubiquitin links to the distal ubiquitin via its K63 and these ubiquitins adopt two conformations, suggesting a flexible structure. Using small-angle X-ray scattering, we unexpectedly found differences between the conformational ensembles of the above tri-ubiquitin chains and chains possessing the same linkages but in the reverse order. In addition, cleavage of the K48 linkage by DUB is faster if this linkage is at the distal end. Taken together, our results suggest that in mixed chains, not only the type of the linkages but also their sequence determine the structural and functional properties of the chain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structural Sustainability - Heuristic Approach

    NASA Astrophysics Data System (ADS)

    Rostański, Krzysztof

    2017-10-01

    Nowadays, we are faced with a challenge of having to join building structures with elements of nature, which seems to be the paradigm of modern planning and design. The questions arise, however, with reference to the following categories: the leading idea, the relation between elements of nature and buildings, the features of a structure combining such elements and, finally, our perception of this structure. If we consider both the overwhelming globalization and our attempts to preserve local values, the only reasonable solution is to develop naturalistic greenery. It can add its uniqueness to any building and to any developed area. Our holistic model, presented in this paper, contains the above mentioned categories within the scope of naturalism. The model is divided into principles, actions related, and possible effects to be obtained. It provides a useful tool for determining the ways and priorities of our design. Although it is not possible to consider all possible actions and solutions in order to support sustainability in any particular design, we can choose, however, a proper mode for our design according to the local conditions by turning to the heuristic method, which helps to choose priorities and targets. Our approach is an attempt to follow the ways of nature as in the natural environment it is optimal solutions that appear and survive, idealism being the domain of mankind only. We try to describe various natural processes in a manner comprehensible to us, which is always a generalization. Such definitions, however, called artificial by naturalists, are presented as art or the current state of knowledge by artists and engineers. Reality, in fact, is always more complicated than its definitions. The heuristic method demonstrates the way how to optimize our design. It requires that all possible information about the local environment should be gathered, as the more is known, the fewer mistakes are made. Following the unquestionable principles, we can choose the related actions. As there is no need and, probably, no possibility to implement all of them in a particular case, we must find our own way. The holistic model shows the effects of our actions and thus enabling us to compare them with our own targets. Following the method will help us to make conscious decisions, but not to implement all possible tasks in our program. In nature, every species has its own capabilities to adjust and creates its habitat accordingly, disregarding the universal idea of taking all possible benefits offered by nature. In order to follow the principles of sustainability we have to act similarly. When designing we should rather try to approach perfection than create ideal solutions, because what is perceived as ideal at the present state of knowledge, will always be imperfect. The paper describes three case studies of the heuristic approach in landscape design. They are all located in Silesia, Poland. The first is GPP Business Park in Katowice, whose building and its surrounding with the greenery designed according to the discussed method received the Outstanding BREEAM Certification. The second is the recreation area of Rybaczowka near Strzelce Opolskie, whose redeveloping design won the highest rating in a government competition for the ecological fund investments. The third is Row Rudzki - an ecological area in the center of an industrial city.

  7. Microstrip technology and its application to phased array compensation

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.; Daniels, W. D.

    1972-01-01

    A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.

  8. Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum: A Computational Insight into the Structure-Activity Relationship

    PubMed Central

    Pani, Giovanna; Dessì, Alessandro; Dallocchio, Roberto; Scherm, Barbara; Azara, Emanuela; Delogu, Giovanna

    2016-01-01

    A model of the trichodiene synthase (TRI5) of the wheat fungal pathogen and type-B trichothecene producer Fusarium culmorum was developed based on homology modelling with the crystallized protein of F. sporotrichioides. Eight phenolic molecules, namely ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehydrozingerone 5, eugenol dimer 6, magnolol 7, and ellagic acid 8, were selected for their ability to inhibit trichothecene production and/or fungal vegetative growth in F. culmorum. The chemical structures of phenols were constructed and partially optimised based on Molecular Mechanics (MM) studies and energy minimisation by Density Functional Theory (DFT). Docking analysis of the phenolic molecules was run on the 3D model of F. culmorum TRI5. Experimental biological activity, molecular descriptors and interacting-structures obtained from computational analysis were compared. Besides the catalytic domain, three privileged sites in the interaction with the inhibitory molecules were identified on the protein surface. The TRI5-ligand interactions highlighted in this study represent a powerful tool to the identification of new Fusarium-targeted molecules with potential as trichothecene inhibitors. PMID:27294666

  9. Research on Design of Tri-color Shift Device

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Yuan, Xia; Huang, Haixuan; Yang, Tuo; Huang, Yanyan; Zhu, Tengfei; Tang, Shaotuo; Peng, Wenda

    2016-11-01

    An azimuth-tuned tri-color shift device based on an embedded subwavelength one-dimensional rectangular structure with single period is proposed. High reflection efficiencies for both TE and TM polarizations can be achieved simultaneously. Under an oblique incidence of 60°, the reflection efficiencies can reach up to 85, 86, and 100 % in blue (azimuth of 24°), green (azimuth of 63°), and red (azimuth of 90°) waveband, respectively. Furthermore, the laws of influence of device period, groove depth, coating thickness, and incident angle on reflection characteristics are investigated and exposed, and feasibility of the device is demonstrated. The proposed device realizes tri-color shift for natural light using a simple structure. It exhibits high efficiency as well as good security. Such a device can be fabricated by the existing embossing and coating technique. All these break through the limit of bi-color shift anti-counterfeiting technology and have great applications in the field of optically variable image security.

  10. Multi-Character Tries for Text Searching.

    ERIC Educational Resources Information Center

    Cooper, Lorraine K. D.; Tharp, Alan L.

    1993-01-01

    Introduces the multicharacter trie as an index structure that can improve the time needed for retrieving full-text materials stored on CD-ROMs. The advantages of this structure compared to other structures are described, and experimental results comparing it to the widely used B+ tree and other structures used for full-text retrieval are…

  11. Between physics and metaphysics: structure as a boundary concept.

    PubMed

    Tau, Ramiro

    2015-03-01

    The notion of structure is found to be used in a great number of theories, scientific research programs and world views. However, its uses and definitions are as diverse as the objects of the scientific disciplines where it can be found. Without trying to recreate the structuralist aspiration from the mid XX century, which believed to have found in this notion a common transdisciplinary language, I discuss a specific aspect of this concept that could be considered a constant in different perspectives. This aspect refers to the location of the notions of structure as boundaries in the different scientific theories. With this, I try to argue that the definition or presentation of a structure configures in itself the frontier for scientific knowledge, defining at the same time implied ontological assumptions. In order to discuss this hypothesis, and taking into consideration the double origin of contemporary notions of structure -the mathematical and linguistic line-, I revise several theoretical perspectives which made explicit the relation between structures and knowledge, and their relation with the real: the arguments on physical knowledge by Eddington, structural anthropology, structural linguistics, Lacanian psychoanalysis and Piaget's genetic psychology.

  12. Test Plan. GCPS Task 4, subtask 4.2 thrust structure development

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1994-09-01

    The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.

  13. Test Plan. GCPS Task 4, subtask 4.2 thrust structure development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.

  14. Future Years Defense Program (FYDP) Structure

    DTIC Science & Technology

    2004-04-01

    JC - United States Central Command DoD 7045.7-H, April 2004 12 JCA - CJCS Controlled Activities JE - United States European Command JFC - United...Codes ARMY TITLECODE TITLECODE(H) = Historical (H) = Historical 1291 Line of Sight Anti-Tank (LOSAT) Battalion 1295 Armored Cavalry Squadrons (ACR) 1296...TRI-TAC) 0208010N Joint Tactical Communications Program (TRI-TAC) 0208011A CJCS Exercise Program 0208011F CJCS Exercise Program 0208011J CJCS Exercise

  15. Interfacial exchange, magnetic coupling and magnetoresistance in ultra-thin GdN/NbN/GdN tri-layers

    NASA Astrophysics Data System (ADS)

    Takamura, Yota; Goncalves, Rafael S.; Cascales, Juan Pedro; Altinkok, Atilgan; de Araujo, Clodoaldo I. L.; Lauter, Valeria; Moodera, Jagadeesh S.; MIT Team

    Superconducting spin-valve structures with a superconductive (SC) spacer sandwiched between ferromagnetic (FM) insulating layers [Li PRL 2013, Senapati APL 2013, Zhu Nat. Mat. 2016.] are attractive since the SC and FM characteristics can mutually be controlled by the proximity effect. We investigated reactively sputtered GdN/NbN/GdN tri-layer structures with various (SC) NbN spacer thicknesses (dNbN) from superconducting to normal layers. Magnetoresistive behavior similar to GMR in metallic magnetic multilayers was observed in the tri-layers with dNbN between 5-10 monolayers (ML), where thinner NbN layers did not show superconductivity down to 4.2 K. The occurrence of GMR signal indicates the presence of a ML of FM metallic layers at the GdN/NbN interfaces. Susceptibility and transport measurements in these samples revealed that the interface layers (ILs) are ferromagnetically coupled with adjacent GdN layers. The thickness of each of the IL is deduced to be about 1.25 ML, and as a result for dNbN <2.5-ML the two FM layers in the tri-layer were magnetically coupled and switched simultaneously. These findings and interfacial characterization by various techniques will be presented. Work supported by NSF and ONR Grants.

  16. Ex vivo human skin evaluation of localized fat reduction and anti-aging effect by TriPollar radio frequency treatments.

    PubMed

    Boisnic, Sylvie; Branchet, Marie Christine

    2010-02-01

    A wide variety of radio frequency (RF) treatments for localized fat and cellulite reduction as well as anti-aging are available nowadays, but only a few have shown the biological mechanism responsible for the clinical results. To determine the biological mechanism of the TriPollar RF device for localized fat and cellulite reduction as well as the collagen remodeling effect. Human skin samples were collected from abdominoplasty surgery and facial lifts, in order to evaluate the lipolytic and anti-aging effects of the apollo device powered by TriPollar RF technology using an ex vivo human skin model. The anti-cellulite effect was evaluated by the dosage of released glycerol and histological analysis of the hypodermis. Skin tightening was evaluated by morphometric analysis of collagen fibers and the dosage of collagen synthesis. Following TriPollar treatment, a significant increase of glycerol release by skin samples was found. The structure of fat cells was altered in shape and a modification of the fibrous tract was also detected in the fat layer. Additional findings indicated stimulation of the dermal fibroblasts with increased collagen synthesis. The detected alteration in the hypodermal layer is manifested by fat and cellulite reduction accompanied by structural and biochemical improvement of dermal collagen, which result in overall skin tightening.

  17. Determining the Appropriateness of Visual Based Activities in the Primary School Books for Low Vision Students

    ERIC Educational Resources Information Center

    Cakmak, Salih; Yilmaz, Hatice Cansu; Isitan, Hacer Damlanur

    2017-01-01

    The general aim of this research is to try to determine the appropriateness of the visuals in the primary school Turkish workbooks for the students with low visibility in terms of visual design elements. In the realization of the work, the document review method was used. In this study, purposive sampling method was used in the selection of…

  18. The Shock and Vibration Digest. Volume 18, Number 8

    DTIC Science & Technology

    1986-08-01

    the swash plate . This is an active that vibration can be reduced by separation of control system...element program model . ture-borne sound intensity has been tried earlier The agreement is shown to be very good. A on thin- plate constructions in ...predicting the response of two displacement controlled laboratory tests that were used for the determination of the model parameters. 86-1532

  19. Categories of Insight and Their Correlates: An Exploration of Relationships among Classic-Type Insight Problems, Rebus Puzzles, Remote Associates and Esoteric Analogies

    ERIC Educational Resources Information Center

    Cunningham, J. Barton; MacGregor, James N.; Gibb, Jenny; Haar, Jarrod

    2009-01-01

    A central question in creativity concerns how insightful ideas emerge. Anecdotal examples of insightful scientific and technical discoveries include Goodyear's discovery of the vulcanization of rubber, and Mendeleev's realization that there may be gaps as he tried to arrange the elements into the Periodic Table. Although most people would regard…

  20. Crystal structures of three 3,4,5-tri­meth­oxy­benzamide-based derivatives

    PubMed Central

    Gomes, Ligia R.; Low, John Nicolson; Oliveira, Catarina; Cagide, Fernando; Borges, Fernanda

    2016-01-01

    The crystal structures of three benzamide derivatives, viz. N-(6-hy­droxy­hex­yl)-3,4,5-tri­meth­oxy­benzamide, C16H25NO5, (1), N-(6-anilinohex­yl)-3,4,5-tri­meth­oxy­benzamide, C22H30N2O4, (2), and N-(6,6-di­eth­oxy­hex­yl)-3,4,5-tri­meth­oxy­benzamide, C20H33NO6, (3), are described. These compounds differ only in the substituent at the end of the hexyl chain and the nature of these substituents determines the differences in hydrogen bonding between the mol­ecules. In each mol­ecule, the m-meth­oxy substituents are virtually coplanar with the benzyl ring, while the p-meth­oxy substituent is almost perpendicular. The carbonyl O atom of the amide rotamer is trans related with the amidic H atom. In each structure, the benzamide N—H donor group and O acceptor atoms link the mol­ecules into C(4) chains. In 1, a terminal –OH group links the mol­ecules into a C(3) chain and the combined effect of the C(4) and C(3) chains is a ribbon made up of screw related R 2 2(17) rings in which the ⋯O—H⋯ chain lies in the centre of the ribbon and the tri­meth­oxy­benzyl groups forms the edges. In 2, the combination of the benzamide C(4) chain and the hydrogen bond formed by the terminal N—H group to an O atom of the 4-meth­oxy group link the mol­ecules into a chain of R 2 2(17) rings. In 3, the mol­ecules are linked only by C(4) chains. PMID:27308017

  1. Conscious Action/Zombie Action

    PubMed Central

    Shepherd, Joshua

    2015-01-01

    Abstract I argue that the neural realizers of experiences of trying (that is, experiences of directing effort towards the satisfaction of an intention) are not distinct from the neural realizers of actual trying (that is, actual effort directed towards the satisfaction of an intention). I then ask how experiences of trying might relate to the perceptual experiences one has while acting. First, I assess recent zombie action arguments regarding conscious visual experience, and I argue that contrary to what some have claimed, conscious visual experience plays a causal role for action control in some circumstances. Second, I propose a multimodal account of the experience of acting. According to this account, the experience of acting is (at the very least) a temporally extended, co‐conscious collection of agentive and perceptual experiences, functionally integrated and structured both by multimodal perceptual processing as well as by what an agent is, at the time, trying to do. PMID:27667859

  2. Fixation of Bovine Pericardium-Based Tissue Biomaterial with Irreversible Chemistry Improves Biochemical and Biomechanical Properties

    PubMed Central

    Tam, H.; Zhang, W.; Infante, D.; Parchment, N.; Sacks, M.

    2018-01-01

    Bioprosthetic heart valves (BHVs), derived from glutaraldehyde crosslinked (GLUT) porcine aortic valve leaflets or bovine pericardium (BP), are used to replace defective heart valves. However, valve failure can occur within 12–15 years due to calcification and/or progressive structural degeneration. We present a novel fabrication method that utilizes carbodiimide, neomycin trisulfate, and pentagalloyl glucose crosslinking chemistry (TRI) to better stabilize the extracellular matrix of BP. We demonstrate that TRI-treated BP is more compliant than GLUT-treated BP. GLUT-treated BP exhibited permanent geometric deformation and complete alteration of apparent mechanical properties when subjected to induced static strain. TRI BP, on the other hand, did not exhibit such permanent geometric deformations or significant alterations of apparent mechanical properties. TRI BP also exhibited better resistance to enzymatic degradation in vitro and calcification in vivo when implanted subcutaneously in juvenile rats for up to 30 days. PMID:28213846

  3. Measurement of factors that negatively influence the outcome of quitting smoking among patients with COPD: psychometric analyses of the Try To Quit Smoking instrument.

    PubMed

    Lundh, Lena; Alinaghizadeh, Hassan; Törnkvist, Lena; Gilljam, Hans; Galanti, Maria Rosaria

    2014-12-01

    To test internal consistency and factor structure of a brief instrument called Trying to Quit smoking. The most effective treatment for patients with chronic obstructive pulmonary disease is to quit smoking. Constant thoughts about quitting and repeated quit attempts can generate destructive feelings and make it more difficult to quit. Development and psychometric testing of the Trying to Quit smoking scale. The Trying to Quit smoking, an instrument designed to assess pressure-filled states of mind and corresponding pressure-relief strategies, was tested among 63 Swedish patients with chronic obstructive pulmonary disease. Among these, the psychometric properties of the instrument were analysed by Exploratory Factor Analyses. Fourteen items were included in the factor analyses, loading on three factors labelled: (1) development of pressure-filled mental states; (2) use of destructive pressure-relief strategies; and (3) ambivalent thoughts when trying to quit smoking. These three factors accounted for more than 80% of the variance, performed well on the Kaiser-Meyer-Olkin (KMO) test and had high internal consistency.

  4. Development of the Tri-ATHLETE Lunar Vehicle Prototype

    NASA Technical Reports Server (NTRS)

    Heverly, Matt; Matthews, Jaret; Frost, Matt; Quin, Chris

    2010-01-01

    The Tri-ATHLETE (All Terrain Hex Limed Extra Terrestrial Explorer) vehicle is the second generation of a wheel-on-limb vehicle being developed to support the return of humans to the lunar surface. This paper describes the design, assembly, and test of the Tri-ATHLETE robotic system with a specific emphasis on the limb joint actuators. The design and implementation of the structural components is discussed, and a novel and low cost approach to approximating flight-like cabling is also presented. The paper concludes with a discussion of the "second system effect" and other lessons learned as well as results from a three week long field trial of the vehicle in the Arizona desert.

  5. Strategic design and fabrication of acrylic shape memory polymers

    NASA Astrophysics Data System (ADS)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  6. Making Sense of Dynamic Systems: How Our Understanding of Stocks and Flows Depends on a Global Perspective.

    PubMed

    Fischer, Helen; Gonzalez, Cleotilde

    2016-03-01

    Stocks and flows (SF) are building blocks of dynamic systems: Stocks change through inflows and outflows, such as our bank balance changing with withdrawals and deposits, or atmospheric CO2 with absorptions and emissions. However, people make systematic errors when trying to infer the behavior of dynamic systems, termed SF failure, whose cognitive explanations are yet unknown. We argue that SF failure appears when people focus on specific system elements (local processing), rather than on the system structure and gestalt (global processing). Using a standard SF task (n = 148), SF failure decreased by (a) a global as opposed to local task format; (b) individual global as opposed to local processing styles; and (c) global as opposed to local perceptual priming. These results converge toward local processing as an explanation for SF failure. We discuss theoretical and practical implications on the connections between the scope of attention and understanding of dynamic systems. Copyright © 2015 Cognitive Science Society, Inc.

  7. On imputing function to structure from the behavioural effects of brain lesions.

    PubMed

    Young, M P; Hilgetag, C C; Scannell, J W

    2000-01-29

    What is the link, if any, between the patterns of connections in the brain and the behavioural effects of localized brain lesions? We explored this question in four related ways. First, we investigated the distribution of activity decrements that followed simulated damage to elements of the thalamocortical network, using integrative mechanisms that have recently been used to successfully relate connection data to information on the spread of activation, and to account simultaneously for a variety of lesion effects. Second, we examined the consequences of the patterns of decrement seen in the simulation for each type of inference that has been employed to impute function to structure on the basis of the effects of brain lesions. Every variety of conventional inference, including double dissociation, readily misattributed function to structure. Third, we tried to derive a more reliable framework of inference for imputing function to structure, by clarifying concepts of function, and exploring a more formal framework, in which knowledge of connectivity is necessary but insufficient, based on concepts capable of mathematical specification. Fourth, we applied this framework to inferences about function relating to a simple network that reproduces intact, lesioned and paradoxically restored orientating behaviour. Lesion effects could be used to recover detailed and reliable information on which structures contributed to particular functions in this simple network. Finally, we explored how the effects of brain lesions and this formal approach could be used in conjunction with information from multiple neuroscience methodologies to develop a practical and reliable approach to inferring the functional roles of brain structures.

  8. Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys

    DOE PAGES

    Troparevsky, M. Claudia; Morris, James R.; Daene, Markus; ...

    2015-09-03

    High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. Here, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insightsmore » into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa Kohn Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. Furthermore, we discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles high-throughput density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. Finally, the model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.« less

  9. Finite element design procedure for correcting the coining die profiles

    NASA Astrophysics Data System (ADS)

    Alexandrino, Paulo; Leitão, Paulo J.; Alves, Luis M.; Martins, Paulo A. F.

    2018-05-01

    This paper presents a new finite element based design procedure for correcting the coining die profiles in order to optimize the distribution of pressure and the alignment of the resultant vertical force at the end of the die stroke. The procedure avoids time consuming and costly try-outs, does not interfere with the creative process of the sculptors and extends the service life of the coining dies by significantly decreasing the applied pressure and bending moments. The numerical simulations were carried out in a computer program based on the finite element flow formulation that is currently being developed by the authors in collaboration with the Portuguese Mint. A new experimental procedure based on the stack compression test is also proposed for determining the stress-strain curve of the materials directly from the coin blanks.

  10. Study on light scattering characterization for polishing surface of optical elements

    NASA Astrophysics Data System (ADS)

    Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo

    2017-02-01

    Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.

  11. A Fiber-Optic Interferometric Tri-Component Geophone for Ocean Floor Seismic Monitoring

    PubMed Central

    Chen, Jiandong; Chang, Tianying; Fu, Qunjian; Lang, Jinpeng; Gao, Wenzhi; Wang, Zhongmin; Yu, Miao; Zhang, Yanbo; Cui, Hong-Liang

    2016-01-01

    For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges from 2 Hz to 150 Hz for acceleration detection, employing a phase generated carrier demodulation scheme, with a responsivity above 50 dB re rad/g for the whole frequency range. The transverse suppression ratio is about 30 dB. The system noise at low frequency originated mainly from the 1/f fluctuation, with an average system noise level −123.55 dB re rad/Hz ranging from 0 Hz to 500 Hz. The minimum detectable acceleration is about 2 ng/Hz, and the dynamic range is above 116 dB. PMID:28036011

  12. Extractive photometric determination of gold(III) with 1-(2',4',6'-trichlorophenyl)-4,4,6-trimethyl-(1H,4H)-2-pyrimidinethiol in presence of tri-iso-octylamine.

    PubMed

    Amuse, M A; Kuchekar, S R; Mote, N A; Chavan, M B

    1985-10-01

    Tervalent gold was determined spectrophotometrically as its anionic 1:4 gold-thiol complex extracted into chloroform from aqueous acidic medium (1.5M sulphuric acid) in the presence of tri-iso-octylamine. The complex exhibits maximum absorption at 480 nm (molar absorptivity 4.60 x 10(3) l.mole(-1).cm(-1)) and Beer's law is obeyed in the concentration range 5-50 microg of gold(III) per ml. The relative standard deviation and relative error, calculated from ten determinations of solutions containing 15 microg of gold(III) per ml were 1.0% and 0.8%. The method is simple, selective and reproducible. It permits separation of gold(III) from associated elements and its determination in synthetic mixtures.

  13. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    USGS Publications Warehouse

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    Talc, kerolite-smectite, smectite, chlorite-smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite-smectite to smectite-rich kerolite-smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite-smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite-smectite with lower crystalline perfection as the proportion of smectite layers in kerolite-smectite increases. Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite-smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250????C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200-250????C) phase forming deep within the sediment (??? 0.8??m). Chlorite and chlorite-smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150-200????C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.

  14. Structure of 7-hy-droxy-3-(2-meth-oxy-phen-yl)-2-tri-fluoro-meth-yl-4H-chromen-4-one.

    PubMed

    Low, John Nicolson; Gomes, Ligia R; Gaspar, Alexandra; Borges, Fernanda

    2017-07-01

    Herein, the synthesis and crystal structure of 7-hy-droxy-3-(2-meth-oxy-phen-yl)-2-tri-fluoro-meth-yl-4 H -chromen-4-one, C 17 H 11 F 3 O 4 , are reported. This isoflavone is used as a starting material in the preparation an array of potent and competitive FPR antagonists. The pyran ring significantly deviates from planarity and the dihedral angle between the benzo-pyran mean plane and that of the exocyclic benzene ring is 88.18 (4)°. In the crystal, O-H⋯O hydrogen bonds connect the mol-ecules into C (8) chains propagating in the [010] direction.

  15. Drivers of Vaginal Drug Delivery System Acceptability from Internet-Based Conjoint Analysis.

    PubMed

    Primrose, Rachel J; Zaveri, Toral; Bakke, Alyssa J; Ziegler, Gregory R; Moskowitz, Howard R; Hayes, John E

    2016-01-01

    Vaginal microbicides potentially empower women to protect themselves from HIV and other sexually transmitted infections (STIs), especially when culture, religion, or social status may prevent them from negotiating condom use. The open literature contains minimal information on factors that drive user acceptability of women's health products or vaginal drug delivery systems. By understanding what women find to be most important with regard to sensory properties and product functionality, developers can iteratively formulate a more desirable product. Conjoint analysis is a technique widely used in market research to determine what combination of elements influence a consumer's willingness to try or use a product. We applied conjoint analysis here to better understand what sexually-active woman want in a microbicide, toward our goal of formulating a product that is highly acceptable to women. Both sensory and non-sensory attributes were tested, including shape, color, wait time, partner awareness, messiness/leakage, duration of protection, and functionality. Heterosexually active women between 18 and 35 years of age in the United States (n = 302) completed an anonymous online conjoint survey using IdeaMap software. Attributes (product elements) were systematically presented in various combinations; women rated these combinations of a 9-point willingness-to-try scale. By coupling systematic combinations and regression modeling, we can estimate the unique appeal of each element. In this population, a multifunctional product (i.e., broad spectrum STI protection, coupled with conception) is far more desirable than a microbicide targeted solely for HIV protection; we also found partner awareness and leakage are potentially strong barriers to use.

  16. A data fusion approach to indications and warnings of terrorist attacks

    NASA Astrophysics Data System (ADS)

    McDaniel, David; Schaefer, Gregory

    2014-05-01

    Indications and Warning (I&W) of terrorist attacks, particularly IED attacks, require detection of networks of agents and patterns of behavior. Social Network Analysis tries to detect a network; activity analysis tries to detect anomalous activities. This work builds on both to detect elements of an activity model of terrorist attack activity - the agents, resources, networks, and behaviors. The activity model is expressed as RDF triples statements where the tuple positions are elements or subsets of a formal ontology for activity models. The advantage of a model is that elements are interdependent and evidence for or against one will influence others so that there is a multiplier effect. The advantage of the formality is that detection could occur hierarchically, that is, at different levels of abstraction. The model matching is expressed as a likelihood ratio between input text and the model triples. The likelihood ratio is designed to be analogous to track correlation likelihood ratios common in JDL fusion level 1. This required development of a semantic distance metric for positive and null hypotheses as well as for complex objects. The metric uses the Web 1Terabype database of one to five gram frequencies for priors. This size requires the use of big data technologies so a Hadoop cluster is used in conjunction with OpenNLP natural language and Mahout clustering software. Distributed data fusion Map Reduce jobs distribute parts of the data fusion problem to the Hadoop nodes. For the purposes of this initial testing, open source models and text inputs of similar complexity to terrorist events were used as surrogates for the intended counter-terrorist application.

  17. Drivers of Vaginal Drug Delivery System Acceptability from Internet-Based Conjoint Analysis

    PubMed Central

    Primrose, Rachel J.; Zaveri, Toral; Bakke, Alyssa J.; Ziegler, Gregory R.; Moskowitz, Howard R.; Hayes, John E.

    2016-01-01

    Vaginal microbicides potentially empower women to protect themselves from HIV and other sexually transmitted infections (STIs), especially when culture, religion, or social status may prevent them from negotiating condom use. The open literature contains minimal information on factors that drive user acceptability of women’s health products or vaginal drug delivery systems. By understanding what women find to be most important with regard to sensory properties and product functionality, developers can iteratively formulate a more desirable product. Conjoint analysis is a technique widely used in market research to determine what combination of elements influence a consumer’s willingness to try or use a product. We applied conjoint analysis here to better understand what sexually-active woman want in a microbicide, toward our goal of formulating a product that is highly acceptable to women. Both sensory and non-sensory attributes were tested, including shape, color, wait time, partner awareness, messiness/leakage, duration of protection, and functionality. Heterosexually active women between 18 and 35 years of age in the United States (n = 302) completed an anonymous online conjoint survey using IdeaMap software. Attributes (product elements) were systematically presented in various combinations; women rated these combinations of a 9-point willingness-to-try scale. By coupling systematic combinations and regression modeling, we can estimate the unique appeal of each element. In this population, a multifunctional product (i.e., broad spectrum STI protection, coupled with conception) is far more desirable than a microbicide targeted solely for HIV protection; we also found partner awareness and leakage are potentially strong barriers to use. PMID:26999009

  18. West Europe Report

    DTIC Science & Technology

    1987-05-13

    ENERGY SWEDEN Nuclear Power Phase -Out: Poll Results, Carlsson Approach (DAGENS NYHETER, 8 Mar 87) 87 Poll Shows Opinion Split, by Sven...This happened in 1976, when a group of land- locked states led by Austria, but with a strong East European element, tried to gain control over...minister of economic affairs, by Pierre Loppe and Francis Van de Woestyne; "Mark Eyskens: A New Tax System in 1988" first paragraph is LA LIBRE

  19. The Role of Diminutives in the Acquisition of Russian Gender: Can Elements of Child-Directed Speech Aid in Learning Morphology

    ERIC Educational Resources Information Center

    Kempe, Vera; Brooks, Patricia J.

    2005-01-01

    This study investigated second-language (L2) learning to gain a better understanding of learning mechanisms that also operate in child first-language L1 learners. The research was inspired by research on the beneficial effects of child-directed speech CDS. We tried to examine whether such benefits can be observed in the domain of inflectional…

  20. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons

    PubMed Central

    Noh, Kyung-Min; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W.; Shen, Li; Li, Haitao; Allis, C. David

    2015-01-01

    ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of “repressive” histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX’s ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this “methyl/phos” switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction. PMID:25538301

  1. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons.

    PubMed

    Noh, Kyung-Min; Maze, Ian; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W; Shen, Li; Li, Haitao; Allis, C David

    2015-06-02

    ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of "repressive" histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX's ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this "methyl/phos" switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction.

  2. A Data Matrix Method for Improving the Quantification of Element Percentages of SEM/EDX Analysis

    NASA Technical Reports Server (NTRS)

    Lane, John

    2009-01-01

    A simple 2D M N matrix involving sample preparation enables the microanalyst to peer below the noise floor of element percentages reported by the SEM/EDX (scanning electron microscopy/ energy dispersive x-ray) analysis, thus yielding more meaningful data. Using the example of a 2 3 sample set, there are M = 2 concentration levels of the original mix under test: 10 percent ilmenite (90 percent silica) and 20 percent ilmenite (80 percent silica). For each of these M samples, N = 3 separate SEM/EDX samples were drawn. In this test, ilmenite is the element of interest. By plotting the linear trend of the M sample s known concentration versus the average of the N samples, a much higher resolution of elemental analysis can be performed. The resulting trend also shows how the noise is affecting the data, and at what point (of smaller concentrations) is it impractical to try to extract any further useful data.

  3. Crystal structures of (Z)-5-[2-(benzo[b]thio-phen-2-yl)-1-(3,5-di-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole and (Z)-5-[2-(benzo[b]thio-phen-3-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole.

    PubMed

    Penthala, Narsimha Reddy; Yadlapalli, Jaishankar K B; Parkin, Sean; Crooks, Peter A

    2016-05-01

    (Z)-5-[2-(Benzo[b]thio-phen-2-yl)-1-(3,5-di-meth-oxy-phen-yl)ethen-yl]-1H-tetrazole methanol monosolvate, C19H16N4O2S·CH3OH, (I), was prepared by the reaction of (Z)-3-(benzo[b]thio-phen-2-yl)-2-(3,5-di-meth-oxy-phen-yl)acrylo-nitrile with tri-butyl-tin azide via a [3 + 2]cyclo-addition azide condensation reaction. The structurally related compound (Z)-5-[2-(benzo[b]thio-phen-3-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole, C20H18N4O3S, (II), was prepared by the reaction of (Z)-3-(benzo[b]thio-phen-3-yl)-2-(3,4,5-tri-meth-oxy-phen-yl)acrylo-nitrile with tri-butyl-tin azide. Crystals of (I) have two mol-ecules in the asymmetric unit (Z' = 2), whereas crystals of (II) have Z' = 1. The benzo-thio-phene rings in (I) and (II) are almost planar, with r.m.s deviations from the mean plane of 0.0084 and 0.0037 Å in (I) and 0.0084 Å in (II). The tetra-zole rings of (I) and (II) make dihedral angles with the mean planes of the benzo-thio-phene rings of 88.81 (13) and 88.92 (13)° in (I), and 60.94 (6)° in (II). The di-meth-oxy-phenyl and tri-meth-oxy-phenyl rings make dihedral angles with the benzo-thio-phene rings of 23.91 (8) and 24.99 (8)° in (I) and 84.47 (3)° in (II). In both structures, mol-ecules are linked into hydrogen-bonded chains. In (I), these chains involve both tetra-zole and methanol, and are parallel to the b axis. In (II), mol-ecules are linked into chains parallel to the a axis by N-H⋯N hydrogen bonds between adjacent tetra-zole rings.

  4. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures

    PubMed Central

    Bogart, Justin A.; Cole, Bren E.; Boreen, Michael A.; Lippincott, Connor A.; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J.

    2016-01-01

    Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx3–, featured a size-sensitive aperture formed of its three η2-(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)]2 species. Differences in the equilibrium constants Kdimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La–Sm and RE2 = Gd–Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early–late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation. PMID:27956636

  5. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    NASA Technical Reports Server (NTRS)

    Tang, C. C. H.

    1986-01-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  6. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures.

    PubMed

    Bogart, Justin A; Cole, Bren E; Boreen, Michael A; Lippincott, Connor A; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2016-12-27

    Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx 3- , featured a size-sensitive aperture formed of its three η 2 -(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)] 2 species. Differences in the equilibrium constants K dimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La-Sm and RE2 = Gd-Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early-late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation.

  7. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    NASA Astrophysics Data System (ADS)

    Tang, C. C. H.

    1986-08-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  8. Spherical Viscoelastic Finite Element Model for Cascadia Interseismic Deformation

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, K.; Dragert, H.; Miller, M. M.

    2003-12-01

    We have developed a 3-D spherical viscoelastic finite element model for the Cascadia subduction zone to study temporal and spatial variations of interseismic deformation. Previous 3-D viscoelastic finite element models of subduction zone earthquake cycles all use the Cartesian system, with the surface of the earth map-projected on to a horizontal plane. For earthquakes that rupture very long plate-boundary segments, such as the 1700 Cascadia, 1960 Chile, and 1964 Alaska great earthquakes, the Cartesian approach is inconvenient and less accurate. 3-D analytical solutions take into account the spherical geometry of the earth but have difficulty dealing with realistic plate boundary structure. For the new spherical finite element model, we use 27-node tri-quadratic isoparametric element. The resultant large sparse matrix system is solved by the stabilized bi-conjugate gradient method with ILUT preconditioning of fill-in level 6. Our experience suggests that lower order elements in the spherical system would result in unacceptable numerical errors unless one set of mesh lines is strictly radial. For the great Cascadia earthquake, we employ a smooth coseismic rupture model inferred from thermal data and results of tsunami models of the 1700 event, but we test different slip distances. For interseismic deformation, we use the conventional backslip approach. The contemporary deformation of the Cascadia margin consists of interseismic strain accumulation and a geological secular motion that can be described by a rotation of the forearc relative to North America. To isolate the interseismic deformation, we remove the secular motion from both the model formulation and geodetic data. The model predicts decreasing margin-normal shortening rates throughout the interseismic period as a result of stress relaxation in the viscoelastic mantle. The rate of decrease depends on the assumed mantle viscosity. With a viscosity of 1019 Pa s, model surface deformation at 300 years after the great earthquake agrees with geodetically observed contemporary deformation very well. The model also confirms the previous finding based on a Cartesian model that an inland region continues to move seaward several decades after the great earthquake.

  9. Kinetics of silver release from microfuel with taking into account the limited-solubility effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, A. S., E-mail: asi.kiae@gmail.com; Rusinkevich, A. A., E-mail: rusinkevich_andr@mail.ru

    2014-12-15

    The effect of a limited solubility of silver in silicon carbide on silver release from a microfuel with a TRISO coating is studied. It is shown that a limited solubility affects substantially both concentration profiles and silver release from a microfuel over a broad range of temperatures. A procedure is developed for obtaining fission-product concentration profiles in a microfuel and graphs representing the flow and integrated release of fission products on the basis of data from neutron-physics calculations and results obtained by calculating thermodynamics with the aid of the Ivtanthermo code and kinetics with the aid of the FP-Kinetics code.more » This procedure takes into account a limited solubility of fission products in protective coatings of microfuel.« less

  10. Advanced Electron Microscopy and Micro analytical technique development and application for Irradiated TRISO Coated Particles from the AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Rooyen, Isabella Johanna; Lillo, Thomas Martin; Wen, Haiming

    2017-01-01

    A series of up to seven irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Quantification Program, with irradiation completed at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the first experiment (i.e., AGR-1) in November 2009 for an effective 620 full power days. The objective of the AGR-1 experiment was primarily to provide lessons learned on the multi-capsule test train design and to provide early data on fuel performance for use in fuel fabrication process development and post-irradiation safety testing data at high temperatures. This report describes the advanced microscopy and micro-analysismore » results on selected AGR-1 coated particles.« less

  11. A Comparative Study Environmental and Radiological Causes Of Cancer In River Nile State, Sudan

    NASA Astrophysics Data System (ADS)

    Hamid, Eyad; Khair, Hatim

    The causes of cancer in River Nile state are differ between environmental and radiological, this paper tried to make comparison between the two causes, to determine the real cause behind the large rising of cancer cases in this state, considering the daily habits for the patients and the possible contamination in the natural resources around them. The noticeable thing that most of cancer cases are might be due to the high concentration of nitrate pollutant detected in natural resources such as drinking water; also by looking to the radioactive elements we see there's high concentration of some radioactive elements specially the K-40 which found in Portulaca Oleracea.

  12. Communication of Geometrical Structure and Its Relationship to Student Mathematical Achievement.

    ERIC Educational Resources Information Center

    Norrie, Alexander L.

    The purpose of this study was to examine whether the mathematical structures inherent in grade 7 geometry curriculum objectives can be used to improve the communication of the objectives to students. Teacher inservice based upon geometrical properties and structures was combined with student teaching materials to try to improve student achievement…

  13. Lunar Circular Structure Classification from Chang 'e 2 High Resolution Lunar Images with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.

    2018-04-01

    Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.

  14. Fluidic Spacetime and Representation of Fields in the Tri-Space Model of the Universe

    NASA Astrophysics Data System (ADS)

    Meholic, Gregory V.

    2009-03-01

    The Tri-Space Model of the universe (see Meholic, 1998 and 2004) is based upon the premise that the governing mathematics of special relativity describe a symmetrical continuum that supports not just one, but three, independent spacetimes each with a unique set of physical laws founded on the velocity v to light speed c ratio. These realms are subluminal space (where v/c<1), luminal spacetime (where v/c = 1), and superluminal space (where v/c>1) together comprising the `tri-space' universe. Although real, measurable mass can exist in both the sub- and superluminal spaces, the adjacent luminal spacetime shared by the two spaces is the realm in which all electromagnetic and gravitational fields exist. Determining the true nature of spacetime, and hence the true nature of the fundamental forces, has been the driving objective for ideas such as string theory and quantum mechanics. The Tri-Space approach, however, merges the basic premises of these ideas with the philosophy that the three spatial realms, especially luminal spacetime, can be represented as a quasi-fluidic continuum whose behavior can be approximated through modified classical fluid-dynamic analogies with flow field structure and fluid properties. If the fluid-like properties of spacetime can be sufficiently defined, then a graphical representation of the fundamental structure and characterization of the basic forces in nature can be developed.

  15. Image search engine with selective filtering and feature-element-based classification

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhang, Yujin; Dai, Shengyang

    2001-12-01

    With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.

  16. Trace elements levels in the serum, urine, and semen of patients with infertility.

    PubMed

    Sağlam, Hasan Salih; Altundağ, Hüseyin; Atik, Yavuz Tarık; Dündar, Mustafa Şahin; Adsan, Öztug

    2015-01-01

    Studies suggest that trace elements may have an adverse impact on male reproduction, even at low levels. We tried to investigate the relationships between these metals and semen quality in various body fluids among men with infertility. A total of 255 samples of blood, semen, and urine were collected from 85 men suffering from infertility. Inductively coupled plasma-optical emission spectrometry was used for the determination of 22 trace elements. We compared the results of the semen parameters with the results of the element determinations. Because of the high proportion of samples with values lower than the limit of detection for a number of the elements, only 8 of a total 22 trace elements were determined in the samples. When the concentrations of sperm were classified according to the World Health Organization's guidelines for normospermia, oligospermia, and azoospermia, statistically significant differences were found among Zn, Ca, Al, Cu, Mg, Se, and Sr concentrations in various serum, sperm, and urine samples (P < 0.05). In the present study, we found significant correlations between concentrations of Zn, Ca, Al, Cu, Mg, Se, and Sr and semen parameters in various body fluids.

  17. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.

    1981-01-01

    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.

  18. Crystal structure of bis­[tetra­kis­(tri­phenyl­phosphane-κP)silver(I)] (nitrilo­tri­acetato-κ4 N,O,O′,O′′)(tri­phenyl­phosphane-κP)argentate(I) with an unknown amount of methanol as solvate

    PubMed Central

    Noll, Julian; Korb, Marcus; Lang, Heinrich

    2016-01-01

    The structure of the title compound, [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], exhibits trigonal (P-3) symmetry, with a C 3 axis through all three complex ions, resulting in an asymmetric unit that contains one third of the atoms present in the formula unit. The formula unit thus contains two of the cations, one anion and disordered mol­ecules of methanol as the packing solvent. Attempts to refine the solvent model were unsuccessful, indicating uninter­pretable disorder. Thus, the SQUEEZE procedure in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9–18] was applied, accounting for 670 electrons per unit cell, representing approximately 18 mol­ecules of methanol in the formula unit. The stated crystal data for M r, μ etc do not take these into account. PMID:27006796

  19. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the pioneering LA solutions to this problem, unequivocally demonstrates that LA can play an important role in solving complex combinatorial and integer optimization problems.

  20. Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme

    PubMed Central

    Mooers, Blaine H M; Baase, Walter A; Wray, Jonathan W; Matthews, Brian W

    2009-01-01

    To try to resolve the loss of stability in the temperature-sensitive mutant of T4 lysozyme, Arg 96 → His, all of the remaining 18 naturally occurring amino acids were substituted at site 96. Also, in response to suggestions that the charged residues Lys85 and Asp89, which are 5–8 Å away, may have important effects, each of these amino acids was replaced with alanine. Crystal structures were determined for many of the variants. With the exception of the tryptophan and valine mutants R96W and R96V, the crystallographic analysis shows that the substituted side chain following the path of Arg96 in wildtype (WT). The melting temperatures of the variants decrease by up to ∼16°C with WT being most stable. There are two site 96 replacements, with lysine or glutamine, that leave the stability close to that of WT. The only element that the side chains of these residues have in common with the WT arginine is the set of three carbon atoms at the Cα, Cβ, and Cγ positions. Although each side chain is long and flexible with a polar group at the distal position, the details of the hydrogen bonding to the rest of the protein differ in each case. Also, the glutamine replacement lacks a positive charge. This shows that there is some adaptability in achieving full stabilization at this site. At the other extreme, to be maximally destabilizing a mutation at site 96 must not only eliminate favorable interactions but also introduce an unfavorable element such as steric strain or a hydrogen-bonding group that remains unsatisfied. Overall, the study highlights the essential need for atomic resolution site-specific structural information to understand and to predict the stability of mutant proteins. It can be very misleading to simply assume that conservative amino acid substitutions cause small changes in stability, whereas large stability changes are associated with nonconservative replacements. PMID:19384988

  1. Should Textbooks Be Politically Correct?...and Several Other Issues.

    ERIC Educational Resources Information Center

    Mader, Diane Castellano

    By getting hold of the dominating verbal structures, political correctness has tried (according to Paul Berman) to "get everyone to abandon certain previously unanalyzed phrases that contain the entire structure of oppressive social domination." Unfortunately, "political correctness" has become a pejorative term used to…

  2. A bridge from physics to biology.

    PubMed

    Preparata, Giuliano

    2010-01-01

    Through molecular biology, the 'atomistic paradigm' tries to remove from the analysis of living matter every element of what appears as the distinguishing character of the chain of the biological processes: their cooperative, collective aspects. Living matter appears, on the contrary, governed by Quantum Field Theory (QFT), spontaneously creating order when the thermodynamical conditions are right. 'Electrodynamical coherence' (EC) is the most promising hint for the existence of a bridge between Physics and Biology.

  3. Hong Kong and Beijing: Trip Report

    DTIC Science & Technology

    1992-05-01

    Kongs. He has grafted basic elements of capitalism (material incentives, individual enterprise and market economy) on to the four cardinal principles of...34let us try share ownership and stock markets -- if they fail, we shall discard them." His opponents charge that he is selling out to capitalism, but...stores, high-rises, bars and an Arnie Palmer golf course. This Special Economic Zone makes Mickey Mouse toys, Adidas sweat pants, Yashica cameras and a

  4. Optimum design of space storable gas/liquid coaxial injectors.

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Review of the results of a program of single-element, cold-flow/hot-fire experiments performed for the purpose of establishing design criteria for a high-performance gas/liquid (FLOX/CH4) coaxial injector. The approach and the techniques employed resulted in the direct design of an injector that met or exceeded the performance and chamber compatibility goals of the program without any need for the traditional 'cut-and-try' development methods.

  5. Characterizing Resilience and Growth Among Soldiers: A Trajectory Study

    DTIC Science & Technology

    2014-04-01

    0120 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Nansook Park 5e. TASK NUMBER e -mail: nspak@umich.edu 5f. WORK UNIT NUMBER 7...tried all available methods to reach potential participants including e -mail, regular mail, phone and social media like Facebook. We were able to...utilize all possible ways of contacting participants including e -mail, regular mail, phone calls, and social media (e.g., Facebook). Furthermore

  6. [The solidarity of the human body].

    PubMed

    Bioy, Xavier

    2014-06-01

    The legal and bioethical regulation of the uses of the elements of the human body can be described by means of the concept of solidarity. From the French example, we can so show that the State tries to frame solidarities which already exist, for example between people who share the same genome, in the family, or, on the contrary, tent to impose or to direct the sharing of the human biological resources (organs, tissues, gametes, stem cell...).

  7. The process of trying to quit smoking from the perspective of patients with chronic obstructive pulmonary disease.

    PubMed

    Lundh, Lena; Hylander, Ingrid; Törnkvist, Lena

    2012-09-01

    To investigate why some patients with chronic obstructive pulmonary disease (COPD) have difficulty quitting smoking and to develop a theoretical model that describes their perspectives on these difficulties. Grounded theory method was used from the selection of participants to the analyses of semi-structured interviews with 14 patients with COPD. Four additional interviews were conducted to ensure relevance. The analysis resulted in a theoretical model that illustrates the process of 'Patients with COPD trying to quit smoking'. The model illuminates factors related to the decision to try to quit smoking, including pressure-filled mental states and constructive or destructive pressure-relief strategies. The constructive strategies lead either to success in quitting or to continuing to try to quit. The destructive strategies can lead to losing hope and becoming resigned to continuing to smoke. The theoretical model 'Patients trying to quit smoking' contributes to a better understanding of the pressure-filled mental states and destructive strategies experienced by some patients with COPD in the process of trying to quit. This better understanding can help nurses individualise counselling. Moreover, patients' own awareness of these states and strategies may facilitate their efforts to quit. The information in the model can also be used as a supplement to methods such as motivational interviewing (MI). © 2011 The Authors. Scandinavian Journal of Caring Sciences © 2011 Nordic College of Caring Science.

  8. ["Do not do" also as regards tobacco].

    PubMed

    Olano-Espinosa, Eduardo; Minué-Lorenzo, César

    2016-01-01

    We do have very effective and efficient interventions to help our patients to stop smoking. The strategy that has more evidence and consensus in primary care is the 5 A's, that is, ask, advise, assess willingness to try to quit smoking, helping those who want to try and make follow-up visits. However, we intervene lot less than we should. The available protocols oversized interventions, and propose elements without scientific evidence or therapeutic effect. It is therefore necessary to develop more simple, useful and evidence-based interventions to assist us in carrying out our work interventions, and stop doing those that dońt contribute. In this article we will use as an example a critical review of Smoker Care Service Portfolio of Madrid Health Service, and we will propose a number of alternatives to allow a simple, effective and evidence-based intervention. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  9. [To explain is to narrate. How to visualize scientific data].

    PubMed

    Hawtin, Nigel

    2014-01-01

    When you try to appeal a vast ranging audience, as it occurs at the New Scientist that addresses scientists as well as the general public, your scientific visual explainer must be succinct, clear, accurate and easily understandable. In order to reach this goal, your message should provide only the main data, the ones that allow you to balance information and clarity: information should be put into context and all the extra details should be cut down. It is very important, then, to know well both your audience and the subject you are going to describe, as graphic masters of the past, like William Playfair and Charles Minard, have taught us. Moreover, you should try to engage your reader connecting the storytelling power of words and the driving force of the graphics: colours, visual elements, typography. To be effective, in fact, an infographic should not only be truthful and functional, but also elegant, having style and legibility.

  10. Hydrolyzable tannins and related polyphenols from Eucalyptus globulus.

    PubMed

    Hou, A J; Liu, Y Z; Yang, H; Lin, Z W; Sun, H D

    2000-01-01

    Eucaglobulin (1), a new complex of gallotannin and monoterpene, was isolated from the leaves of Eucaloptus globulus. Its structure was elucidated on the basis of spectral data. Four known hydrolyzable tannins [tellimagrandin I (2), eucalbanin C (3), 2-O-digalloyl-1,3,4-tri-O-galloyl-beta-D-glucose (4), 6-O-digalloyl-1,2,3-tri-O-galloyl-beta-D-glucose (5)], as well as gallic acid (6) and (+)-catechin (7), were also isolated. The antibacterial effects of some of these compounds were examined.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.W.; Labouriau, A.; Taylor, C.M.

    Dynamics and structure of tri-n-butyltin fluoride in n-hexane solutions were probed using (tin-119) nuclear magnetic resonance spin relaxation methodologies. Significant relaxation-induced polarization transfer effects were observed and exploited. The experimental observations indicate that the tri-n-butyl fluoride exists in a polymeric form in solution. For a 0.10% (w/w) solution at 25 [degree]C, NMR reveals significant orientational/exchange relaxation on both the microsecond and nanosecond time scales. Solution-state and solid-state parameters are compared and contrasted. 26 refs., 3 figs., 1 tab.

  12. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    PubMed Central

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651

  13. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAST RS; RINKER MW; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanfordmore » Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford SSTs is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65-year-old tank is being tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar testing ongoing. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide continuing indication of Hanford SST structural integrity.« less

  14. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.« less

  15. Crystal structure of di-methyl-formamidium bis-(tri-fluoro-methane-sulfon-yl)amide: an ionic liquid.

    PubMed

    Cardenas, Allan Jay P; O'Hagan, Molly

    2016-09-01

    At 100 K, the title mol-ecular salt, C 3 H 8 NO + ·C 2 F 6 NO 4 S 2 - , has ortho-rhom-bic ( P 2 1 2 1 2 1 ) symmetry; the amino H atom of bis-(tri-fluoro-methane-sulfon-yl)amine (HNTf 2 ) was transferred to the basic O atom of di-methyl-formamide (DMF) when the ionic liquid components were mixed. The structure displays an O-H⋯N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C-H⋯O inter-action, generating an R 2 2 (7) loop. A further very weak C-H⋯O inter-action generates an [001] chain.

  16. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  17. Understanding the Irradiation Behavior of Zirconium Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known aboutmore » basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.« less

  18. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets

    PubMed Central

    Spiess, Christoph; Meyer, Anne S.; Reissmann, Stefanie; Frydman, Judith

    2010-01-01

    Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber. PMID:15519848

  19. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp; Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806; Kojima, Hiroyuki

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOHmore » BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver microsomes. • Structural requirements for the activities of BP-3 derivatives were demonstrated.« less

  20. Algorithm That Synthesizes Other Algorithms for Hashing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2010-01-01

    An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements. The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions. This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows: Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the minimum amount of time. Given a list of numbers, try to find one or more solutions in which, if each number is compressed by use of the modulo function by some value, then a unique value is generated.

  1. Mutual Contextualization in Tripartite Graphs of Folksonomies

    NASA Astrophysics Data System (ADS)

    Yeung, Ching-Man Au; Gibbins, Nicholas; Shadbolt, Nigel

    The use of tags to describe Web resources in a collaborative manner has experienced rising popularity among Web users in recent years. The product of such activity is given the name folksonomy, which can be considered as a scheme of organizing information in the users' own way. This research work attempts to analyze tripartite graphs - graphs involving users, tags and resources - of folksonomies and discuss how these elements acquire their semantics through their associations with other elements, a process we call mutual contextualization. By studying such process, we try to identify solutions to problems such as tag disambiguation, retrieving documents of similar topics and discovering communities of users. This paper describes the basis of the research work, mentions work done so far and outlines future plans.

  2. Wave cancellation small waterplane multihull ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, C.C.; Wilson, M.B.

    1994-12-31

    A new patented wave cancellation multihull ship concept (Hsu, 1993) is presented. Such ships consist of various arrangements of tapered hull elements. The tapered hull design provides a small waterplane area for enhanced seakeeping while producing smaller surface disturbances. In addition, proper arrangement of hull elements provides favorable wave interference effects. The saving in effective horsepower with a realistic wave cancellation tri-hull arrangement, was found to be about 30 percent compared to small waterplane area twin-hull ships. Power reductions of this magnitude translate to considerably fuel consumptions and improved range. Applications to several ship types, such as for fast ferries,more » cruise and container ships, appear promising, wherever good seakeeping, large deck space and high speed in the design.« less

  3. The importance of intuition in the occupational medicine clinical consultation.

    PubMed

    Philipp, R; Philipp, E; Thorne, P

    1999-01-01

    Clinical consultation involves unspoken elements which flow between doctor and patient. They are vital ingredients of successful patient management but are not easily measured, objective or evidence-based. These elements include empathy and intuition for what the patient is experiencing and trying to express, or indeed suppressing. Time is needed to explore the instinctive feeling for what is important, particularly in present day society which increasingly recognizes the worth of psychosocial factors. This time should be available in the occupational health consultation. In this paper the importance of intuition and its essential value in the clinical interview are traced through history. Differences between intuition and empathy are explored and the use of intuition as a clinical tool is examined.

  4. [THE LEGAL STATUS OF ELEMENTS AND PRODUCTS OF THE HUMAN BODY: OBJECT OR SUBJECT OF LAW?].

    PubMed

    De Lameigné, Anaïs Gayte-Papon

    2015-07-01

    The 2004 Act on bioethics has amended the 1994 Act regarding the donation and the use of elements and products of the human body, medically assisted procreation and prenatal diagnosis. The very purpose of these laws led the legislature not to attempt the summa divisio order distinguishing the object to the person. The analysis of bioethical laws reveals the consecration of the non-commercialization of the human body at the expense of its unavailability. Bioethical laws appear to be catalysts of biological scientific advances releasing the status of the components and the products of the human body while framing it. By limiting scientific opportunities, they prevent human beings from trying to play the sorcerer's apprentice.

  5. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical, geochronological, and isotopic data are necessary to provide definitive evidence.

  6. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical, geochronological, and isotopic data are necessary to provide definitive evidence.

  7. Theoretical studies on the electronic structures and photoelectron spectra of tri-rhenium oxide clusters: Re3O(n)(-) and Re3O(n) (n=1-6).

    PubMed

    Zhou, Qi; Gong, Wei-Chao; Xie, Lu; Zheng, Cun-Gong; Zhang, Wei; Wang, Bin; Zhang, Yong-Fan; Huang, Xin

    2014-01-03

    Density functional theory (DFT) calculations are performed to study the structural and electronic properties of tri-rhenium oxide clusters Re3On(-/0) (n=1-6). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level are carried out to search for the global minima for both the anions and the neutrals. For the anions, the first two O atoms prefer the same corner position of a Re3 triangle. Whereas, Re3O3(-) possesses a C2v symmetry with one bridging and two terminal O atoms. The next three O atoms (n=4-6) are adding sequentially on the basis of Re3O3(-) motif, i.e., adding one terminal O atom for Re3O4(-), one terminal and one bridging O atoms for Re3O5(-), and one terminal and two bridging O atoms for Re3O6(-), respectively. Their corresponding neutral species are similar to the anions in geometry except Re3O4 and Re3O5. Molecular orbital analyses are employed to investigate the chemical bonding and structural evolution in these tri-rhenium oxide clusters. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Views of Classroom Teachers Concerning Students with Reading Difficulties

    ERIC Educational Resources Information Center

    Kayabasi, Zehra Esra Ketenoglu

    2017-01-01

    This study aimed to try to understand the views and attitudes of classroom teachers concerning students with reading difficulties. Data was collected using the semi-structured interview technique, which is among the qualitative data collection techniques. The researcher prepared a semi-structured interview with 5 questions to be addressed to…

  9. The nuclear battery

    NASA Astrophysics Data System (ADS)

    Kozier, K. S.; Rosinger, H. E.

    The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.

  10. Investigating the complex mechanism of B migration in a magnetic-tunnel-junction trilayer structure—a combined study using XPS and TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ji, Rong; Ter Lim, Sze; Tran, Michael N.; Wang, Chen Chen; Ernult, Franck

    2016-02-01

    The magnetic-tunnel-junction (MTJ) structure is the core of many important devices, such as magnetic recording head and STT-RAM. CoFeB/MgO/CoFeB tri-layer thin-film stack is a widely researched MTJ structure. In this tri-layer, the functional property of the MTJ, i.e. its TMR ratio, is critically dependent on the crystal orientation of the CoFe grains. In order for the desired (1 0 0) out of plane texture to develop in the CoFeB layers, B needs to be engineered to be expelled out of these CoFeB layers, and diffuse or migrate into the adjacent layers. Ta is usually used as a seed layer adjacent to the MTJ structure. In this work, we investigated the important B-migration mechanisms within this MTJ structure through a combined XPS/TOF-SIMS study. Specifically, we tried to elucidate the possible physical/chemical interactions between the B and Ta that could happen with different film stack designs. Previous works have shown that there might be two possible B-migration mechanisms. One mechanism is direct B diffusion into the adjacent Ta layer during annealing. The other B-migration mechanism is through the formation of TaBOx species, in which B could be carried out by the Ta diffusion. In particular, through studying a series of film stacks, we discussed the circumstances under which one of these B-migration mechanisms becomes dominant. Furthermore, we discussed how these B-migration mechanisms facilitated the B expulsion in a common MTJ structure.

  11. One Way or Another

    NASA Technical Reports Server (NTRS)

    Zazzali, Christian

    2003-01-01

    Even experienced project managers can t anticipate every potential problem. Part of planning ahead should include allowing oneself the flexibility to rethink the plan and improvise if necessary. Unique solutions to problems sometimes create a set of new problems unique in nature as well. In dealing with sudden changes in planning, try to consider what other elements of the project will be affected, but don t second guess yourself into a state of inaction because you can t anticipate every contingency.

  12. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments.

    PubMed

    Regier, Mary C; Maccoux, Lindsey J; Weinberger, Emma M; Regehr, Keil J; Berry, Scott M; Beebe, David J; Alarid, Elaine T

    2016-08-01

    Heterotypic interactions in cancer microenvironments play important roles in disease initiation, progression, and spread. Co-culture is the predominant approach used in dissecting paracrine interactions between tumor and stromal cells, but functional results from simple co-cultures frequently fail to correlate to in vivo conditions. Though complex heterotypic in vitro models have improved functional relevance, there is little systematic knowledge of how multi-culture parameters influence this recapitulation. We therefore have employed a more iterative approach to investigate the influence of increasing model complexity; increased heterotypic complexity specifically. Here we describe how the compartmentalized and microscale elements of our multi-culture device allowed us to obtain gene expression data from one cell type at a time in a heterotypic culture where cells communicated through paracrine interactions. With our device we generated a large dataset comprised of cell type specific gene-expression patterns for cultures of increasing complexity (three cell types in mono-, co-, or tri-culture) not readily accessible in other systems. Principal component analysis indicated that gene expression was changed in co-culture but was often more strongly altered in tri-culture as compared to mono-culture. Our analysis revealed that cell type identity and the complexity around it (mono-, co-, or tri-culture) influence gene regulation. We also observed evidence of complementary regulation between cell types in the same heterotypic culture. Here we demonstrate the utility of our platform in providing insight into how tumor and stromal cells respond to microenvironments of varying complexities highlighting the expanding importance of heterotypic cultures that go beyond conventional co-culture.

  13. The Study of Factors that Influence the Entrepreneurship in the Growing Energy Market

    NASA Astrophysics Data System (ADS)

    Kinias, Ioannis G.

    2009-08-01

    In this paper, we are trying to study the field of private enterprise in the sector of Energy in Greece. The changes in the institutional and financial substructures, in the last decade, have supported the materialization of an important number of investment plans. The investor's interest in the energy sector has been expressed up to now in the utilisation of Renewable Sources of Energy (RSE), the substitution of "traditional" fuels with clean fuels (natural gas, liquid gas), the implementation of electricity's co-production, as well as in the saving of energy. The goal of that study is to answer specific questions concerning the entrepreneurship in the Greek Energy sector. Who the investors are in the Greek energy market and which their traits are? We are trying to analyse the procedures which must be followed for the preparation of an investment plan. Moreover we investigate the financial factors, such as the economic growth and the employment that can affect the entrepreneurship. The sources of finance and the role of Small and Medium Enterpises in the energy sector are also very important elements in our research. Finally we are trying to analyse the international perspective of entrepreneurship and the mechanism of how the global circumstances in the field of energy can affect the inland product of energy.

  14. Time-reversal imaging for classification of submerged elastic targets via Gibbs sampling and the Relevance Vector Machine.

    PubMed

    Dasgupta, Nilanjan; Carin, Lawrence

    2005-04-01

    Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.

  15. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.

  16. The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation

    PubMed Central

    2004-01-01

    The predominant (>90%) low-molecular-mass polyphenol was isolated from the leaves of the resurrection plant Myrothamnus flabellifolius and identified to be 3,4,5 tri-O-galloylquinic acid using 1H and 13C one- and two-dimensional NMR spectroscopy. The structure was confirmed by mass spectrometric analysis. This compound was present at high concentrations, 44% (by weight) in hydrated leaves and 74% (by weight) in dehydrated leaves. Electron microscopy of leaf material fixed with glutaraldehyde and caffeine demonstrated that the polyphenols were localized in large vacuoles in both hydrated and dehydrated leaves. 3,4,5 Tri-O-galloylquinic acid was shown to stabilize an artificial membrane system, liposomes, against desiccation if the polyphenol concentration was between 1 and 2 μg/μg phospholipid. The phase transition of these liposomes observed at 46 °C was markedly diminished by the presence of 3,4,5 tri-O-galloylquinic acid, suggesting that the presence of the polyphenol maintained the membranes in the liquid crystalline phase at physiological temperatures. 3,4,5 Tri-O-galloylquinic acid was also shown to protect linoleic acid against free radical-induced oxidation. PMID:15355309

  17. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    NASA Astrophysics Data System (ADS)

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  18. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  19. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  20. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  1. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  2. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  3. Structural and Functional Characterization of the TRI101 Trichothecene 3-O-Acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: KINETIC INSIGHTS TO COMBATING FUSARIUM HEAD BLIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Graeme S.; McCormick, Susan P.; Rayment, Ivan

    2008-06-30

    Fusarium head blight (FHB) is a plant disease with serious economic and health impacts. It is caused by fungal species belonging to the genus Fusarium and the mycotoxins they produce. Although it has proved difficult to combat this disease, one strategy that has been examined is the introduction of an indigenous fungal protective gene into cereals such as wheat barley and rice. Thus far the gene of choice has been tri101 whose gene product catalyzes the transfer of an acetyl group from acetyl coenzyme A to the C3 hydroxyl moiety of several trichothecene mycotoxins. In vitro this has been shownmore » to reduce the toxicity of the toxins by {approx}100-fold but has demonstrated limited resistance to FHB in transgenic cereal. To understand the molecular basis for the differences between in vitro and in vivo resistance the three-dimensional structures and kinetic properties of two TRI101 orthologs isolated from Fusarium sporotrichioides and Fusarium graminearum have been determined. The kinetic results reveal important differences in activity of these enzymes toward B-type trichothecenes such as deoxynivalenol. These differences in activity can be explained in part by the three-dimensional structures for the ternary complexes for both of these enzymes with coenzyme A and trichothecene mycotoxins. The structural and kinetic results together emphasize that the choice of an enzymatic resistance gene in transgenic crop protection strategies must take into account the kinetic profile of the selected protein.« less

  4. Developing Scientific Reasoning Through Drawing Cross-Sections

    NASA Astrophysics Data System (ADS)

    Hannula, K. A.

    2012-12-01

    Cross-sections and 3D models of subsurface geology are typically based on incomplete information (whether surface geologic mapping, well logs, or geophysical data). Creating and evaluating those models requires spatial and quantitative thinking skills (including penetrative thinking, understanding of horizontality, mental rotation and animation, and scaling). However, evaluating the reasonableness of a cross-section or 3D structural model also requires consideration of multiple possible geometries and geologic histories. Teaching students to create good models requires application of the scientific methods of the geosciences (such as evaluation of multiple hypotheses and combining evidence from multiple techniques). Teaching these critical thinking skills, especially combined with teaching spatial thinking skills, is challenging. My Structural Geology and Advanced Structural Geology courses have taken two different approaches to developing both the abilities to visualize and to test multiple models. In the final project in Structural Geology (a 3rd year course with a pre-requisite sophomore mapping course), students create a viable cross-section across part of the Wyoming thrust belt by hand, based on a published 1:62,500 geologic map. The cross-section must meet a number of geometric criteria (such as the template constraint), but is not required to balance. Each student tries many potential geometries while trying to find a viable solution. In most cases, the students don't visualize the implications of the geometries that they try, but have to draw them and then erase their work if it does not meet the criteria for validity. The Advanced Structural Geology course used Midland Valley's Move suite to test the cross-sections that they made in Structural Geology, mostly using the flexural slip unfolding algorithm and testing whether the resulting line lengths balanced. In both exercises, students seemed more confident in the quality of their cross-sections when the sections were easy to visualize. Students in Structural Geology are proud of their cross-sections once they were inked and colored. Students in Advanced Structural Geology were confident in their digitized cross-sections, even before they had tried to balance them or had tested whether they were kinematically plausible. In both cases, visually attractive models seemed easier to believe. Three-dimensional models seemed even more convincing: if students could visualize the model, they also thought it should work geometrically and kinematically, whether they had tested it or not. Students were more inclined to test their models when they had a clear set of criteria that would indicate success or failure. However, future development of new ideas about the kinematic and/or mechanical development of structures may force the students to also decide which criteria fit their problem the best. Combining both kinds of critical thinking (evaluating techniques and evaluating their results) in the same assignment may be challenging.

  5. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture.

    PubMed

    Reynolds, Olivia L; Padula, Matthew P; Zeng, Rensen; Gurr, Geoff M

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels.

  6. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture

    PubMed Central

    Reynolds, Olivia L.; Padula, Matthew P.; Zeng, Rensen; Gurr, Geoff M.

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a “beneficial substance”. This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels. PMID:27379104

  7. Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure

    NASA Astrophysics Data System (ADS)

    Nazri, N. A.; Sani, M. S. M.

    2017-10-01

    Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.

  8. Isolation of a new anti-inflammatory 20, 21, 22, 23, 24, 25, 26, 27-octanorcucurbitacin-type triterpene from Ibervillea sonorae.

    PubMed

    Jardón-Delgado, Angel; Magos-Guerrero, Gil Alfonso; Martínez-Vázquez, Mariano

    2014-01-01

    A new cucurbitane-type triterpene, 20, 21, 22, 23, 24, 25, 26, 27-octanorcucurbita-5-ene-3, 11, 16-trione (1), named kinoin D, was isolated from the roots of the medicinal plant Ibervillea sonorae, (wereque). The structure of 1 was established on the basis of extensive NMR and MS studies. In addition, the known kinoins B (3) and C (5) were isolated, as were 16alpha-20,25-trihydroxy-3alpha-(2-O-alpha-L-rhamnopyranosiyl-D-glucopyranosyloxy)-(10alpha)-cucurbit-5-en-11,22-dione (6), (22S)-16alpha,22-diacetoxy-20,25-dihydroxy-3alpha-[3,4,6-tri-O-acetyl-2-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl)-beta-glucopyranosyl]-(10alpha)-cucurbita-5,23t-dien-11-one (7) and 16alpha-acetoxy-20,25-dihydroxy-3alpha-[3,4,6-tri-O-acetyl-2-O-(2,3,4,-tri-O-acetyl-alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl]-(10alpha)-cucurbita-5-ene-11,22-dione (8). Compound 1 exhibited anti-inflammatory activity in TPA-induced edema in mice.

  9. Implementing an Applied Science Program

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and to the immediate point. As another example, the DSS agency and it personnel are treated as integral to the effort at every step. Thus, their ways of doing things, their problems and their assets become part of the solution. MSFC also manages the Applied Science work' within a strategic framework.' First, the scientists are necessarily at the core of all of this work as well as all of the work within the larger' organization. We therefore strive to keep a roughly 50-50 balance between the work done on tasks funded directly by the research side of NASA's Science Mission Directorate and funding from the applied side. Done at both the organization level and the level of the individual, this keeps the scientist both happy and productive over the long term. We also try diligently to remove as much burden from the scientist as practical by employing people such as the authors and others to do tasks not requiring; scientific knowledge. We also have designed our effort to take full use of external partners. We actively seek and support, including fund, people from multiple organizations to join us as committed collaborators. In this we use today's money and today's problem to help us diversify and strengthen for tomorrow. MSFC also considers the Applied Science work holistically. Each element is viewed as a step in a larger process. At a management level we can chose to emphasize or encourage certain areas which service long term goals. Thus, if we think work in a particular area should be developed, we can start with the smaller, less costly elements and grow.

  10. Displaying the results of three-dimensional analysis using GRAPE. Part one: vector graphics. [In FORTRAN for CDC 7600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.E.

    1979-10-01

    GRAPE is a display program for three-dimensional polygon and polyhedral models. It can produce line-drawing and continuous-tone black and white or color images in still frame or movie mode. The code was written specifically to be a post-processor for finite element and finite difference analyses. It runs on the CDC 7600 computer, and is compiled with the LLL FTN system. The allocation of storage is dynamic. There are presently three data paths into the code. The first is the binary inerface from the analyses codes and this with the other databases is described. The second data path is the SAMPPmore » format, and the last is the MOVIE format. The code structure is described first; then the commands are discussed in general terms to try to give the user some feel for what they do. The next section deals with the exact format of the commands by overlay. Then examples are given and discussed. Next, the various output options are covered. 57 figures. (RWR)« less

  11. Economic organization of medicine and the Committee on the Costs of Medical Care.

    PubMed Central

    Perkins, B B

    1998-01-01

    Recent strategies in managed care and managed competition illustrate how health care reforms may reproduce the patterns of economic organization of their times. Such a reform approach is not a new development in the United States. The work of the 1927-1932 Committee on the Costs of Medical Care exemplifies an earlier effort that applied forms of economic organization to medical care. The committee tried to restructure medicine along lines consistent with its economic environment while attributing its models variously to science, profession, and business. Like current approaches, the committee's reports defined costs as the major problem and business models of organization as the major solution. The reports recommended expanded financial management and group medicine, which would include growth in self-supporting middle-class services such as fee clinics and middle-rate hospital units. Identifying these elements as corporate practice of medicine, the American Medical Association-based minority dissented from the final report in favor of conserving individual entrepreneurial practice. This continuum in forms of economic organization has limited structural reform strategies in medicine for the remainder of the century. PMID:9807547

  12. Reutilization of the expired tetracycline for lithium ion battery anode.

    PubMed

    Hou, Hongying; Dai, Zhipeng; Liu, Xianxi; Yao, Yuan; Liao, Qishu; Yu, Chengyi; Li, Dongdong

    2018-07-15

    Waste antibiotics into the natural environment are the large challenges to the environmental protection and the human health, and the unreasonable disposal of the expired antibiotics is a major pollution source. Herein, to achieve the innocent treatment and the resource recovery, the expired tetracycline was tried to be reutilized as the electrode active material in lithium ion battery (LIB) for the first time. The micro-structure and element component of the expired tetracycline were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the corresponding electrochemical performances were also investigated by galvanostatic charge/discharge and cyclic voltammetry (CV). To be satisfactory, the expired-tetracycline-based electrode delivered the initial specific discharge capacity of 371.6mAh/g and the reversible specific capacity of 304.1mAh/g after 200cycles. The decent results will not only offer an effective strategy to recycle the expired tetracycline, but also shed a new light on the cyclic economy and the sustainable development. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Synthesis, Spectrofluorometric Studies, Micellization and non Linear Optical Properties of Blue Emitting Quinoline (AMQC) Dye.

    PubMed

    Afzal, S M; Asiri, Abdullah M; Razvi, M A N; Bakry, Ahmed H; Khan, Salman A; Zayed, Mohie E M

    2016-03-01

    Blue emitting 2-amino-4-(3, 4, 5-tri methoxyphenyl)-9-methoxy-5,6 dihydrobenzo[f]isoquinoline-1-carbonitrile (AMQC) dye was synthesized by one-pot multicomponent reactions (MCRs) of 3,4,5-trimethoxybenzaldehyd, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic and elemental analysis of synthesized AMQC was in good agreement with their chemical structures. Fluorescence polarity study demonstrated that AMQC was sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of AMQC. Dye undergoes solubilization in different micelles and may be used as a quencher and a probe to determine the critical micelle concentration (CMC) of SDS and CTAB. Nonlinear optical parameters of AMQC dye shows relatively lower nonlinear refractive index and nonlinear absorption coefficient at the power levels. Variation of n2 with concentration is linear in the concentration range used in the present study.

  14. Arrhythmias and hemodialysis: role of potassium and new diagnostic tools.

    PubMed

    Buemi, Michele; Coppolino, Giuseppe; Bolignano, Davide; Sturiale, Alessio; Campo, Susanna; Buemi, Antoine; Crascì, Eleonora; Romeo, Adolfo

    2009-01-01

    Cardiovascular diseases represent the main causes of death in patients affected by renal failure, and arrhythmias are frequently observed in patients undergoing hemodialysis. Dialytic treatment per se can be considered as an arrhythmogenic stimulus; moreover, uraemic patients are characterized by a "pro-arrhythmic substrate" because of the high prevalence of ischaemic heart disease, left ventricular hypertrophy and autonomic neuropathy. One of the most important pathogenetic element involved in the onset of intra-dialytic arrhythmias is the alteration in electrolytes concentration, particularly calcium and potassium. It may be very useful to monitor the patient's cardiac activity during the whole hemodilaytic session. Nevertheless, the application of an extended intradialytic electrocardiographic monitoring is not simple because of several technical and structural impairments. We tried to overcome these difficulties using Whealthy, a wearable system consisting in a t-shirt composed of conductors and piezoresistive materials, integrated to form fibers and threads connected to tissutal sensors, electrodes, and connectors. ECG and pneumographic impedance signals are acquired by the electrodes in the tissue, and the data are registered by a small computer and transmitted via GPRS or Bluetooth.

  15. Deep Subaru Hyper Suprime-Cam Observations of Milky Way Satellites Columba I and Triangulum II

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Muñoz, Ricardo R.; Spekkens, Kristine; Willman, Beth; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay

    2017-12-01

    We present deep, wide-field Subaru Hyper Suprime-Cam photometry of two recently discovered satellites of the Milky Way (MW): Columba I (Col I) and Triangulum II (Tri II). The color-magnitude diagrams of both objects point to exclusively old and metal-poor stellar populations. We re-derive structural parameters and luminosities of these satellites, and find {M}{{V},{Col}{{I}}}=-4.2+/- 0.2 for Col I and {M}{{V},{Tri}{II}}=-1.2+/- 0.4 for Tri II, with corresponding half-light radii of {r}{{h},{Col}{{I}}}=117+/- 17 pc and {r}{{h},{Tri}{II}}=21+/- 4 pc. The properties of both systems are consistent with observed scaling relations for MW dwarf galaxies. Based on archival data, we derive upper limits on the neutral gas content of these dwarfs, and find that they lack H I, as do the majority of observed satellites within the MW virial radius. Neither satellite shows evidence of tidal stripping in the form of extensions or distortions in matched-filter stellar density maps or surface-density profiles. However, the smaller Tri II system is relatively metal-rich for its luminosity (compared to other MW satellites), possibly because it has been tidally stripped. Through a suite of orbit simulations, we show that Tri II is approaching pericenter of its eccentric orbit, a stage at which tidal debris is unlikely to be seen. In addition, we find that Tri II may be on its first infall into the MW, which helps explain its unique properties among MW dwarfs. Further evidence that Tri II is likely an ultra-faint dwarf comes from its stellar mass function, which is similar to those of other MW dwarfs. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  16. Theorising big IT programmes in healthcare: strong structuration theory meets actor-network theory.

    PubMed

    Greenhalgh, Trisha; Stones, Rob

    2010-05-01

    The UK National Health Service is grappling with various large and controversial IT programmes. We sought to develop a sharper theoretical perspective on the question "What happens - at macro-, meso- and micro-level - when government tries to modernise a health service with the help of big IT?" Using examples from data fragments at the micro-level of clinical work, we considered how structuration theory and actor-network theory (ANT) might be combined to inform empirical investigation. Giddens (1984) argued that social structures and human agency are recursively linked and co-evolve. ANT studies the relationships that link people and technologies in dynamic networks. It considers how discourses become inscribed in data structures and decision models of software, making certain network relations irreversible. Stones' (2005) strong structuration theory (SST) is a refinement of Giddens' work, systematically concerned with empirical research. It views human agents as linked in dynamic networks of position-practices. A quadripartite approcach considers [a] external social structures (conditions for action); [b] internal social structures (agents' capabilities and what they 'know' about the social world); [c] active agency and actions and [d] outcomes as they feed back on the position-practice network. In contrast to early structuration theory and ANT, SST insists on disciplined conceptual methodology and linking this with empirical evidence. In this paper, we adapt SST for the study of technology programmes, integrating elements from material interactionism and ANT. We argue, for example, that the position-practice network can be a socio-technical one in which technologies in conjunction with humans can be studied as 'actants'. Human agents, with their complex socio-cultural frames, are required to instantiate technology in social practices. Structurally relevant properties inscribed and embedded in technological artefacts constrain and enable human agency. The fortunes of healthcare IT programmes might be studied in terms of the interplay between these factors. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Evaluation Criteria and Results of Full Scale Testing of Bridge Abutment Made from Reinforced Soil

    NASA Astrophysics Data System (ADS)

    Hildebrand, Maciej; Rybak, Jarosław

    2017-10-01

    Structures made of reinforced soil can be evaluated for their safety based on a load testing. Measurement results are essentially evaluated by displacements of surcharge (mainly in vertical direction) and facing elements (mainly in horizontal direction). Displacements are within several tenths to several millimetres and they can be taken by common geodetic equipment. Due to slow soil consolidation (progress of displacements) under constant load, observations should be made over several days or even weeks or months. A standard procedure of heating of geotextiles, used in laboratory conditions to simulate long term behaviour cannot be used in a natural scale. When the load is removed, the soil unloading occurs. Both the progress of displacements and soil unloading after unloading of the structure are the key presumptions for evaluating its safety (stability). Assessment of measuring results must be preceded by assuming even the simplest model of the structure, so as it could be possible to estimate the expected displacements under controlled load. In view of clearly random nature of soil parameters of retaining structure composed of reinforced soil and due to specific erection technology of reinforced soil structure, the assessment of its condition is largely based on expert’s judgment. It is an essential and difficult task to interpret very small displacements which are often enough disturbed by numerous factors like temperature, insolation, precipitation, vehicles, etc. In the presented paper, the authors tried to establish and juxtapose some criteria for a load test of a bridge abutment and evaluate their suitability for decision making. Final remarks are based on authors experience from a real full scale load test.

  18. On a high-potential variable flexural stiffness device

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Gerlach, Gerald

    2013-05-01

    There are great efforts in developing effective composite structures for lightweight constructions for nearly every field of engineering. This concerns for example aeronautics and spacecrafts, but also automotive industry and energy harvesting applications. Modern concepts of lightweight components try to make use of structures with properties which can be adjusted in a controllable was. However, classic composite materials can only slightly adapt to varying environmental conditions because most materials, like carbon or glass-fiber composites show properties which are time-constant and not changeable. This contribution describes the development, the potential and the limitations of novel smart, self-controlling structures which can change their mechanical properties - e.g. their flexural stiffness - by more then one order of magnitude. These structures use a multi-layer approach with a 10-layer stack of 0.75 mm thick polycarbonate. The set-up is analytically described and its mechanical behavior is predicted by finite element analysis done with ABAQUS. The layers are braided together by an array of shape memory alloy (SMA) wires, which can be activated independently. Depending on the temperature applied by the electrical current flowing through the wires and the corresponding contraction the wires can tightly clamp the layers so that they cannot slide against each other due to friction forces. In this case the multilayer acts as rigid beam with high stiffness. If the friction-induced shear stress is smaller than a certain threshold, then the layers can slide over each other and the multilayer becomes compliant under bending load. The friction forces between the layers and, hence, the stiffness of the beam is controlled by the electrical current through the wires. The more separate parts of SMA wires the structure has the larger is the number of steps of stiffness changes of the flexural beam.

  19. Relationship between Online Learning Readiness and Structure and Interaction of Online Learning Students

    ERIC Educational Resources Information Center

    Demir Kaymak, Zeliha; Horzum, Mehmet Baris

    2013-01-01

    Current study tried to determine whether a relationship exists between readiness levels of the online learning students for online learning and the perceived structure and interaction in online learning environments. In the study, cross sectional survey model was used. The study was conducted with 320 voluntary students studying online learning…

  20. Biodiversity and intentional management: a renaissance pathway.

    Treesearch

    Sally Duncan

    1998-01-01

    A project in western Washington tries to mimic natural disturbance to create forest structure similar to late-seral stages. A model was developed to identify pathways to achieve this structure with four indices: capacity to support vertebrate diversity, forest floor function, ecological productivity based on tree-using rodents, and production of deer and elk....

  1. Application of Foldcore Sandwich Structures in Helicopter Subfloor Energy Absorption Structure

    NASA Astrophysics Data System (ADS)

    Zhou, H. Z.; Wang, Z. J.

    2017-10-01

    The intersection element is an important part of the helicopter subfloor structure. The numerical simulation model of the intersection element is established and the crush simulation is conducted. The simulation results agree well with the experiment results. In order to improve the buffering capacity and energy-absorbing capacity, the intersection element is redesigned. The skin and the floor in the intersection element are replaced with foldcore sandwich structures. The new intersection element is studied using the same simulation method as the typical intersection element. The analysis result shows that foldcore can improve the buffering capacity and the energy-absorbing capacity, and reduce the structure mass.

  2. University Students' Knowledge Structures and Informal Reasoning on the Use of Genetically Modified Foods: Multidimensional Analyses

    NASA Astrophysics Data System (ADS)

    Wu, Ying-Tien

    2013-10-01

    This study aims to provide insights into the role of learners' knowledge structures about a socio-scientific issue (SSI) in their informal reasoning on the issue. A total of 42 non-science major university students' knowledge structures and informal reasoning were assessed with multidimensional analyses. With both qualitative and quantitative analyses, this study revealed that those students with more extended and better-organized knowledge structures, as well as those who more frequently used higher-order information processing modes, were more oriented towards achieving a higher-level informal reasoning quality. The regression analyses further showed that the "richness" of the students' knowledge structures explained 25 % of the variation in their rebuttal construction, an important indicator of reasoning quality, indicating the significance of the role of students' sophisticated knowledge structure in SSI reasoning. Besides, this study also provides some initial evidence for the significant role of the "core" concept within one's knowledge structure in one's SSI reasoning. The findings in this study suggest that, in SSI-based instruction, science instructors should try to identify students' core concepts within their prior knowledge regarding the SSI, and then they should try to guide students to construct and structure relevant concepts or ideas regarding the SSI based on their core concepts. Thus, students could obtain extended and well-organized knowledge structures, which would then help them achieve better learning transfer in dealing with SSIs.

  3. Children's wishes: holistic revelations in art.

    PubMed

    Ewing, Bonnie

    2008-06-01

    Expressions of children who have life-threatening illnesses are revealed in their art that provides a way for adults to know how they are experiencing their world. The language of children is unsophisticated; however, they speak meaningfully through their drawings. Children use symbols and images to represent elements in circumstances they are trying to understand. The purpose of this article is to show how the drawings of children with life-threatening illnesses who had special wishes fulfilled reveal meaning that translates into holistic practices.

  4. Success in Opposite Direction: Strategic Culture and the French Experience in Indochina, the Suez, and Algeria, 1945-1962

    DTIC Science & Technology

    2015-05-21

    5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) MAJ Coley D. Tyler 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...American political scientist Jack Snyder introduced strategic culture in 1977 while trying to explain the differences in Soviet and American nuclear...Strategic Cultures Curriculum Project (McLean, VA: SAIC, 2006), 3. 3 how belligerents could act in a crisis.9 The US Army cannot underestimate the

  5. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (10th) Held in New Orleans, Louisiana on 13-14 May 1982

    DTIC Science & Technology

    1982-11-01

    Service code exceeded operational code in the ratio of 10 : I. No redundant information was required. It was modular. Internal parts of the program...to NASA’s analyses. We were to try to find an existing finite element program of a quality that would be worth recommending to all NASA Centers. We...Distinct manuals were published for users, programmers, theory, and demonstration problems. 3 It abounded with service code to provide user conveniences

  6. Selection of contact bearing couple materials for hip prosthesis using finite element analysis under static conditions

    NASA Astrophysics Data System (ADS)

    Arirajan, K. A.; Chockalingam, K.; Vignesh, C.

    2018-04-01

    Implants are the artificial parts to replace the missing bones or joints in human anatomy to give mechanical support. Hip joint replacement is an important issue in orthopaedic surgery. The main concern limiting the long-run success of the total hip replacement is the limited service life. Hip replacement technique is widely used in replacing the femur head and acetabular cup by materials that are highly biocompatible. The success of the artificial hip replacement depends upon proper material selection, structure, and shape of the hip prosthesis. Many orthopaedic analyses have been tried with different materials, but ended with partial success on the application side. It is a critical task for selecting the best material pair in the hip prosthesis design. This work develops the finite element analysis of an artificial hip implant to study highest von Mises stress, contact pressure and elastic strain occurs for the dissimilar material combination. The different bearing couple considered for the analysis are Metal on Metal, Metal on Plastic, Metal on Ceramic, Ceramic on Plastic, Ceramic on Ceramic combinations. The analysis is carried out at different static positions of a human (i.e) standing, sitting. The results reveals that the combination with metal in contact with plastic (i.e) Titanium femoral head paired with Ultra High Molecular Weight Poly Ethylene acetabular cup reduces maximum von Mises stress and also it gives lowest contact pressure than other combination of bearing couples.

  7. Self-Alining, Latching Joint For Folding Structural Elements

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Wallsom, R. E.

    1982-01-01

    Structural column elements assembled quickly and easily with aid of new center joint. Joint alines column elements automatically and fastens them together securely. Tapered half columns are stacked like paper cups, unfolded, and connected to other similar elements to form truss structures.

  8. Metal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexes.

    PubMed

    Niskanen, Mika; Hirva, Pipsa; Haukka, Matti

    2012-05-01

    Density functional theory (DFT) methodology was used to examine the structural properties of linear metal string complexes: [Ru(3)(dpa)(4)X(2)] (X = Cl(-), CN(-), NCS(-), dpa = dipyridylamine(-)), [Ru(5)(tpda)(4)Cl(2)], and hypothetical, not yet synthesized complexes [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] (tpda = tri-α-pyridyldiamine(2-), tpta = tetra-α-pyridyltriamine(3-), ppta = penta-α-pyridyltetraamine(4-)). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier molecular orbitals, and Bader's quantum theory of atoms in molecules (QTAIM) was used to study the interactions between ruthenium atoms. The electron density was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] string complexes.

  9. Crystal structure of 3-{1′-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]ferrocenyl}-4-bromo­thio­phene

    PubMed Central

    Poppitz, Elisabeth A.; Korb, Marcus; Lang, Heinrich

    2014-01-01

    The mol­ecular structure of the title compound, [Fe(C9H6BrS)(C13H7F6)], consists of a ferrocene backbone with a bis­(tri­fluoro­meth­yl)phenyl group at one cyclo­penta­dienyl ring and a thio­phene heterocycle at the other cyclo­penta­dienyl ring. The latter is disordered over two sets of sites in a 0.6:0.4 ratio. In the crystal structure, intra­molecular π–π inter­actions between the thienyl and the phenyl substituent [centroid–centroid distance 3.695 (4) Å] and additional weak T-shaped π–π inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl ring [4.688 (6) Å] consolidate the crystal packing. PMID:25484662

  10. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays.

    PubMed

    Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei

    2016-02-15

    The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.

  11. Advances and trends in structures and dynamics; Proceedings of the Symposium, Washington, DC, October 22-25, 1984

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Editor); Hayduk, R. J. (Editor)

    1985-01-01

    Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.

  12. Design and development of progressive tool for manufacturing washer

    NASA Astrophysics Data System (ADS)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  13. ["Hannibal ante portas" -- technical development and health care reorganization].

    PubMed

    Fülesdi, Béla; Velkey, György

    2011-11-20

    Authors intend to analyze the impact of medical technical development on the Hungarian health care system and try to draw attention to potentially necessary measures for professional and structural health care reorganization.

  14. Inside Titan Author Concept

    NASA Image and Video Library

    2012-06-28

    This artist concept shows a possible scenario for the internal structure of Titan, as suggested by data from NASA Cassini spacecraft. Scientists have been trying to determine what is under Titan organic-rich atmosphere and icy crust.

  15. Synthesis and the crystal and molecular structures of (H{sub 3}L . Cl)[CoCl{sub 4}] and H{sub 2}L[CuBr{sub 4}] (L is 2,4,6-Tri(N,N-dimethylamino)methylphenol)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalchukova, O. V., E-mail: okovalchukova@mail.ru; Stash, A. I.; Strashnova, S. B.

    2010-05-15

    The complex compounds (H{sub 3}L . Cl)[CoCl{sub 4}] (I) and H{sub 2}L[CuBr{sub 4}] (II), where L is 2,4,6-tri(N,N-dimethylamino)methylphenol, were isolated in the crystalline state and studied by X-ray diffraction. The organic cations were found to be outer-sphere ligands. All three nitrogen atoms of the tertiary amino groups are protonated. In compound I, the H{sub 3}L{sup 3+} cation exists as the cis tautomer. In compound II, the H{sub 2}L{sup 2+} dication exists as the trans isomer. In the crystal structure, the dications are arranged in layers via hydrogen bonds.

  16. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  17. Tri-linear interpolation-based cerebral white matter fiber imaging

    PubMed Central

    Jiang, Shan; Zhang, Pengfei; Han, Tong; Liu, Weihua; Liu, Meixia

    2013-01-01

    Diffusion tensor imaging is a unique method to visualize white matter fibers three-dimensionally, non-invasively and in vivo, and therefore it is an important tool for observing and researching neural regeneration. Different diffusion tensor imaging-based fiber tracking methods have been already investigated, but making the computing faster, fiber tracking longer and smoother and the details shown clearer are needed to be improved for clinical applications. This study proposed a new fiber tracking strategy based on tri-linear interpolation. We selected a patient with acute infarction of the right basal ganglia and designed experiments based on either the tri-linear interpolation algorithm or tensorline algorithm. Fiber tracking in the same regions of interest (genu of the corpus callosum) was performed separately. The validity of the tri-linear interpolation algorithm was verified by quantitative analysis, and its feasibility in clinical diagnosis was confirmed by the contrast between tracking results and the disease condition of the patient as well as the actual brain anatomy. Statistical results showed that the maximum length and average length of the white matter fibers tracked by the tri-linear interpolation algorithm were significantly longer. The tracking images of the fibers indicated that this method can obtain smoother tracked fibers, more obvious orientation and clearer details. Tracking fiber abnormalities are in good agreement with the actual condition of patients, and tracking displayed fibers that passed though the corpus callosum, which was consistent with the anatomical structures of the brain. Therefore, the tri-linear interpolation algorithm can achieve a clear, anatomically correct and reliable tracking result. PMID:25206524

  18. Crystal structure of 2,2′′-bis­(2,7-di­chloro-9-hy­droxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl tri­ethyl­amine trisolvate

    PubMed Central

    Klien, Henrik; Seichter, Wilhelm; Weber, Edwin

    2015-01-01

    In the title solvate, C44H26Cl4O2·3C6H15N, the asymmetric part of the unit cell comprises two halves of the diol mol­ecules, 2,2′′-bis­(2,7-di­chloro-9-hy­droxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl, and three mol­ecules of tri­ethyl­amine, i. e. the diol mol­ecules are located on crystallographic symmetry centres. Two of the solvent mol­ecules are disordered over two positions [occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3)]. In the diol mol­ecules, the outer rings of the 1,1′:4′,1′′-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05 (8) and 82.28 (8)°. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2′′ of the terphenyl moiety induces a ‘folded’ geometry which is stabilized by intra­molecular C—H⋯O hydrogen bonds and π–π stacking inter­actions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid–centroid distances = 3.559 (1) and 3.562 (1) Å]. The crystal is composed of 1:2 complex units, in which the solvent mol­ecules are associated with the diol mol­ecules via O—H⋯N hydrogen bonds, while the remaining solvent mol­ecule is linked to the host by a C—H⋯N hydrogen bond. The given pattern of inter­molecular inter­actions results in formation of chain structures extending along [010]. PMID:26870400

  19. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park

    Treesearch

    Van R. Kane; Malcolm P. North; James A. Lutz; Derek J. Churchill; Susan L. Roberts; Douglas F. Smith; Robert J. McGaughey; Jonathan T. Kane; Matthew L. Brooks

    2014-01-01

    Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low-and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We...

  20. Optimal Sensor Fusion for Structural Health Monitoring of Aircraft Composite Components

    DTIC Science & Technology

    2011-09-01

    sensor networks combine or fuse different types of sensors. Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to...consideration. This paper describes an example of optimal sensor fusion, which combines FBG sensors and PZT sensors. Optimal sensor fusion tries to find...Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to provide local damage detection, while surface mounted

  1. Microscale Heat Conduction Models and Doppler Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperaturemore » rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.« less

  2. Carbon monoxide formation in UO2 kerneled HTR fuel particles containing oxygen getters

    NASA Astrophysics Data System (ADS)

    Proksch, E.; Strigl, A.; Nabielek, H.

    1986-01-01

    Mass spectrometric measurements of CO in irradiated UO2 fuel particles containing oxygen getters are summarized. Uranium carbide addition in the 3% to 15% range reduces the CO release by factors between 25 and 80, up to burn-up levels as high as 70% FIMA. Unintentional gettering by SiC in TRISO coated particles with failed inner pyrocarbon layers results in CO reduction factors between 15 and 110. For ZrC, ambiguous results are obtained; ZrC probably results in CO reduction by a factor of 40; Ce2O3 and La2O3 seem less effective than the carbides; for Ce2O3, reduction factors between 3 and 15 are found. However, the results are possibly incorrect due to premature oxidation of the getter already during fabrication. Addition of SiO2 + Al2O3 has no influence on CO release.

  3. Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Dhote, Sharvari; Yang, Zhengbao; Zu, Jean

    2018-01-01

    This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.

  4. Assessment of mechanical strain in the intact plantar fascia.

    PubMed

    Clark, Ross A; Franklyn-Miller, Andrew; Falvey, Eanna; Bryant, Adam L; Bartold, Simon; McCrory, Paul

    2009-09-01

    A method of measuring tri-axial plantar fascia strain that is minimally affected by external compressive force has not previously been reported. The purpose of this study was to assess the use of micro-strain gauges to examine strain in the different axes of the plantar fascia. Two intact limbs from a thawed, fresh-frozen cadaver were dissected, and a combination of five linear and one three-way rosette gauges were attached to the fascia of the foot and ankle. Strain was assessed during two trials, both consisting of an identical controlled, loaded dorsiflexion. An ICC analysis of the results revealed that the majority of gauge placement sites produced reliable measures (ICC>0.75). Strain mapping of the plantar fascia indicates that the majority of the strain is centrally longitudinal, which provides supportive evidence for finite element model analysis. Although micro-strain gauges do possess the limitation of calibration difficulty, they provide a repeatable measure of fascial strain and may provide benefits in situations that require tri-axial assessment or external compression.

  5. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments

    PubMed Central

    Weinberger, Emma M.; Regehr, Keil J.; Berry, Scott M.; Beebe, David J.; Alarid, Elaine T.

    2016-01-01

    Heterotypic interactions in cancer microenvironments play important roles in disease initiation, progression, and spread. Co-culture is the predominant approach used in dissecting paracrine interactions between tumor and stromal cells, but functional results from simple co-cultures frequently fail to correlate to in vivo conditions. Though complex heterotypic in vitro models have improved functional relevance, there is little systematic knowledge of how multi-culture parameters influence this recapitulation. We therefore have employed a more iterative approach to investigate the influence of increasing model complexity; increased heterotypic complexity specifically. Here we describe how the compartmentalized and microscale elements of our multi-culture device allowed us to obtain gene expression data from one cell type at a time in a heterotypic culture where cells communicated through paracrine interactions. With our device we generated a large dataset comprised of cell type specific gene-expression patterns for cultures of increasing complexity (three cell types in mono-, co-, or tri-culture) not readily accessible in other systems. Principal component analysis indicated that gene expression was changed in co-culture but was often more strongly altered in tri-culture as compared to mono-culture. Our analysis revealed that cell type identity and the complexity around it (mono-, co-, or tri-culture) influence gene regulation. We also observed evidence of complementary regulation between cell types in the same heterotypic culture. Here we demonstrate the utility of our platform in providing insight into how tumor and stromal cells respond to microenvironments of varying complexities highlighting the expanding importance of heterotypic cultures that go beyond conventional co-culture. PMID:27432323

  6. European Training and Research in Peritoneal Dialysis: scientific objectives, training, implementation and impact of the programme.

    PubMed

    Foster, Tom L; Ferrantelli, Evelina; van Wier-van der Schaaf, Tanja; Beelen, Robert H J

    2014-03-01

    Peritoneal dialysis (PD) offers many advantages over hospital-based haemodialysis, including better quality of life. Despite this, there is a general under-utilisation of PD in Europe, which, to some extent, can be attributed to a lack of knowledge and education amongst renal clinicians and nurses. The specific aim of the European Training and Research in Peritoneal Dialysis (EuTRiPD) programme is to address this lack of knowledge, to develop a minimum of five biomarkers that allow the prediction of outcome in PD and three therapeutic treatments to improve outcome in PD. EuTRiPD is a EU-wide consortium with clinical, academic and commercial partners set up to address this knowledge gap. By training through research and close collaboration between academic and commercial entities we hope to improve the outcome and uptake of PD. It is the goal of EuTRiPD to improve the currently hampered diagnostic therapeutic developments in renal replacement therapy (RRT) and structure existing high-quality PD-related research across Europe. It is hoped that EuTRiPD can and will have a significant impact on socio-economic and scientific aspects of PD. It is the aim for EuTRiPD to boost the uptake of PD throughout Europe by making PD the obvious choice for patients. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  7. Processing Reflexives in a Second Language: The Timing of Structural and Discourse-Level Constraints

    ERIC Educational Resources Information Center

    Felser, Claudia; Cunnings, Ian

    2012-01-01

    We report the results from two eye-movement monitoring experiments examining the processing of reflexive pronouns by proficient German-speaking learners of second language (L2) English. Our results show that the nonnative speakers initially tried to link English argument reflexives to a discourse-prominent but structurally inaccessible antecedent,…

  8. So You're Thinking of Trying Problem Based Learning?: Three Critical Success Factors for Implementation

    ERIC Educational Resources Information Center

    Peterson, Tim O.

    2004-01-01

    Problem-based learning (PBL) shifts the traditional teaching paradigm. Rather than being teacher centered, PBL is student centered. Rather than presenting content first, PBL presents the problem first. Rather than presenting the students with a well-structured problem with a clear answer, PBL presents the students with an ill-structured problem…

  9. Developing an Environment for Exploring Distributed Operations: A Wargaming Example

    DTIC Science & Technology

    2005-05-01

    a basis for performance standards. At the same time, the design tried to provide an acceptable mix of structured versus free - play activity in...participants’ free - play discussion and collaboration during Counteraction. Scripting allowed the research team to embed potential problems or measurement...Learned - Structured Exercises ......................................................................... 24 Scripted and Free - Play Wargaming Phases

  10. A New View of Mathematics Will Help Mathematics Teachers

    ERIC Educational Resources Information Center

    Maasz, Juergen

    2005-01-01

    For many people mathematics is something like a very huge and impressive building. It has a given structure with lots of levels and rooms. For many people this structure and therefore mathematics itself is independent from society, culture and history. It exists and mathematicians try to recover (not: to construct!) new parts of it. From this…

  11. Analysis of random structure-acoustic interaction problems using coupled boundary element and finite element methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Pates, Carl S., III

    1994-01-01

    A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.

  12. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts.

    PubMed

    Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-06-22

    The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.

  13. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-06-01

    The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.

  14. [Network structures in biological systems].

    PubMed

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  15. Asbestos.

    ERIC Educational Resources Information Center

    Smither, W. J.

    1978-01-01

    Explains the structure and properties of asbestos, its importance in industry, and its world-wide use and production. Discusses asbestos-related diseases and suggests ways of preventing them, adding that current research is trying to make working with asbestos safer. (GA)

  16. [Atomic absorption fingerprint and identification studies of Da Huo Luo pill. I. Exploration of inorganic elements fingerprint for establishment of industrial standard].

    PubMed

    Zhang, Qi-Feng; Zhu, Long-Yin; Ding, Shu-Liang; Wang, Chen; Tu, Long-Fei

    2008-03-01

    The fingerprints for most of Chinese medicines based on their organic compositions have been well established. Nevertheless, there are very few known fingerprints which are based on inorganic elements. In order to identify the Da Huo Luo Dan and its efficiency from other Chinese medicines, the authors attempted to set up a fingerprint which could be determined by the measurement of inorganic elements in Da Huo Luo Dan and other Chinese medicines. In the present study, the authors first employed 28 batches of Da Huo Luo Dan produced by Zhang-Shu Pharmatheutical Company in Jiang Xi Province to screen 12 kinds of inorganic elements measured by atomic absorption spectrophotometer and established the atomic absorption fingerprints. Secondly, the authors tried to identify Da Huo Luo Dan and other Chinese medicines by using the similarly analysis of vectors and the statistical analysis of compositional data. The result showed that the methods the authors used here were predictable to tell the efficiency of Da Huo Luo Dan from others. The authors' study also proves that establishment of standard for quality control by analysis of inorganic elements in Chinese medicines is feasible. The present study provides a new idea and a new technique that serve for the establishment of industrial standards for analysis of inorganic elements fingerprint to explore the effects of Chinese medicines.

  17. In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese.

    PubMed

    Chebassier, Nathalie; El Houssein, Ouijja; Viegas, Isabelle; Dréno, Brigitte

    2004-08-01

    Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 micro g/ml or manganese at 0.2 micro g/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing.

  18. Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues.

    PubMed

    Yamagami, Mao; Kamitakahara, Hiroshi; Yoshinaga, Arata; Takano, Toshiyuki

    2018-03-01

    This paper describes the design and synthesis of new trehalose-type diblock methylcellulose analogues with nonionic, cationic, and anionic cellobiosyl segments, namely 1-(tri-O-methyl-cellulosyl)-4-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (1), 1-(tri-O-methyl-cellulosyl)-4-[(6-amino-6-deoxy-β-d-glucopyranosyl)-(1→4)- 6-amino-6-deoxy-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (2), and 4-(tri-O-methyl-cellulosyloxymethyl)-1-[β-d-glucopyranuronosyl-(1→4)-β-d-glucopyranuronosyl]-1H-1,2,3-triazole (3), respectively. Aqueous solutions of all of the 1,2,3-triazole-linked diblock methylcellulose analogues possessed higher surface activities than that of industrially produced methylcellulose and exhibited lower critical solution temperatures, that allowed the formation of thermoresponsive supramolecular hydrogels at close to human body temperature. Supramolecular structures of thermo-reversible hydrogels based on compounds 1, 2, and 3 were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Detailed structure-property-function relationships of compounds 1, 2, and 3 were discussed. Not only nonionic hydrophilic segment but also ionic hydrophilic segments of diblock methylcellulose analogues were valid for the formation of thermo-reversible supramolecular hydrogels based on end-functionalized methylcellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An interactive graphics system to facilitate finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Burk, R. C.; Held, F. H.

    1973-01-01

    The characteristics of an interactive graphics systems to facilitate the finite element method of structural analysis are described. The finite element model analysis consists of three phases: (1) preprocessing (model generation), (2) problem solution, and (3) postprocessing (interpretation of results). The advantages of interactive graphics to finite element structural analysis are defined.

  20. Finite element analysis of structural engineering problems using a viscoplastic model incorporating two back stresses

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    1993-01-01

    The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. To demonstrate suitability for nonlinear structural analyses, the model is implemented into a finite element program and analyses for several uniaxial and multiaxial problems are performed. Good agreement is shown between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.

Top