Sample records for elevated copper concentrations

  1. Impact on sediments and water by release of copper from chalcopyrite bearing rock due to acidic mine drainage

    NASA Astrophysics Data System (ADS)

    Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath

    2018-04-01

    Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.

  2. The effects of copper on blood and biochemical parameters of rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Dethloff, G.M.; Schlenk, D.; Khan, S.; Bailey, H.C.

    1999-01-01

    Metals are released into aquatic systems from many sources, often at sublethal concentrations. The effects of sublethal concentrations of metals on fish are not entirely understood. The objective of this study was to determine the hematological and biochemical effects of a range of copper concentrations (6.4, 16.0, 26.9 ??g Cu/L) on rainbow trout (Oncorhynchus mykiss) over a prolonged period of time. Trout were exposed to copper, and, at intervals of 3, 7, 14, and 21 days, selected parameters were evaluated. Hemoglobin, hematocrit, plasma glucose, and plasma cortisol levels were elevated in trout exposed to 26.9 ??g Cu/L at day 3 and then returned to levels comparable to control fish. Plasma protein and lactate levels were not significantly altered in trout from any copper treatment. Hepatic copper concentration and hepatic metallothionein mRNA expression were consistently elevated in trout exposed to 26.9 ??g Cu/L. Both of these parameters stabilized by day 3, with only hepatic copper concentration showing a further increase at day 21. Hepatic copper concentration and hepatic metallothionein mRNA expression appear to be robust indicators of copper exposure. Most blood-based parameters evaluated appear to be associated with a transitory, nonspecific stress response. The return of elevated hematological and biochemical parameters to control levels after 3 days and thestabilization of hepatic metallothionein mRNA expression and copper concentration over a similar time period suggested acclimation to dissolved copper at 26.9 ??g/L. Further analysis of the data on blood-based parameters indicated that certain parameters (hemoglobin, hematocrit, plasma glucose, plasma cortisol) may be useful in field monitoring.

  3. Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.

    PubMed

    Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian

    2012-09-01

    Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Validating the use of embryonic fish otoliths as recorders of sublethal exposure to copper in estuarine sediments.

    PubMed

    Barbee, Nicole C; Greig, Alan; Swearer, Stephen E

    2013-07-01

    In this study we explore the use of fish otoliths ('earbones') as a tool for detecting exposure to heavy metals in sediments. Because otoliths are metabolically inert and incorporate chemical impurities during growth, they can potentially provide a more permanent record of pollutant exposure history in aquatic environments than soft tissues. To validate this technique we cultured embryos of a native Australian fish, the common Galaxias (Galaxias maculatus), in the laboratory on sediments spiked with copper in a concentration gradient. Our aims were to test whether exposure to copper contaminated sediments is recorded in the otoliths of embryos and determine over what range in concentrations we can detect differences in exposure. We found elevated copper levels in otoliths of embryos exposed to high copper concentrations in sediments, suggesting that otoliths can be used as a tool to track a history of exposure to elevated copper levels in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    PubMed

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  6. Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 5

    DTIC Science & Technology

    2005-04-01

    aluminum, arsenic, and iron were naturally elevated (Ampleman et al. 2003). A cadmium concentration at 0.3 ppb was observed in one sample. Copper...copper concentration was twice the CCME criterion. Iron was also observed in the Shaver River sample at three times the CCME criterion. Concentrations...mainly in C-295, the first site visited. Copper and iron were found at high concentrations in almost all samples; however, only one or two samples showed

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enablemore » cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.« less

  8. Proteome characterization of copper stress responses in the roots of sorghum

    USDA-ARS?s Scientific Manuscript database

    Copper (Cu) is an essential micronutrient for all living organisms, but at elevated concentrations, it is extremely toxic to plants and can inactivate and disturb protein structures. To explore the molecular changes involved in the copper stress response, a study was conducted using the roots of sor...

  9. Talitrid amphipods (Crustacea) as biomonitors for copper and zinc

    NASA Astrophysics Data System (ADS)

    Rainbow, P. S.; Moore, P. G.; Watson, D.

    1989-06-01

    Data are presented on the copper and zinc concentrations of four talitrid amphipod species (standard dry weight 10 mg), i.e. Orchestia gammarellus (Pallas), O. mediterranea Costa, Talitrus saltator Montagu and Talorchestia deshayesii (Audouin), from 31 sites in S.W. Scotland, N. Wales and S.W. England. More limited data are also presented for cadmium in O. gammarellus (three sites) and T. deshayesii (one site). In S.W. Scotland, copper concentrations were raised significantly in O. gammarellus from Whithorn and Auchencairn (Solway) and Loch Long and Holy Loch (Clyde). In S.W. England, copper concentrations were highest at Restronguet Creek, Torpoint and Gannel (Cornwall). Samples of O. gammarellus from Islay (inner Hebrides) taken adjacent to the effluent outfalls of local whisky distilleries fell into two groups based on copper concentrations (presumably derived from copper stills), the higher copper levels deriving from the more productive distilleries. High copper levels were found in T. saltator and Tal. deshayesii from Dulas Bay (Wales). Zinc levels in O. gammarellus were high in Holy Loch and Auchencairn (Scotland), Gannel and Torpoint (England) but extremely elevated (as was Zn in O. mediterranea) at Restronguet Creek. Zinc was also high in T. saltator from Dulas Bay (Wales), but not in Tal. deshayesii. Cadmium levels in O. gammarellus from Kilve (Bristol Channel) were much raised. These differences (a) conform with expectations of elevated bioavailability of these metals from well researched areas (S.W. England & N. Wales), and (b) identify hitherto unappreciated areas of enrichment in S.W. Scotland. Orchestia gammarellus is put forward as a suitable biomonitor for copper and zinc in British coastal waters.

  10. Effect of thiomolybdate and ammonium molybdate in pregnant guinea pigs and their offspring.

    PubMed

    Howell, J M; Shunxiang, Y; Gawthorne, J M

    1993-09-01

    Groups of eight guinea pigs and their offspring were given drinking water containing molybdenum as ammonium molybdate (AM) or thiomolybdate (TM) throughout and subsequent to pregnancy. All adult females had oestrous cycles and conception rates were unaffected. Fetal death was common in groups given the high dose of TM. The concentration of copper in liver was reduced in all groups at all ages except for pups killed at birth from animals given AM. The concentration of molybdenum was elevated in liver and kidney of all groups and was statistically significant in the majority. The concentration in plasma of copper, molybdenum and copper insoluble in trichloroacetic acid was elevated in all groups. Superoxide dismutase activity was significantly reduced in dams and six-week-old pups in which TM administration commenced before mating. Histological damage occurred in the pancreas of animals given AM or TM. The effects on the fetus and pancreas were considered to result from copper deficiency rather than molybdenum toxicity.

  11. Genomic and Transcriptomic Analyses to Identify Pathways Involved in Nanoparticle Generation in the Ubiquitous Marine Bacterium Alteromonas macleodii Under Elevated Copper Conditions

    NASA Astrophysics Data System (ADS)

    Cusick, K. D.; Dale, J.; Little, B.; Cockrell, A.; Biffinger, J.

    2016-02-01

    Alteromonas macleodii is a ubiquitous marine bacterium that clusters by molecular analyses into two ecotypes: surface and deep-water. Our group isolated a marine bacterium from copper coupons that generates nanoparticles (NPs) at elevated copper concentrations. Sequencing of the 16S rRNA gene identified it as an A. macleodii strain. In phylogenetic analyses based on the gyrB gene, it clustered with other surface isolates; however, it formed a unique cluster separate from that of other surface isolates based on rpoB gene sequences. Copper is commonly employed as an antifouling agent on the hulls of ships, and so copper tolerance and NP generation is under investigation in this strain. The overall goals of this study were: (1) to determine if copper tolerance is the result of changes at the genetic or transcriptional level and (2) to identify the genes involved in NP formation. Sub-cultures were established from the initial isolate in which copper concentrations were increased in .25 mM increments through multiple generations. These sub-cultures were assayed for NP formation in seawater medium supplemented with 3-4 mM copper. Scanning electron microscopy revealed large aggregates of NPs on the exterior surface of all sub-cultures. Additionally, a portion of the cells in all sub-cultures displayed an elongated morphology in comparison to the wild-type. No NPs were observed in wild-type controls grown without the addition of increased copper. Metagenomic sequencing of natural populations of A. macleodii revealed extreme divergence in several large genomic regions whose content includes genes coding for exopolysaccharide production and metal resistance. High-throughput sequencing is being used to determine whether copper tolerance and NP generation is the result of genetic or transcriptional changes. These results will be extended to natural communities to gain insights into the role of bacterial NPs during conditions of elevated metal concentrations in coastal systems.

  12. Leaf proteome characterization in the context of physiological and morphological changes in response to copper stress in sorghum

    USDA-ARS?s Scientific Manuscript database

    Copper (Cu) is an essential micronutrient required for the growth and development of plants. However, at elevated concentrations in soil, copper is very toxic to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological an...

  13. Copper-complexing ligands produced by an intact estuarine microbial community in response to copper stress.

    NASA Astrophysics Data System (ADS)

    Bingham, J.; Dryden, C.; Gordon, A.

    2002-12-01

    Copper is both an important nutrient and a pollutant in the marine environment. By studying the interactions between microorganisms and copper in the Elizabeth River (VA), home to a major Naval Base, we field tested the hypothesis that picoplankton and/or bacterioplankton produce strong, copper-complexing ligands in response to elevated copper concentrations. A simple light/ dark test was used to distinguish between heterotrophic and phototrophic ligand production. Samples were bottled and moored, submerged one meter, for a week. Direct counts using DAPI stain and epiflourescence were conducted to find concentrations of picoplankton and bacterioplankton. Using cathodic stripping voltammetry, we found the total copper concentrations, and then from a titration of the ligands by copper, the ligand concentrations and conditional stability constants were obtained. The Elizabeth River naturally had between 10-20 nM total dissolved copper concentrations. However when copper complexation was considered we found that the levels of bio-available Cu(II) ions were much lower. In fact in the natural samples the levels were not high enough to affect the relative reproductive rates of several microorganisms. Naturally there was a 50 nM "buffer zone" of ligand to total dissolved copper concentration. Furthermore, when stressed with excess copper, healthy picoplankton produced enough ligand to alleviate toxicity, and rebuild the buffer zone. However bacterioplankton only produced enough ligand so that they were no longer affected. Therefore, intact estuarine communities regulate copper bioavailability and toxicity with ligand production.

  14. Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city.

    PubMed

    Reis, A P; Costa, S; Santos, I; Patinha, C; Noack, Y; Wragg, J; Cave, M; Sousa, A J

    2015-08-01

    This study reports on data obtained from a pilot survey focusing on house dust and toenail metal(loids) concentrations in residents living in the industrial city of Estarreja. The study design hereby described aims at investigating relationships between human toenails and both copper and manganese levels in settled house dusts. A total of 21 households and 30 individuals were recruited for the pilot study: 19 households corresponding to 27 residents living near the industrial complex, forming the exposed group, plus 2 households and 3 residents from residential areas with no anticipated environmental contaminants that were used for comparison. Factorial analysis was used for source identification purposes. Investigation on the potential influence of environmental factors over copper and manganese levels in the toenails was carried out via questionnaire data and multiple correspondence analysis. The results show that copper concentrations are more elevated in the indoor dusts, while manganese concentrations are more elevated in the outdoor dust samples. The geometrical relationships in the datasets suggest that the backyard soil is a probable source of manganese to the indoor dust. Copper and manganese contents in the toenail clippings are more elevated in children than in adults, but the difference between the two age groups is not statistically significant (p > 0.05). Investigation of environmental factors influencing the exposure-biomarker association indicates a probable relationship between manganese contents in indoor dust and manganese levels in toenail clippings, a result that is partially supported by the bioaccessibility estimates. However, for copper, no relationship was found between indoor dusts and the biomarkers of exposure.

  15. Results of a preimpoundment water-quality study of Swatara Creek, Pennsylvania

    USGS Publications Warehouse

    Fishel, David K.; Richardson, J.E.

    1986-01-01

    The impoundment will act as a sediment trap and thus reduce the concentrations of total phosphorus, iron, aluminum, lead, copper, and zinc immediately downstream from the impoundment. Large storm discharges and releases from the hypolimnion of the reservoir to attain the winter-pool level may contain low oxygen concentrations and elevated concentrations of iron, aluminum, lead, copper, and zinc. Unless conservation releases from the multi-level release gates are carefully controlled, low dissolved-oxygen levels and high metal concentrations may degrade the downstream water quality and be detrimental to the aquatic community.

  16. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    PubMed

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  17. Porins Increase Copper Susceptibility of Mycobacterium tuberculosis

    PubMed Central

    Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael

    2013-01-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632

  18. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Organochlorines and heavy metals in 17-year cicadas pose no apparent dietary threat to birds

    USGS Publications Warehouse

    Clark, D.R.

    1992-01-01

    Organochlorine and heavy metal concentrations in 17-year cicadas from Prince Georges and Anne Arundel Counties, Maryland, were well below levels known to be harmful to birds. Cicadas contained concentrations of metals similar to or less than other local invertebrates except they contained more copper than did earthworms. Copper and lead concentrations in cicadas from one site may have been elevated by sewage plant effluent deposited during river floodings. Cicadas from the median of a major highway did not contain more lead than cicadas from non-traffic sites.

  20. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.

    PubMed

    Dutra, A J B; Rocha, G P; Pombo, F R

    2008-04-01

    Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs.

  1. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.

    PubMed

    Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B

    2010-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.

  2. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  3. Physiological responses of coastal phytoplankton (Visakhapatnam, SW Bay of Bengal, India) to experimental copper addition.

    PubMed

    Biswas, Haimanti; Bandyopadhyay, Debasmita

    2017-10-01

    Trace amount of copper (Cu) is essential for many physiological processes; however, it can be potentially toxic at elevated levels. The impact of variable Cu concentrations on a coastal phytoplankton community was investigated along a coastal transect in SW Bay of Bengal. A small increase in Cu supply enhanced the concentrations of particulate organic carbon, particulate organic nitrogen, biogenic silica, total pigment, phytoplankton cell and total bacterial count. At elevated Cu levels all these parameters were adversely affected. δ 13 C POM and δ 15 N POC reflected a visible signature of both beneficial and toxic impacts of Cu supply. Skeletonema costatum, the dominant diatom species, showed higher tolerance to increasing Cu levels relative to Chaetoceros sp. Cyanobacteria showed greater sensitivity to copper than diatoms. The magnitude of Cu toxicity on the phytoplankton communities was inversely related to the distance from the coast. Co-enrichment of iron alleviated Cu toxicity to phytoplankton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mining legacy across a wetland landscape: high mercury in Upper Peninsula (Michigan) rivers, lakes, and fish.

    PubMed

    Kerfoot, W Charles; Urban, Noel R; McDonald, Cory P; Zhang, Huanxin; Rossmann, Ronald; Perlinger, Judith A; Khan, Tanvir; Hendricks, Ashley; Priyadarshini, Mugdha; Bolstad, Morgan

    2018-04-25

    A geographic enigma is that present-day atmospheric deposition of mercury in the Upper Peninsula of Michigan is low (48%) and that regional industrial emissions have declined substantially (ca. 81% reduction) relative to downstate. Mercury levels should be declining. However, state (MDEQ) surveys of rivers and lakes revealed elevated total mercury (THg) in Upper Peninsula waters and sediment relative to downstate. Moreover, Western Upper Peninsula (WUP) fish possess higher methyl mercury (MeHg) levels than Northern Lower Peninsula (NLP) fish. A contributing explanation for elevated THg loading is that a century ago the Upper Peninsula was a major industrial region, centered on mining. Many regional ores (silver, copper, zinc, massive sulfides) contain mercury in part per million concentrations. Copper smelters and iron furnace-taconite operations broadcast mercury almost continuously for 140 years, whereas mills discharged tailings and old mine shafts leaked contaminated water. We show that mercury emissions from copper and iron operations were substantial (60-650 kg per year) and dispersed over relatively large areas. Moreover, lake sediments in the vicinity of mining operations have higher THg concentrations. Sediment profiles from the Keweenaw Waterway show that THg accumulation increased 50- to 400-fold above modern-day atmospheric deposition levels during active mining and smelting operations, with lingering MeHg effects. High MeHg concentrations are geographically correlated with low pH and dissolved organic carbon (DOC), a consequence of biogeochemical cycling in wetlands, characteristic of the Upper Peninsula. DOC can mobilize metals and elevate MeHg concentrations. We argue that mercury loading from mining is historically superimposed upon strong regional wetland effects, producing a combined elevation of both THg and MeHg in the Western Upper Peninsula.

  5. Bioaccumulation of metals in plants, arthropods, and mice at a seasonal wetland.

    PubMed

    Torres, K C; Johnson, M L

    2001-11-01

    Concentrations of arsenic, cadmium, copper, lead, and nickel were measured in soils, house mice (Mus musculus), and the main food items of this omnivorous mouse to examine the occurrence of these metals in selected components of a seasonal wetland. Soil concentrations of copper, lead, and (in some areas) nickel were elevated, but extractable soil concentrations indicated low bioavailability of metals. Levels of most metals in mice and composited arthropods were consistent with reference site concentrations from other studies. However, copper was found to be particularly mobile within the local ecosystem and accumulated in house mouse carcasses and composited arthropods at substantial levels. Metal residues in Scirpus robustus (alkali bulrush) roots exceeded those in seeds, consistent with patterns of bioaccumulation commonly observed in plants. Uptake and bioaccumulation factors for S. robustus seeds and roots, arthropods, and mouse carcasses and livers are reported. Concentrations of lead and nickel in S. robustus roots exhibited significant linear relationships with levels in soils. Copper levels in S. robustus seeds varied significantly with those in house mouse livers, suggesting that trophic transfer of copper from this food source to mice occurred. However, other spatial patterns of bioaccumulation in S. robustus and house mice relative to soil/seed concentrations were absent. Metal levels in house mice bore no relation to body weight or estimated age.

  6. Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata) in hydroponics.

    PubMed

    Ali, Sajid; Shahbaz, Muhammad; Shahzad, Ahmad Naeem; Khan, Hafiz Azhar Ali; Anees, Moazzam; Haider, Muhammad Saleem; Fatima, Ammara

    2015-01-01

    Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata) to elevated Cu(2+) levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu(2+) levels, although it was substantially decreased at ≥5 µ M Cu(2+) in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu(2+) indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu(2+) the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins).

  7. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  8. Effect of an acid mine drainage effluent on phytoplankton biomass and primary production at Britannia Beach, Howe Sound, British Columbia.

    PubMed

    Levings, C D; Varela, D E; Mehlenbacher, N M; Barry, K L; Piercey, G E; Guo, M; Harrison, P J

    2005-12-01

    We investigated the effect of acid mine drainage (AMD) from an abandoned copper mine at Britannia Beach (Howe Sound, BC, Canada) on primary productivity and chlorophyll a levels in the receiving waters of Howe Sound before, during, and after freshet from the Squamish River. Elevated concentrations of copper (integrated average through the water column >0.050 mgl(-1)) in nearshore waters indicated that under some conditions a small gyre near the mouth of Britannia Creek may have retained the AMD from Britannia Creek and from a 30-m deep water outfall close to shore. Regression and correlation analyses indicated that copper negatively affected primary productivity during April (pre-freshet) and November (post-freshet). Negative effects of copper on primary productivity were not supported statistically for July (freshet), possibly because of additional effects such as turbidity from the Squamish River. Depth-integrated average and surface chlorophyll a were correlated to copper concentrations in April. During this short study we demonstrated that copper concentrations from the AMD discharge can negatively affect both primary productivity and the standing stock of primary producers in Howe Sound.

  9. An investigation of roof runoff during rain events at the Royal Military College of Canada and potential discharge to Lake Ontario.

    PubMed

    Kelly, David G; Weir, Ron D; White, Steven D

    2011-01-01

    The Royal Military College of Canada, located on the north eastern shore of Lake Ontario, possesses an abundance of copper roofs and lacks surface water treatment prior to discharge into Lake Ontario. Rainwater, roof runoff and soil samples were collected and analyzed for copper and other parameters. Copper was consistently detected in runoff samples with average concentrations of 3200 +/- 2100 microg/L. Multivariable linear regression analysis for a dependant copper runoff concentration yielded an adjusted R2 value of 0.611, based on an independent variable model using minimum temperature, maximum temperature, total precipitation, and wind speed. Lake water samples taken in the vicinity of storm water outfalls draining areas with copper roofs ranged from 2.0 to 40 microg/L copper. Such data exceed the 2.0 microg/L Canadian Water Quality Guidelines for the Protection of Aquatic Life as outlined by the Canadian Council of Ministers of the Environment (CCME). Analysis of raw, filtered and digested forms suggested that the majority of copper present in runoff and lake water samples was in a dissolved form. The majority of soils taken in this study displayed copper concentrations below the 63 microg/g CCME residential/parkland land use limits. These findings suggested that ion exchange processes between runoff water and soil do not occur to a sufficient extent to elevate copper levels in soil. It may therefore be concluded that the eventual fate of copper, which is not discharged via storm water outfalls, is lost to the water table and Lake Ontario through the sub-soil.

  10. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism.

    PubMed

    Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M

    2011-12-01

    To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.

  11. Relations of benthic macroinvertebrates to concentrations of trace elements in water, streambed sediments, and transplanted bryophytes and stream habitat conditions in nonmining and mining areas of the upper Colorado River basin, Colorado, 1995-98

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2002-01-01

    Intensive mining activity and highly mineralized rock formations have had significant impacts on surface-water and streambed-sediment quality and aquatic life within the upper reaches of the Uncompahgre River in western Colorado. A synoptic study by the U.S. Geological Survey National Water-Quality Assessment Program was completed in the upper Uncompahgre River Basin in 1998 to better understand the relations of trace elements (with emphasis on aluminum, arsenic, copper, iron, lead, and zinc concentrations) in water, streambed sediment, and aquatic life. Water-chemistry, streambed-sediment, and benthic macroinvertebrate samples were collected during low-flow conditions between October 1995 and July 1998 at five sites on the upper Uncompahgre River, all downstream from historical mining, and at three sites in drainage basins of the Upper Colorado River where mining has not occurred. Aquatic bryophytes were transplanted to all sites for 15 days of exposure to the water column during which time field parameters were measured and chemical water-quality and benthic macroinvertebrate samples were collected. Stream habitat characteristics also were documented at each site. Certain attributes of surface-water chemistry among streams were significantly different. Concentrations of total aluminum, copper, iron, lead, and zinc in the water column and concentrations of dissolved aluminum, copper, and zinc were significantly different between nonmining and mining sites. Some sites associated with mining exceeded Colorado acute aquatic-life standards for aluminum, copper, and zinc and exceeded Colorado chronic aquatic-life standards for aluminum, copper, iron, lead, and zinc. Concentrations of copper, lead, and zinc in streambed sediments were significantly different between nonmining and mining sites. Generally, concentrations of arsenic, copper, lead, and zinc in streambed sediments at mining sites exceeded the Canadian Sediment Quality Guidelines probable effect level (PEL), except at two mining sites where concentrations of copper and zinc were below the PEL. Concentrations of arsenic, copper, iron, and lead in transplanted bryophytes were significantly different between nonmining and mining sites. Bioconcentration factors calculated for 15-day exposure using one-half of the minimum reporting level were significantly different between nonmining and mining sites. In general, concentrations of trace elements in streambed sediment and transplanted bryophytes were more closely correlated than were the concentrations of trace elements in the water column with streambed sediments or concentrations in the water column with transplanted bryophytes. Stream habitat was rated as optimal to suboptimal using the U.S. Environmental Protection Agency Rapid Bioassessment Protocols for all sites in the study area. Generally, stream habitat conditions were similar at nonmining compared to mining sites and were suitable for diverse macroinvertebrate communities. All study sites had optimal instream habitat except two mining sites with suboptimal instream habitat because of disturbances in stream habitat. The benthic macroinvertebrate community composition at nonmining sites and mining sites differed. Mining sites had significantly lower total abundance of macroinvertebrates, fewer numbers of taxa, and lower dominance of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), and a larger percentage of tolerant species than did nonmining sites. The predominance of Baetis sp. (mayflies), Hydropsychidae (caddisflies), and large percentage of Orthocladiinae chironomids (midges) at mining sites indicated that these species may be tolerant to elevated trace-element concentrations. The absence of Heptageniidae (mayflies), Chloroperlidae (stoneflies), and Rhyacophila sp. (caddisflies) at mining sites indicated that these species may be sensitive to elevated trace-element concentrations. Comparison of field parameters and

  12. Copper speciation in the gill microenvironment of carp (Cyprinus carpio) at various levels of pH.

    PubMed

    Tao, Shu; Long, Aimin; Xu, Fuliu; Dawson, R W

    2002-07-01

    The fish gill microenvironment of Cyprinus carpio under stress of copper exposure was investigated. pH and other parameters including free copper activity, alkalinity, and inorganic and organic carbons in the surrounding water (inspired water) and in the gill microenvironment (expired water) were measured or calculated at various levels of pH and varying total copper concentrations. The chemical equilibrium calculation (from MINEQA2) and complexation modeling (mucus-copper) were coupled to calculate both species distribution. The results indicate that the pH in the fish gill microenvironment was different from that in the surrounding water with a balance point around 6.9. The secretion of both CO(2) and mucus was affected in both linear and nonlinear ways when the fish were exposed to elevated concentrations of copper. The complexation capacity of the gill mucus was characterized by a conditional stability constant (logk(Cu-mucus)) of 5.37 along with a complexation equivalent concentration (L(Cu-mucus)) of 0.96 mmol Cu/mg C. For both the fish microenvironment and the surrounding water, the dominant copper species shifted from Cu(2+) to CuCO(3)(0) and to Cu(OH)(2)(0) when the pH of the surrounding water changed from 6.12 to 8.11. The change in copper speciation in the gill microenvironment is smaller than that in the surrounding water due to the pH buffering capacity of the fish gills.

  13. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    PubMed

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  14. Elemental composition of human semen is associated with motility and genomic sperm defects among older men

    PubMed Central

    Schmid, Thomas E.; Grant, Patrick G.; Marchetti, Francesco; Weldon, Rosana H.; Eskenazi, Brenda; Wyrobek, Andrew J.

    2013-01-01

    BACKGROUND Older men tend to have poorer semen quality and are generally at higher risks for infertility and abnormal reproductive outcomes. METHODS We employed proton-induced X-ray emission (PIXE, 3 MeV proton beam) to investigate the concentrations of zinc, copper, calcium, sulfur, chlorine, potassium, titanium, iron and nickel in washed sperm and seminal plasma from non-smoking groups of 10 older men (65–80 years old) and 10 younger men (22–28 years old) who were concurrently assayed for sperm function and genomicly defective sperm. RESULTS The older group showed elevated zinc, copper and calcium in sperm and elevated sulfur in seminal plasma compared with the younger men. The older group also showed reduced motility as well as increased sperm DNA fragmentation, achondroplasia mutations, DNA strand breaks and chromosomal aberrations. Sperm calcium and copper were positively associated with sperm DNA fragmentation (P < 0.03). Seminal sulfur was positively associated with sperm DNA fragmentation and chromosomal aberrations (P < 0.04), and negatively associated with sperm motility (P < 0.05). Sperm calcium was negatively associated with sperm motility, independent of male age (P = 0.01). CONCLUSIONS We identified major differences in elemental concentrations between sperm and seminal plasma and that higher sperm copper, sulfur and calcium are quantitatively associated with poorer semen quality and increased frequencies of genomic sperm defects. PMID:23042799

  15. Effects of metal mining and milling on boundary waters of Yellowstone National Park, USA

    USGS Publications Warehouse

    Nimmo, D.R.; Willox, M.J.; Lafrancois, T.D.; Chapman, P.L.; Brinkman, S.F.; Greene, J.C.

    1998-01-01

    Aquatic resources in Soda Butte Creek within Yellowstone National Park, USA, continue to be threatened by heavy metals from historical mining and milling activities that occurred upstream of the park's boundary. This includes the residue of gold, silver, and copper ore mining and processing in the early 1900s near Cooke City, Montana, just downstream of the creek's headwaters. Toxicity tests, using surrogate test species, and analyses of metals in water, sediments, and macroinvertebrate tissue were conducted from 1993 to 1995. Chronic toxicity to test species was greater in the spring than the fall and metal concentrations were elevated in the spring with copper exceeding water quality criteria in 1995. Tests with amphipods using pore water and whole sediment from the creek and copper concentrations in the tissue of macroinvertebrates and fish also suggest that copper is the metal of concern in the watershed. In order to understand current conditions in Soda Butte Creek, heavy metals, especially copper, must be considered important factors in the aquatic and riparian ecosystems within and along the creek extending into Yellowstone National Park.

  16. Effects of acidic recharge on groundwater at the St. Kevin Gulch site, Leadville, Colorado

    USGS Publications Warehouse

    Paschke, S.S.; Harrison, W.J.; Walton-Day, K.

    2001-01-01

    The acid rock drainage-affected stream of St. Kevin Gulch recharges the Quaternary sand and gravel aquifer of Tennessee Park, near Leadville, Colorado, lowering pH and contributing iron, cadmium, copper, zinc and sulphate to the ground-water system. Dissolved metal mobility is controlled by the seasonal spring runoff as well as oxidation/reduction (redox) reactions in the aquifer. Oxidizing conditions occur in the unconfined portions of the aquifer whilst sulphate-reducing conditions are found down gradient where semi-confined groundwater flow occurs beneath a natural wetland. Iron-reducing conditions occur in the transition from unconfined to semi-confined groundwater flow. Dissolved iron concentrations are low to not detectable in the alluvial fan recharge zone and increase in a down gradient direction. The effects of low-pH, metal-rich recharge are pronounced during low-flow in the fall when there is a defined area of low pH groundwater with elevated concentrations of dissolved zinc, cadmium, copper and sulphate adjacent to St. Kevin Gulch. Dissolved metal and sulphate concentrations in the recharge zone are diluted during spring runoff, although the maximum concentrations of dissolved zinc, cadmium, copper and sulphate occur at selected down gradient locations during high flow. Dissolved zinc, cadmium and copper concentrations are low to not detectable, whereas dissolved iron concentrations are greatest, in groundwater samples from the sulphate-reducing zone. Attenuation of zinc, cadmium and copper beneath the wetland suggests sulphide mineral precipitation is occurring in the semi-confined aquifer, in agreement with previous site investigations and saturation index calculations. Adsorption of dissolved zinc, cadmium and copper onto iron hydroxides is a minor attenuation process due to the low pH of the groundwater system.

  17. Wastewater Characterization Survey, Edwards Air Force Base, California

    DTIC Science & Technology

    1992-08-01

    sampling, 23 and 24 Feb 92, concentrations of aluminum, chromium , copper, and iron were found to be slightly elevated when compared to average...concentrations of these metals detected during the other 6 sampling days. Detectable concentrations of aluminum, chromium , and zinc could be the result of...35.00 Cyanide .......................... 30.00 23.00 49.00 Chemical Oxygen Demand ........ 25.00 13.00 40.00 Chromium VI ...................... 25.00

  18. Surface-water/ground-water interaction of the Spokane River and the Spokane Valley/Rathdrum Prairie aquifer, Idaho and Washington

    USGS Publications Warehouse

    Caldwell, Rodney R.; Bowers, Craig L.

    2003-01-01

    Although trace-element concentrations sometimes exceeded aquatic-life criteria in the water of the Spokane River and were elevated above national median values in the bed sediment, trace-element concentrations of all river and ground-water samples were at levels less than U.S. Environmental Protection Agency drinking-water standards. The Spokane River appears to be a source of cadmium, copper, zinc, and possibly lead in the near-river ground water. Dissolved cadmium, copper, and lead concentrations generally were less than 1 microgram per liter (µg/L) in the river water and ground water. During water year 2001, dissolved zinc concentrations were similar in water from near-river wells (17-71 µg/L) and the river water (22-66 µg/L), but were less than detection levels in wells farther from the river. Arsenic, found to be elevated in ground water in parts of the aquifer, does not appear to have a river source. Although the river does influence the ground-water chemistry in proximity to the river, it does not appear to adversely affect the ground-water quality to a level of human-health concern.

  19. Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson’s Disease

    PubMed Central

    2016-01-01

    Copper is an essential nutrient for life, but at the same time, hyperaccumulation of this redox-active metal in biological fluids and tissues is a hallmark of pathologies such as Wilson’s and Menkes diseases, various neurodegenerative diseases, and toxic environmental exposure. Diseases characterized by copper hyperaccumulation are currently challenging to identify due to costly diagnostic tools that involve extensive technical workup. Motivated to create simple yet highly selective and sensitive diagnostic tools, we have initiated a program to develop new materials that can enable monitoring of copper levels in biological fluid samples without complex and expensive instrumentation. Herein, we report the design, synthesis, and properties of PAF-1-SMe, a robust three-dimensional porous aromatic framework (PAF) densely functionalized with thioether groups for selective capture and concentration of copper from biofluids as well as aqueous samples. PAF-1-SMe exhibits a high selectivity for copper over other biologically relevant metals, with a saturation capacity reaching over 600 mg/g. Moreover, the combination of PAF-1-SMe as a material for capture and concentration of copper from biological samples with 8-hydroxyquinoline as a colorimetric indicator affords a method for identifying aberrant elevations of copper in urine samples from mice with Wilson’s disease and also tracing exogenously added copper in serum. This divide-and-conquer sensing strategy, where functional and robust porous materials serve as molecular recognition elements that can be used to capture and concentrate analytes in conjunction with molecular indicators for signal readouts, establishes a valuable starting point for the use of porous polymeric materials in noninvasive diagnostic applications. PMID:27285482

  20. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  1. Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper-containing metal fumes.

    PubMed

    Baumann, R; Gube, M; Markert, A; Davatgarbenam, S; Kossack, V; Gerhards, B; Kraus, T; Brand, P

    2018-01-01

    Zinc- and copper-containing welding fumes increase systemic C-reactive protein (CRP). The aim of this study was to investigate the performance of the biomarkers serum amyloid A (SAA) and soluble vascular cell adhesion molecule-1 (VCAM-1) in this regard. Fifteen male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc for 6 h. Plasma samples were collected before, 6 and 24 h after start of exposure and biomarkers therein were measured by electrochemiluminescent assay. For each exposure, systemic concentrations of systemic SAA, but not VCAM-1, increased significantly at 24 h after exposure start compared with baseline ("copper only": P=0.0005, "zinc only": P=0.027, "copper and zinc": P=0.001). SAA showed a wider range of concentrations than did CRP and its levels increased up to 19-fold after welding fume exposure. The recognition of copper as a potential harmful component in welding fumes, also independent from zinc, deserves further consideration. SAA might represent a new sensitive biomarker for potential subclinical sterile inflammation after inhalation of copper- and/or zinc-containing welding fumes. As elevations of CRP and SAA protein have both been linked to a higher risk for cardiovascular disease, these findings might particularly be important for long-term welders.

  2. Urinary Copper Elevation in a Mouse Model of Wilson's Disease Is a Regulated Process to Specifically Decrease the Hepatic Copper Load

    PubMed Central

    Gray, Lawrence W.; Peng, Fangyu; Molloy, Shannon A.; Pendyala, Venkata S.; Muchenditsi, Abigael; Muzik, Otto; Lee, Jaekwon; Kaplan, Jack H.; Lutsenko, Svetlana

    2012-01-01

    Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b−/− mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b−/− livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1 −/− knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD. PMID:22802922

  3. Refrigeration Plant, North Elevation, Second Floor Plan, East Elevation, Ground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Refrigeration Plant, North Elevation, Second Floor Plan, East Elevation, Ground Floor Plan, Section A-A - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  4. Mercury contribution to an Adirondack lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrudato, R.J.; Long, D.; Weinbloom, R.

    1987-01-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipitation.

  5. Mercury contribution to an adirondack lake

    NASA Astrophysics Data System (ADS)

    Scrudato, R. J.; Long, D.; Weinbloom, Robert

    1987-10-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.

  6. Interactions between accumulated copper, bacterial community structure and histamine levels in crayfish meat during storage.

    PubMed

    Soedarini, Bernadeta; van Gestel, Cornelis A M; van Straalen, Nico M; Widianarko, Budi; Röling, Wilfred F M

    2014-08-01

    Pollution in aquaculture areas may negatively impact edible species and threaten seafood quality and safety. The aim of this study was to determine the interaction between copper and bacteria in the aquatic habitat and their impact upon crustaceans. Marbled crayfish was chosen as a model of aquatic crustaceans and the influence of metal contamination on bacterial community structure in water used to culture crayfish and in crayfish themselves was investigated. Histamine, an allergen commonly formed by certain groups of bacteria in crustacean edible tissue during storage, was also determined. Copper exposure increased its concentration in crayfish meat by 17.4%, but the copper concentration remained within acceptable food safety limits. Elevated copper levels affected the bacterial community both in the water used to cultivate crayfish and in the marbled crayfish themselves. Cluster analysis of 16S rRNA-gene based microbial community fingerprints revealed that copper impacted the bacterial community in the water and in the crayfish meat. However, copper exposure reduced the formation of histamine in crayfish meat during storage by 66.3%. Copper from the habitat appears to reduce histamine accumulation in crayfish meat during storage by affecting the bacterial community structure of the cultivation water and most likely also in the intestine of the crayfish. From a food safety point of view, copper treatment during the aqua culturing of crustaceans has a positive impact on the postharvest stage. © 2013 Society of Chemical Industry.

  7. Baseline groundwater quality from 34 wells in Wayne County, Pennsylvania, 2011 and 2013

    USGS Publications Warehouse

    Sloto, Ronald A.

    2014-01-01

    Differences in groundwater chemistry were related to pH. Water with a pH greater than 7.6 generally had low dissolved oxygen concentrations, indicating reducing conditions in the aquifer. These high pH waters also had relatively elevated concentrations of methane, arsenic, boron, bromide, fluoride, lithium, and sodium but low concentrations of copper, nickel, and zinc. Water samples with a pH greater than 7.8 had methane concentrations equal to or greater than 0.04 mg/L.

  8. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxicmore » concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation. - Highlights: • Subneurotoxic copper(II) triggers NF-κB-dependent microglial activation. • This activation leads to hippocampal neuronal death. • This activation may involve mitochondria-derived reactive oxygen species.« less

  9. Trace elements and organic compounds in streambed sediment and aquatic biota from the Sacramento River Basin, California, October and November 1995

    USGS Publications Warehouse

    MacCoy, Dorene E.; Domagalski, Joseph L.

    1999-01-01

    Elevated levels of trace elements and hydrophobic organic compounds were detected in streambed sediments and aquatic biota [Asiatic clam (Corbicula fluminea) or bottom-feeding fish] of the Sacramento River Basin, California, during October and November 1995. Trace elements detected included cadmium, copper, mercury, lead, and zinc. Elevated levels of cadmium, copper, and zinc in the upper Sacramento River are attributed to a mining land use, and elevated levels of zinc and lead in an urban stream, and possibly in the lower Sacramento River, are attributed to urban runoff processes. Elevated levels of mercury in streambed sediment are attributed to either past mercury mining or to the use of mercury in past gold mining operations. Mercury mining was an important land use within the Coast Ranges in the past and gold mining was an important land use of the Sierra Nevada in the past. Mercury was the only trace element found in elevated levels in the tissue of aquatic biota, and those levels also could be attributed to either mining or urban runoff. Hydrophobic organic compounds also were detected in streambed sediments and aquatic biota. The most frequently detected compounds were DDT and its breakdown products, dieldrin, oxychlordane, and toxaphene. Differences were found in the types of compounds detected at agricultural sites and the urban site. Although both types of sites had measurable concentrations of DDT or its breakdown products, the urban site also had measurable concentrations of pesticides used for household pest control. Few semivolatile compounds were detected in the streambed sediments of any site. The semivolatile compound p-cresol, a coal-tar derivative associated with road maintenance, was found in the highest concentration.

  10. Trichodesmium erythraeum (Ehrenberg) bloom along the southwest coast of India (Arabian Sea) and its impact on trace metal concentrations in seawater

    NASA Astrophysics Data System (ADS)

    Krishnan, Anoop A.; Krishnakumar, P. K.; Rajagopalan, M.

    2007-02-01

    The incidence of a large scale Trichodesmium erythraeum bloom along the southwest coast of India (Arabian Sea) observed in May 2005 is reported. Around 4802 filaments of T. erythraeum ml -1 seawater was observed and a colony consisted of 3.6 × 10 5 cells. The bloom was predominant off Suratkal (12° 59'N and 74° 31'E) with a depth of about 47 m, covering an area of 7 km in length and 2 km width. The concentrations of Zinc, Cadmium, Lead, Copper, Nickel and Cobalt were determined in samples collected from the bloom and non-bloom sites using stripping voltammetry. The observed hydrographical and meteorological parameters were found to be favorable for the bloom. The concentrations of Zinc, Cadmium and Nickel were found to be higher at bloom stations, while the concentrations of Lead, Copper and Cobalt were found to be very low at bloom stations. Elevated concentrations of Cadmium and Cobalt were observed at Valappad mainly due to the decomposition of detrital material produced in the bloom. Statistically significant differences ( P > 0.01) in metal concentrations between the bloom and non-bloom stations were not observed except for Copper. Metals such as Lead, Copper and Cobalt were removed from the seawater at all places where bloom was observed. Cadmium was found to be slowly released during the decaying process of the bloom.

  11. Soy isoflavone supplementation elevates erythrocyte superoxide dismutase, but not plasma ceruloplasmin in postmenopausal breast cancer survivors.

    PubMed

    DiSilvestro, Robert A; Goodman, Jaime; Dy, Emily; Lavalle, Gregory

    2005-02-01

    Soy isoflavone antioxidant effects may help prevent breast cancer re-occurrence, but isoflavone estrogen-like actions may increase breast cancer risk. These isoflavone actions can be reflected by effects on two copper enzymes activities, superoxide dismutase 1 (SOD 1), which has antioxidant function relevant to breast cancer prevention, and ceruloplasmin, which has its synthesis up-regulated by estrogen, and for which high values are associated with high breast cancer risk. A soy isoflavone-rich concentrate supplement was examined for effects on these two copper enzyme activities in post-menopausal breast cancer survivors (n = 7) in a crossover design with a placebo (24 days on supplement or placebo; 14 day wash out). The soy concentrate, but not the placebo, increased erythrocyte SOD 1 activities, but not ceruloplasmin activities or protein. The effect on superoxide dismutase activities was not likely due to increased copper intake since analysis of the soy extract showed little copper. The effect on superoxide dismutase was not accompanied by a change in urinary contents of 8-deoxyhydroxyguanosine, a DNA oxidant product, though perhaps this would change with a longer intervention. In summary, in regard to two copper enzyme activities, an isoflavone-rich soy concentrate showed an antioxidant effect considered relevant to breast cancer, but not an effect associated with estrogenic activity and increased breast cancer risk.

  12. Concentrations of Surface-Dust Metals in Native American Jewelry-Making Homes in Zuni Pueblo, New Mexico

    PubMed Central

    Gonzales, Melissa; Shah, Vallabh; Bobelu, Arlene; Qualls, Clifford; Natachu, Kathy; Bobelu, Jeanette; Jamon, Eunice; Neha, Donica; Paine, Susan; Zager, Philip

    2013-01-01

    This pilot study was conducted to identify the metals used by home-based Native American jewelry makers, to quantify the metals in dust samples taken from jewelers’ homes, and to compare these concentrations with background levels from control homes in which jewelry was not made. Participants were recruited from Zuni Pueblo, New Mexico. Surface dust samples were collected from the work and living areas of 20 jewelers’ homes, and from the living areas of 20 control homes. Silver, copper, tin, boron, nickel, zinc, lead, and cadmium were significantly higher in work areas than in living areas of jewelry-making homes (p≤ 0.02). Silver, copper, nickel, and antimony were significantly higher in living areas of jewelers’ homes compared with control homes (p ≤ 0.04). Ventilation measures did not effectively reduce metal concentrations in jewelers’ homes; concentrations in nonwork areas remained elevated. PMID:16201670

  13. Growth and physiological responses of some Capsicum frutescens varieties to copper stress

    NASA Astrophysics Data System (ADS)

    Jadid, Nurul; Maziyah, Rizka; Nurcahyani, Desy Dwi; Mubarokah, Nilna Rizqiyah

    2017-06-01

    Copper (Cu) is an essential micronutrient participating in various physiological processes. However, excessive uptake of this micronutrient could potentially affect plant growth and development as well as plant productivity. In this present work, growth and physiological responses of some Capsicum frustescens varieties to Cu stress were determined. Three C. frutescens varieties used in this work were var. Bara, CF 291, and Genie. In addition, these varieties were treated with different concentration of Cu (0, 30, 70, and 120 ppm). The growth and physiological responses measured in this work included plant height, root length, malondialdehyde (MDA), and chlorophyll. The result showed that all varieties tested relatively displayed plant growth reduction including plant height and root length. Likewise, an increase of MDA level, a major bioindicator for oxidative damage was also found in all varieties following exposure to elevated Cu concentration. Finally, the chlorophyll content was also affected indicated by a decreased amount of chlorophyll, especially in var. CF291. The overall results demonstrated that elevated Cu concentration might decrease C. frutescens productivity where among the three varieties tested, var CF 291 seemed to be the most sensitive varieties to Cu stress.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we havemore » shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. - Highlights: • Pro-oxidant properties of ferulic acid are enhanced in presence of copper. • Ferulic acid causes oxidative DNA damage in lymphocytes as observed by comet assay. • DNA damage was ameliorated by copper chelating agent neocuproine and ROS scavengers. • Endogenous copper is involved in ROS generation causing DNA damage. • Ferulic acid exerts cancer cell specific cytotoxicity as observed by MTT assay.« less

  15. Draft Genome Sequences of Four Alteromonas macleodii Strains Isolated from Copper Coupons and Grown Long-Term at Elevated Copper Levels.

    PubMed

    Cusick, Kathleen D; Dale, Jason R; Little, Brenda J; Biffinger, Justin C

    2016-11-23

    Alteromonas macleodii is a marine bacterium involved in the early stages of biofouling on ship hulls treated with copper as an antifouling agent. We report here the draft genome sequences of an A. macleodii strain isolated from copper coupons and three laboratory mutants grown long-term at elevated copper levels. Copyright © 2016 Cusick et al.

  16. Development of Low Cost Contacts to Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Tanner, D. P.

    1979-01-01

    Different electroless plating systems were evaluated in conjunction with copper electroplating. All tests involved simultaneous deposition of front and back contacts using a standard cell materials. Cells with good adhesion and good curve fill factors were obtained using a palladium-chromium-copper metallization system. The final copper contact system was evaluated to determine if the copper would migrate at elevated temperatures. The copper migrated at elevated temperatures causing cell output degradation.

  17. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'.

    PubMed

    Allen, Joseph G; MacIntosh, David L; Saltzman, Lori E; Baker, Brian J; Matheson, Joanna M; Recht, Joel R; Minegishi, Taeko; Fragala, Matt A; Myatt, Theodore A; Spengler, John D; Stewart, James H; McCarthy, John F

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs.

  18. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia.

    PubMed

    Mistry, Hiten D; Gill, Carolyn A; Kurlak, Lesia O; Seed, Paul T; Hesketh, John E; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag-single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks׳ gestation that subsequently developed preeclampsia. The modest elevation in copper may contribute to oxidative stress, later in pregnancy, in those women that go on to develop preeclampsia. The lack of evidence to support the hypothesis that functional SNPs influence antioxidant enzyme activity in pregnant women argues against a role for these genes in the etiology of preeclampsia. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Concentration of heavy metals in drinking water of different localities in district east Karachi.

    PubMed

    Jaleel, M A; Noreen, R; Baseer, A

    2001-01-01

    Several heavy metals are present in drinking water that play important roles in the body provided their level remains within the specified range recommended by WHO. But now due to the industrialization and rapid urbanization, the problems of pollution have surfaced. This study was designed to ascertain the contents of some heavy metals and then their variations if any in drinking water in different localities of district East of Karachi, Pakistan. Drinking water samples were collected from different sources and localities of district East of Karachi. The concentration of the heavy metals i.e. Lead, Arsenic, Copper, Iron, Mercury, Chromium, Manganese, Nickel, Cadmium and Zinc were determined by Atomic Absorption Spectrophotometry. PH was estimated by pH meter. Total dissolved solids (TDS) were calculated by formula. These concentrations of heavy metals, pH and TDS were compared with the standards set by WHO. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water (Piped water, Hand pump water and Tanker water supply). Chromium was found to be raised in hand pump water. Arsenic and Mercury were not detected in any source of water. Copper, iron, manganese, cadmium and zinc were found to be within the safe limits in all the three sources of water. pH was found to be within the range of WHO recommended level in all the three sources of water. TDS was found to be elevated in hand pump water and tanker water. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water in district East of Karachi.

  20. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Berg, G.J.; de Goeij, J.J.; Bock, I.

    1991-08-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less

  1. Influence of Dietary Copper on Serum Growth-Related Hormone Levels and Growth Performance of Weanling Pigs.

    PubMed

    Wang, Jianguo; Zhu, Xiaoyan; Guo, Yazhou; Wang, Zhe; Zhao, Baoyu; Yin, Yunhou; Liu, Guowen

    2016-07-01

    To investigate the effect of dietary copper on serum growth-related hormones levels and growth performance, a total of 60 weanling pigs were randomly assigned to six groups each containing 10 pigs, fed on basal diets supplemented with 0 (control), 100, 150, 200, 250, and 300 mg/kg copper sulfate for 80 days, respectively. The average daily gain (ADG), feed to gain ratio (F/G), feed intake and serum growth hormone (GH), insulin (INS), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor-binding protein 3 (IGFBP-3) levels were detected at interval of 20 days. The results revealed that ADG, and serum GH, INS, IGF-1, and IGFBP-3 concentrations were increased significantly in the pigs fed on diets added with 100, 150, 200, 250, and 300 mg/kg copper sulfate. Meanwhile, in the pigs supplemented with 250 mg/kg copper sulfate, ADG was increased significantly from the 40th to the 60th day of the experiment (P < 0.01), and the levels of GH, INS, IGF-1, and IGFBP-3 in serum were elevated significantly from the 20th to the 40th day of the experiment (P < 0.01). It is concluded that effects of copper supplemented in the diet on the growth of pigs were related to the increasing levels of GH, INS, IGF-1, and IGFBP-3 in serum which were induced by copper. High dietary copper increase the concentrations of growth-related hormones in serum, resulting in improving the growth performance of weanling pigs.

  2. iron phase control during pressure leaching at elevated temperature

    NASA Astrophysics Data System (ADS)

    Fleuriault, Camille

    Iron is a common contaminant encountered in most metal recovery operations, and particularly hydrometallurgical processes. For example, the Hematite Process uses autoclaves to precipitate iron oxide out of the leaching solution, while other metals are solubilized for further hydrometallurgical processing. In some cases, Basic Iron Sulfate (BIS) forms in place of hematite. The presence of BIS is unwanted in the autoclave discharge because it diminishes recovery and causes environmental matters. The focus of this master thesis is on the various iron phases forming during the pressure oxidation of sulfates. Artificial leaching solutions were produced from CuSO4, FeSO4 and H2SO4 in an attempt to recreate the matrix composition and conditions used for copper sulfides autoclaving. The following factors were investigated in order to determine which conditions hinder the formation of BIS: initial free acidity (5 -- 98 g/L), initial copper concentration (12.7 -- 63.5 g/L), initial iron concentration (16.7 -- 30.7 g/L) and initial iron oxidation state. There were three solid species formed in the autoclave: hematite, BIS and hydronium jarosite. The results show that free acid is the main factor influencing the composition of the residue. At an initial concentration of 22.3 g/L iron and no copper added, the upper limit for iron oxide formation is 41 g/L H2SO4. The increase of BIS content in the residue is not gradual and occurs over a change of a few grams per liter around the aforementioned limit. Increasing copper sulfate concentration in the solution hinders the formation of BIS. At 63.5g/L copper, the upper free acidity limit is increased to 61g/L. This effect seems to be related to the buffering action of copper sulfate, decreasing the overall acid concentration and thus extending the stability range of hematite. The effect of varying iron concentration on the precipitate chemistry is unclear. At high iron levels, the only noticeable effect was the inhibition of jarosite. The results were reported within a Cu-Fe-S ternary system and modeled. The modeling confirmed the experimental observations with the exception that increasing iron concentrations seem to promote BIS stability.

  3. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had low concentrations of nutrients and major ions but had elevated concentrations of iron, manganese, and strontium when compared to sites sampled in adjacent watersheds. The background site on Baptism Creek generally had the lowest concentrations and yields of constituents. Low concentrations of nutrients and major ions at all five sites indicate that measured concentrations can be attributed to general land use and geology and not to point sources. Streambed-sediment sampling results indicated higher concentrations of all metals except nickel at sites on French Creek compared to the background site on Baptism Creek. Concentrations of aluminum, cadmium, and nickel were highest in sediment from the sampling site upstream from Hopewell Furnace. The highest concentrations of arsenic, boron, cobalt, copper, iron, lead, manganese, mercury, and zinc were detected at the site just below Hopewell Furnace, which indicates that the source of these metals may be in Hopewell Furnace NHS. The invertebrate community at the background site on Baptism Creek was dominated by pollution sensitive taxa indicating a healthy, diverse benthic-macroinvertebrate community. Benthic-macroinvertebrate communities at sampling sites on French Creek indicated disturbed communities when compared to the background site on Baptism Creek and that the overall stream quality immediately above and below Hopewell Furnace NHS is degraded. The benthic-macroinvertebrate communities were dominated by pollution-tolerant taxa, and taxa were less diverse than at the background site. Habitat conditions at the upstream site on French Creek were good but were degraded at downstream sites on French Creek. The major habitat issues at these sites were related to a lack of stable substrate, erosion, and deposition. Water quality and streambed-sediment quality do not indicate that the degraded benthic-macroinvertebrate communities are the result of poor water quality. Habitat conditions (erosion and sedimentation) and physical alterations (water temperature) from the outfall of Hopewell Lake are the most likely causes of the impaired communities.

  4. Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus.

    PubMed Central

    Harwood, V J; Gordon, A S

    1994-01-01

    Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss of both constitutive CuBP production and copper resistance in Cu40B3 indicates that constitutive CuBP production is necessary for copper resistance in this mutant. These data support the hypothesis that the extracellular, ca. 20-kDa protein(s) of V. alginolyticus is an important factor in survival and growth of the organism at elevated copper concentrations. The range of phenotypes observed in copper-resistant and copper-sensitive V. alginolyticus indicate that altered sensitivity to copper was mediated by a variety of physiological changes. Images PMID:8031076

  5. Water and sediment study of the Snake River watershed, Colorado, Oct. 9-12, 2001

    USGS Publications Warehouse

    Fey, D.L.; Church, S.E.; Unruh, D.M.; Bove, D.J.

    2002-01-01

    The Snake River watershed, located upstream from Dillon Reservoir in the central mountains of Colorado, has been affected by historical base-metal mining. Trout stocked in the Snake River for recreational purposes do not survive through the winter. Sediment cores analyzed by previous investigators from the reservoir revealed elevated concentrations of base metals and mercury. We collected 36 surface water samples (filtered and unfiltered) and 38 streambed-sediment samples from streams in the Snake River watershed. Analyses of the sediment and water samples show that concentrations of several metals exceed aquatic life standards in one or both media. Ribbon maps showing dissolved concentrations of zinc, cadmium, copper, and manganese in water (0.45-micron filtered and corrected for the ameliorating effect of hardness), and copper, cadmium, and zinc in sediment indicate reaches where toxic effects on trout would be expected and stream reaches where toxicity standards for rainbow, brown, and brook trout are exceeded. Instantaneous loads for sulfate, strontium, iron, cadmium, copper, and zinc were calculated from 0.45-micron-filtered water concentrations and discharge measurements were made at each site. Sulfate and strontium behave conservatively, whereas copper, cadmium, and zinc are reactive. The dissolved copper load entering the reservoir is less than 20 percent of the value calculated from some upper reaches; copper is transferred to suspended and or streambed sediment by sorption to iron oxyhydroxides. Higher percentages of zinc and cadmium reach the reservoir in dissolved form; however, load calculations indicate that some of these metals are also precipitated out of solution. The most effective remediation activities should be concentrated on reducing the dissolved loads of zinc, cadmium, and copper in two reaches of lower Peru Creek between the confluence with the Snake River and Cinnamon Gulch. We analyzed all streambed sediment for mercury and selected streambed-sediment and reservoir core samples for lead isotope signatures. Results indicate that the mercury anomaly in the reservoir sediment was not from any known source in the Snake River, Blue River, or Tenmile Creek watersheds. Its source remains an enigma.

  6. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-07

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  7. Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment.

    PubMed

    Stähli, Christoph; Muja, Naser; Nazhat, Showan N

    2013-02-01

    The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.

  8. Efficacy, distribution and faecal excretion of copper oxide wire particles in a novel bolus in red deer (Cervus elaphus).

    PubMed

    Castillo-Alcala, F; Wilson, P R; Molenaar, R; Lopez-Villalobos, N

    2007-04-01

    To determine the efficacy of a novel copper oxide wire particle (COWP) formulation in elevating concentrations of copper (Cu) in the liver and serum of red deer (Cervus elaphus), and to investigate the distribution of particles in the gastrointestinal tract and the rate of their excretion in faeces. Mixed-age red deer hinds were allocated to three groups (n=10 per group) on the basis of pre-treatment liver Cu concentrations. Groups 1 and 2 were treated orally with a 10-g COWP bolus on Days 0 and 30, respectively, while the remaining group served as an untreated control. Animals were slaughtered on Day 60, when blood and liver samples were collected for determination of Cu concentrations. An additional group of 18-month-old red deer hinds (n=20) were treated orally with a 10-g COWP bolus, and four were slaughtered on each of Days 1, 5, 15, 30 and 60 after treatment. The gastrointestinal tract was secured between compartments below the oesophagus and contents rinsed until sedimentation of particles was complete. The sediment was oven-dried and COWP were separated and weighed. Faeces were collected continuously from four additional animals held in metabolism cages for 4 days after treatment, sub-sampled daily, and COWP recovered. Mean liver Cu concentrations at slaughter were 80, 597 and 447 micromol/kg for controls and hinds treated 30, and 60 days previously, respectively. Corresponding mean serum Cu concentrations were 7.7, 12.9 and 11.9 micromol/L, respectively. Liver and serum Cu concentrations were higher in both treatment groups than in untreated control animals (p<0.001). COWP were found in all compartments of the gastrointestinal tract measured, for at least 15 days, and in the rumen/reticulum and abomasum for at least 60 days post-administration. The highest rate of recovery overall was from the rumen/reticulum. Mean weight of COWP recovered from faeces was 0.09 g during the first 24 h and 0.94 g over the first 4 days following administration. The COWP bolus tested resulted in elevated mean liver Cu concentrations for at least 60 days compared with control animals. The majority of COWP were found in the rumen/ reticulum, where recovery was possible for at least 60 days. About 10% of particle weight was excreted in the faeces within 4 days of administration. The test bolus was efficacious in deer, elevating mean liver and serum Cu concentrations 30 and 60 days after treatment. Variation in faecal excretion may explain between-animal differences in efficacy.

  9. Excess copper induced oxidative stress and response of antioxidants in rice.

    PubMed

    Thounaojam, Thorny Chanu; Panda, Piyalee; Panda, P; Mazumdar, Purabi; Mazumdar, P; Kumar, Devanand; Sharma, Gauri Dutta; Sharma, G D; Sahoo, Lingaraj; Sahoo, L; Panda, Sanjib Kumar; Panda, S K

    2012-04-01

    To investigate the effects of copper (Cu), rice plant (Oryza sativa. L. var. MSE-9) was treated with different Cu concentrations (0, 10, 50 and 100 μM) for 5 days in hydroponic condition. Gradual decrease in shoot and root growth was observed with the increase of Cu concentration and duration of treatment where maximum inhibition was recorded in root growth. Cu was readily absorbed by the plant though the maximum accumulation was found in root than shoot. Hydrogen peroxide (H(2)O(2)) production and lipid peroxidation were found increased with the elevated Cu concentration indicating excess Cu induced oxidative stress. Antioxidant enzymes superoxide dismutase (SOD), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) and glutathione reductase (GR) were effectively generated at the elevated concentrations of Cu though catalase (CAT) did not show significant variation with respect to control. Ascorbate (ASH), glutathione (GSH) and proline contents were also increased in all the Cu treated plants compared with the control. SOD isoenzyme was greatly affected by higher concentration of Cu and it was consistent with the changes of the activity assayed in solution. The present study confirmed that excess Cu inhibits growth, induced oxidative stress by inducing ROS formation while the stimulated antioxidative system appears adaptive response of rice plant against Cu induced oxidative stress. Moreover proline accumulation in Cu stress plant seems to provide additional defense against the oxidative stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de; Mueller, Christa; Harms, Katrin S.

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associatedmore » with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.« less

  11. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver

    PubMed Central

    Aigner, Elmar; Weiss, Günter; Datz, Christian

    2015-01-01

    Elevated iron stores as indicated by hyperferritinemia with normal or mildly elevated transferrin saturation and mostly mild hepatic iron deposition are a characteristic finding in subjects with non-alcoholic fatty liver disease (NAFLD). Excess iron is observed in approximately one third of NAFLD patients and is commonly referred to as the “dysmetabolic iron overload syndrome”. Clinical evidence suggests that elevated body iron stores aggravate the clinical course of NAFLD with regard to liver-related and extrahepatic disease complications which relates to the fact that excess iron catalyses the formation of toxic hydroxyl-radicals subsequently resulting in cellular damage. Iron removal improves insulin sensitivity, delays the onset of type 2 diabetes mellitus, improves pathologic liver function tests and likewise ameliorates NAFLD histology. Several mechanisms contribute to pathologic iron accumulation in NAFLD. These include impaired iron export from hepatocytes and mesenchymal Kupffer cells as a consequence of imbalances in the concentrations of iron regulatory factors, such as hepcidin, cytokines, copper or other dietary factors. This review summarizes the knowledge about iron homeostasis in NAFLD and the rationale for its therapeutic implications. PMID:25729473

  12. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2009-12-09

    ISS022-E-008282 (9 Dec. 2009) --- One of the world?s leading copper mines, Escondida, in the Atacama Desert of Chile, is featured in this image photographed by an Expedition 22 crew member on the International Space Station. The copper mining industry is a major part of the Chilean economy. The mine is located 170 kilometers southeast of Chile?s port city of Antofagasta, in the hyper arid northern Atacama Desert at an elevation of 3,050 meters (approximately 10,000 feet) above sea level. Escondida produces mainly copper concentrates; assisted by gravity, the concentrates are piped as slurry down to the smaller port of Coloso just south of Antofagasta where they are dewatered for shipping. The photograph features a large light tan and gray waste or ?spoil? materials impoundment area (center) of the mine complex. The copper-bearing waste, which is a large proportion of the material excavated from open pits to the north (not in frame), is poured into the impoundment area as a liquid (green region at photo?s center), and dries to the lighter-toned spoil seen in the image. The spoil is held behind a retaining dam, just a little more than one kilometer in length, visible as a straight line at lower left. ?Escondida? means ?hidden? in Spanish, and refers to the fact that the copper ore body was buried beneath hundreds of meters of barren rock and had to be located by a laborious drilling program following a geologic trend established from other copper occurrences.

  13. Chromatographic Separation and Visual Detection on Wicking Microfluidic Devices: Quantitation of Cu2+ in Surface, Ground, and Drinking Water.

    PubMed

    Bandara, Gayan C; Heist, Christopher A; Remcho, Vincent T

    2018-02-20

    Copper is widely applied in industrial and technological applications and is an essential micronutrient for humans and animals. However, exposure to high environmental levels of copper, especially through drinking water, can lead to copper toxicity, resulting in severe acute and chronic health effects. Therefore, regular monitoring of aqueous copper ions has become necessary as recent anthropogenic activities have led to elevated environmental concentrations of copper. On-site monitoring processes require an inexpensive, simple, and portable analytical approach capable of generating reliable qualitative and quantitative data efficiently. Membrane-based lateral flow microfluidic devices are ideal candidates as they facilitate rapid, inexpensive, and portable measurements. Here we present a simple, chromatographic separation approach in combination with a visual detection method for Cu 2+ quantitation, performed in a lateral flow microfluidic channel. This method appreciably minimizes interferences by incorporating a nonspecific polymer inclusion membrane (PIM) based assay with a "dot-counting" approach to quantification. In this study, hydrophobic polycaprolactone (PCL)-filled glass microfiber (GMF) membranes were used as the base substrate onto which the PIM was evenly dispensed as an array of dots. The devices thus prepared were then selectively exposed to oxygen radicals through a mask to generate a hydrophilic surface path along which the sample was wicked. Using this approach, copper concentrations from 1 to 20 ppm were quantified from 5 μL samples using only visual observation of the assay device.

  14. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

    PubMed

    Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C

    2017-08-30

    Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Safety of long-term restrictive diets for peroxisomal disorders: vitamin and trace element status of patients treated for Adult Refsum Disease.

    PubMed

    Baldwin, E J; Harrington, D J; Sampson, B; Feher, M D; Wierzbicki, A S

    2016-03-01

    Adult Refsum's Disease (ARD) is caused by defects in the pathway for alpha-oxidation of phytanic acid (PA). Treatment involves restricting the dietary intake of phytanic acid by reducing the intake of dairy-derived fat. The adequacy of micronutrient intake in patients with ARD is unknown. Patients established on the Chelsea low-PA diet had general diet macronutrients, vitamins and trace elements assessed using 7-day-weighed intakes and serial 24-h recalls. Intakes were compared with biochemical assessments of nutritional status for haematinics (ferritin), trace elements (copper, zinc, iron, selenium), water- (vitamin B6 , B12 and folate) and fat-soluble vitamins (A, D, E and K). Eleven subjects (four women, seven men) were studied. Body mass index was 27 ± 5 kg/m(2) (range 19-38). All subjects had high sodium intakes (range 1873-4828 mg). Fat-soluble vitamin insufficiencies occurred in some individuals (vitamin A, n = 2; vitamin D, n = 6; vitamin E, n = 3; vitamin K, n = 10) but were not coincident. Vitamin B6 levels were normal or elevated (n = 6). Folate and 5-methyltetrahydrofolate concentrations were normal. Metabolic vitamin B12 insufficiency was suspected in four subjects based on elevated methylmalonic acid concentrations. Low copper and selenium intakes were noted in some subjects (n = 7, n = 2) but plasma levels were adequate. Iron, ferritin and zinc intakes and concentrations were normal. Subjects with ARD can be safely managed on the Chelsea low PA without routine micronutrient supplementation. Sodium intake should be monitored and reduced. Periodic nutritional screening may be necessary for fat-soluble vitamins, vitamin B12 , copper or selenium. © 2016 John Wiley & Sons Ltd.

  16. Polymodal Responses in C. elegans Phasmid Neurons Rely on Multiple Intracellular and Intercellular Signaling Pathways

    PubMed Central

    Zou, Wenjuan; Cheng, Hankui; Li, Shitian; Yue, Xiaomin; Xue, Yadan; Chen, Sixi; Kang, Lijun

    2017-01-01

    Animals utilize specialized sensory neurons enabling the detection of a wide range of environmental stimuli from the presence of toxic chemicals to that of touch. However, how these neurons discriminate between different kinds of stimuli remains poorly understood. By combining in vivo calcium imaging and molecular genetic manipulation, here we investigate the response patterns and the underlying mechanisms of the C. elegans phasmid neurons PHA/PHB to a variety of sensory stimuli. Our observations demonstrate that PHA/PHB neurons are polymodal sensory neurons which sense harmful chemicals, hyperosmotic solutions and mechanical stimulation. A repulsive concentration of IAA induces calcium elevations in PHA/PHB and both OSM-9 and TAX-4 are essential for IAA-sensing in PHA/PHB. Nevertheless, the PHA/PHB neurons are inhibited by copper and post-synaptically activated by copper removal. Neuropeptide is likely involved in copper removal-induced calcium elevations in PHA/PHB. Furthermore, mechanical stimulation activates PHA/PHB in an OSM-9-dependent manner. Our work demonstrates how PHA/PHB neurons respond to multiple environmental stimuli and lays a foundation for the further understanding of the mechanisms of polymodal signaling, such as nociception, in more complex organisms. PMID:28195191

  17. ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion.

    PubMed

    Cater, Michael A; La Fontaine, Sharon; Shield, Kristy; Deal, Yolanda; Mercer, Julian F B

    2006-02-01

    The Wilson protein (ATP7B) regulates levels of systemic copper by excreting excess copper into bile. It is not clear whether ATP7B translocates excess intrahepatic copper directly across the canalicular membrane or sequesters this copper into exocytic vesicles, which subsequently fuse with canalicular membrane to expel their contents into bile. The aim of this study was to clarify the mechanism underlying ATP7B-mediated copper detoxification by investigating endogenous ATP7B localization in the HepG2 hepatoma cell line and its ability to mediate vesicular sequestration of excess intracellular copper. Immunofluorescence microscopy was used to investigate the effect of copper concentration on the localization of endogenous ATP7B in HepG2 cells. Copper accumulation studies to determine whether ATP7B can mediate vesicular sequestration of excess intracellular copper were performed using Chinese hamster ovary cells that exogenously expressed wild-type and mutant ATP7B proteins. In HepG2 cells, elevated copper levels stimulated trafficking of ATP7B to pericanalicular vesicles and not to the canalicular membrane as previously reported. Mutation of an endocytic retrieval signal in ATP7B caused the protein to constitutively localize to vesicles and not to the plasma membrane, suggesting that a vesicular compartment(s) is the final trafficking destination for ATP7B. Expression of wild-type and mutant ATP7B caused Chinese hamster ovary cells to accumulate copper in vesicles, which subsequently undergo exocytosis, releasing copper across the plasma membrane. This report provides compelling evidence that the primary mechanism of biliary copper excretion involves ATP7B-mediated vesicular sequestration of copper rather than direct copper translocation across the canalicular membrane.

  18. Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the coastal plain of New Jersey

    USGS Publications Warehouse

    Kish, G.R.; Macy, J.A.; Mueller, R.T.

    1987-01-01

    The U.S. Geological Survey analyzed trace metal concentrations in tap water from domestic wells in newly constructed homes in Berkeley Township, Ocean County and Galloway Township, Atlantic County, N. J. The potable water distribution systems in all of the homes sampled are constructed primarily of copper with lead-based solder points. Home water treatment is used in Berkeley Township but not in Galloway Township. Tap water was collected after the water had been standing in the pipes overnight. In Berkeley, 6 to 11 samples exceeded both the U.S. Environmental Protection Agency 's primary drinking water regulation (DWR) for lead (50 microgram/L) and the secondary drinking water regulation (SDWR) for copper (1,000 microgram/L). In Galloway, 12 of 14 samples exceeded the DWR for lead and 13 of 14 exceeded the SDWR for copper. After collecting the standing-water samples, the water was left running for 15 minutes and a second sample was collected. None of the running-water samples exceeded the regulations for lead or copper. Available data suggest a correlation between the residence time of soft, acidic groundwater in new home plumbing systems and elevated trace-metal concentrations in drinking water derived from domestic wells within the New Jersey Coastal Plain. (USGS)

  19. Water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin; major and trace elements in water, sediment, and biota, 1978-90

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Scudder, B.C.; Crawford, J.K.; Schmidt, A.R.; Sieverling, J.B.

    1995-01-01

    The distribution of 22 major and trace elements was examined in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin as part of a pilot National Water-Quality Assessment project done by the U.S. Geological Survey from 1987 through 1990. The 22 elements are aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, phosphorus, selenium, silver, strontium, vanadium, and zinc. Concentrations of U.S. Environmental Protection Agency (USEPA) priority pollutants among the 22 elements were elevated in the Chicago area in all three aquatic components (water, sediment, and biota). Further, some of the priority pollutants also were found at elevated concentrations in biota in agricultural areas in the basin. Cadmium, chromium, copper, iron, lead, mercury, silver, and zinc concentrations in water exceeded USEPA acute or chronic water-quality criteria at several sites in the Chicago area. Correlations among concentra- tions of elements in water, sediment, and biota were found, but the correlation analysis was hindered by the large proportion of observations less than the minimum reporting level in water. Those sites where water-quality criteria were sometimes exceeded were not always the same sites where concentrations in biota were the largest. This relation indicates that accumulation of these pollutants in biota is confounded by complex geochemical and biological processes that differ throughout the upper Illinois River Basin.

  20. Tear copper and its association with liver copper concentrations in six adult ewes.

    PubMed Central

    Schoster, J V; Stuhr, C; Kiorpes, A

    1995-01-01

    Tear and liver copper concentrations from 6 clinically healthy adult mixed-breed ewes were measured by Atomic Absorption Electrothermal Atomization (graphite furnace) Spectrometry and Flame Absorption Spectrometry, respectively, 7 times over 227 d to determine if their tears contained copper and if so, whether tear copper concentrations could reliably predict liver copper concentrations. To produce changes in liver copper concentration, the diet was supplemented with copper at concentrations that increased from 23 mg to 45 mg Cu/kg feed/day/sheep during the study. This regimen raised liver copper for all sheep to potentially toxic hepatic tissue concentration of greater than 500 mg/kg dry (DM) matter (tissue). The results of the study showed that copper was present in the tears of all sheep. The mean tear copper concentration showed a positive correlation with liver copper concentration (P = 0.003), increasing from 0.07 mg/kg DM at the start to 0.44 mg/kg DM at the end of the study, but could not reliably predict liver copper concentration (R2 = 0.222). PMID:7648525

  1. Trace element concentrations in two subpopulations of lesser snow geese from Wrangel Island, Russia

    USGS Publications Warehouse

    Hui, A.; Takekawa, John Y.; Baranyuk, Vasily V.; Litvin, K.V.

    1998-01-01

    Lesser snow geese (Anser c. caerulescens) from the Wrangel Island, Russia breeding colony spend the winter in two widely separated areas: the northern subpopulation in southern British Columbia and northern Washington and the southern subpopulation in the Central Valley of California. We examined 19 trace elements in the eggs and livers of geese from these two subpopulations to examine whether geese from the different wintering areas have similar trace element burdens. Eggs collected at the breeding colony from geese of the southern subpopulation had slightly higher levels of manganese, an element that can cause neurological damage and behavioral changes in chicks, than geese of the northern subpopulation. Livers from adult geese collected on the two wintering areas showed significant differences in trace elements including copper, iron, magnesium, molybdenum, and zinc. Copper concentrations in the livers of geese from the southern subpopulation were much higher than those from the northern subpopulation (x¯ = 116 vs. 46 ppm; dry weight). Elevated levels of copper may induce anemia in birds. The differences in trace element concentrations of these two subpopulations may be related to farming practices in their wintering areas. Geese from the northern subpopulation feed in pastures and coastal marshes and migrate along the coast, but geese from the southern subpopulation feed predominantly in rice fields and migrate over farm land. Copper and manganese are major components of fertilizers and fungicides commonly applied during rice cultivation.

  2. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau

    PubMed Central

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-01-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport. PMID:27052807

  3. Effects of nonylphenol and ethinylestradiol on copper redhorse (Moxostoma hubbsi), an endangered species.

    PubMed

    Maltais, Domynick; Roy, Robert L

    2014-10-01

    The copper redhorse, Moxostoma hubbsi, is an endangered species endemic to Quebec. The presence of contaminants, in particular endocrine disrupting chemicals (EDCs), in its habitat has been advanced as partly responsible for the reproductive difficulties encountered by the species. In the present study, immature copper redhorse were exposed to the estrogenic surfactant nonylphenol (NP; 1, 10 and 50µg/l) and the synthetic estrogen 17α-ethinylestradiol (EE2; 10ng/l) for 21 days in a flow-through system. The endpoints investigated included general health indicators (hepatosomatic index and hematocrit), thyroid hormones, sex steroids, brain aromatase activity, plasma and mucus vitellogenin (VTG), cytochrome P4501A protein expression and ethoxyresorufin-O-deethylase activity, heat shock protein 70 (HSP70) and muscle acetylcholinesterase. Exposure to 10ng EE2/l significantly increased brain aromatase activity. Exposure to 50µg NP/l resulted in a significant reduction of plasma testosterone concentrations and a significant induction of hepatic HSP70 protein expression. NP at 50µg/l also induced plasma and mucus VTG. The presence of elevated VTG levels in the surface mucus of immature copper redhorse exposed to NP, and its correlation to plasma VTG, supports the use of mucus VTG as a non-invasive biomarker to evaluate copper redhorse exposure to EDCs in the environment and contribute to restoration efforts of the species. The results of the present study indicate that exposure to high environmentally relevant concentrations of NP and EE2 can affect molecular endpoints related to reproduction in the copper redhorse. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  4. Acute phase response and plasma carotenoid concentrations in older women: findings from the nun study.

    PubMed

    Boosalis, M G; Snowdon, D A; Tully, C L; Gross, M D

    1996-01-01

    This cross-sectional study investigated whether the acute phase response was associated with suppressed circulating levels of antioxidants in a population of 85 Catholic sisters (nuns) ages 77-99 y. Fasting blood was drawn to determine the presence of an acute phase response, as defined by an elevation in the serum concentration of C-reactive protein. Serum concentrations of albumin, thyroxine-binding prealbumin, zinc, copper, and fibrinogen were determined as were plasma concentrations of carotenoids and alpha tocopherol. Results showed that the presence of an acute phase response was associated with (1) an expected significant decrease in the serum concentrations of albumin (p < 0.001) and thyroxine-binding prealbumin (p < 0.001); (2) an expected significant increase in copper (p < 0.001) and fibrinogen (p = 0.003); and (3) a significant decrease in the plasma concentrations of lycopene (p = 0.03), alpha carotene (p = 0.02), beta carotene (p = 0.02), and total carotenoids (p = 0.01). The acute phase response was associated with decreased plasma levels of the antioxidants lycopene, alpha carotene, and beta carotene. This decrease in circulating antioxidants may further compromise antioxidant status and increase oxidative stress and damage in elders.

  5. Effects of rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, D.F.; Brumbaugh, W.G.; DeLonay, A.J.

    1994-01-01

    The upper Clark Fork River in northwestern Montana has received mining wastes from the Butte and Anaconda areas since 1880. These wastes have contaminated areas of the river bed and floodplain with tailings and heavy metal sludge, resulting in elevated concentration of metals in surface water, sediments, and biota. Rainbow trout Oncorhynchus mykiss were exposed immediately after hatching for 91 d to cadmium, copper, lead, and zinc in water at concentrations simulating those in Clark Fork River. From exogenous feeding (21 d posthatch) through 91 d, fry were also fed benthic invertebrates from the Clark Fork River that contained elevatedmore » concentrations of arsenic, cadmium, copper, and lead. Evaluations of different combinations of diet and water exposure indicated diet-borne metals were more important than water-borne metals - at the concentrations we tested - in reducing survival and growth of rainbow trout. Whole-body metal concentrations ([mu]g/g, wet weight) at 91 d in fish fed Clark Fork invertebrates without exposure to Clark Fork water were arsenic, 1.4; cadmium, 0.16; and copper, 6.7. These were similar to concentrations found in Clark Fork River fishes. Livers from fish on the high-metals diets exhibited degenerative changes and generally lacked glycogen vacuolation. Indigenous Clark Fork River invertebrates provide a concentrated source of metals for accumulation into young fishes, and probably were the cause of decreased survival and growth of age-0 rainbow trout in our laboratory exposures. 30 refs., 8 figs., 4 tabs.« less

  6. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stan E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  7. Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites.

    PubMed

    Shahbaz, M; Stuiver, C E E; Posthumus, F S; Parmar, S; Hawkesford, M J; De Kok, L J

    2014-01-01

    The toxicity of high copper (Cu) concentrations in the root environment of Chinese cabbage (Brassica pekinensis) was little influenced by the sulphur nutritional status of the plant. However, Cu toxicity removed the correlation between sulphur metabolism-related gene expression and the suggested regulatory metabolites. At high tissue Cu levels, there was no relation between sulphur metabolite levels viz. total sulphur, sulphate and water-soluble non-protein thiols, and the expression and activity of sulphate transporters and expression of APS reductase under sulphate-sufficient or-deprived conditions, in the presence or absence of H2 S. This indicated that the regulatory signal transduction pathway of sulphate transporters was overruled or by-passed upon exposure to elevated Cu concentrations. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  9. Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.

    PubMed

    Masaldan, Shashank; Clatworthy, Sharnel A S; Gamell, Cristina; Smith, Zoe M; Francis, Paul S; Denoyer, Delphine; Meggyesy, Peter M; Fontaine, Sharon La; Cater, Michael A

    2018-06-01

    Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo br ) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease. Copyright © 2018. Published by Elsevier B.V.

  10. Undergraduates in the lab: Analyzing metal and organic contaminants in oysters and sediments from southeastern North Carolina

    NASA Astrophysics Data System (ADS)

    Mead, R. N.; Kipp, L. E.; Liberatore, H.; Sherard, S.; Steagall, M.; Skrabal, S. A.

    2016-02-01

    A state-funded project to analyze a suite of metal and organic contaminants in oyster tissues and ambient sediments was carried out nearly exclusively by over 10 undergraduates at the University of North Carolina Wilmington. This study will present Concentrations of various trace metals (most notably arsenic, copper, mercury, and zinc) and organic contaminants (polycyclic aromatic hydrocarbons and the antibacterial, triclosan) have been determined in oyster tissues and adjacent sediments in New Hanover and Brunswick counties, southeastern North Carolina. Trace metals that exceeded national median levels at multiple sites in this study included arsenic, copper, and zinc. Elevated levels of arsenic (exceeding the national median and, often, the national 85th percentiles) in oyster tissues are characteristic of much of the southeastern United States; these elevations are attributed to high natural background levels in the underlying bedrock and sediments as well as historical contamination by arsenic-containing agricultural pesticides. Another metal of national concern is mercury; however, concentrations of this metal were mostly at the national median for oyster tissue. Polycyclic aromatic hydrocarbons (PAHs) barely exceeded or were near the national median at only 3 sites, 2 in Lockwood Folly estuary, Brunswick County and 1 at Bradley Creek, New Hanover County. Concentrations at the remaining sites were 4 to >10 times less than the national median. Triclosan, an antibacterial compound used in many consumer products, was found in oyster tissues and sediments at the 4 sites at which it was examined. Oyster tissues contained triclosan at levels 2 to 43 times as high as adjacent sediments, indicating its bioaccumulation potential. Levels of metals and PAHs in oyster tissues are consistently elevated near more urbanized areas but are unlikely to be at levels harmful for human consumption.

  11. Quantification of metal loads by tracer injection and synoptic sampling in Daisy Creek and the Stillwater River, Park County, Montana, August 1999

    USGS Publications Warehouse

    Nimick, David A.; Cleasby, Thomas E.

    2001-01-01

    A metal-loading study using tracer-injection and synoptic-sampling methods was conducted in Daisy Creek and a short reach of the Stillwater River during baseflow in August 1999 to quantify the metal inputs from acid rock drainage in the New World Mining District near Yellowstone National Park and to examine the downstream transport of these metals into the Stillwater River. Loads were calculated for many mainstem and inflow sites by combining streamflow determined using the tracer-injection method with concentrations of major ions and metals that were determined in synoptic water-quality samples. Water quality and aquatic habitat in Daisy Creek have been affected adversely by drainage derived from waste rock and adit discharge at the McLaren Mine as well as from natural weathering of pyrite-rich mineralized rock that comprises and surrounds the ore zones. However, the specific sources and transport pathways are not well understood. Knowledge of the main sources and transport pathways of metals and acid can aid resource managers in planning and conducting effective and cost-efficient remediation activities. The metals cadmium, copper, lead, and zinc occur at concentrations that are sufficiently elevated to be potentially lethal to aquatic life in Daisy Creek and to pose a toxicity risk in part of the Stillwater River. Copper is of most concern in Daisy Creek because it occurs at higher concentrations than the other metals. Acidic surface inflows had dissolved concentrations as high as 20.6 micrograms per liter (?g/L) cadmium, 26,900 ?g/L copper, 76.4 ?g/L lead, and 3,000 ?g/L zinc. These inflows resulted in maximum dissolved concentrations in Daisy Creek of 5.8 ?g/L cadmium, 5,790 ?g/L copper, 3.8 ?g/L lead, and 848 ?g/L zinc. Significant copper loading to Daisy Creek occurred only in the upper half of the stream. Sources included subsurface inflow and right-bank (mined side) surface inflows. Copper loads in left-bank (unmined side) surface inflows were negligible. Most (71 percent) of the total copper loading in the study reach occurred along a 341-foot reach near the stream?s headwaters. About 53 percent of the total copper load was contributed by five surface inflows that drain a manganese bog and the southern part of the McLaren Mine. Copper loading from subsurface inflow was substantial, contributing 46 percent of the total dissolved copper load to Daisy Creek. More than half of this subsurface copper loading occurred downstream from the reaches that received significant surface loading. Flow through the shallow subsurface appears to be the main copper-transport pathway from the McLaren Mine and surrounding altered and mineralized bedrock to Daisy Creek during base-flow conditions. Little is known about the source of acid and copper in this subsurface flow. However, possible sources include the mineralized rocks of Fisher Mountain upgradient of the McLaren Mine area, the surficial waste rock at the mine, and the underlying pyritic bedrock.

  12. Selection of Fecal Enterococci Exhibiting tcrB-Mediated Copper Resistance in Pigs Fed Diets Supplemented with Copper † ▿

    PubMed Central

    Amachawadi, R. G.; Shelton, N. W.; Shi, X.; Vinasco, J.; Dritz, S. S.; Tokach, M. D.; Nelssen, J. L.; Scott, H. M.; Nagaraja, T. G.

    2011-01-01

    Copper, as copper sulfate, is increasingly used as an alternative to in-feed antibiotics for growth promotion in weaned piglets. Acquired copper resistance, conferred by a plasmid-borne, transferable copper resistance (tcrB) gene, has been reported in Enterococcus faecium and E. faecalis. A longitudinal field study was undertaken to determine the relationship between copper supplementation and the prevalence of tcrB-positive enterococci in piglets. The study was done with weaned piglets, housed in 10 pens with 6 piglets per pen, fed diets supplemented with a normal (16.5 ppm; control) or an elevated (125 ppm) level of copper. Fecal samples were randomly collected from three piglets per pen on days 0, 14, 28, and 42 and plated on M-Enterococcus agar, and three enterococcal isolates were obtained from each sample. The overall prevalence of tcrB-positive enterococci was 21.1% (38/180) in piglets fed elevated copper and 2.8% (5/180) in the control. Among the 43 tcrB-positive isolates, 35 were E. faecium and 8 were E. faecalis. The mean MICs of copper for tcrB-negative and tcrB-positive enterococci were 6.2 and 22.2 mM, respectively. The restriction digestion of the genomic DNA of E. faecium or E. faecalis with S1 nuclease yielded a band of ∼194-kbp size to which both tcrB and the erm(B) gene probes hybridized. A conjugation assay demonstrated cotransfer of tcrB and erm(B) genes between E. faecium and E. faecalis strains. The higher prevalence of tcrB-positive enterococci in piglets fed elevated copper compared to that in piglets fed normal copper suggests that supplementation of copper in swine diets selected for resistance. PMID:21705534

  13. Selected organic compounds and trace elements in streambed sediments and fish tissues, Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Frenzel, Steven A.

    2000-01-01

    Organochlorines, semivolatile organic compounds (SVOCs), and trace elements were investigated in streambed sediments and fish tissues at selected sites in the Cook Inlet Basin, Alaska, during 1998. At most sites, SVOCs and organochlorine compounds were either not detected or detected at very low concentrations. Chester Creek at Arctic Boulevard at Anchorage, which was the only site sampled with a significant degree of development in the watershed, had elevated levels of many SVOCs in streambed sediment. Coring of sediments from two ponds on Chester Creek confirmed the presence of elevated concentrations of a variety of organic compounds. Moose Creek, a stream with extensive coal deposits in its watershed, had low concentrations of numerous SVOCs in streambed sediment. Three sites located in national parks or in a national wildlife refuge had no detectable concentrations of SVOCs. Trace elements were analyzed in both streambed sediments and tissues of slimy sculpin. The two media provided similar evidence for elevated concentrations of cadmium, lead, and zinc at Chester Creek. In this study, 'probable effect levels '(PELs) were determined from sediments finer than 0.063 millimeters, where concentrations tend to be greatest. Arsenic and chromium concentrations exceeded the PEL at eight and six sites respectively. Zinc exceeded the PEL at one site. Cadmium and copper concentrations were smaller than the PEL at all sites. Mercury concentrations in streambed sediments from the Deshka River were near the PEL, and selenium concentrations at that site also appear to be elevated above background levels. At half the sites where slimy sculpin were sampled, selenium concentrations were at levels that may cause adverse effects in some species.

  14. THE IMPACT OF ORTHOPHOSPHATE ON COPPER CORROSION AND CHLORINE DEMAND

    EPA Science Inventory

    In 1991, EPA promulgated the Lead and Copper Rule, which established a copper action level of 1.3 mg/L in a 1-liter, first-draw sample collected from the consumer’s tap. Excessive corrosion of copper can lead to elevated copper levels at the consumer's tap, and in some cases, can...

  15. Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability.

    PubMed

    Semisch, Annetta; Ohle, Julia; Witt, Barbara; Hartwig, Andrea

    2014-02-13

    Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive.

  16. Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability

    PubMed Central

    2014-01-01

    Background Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. Methods The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Results Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. Conclusions The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive. PMID:24520990

  17. Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998

    USGS Publications Warehouse

    Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    Drainage from abandoned and inactive mines and from naturally mineralized areas in the San Juan Mountains of southern Colorado contributes metals to the upper Animas River near Silverton, Colorado. Tracer-injection studies and associated synoptic sampling were performed along two reaches of the upper Animas River to develop detailed profiles of stream discharge and to locate and quantify sources of metal loading. One tracer-injection study was performed in September 1997 on the Animas River reach from Howardsville to Silverton, and a second study was performed in August 1998 on the stream reach from Eureka to Howardsville. Drainage in the upper Animas River study reaches contributed aluminum, calcium, copper, iron, magnesium, manganese, sulfate, and zinc to the surface-water system in 1997 and 1998. Colloidal aluminum, dissolved copper, and dissolved zinc were attenuated through a braided stream reach downstream from Eureka. Instream dissolved copper concentrations were lower than the State of Colorado acute and chronic toxicity standards downstream from the braided reach to Silverton. Dissolved iron load and concentrations increased downstream from Howardsville and Arrastra Gulch, and colloidal iron remained constant at low concentrations downstream from Howardsville. Instream sulfate concentrations were lower than the U.S. Environmental Protection Agency's secondary drinking-water standard of 250 milligrams per liter throughout the two study reaches. Elevated zinc concentrations are the primary concern for aquatic life in the upper Animas River. In the 1998 Eureka to Howardsville study, instream dissolved zinc load increased downstream from the Forest Queen mine, the Kittimack tailings, and Howardsville. In the 1997 Howardsville to Silverton study, there were four primary areas where zinc load increased. First, was the increase downstream from Howardsville and abandoned mining sites downstream from the Cunningham Gulch confluence, which also was measured during the 1998 study. The second affected reach was downstream from Arrastra Gulch, where the increase in zinc load seems related to a series of right-bank inflows with low pH Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998By Suzanne S. Paschke, Briant A. Kimball, and Robert L. Runkeland elevated dissolved zinc concentrations. A third increase in zinc load occurred 6,100 meters downstream from the 1997 injection site and may have been from ground-water discharge with elevated zinc concentrations based on mass-loading graphs and the lack of visible inflow in the reach. A fourth but lesser dissolved zinc load increase occurred downstream from tailings near the Lackawanna Mill. Results of the tracer-injection studies and the effects of potential remediation were analyzed using the one- dimensional stream-transport computer code OTIS. Based on simulation results, instream zinc concentrations downstream from the Kittimack tailings to upstream from Arrastra Gulch would approach 0.16 milligram per liter (the upper limit of acute toxicity for some sensitive aquatic species) if zinc inflow concentrations were reduced by 75 percent in the stream reaches receiving inflow from the Forest Queen mine, the Kittimack tailings, and downstream from Howardsville. However, simulated zinc concentrations downstream from Arrastra Gulch were higher than approximately 0.30 milligram per liter due to numerous visible inflows and assumed ground-water discharge with elevated zinc concentrations in the lower part of the study reach. Remediation of discrete visible inflows seems a viable approach to reducing zinc inflow loads to the upper Animas River. Remediation downstream from Arrastra Gulch is more complicated because ground-water discharge with elevated zinc concentrations seems to contribute to the instream zinc load.

  18. Clinically distinct presentations of copper deficiency myeloneuropathy and cytopenias in a patient using excessive zinc-containing denture adhesive.

    PubMed

    Cathcart, Sahara J; Sofronescu, Alina G

    2017-08-01

    While copper deficiency has long been known to cause cytopenias, copper deficiency myeloneuropathy is a more recently described entity. Here, we present the case of two clinically distinct presentations of acquired copper deficiency syndromes secondary to excessive use of zinc-containing denture adhesive over five years: myeloneuropathy and severe macrocytic anemia and neutropenia. Extensive laboratory testing and histologic evaluation of the liver and bone marrow, were necessary to rule out other disease processes and establish the diagnosis of copper deficiency. The initial presentation consisted of a myelopathy involving the posterior columns. Serum and urine copper were significantly decreased, and serum zinc was elevated. On second presentation (five years later), multiple hematological abnormalities were detected. Serum copper was again decreased, while serum zinc was elevated. Zinc overload is a preventable cause of copper deficiency syndromes. This rare entity presented herein highlights the importance of patient, as well as provider, education. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Geologic and anthropogenic sources of contamination in settled dust of a historic mining port city in northern Chile: health risk implications.

    PubMed

    Tapia, Joseline S; Valdés, Jorge; Orrego, Rodrigo; Tchernitchin, Andrei; Dorador, Cristina; Bolados, Aliro; Harrod, Chris

    2018-01-01

    Chile is the leading producer of copper worldwide and its richest mineral deposits are found in the Antofagasta Region of northern Chile. Mining activities have significantly increased income and employment in the region; however, there has been little assessment of the resulting environmental impacts to residents. The port of Antofagasta, located 1,430 km north of Santiago, the capital of Chile, functioned as mineral stockpile until 1998 and has served as a copper concentrate stockpile since 2014. Samples were collected in 2014 and 2016 that show elevated concentrations of As, Cu, Pb, and Zn in street dust and in residents' blood (Pb) and urine (As) samples. To interpret and analyze the spatial variability and likely sources of contamination, existent data of basement rocks and soil geochemistry in the city as well as public-domain airborne dust were studied. Additionally, a bioaccessibility assay of airborne dust was conducted and the chemical daily intake and hazard index were calculated to provide a preliminary health risk assessment in the vicinity of the port. The main conclusions indicate that the concentrations of Ba, Co, Cr, Mn, Ni, and V recorded from Antofagasta dust likely originate from intrusive, volcanic, metamorphic rocks, dikes, or soil within the city. However, the elevated concentrations of As, Cd, Cu, Mo, Pb, and Zn do not originate from these geologic outcrops, and are thus considered anthropogenic contaminants. The average concentrations of As, Cu, and Zn are possibly the highest in recorded street dust worldwide at 239, 10,821, and 11,869 mg kg -1 , respectively. Furthermore, the contaminants As, Pb, and Cu exhibit the highest bioaccessibilities and preliminary health risk indices show that As and Cu contribute to elevated health risks in exposed children and adults chronically exposed to dust in Antofagasta, whereas Pb is considered harmful at any concentration. Therefore, an increased environmental awareness and greater protective measures are necessary in Antofagasta and possibly other similar mining port cities in developing countries.

  20. Geologic and anthropogenic sources of contamination in settled dust of a historic mining port city in northern Chile: health risk implications

    PubMed Central

    Valdés, Jorge; Orrego, Rodrigo; Tchernitchin, Andrei; Dorador, Cristina; Bolados, Aliro

    2018-01-01

    Chile is the leading producer of copper worldwide and its richest mineral deposits are found in the Antofagasta Region of northern Chile. Mining activities have significantly increased income and employment in the region; however, there has been little assessment of the resulting environmental impacts to residents. The port of Antofagasta, located 1,430 km north of Santiago, the capital of Chile, functioned as mineral stockpile until 1998 and has served as a copper concentrate stockpile since 2014. Samples were collected in 2014 and 2016 that show elevated concentrations of As, Cu, Pb, and Zn in street dust and in residents’ blood (Pb) and urine (As) samples. To interpret and analyze the spatial variability and likely sources of contamination, existent data of basement rocks and soil geochemistry in the city as well as public-domain airborne dust were studied. Additionally, a bioaccessibility assay of airborne dust was conducted and the chemical daily intake and hazard index were calculated to provide a preliminary health risk assessment in the vicinity of the port. The main conclusions indicate that the concentrations of Ba, Co, Cr, Mn, Ni, and V recorded from Antofagasta dust likely originate from intrusive, volcanic, metamorphic rocks, dikes, or soil within the city. However, the elevated concentrations of As, Cd, Cu, Mo, Pb, and Zn do not originate from these geologic outcrops, and are thus considered anthropogenic contaminants. The average concentrations of As, Cu, and Zn are possibly the highest in recorded street dust worldwide at 239, 10,821, and 11,869 mg kg−1, respectively. Furthermore, the contaminants As, Pb, and Cu exhibit the highest bioaccessibilities and preliminary health risk indices show that As and Cu contribute to elevated health risks in exposed children and adults chronically exposed to dust in Antofagasta, whereas Pb is considered harmful at any concentration. Therefore, an increased environmental awareness and greater protective measures are necessary in Antofagasta and possibly other similar mining port cities in developing countries. PMID:29707438

  1. Effects of different warming patterns on the translocations of cadmium and copper in a soil-rice seedling system.

    PubMed

    Ge, Liqiang; Cang, Long; Liu, Hui; Zhou, Dongmei

    2015-10-01

    Heavy-metal-polluted rice poses potential threats to food security and has received great attention in recent years, while how elevated temperature affects the translocation of heavy metals in soil-rice system is unclear. In this study, potting experiments were conducted in plant growth chambers for 24 days to evaluate the effects of different warming patterns on cadmium (Cd) and copper (Cu) migrations in soil-rice seedling system. Rice seedlings were cultivated under four different day/night temperature patterns: 25/18 °C (CK), 25/23 °C (N5), 30/18 °C (D5), and 30/23 °C (DN5), respectively. Non-contaminated soil (CS), Cd/Cu lightly polluted soil (LS), and highly polluted soil (HS) were chosen for experiments. The results showed that different warming patterns decreased soil pH and elevated available soil Cd/Cu concentrations. The shoot and root biomass were increased by 39.0-320 and 28.6-348 %, respectively. Warming induced significant (p < 0.05) increase of Cd/Cu uptake and translocation in rice seedlings, especially for the Cd concentration in shoot. The Cd concentrations of shoot increased by 5-12 times and up to 8 times for LS and HS, respectively. Meanwhile, the Cd concentration of shoot increased with warming while that of root kept unchanged, indicating that warming promoted cadmium translocation from root to shoot (about -four to nine times of CK), while warming changed the Cu concentration of shoot similarly to that of root and had no significant effects on Cu translocations in rice seedlings. Our study may provide improved understanding for Cd/Cu fates in soil-rice system by warming and imply that heavy metals had the higher environmental risk under the future global warming.

  2. Contaminant exposure and effects in Red-Winged Blackbirds inhabiting stormwater retention ponds

    USGS Publications Warehouse

    Sparling, D.W.; Eisemann, J.D.; Kuenzel, W.J.

    2004-01-01

    Stormwater wetlands are created to retain water from storms and snow melt to reduce sediment, nutrient, and contaminant pollution of natural waterways in metropolitan areas. However, they are often a source of attractive habitat to wetland-associated wildlife. In this study of 12 stormwater wetlands and a larger, older reference site, elevated concentrations of zinc and copper were found in sediments and carcasses of 8-day-old red-winged blackbird (Agelaius phoeniceus) nestlings inhabiting stormwater sites. Although nesting success in the stormwater wetlands was comparable to national averages, sediment zinc concentrations correlated with clutch size, hatching success, fledgling success, and Mayfield nest success, suggesting that the nestlings may have been stressed and impaired by elevated zinc. This stress may have been direct on the nestlings or indirect through effects on the availability of food organisms.

  3. Contaminant exposure and effects in red-winged blackbirds inhabiting stormwater retention ponds.

    PubMed

    Sparling, Donald W; Eisemann, John D; Kuenzel, Wayne

    2004-05-01

    Stormwater wetlands are created to retain water from storms and snow melt to reduce sediment, nutrient, and contaminant pollution of natural waterways in metropolitan areas. However, they are often a source of attractive habitat to wetland-associated wildlife. In this study of 12 stormwater wetlands and a larger, older reference site, elevated concentrations of zinc and copper were found in sediments and carcasses of 8-day-old red-winged blackbird (Agelaius phoeniceus) nestlings inhabiting stormwater sites. Although nesting success in the stormwater wetlands was comparable to national averages, sediment zinc concentrations correlated with clutch size, hatching success, fledgling success, and Mayfield nest success, suggesting that the nestlings may have been stressed and impaired by elevated zinc. This stress may have been direct on the nestlings or indirect through effects on the availability of food organisms.

  4. Elevated and super-elevated CO2 differ in their interactive effects with nitrogen availability on fruit yield and quality of cucumber.

    PubMed

    Dong, Jinlong; Xu, Qiao; Gruda, Nazim; Chu, Wenying; Li, Xun; Duan, Zengqiang

    2018-02-25

    Elevated carbon dioxide (CO 2 ) and nitrogen (N) availability can interactively promote cucumber yield, but how the yield increase is realized remains unclear, whilst the interactive effects on fruit quality are unknown. In this study, cucumber plants (Cucumis sativus L. cv. Jinmei No. 3) were grown in a paddy soil under three CO 2 concentrations - 400 (ambient CO 2 ), 800 (elevated CO 2 , eCO 2 ) and 1200 µmol mol -1 (super-elevated CO 2 ) - and two N applications - 0.06 (low N) and 0.24 g N kg -1 soil (high N). Compared with ambient CO 2 , eCO 2 increased yield by 106% in high N but the increase in total biomass was only 33%. This can result from greater carbon translocation to fruits from other organs, indicated by the increased biomass allocation from stems and leaves, particularly source leaves, to fruits and the decreased concentrations of fructose and glucose in source leaves. Super-elevated CO 2 reduced the carbon allocation to fruits thus yield increase (71%). Additionally, eCO 2 also increased the concentrations of fructose and glucose in fruits, maintained the concentrations of dietary fiber, phosphorus, potassium, calcium, magnesium, sulfur, manganese, copper, molybdenum and sodium, whilst it decreased the concentrations of nitrate, protein, iron, and zinc in high N. Compared with eCO 2 , super-elevated CO 2 can still improve the fruit quality to some extent in low N availability. Elevated CO 2 promotes cucumber yield largely by carbon allocation from source leaves to fruits in high N availability. Besides a dilution effect, carbon allocation to fruits, carbohydrate transformation, and nutrient uptake and assimilation can affect the fruit quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. ELEMENTAL MERCURY IN COPPER, SILVER, AND GOLD ORES: AN UNEXPECTED CONTRIBUTION TO LAKE SUPERIOR SEDIMENTS WITH GLOBAL IMPLICATIONS

    EPA Science Inventory

    Mercury and copper inventories are low in central Lake Superior and increase markedly towards the Keweenaw Peninsula...where copper, mercury, and silver inventories are elevated and highly correlated. High copper, silver, and mercury inventories can be traced back to shoreline st...

  6. The Impact of Hexametaphosphate, Orthophosphate, and Temperature on Copper Corrosion and Release

    EPA Science Inventory

    Excessive corrosion of copper plumbing can lead to elevated copper levels at consumer’s tap or pinhole leaks. Corrosion control solutions include pH adjustment or phosphate addition. Orthophosphate has been shown to reduce copper levels in some cases while the role of polyphosp...

  7. Copper and Lead Corrosion in a Full Scale Home Plumbning system Simulation

    EPA Science Inventory

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from elevated lead and copper levels to blue water and copper pinhole leaks. If left untreate...

  8. Evaluating the spatial distribution of pollutants and associated maintenance requirements in an 11 year-old bioretention cell in urban Charlotte, NC.

    PubMed

    Johnson, Jeffrey P; Hunt, William F

    2016-12-15

    Bioretention cells (BRCs) are an increasingly popular Stormwater Control Measure used to mitigate the hydrologic and water quality impacts of urbanization. Previous BRC research has demonstrated a strong capacity for pollutant removal; however, long-term sequestration of pollutants within soil media can elevate concentrations to levels fostering environmental and human health risks. Soil media samples were collected from an 11 year-old BRC in Charlotte, NC, and analyzed for the accumulation and spatial distribution of zinc, copper, and phosphorus. Pollutant distribution varied significantly with respect to depth and ordinate distance from the BRC inlet. Zinc concentrations (0.9-228.6 mg kg -1 soil) exceeded environmental thresholds and phosphorus concentrations (5.1-173.3 mg kg -1 soil) increased from initial levels by a factor of seven; however, notable accumulation was restricted to the BRC forebay. Maximum zinc and copper concentrations in soil media did not exceed 1% of mandatory cleanup levels and with regular maintenance of the forebay, the effective life of BRC media should exceed the life of the developments they treat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fate and transport of copper-based crop protectants in plasticulture runoff and the impact of sedimentation as a best management practice.

    PubMed

    Gallagher, D L; Johnston, K M; Dietrich, A M

    2001-08-01

    The fate and distribution of copper-based crop protectants, applied to plasticulture tomato fields to protect against disease, were investigated in a greenhouse-scale simulation of farming conditions in a coastal environment. Following rainfall, 99% of the applied copper was found to remain on the fields sorbed to the soil and plants; most of the soil-bound copper was found sorbed to the top 2.5 cm of soil between the plasticulture rows. Of the copper leaving the agricultural fields, 82% was found in the runoff with the majority, 74%. sorbed to the suspended solids. The remaining copper, 18%, leached through the soil and entered the groundwater with 10% in the dissolved phase and 8% sorbed to suspended solids. Although only 1% copper was found to leave the field, this was sufficient to cause high copper concentrations (average 2102+/-433 microg/L total copper and 189+/-139 microg/L dissolved copper) in the runoff. Copper concentrations in groundwater samples were also high (average 312+/-198 microg/L total copper and 216+/-99 microg/L dissolved copper). Sedimentation, a best management practice for reducing copper loadings. was found to reduce the total copper concentrations in runoff by 90% to a concentration of 245+/-127 microg/L; however, dissolved copper concentrations remained stable, averaging 139+/-55 microg/L. Total copper concentrations were significantly reduced by the effective removal of suspended solids with sorbed copper.

  10. Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2013-01-01

    The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM-based criteria are commonly lower values than the hardness-based criteria and thus suggest a greater degree or magnitude of impairment at the sampling locations. The riffle-habitat benthic invertebrate richness and abundance data correlate strongly with the extent of impact based on water quality for both brooks. Similarly, the fish community assessments document degraded conditions throughout most of Pike Hill Brook, whereas the data for the tributary to Cookville Brook suggest less degradation to this brook. The sediment environment shows similar extents of impairment to the surface-water environment, with most sampling locations in Pike Hill Brook, including the wetland areas, and the tributary to Cookville Brook affected. Sediment impairment is caused by elevated copper concentrations, although localized degradation due to elevated cadmium and zinc concentrations was documented on the basis of exceedances of probable effects concentrations (PECs). In contrast to impairment determined by exceedances of PECs, equilibrium-partitioning sediment benchmarks (based on simultaneously extracted metals, acid volatile sulfides, and total organic carbon) predict no toxic effects in sediments at the background locations and uncertain toxic effects throughout Pike Hill Brook and the tributary to Cookville Brook, with the exception of the most downstream Cookville Brook location, which indicated no toxic effects. Acute laboratory toxicity testing using the amphipod Hyalella azteca and the midge Chironomus dilutus on pore waters extracted from sediment in situ indicate impairment (based on tests with H. azteca) at only one location in Pike Hill Brook and no impairment in the tributary to Cookville Brook. Chronic laboratory sediment toxicity testing using H. azteca and C. dilutus indicated toxicity in Pike Hill Brook at several locations in the lower reach and two locations in the tributary to Cookville Brook. Toxicity was not indicated for either species in sediment from the most acidic metal-rich location, likely due to the low lability of copper in that sediment, as indicated by a low proportion of extractable copper (simultaneously extracted metal (SEM) copper only 5 percent of total copper) and due to the flushing of acidic metal-rich pore water from experimental chambers as overlying test water was introduced before and replaced periodically during the toxicity tests. Depositional habitat invertebrate richness and abundance data generally agreed with the results of toxicity tests and with the extent of impact in the watersheds on the basis of sediment and pore waters. The information was used to develop an overall assessment of the impact of mine drainage on the aquatic system downstream from the Pike Hill copper mines. Most of Pike Hill Brook, including several wetland areas that are all downstream from the Eureka and Union mines, was found to be impaired on the basis of water-quality data and biological assessments of fish or benthic invertebrate communities. In contrast, only one location in the tributary to Cookville Brook, downstream from the Smith mine, is definitively impaired. The biological community begins to recover at the most downstream locations in both brooks due to natural attenuation from mixing with unimpaired streams. On the basis of water quality and biological assessment, the reference locations were of good quality. The sediment toxicity, chemistry, and aquatic community survey data suggest that the sediments could be a source of toxicity in Pike Hill Brook and the tributary to Cookville Brook. On the basis of water quality, sediment quality, and biologic communities, the impacts of mine drainage on the aquatic ecosystem health of the watersheds in the study area are generally consistent with the toxicity suggested from laboratory toxicity testing on pore water and sediments.

  11. Effects of Copper Pollution on the Phenolic Compound Content, Color, and Antioxidant Activity of Wine.

    PubMed

    Sun, Xiangyu; Ma, Tingting; Han, Luyang; Huang, Weidong; Zhan, Jicheng

    2017-05-03

    The effects of copper pollution on the polyphenol content, color, and antioxidant activity of wine, as well as correlations among these factors, were investigated. Copper had clear influences on wine polyphenol content. At low copper concentrations, the concentrations of nearly all polyphenols increased, and the antioxidant activity values of the wine also increased. When the copper concentration reached the lowest level of the medium copper range (9.6~16 mg/L), most of the indices also improved. When the copper concentrations reached the latter part of the medium copper range (19.2 and 22.4 mg/L), many of the tested indices began to decrease. Furthermore, when the copper concentration reached the high ranges (32, 64, and 96 mg/L), the polyphenol content, CIELAB color parameters, and antioxidant activity of wine were substantially decreased, indicating the need to control increasing copper content in grape must.

  12. COPPER RESEARCH UPDATE

    EPA Science Inventory

    This presentation provides an update and overview of new research results and remaining research needs with respect to copper corrosion control issues. The topics to be covered include: occurrence of elevated copper release in systems that meet the Action Level; impact of water c...

  13. Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements.

    PubMed

    Voruganti, V Saroja; Klein, Gordon L; Lu, Hong-Xing; Thomas, Suchmor; Freeland-Graves, Jeanne H; Herndon, David N

    2005-09-01

    Major burns are associated with impaired Zn and Cu status. These micronutrients are essential for bone matrix formation, linear growth, and wound healing. This study evaluated the status of Zn and Cu in burned children and assessed adequacy of supplementation. Six children, mean total body surface area (TBSA), 54+/-9% (S.D.), were recruited. Nutrient intakes, plasma, wound exudate, and 24h urine samples were collected and analyzed for Zn and Cu. Bone mineral content was assessed by dual energy X-ray absorptiometry. Dietary Zn and Cu were three times the dietary reference, and mean plasma concentrations of Zn and Cu were low at admission and discharge. Urinary Zn was elevated at admission, whereas Cu was elevated at both times. Wound Zn and Cu concentrations exceeded plasma concentrations, suggesting that inflammatory wound exudate was a primary route of loss. We demonstrate that burn injury in children results in low plasma levels of Zn and Cu that are inadequately compensated during hospitalization.

  14. Reduced deuterium retention in simultaneously damaged and annealed tungsten

    NASA Astrophysics Data System (ADS)

    Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.; Baldwin, M. J.; Yu, J. H.; Doerner, R. P.; Tynan, G. R.

    2017-10-01

    Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D2 plasma ion fluence of 1024 D+/m2. Nuclear reaction analysis (NRA), utilizing the D(3He,p)4He nuclear reaction, is used to probe the D concentration in the near surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.

  15. Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia.

    PubMed

    Xu, Jingshu; Church, Stephanie J; Patassini, Stefano; Begley, Paul; Waldvogel, Henry J; Curtis, Maurice A; Faull, Richard L M; Unwin, Richard D; Cooper, Garth J S

    2017-08-16

    Datasets comprising simultaneous measurements of many essential metals in Alzheimer's disease (AD) brain are sparse, and available studies are not entirely in agreement. To further elucidate this matter, we employed inductively-coupled-plasma mass spectrometry to measure post-mortem levels of 8 essential metals and selenium, in 7 brain regions from 9 cases with AD (neuropathological severity Braak IV-VI), and 13 controls who had normal ante-mortem mental function and no evidence of brain disease. Of the regions studied, three undergo severe neuronal damage in AD (hippocampus, entorhinal cortex and middle-temporal gyrus); three are less-severely affected (sensory cortex, motor cortex and cingulate gyrus); and one (cerebellum) is relatively spared. Metal concentrations in the controls differed among brain regions, and AD-associated perturbations in most metals occurred in only a few: regions more severely affected by neurodegeneration generally showed alterations in more metals, and cerebellum displayed a distinctive pattern. By contrast, copper levels were substantively decreased in all AD-brain regions, to 52.8-70.2% of corresponding control values, consistent with pan-cerebral copper deficiency. This copper deficiency could be pathogenic in AD, since levels are lowered to values approximating those in Menkes' disease, an X-linked recessive disorder where brain-copper deficiency is the accepted cause of severe brain damage. Our study reinforces others reporting deficient brain copper in AD, and indicates that interventions aimed at safely and effectively elevating brain copper could provide a new experimental-therapeutic approach.

  16. A norovirus outbreak triggered by copper intoxication on a coach trip from the Netherlands to Germany, April 2010.

    PubMed

    Hoefnagel, J; van de Weerdt, Dh; Schaefer, O; Koene, R

    2012-03-01

    We report an unusual outbreak of norovirus infection on a coach trip. Overall, 30 of 40 people (including drivers and crew) developed nausea, vomiting and/or diarrhoea, 11 of them on the first day of the trip. The incidence epidemic curve showed a first peak on Day 1 and a second on Day 4. Nine passengers were hospitalised with gastrointestinal symptoms. Norovirus was found in stool samples from two patients, but the infection could not explain the first peak in the epidemic curve only a few hours after departure. Interviews with the passengers and an inspection of the coach and its water supply implicated the water used for coffee and tea as the potential source. Microbiological investigations of the water were negative, but chemical analysis showed a toxic concentration of copper. Blood copper levels as well as renal and liver function were determined in 28 of the 32 passengers who had been exposed to the water. One passenger who did not have gastrointestinal symptoms had an elevated copper level of 25.9 μmol/L, without loss of liver or renal function. It is likely that the spread of norovirus was enhanced because of vomiting of one of the passengers due to copper intoxication.

  17. Storm water runoff measurements of copper from a naturally patinated roof and from a parking space. Aspects on environmental fate and chemical speciation.

    PubMed

    Odnevall Wallinder, I; Hedberg, Y; Dromberg, P

    2009-12-01

    Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.

  18. Effects of Aqueous Extracts of Chicory and Milk Thistle on Serum Concentrations of Copper, Zinc, and Manganese in Tamoxifen-Treated Rats.

    PubMed

    Abbasalipourkabir, Roghayeh; Ziamajidi, Nasrin; Nasiri, Abolfazl; Behrouj, Hamid

    2016-09-01

    Some medications may change trace element levels in the body. Extracts of various plants, due to having the several elements, can have beneficial effects. Consumption of herbal extracts with chemical drugs may reduce adverse effects of medication. The goal of this study was to evaluate copper (Cu), zinc (Zn), and manganese (Mn) concentrations in serum of rats treated with tamoxifen, chicory, and/or milk thistle extracts. Therefore, 36 adult female Wistar rats were divided into six groups: normal control, chicory control, milk thistle control, tamoxifen, tamoxifen-chicory, and tamoxifen-milk thistle. At the end of the study, the blood samples were collected and sera isolated by centrifugation and analyzed by the atomic absorption spectrophotometry for Cu, Zn, and Mn levels. The Zn concentration increased in milk thistle-supplemented groups. The Cu level increased in the chicory control group only. Tamoxifen had no affect on Cu, Zn, and Mn levels, but seed extract of milk thistle increased Zn concentration, and chicory root extract increased Cu concentration. Although elevated levels of Cu in rats receiving tamoxifen-chicory were milder than rats treated only with chicory, it seems that the extract and tamoxifen impact on the Cu are in conflict with each other.

  19. Characterization of bottom-sediment, water, and elutriate chemistry at selected stations at Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Broshears, R.E.

    1991-01-01

    To better-understand and predict the potential effect of dredging on water quality at Reelfoot Lake, chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water. Chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water collected at five stations in the lake during November 1988. Lake water was of the calcium magnesium bicarbonate type with an average dissolved-solids concentration of 120 milligrams per liter. Trace constituents were present in bottom sediments at concentrations representative of their average relative abundance in the earth?s crust. Elutriate waters prepared by mixing bottom sediment and lake water had suspended-solids concentrations as high as 2,000 milligrams per liter which exerted significant oxygen demand Trace constituents in the unfiltered elutriate waters were elevated with respect to lake water; elevated concentrations were attributable to the increased suspended-solids concentrations. Concentrations of total-recoverable copper, lead., and zinc in many elutriate waters exceeded U.S. Environmental Protection Agency?s water-quality criteria for the protection of freshwater aquatic life. The toxicity of elutriate waters, as measured by a 48-hour bioassay with Ceriodaphnia dubia, was low.

  20. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    PubMed

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Salinity-dependent mechanisms of copper toxicity in the galaxiid fish, Galaxias maculatus.

    PubMed

    Glover, Chris N; Urbina, Mauricio A; Harley, Rachel A; Lee, Jacqueline A

    2016-05-01

    The euryhaline galaxiid fish, inanga (Galaxias maculatus) is widely spread throughout the Southern hemisphere occupying near-coastal streams that may be elevated in trace elements such as copper (Cu). Despite this, nothing is known regarding their sensitivity to Cu contamination. The mechanisms of Cu toxicity in inanga, and the ameliorating role of salinity, were investigated by acclimating fish to freshwater (FW), 50% seawater (SW), or 100% SW and exposing them to a graded series of Cu concentrations (0-200μgL(-1)) for 48h. Mortality, whole body Cu accumulation, measures of ionoregulatory disturbance (whole body ions, sodium (Na) influx, sodium/potassium ATPase activity) and ammonia excretion were monitored. Toxicity of Cu was greatest in FW, with mortality likely resulting from impaired Na influx. In both FW and 100% SW, ammonia excretion was significantly elevated, an effect opposite to that observed in previous studies, suggesting fundamental differences in the effect of Cu in this species relative to other studied fish. Salinity was protective against Cu toxicity, and physiology seemed to play a more important role than water chemistry in this protection. Inanga are sensitive to waterborne Cu through a conserved impairment of Na ion homeostasis, but some effects of Cu exposure in this species are distinct. Based on effect concentrations, current regulatory tools and limits are likely protective of this species in New Zealand waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    PubMed

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Trace elements in canvasbacks (Aythya valisineria) wintering in Louisiana, USA, 1987-1988

    USGS Publications Warehouse

    Custer, Thomas W.; Hohman, William L.

    1994-01-01

    We determined trace element concentrations in livers of canvasbacks (Aythya valisineria) collected at Catahoula Lake and the Mississippi River Delta, Louisiana during, the winter of 1987–1988. Forty percent of canvasbacks wintering at Lake Catahoula had elevated concentrations of lead (>6·7 μg g−1 dry weight) in the liver; 33% had concentrations consistent with lead intoxication (>26·7 μg g−1). Based on the number of canvasbacks that winter at Lake Catahoula and the frequency of lead exposure there, more than 5% of the continental population of canvasbacks may be exposed to lead at Lake Catahoula alone. Lead concentrations in livers differed among months and were higher in males than females, but were not different in adults and immatures. Concentrations of selenium and mercury in livers of females differed among months but not by age or location. Cadmium concentrations in livers differed by age, location and month of collection, but not by sex. Frequencies and concentrations of trace elements not commonly associated with adverse effects on avian species (aluminum, arsenic, copper, iron, magnesium, manganese, nickel, silver, vanadium and zinc) are presented. Except for the elevated concentrations of lead at Catahoula Lake, all trace elements were at background concentrations.

  4. Some aspects of using ultrasounds to improve sulfurous mineral flotation technology

    NASA Technical Reports Server (NTRS)

    Mihu, V. P.; Pop, I.

    1974-01-01

    The results are discussed which were obtained with a new method of desorption of collector reagents connected with improving the selectivity of the flotation of copper and lead concentrate through the action of ultrasounds. Analysis of the results obtained by treating copper and lead concentrate in an ultraacoustic field indicates an increase in the copper content of the copper concentrate, of the lead content in the lead concentrate and, at the same time, a reduction in the lead of the copper concentrate.

  5. The Application of Orthophosphate to Reduce Elevated Copper Levels in a New Building with High DIC Water

    EPA Science Inventory

    Public water utilities in the United States are required to meet the 1991 Lead and Copper Rule action level of 1.3 mg/L for copper I drinking water. The effect of water chemistry on Cu(II) solubility has been studied, and drawing upon conclusions from this research , new copper ...

  6. Endotoxin treatment protects rats against ozone-induced lung edema: with evidence for the role of manganese superoxide dismutase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, I.; Massaro, D.

    Ozone is a strong oxidizing agent that can cause lung damage and edema. There is evidence that it does so by causing peroxidation of membrane lipids. However, the elevation in lung activity of copper, zinc superoxide dismutase (Cu, ZnSOD), and manganese superoxide dismutase (MnSOD) during exposure to ozone suggests that increased production of superoxide could contribute to lung edema caused by ozone. This latter observation, and preliminary evidence that treatment of rats with endotoxin elevates lung activity of MnSOD without elevation of the activity of Cu, ZnSOD, catalase (CAT), or glutathione peroxidase (GP), led to the present study. We treatedmore » rats with endotoxin, exposed them to different concentrations of ozone, measured lung wet weight to dry weight ratio, thiobarbituric acid-reactive material (TBAR), and assayed lung tissue for Cu, ZnSOD, MnSOD, CAT, and GP activity. Our major findings are, (1) a strongly edemogenic concentration of ozone-lowered MnSOD activity; (2) endotoxin treatment of air-breathing rats did not decrease lipid peroxidation as indicated by the lung concentration of TBAR; (3) induction of increased MnSOD activity in lung by treatment with endotoxin was associated with virtually complete protection against an otherwise edemogenic concentration of ozone, with less lipid peroxidation, and with less loss of weight; and (4) this protection occurred without elevated Cu, ZnSOD, CAT, or GP activity.« less

  7. Data on surface-water, streambed-interstitial water, and bed-sediment quality for selected locations in the small arms impact area of central Fort Gordon, Georgia, September 4-6, 2001

    USGS Publications Warehouse

    Priest, Sheryln; Stamey, Timothy C.; Lawrence, Stephen J.

    2002-01-01

    In September 2001, the U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon (U.S. Department of the Army), conducted a chemical assessment of surface water, streambed-interstitial water, and bed sediments within the small arms impact area of Fort Gordon Military Installation. The study was conducted in support of the development of an Integrated Natural Resources Management Plan (INRMP) for Fort Gordon, Georgia. An effective INRMP ensures that natural resources conservation measures and U.S. Army activities on the military base are integrated and consistent with Federal requirements to manage military installations on an ecosystem basis. Filtered water samples were collected from five sites along South Prong Creek and three sites along Marcum Branch Creek for chemical analyses of major ions, nutrients, and selected trace elements. On-site measurements of pH, temperature, specific conductance, and dissolved oxygen were made at the eight sites. Filtered water collected showed varying concentrations in both surface- and streambed-interstitial water. Bed-sediment samples collected from South Prong Creek contain elevated levels of arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, selenium, vanadium, and total organic carbon relative to previous concentrations (McConnell and others, 2000). Bed-sediment samples collected from Marcum Branch Creek contain elevated levels of beryllium, copper, lead, manganese, mercury, selenium, and total organic carbon relative to previous concentrations (McConnell and others, 2000).

  8. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less

  9. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria

    PubMed Central

    Staehlin, Benjamin M.; Gibbons, John G.; Rokas, Antonis; O’Halloran, Thomas V.; Slot, Jason C.

    2016-01-01

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including the cus (copper sensing copper efflux system), and pco (plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative of Enterobacter cloacae as the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the original pco module was replaced by a divergent pco homolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens. PMID:26893455

  10. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris.

    PubMed

    Balakumaran, Palanisamy Athiyaman; Förster, Jan; Zimmermann, Martin; Charumathi, Jayachandran; Schmitz, Andreas; Czarnotta, Eik; Lehnen, Mathias; Sudarsan, Suresh; Ebert, Birgitta E; Blank, Lars Mathias; Meenakshisundaram, Sankaranarayanan

    2016-02-20

    Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production.

  11. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution.

    PubMed

    Denoyer, Delphine; Pearson, Helen B; Clatworthy, Sharnel A S; Smith, Zoe M; Francis, Paul S; Llanos, Roxana M; Volitakis, Irene; Phillips, Wayne A; Meggyesy, Peter M; Masaldan, Shashank; Cater, Michael A

    2016-06-14

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed.

  12. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    PubMed Central

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  13. [Changes in serum lipids in rats treated with oral cooper].

    PubMed

    Alarcón-Corredor, O M; Carnevalí de Tatá, E; Reinosa-Füller, J; Contreras, Y; Ramírez de Fernández, M; Yánez-Domínguez, C

    2000-09-01

    Disturbances in lipid metabolism during copper deficiency in rats are well recognized. Copper deficiency is associated with the spontaneous retention of hepatic iron. Previous studies have reported that hypercholesterolemia and hypertriglyceridemia are associated with elevated hepatic iron concentrations in copper deficient rats. There was a direct relationship between the magnitude of blood lipids and the concentration of hepatic iron. Based on these data, it has been hypothesized that iron was responsible for the development of lipemia of copper deficiency. In this study was determined the effect of increasing doses of Cu(10, 20 and 50 ppm) in the diet, on the serum total lipids, total cholesterol, triglycerides (triacylglicerols), phospholipids, non-esterified fatty acids (NEFA) and liver iron and zinc concentrations in normal rats. The results were compared with normal rats that received a balanced diet containing 0.6 and 6 ppm of Cu, respectively. The results show that Cu-supplement diminished the cholesterol and triglyceride serum levels, increased the level of phospholipids, NEFA and concomitantly decreased the hepatic concentrations of Fe and Zn. There was a statistically significant (p < 0.05) simple correlation between triglycerides and liver Fe (r = 0.917; R2 = 64.03%), cholesterol and liver Zn (r = 0.872; R2 = 76.07%), cholesterol and liver Fe (r = 0.995; R2 = 99.10%), liver Fe and liver Cu (r = -0.612), liver Fe and liver Zn (r = 0.837), liver Cu and liver Zn (r = -0.612), and serum triglycerides and liver Zn (r = 0.967). The mechanism(s) by which Fe and Zn determine these changes is not known; none of the enzymes that act in cholesterol and triglyceride metabolism and biosynthesis require Fe and/or Zn. The increase of NEFA is due to changes in the process of lipolysis and re-esterification of the fatty acids in blood. However, additional studies are needed for the precise mechanisms of this interrelationships to be clarified.

  14. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    PubMed

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  15. Spatial variability of metal bioaccumulation in estuarine killifish (Fundulus heteroclitus) at the Callahan mine superfund site, Brooksville, ME.

    PubMed

    Broadley, Hannah J; Buckman, Kate L; Bugge, Deenie M; Chen, Celia Y

    2013-11-01

    The former Callahan Mine Site in Brooksville, ME, is an open-pit, hardrock mine site in an intertidal system, thus providing a unique opportunity to evaluate how metal-enriched sediments and overlying water impact estuarine food webs. Copper, zinc, cadmium, and lead concentrations in sediment, whole water, and Atlantic killifish (Fundulus heteroclitus) were evaluated at sites in Goose Pond (GP; Callahan Mine Site) and at reference sites. The metal concentrations of sediment, water, and fish were spatially distinct and significantly greater at the mine site than in the reference estuary. Sediment concentrations were particularly elevated and were above probable effects levels for all four metals adjacent to the tailings pile. Even in this well-mixed system, water metal concentrations were significantly elevated adjacent to the tailings pile, and concentrations of Cu and Zn were above ambient water-quality criteria for chronic marine exposure. Neither organic matter in the sediment nor salinity or pH of the water explained the metal concentrations. Adjacent to the tailings pile, killifish metal body burdens were elevated and were significantly related to both sediment and aqueous concentrations. In conclusion, (1) the contaminated sediment and seepage from the tailings impoundment and waste rock pile no. 3 create a continual flux of metals into the water column, (2) the metals are bioavailable and bioconcentrating as evident in the killifish tissue concentrations, and (3) Callahan Mine is directly affecting metal bioaccumulation in fauna residing in the GP estuary and, potentially, in Penobscot Bay by the way of “trophic nekton relay.”

  16. Accumulation and resistance to copper of two biotypes of Cynodon dactylon.

    PubMed

    Wang, Youbao; Zhang, Li; Yao, Jing; Huang, Yongjie; Yan, Mi

    2009-04-01

    The effects of copper accumulation and resistance in two biotypes of Cynodon dactylon were studied. Results showed that at a low concentration of copper (<100 mg/kg), the growth of Cynodon dactylon was generally unaffected. As copper concentration increased, negative effects on the growth of Cynodon dactylon became apparent. The critical concentration at which the plant exhibited poisoning symptoms was different for the two biotypes of Cynodon dactylon. At 500 mg/kg copper concentration in soil, the biotype from the polluted area showed significantly higher tolerance of copper than the biotype from the unpolluted area.

  17. Tolerance and stress response of sclerotiogenic Aspergillus oryzae G15 to copper and lead.

    PubMed

    Long, Dan-Dan; Fu, Rong-Rong; Han, Jian-Rong

    2017-07-01

    Aspergillus oryzae G15 was cultured on Czapek yeast extract agar medium containing different concentrations of copper and lead to investigate the mechanisms sustaining metal tolerance. The effects of heavy metals on biomass, metal accumulation, metallothionein (MT), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were evaluated. Cu and Pb treatment remarkably delayed sclerotial maturation and inhibited mycelial growth, indicating the toxic effects of the metals. Cu decreased sclerotial biomass, whereas Pb led to an increase in sclerotial biomass. G15 bioadsorbed most Cu and Pb ions on the cell surface, revealing the involvement of the extracellular mechanism. Cu treatment significantly elevated MT level in mycelia, and Pb treatment at concentrations of 50-100 mg/L also caused an increase in MT content in mycelia. Both metals significantly increased MDA level in sclerotia. The variations in MT and MDA levels revealed the appearance of heavy metal-induced oxidative stress. The activities of SOD, CAT, and POD varied with heavy metal concentrations, which demonstrated that tolerance of G15 to Cu and Pb was associated with an efficient antioxidant defense system. In sum, the santioxidative detoxification system allowed the strain to survive in high concentrations of Cu and Pb. G15 depended mostly on sclerotial differentiation to defend against Pb stress.

  18. Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: A comparative study.

    PubMed

    Khan, Mustafa; Kazi, Tasneem Gul; Afridi, Hassan Imran; Sirajuddin; Bilal, Muhammad; Akhtar, Asma; Khan, Sabir; Kadar, Salma

    2017-08-01

    Epidemiological data among the human population has shown a significantly increased incidence of gallstone (GS) disease worldwide. It was studied that some essential (calcium) and transition elements (iron and copper) in bile play an important role in the development of GS. The estimation of calcium, copper and iron were carried out in the serum, gall bladder bile and different types of GS (cholesterol, mixed and pigmented) of 172 patients, age ranged 20-55years. For comparative purpose age matched referents not suffering from GS diseases were also selected. Biliary concentrations of calcium (Ca), iron (Fe) and copper (Cu) were correlated with their concentrations in serum and different types of GS samples. The ratio of Ca, Fe and Cu in bile with serum was also calculated. Understudy metals were determined by flame atomic absorption spectroscopy after acid decomposition of matrices of selected samples. The Ca concentrations in serum samples were significantly higher in patients with pigmented GS as compared to controls (p<0.005), whereas for patients having cholesterol and mixed GS the concentrations were on the lower side. Biliary Ca concentrations of patients were found to be higher than controls, but difference was significant for pigmented GS patients (p>0.001). The contents of Cu and Fe in serum and bile of all patients (except female cholesterol GS patient have low serum iron concentration) were found to be higher than control, but difference was significant in those patients who have pigmented GS. The concentration of Ca, Fe and Cu in different types GS were found in the order, Pigmented>mixed>cholesterol. The bile/serum ratio for Ca, Cu and Fe was found to be significantly higher in pigmented GS patients. Gall bladder bile was slightly alkaline in patients as compared to referents. The density of bile was found to be higher in patients as compared to the referents. Various functional groups present in different types of GS samples were confirmed by Fourier transform infra-red spectroscopy. The higher density and pH of bile, elevated concentrations of transition elements in all types of biological samples (serum, bile and GS), could be an important factor for the formation of different types of GS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Control of New Copper Corrosion in High-Alkalinity Drinking Water using Orthophosphate - article

    EPA Science Inventory

    Research and field experience have shown that high-alkalinity waters can be associated with elevated copper levels in drinking water. The objective of this study was to document the application of orthophosphate to the distribution system of a building with a copper problem asso...

  20. Effects of roof and rainwater characteristics on copper concentrations in roof runoff.

    PubMed

    Bielmyer, Gretchen K; Arnold, W Ray; Tomasso, Joseph R; Isely, Jeff J; Klaine, Stephen J

    2012-05-01

    Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R(2) = 0.873) accounted for slightly more variability than the equation with untransformed data (R(2) = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations.

  1. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention.

    PubMed

    Khan, Saman; Zafar, Atif; Naseem, Imrana

    2018-06-25

    Coumarin is an important bioactive pharmacophore. It is found in plants as a secondary metabolite and exhibits diverse pharmacological properties including anticancer effects against different malignancies. Therapeutic efficacy of coumarin derivatives depends on the pattern of substitution and conjugation with different moieties. Cancer cells contain elevated copper as compared to normal cells that plays a role in angiogenesis. Thus, targeting copper in malignant cells via copper chelators can serve as an attractive targeted anticancer strategy. Our previous efforts led to the synthesis of di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule (ligand-L) endowed with DNA/Cu(II) binding properties, and ROS generation ability in the presence of copper ions. In the present study, we aimed to validate copper-dependent cytotoxic action of ligand-L against malignant cells. For this, we used a cellular model system of copper (Cu) overloaded lymphocytes (CuOLs) to simulate malignancy-like condition. In CuOLs, lipid peroxidation/protein carbonylation, ROS generation, DNA fragmentation and apoptosis were investigated in the presence of ligand-L. Results showed that ligand-L-Cu(II) interaction leads to ROS generation, lipid peroxidation/protein carbonylation (oxidative stress parameters), DNA damage, up-regulation of p53 and mitochondrial-mediated apoptosis in treated lymphocytes. Further, pre-incubation with neocuproine (membrane permeable copper chelator) and ROS scavengers attenuated the DNA damage and apoptosis. These results suggest that cellular copper acts as molecular target for ligand-L to propagate redox cycling and generation of ROS via Fenton-like reaction leading to DNA damage and apoptosis. Further, we showed that ligand-L targets elevated copper in breast cancer MCF-7 and colon cancer HCT116 cells leading to a pro-oxidant inhibition of proliferation of cancer cells. In conclusion, we propose copper-dependent ROS-mediated mechanism for the cytotoxic action of ligand-L in malignant cells. Thus, targeting elevated copper represents an effective therapeutic strategy for selective cytotoxicity against malignant cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Maternal exposure to metals—Concentrations and predictors of exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, A.C., E-mail: a.callan@ecu.edu.au; Hinwood, A.L.; Ramalingam, M.

    2013-10-15

    A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations ofmore » metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01–0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01–0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. -- Highlights: • High concentrations of uranium with respect to international literature. • Environmental concentrations of Al, Cu and Li influenced urinary concentrations. • Exposure to mechanics/welding hobbies increased blood Mn concentrations. • Iron/Folic acid supplements reduced biological concentrations of Al, Ni and Mn.« less

  3. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    NASA Astrophysics Data System (ADS)

    Kowalska, Izabela; Klimonda, Aleksandra

    2017-11-01

    The aim of the study was to assess the usefulness of micellar-enhanced ultrafiltration (MEUF) for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi-pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration)). Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L), the average concentration of copper ions in the permeate ranged from 1.2-4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  4. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Reduced deuterium retention in simultaneously damaged and annealed tungsten

    DOE PAGES

    Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.; ...

    2017-06-24

    Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated in this paper. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D 2 plasma ion fluence of 10 24 D +/m 2. Nuclear reaction analysis (NRA), utilizing the D( 3He,p) 4He nuclear reaction, is used to probe the D concentration in the nearmore » surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D 2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Finally, analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.« less

  6. Mining-related metals in terrestrial food webs of the upper Clark Fork River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.A.; LaTier, A.J.; Butcher, M.K.

    1994-12-31

    Fluvial deposits of tailings and other mining-related waste in selected riparian habitats of the Upper Clark Fork River basin (Montana) have resulted in metals enriched soils. The significance of metals exposure to selected wildlife species was evaluated by measuring tissue residues of metals (arsenic, cadmium, copper, lead, zinc) in key dietary species, including dominant grasses (tufted hair grass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Average metals concentrations in grasses, invertebrates, and deer mice collected from tailings-affected sites were elevated relative to reference to reference levels. Soil-tissue bioconcentration factors for grasses and invertebrates weremore » generally lower than expected based on the range of values in the literature, indicating the reduced bioavailability of metals from mining waste. In general, metals concentrations in willows, alfalfa, and barley were not elevated above reference levels. Using these data and plausible assumptions for other exposure parameters for white-tailed deer, red fox, and American kestrel, metals intake was estimated for soil and diet ingestion pathways. Comparisons of exposure estimates with toxicity reference values indicated that the elevated concentrations of metals in key food web species do not pose a significant risk to wildlife.« less

  7. Reduced deuterium retention in simultaneously damaged and annealed tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.

    Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated in this paper. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D 2 plasma ion fluence of 10 24 D +/m 2. Nuclear reaction analysis (NRA), utilizing the D( 3He,p) 4He nuclear reaction, is used to probe the D concentration in the nearmore » surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D 2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Finally, analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.« less

  8. Hepatic concentrations of copper and other metals in dogs with and without chronic hepatitis.

    PubMed

    Cedeño, Y; López-Alonso, M; Miranda, M

    2016-12-01

    Defects in copper metabolism have been described in several dog breeds, and recently, it has been suggested that changes in other essential trace elements could be involved in the pathogenesis of hepatic disease. This study measured hepatic copper accumulation and its interactions with other essential trace and toxic metals in dogs diagnosed with chronic hepatitis. Liver samples of 20 chronic hepatitis and 20 healthy dogs were collected. Samples were acid digested, and essential metals (cobalt, copper, iron, manganese, molibdenum, selenium and zinc) and toxic metals (arsenic, cadmium, mercury and lead) were analysed by inductively-coupled plasma mass spectrometry. Copper concentrations were significantly higher in dogs affected by hepatic disease than in controls. Dogs having chronic hepatitis with liver copper concentration greater than 100 mg/kg wet weight showed statistically higher cobalt, manganese and zinc concentrations than dogs having chronic hepatitis with liver copper concentrations less than 100 mg/kg wet weight and controls. Toxic metal concentrations were low - in all cases below the threshold associated with toxicity in dogs. Dogs with chronic hepatitis not only have increased concentrations of copper in the liver but also increased concentrations of cobalt, manganese and zinc; measurement of these elements may perhaps aid in diagnosis of liver disease in dogs. © 2016 British Small Animal Veterinary Association.

  9. Bulk Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    DTIC Science & Technology

    2014-05-13

    nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and...the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta...approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are

  10. Elevated copper impairs hepatic nuclear receptor function in Wilson's disease

    USDA-ARS?s Scientific Manuscript database

    Wilson's disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of co...

  11. Citric acid assisted phytoremediation of copper by Brassica napus L.

    PubMed

    Zaheer, Ihsan Elahi; Ali, Shafaqat; Rizwan, Muhammad; Farid, Mujahid; Shakoor, Muhammad Bilal; Gill, Rafaqa Ali; Najeeb, Ullah; Iqbal, Naeem; Ahmad, Rehan

    2015-10-01

    Use of organic acids for promoting heavy metals phytoextraction is gaining worldwide attention. The present study investigated the influence of citric acid (CA) in enhancing copper (Cu) uptake by Brassica napus L. seedlings. 6 Weeks old B. napus seedlings were exposed to different levels of copper (Cu, 0, 50 and 100µM) alone or with CA (2.5mM) in a nutrient medium for 40 days. Exposure to elevated Cu levels (50 and 100µM) significantly reduced the growth, biomass production, chlorophyll content, gas exchange attributes and soluble proteins of B. napus seedlings. In addition, Cu toxicity increased the production of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in leaf and root tissues of B. napus. Activities of antioxidant enzymes such as guaiacol peroxidase (POD), superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX) in root and shoot tissues of B. napus were increased in response to lower Cu concentration (50µM) but increased under higher Cu concentration (100µM). Addition of CA into nutrient medium significantly alleviated Cu toxicity effects on B. napus seedlings by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in CA-treated plants seems to play a role in capturing of stress-induced reactive oxygen species as was evident from lower level of H2O2, MDA and EL in CA-treated plants. Increasing Cu concentration in the nutrient medium significantly increased Cu concentration in in B. napus tissues. Cu uptake was further increased by CA application. These results suggested that CA might be a useful strategy for increasing phytoextraction of Cu from contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  13. Effects of copper sulfate supplement on growth, tissue concentration, and ruminal solubilities of molybdenum and copper in sheep fed low and high molybdenum diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivan, M.; Veira, D.M.

    1985-01-01

    Each of four groups of six wethers were fed one of a low molybdenum, high molybdenum, high molybdenum plus copper sulfate, or high molybdenum plus copper sulfate corn silage-based diet for ad libitum intake for 221 days. Average daily gains and ratios of feed/gain were depressed for the high molybdenum diet as compared with the low molybdenum diet suggesting molybdenum toxicity in sheep fed the high molybdenum diet. This was alleviated partly by the copper sulfate supplement. The supplement also decreased solubility of both copper and molybdenum in the rumen but had no effect on copper concentration in blood plasma.more » Concentration of molybdenum was higher in both liver and kidney in sheep fed high-molybdenum diets as compared with low-molybdenum diets. Copper concentration was higher in kidneys of sheep fed high-molybdenum diets, but no difference was significant in liver copper between sheep fed diets high or low in molybdenum.« less

  14. [Biohydrometallurgical technology of a complex copper concentrate process].

    PubMed

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T F

    2011-01-01

    Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.

  15. Biomonitoring in the Boulder River watershed, Montana, USA: metal concentrations in biofilm and macroinvertebrates, and relations with macroinvertebrate assemblage

    USGS Publications Warehouse

    Rhea, D.T.; Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.

    2006-01-01

    Portions of the Boulder River watershed contain elevated concentrations of arsenic, cadmium, copper, lead, and zinc in water, sediment, and biota. We measured concentrations of As, Cd, Cu, Pb, and Zn in biofilm and macroinvertebrates, and assessed macroinvertebrate assemblage and aquatic habitat with the objective of monitoring planned remediation efforts. Concentrations of metals were generally higher in downstream sites compared with upstream or reference sites, and two sites contained metal concentrations in macroinvertebrates greater than values reported to reduce health and survival of resident trout. Macroinvertebrate assemblage was correlated with metal concentrations in biofilm and macroinvertebrates. However, macroinvertebrate metrics were significantly correlated with a greater number of biofilm metals (8) than metals in invertebrates (4). Lead concentrations in biofilm appeared to have the most significant impact on macroinvertebrate assemblage. Metal concentrations in macroinvertebrates were directly proportional to concentrations in biofilm, indicating biofilm as a potential surrogate for monitoring metal impacts in aquatic systems. ?? Springer Science+Business Media, Inc. 2006.

  16. Dissolved organic carbon reduces the toxicity of copper to germlings of the macroalgae, Fucus vesiculosus.

    PubMed

    Brooks, Steven J; Bolam, Thi; Tolhurst, Laura; Bassett, Janice; La Roche, Jay; Waldock, Mike; Barry, Jon; Thomas, Kevin V

    2008-05-01

    This study investigates the effects of waterborne copper exposure on germling growth in chemically defined seawater. Germlings of the macroalgae, Fucus vesiculosus were exposed to a range of copper and dissolved organic carbon (DOC as humic acid) concentrations over 14 days. Germling growth was found to be a sensitive indicator of copper exposure with total copper (TCu) and labile copper (LCu) EC(50) values of approximately 40 and 20 microg/L, respectively, in the absence of added DOC. The addition of DOC into the exposure media provided germlings with protection against copper toxicity, with an increased TCu EC(50) value of 117.3 microg/L at a corrected DOC (cDOC from humic acid only) concentration of 2.03 mg/L. The LCu EC(50) was not affected by a cDOC concentration of 1.65 mg/L or less, suggesting that the LCu concentration not the TCu concentration was responsible for inhibiting germling growth. However, at a cDOC concentration of approximately 2mg/L an increase in the LCu EC(50) suggests that the LCu concentration may play a role in the overall toxicity to the germlings. This is contrary to current understanding of aquatic copper toxicity and possible explanations for this are discussed.

  17. Metals transport in the Sacramento River, California, 1996-1997; Volume 1, Methods and data

    USGS Publications Warehouse

    Alpers, Charles N.; Taylor, Howard E.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, was evaluated on the basis of samples of water, suspended colloids, streambed sediment, and caddisfly larvae that were collected on one to six occasions at 19 sites in the Sacramento River Basin from July 1996 to June 1997. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions; respectively. Tangential-flow ultrafiltration with 10,000 nominal molecular weight limit, or daltons (0.005 micrometer equivalent), pore-size membranes was used to separate metals in streamwater into ultrafiltrate (operationally defined dissolved fraction) and retentate (colloidal fraction) components, respectively. Conventional filtration with capsule filters (0.45 micrometer pore-size) and membrane filters (0.40 micrometer pore-size) and total-recoverable analysis of unfiltered (whole-body) samples were done for comparison at all sites. Because the total-recoverable analysis involves an incomplete digestion of particulate matter, a more reliable measurement of whole-water concentrations is derived from the sum of the dissolved component that is based on the ultrafiltrate plus the suspended component that is based on a total digestion of colloid concentrates from the ultra-filtration retentate. Metals in caddisfly larvae were determined for whole-body samples and cytosol extracts, which are intercellular solutions that provide a more sensitive indication of the metals that have been bioaccumulated. Trace metals in acidic, metal-rich drainage from abandoned and inactive sulfide mines were observed to enter the Sacramento River system (specifically, into both Shasta Lake and Keswick Reservoir) in predominantly dissolved form, as operationally defined using ultrafiltrates. The predominant source of acid mine drainage to Keswick Reservoir is Spring Creek, which drains the Iron Mountain mine area. Copper concentrations in filtered samples from Spring Creek taken during December 1996, January 1997, and May 1997 ranged from 420 to 560 micrograms per liter. Below Keswick Dam, copper concentrations in conventionally filtered samples ranged from 0.5 micrograms per liter during September 1996 to 9.4 micrograms per liter during January 1997; the latter concentration exceeded the applicable water-quality standard. The proportion of trace metals that was dissolved (versus colloidal) in samples collected at Shasta and Keswick dams decreased in the order cadmium zinc > copper > aluminum iron lead mercury. At four sampling sites on the Sacramento River at various distances downstream of Keswick Dam (Bend Bridge, 71 kilometers; Colusa, 256 kilometers; Verona, 360 kilometers; and Freeport, 412 kilometers) concentrations of these seven metals were predominantly colloidal during both high- and low-flow conditions. Because copper compounds are used extensively as algaecides in rice farming, agricultural drainage at the Colusa Basin Drain was sampled in June 1997 during a period shortly after copper applications to newly planted rice fields. Copper concentrations ranged from 1.3 to 3.0 micrograms per liter in filtered samples and from 12 to 13 micrograms per liter in whole-water samples (total recoverable analysis). These results are consistent with earlier work by the U.S. Geological Survey indicating that copper in rice-field drainage likely represents a detectable, but relatively minor source of copper to the Sacramento River. Lead isotope data from suspended colloids and streambed sediments collected during October and November 1996 indicate that lead from acid mine drainage sources became a relatively minor component of the total lead at the site located 71 kilometers downstream of Keswick Dam and beyond. Cadmium, copper, and zinc concentrations in caddisfly larvae were elevated at several sites downstream of Keswick Dam,

  18. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    PubMed

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  20. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    USGS Publications Warehouse

    Bambic, D.G.; Alpers, Charles N.; Green, P.G.; Fanelli, E.; Silk, W.K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage.

  1. Puget Sound Dredged Disposal Analysis (PSDDA). Final Environmental Impact Statement Unconfined Open-Water Disposal for Dredged Material, Phase 2. (North and South Puget Sound)

    DTIC Science & Technology

    1989-09-01

    flathead sole, rex sole, and rock sole all showed indications of blood worm infestations. One liver tumor was found in a rex sole during spring in the ZSF...concentrations Hainly in invertebrates; some trations (.01 ppb) in waters (from lOx to 42Ox reference) in fish livers ; rarely in fish of Puget Sound central...Eagle Harbor, and Sinclair fish livers , and birds in Inlet. Highest elevation industrialized ’-ban areas. along Ruston-Point Defiance Copper is a natural

  2. Thermal behavior of copper processed by ECAP at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Gonda, Viktor

    2018-05-01

    Large amount of strengthening can be achieved by equal channel angular pressing (ECAP), by the applied severe plastic deformation during the processing. For pure metals, this high strength is accompanied with low thermal stability due to the large activation energy for recrystallization. In the present paper, the chosen technological route was elevated temperature single pass ECAP processing of copper, and its effect on the thermal behavior during the restoration processes of the deformed samples was studied.

  3. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase.

    PubMed

    Pang, Yanfang; Applegate, Todd J

    2006-03-08

    Five copper (Cu) sources were studied at pH 2.5, 5.5, and 6.5 to determine how Cu affects phytate phosphorus (PP) hydrolysis by phytase at concentrations up to 500 mg/kg diet (60 min, 40-41 degrees C). Subsequently, Cu solubility with and without sodium phytate was measured. Adding Cu inhibited PP hydrolysis at pH 5.5 and pH 6.5 (P < 0.05). This inhibition was greater with higher concentrations of Cu. Tri-basic copper chloride and copper lysinate inhibited PP hydrolysis much less than copper sulfate pentahydrate, copper chloride, and copper citrate (P < 0.05). A strong negative relationship was observed between PP hydrolysis and soluble Cu at pH 5.5 (r = -0.76, P < 0.0001) and 6.5 (r = -0.54, P < 0.0001). In conclusion, pH, Cu concentration, and source influenced PP hydrolysis by phytase in vitro and were related to the amount of soluble Cu and the formation of insoluble copper-phytin complexes.

  4. Role of Trace Elements for Oxidative Status and Quality of Human Sperm.

    PubMed

    Nenkova, Galina; Petrov, Lubomir; Alexandrova, Albena

    2017-08-04

    Oxidative stress affects sperm quality negatively. To maintain the pro/antioxidant balance, some metal ions (e.g. copper, zink, iron, selenium), which are co-factors of the antioxidant enzymes, are essential. However, iron and copper could act as prooxidants inducing oxidative damage of spermatozoa. To reveal a possible correlation between the concentrations of some metal ions (iron, copper, zinc, and selenium) in human seminal plasma, oxidative stress, assessed by malondialdehyde and total glutathione levels, and semen quality, assessed by the parameters count, motility, and morphology. Descriptive study. The semen analysis for volume, count, and motility was performed according to World Health Organization (2010) guidelines, using computer-assisted semen analysis. For the determination of spermatozoa morphology, a SpermBlue staining method was applied. Depending on their parameters, the sperm samples were categorized into normozoospermic, teratozoospermic, asthenoteratozoospermic, and oligoteratozoospermic. The seminal plasma content of iron, copper, zinc, and selenium was estimated by atomic absorption spectroscopy. The malondialdehyde and total glutathione levels were quantified spectrophotometrically. In the groups with poor sperm quality, the levels of Fe were higher, whereas those of Zn and Se were significantly lower than in the normozoospermic group. In all groups with poor sperm quality, increased levels of malondialdehyde and decreased glutathione levels were detected as evidence of oxidative stress occurrence. All these differences are most pronounced in the asthenoteratozoospermic group where values differ nearly twice as much compared to the normozoospermic group. The Fe concentration correlated positively with the malondialdehyde (r=0.666, p=0.018), whereas it showed a negative correlation with the level of total glutathione (r=-0.689, p=0.013). The total glutathione level correlated positively with the sperm motility (r=0.589, p=0.044). The elevated levels of Fe and the reduced Se levels are associated with sperm damage. The changes in the concentrations of the trace elements in human seminal plasma may be related to sperm quality since they are involved in the maintenance of the pro-/antioxidative balance in ejaculate.

  5. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii

    PubMed Central

    Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.

    2016-01-01

    ABSTRACT Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa. Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria. PMID:27520808

  6. Effects of dietary supplementation with vitamin C and vitamin E and their combination on growth performance, some biochemical parameters, and oxidative stress induced by copper toxicity in broilers.

    PubMed

    Cinar, Miyase; Yildirim, Ebru; Yigit, A Arzu; Yalcinkaya, Ilkay; Duru, Ozkan; Kisa, Uçler; Atmaca, Nurgul

    2014-05-01

    This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg + 250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.

  7. Variations in Heavy Metals Across Urban Streams

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Belt, K. T.; Stack, W. P.; Pouyat, R. V.; Groffman, P. M.; F, S. E.

    2006-05-01

    Urbanization has led to increased concentrations of metals such as lead (Pb), zinc (Zn), and copper (Cu) in streams due to industrial sources, domestic activities, vehicle use, and runoff from roadways. These metals can be dangerous to aquatic organisms and humans at high concentrations. We investigated variations in concentrations of heavy metals in streams across Baltimore, Maryland and within the context of convergent increases in salinity and organic carbon (two important variables that are known to affect metal transport in surface waters) due to urbanization. Despite past reductions of lead in gasoline and paints, mean concentrations of lead in some Baltimore streams were still approximately 75 micrograms/L and exceeded the U.S. EPA recommended criteria by 50 times. Mean concentrations of zinc and copper across Baltimore streams were also elevated and ranged between 15 to 140 micrograms/L and 2 to 40 micrograms/L, and mean concentrations of these metals were considerably higher than national means reported by the National Storm Water Quality database (NSWQ), which spans 3,770 storm events across the U.S. There were substantial increases in concentrations of heavy metals in streams during storms with greater than 80 percent, 70 percent, and 20 percent of storm samples exceeding recommended U.S. EPA metals criteria for Cu, Pb, and Zn respectively. Relationships between metal concentrations and stream discharge followed different patterns than nitrate and total phosphorus, other regulated pollutants in the Chesapeake Bay watershed, suggesting differences in sources and transport mechanisms within watersheds. Environmental factors such as increasing salinity from deicer use (with chloride concentrations in streams now ranging up to 5 g/L) may contribute to elevated transport of metals through ion exchange and mobilization of metals in soils and sediments. Environmental factors such as increasing organic carbon in urban streams, with ranges of 2 - 16 times greater in suburban and urban streams than forest watersheds, may also act as a vector for transporting metals due to binding capacity. Results show that metals appear to be present in harmful concentrations in many streams in Baltimore, Maryland, but further work is needed to elucidate shifts in the origin of metal pollution (storage in soils and sediments vs. roadway surfaces), and the effects of widespread changes in environmental factors that can potentially enhance their mobilization to streams.

  8. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood

    Treesearch

    Carol A. Clausen

    2000-01-01

    Bioremediation of chromated copper arsenate-treated waste wood with one or more metal-tolerant bacteria is a potential method of naturally releasing metals from treated wood fibre. Sampling eight environments with elevated levels of copper, chromium, and arsenic resulted in the isolation of 28 bacteria with the capability of releasing one or more of the components from...

  9. Metal Dyshomeostasis and Inflammation in Alzheimer's and Parkinson's Diseases: Possible Impact of Environmental Exposures

    PubMed Central

    Myhre, Oddvar; Utkilen, Hans; Duale, Nur; Brunborg, Gunnar; Hofer, Tim

    2013-01-01

    A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes. PMID:23710288

  10. The effects of soil liming and sewage sludge application on dynamics of copper fractions and total copper concentration.

    PubMed

    Malinowska, Elżbieta

    2016-10-01

    The paper deals with effects of liming and different doses of municipal sewage sludge (5, 10, and 15 % of soil mass) on copper speciation in soil. In all samples, pH was determined together with total copper concentration, which was measured with the ICP-AES method. Concentration of copper chemical fractions was determined using the seven-step procedure of Zeien and Brümmer. In the soil treated with the highest dose of sludge (15 %), there was, compared to the control, a twofold increase in the concentration of copper and a threefold increase in the concentration of nitrogen. Copper speciation analysis showed that in the municipal sewage sludge the easily soluble and exchangeable fractions (F1 and F2) constituted only a small share of copper with the highest amount of this metal in the organic (F4) and residual (F7) fractions. In the soil, at the beginning of the experiment, the highest share was in the organic fraction (F4), the residual fraction (F7) but also in the fraction where copper is bound to amorphous iron oxides (F5). After 420 days, at the end of the experiment, the highest amount of copper was mainly in the organic fraction (F4) and in the fraction with amorphous iron oxides (F5). Due to mineralization of organic matter in the sewage sludge, copper was released into the soil with the share of the residual fraction (F7) decreasing. In this fraction, there was much more copper in limed soil than in non-limed soil.

  11. Concentrations and Distribution of Slag-Related Trace Elements and Mercury in Fine-Grained Beach and Bed Sediments of Lake Roosevelt, Washington, April-May 2001

    USGS Publications Warehouse

    Majewski, Michael S.; Kahle, Sue C.; Ebbert, James C.; Josberger, Edward G.

    2003-01-01

    A series of studies have documented elevated concentrations of trace elements such as arsenic, cadmium, copper, lead, mercury, and zinc in the water, bed sediment, or fish of Lake Roosevelt and the upstream reach of the Columbia River. Elevated concentrations of some trace elements in this region are largely attributable to the transport of slag and metallurgical waste discharged into the Columbia River from a smelter in Canada. Although most recent studies have focused on contamination levels in water, bed sediment, and fish, there is growing concern in the region over the potential threat of airborne contaminants to human health. In response to these concerns, the U.S. Geological Survey conducted an assessment of trace-element concentrations in the relatively shallow fine-grained sediment along the shore of Lake Roosevelt that is exposed annually during periods of reservoir drawdown. During each winter and spring, the water level of Lake Roosevelt is lowered as much as about 80 feet to provide space to capture high river flows from spring runoff, exposing vast expanses of lake-bottom sediment for a period of several months. Upon drying, these exposed areas provide an extremely large source for wind-blown dust. This study concluded that trace elements associated with slag and metallurgical waste are present in the fine-grained fraction (less than 63 micrometers) of bed sediments along the length of Lake Roosevelt, and as such, could be components of the airborne dust resulting from exposure, drying, and wind mobilization of the sediments exposed during the annual drawdowns of the reservoir. Trace-element concentrations in the surficial bed sediment varied, but the major components in slag?arsenic, cadmium, copper, lead, and zinc?showed generally pronounced gradients of decreasing concentrations from near the International Border to the Grand Coulee Dam. The results of this study provide base-line information needed to plan and conduct air monitoring of trace elements in wind-blown dust along Lake Roosevelt.

  12. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.

    PubMed

    Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H

    2017-11-01

    Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Predicting toxic effects of copper on aquatic biota in mineralized areas by using the Biotic Ligand Model

    USGS Publications Warehouse

    Smith, Kathleen S.; Ranville, James F.; Adams, M.; Choate, LaDonna M.; Church, Stan E.; Fey, David L.; Wanty, Richard B.; Crock, James G.

    2006-01-01

    The chemical speciation of metals influences their biological effects. The Biotic Ligand Model (BLM) is a computational approach to predict chemical speciation and acute toxicological effects of metals on aquatic biota. Recently, the U.S. Environmental Protection Agency incorporated the BLM into their regulatory water-quality criteria for copper. Results from three different laboratory copper toxicity tests were compared with BLM predictions for simulated test-waters. This was done to evaluate the ability of the BLM to accurately predict the effects of hardness and concentrations of dissolved organic carbon (DOC) and iron on aquatic toxicity. In addition, we evaluated whether the BLM and the three toxicity tests provide consistent results. Comparison of BLM predictions with two types of Ceriodaphnia dubia toxicity tests shows that there is fairly good agreement between predicted LC50 values computed by the BLM and LC50 values determined from the two toxicity tests. Specifically, the effect of increasing calcium concentration (and hardness) on copper toxicity appears to be minimal. Also, there is fairly good agreement between the BLM and the two toxicity tests for test solutions containing elevated DOC, for which the LC50 is 3-to-5 times greater (less toxic) than the LC50 for the lower-DOC test water. This illustrates the protective effects of DOC on copper toxicity and demonstrates the ability of the BLM to predict these protective effects. In contrast, for test solutions with added iron there is a decrease in LC50 values (increase in toxicity) in results from the two C. dubia toxicity tests, and the agreement between BLM LC50 predictions and results from these toxicity tests is poor. The inability of the BLM to account for competitive iron binding to DOC or DOC fractionation may be a significant shortcoming of the BLM for predicting site- specific water-quality criteria in streams affected by iron-rich acidic drainage in mined and mineralized areas.

  14. Influence of CuSO4 and chelated copper algaecide exposures on biodegradation of microcystin-LR.

    PubMed

    Iwinski, Kyla J; Rodgers, John H; Kinley, Ciera M; Hendrikse, Maas; Calomeni, Alyssa J; McQueen, Andrew D; Geer, Tyler D; Liang, Jenny; Friesen, Vanessa; Haakensen, Monique

    2017-05-01

    Copper exposures from algaecide applications in aquatic systems are hypothesized to impede bacterial degradation of microcystin (MC), a cyanobacterial produced hepatotoxin. Despite regulatory implications of this hypothesis, limited data exist on influences of copper-exposures on MC-degrading bacteria and consequent MC-degradation. In this study, influences of copper-algaecide concentrations and formulations on bacterial composition and microcystin-LR (MCLR) degradation were investigated. Microcystis aeruginosa was exposed to four concentrations (0-5.0 mg Cu L -1 ) of three copper-algaecide formulations, and rates and extents of MCLR degradation were measured. In untreated controls and following exposures of 0.1, 0.5, and 1.0 mg Cu L -1 , MCLR concentrations decreased at a rate of ∼41-53 μg MCLR/L d -1 . Following exposure to 5.0 mg Cu L -1 MCLR degradation rates decreased an order of magnitude to ∼3-7 μg MCLR/L d -1 . Bacterial diversity decreased following copper-exposures greater than 0.1 mg Cu L -1 for all formulations. Relative abundance of certain groups of MC-degrading bacteria identified in treatments increased with increasing copper concentration, suggesting they may be less sensitive to copper exposures than other, MCLR and non MC-degrading heterotrophic bacteria present in the assemblage. Results from this study revealed that copper concentration can influence degradation rates of MCLR, however this influence was not significant within copper concentrations currently registered for use (≤1.0 mg Cu L -1 ) of the tested algaecides. Copper formulation did not significantly alter degradation rates or bacterial composition. These data augment our understanding of the influences of copper algaecide-exposures on MCLR degradation, and can be used to inform more accurate risk evaluations and use of copper-algaecides for management of MCLR-producing cyanobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Trace copper measurements and electrical effects in LPE HgCdTe

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, S. P.; Norton, P. W.; Bollong, A. B.; Socha, A.; Tregilgas, J. H.; Ard, C. K.; Arlinghaus, H. F.

    1996-08-01

    Recent improvements in sputter initiated resonance ionization spectroscopy (SIRIS) have now made it possible to measure copper in HgCdTe films into the low 1013 cm-3 range. We have used this technique to show that copper is responsible for type conversion in n-type HgCdTe films. Good n-type LPE films were found to have less than 1 x 1014 cm-3 copper, while converted p-type samples were found to have copper concentrations approximately equal to the hole concentrations. Some compensated n-type samples with low mobilities have copper concentrations too low to account for the amount of compensation and the presence of a deep acceptor level is suggested. In order to study diffusion of copper from substrates into LPE layers, a CdTe boule was grown intentionally spiked with copper at approximately 3 x 1016 cm-3. Annealing HgCdTe films at 360°C was found to greatly increase the amount of copper that diffuses out of the substrates and a substrate screening technique was developed based on this phenomenon. SIRIS depth profiles showed much greater copper in HgCdTe films than in the substrates, indicating that copper is preferentially attracted to HgCdTe over Cd(Zn)Te. SIRIS spatial mapping showed that copper is concentrated in substrate tellurium inclusions 5 25 times greater than in the surrounding CdZnTe matrix.

  16. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers

    PubMed Central

    Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p < 0.047). In contrast, the mothers who took daily supplements had much higher iron concentrations in their milk (p = 0.002). Dietary intakes of zinc, copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  17. Is a high serum copper concentration a risk factor for implantation failure?

    PubMed

    Matsubayashi, Hidehiko; Kitaya, Kotaro; Yamaguchi, Kohei; Nishiyama, Rie; Takaya, Yukiko; Ishikawa, Tomomoto

    2017-08-10

    Copper-containing contraceptive devices may deposit copper ions in the endometrium, resulting in implantation failure. The deposition of copper ions in many organs has been reported in patients with untreated Wilson's disease. Since these patients sometimes exhibit subfertility and/or early pregnancy loss, copper ions were also considered to accumulate in the uterine endometrium. Wilson's disease patients treated with zinc successfully delivered babies because zinc interfered with the absorption of copper from the gastrointestinal tract. These findings led to the hypothesis that infertile patients with high serum copper concentrations may have implantation failure due to the excess accumulation of copper ions. The relationship between implantation (pregnancy) rates and serum copper concentrations has not yet been examined. The Japanese government recently stated that actual copper intake was higher among Japanese than needed. Therefore, the aim of the present study was to investigate whether serum copper concentrations are related to the implantation (pregnancy) rates of human embryos in vivo. We included 269 patients (age <40 years old) who underwent vitrifying and warming single embryo transfer with a hormone replacement cycle using good blastocysts (3BB or more with Gardner's classification). Serum hCG, copper, and zinc concentrations were measured 16 days after the first date of progesterone replacement. We compared 96 women who were pregnant without miscarriage at 10 weeks of gestation (group P) and 173 women who were not pregnant (group NP). No significant differences were observed in age or BMI between the groups. Copper concentrations were significantly higher in group NP (average 193.2 μg/dL) than in group P (average 178.1 μg/dL). According to the area under the curve (AUC) on the receiver operating characteristic curve for the prediction of clinical pregnancy rates, the Cu/Zn ratio (AUC 0.64, 95% CI 0.54-0.71) was a better predictor than copper or zinc. When we set the cut-off as 1.59/1.60 for the Cu/Zn ratio, sensitivity, specificity, the positive predictive value, and negative predictive value were 0.98, 0.29, 0.71, and 0.88, respectively. Our single-center retrospective study suggests that high serum copper concentrations (high Cu/Zn ratio) are a risk factor for implantation failure.

  18. Copper, lead and zinc concentrations of human breast milk as affected by maternal dietary practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umoren, J.; Kies, C.

    1986-03-01

    Maternal dietary practices have been found to affect the concentrations of some nutrients in human breast milk. Lead toxicity is a concern in young children. Lead, copper and zinc are thought to compete for intestinal absorption sites. The objective of the current project was to compare copper, lead and zinc contents of breast milk from practicing lacto-vegetarian and omnivore, lactating women at approximately four months post-partum. Analyses were done by atomic absorption spectrophotometry using a carbon rod attachment. Copper concentrations were higher in milk samples from lacto-ovo-vegetarians. Milk samples from the omnivores had the highest lead and zinc concentrations. Leadmore » and copper concentrations in milk were negatively correlated. The higher zinc concentrations in the milk of the omnivore women may have been related to better utilization of zinc from meat than from plant food sources.« less

  19. Copper in household drinking water in the city of Zagreb, Croatia.

    PubMed

    Pizent, Alica; Butković, Sanja

    2010-09-01

    Copper concentration was estimated in tap water samples obtained from 70 households in Zagreb, serviced by a public water supply system. First-draw and flushed samples of tap water were collected in the morning and total copper concentration was determined by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. We also estimated the contribution of plumbing material to copper concentrations in tap water. In households with copper pipes, median and range copper values were 310 μg L-1 [(27 to 632) μg L-1] in first-draw samples and 16 μg L-1 [(5 to 52) μg L-1] in flushed samples. Corresponding values for households with galvanised pipes were 140 μg L-1 [(11 to 289) μg L-1] and 8 μg L-1 [(1 to 42) μg L-1], respectively. Copper concentrations in household tap water in Zagreb were far below the proposed safe limits set by the Croatian and WHO regulations and EPA standards, and drinking water in Zagreb is not a significant source of copper exposure.

  20. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  1. Isolation of copper-binding proteins from activated sludge culture.

    PubMed

    Fukushi, K; Kato, S; Antsuki, T; Omura, T

    2001-01-01

    Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).

  2. Evaluation of the possible role of copper ions in drinking water in the pathogenesis of oral submucous fibrosis: a pilot study.

    PubMed

    Arakeri, Gururaj; Patil, Shekhar Gowda; Ramesh, D N S V; Hunasgi, Santosh; Brennan, Peter A

    2014-01-01

    We aimed to investigate the concentration of copper ions in drinking water and to assess whether copper has a role in the pathogenesis of oral submucous fibrosis (OSMF). We studied 50 patients with clinically and histologically diagnosed OSMF from the Yadgir district of Karnataka in India. Fifty healthy people matched for age and sex were used as controls. In both groups concentrations of copper ions in serum, saliva, and home drinking water were measured using atomic absorption spectroscopy and intelligent nephelometry technology. Serum ceruloplasmin concentrations were also estimated in both groups. The mean (SD) concentration of copper in the home drinking water of patients with OSMF was significantly higher (764.3 (445.9)μmol/L) than in the controls (305.7 (318.5)μmol/L) (p<0.001). Patients with OSMF also had a significantly higher copper concentrations in serum and saliva, and serum ceruloplasmin than controls (p<0.001). For the first time these data have shown a positive association between copper concentrations in home drinking water and OSMF. It raises the possibility that increased copper in drinking water contributes to the development of OSMF, and adds to that ingested when areca nut is chewed. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept.

    PubMed

    Bishop, W M; Rodgers, J H

    2012-04-01

    The formulation of a specific algaecide can greatly influence the bioavailability, uptake, and consequent control of the targeted alga. In this research, three copper-based algaecide formulations were evaluated in terms of copper sorption to a specific problematic alga and amount of copper required to achieve control. The objectives of this study were (1) to compare the masses of copper required to achieve control of Lyngbya wollei using the algaecide formulations Algimycin-PWF, Clearigate, and copper sulfate pentahydrate in laboratory toxicity experiments; (2) to relate the responses of L. wollei to the masses of copper adsorbed and absorbed (i.e., dose) as well as the concentrations of copper in the exposure water; and (3) to discern the relation between the mass of copper required to achieve control of a certain mass of L. wollei among different algaecide formulations. The critical burden of copper (i.e., threshold algaecide concentration that must be absorbed or adsorbed to achieve control) for L. wollei averaged 3.3 and 1.9 mg Cu/g algae for Algimycin-PWF and Clearigate, respectively, in experiments with a series of aqueous copper concentrations, water volumes, and masses of algae. With reasonable exposures in these experiments, control was not achieved with single applications of copper sulfate despite copper sorption >13 mg Cu/g algae in one experiment. Factors governing the critical burden of copper required for control of problematic cyanobacteria include algaecide formulation and concentration, volume of water, and mass of algae. By measuring the critical burden of copper from an algaecide formulation necessary to achieve control of the targeted algae, selection of an effective product and treatment rate can be calculated at a given field site.

  4. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    PubMed

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  5. Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruckeberg, A.L.; Wu, L.

    1992-06-01

    Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population,more » and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.« less

  6. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  7. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia.

    PubMed

    Barwick, M; Maher, W

    2003-10-01

    In this study the biotransference of selenium copper, cadmium, zinc, arsenic and lead was measured in a contaminated seagrass ecosystem in Lake Macquarie, NSW, Australia, to determine if biomagnification of these trace metals is occurring and if they reach concentrations that pose a threat to the resident organisms or human consumers. Selenium was found to biomagnify, exceeding maximum permitted concentrations for human consumption within carnivorous fish tissue, the highest trophic level examined. Selenium concentrations measured within carnivorous fish were also above those shown to elicit sub-lethal effects in freshwater fish. As comparisons are made to selenium concentrations known to effect freshwater fish, inferences must be made with caution. There was no evidence of copper, cadmium, zinc or lead biomagnification within the food web examined. Copper, cadmium, zinc and lead concentrations were below concentrations shown to elicit adverse responses in biota. Copper concentrations within crustaceans M. bennettae and P. palagicus were found to exceed maximum permitted concentrations for human consumption. It is likely that copper concentrations within these species were accumulated due to the essential nature of this trace metal for many species of molluscs and crustaceans. Arsenic showed some evidence of biomagnification. Total arsenic concentrations are similar to those found in other uncontaminated marine ecosystems, thus arsenic concentrations are unlikely to cause adverse effects to aquatic organisms. Inorganic arsenic concentrations are below maximum permitted concentrations for human consumption.

  8. Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, L.W. Jr.; Scott, M.C.; Killen, W.D.

    1998-06-01

    This ecological risk assessment was designed to characterize risk of copper and cadmium exposure in the Chesapeake Bay watershed by comparing the probability distributions of environmental exposure concentrations with the probability distributions of species response data determined from laboratory studies. The overlap of these distributions was a measure of risk to aquatic life. Dissolved copper and cadmium exposure data were available from six primary data sources covering 102 stations in 18 basins in the Chesapeake Bay watershed from 1985 through 1996. Highest environmental concentrations of copper (based on 90th percentiles) were reported in the Chesapeake and Delaware (C and D)more » Canal, Choptank River, Middle River, and Potomac River; the lowest concentrations of copper were reported in the lower and middle mainstem Chesapeake Bay and Nanticoke River. Based on the calculation of 90th percentiles, cadmium concentrations were highest in the C and D Canal, Potomac River, Upper Chesapeake Bay, and West Chesapeake watershed. Lowest environmental concentrations of cadmium were reported in the lower and middle mainstem Chesapeake Bay and Susquehanna River. The ecological effects data used for this risk assessment were derived primarily from acute copper and cadmium laboratory toxicity tests conducted in both fresh water and salt water; chronic data were much more limited. The 10th percentile (concentration protecting 90% of the species) for all species derived from the freshwater acute copper toxicity database was 8.3 {micro}g/L. For acute saltwater copper data, the 10th percentile for all species was 6.3 {micro}g/L copper. The acute 10th percentile for all saltwater species was 31.7 {micro}g/L cadmium. Highest potential ecological risk from copper exposures was reported in the C and D Canal area of the northern Chesapeake Bay watershed.« less

  9. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    USGS Publications Warehouse

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  10. VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  11. Salivary analytes in patients with oral squamous cell carcinoma.

    PubMed

    Fuchs, Petra Nola; Rogić, Dunja; Vidović-Juras, Danica; Susić, Mato; Milenović, Aleksandar; Brailo, Vlaho; Boras, Vanja Vucićević

    2011-06-01

    Literature data indicates that measurement of certain salivary constituents might serve as a useful diagnostic/prognostic tool in the patients with oral squamous cell carcinoma (OSCC). In 24 patients with OSCC (60 +/- 2.5 yrs) and in 24 controls (24 +/- 3.7 yrs) we have determined levels of salivary magnesium, calcium, copper, chloride, phosphate, potassium, sodium, total proteins and amylase. Sodium, potassium and chloride were determined by indirect potentiometry whereas copper, magnesium and phosphate were determined by atomic absorption spectrophotometry. Total proteins were determined by pyrogalol colorimetric method. Amylase levels were determined by continued colorimetric method. Statistical analysis was performed by use of chi2 test and Spearman's correlation test. The results of this study indicate that the concentrations of sodium and chloride were significantly elevated in patients with OSCC when compared to the controls. However, level of total protein was significantly decreased when compared to the healthy controls. Furthermore, there was a negative correlation between alcohol consumption and total protein concentration in patients with oral carcinoma. We might conclude that in patients with OSCC increased salivary sodium and chloride might reflect their overall dehydration status due to alcohol consumption rather than consequence of OSCC itself.

  12. Physical and thermal processing of Waste Printed Circuit Boards aiming for the recovery of gold and copper.

    PubMed

    Ventura, E; Futuro, A; Pinho, S C; Almeida, M F; Dias, J M

    2018-06-20

    The recovery of electronic waste to obtain secondary raw materials is a subject of high relevance in the context of circular economy. Accordingly, the present work relies on the evaluation of mining separation/concentration techniques (comminution, size screening, magnetic separation and gravity concentration) alone as well as combined with thermal pre-treatment to recover gold and copper from Waste Printed Circuit Boards. For that purpose, Waste Printed Circuit Boards were subjected to physical processing (comminution, size screening in 6 classes from <0.425 mm to > 6.70 mm, magnetic separation and gravity concentration) alone and combined with thermal treatment (200-500 °C), aiming the recovery of gold and copper. Mixed motherboards and graphic cards (Lot 1 and 3) and highly rich components (connectors separated from memory cards, Lot 2) were analyzed. Gold and copper concentrations were determined before and after treatment. Before treatment, concentrations from 0.01 to 0.6 % wt. and from 9 to 20 % wt. were found for gold and copper respectively. The highest concentrations were observed in the size fractions between 0.425 and 1.70 mm. The highest copper concentration was around 35 % wt. (class 0.425-0.85 mm) and when analyzing memory card connectors alone, gold concentrations reached almost 2% in the same class, reflecting the interest of separating such components. The physical treatment alone was more effective for Lot 1/3, compared to Lot 2, allowing recoveries of 67 % wt. and 87 % wt. for gold and copper respectively, mostly due to differences in particles size and shape. The thermal treatment showed unperceptive influence on gold concentration but significant effect for copper concentration, mostly attributed to the size of the copper particles. Concentrations increased in a factor of around 10 when the thermal treatment was performed at 300 °C for the larger particles (1.70-6.70 mm); the best results were obtained at 400 °C for the other sizes, when the highest rate of thermal decomposition of the material occurred. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. ALKALINITY, PH, AND COPPER CORROSION BY-PRODUCT RELEASE

    EPA Science Inventory

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water i...

  14. The influence of duckweed species diversity on ecophysiological tolerance to copper exposure.

    PubMed

    Zhao, Zhao; Shi, Huijuan; Duan, Dongzhu; Li, Hongmei; Lei, Tingwen; Wang, Maolin; Zhao, Hai; Zhao, Yun

    2015-07-01

    In excess, copper is toxic to plants. In the plants, Landoltia punctata and Lemna minor grown in mixed and monoculture, the effects of exposure to varying concentrations of copper (0.01, 0.1, 0.5 and 1mgL(-1) Cu) for seven days were assessed by measuring changes in the chlorophyll, protein and malondialdehyde (MDA) content, catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity. According to results, Cu levels in plants increased with increasing Cu concentration. The level of photosynthetic pigments and crude proteins decreased only upon exposure to high Cu concentrations. However, the starch and malondialdehyde (MDA) content increased. These results suggested a stress alleviation that was possibly the result of antioxidants such as CAT and SOD, the activities of which increased with increasing Cu levels. APX activity increased in L. punctata, but decreased in L. minor, under monoculture or mixed culture conditions. In addition, the duckweed in mixed culture exhibited increased antioxidant enzyme activities which provide increased resistance to copper in moderate copper concentrations. As the copper concentration increased, the duckweed in the mixed culture limited the uptake of copper to avoid toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Copper-Based Aquatic Algaecide Adsorption and Accumulation Kinetics: Influence of Exposure Concentration and Duration for Controlling the Cyanobacterium Lyngbya wollei.

    PubMed

    Bishop, West M; Lynch, Clayton L; Willis, Ben E; Cope, W Gregory

    2017-09-01

    Filamentous mat-forming cyanobacteria are increasingly impairing uses of freshwater resources. To effectively manage, a better understanding of control measures is needed. Copper (Cu)-based algaecide formulations are often applied to reactively control nuisance cyanobacterial blooms. This laboratory research assessed typical field exposure scenarios for the ability of Cu to partition to, and accumulate in Lyngbya wollei. Exposure factors (Cu concentration × duration) of 4, 8, 16, 24, 32 h were tested across three aqueous Cu concentrations (1, 2, 4 ppm). Results indicated that internally accumulated copper correlated with control of L. wollei, independent of adsorbed copper. L. wollei control was determined by filament viability and chlorophyll a concentrations. Similar exposure factors elicited similar internalized copper levels and consequent responses of L. wollei. Ultimately, a "concentration-exposure-time" (CET) model was created to assist water resource managers in selecting an appropriate treatment regime for a specific in-water infestation. By assessing the exposure concentration and duration required to achieve the internal threshold of copper (i.e., critical burden) that elicits control, water management objectives can be achieved while simultaneously decreasing the environmental loading of copper and potential for non-target species risks.

  16. Molecular Mediators Governing Iron-Copper Interactions

    PubMed Central

    Gulec, Sukru; Collins, James F.

    2015-01-01

    Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states. PMID:24995690

  17. Effects of dissolved organic carbon on the toxicity of copper to the developing embryos of the Pacific oyster (Crassostrea gigas).

    PubMed

    Brooks, Steven J; Bolam, Thi; Tolhurst, Laura; Bassett, Janice; La Roche, Jay; Waldock, Mike; Barry, Jon; Thomas, Kevin V

    2007-08-01

    The effects of humic acid (HA) on copper speciation and its subsequent toxicity to the sensitive early life stages of the Pacific oyster (Crassostrea gigas) are presented. Differential pulse anodic stripping voltammetry with a hanging mercury drop electrode was used to measure the copper species as labile copper (LCu; free ion and inorganic copper complexes) and total copper (TCu) with respect to increasing HA concentration. The TCu and LCu 50% effect concentrations (EC50s) in the absence of HA were 20.77 microg/L (95% confidence interval [CI], 24.02-19.97 microg/L) and 8.05 microg/L (95% CI, 9.6-5.92 microg/L) respectively. A corrected dissolved organic carbon (DOC) concentration (HA only) of 1.02 mg/L was required to significantly increase the TCu EC50 to approximately 41.09 microg/L (95% CI, 44.27-37.52 microg/L; p < 0.05), almost doubling that recorded when DOC (as HA) was absent from the test media. In contrast, the LCu EC50 was unaffected by changes in DOC concentration and was stable throughout the corrected DOC concentration range. The absence of change in the LCu EC50, despite increased HA concentration, suggests that the LCu fraction, not TCu, was responsible for the observed toxicity to the oyster embryo. This corresponds with the current understanding of copper toxicity and supports the free-ion activity model for copper toxicity.

  18. A two-step approach for copper and nickel extracting and recovering by emulsion liquid membrane.

    PubMed

    Bi, Qiang; Xue, Juanqin; Guo, Yingjuan; Li, Guoping; Cui, Haibin

    2016-11-01

    The recycling of copper and nickel from metallurgical wastewater using emulsion liquid membrane (ELM) was studied. P507 (2-ethylhexyl phosphonic acid-2-ethylhexyl ester) and TBP (tributyl phosphate) were used as carriers for the extraction of copper and nickel by ELMs, respectively. The influence of four emulsion composition variables, namely, the internal phase volume fraction (ϕ), surfactant concentration (Wsurf), internal phase stripping acid concentration (Cio) and the carrier concentration (Cc), and the process variable treat ratio on the extraction efficiencies of copper or nickel were studied. Under the optimum conditions, 98% copper and nickel were recycled by using ELM. The results indicated that ELM extraction is a promising industrial application technology to retrieve valuable metals in low concentration metallurgical wastewater.

  19. Rapid recovery of dilute copper from a simulated Cu-SDS solution with low-cost steel wool cathode reactor.

    PubMed

    Chang, Shih-Hsien; Wang, Kai-Sung; Hu, Pei-I; Lui, I-Chun

    2009-04-30

    Copper-surfactant wastewaters are often encountered in electroplating, printed circuit boards manufacturing, and metal finishing industries, as well as in retentates from micellar-enhanced ultrafiltration process. A low-cost three-dimensional steel wool cathode reactor was evaluated for electrolytic recovery of Cu ion from dilute copper solution (0.2mM) in the presence of sodium dodecyl sulfate (SDS), octylphenol poly (ethyleneglycol) 9.5 ether (TX), nonylphenol poly (oxyethylene) 9 ether (NP9) and polyoxyethylene (20) sorbitan monooleate (TW) and also mixed surfactants (anionic/nonionic). The reactor showed excellent copper recovery ability in comparison to a parallel-plate reactor. The reactor rapidly recovered copper with a reasonable current efficiency. 93% of copper was recovered at current density of 1 A m(-2) and pH 4 in the presence of 8.5mM SDS. Initial solution pH, cathodic current density, solution mixing condition, SDS concentration, and initial copper concentrations significantly influenced copper recovery. The copper recovery rate increased with an increase in aqueous SDS concentrations between 5 and 8.5mM. The influences of nonionic surfactants on Cu recovery from SDS-Cu solution depended not only on the type of surfactants used, but also on applied concentrations. From the copper recovery perspective, TX at 0.1mM or NP should be selected rather than TW, because they did not inhibit copper recovery from SDS-Cu solution.

  20. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway

    PubMed Central

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-01-01

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function. PMID:26879543

  1. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.

    PubMed

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-02-16

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.

  2. [Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].

    PubMed

    Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia

    2014-04-01

    The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.

  3. Serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin concentrations in infants receiving intravenous zinc and copper supplementation.

    PubMed

    Lockitch, G; Godolphin, W; Pendray, M R; Riddell, D; Quigley, G

    1983-02-01

    One hundred twenty-seven newborn infants requiring parenteral nutrition were randomly assigned to receive differing amounts of zinc (40 to 400 micrograms/kg/day) and copper (20 or 40 micrograms/kg/day) supplementation within five birth weight groups (600 to 2,500 gm). The serum zinc concentration remained relatively constant in the group receiving the most zinc supplementation after two weeks of therapy, but declined sharply in the groups receiving less supplementation. No effect of increased copper intake was noted on ceruloplasmin values, but a difference in serum copper concentrations was noted at two weeks. No correlation was noted between serum zinc and copper values or among those for serum zinc, retinol-binding protein, and prealbumin. Reference ranges were defined for serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin in the preterm infant.

  4. Microplastic Deformation of Submicrocrystalline Copper at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Pochivalova, G. P.; Tabachenko, A. N.; Maletkina, T. Yu.; Skosyrskii, A. B.; Osipov, D. A.

    2017-02-01

    of investigations of submicrocrystalline copper subjected to cold rolling after abc pressing by methods of backscatter electron diffraction and x-ray diffraction analysis are presented. It is demonstrated that after such combined intensive plastic deformation, the submicrocrystalline structure with average grain-subgrain structure elements having sizes of 0.63 μm is formed with relative fraction of high-angle grain boundaries of 70% with texture typical for rolled copper. Results of investigation of microplastic deformation of copper with such structure at temperatures in the interval 295-473 K and with submicrocrystalline structure formed by cold rolling of coarse-grained copper are presented.

  5. Synthesis of copper nanocolloids using a continuous flow based microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Srinivasakannan, C.; Chen, Guo; Shen, Amy Q.

    2015-11-01

    The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH4) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH4 molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet-visible spectroscopy (UV-vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH4 molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO4/NaBH4 molar concentration ratio of 1:2.

  6. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    PubMed Central

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  7. Copper-mercury film electrode for cathodic stripping voltammetric determination of Se(IV).

    PubMed

    Sladkov, Vladimir; David, François; Fourest, Blandine

    2003-01-01

    The copper-mercury film electrode has been suggested for the determination of Se(IV) in a wide range of concentration from 1x10(-9) to 1x10(-6) mol L(-1)by square-wave cathodic stripping voltammetry. Insufficient reproducibility and sensitivity of the mercury film electrode have been overcome by using copper(II) ions during the plating procedure. Copper(II) has been found to be reduced and form a reproducible copper-mercury film on a glassy carbon electrode surface. The plating potential and time, the concentration of copper(II) and the concentration of the supporting electrolyte have been optimised. Microscopy has been used for a study of the morphology of the copper-mercury film. It has been found that it is the same as for the mercury one. The preconcentration step consists in electrodeposition of copper selenide on the copper-mercury film. The relative standard deviation is 4.3% for 1x10(-6) mol L(-1) of Se(IV). The limit of detection is 8x10(-10) mol L(-1) for 5 min of accumulation.

  8. [Newly leaching method of copper from waste print circuit board using hydrochloric acid/n-butylamine/copper sulfate].

    PubMed

    Wang, Hong-Yan; Cui, Zhao-Jie; Yao, Ya-Wei

    2010-12-01

    A newly leaching method of copper from waste print circuit board was established by using hydrochloric acid-n-butylamine-copper sulfate mixed solution. The conditions of leaching were optimized by changing the hydrochloric acid, n-butylamine, copper sulfate,temperature and other conditions using copper as target mimics. The results indicated that copper could be leached completely after 8 h at 50 degrees C, hydrochloric acid concentration of 1.75 mol/L, n-butylamine concentration of 0.25 mol/L, and copper sulfate mass of 0.96 g. Under the conditions, copper leaching rates in waste print circuit board samples was up to 95.31% after 9 h. It has many advantages such as better effects, low cost, mild reaction conditions, leaching solution recycling.

  9. Environmental impacts of urban snow management--the alpine case study of Innsbruck.

    PubMed

    Engelhard, C; De Toffol, S; Lek, I; Rauch, W; Dallinger, R

    2007-09-01

    In regions with colder climate, snow at roads can accumulate significant amounts of pollutant chemicals. In northern countries various efforts have been made to face this problem, but for the alpine region little is known about the pollution of urban snow. The present case study was carried out in the city of Innsbruck (Austria). It aimed at measuring pollution of roadside snow and estimating the impact of snow management practises on environmental quality. Concentrations of copper, zinc, lead, cadmium, suspended solids and chloride were determined during a series of sampling events. Various locations with low and high traffic densities and in different distances from a highway have been investigated. The concentrations of copper were generally higher at sites with high traffic density compared to locations with low traffic impact. In contrast to this, the concentrations of zinc and lead remained almost unvaried irrespective of traffic density at the different sampling sites. For cadmium, the picture was more diverse, showing moderately elevated concentrations of this metal also at the urban reference site not polluted by traffic. This indicates that there may be also other important sources for cadmium besides traffic. Suspended solids accumulated in the roadside snow, the highest concentrations were found at the sites with high traffic density. The chloride concentrations were considerable in the snow, especially at the highway. Based on the results of the present measurement campaign, the environmental impact of snow disposal in rivers was also estimated. A negative impact on rivers from snow disposal seems likely to occur, although the discharged loads could only be calculated with substantial uncertainty, considering the high variability of the measured pollutant concentrations. For a more accurate evaluation of this management practise on rivers, further investigations would be necessary.

  10. Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation

    PubMed Central

    2014-01-01

    Background Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. Methods Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student’s t-tests or ANOVA and p-values of < 0.05 have been considered significant. Results Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks’ diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of intracellular (IC) copper delivery via the copper chaperone for superoxide dismutase (CCS) to its target cuproenzyme, superoxide dismutase-1 (SOD1): this pathway was rectified by TETA treatment, which normalized SOD1 activity with consequent bolstering of anti-oxidant defenses. Furthermore, diabetes depressed levels of additional intracellular copper-transporting proteins, including antioxidant-protein-1 (ATOX1) and copper-transporting-ATPase-2 (ATP7B), whereas TETA elevated copper-transporting-ATPase-1 (ATP7A). Conclusions Myocardial copper deficiency and defective cellular copper transport/trafficking are revealed as key molecular defects underlying LV impairment in diabetes, and TETA-mediated restoration of copper regulation provides a potential new class of therapeutic molecules for DCM. PMID:24927960

  11. Iodinated chlorin p6 copper complex induces anti-proliferative effect in oral cancer cells through elevation of intracellular reactive oxygen species.

    PubMed

    Sarbadhikary, Paromita; Dube, Alok

    2017-11-01

    We investigated the anticancer chemotoxicity of previously reported iodinated chlorin p 6 copper complex (ICp 6 -Cu), a novel chlorophyll derivative in which copper is attached to the side chain carboxylate groups via coordination. Human oral carcinoma cells NT8e, 4451 and the non-cancerous keratinocyte HaCaT cells were treated with ICp 6 -Cu for 48 h in dark and cell viability, proliferation and morphological alterations were examined. ICp 6 -Cu showed pronounced cytotoxicity in cancer cells with IC 50 ∼40 μM, whereas, the viability of HaCaT cells was not affected. Cell proliferation assay revealed that ICp 6 -Cu at IC 50 concentration led to complete inhibition of cell proliferation in both the cell lines. Cell morphology studied by confocal microscopy showed absence of cell death via necrosis or apoptosis. Instead, the treated cells displayed distinct features of non-apoptotic death such as highly vacuolated cytoplasm, lysosomal membrane permeabilization and damage to cytoskeleton F-actin filaments. In addition, ICp 6 -Cu treatment led to time dependent increase in the intracellular level of reactive oxygen species (ROS) and the cytotoxicity of ICp 6 -Cu was significantly inhibited by pre-treatment of cells with antioxidants (glutathione and trolox). These findings revealed that ICp 6 -Cu is a potent chemotoxic agent which can induce cytotoxic effect in cancer cells through elevation of intracellular ROS. It is suggested that ICp 6 -Cu may provide tumor selective chemotoxicity by exploiting difference of redox environment in normal and cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Biochemical protective mechanisms in the accumulation of heavy metals in organisms].

    PubMed

    Petukhov, A S; Petukhova, G A

    At present due to the environmental contamination by heavy metals there is a great interest to investigate the processes of their both accumulation in plants and toxic effect on biochemical indices. Therefore the objective of this research was the analysis of the alteration of the system of antioxidant protection ofplants in conditions of soil contamination by copper and zinc. Research object were germinants of oat in amount of300 plants in each variant of the experiment. For the performance of the experiment, the sand was equally contaminated by sulfates of Cu and Zn in concentration of 2 MPC on its gross content in soil. The experiment lastedfor 2 weeks. For the implementation of the objective of research there was analyzed the contentof both Cu and Zn in plants exposed to soil contamination. Additionally there was performed an analysis of as the content of lipids peroxidation products, phenols and flavonoids; as well the activity ofperoxidase, catalase and photosynthetic system. Under the soil contamination by copper and zinc corresponding to 2 MPC the accumulation of heavy metals was established to be happening in plants. If compared copper accumulation was higher than zinc accumulation that can be explained by the high migration capability of zinc. Under combined impact of two metals there was revealed their antagonistic interaction. There was established an elevated content of lipids peroxidation products in cells as a sequence of the accumulation of heavy metals in plants. As a result of the elevation of the content of lipids peroxidation products there was revealed a raised activity ofphotosynthetic apparatus and antioxidant system (carotenoids, catalase and peroxidase) in the cell. The decrease of the content ofphenols and flavonoids is related with the usage of this system of antioxidant protection for the neutralization of lipids peroxidation processes.

  13. Use of the Biotic Ligand Model to predict metal toxicity to aquatic biota in areas of differing geology

    USGS Publications Warehouse

    Smith, Kathleen S.

    2005-01-01

    This work evaluates the use of the biotic ligand model (BLM), an aquatic toxicity model, to predict toxic effects of metals on aquatic biota in areas underlain by different rock types. The chemical composition of water, soil, and sediment is largely derived from the composition of the underlying rock. Geologic source materials control key attributes of water chemistry that affect metal toxicity to aquatic biota, including: 1) potentially toxic elements, 2) alkalinity, 3) total dissolved solids, and 4) soluble major elements, such as Ca and Mg, which contribute to water hardness. Miller (2002) compiled chemical data for water samples collected in watersheds underlain by ten different rock types, and in a mineralized area in western Colorado. He found that each rock type has a unique range of water chemistry. In this study, the ten rock types were grouped into two general categories, igneous and sedimentary. Water collected in watersheds underlain by sedimentary rock has higher mean pH, alkalinity, and calcium concentrations than water collected in watersheds underlain by igneous rock. Water collected in the mineralized area had elevated concentrations of calcium and sulfate in addition to other chemical constituents. Miller's water-chemistry data were used in the BLM (computer program) to determine copper and zinc toxicity to Daphnia magna. Modeling results show that waters from watersheds underlain by different rock types have characteristic ranges of predicted LC 50 values (a measurement of aquatic toxicity) for copper and zinc, with watersheds underlain by igneous rock having lower predicted LC 50 values than watersheds underlain by sedimentary rock. Lower predicted LC 50 values suggest that aquatic biota in watersheds underlain by igneous rock may be more vulnerable to copper and zinc inputs than aquatic biota in watersheds underlain by sedimentary rock. For both copper and zinc, there is a trend of increasing predicted LC 50 values with increasing dissolved organic carbon (DOC) concentrations. Predicted copper LC 50 values are extremely sensitive to DOC concentrations, whereas alkalinity appears to have an influence on zinc toxicity at alkalinities in excess of about 100 mg/L CaCO 3 . These findings show promise for coupling the BLM (computer program) with measured water-chemistry data to predict metal toxicity to aquatic biota in different geologic settings and under different scenarios. This approach may ultimately be a useful tool for mine-site planning, mitigation and remediation strategies, and ecological risk assessment.

  14. The serum concentration of copper in bipolar disorder.

    PubMed

    Siwek, Marcin; Styczeń, Krzysztof; Sowa-Kućma, Magdalena; Dudek, Dominika; Reczyński, Witold; Szewczyk, Bernadeta; Misztak, Paulina; Opoka, Włodzimierz; Topór-Mądry, Roman; Nowak, Gabriel; Rybakowski, Janusz K

    2017-06-18

    Some scientific reports indicate the changes in the concentration of serum copper in patients with bipolar disorder (BD), however the data are inconclusive. The aim of this study was to assess the concentration of copper in the blood serum of patients in various phases of BD compared to healthy volunteers, taking into consideration the specific clinical features, and the stage of illness. The study enrolled 133 patients with a diagnosis of BD (type I, II and NOS), including 61 people in depressive episode, 23 in mania or hypomania and 49 in remission. The control group consisted of 50 people. Atomic absorption spectrometry was used to measure the concentration of copper. There were no statistically significant differences in the serum copper concentration between patients in various phases of BD (mania/hypomania, depression, remission), sub-types (Type I, Type II + NOS) or stages and healthy volunteers. However, serum copper concentrations in patients in stage 1 was significantly higher than in advanced stages (2+3+4), (ß = 0.22; p = 0.02). Serum copper concentration was also the higher, the later the age of onset was (ß = 0.33; p < 0.001), and the lower, the greater the number of illness episodes (ß = - 0.23; p = 0.02) (multiple regression model, adj R2 = 0.19, p = 0.0001). The dependencies demonstrated above may reflect pathophysiological processes that occur in the course of BD (e.g., inflammatory response and oxidative stress) with a different intensity depending on its stage.

  15. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    PubMed

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  16. Effects of chronic copper exposure during early life in rhesus monkeys.

    PubMed

    Araya, Magdalena; Kelleher, Shannon L; Arredondo, Miguel A; Sierralta, Walter; Vial, María Teresa; Uauy, Ricardo; Lönnerdal, Bo

    2005-05-01

    Whether infants regulate copper absorption and the potential effects of excess copper in early life remain poorly defined. The objective of the study was to assess copper retention, liver copper content, and liver function in infant rhesus monkeys fed infant formula containing 6.6 mg Cu/L. From birth to 5 mo of age, infant rhesus monkeys were fed formula that was supplemented with copper (0.6 mg Cu/L; n = 5) or not supplemented (n = 4). In all animals, weight and crown-rump length (by anthropometry), hemoglobin, hematocrit, plasma ceruloplasmin activity, and zinc and copper concentrations were measured monthly (birth to 6 mo) and at 8 and 12 mo. When the animals were 1, 5, and 8 mo old, liver copper and metallothionein concentrations, liver histology (by light and electron microscopy), and the number of Kupffer cells were assessed, and 67Cu retention was measured. Liver function was assessed by measurement of plasma alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and alkaline phosphatase activities and protein, albumin, bilirubin, and blood urea nitrogen concentrations. 67Cu retention was 19.2% and 10.9% after 1 and 5 mo of copper treatment, respectively, compared with approximately 75% in controls at age 2 mo. At age 8 mo, 67Cu retention was 22.9% in copper-treated animals and 31.5% in controls. Liver histology remained normal by light microscopy, with mild ultrastructural signs of cell damage at 5 mo. Liver copper concentration was 4711, 1139, and 498 microg/g dry tissue at 1, 5, and 8 mo, respectively, in copper-treated animals and 250 microg/g at 2 mo in controls. Measurements could not be completed in all animals. No clinical evidence of copper toxicity was observed. Copper absorption was down-regulated; increases in liver copper content at ages 1 and 5 mo did not result in histologic damage. Ultrastructural changes at age 5 mo could signal early cellular damage.

  17. Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching.

    PubMed

    Beşe, Ayşe Vildan

    2007-09-01

    This work presents the optimum conditions of dissolution of copper in copper converter slag in sulphuric acid ferric sulphate mixtures in the presence and absence of ultrasound. The Taguchi method was used to determine the optimum conditions. The parameters investigated were the reaction temperature, acid concentration, ferric sulphate concentration and reaction time. The optimum conditions for the maximum dissolution of copper were determined as follows: reaction temperature, 65 degrees C; acid concentration, 0.2M; ferric sulphate concentration, 0.15M; reaction time 180 min. Under these conditions, extraction efficiency of copper, zinc, cobalt, and iron from slag were 89.28%, 51.32%, 69.87%, and 13.73%, respectively, in the presence of ultrasound, while they are 80.41%, 48.28%, 64.52%, and 12.16%, respectively, in the absence of ultrasound. As seen from the above results, it is clear that ultrasound enhances on the dissolution of Cu, Zn, Co and Fe in the slag.

  18. Estimation of bioavailability of metals from drilling mud barite.

    PubMed

    Neff, Jerry M

    2008-04-01

    Drilling mud and associated drill cuttings are the largest volume wastes associated with drilling of oil and gas wells and often are discharged to the ocean from offshore drilling platforms. Barite (BaSO4) often is added as a weighting agent to drilling muds to counteract pressure in the geologic formations being drilled, preventing a blowout. Some commercial drilling mud barites contain elevated (compared to marine sediments) concentrations of several metals. The metals, if bioavailable, may harm the local marine ecosystem. The bioavailable fraction of metals is the fraction that dissolves from the nearly insoluble, solid barite into seawater or sediment porewater. Barite-seawater and barite-porewater distribution coefficients (Kd) were calculated for determining the predicted environmental concentration (PEC; the bioavailable fraction) of metals from drilling mud barite in the water column and sediments, respectively. Values for Kdbarite-seawater and Kdbarite-porewater were calculated for barium, cadmium, chromium, copper, mercury, lead, and zinc in different grades of barite. Log Kdbarite-seawater values were higher (solubility was lower) for metals in the produced water plume than log Kdbarite-porewater values for metals in sediments. The most soluble metals were cadmium and zinc and the least soluble were mercury and copper. Log Kd values can be used with data on concentrations of metals in barite and of barite in the drilling mud-cuttings plume and in bottom sediments to calculate PECseawater and PECsediment.

  19. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings.

    PubMed

    Xu, Yonggang; Yu, Wantai; Ma, Qiang; Zhou, Hua; Jiang, Chunming

    2017-08-01

    A pot experiment was carried out to investigate the single and combined effect of different concentrations of sulfadiazine (SDZ) (1 and 10mgkg -1 ) and copper (Cu) (20 and 200mgkg -1 ) stresses on growth, hydrogen peroxide (H 2 O 2 ), malondialdehyde (MDA), antioxidant enzyme activities of wheat seedlings and their accumulation. High SDZ or Cu level significantly inhibited the growth of wheat seedlings, but the emergence rate was only inhibited by high SDZ level. The presence of Cu reduced the accumulation of SDZ, whereas the effect of SDZ on the accumulation of Cu depended on their concentrations. Low Cu level significantly increased the chlorophyll content, while high Cu level or both SDZ concentrations resulted in a significant decrease in the chlorophyll content as compared to the control. Additionally, H 2 O 2 and MDA contents increased with the elevated SDZ or Cu level. The activities of superoxide dismutase, peroxidase and catalase were also stimulated by SDZ or Cu except for the aerial part treated by low Cu level and root treated by high SDZ level. The joint toxicity data showed that the toxicity of SDZ to wheat seedlings was generally alleviated by the presence of Cu, whereas the combined toxicity of SDZ and Cu was larger than equivalent Cu alone. Copyright © 2017. Published by Elsevier Inc.

  20. Baseline sediment trace metals investigation: Steinhatchee River estuary, Florida, Northeast Gulf of Mexico

    USGS Publications Warehouse

    Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.

    1999-01-01

    This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (<0.062 mm). Concentrations were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulometric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X-ray diffraction was used to determine clay mineralogy. Trace-metal concentrations were best correlated when normalized with respect to sediment aluminum concentrations. Normalizations indicate that most major and trace-metal concentrations fall within 95% prediction limits of the expected value. This finding suggests that little significant metal contamination occurred within this system prior to 1994 sediment sampling. Exceptions include lead, mercury, copper, zinc, potassium, and phosphorous. Lead and mercury are elements that generally enter this watershed through atmospheric deposition; thus, anomalous levels of these metals are not necessarily associated with activities within the watershed of the Steinhatchee River estuary. Anomalous concentrations of other metals such as zinc, copper, and phosphorous probably do originate within the Steinhatchee watershed. Copper failed to correlate well with any geochemical or granulometric normalizer, and this condition was not limited to a single facies or area within the estuary. This finding may indicate copper contamination in the system. Increased zinc and copper levels may be attributed to marine paints. Phosphorous levels also appeared to be elevated in a few locations in the two marsh facies sampled. This may be due to nutrient loading from two small communities, Jena and Steinhatchee, or from the application of this element in fertilizer to reduce moisture stress to young planted pines on tree farms within the watershed.The Florida Geological Survey/US Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. The data are intended to provide a benchmark for comparison with metal concentration data measurements. Seventy nine short cores were collected from 66 sample locations and analyzed. Metal concentrations were normalized against geochemical reference elements and against total weight percen

  1. Questa baseline and pre-mining ground-water quality investigation. 12. Geochemical and reactive-transport modeling based on tracer injection-synoptic sampling studies for the Red River, New Mexico, 2001-2002

    USGS Publications Warehouse

    Ball, James W.; Runkel, Robert L.; Nordstrom, D. Kirk

    2005-01-01

    Reactive-transport processes in the Red River, downstream from the town of Red River in north-central New Mexico, were simulated using the OTEQ reactive-transport model. The simulations were calibrated using physical and chemical data from synoptic studies conducted during low-flow conditions in August 2001 and during March/April 2002. Discharge over the 20-km reach from the town of Red River to the USGS streamflow-gaging station near the town of Questa ranged from 395 to 1,180 L/s during the 2001 tracer and from 234 to 421 L/s during the 2002 tracer. The pH of the Red River ranged from 7.4 to 8.5 during the 2001 tracer and from 7.1 to 8.7 during the 2002 tracer, and seep and tributary samples had pH values of 2.8 to 9.0 during the 2001 tracer and 3.8 to 7.2 during the 2002 tracer. Mass-loading calculations allowed identification of several specific locations where elevated concentrations of potential contaminants entered the Red River . These locations, characterized by features on the north side of the Red River that are known to be sources of low-pH water containing elevated metal and sulfate concentrations, are: the initial 2.4 km of the study reach, including Bitter Creek, the stream section from 6.2 to 7.8 km, encompassing La Bobita well and the Hansen debris fan, Sulphur Gulch, at about 10.5 km, the area near Portal Springs, from 12.2 to 12.6 km, and the largest contributors of mass loading, the 13.7 to 13.9 km stream section near Cabin Springs and the 14.7 to 17.5 km stream section from Shaft Spring to Thunder Bridge, Goathill Gulch, and Capulin Canyon. Speciation and saturation index calculations indicated that although solubility limits the concentration of aluminum above pH 5.0, at pH values above 7 and aluminum concentrations below 0.3 mg/L inorganic speciation and mineral solubility controls no longer dominate and aluminum-organic complexing may occur. The August 2001 reactive-transport simulations included dissolved iron(II) oxidation, constrained using measured concentrations of dissolved iron(II) and dissolved iron(total). Both simulations included precipitation of amorphous Al(OH)3 and hydrous ferric oxide as Fe(OH)3, and sorption of copper and zinc to the precipitated hydrous ferric oxide. Simulations revealed that hydrogen, iron, aluminum, copper, and zinc were non-conservative and that mineral precipitation can account for iron and aluminum concentrations. Copper and zinc concentrations can be accounted for by simulating their sorption to hydrous ferric oxide forming in the water column of the Red River , although hydrous manganese oxides also may be important sorption substrates.

  2. Essentiality of copper in humans.

    PubMed

    Uauy, R; Olivares, M; Gonzalez, M

    1998-05-01

    The biochemical basis for the essentiality of copper, the adequacy of the dietary copper supply, factors that condition deficiency, and the special conditions of copper nutriture in early infancy are reviewed. New biochemical and crystallographic evidence define copper as being necessary for structural and catalytic properties of cuproenzymes. Mechanisms responsible for the control of cuproprotein gene expression are not known in mammals; however, studies using yeast as a eukaryote model support the existence of a copper-dependent gene regulatory element. Diets in Western countries provide copper below or in the low range of the estimated safe and adequate daily dietary intake. Copper deficiency is usually the consequence of decreased copper stores at birth, inadequate dietary copper intake, poor absorption, elevated requirements induced by rapid growth, or increased copper losses. The most frequent clinical manifestations of copper deficiency are anemia, neutropenia, and bone abnormalities. Recommendations for dietary copper intake and total copper exposure, including that from potable water, should consider that copper is an essential nutrient with potential toxicity if the load exceeds tolerance. A range of safe intakes should be defined for the general population, including a lower safe intake and an upper safe intake, to prevent deficiency as well as toxicity for most of the population.

  3. Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  4. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    NASA Astrophysics Data System (ADS)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  5. Ultra-deep oxidation and exotic copper formation at the late pliocene boyongan and bayugo porphyry copper-gold deposits, surigao, philippines: Geology, mineralogy, paleoaltimetry, and their implications for Geologic, physiographic, and tectonic controls

    USGS Publications Warehouse

    Braxton, D.P.; Cooke, D.R.; Ignacio, A.M.; Rye, R.O.; Waters, P.J.

    2009-01-01

    The Boyongan and Bayugo porphyry copper-gold deposits are part of an emerging belt of intrusion-centered gold-rich deposits in the Surigao district of northeast Mindanao, Philippines. Exhumation and weathering of these Late Pliocene-age deposits has led to the development of the world's deepest known porphyry oxidation profile at Boyongan (600 m), and yet only a modest (30-70 m) oxidation profile at adjacent Bayugo. Debris flows, volcanic rocks, and fluviolacustrine sediments accumulating in the actively extending Mainit graben subsequently covered the deposits and preserved the supergene profiles. At Boyongan and Bayugo, there is a vertical transition from shallower supergene copper oxide minerals (malachite + azurite + cuprite) to deeper sulfide-stable assemblages (chalcocite ?? hypogene sulfides). This transition provides a time-integrated proxy for the position of the water table at the base of the saturated zone during supergene oxidation. Contours of the elevation of the paleopotentiometric surface based on this min- eralogical transition show that the thickest portions of the unsaturated zone coincided with a silt-sand matrix diatreme breccia complex at Boyongan. Within the breccia complex, the thickness of the unsaturated zone approached 600 in, whereas outside the breccia complex (e.g., at Bayugo), the thickness averaged 50 m. Contours of the paleopotentiometric surface suggest that during weathering, groundwater flowed into the breccia complex from the north, south, and east, and exited along a high permeability zone to the west. The high relief (>550 m) on the elevation of the paleopotentiometric surface is consistent with an environment of high topographic relief, and the outflow zone to the west of the breccia complex probably reflects proximity to a steep scarp intersecting the western breccia complex margin. Stable isotope paleoaltimetry has enabled estimation of the elevation of the land surface, which further constrains the physiographic setting during supergene oxidation. Isotopic measurements of oxygen in supergene kaolinite from Boyongan suggest that local paleometeoric water involved in weathering had a ??180 composition of approximately -5.7 per mil. At the latitude of the southern Philippines, this value corresponds to Pleistocene rain water condensing at elevations between 750 and 1,050 m above contemporary sea level, providing a maximum estimate for the surface elevation during weathering of the porphyry systems. Physiographic reconstuctions suggest that the deep oxidation profile at Boyongan formed in an environment of high topographic relief immediately east of a prominent (>550 m) escarpment. The high permeability contrast between the breccia complex and the surrounding wall rocks, coupled with the proximity of the breccia complex to the escarpment, led to a depressed groundwater table and a vertically extensive unsaturated zone in the immediate vicinity of Boyongan. This thick vadose zone and the low hypogene pyrite/copper sulfide ratios (0.6) at Boyongan promoted in situ oxidation of copper sulfides with only modest (<200 m) supergene remobilization of copper. In contrast, higher hypogene pyrite/chalcopyrite ratios (2.3) at Bayugo led to greater acid production during weathering and more complete leaching of copper above the base of oxidation. This process promoted significant (600 m) lateral dispersion of copper down the paleohydraulic gradient into the diatreme breccia comple, ultimately leading to the formation of an exotic copper deposit. ?? 2009 Society of Economices Geologists, Inc.

  6. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  7. Role of Mineral Deposits in Global Geochemical Cycles

    NASA Astrophysics Data System (ADS)

    Kesler, S.; Wilkinson, B.

    2009-12-01

    Mineral deposits represent the most extreme degree of natural concentration for most elements and their formation and destruction are important parts of global geochemical cycles. Quantitative estimates of the role that mineral deposits play in these geochemical cycles has been limited, however, by the lack of information on actual amounts of elements that are concentrated in these deposits, and their rates of formation and destruction at geologic time scales. Recent use of a “tectonic diffusion” model for porphyry copper deposits, the most important source of world copper, in conjunction with estimates of their copper content (Kesler and Wilkinson, 2008), allows an assessment of the role of copper deposits in Earth’s global copper cycles. These results indicate that ~4.5*10^8 Gg of Cu have been concentrated in porphyry copper deposits through Phanerozoic time, that deposits containing ~2.8*10^8 Gg of Cu have been removed by uplift and erosion over the same time period, and that deposits containing ~1.7*10^8 Gg remain in Earth’s crust. If styles of formation and destruction of other copper-bearing mineral deposits are similar, then all crustal deposits contain ~3*10^8 Gg of copper. This constitutes about 0.03% of the copper that resides in crustal rocks and provides a first-ever estimate of the rate at which natural geochemical cycles produce the extreme concentrations that constitute mineral deposits. Another ~8*10^8 Gg of copper have been destroyed during the uplift and erosion of mineral deposits over Phanerozoic time, a flux amounting to an annual contribution of about 1.5 Gg of copper to the near-surface environment. This amount is similar in magnitude to copper released by volcanic outgassing, but only ~2.5% of the 56 Gg of copper estimated to be released annually by weathering of average crustal rocks (Rauch and Graedel, 2007). The amount of copper removed from mineral deposits by mining, 1.1*10^4 Gg/year, is much larger than any natural contributions to the near-surface global copper cycle and, for porphyry copper deposits, is approximately 13,000 times larger than the rate at which Earth concentrates copper in them. Preliminary estimates for mineral deposits containing gold yield similar results, suggesting that these relations apply to most metals that are concentrated into hydrothermal mineral deposits. These comparisons indicate that erosion of mineral deposits is a small but important contributor to the natural near-surface flux of metals. Anthropogenic removal and dispersal of metals into the surface environment (mining) is several orders of magnitude larger, and is likely to result in depletion of mineral deposits from the upper few kilometers of Earth’s crust within the next few thousand years.

  8. Offshore drilling effects in Brazilian SE marine sediments: a meta-analytical approach.

    PubMed

    Dore, Marina Pereira; Farias, Cássia; Hamacher, Cláudia

    2017-01-01

    The exploration and production of oil and gas reserves often result to drill cutting accumulations on the seafloor adjacent to drill locations. In this study, the detection of drilling influence on marine sediments was performed by meta-analytical comparison between data from pre- and post-drilling surveys undertaken in offshore Campos Basin, southeast of Brazil. Besides this overall appraisal on the geochemical variables, a multivariate assessment, considering only the post-drilling data, was performed. Among the variables, fines content, carbonates, total organic carbon, barium, chromium, copper, iron, manganese, nickel, lead, vanadium, zinc, and total petroleum hydrocarbons, only barium, copper, and hydrocarbons were related to drilling impacts. In relation to the point of discharge, relative elevated levels in the post-drilling campaigns were observed preferentially up to 500 m in the northeast and southwest directions, associated to the Brazil Current-predominant direction. Other distributed concentrations in the surroundings seem to indicate the dilution and dispersion of drilling waste promoted by meteoceanographic factors.

  9. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism

    PubMed Central

    Sullivan, Matthew J.; Gates, Andrew J.; Appia-Ayme, Corinne; Rowley, Gary; Richardson, David J.

    2013-01-01

    Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus denitrificans. Here we demonstrate that expression of the gene encoding the nitrous oxide reductase (NosZ), which converts N2O to N2, is regulated in response to the extracellular copper concentration. We show that elevated levels of N2O released as a consequence of decreased cellular NosZ activity lead to the bacterium switching from vitamin B12-dependent to vitamin B12-independent biosynthetic pathways, through the transcriptional modulation of genes controlled by vitamin B12 riboswitches. This inhibitory effect of N2O can be rescued by addition of exogenous vitamin B12. PMID:24248380

  10. Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile.

    PubMed

    Issotta, Francisco; Galleguillos, Pedro A; Moya-Beltrán, Ana; Davis-Belmar, Carol S; Rautenbach, George; Covarrubias, Paulo C; Acosta, Mauricio; Ossandon, Francisco J; Contador, Yasna; Holmes, David S; Marín-Eliantonio, Sabrina; Quatrini, Raquel; Demergasso, Cecilia

    2016-01-01

    Leptospirillum ferriphilum Sp-Cl is a Gram negative, thermotolerant, curved, rod-shaped bacterium, isolated from an industrial bioleaching operation in northern Chile, where chalcocite is the major copper mineral and copper hydroxychloride atacamite is present in variable proportions in the ore. This strain has unique features as compared to the other members of the species, namely resistance to elevated concentrations of chloride, sulfate and metals. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 2,475,669 bp draft genome is arranged into 74 scaffolds of 74 contigs. A total of 48 RNA genes and 2,834 protein coding genes were predicted from its annotation; 55 % of these were assigned a putative function. Release of the genome sequence of this strain will provide further understanding of the mechanisms used by acidophilic bacteria to endure high osmotic stress and high chloride levels and of the role of chloride-tolerant iron-oxidizers in industrial bioleaching operations.

  11. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters I: Concentrations and rates.

    PubMed

    Parks, Ashley N; Cantwell, Mark G; Katz, David R; Cashman, Michaela A; Luxton, Todd P; Ho, Kay T; Burgess, Robert M

    2018-03-25

    Little is known about the release of metal engineered nanomaterials (ENMs) from consumer goods, including lumber treated with micronized copper. Micronized copper is a recent form of antifouling wood preservative containing nanosized copper particles for use in pressure-treated lumber. The present study investigated the concentrations released and the release rate of total copper over the course of 133 d under freshwater, estuarine, and marine salinity conditions (0, 1, 10, and 30‰) for several commercially available pressure-treated lumbers: micronized copper azole (MCA) at 0.96 and 2.4 kg/m 3 , alkaline copper quaternary (ACQ) at 0.30 and 9.6 kg/m 3 , and chromated copper arsenate (CCA) at 40 kg/m 3 . Lumber was tested as blocks and as sawdust. Overall, copper was released from all treated lumber samples. Under leaching conditions, total release ranged from 2 to 55% of the measured copper originally in the lumber, with release rate constants from the blocks of 0.03 to 2.71 (units per day). Generally, measured release and modeled equilibrium concentrations were significantly higher in the estuarine conditions compared with freshwater or marine salinities, whereas rate constants showed very limited differences between salinities. Furthermore, organic carbon was released during the leaching and demonstrated a significant relationship with released copper concentrations as a function of salinity. The results indicate that copper is released into estuarine/marine waters from multiple wood treatments including lumber amended with nanoparticle-sized copper. Environ Toxicol Chem 2018;9999:1-13. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  12. Heavy metal concentrations in plants growing on a copper mine spoil in the Grand Canyon, Arizona. [Thlaspi montanum; Phlox austromontana; Juniperus osteosperma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, R.J.; Streit, B.

    1986-05-01

    Concentrations of metals including manganese, nickel, copper and zinc were measured in soil from a copper mine spoil heap in the Grand Canyon, Arizona, and in three plant species growing on the spoil. The soil had high concentrations of available copper and zinc, and the herbaceous perennial Thlaspi montanum var fendleri contained amounts of Ni, Cu and Zn in direct proportion to the soil concentrations (EDTA extractable). Another herbaceous perennial, Phlox austromontana, and the woody perennial Juniperus osteosperma had considerably lower amounts of these elements. These findings are discussed in relation to other studies, and it is suggested that figuresmore » for metal accumulation by plants should always be related to plant-available soil concentrations.« less

  13. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  14. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  15. Reduced recruitment in Hyalella azteca (Saussure, 1858) exposed to copper.

    PubMed

    Othman, M Shuhaimi; Pascoe, David

    2002-09-01

    Neonates of the amphipod Hyalella azteca were exposed for a 35-day period in the laboratory to a range of copper concentrations, nominally 18 microg/l, 40 microg/l, 70 microg/l and 260 microg/l. The reproductive status of the population was assessed by recording recruitment, the number of precopulatory pairs and number of gravid females. At the end of the experiment, the body lengths of individuals were measured using image analysis. There was a significant decrease in the final population size of H. azteca with increasing copper concentration and compared with the control. Copper significantly reduced recruitment of juveniles and length composition of the final population and there was also a trend toward reduced precopula number with increasing copper concentrations.

  16. Optimization of formaldehyde concentration on electroless copper deposition on alumina surface

    NASA Astrophysics Data System (ADS)

    Shahidin, S. A. M.; Fadil, N. A.; Yusop, M. Zamri; Tamin, M. N.; Osman, S. A.

    2018-05-01

    The effect of formaldehyde concentration on electroless copper plating on alumina wafer was studied. The main composition of plating bath was copper sulphate (CuSO4) as precursor and formaldehyde as a reducing agent. The copper deposition films were assessed by varying the ratio of CuSO4 and formaldehyde. The plating rate was calculated from the weight gained after plating process whilst the surface morphology was observed by field emission scanning electron microscopy (FESEM). The results show that 1:3 ratio of copper to formaldehyde is an optimum ratio to produce most uniform coating with good adhesion between copper layer and alumina wafer substrate.

  17. The impact of aging wine in high and low oxygen conditions on the fractionation of Cu and Fe in Chardonnay wine.

    PubMed

    Kontoudakis, Nikolaos; Guo, Anque; Scollary, Geoffrey R; Clark, Andrew C

    2017-08-15

    Solid-phase extraction has previously been used to fractionate copper and iron into hydrophobic, cationic and residual forms. This study showed the change in fractionated copper and iron in Chardonnay wines with 1-year of bottle aging under variable oxygen and protein concentrations. Wines containing protein in low oxygen conditions induced a decrease (20-50%) in total copper and increased the proportion of the hydrophobic copper fraction, associated with copper(I) sulfide. In contrast, protein stabilised wines showed a lower proportion of the hydrophobic copper fraction after 1-year of aging. In oxidative storage conditions, the total iron decreased by 60% when at high concentration, and the concentration of the residual fraction of both copper and iron increased. The results show that oxidative storage increases the most oxidative catalytic form of the metal, whilst changes during reductive storage depend on the extent of protein stabilisation of the wine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Diminished Metal Accumulation in Riverine Fishes Exposed to Acid Mine Drainage over Five Decades

    PubMed Central

    Jeffree, Ross A.; Markich, Scott J.; Twining, John R.

    2014-01-01

    Bony bream (Nematalosa erebi) and black catfish (Neosilurus ater) were sampled from the fresh surface waters of the Finniss River in tropical northern Australia, along a metal pollution gradient draining the Rum Jungle copper/uranium mine, a contaminant source for over five decades. Paradoxically, populations of both fish species exposed to the highest concentrations of mine-related metals (cobalt, copper, lead, manganese, nickel, uranium and zinc) in surface water and sediment had the lowest tissue (bone, liver and muscle) concentrations of these metals. The degree of reduction in tissue concentrations of exposed populations was also specific to each metal and inversely related to its degree of environmental increase above background. Several explanations for diminished metal bioaccumulation in fishes from the contaminated region were evaluated. Geochemical speciation modeling of metal bioavailability in surface water showed no differences between the contaminated region and the control sites. Also, the macro-nutrient (calcium, magnesium and sodium) water concentrations, that may competitively inhibit metal uptake, were not elevated with trace metal contamination. Reduced exposure to contaminants due to avoidance behavior was unlikely due to the absence of refugial water bodies with the requisite metal concentrations lower than the control sites and very reduced connectivity at time of sampling. The most plausible interpretation of these results is that populations of both fish species have modified kinetics within their metal bioaccumulation physiology, via adaptation or tolerance responses, to reduce their body burdens of metals. This hypothesis is consistent with (i) reduced tissue concentrations of calcium, magnesium and sodium (macro-nutrients), in exposed populations of both species, (ii) experimental findings for other fish species from the Finniss River and other contaminated regions, and (iii) the number of generations exposed to likely selection pressure over 50 years. PMID:24663964

  19. Hsp60-induced tolerance in the rotifer Brachionus plicatilis exposed to multiple environmental contaminants.

    PubMed

    Wheelock, C E; Wolfe, M F; Olsen, H; Tjeerdema, R S; Sowby, M L

    1999-04-01

    Hsp60 induction was selected as a sublethal endpoint of toxicity for Brachionus plicatilis exposed to a water accommodated fraction (WAF) of Prudhoe Bay crude oil (PBCO), a PBCO/dispersant (Corexit 9527(R)) fraction and Corexit 9527(R) alone. To examine the effect of multiple stressors, exposures modeled San Francisco Bay, where copper levels are approximately 5 microgram/L, salinity is 22 per thousand, significant oil transport and refining occurs, and petroleum releases have occurred historically. Rotifers were exposed to copper at 5 microgram/L for 24 h, followed by one of the oil/dispersant preparations for 24 h. Batch-cultured rotifers were used in this study to model wild populations instead of cysts. SDS-PAGE with Western Blotting using hsp60-specific antibodies and chemiluminescent detection were used to isolate, identify, and measure induced hsp60 as a percentage of control values. Both PBCO/dispersant and dispersant alone preparations induced significant levels of hsp60. However, hsp60 expression was reduced to that of controls at high WAF concentrations, suggesting interference with protein synthesis. Rotifers that had been preexposed to copper maintained elevated levels of hsp60 upon treatment with WAF at all concentrations. Results suggest that induction of hsp60 by chronic low-level exposure may serve as a protective mechanism against subsequent or multiple stressors and that hsp60 levels are not additive for the toxicants tested in this study, giving no dose-response relationship. The methods employed in this study could be useful for quantifying hsp60 levels in wild rotifer populations.

  20. Bioextraction of Copper from Printed Circuit Boards: Influence of Initial Concentration of Ferrous Iron

    NASA Astrophysics Data System (ADS)

    Yamane, Luciana Harue; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    Printed circuit boards are found in all electric and electronic equipment and are particularly problematic to recycle because of the heterogeneous mix of organic material, metals, and fiberglass. Additionally, printed circuit boards can be considered a secondary source of copper and bacterial leaching can be applied to copper recovery. This study investigated the influence of initial concentration of ferrous iron on bacterial leaching to recover copper from printed circuit boards using Acidithiobacillus ferrooxidans-LR. Printed circuit boards from computers were comminuted using a hammer mill. The powder obtained was magnetically separated and the non magnetic material used in this study. A shake flask study was carried out on the non magnetic material using a rotary shaker at 30°C, 170 rpm and different initial concentrations of ferrous iron (gL-1): 6.75; 13.57 and 16.97. Abiotic controls were also run in parallel. The monitored parameters were pH, Eh, ferrous iron concentration and copper extraction (spectroscopy of atomic absorption). The results showed that using initial concentration of ferrous iron of 6.75gL-1 were extracted 99% of copper by bacterial leaching.

  1. Spatial distribution and trends in trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls in Lake Worth sediment, Fort Worth, Texas

    USGS Publications Warehouse

    Harwell, Glenn Richard; Van Metre, Peter C.; Wilson, Jennifer T.; Mahler, Barbara J.

    2003-01-01

    In spring 2000, the Texas Department of Health issued a fish consumption advisory for Lake Worth in Fort Worth, Texas, because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish. In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey collected 21 surficial sediment samples and three gravity core sediment samples to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of hydrophobic contaminants to Lake Worth. Compared to reference (background) concentrations in the upper lake, elevated PCB concentrations were detected in the surficial sediment samples collected in Woods Inlet, which receives surface runoff from Air Force facilities and urban areas. Gravity cores from Woods Inlet and from the main part of the lake near the dam indicate that the concentrations of PCBs were three to five times higher in the 1960s than in 2000. A regression method was used to normalize sediment concentrations of trace elements for natural variations and to distinguish natural and anthropogenic contributions to sediments. Concentrations of several trace elements—cadmium, chromium, copper, lead, and zinc—were elevated in sediments in Woods Inlet, along the shoreline of Air Force facilities, and in the main lake near the dam. Concentrations of these five trace elements have decreased since 1970. Polycyclic aromatic hydrocarbons also were elevated in the same areas of the lake. Concentrations of total polycyclic aromatic hydrocarbons, normalized with organic carbon, were mostly stable in the upper lake but steadily increased near the dam, except for small decreases since 1980. The Woods Inlet gravity core showed the largest increase of the three core sites beginning about 1940; total polycyclic aromatic hydrocarbon concentrations in post-1940 sediments from the core showed three apparent peaks about 1960, 1984, and 2000. The concentrations of organochlorine pesticides were low relative to consensus-based sediment-quality guidelines and either decreased or remained constant since 1970. The two likely sources of hydrophobic contaminants to the lake are urban areas around the lake and the drainage area of Meandering Road Creek that contributes runoff to Woods Inlet and includes Air Force facilities.

  2. Temporal and spatial variations of copper, cadmium, lead, and zinc in Ten Mile Creek in South Florida, USA.

    PubMed

    Yang, Yuangen; He, Zhenli; Lin, Youjian; Phlips, Edward J; Stoffella, Peter J; Powell, Charles A

    2009-01-01

    Lead (Pb), zinc (Zn), copper (Cu), and cadmium (Cd) often seriously deteriorate water quality. Spatial and temporal fluctuations of the metal concentrations in the Ten Mile Creek (Florida) (TMC) were monitored on a weekly basis at 7 sampling sites, from June 2005 to September 2007. River sediment samples were also collected from these sites in April, June, and October 2006 and January 2007, and analyzed for water, Mehlich 1 (M1), and Mehlich 3 (M3)-extractable metals (Mehlich, 1953, 1984), to examine the role of sediments as sources or sinks of the metals. The concentrations of lead, zinc, copper, and cadmium in the water samples were

  3. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism.

    PubMed

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-02-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  4. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism

    PubMed Central

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-01-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. PMID:26865661

  5. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  6. Determination of an organic-acid analog of DOC for use in copper toxicity studies on salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacRae, R.K.; Meyer, J.S.; Hansen, J.A.

    1995-12-31

    Concentrations of dissolved copper in streams draining mine sites often exceed concentrations shown to cause acute and chronic mortality in salmonids. However, toxicity and impaired behaviors may be modified by dissolved organic carbon (DOC) and other inorganic components present in the site water. The effects of DOC on copper speciation, and thus bioavailability and toxicity, were determined by titrating stream waters with copper, using a cupric ion-specific electrode to detect free copper concentrations. Effects of various competing cations (e.g., Ca{sup +2}, Co{sup +2}) on copper-DOC binding were also evaluated. Titration results were evaluated using Scatchard and non-linear regression analyses tomore » quantify the strength and capacity of copper-DOC binding. Inorganic speciation was determined using the geochemical model MINEQL{sup +}. Results of these titrations indicated the presence of two or three distinct copper binding components in site water DOC. Three commercially available organic acids where then chosen to mimic the binding characteristics of natural DOC. This DOC-analog was used successfully in fish toxicity studies to evaluate the influence of DOC on copper bioavailability. Geochemical models were developed to predict copper speciation in both laboratory test waters and site waters, for any typical combination of water chemistry parameters (pH, alkalinity, [DOC], etc.). A combined interpretation of fish toxicity and modeling results indicate that some DOC-bound copper was bioavailable.« less

  7. Planktonic microbial community responses to added copper.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Sargos, Denis; Lenain, Jean-François; Deluchat, Véronique; Ngayila, Nadine; Baudu, Michel; Amblard, Christian

    2007-07-20

    It is generally agreed that autotrophic organisms and especially phytoplanktonic species can be harmed by copper through its effect on photosystem. However, the impact of copper on other components of the pelagic food web, such as the microbial loop (autotrophic and heterotrophic picoplankton, pigmented and non-pigmented flagellates and ciliates) has received little attention. Indoor experiments were conducted to evaluate the direct and indirect effects of copper, supplied in the range of concentrations used to control cyanobacteria growth in ponds, on non-targeted organisms of natural microbial loop communities sampled in spring and summer. Two copper concentrations were tested (80microgL(-1) and 160microgL(-1) final concentrations), set, respectively, below and above the ligand binding capacity of the water samples. Both caused a significant decrease in the biomass and diversity of pigmented organisms (picophytoplankton and pigmented flagellates). Conversely, the heterotrophic bacterioplankton and the heterotrophic flagellates did not seem to be directly affected by either copper treatment in terms of biomass or diversity, according to the descriptor chosen. The ciliate biomass was significantly reduced with increasing copper concentrations, but differences in sensitivity appeared between spring and summer communities. Potential mixotrophic and nanoplanktorivorous ciliates appeared to be more sensitive to copper treatments than bacterivorous ciliates, suggesting a stronger direct and (or) indirect effect of copper on the former. Copper sulphate treatments had a significant restructuring effect on the microbial loop communities, resulting in a dominance of heterotrophic bacterioplankton among microbial microorganisms 27 days after the beginning of the treatment. The spring microbial communities exhibited a greater sensitivity than the summer communities with respect to their initial compositions.

  8. Bioavailable copper modulates oxidative phosphorylation and growth of tumors

    PubMed Central

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas

    2013-01-01

    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment. PMID:24218578

  9. Correlation of Lethal Concentrations of Heavy Metals with Tissue Levels of Earthworms

    DTIC Science & Technology

    1988-08-01

    mentioned in the contract i.e. mercury , arsenic, ’cadmium and copper. We will find out the 50 % lethal concentrations (LC50) and the smallest...concentrations, blanks, and background worm stock has been limited to copper and cadmium. In fact, mercury and arsenic request special analytical device...the other boxes but without toxic components. Contaminants to study are heavy metals : cadmium, copper and mercury , and arsenic. We chose following

  10. Preparation of ultrafine grained copper nanoparticles via immersion deposit method

    NASA Astrophysics Data System (ADS)

    Abbasi-Kesbi, Fatemeh; Rashidi, Ali Mohammad; Astinchap, Bandar

    2018-03-01

    Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV-Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of 22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.

  11. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran

    NASA Astrophysics Data System (ADS)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann G.; Pourkaseb, Houshang; Asadi, Sina; Saed, Madineh; Lentz, David R.

    2018-02-01

    The present work attempts to discriminate between the geochemical features of magmatic-hydrothermal systems involved in the early stages of mineralization in high grade versus low grade porphyry copper systems, using chemical compositions of silicate and sulfide minerals (i.e., plagioclase, biotite, pyrite and chalcopyrite). The data indicate that magmatic plagioclase in all of the porphyry copper systems studied here has high An% and Al content with a significant trend of evolution toward AlAl3SiO8 and □Si4O8 endmembers, providing insight into the high melt water contents of the parental magmas. Comparably, excess Al and An% in the high grade deposits appears to be higher than that of selected low grade deposits, representing a direct link between the amounts of exsolving hydrothermal fluids and the potential of metal endowment in porphyry copper deposits (PCDs). Also, higher Al contents accompanied by elevated An% are linked to the increasing intensity of disruptive alteration (phyllic) in feldspars from the high grade deposits. As calculated from biotite compositions, chloride contents are higher in the exsolving hydrothermal fluids that contributed to the early mineralization stages of highly mineralized porphyry systems. However, as evidenced by scattered and elevated log (fH2O)/(fHF) and log (fH2O)/(fHCl) values, chloride contents recorded in biotite could be influenced by post potassic fluids. Geothermometry of biotite associated with the onset of sulfide mineralization indicates that there is a trend of increasing temperature from high grade to low grade porphyry systems. Significantly, this is coupled with a sharp change in copper content of pyrite assemblages precipitated at the early stages of mineralization such that Cu decreased with increasing temperature. Based on EMPA and detailed WDS elemental mapping, trace elements do not exhibit complex compositional zoning or solid solution in the sulfide structure. Nevertheless, significant amounts of Cu and Au are contained in pyrite assemblages as micro- to nano-sized inclusions, especially in the high grade fertile porphyry deposits. However, unexpectedly high concentrations of Te, Se, and Re may be associated with early stage of sulfide mineralization, especially when there is no epithermal lithocap. This may highlight the significance of trace metals partitioning in the sulfides formed at the early stages of mineralization in PCDs.

  12. 40 CFR 141.80 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and copper action levels measured in samples collected at consumers' taps. (c) Lead and copper action levels. (1) The lead action level is exceeded if the concentration of lead in more than 10 percent of tap... action level is exceeded if the concentration of copper in more than 10 percent of tap water samples...

  13. Protectiveness of water quality criteria for copper in western United States waters relative to predicted olfactory responses in juvenile Pacific salmon.

    PubMed

    DeForest, David K; Gensemer, Robert W; Van Genderen, Eric J; Gorsuch, Joseph W

    2011-07-01

    Copper (Cu) can impair olfaction in juvenile Pacific salmon (as well as other fishes), thus potentially inhibiting the ability of juveniles to avoid predators or to find food. Because Cu is commonly elevated in stormwater runoff in urban environments, storm events may result in elevated Cu concentrations in salmon-bearing streams. Accordingly, there is concern that existing Cu criteria, which were not derived using data for olfactory-related endpoints, may not be adequately protective of juvenile salmon. However, a modification of the US Environmental Protection Agency (USEPA) biotic ligand model (BLM) for deriving site-specific Cu criteria was recently proposed, which accounted for the sensitivity of olfactory endpoints. The modification was based on olfactory inhibition in juvenile coho salmon (Oncorhynchus kisutch) exposed to Cu in various combinations of pH, hardness, alkalinity, and dissolved organic carbon (DOC) concentrations. We used that olfactory-based BLM to derive 20% inhibition concentrations (IC20) values for Cu for 133 stream locations in the western United States. The olfactory BLM-based IC20 values were compared to the existing hardness-based Cu criteria and the USEPA's BLM-based Cu criteria for these representative natural waters of the western United States. Of the 133 sampling locations, mean hardness-dependent acute and chronic Cu criteria were below the mean olfactory-based BLM IC20 value in 122 (92%) and 129 (97%) of the waters, respectively (i.e., <20% olfactory impairment would have been predicted at the mean hardness-based Cu criteria concentrations). Waters characterized by a combination of high hardness and very low DOC were most likely to have hardness-based Cu criteria that were higher than the olfactory-based BLM IC20 values, because DOC strongly influences Cu bioavailability in the BLM. In all waters, the USEPA's current BLM-based criteria were below the mean olfactory-based BLM IC20 values, indicating that the USEPA's BLM-based criteria are protective of olfactory impairment in juvenile salmon. Copyright © 2011 SETAC.

  14. Stabilization of Oxidized Copper Nanoclusters in Confined Spaces

    DOE PAGES

    Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang; ...

    2018-01-04

    Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less

  15. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  16. Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus.

    PubMed

    Hu, Changwei; Hu, Naitao; Li, Xiuling; Zhao, Yongjun

    2016-10-01

    The extensive industrial application of graphene oxide (GO), has increased its exposure risk to various aquatic organisms and its potential to affect the toxicity of other environmental pollutants. In this study, we investigated the combined toxicity of GO and copper on the freshwater microalga Scenedesmus obliquus, using the MIXTOX model. The effects of low concentration (1mg/L) exposure to GO were investigated with environmentally relevant concentrations of copper by using a 12-d subacute toxicity test, with pre- and post-GO treatment. Results showed that there were significant antagonistic effects between GO and copper on S. obliquus, and GO was found to reduce ecotoxicity of copper even at low and environmentally relevant concentrations (1mg/L). Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Distribution and oxidation state of copper in the cell walls of treated wood examined by synchrotron based XANES and XFM

    Treesearch

    Samuel L. Zelinka; Grant T. Kirker; Joseph E. Jakes; Leandro Passarini; Barry Lai

    2016-01-01

    Recently, synchrotron based X-ray fluorescence microscopy (XFM) and X-ray absorption near edge spectroscopy (XANES) were used to examine the metal fastener corrosion in copper-treated wood. XFM is able to map the copper concentration in the wood with a spatial resolution of 0.5 µm and is able to quantify the copper concentration to within 0.05 µg cm-3...

  18. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    NASA Astrophysics Data System (ADS)

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  19. Extraction-spectrophotometric determination of traces of gold in copper in silver, lead, blister copper, copper concentrate and anode slime with 4,4'-bis(dimethylamino)-thiobenzophenone.

    PubMed

    Tsukahara, I

    1977-10-01

    A sensitive spectrophotometric method has been developed for the determination of gold in copper, silver, lead, blister copper, copper concentrate and anode slime. Optimal conditions have been established for the extraction and determination of gold. Gold is extracted as its bromo complex with tri-n-octylamine and determined photometrically with 4,4'-bis(dimethylamino)thiobenzophenone; the absorbance of the organic phase is measured at 540 nm and the apparent molar absorptivity is about 1.2 x 10(5) 1.mole(-1). cm(-1). As little as 0.1 or 0.2 ppm of gold in these materials can be determined.

  20. Hazard evaluation of inorganics, singly and in mixtures, to Flannelmouth Sucker Catostomus latipinnis in the San Juan River, New Mexico

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    1997-01-01

    Larval flannelmouth sucker (Catostomus latipinnis) were exposed to arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc singly, and to five mixtures of five to nine inorganics. The exposures were conducted in reconstituted water representative of the San Juan River near Shiprock, New Mexico. The mixtures simulated environmental ratios reported for sites along the San Juan River (San Juan River backwater, Fruitland marsh, Hogback East Drain, Mancos River, and McElmo Creek). The rank order of the individual inorganics, from most to least toxic, was: copper > zinc > vanadium > selenite > selenate > arsenate > uranium > boron > molybdenum. All five mixtures exhibited additive toxicity to flannelmouth sucker. In a limited number of tests, 44-day-old and 13-day-old larvae exhibited no difference in sensitivity to three mixtures. Copper was the major toxic component in four mixtures (San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek), whereas zinc was the major toxic component in the Fruitland marsh mixture, which did not contain copper. The Hogback East Drain was the most toxic mixture tested. Comparison of 96-h LC50values with reported environmental water concentrations from the San Juan River revealed low hazard ratios for arsenic, boron, molybdenum, selenate, selenite, uranium, and vanadium, moderate hazard ratios for zinc and the Fruitland marsh mixture, and high hazard ratios for copper at three sites and four environmental mixtures representing a San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek. The high hazard ratios suggest that inorganic contaminants could adversely affect larval flannelmouth sucker in the San Juan River at four sites receiving elevated inorganics.

  1. Restrained management of copper level enhances the antineoplastic activity of imatinib in vitro and in vivo.

    PubMed

    Hassan, Iftekhar; Khan, Azmat Ali; Aman, Shazia; Qamar, Wajhul; Ebaid, Hossam; Al-Tamimi, Jameel; Alhazza, Ibrahim M; Rady, Ahmed M

    2018-01-26

    The present study was designed to investigate if elevated copper level can be targeted to enhance the efficacy of a significant anticancer drug, imatinib (ITB). The antineoplastic activity of this drug was assessed in the HepG2, HEK-293, MCF-7 and MDA-MD-231 cells targeting elevated copper level as their common drug target. The cell lines were treated with the different doses of copper chloride (Cu II) and disulfiram (DSF) alone as well as in their combinations with the drug for 24 h in standard culture medium and conditions. The treated cells were subjected to various assays including MTT, PARP, p-53, caspase-7, caspase-3, LDH and single cell electrophoresis. The study shows that DSF and Cu (II) synergizes the anticancer activity of ITB to a significant extent in a dose-specific way as evidenced by the combinations treated groups. Furthermore, the same treatment strategy was employed in cancer-induced rats in which the combinations of ITB-DSF and ITB-Cu II showed enhanced antineoplastic activity as compared to ITB alone. However, DSF was more effective than Cu (II) as an adjuvant to the drug. Hence, restrained manipulation of copper level in tumor cells can orchestrate the redox and molecular dispositions inside the cells favoring the induction of apoptosis.

  2. Escondida Mine, Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Full resolution visible and near-infrared image (1.4 MB) Full resolution shortwave infrared image (1.6 MB) This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image covers 30 by 23 km (full images 30 x 37 km) in the Atacama Desert, Chile, and was acquired on April 23, 2000. The Escondida copper, gold, and silver open-pit mine is at an elevation of 3050 m, and began operations in 1990. Current capacity is 127,000 tons/day of ore; in 1999 production totaled 827,000 tons of copper, 150,000 ounces of gold, and 3.53 million ounces of silver. Primary concentrate of the ore is done on-site; the concentrate is then sent to the coast for further processing through a 170 km long, 9-inch pipe. Escondida is related geologically to three porphyry bodies intruded along the Chilean West Fissure Fault System. A high grade supergene cap overlies primary sulfide ore. The top image is a conventional 3-2-1 (near infrared, red, green) RGB composite. The bottom image displays shortwave infrared bands 4-6-8 (1.65um, 2.205um, 2.33um) in RGB, and highlights the different rock types present on the surface, as well as the changes caused by mining. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  3. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria.

    PubMed

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P; Yi, Ling; Kaler, Stephen G; Lutsenko, Svetlana; Ralle, Martina

    2016-08-05

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria,more » whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).« less

  5. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria*

    PubMed Central

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P.; Yi, Ling; Kaler, Stephen G.; Lutsenko, Svetlana; Ralle, Martina

    2016-01-01

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). PMID:27226607

  6. Process for removing copper in a recoverable form from solid scrap metal

    DOEpatents

    Hartman, Alan D.; Oden, Laurance L.; White, Jack C.

    1995-01-01

    A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.

  7. Growth response, blood characteristics and copper accumulation in organs of broilers fed on diets supplemented with organic and inorganic dietary copper sources.

    PubMed

    Jegede, A V; Oduguwa, O O; Bamgbose, A M; Fanimo, A O; Nollet, L

    2011-02-01

    1. A 56-d experiment was conducted to study the comparative influence of organic and inorganic dietary copper (Cu) sources on growth, blood characteristics and copper accumulation in organs of broilers. 2. A total of 480 Arbor-Acre unsexed broilers were fed on diets containing copper sulphate (CuSO(4)) or copper proteinate (Cu Pro) at concentrations of 50, 100 or 150 mg/kg of Cu supplementation. The birds were given a broiler starter diet from 1-28 d and a broiler finisher diet from 29-56 d which contained 30·8 mg/kg and 41·1 mg/kg basal copper concentration respectively. Growth performance, blood characteristics and Cu accumulation in organs of the broilers were measured. 3. At 28 d, Cu Pro-fed birds had improved feed conversion ratio compared with CuSO(4). At 56 d, birds fed on Cu Pro diets had significantly greater body weight than CuSO(4)-fed birds. Birds fed on CuSO(4) supplemented diets had significantly better feed conversion efficiency. Feed consumptions for the two Cu sources were not significantly different. At no stage did the concentration of added Cu affect the productive traits measured. 4. Cu Pro supplementation increased haemoglobin concentration but reduced plasma triglyceride and plasma cholesterol. Plasma cholesterol decreased as Cu concentration increased. 5. There was a greater accumulation of Cu in the blood, heart, lung, liver and bone of broilers fed on Cu Pro than in those receiving CuSO(4). The liver Cu concentration increased as dietary Cu concentration increased. 6. Cu Pro was more effective in promoting growth and reducing blood cholesterol, and was more bio-available in the organs of broilers.

  8. The influence of biological and environmental factors on metallothionein concentration in the blood.

    PubMed

    Kowalska, Katarzyna; Bizoń, Anna; Zalewska, Marta; Milnerowicz, Halina

    2015-01-01

    The concentration of metallothionein (MT), a low-molecular-weight protein, is regulated by many factors, primarily metals (zinc, cadmium, copper), cytokines, glucocorticoides and free radicals. These factors are determined by such aspects of human biology as gender, pregnancy and age, as well as by environmental factors including the use of oral contraceptives and cigarette smoking, all which may affect MT levels in the body. The aim of this study was to investigate the influence of these biological and environmental factors on MT concentrations in erythrocyte lysate and in plasma. MT concentrations were determined by a two-step direct enzyme-linked immunosorbent assay. Evaluation of exposure to cigarette smoking was performed by checking cotinine levels in the plasma of subjects. The studies showed higher MT concentrations in both the erythrocyte lysate and plasma of women when compared to men. Furthermore, pregnancy causes an increase of MT concentration in plasma, while oral contraceptives cause an elevated concentration of MT in erythrocyte lysate. Age impacts plasma MT concentrations in men, whereas it does not affect concentrations of MT in erythrocyte lysate. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Investigating the influence of standard staining procedures on the copper distribution and concentration in Wilson's disease liver samples by laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2017-12-01

    The influence of rhodanine and haematoxylin and eosin (HE) staining on the copper distribution and concentration in liver needle biopsy samples originating from patients with Wilson's disease (WD), a rare autosomal recessive inherited disorder of the copper metabolism, is investigated. In contemporary diagnostic of WD, rhodanine staining is used for histopathology, since rhodanine and copper are forming a red to orange-red complex, which can be recognized in the liver tissue using a microscope. In this paper, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is applied for the analysis of eight different WD liver samples. Apart from a spatially resolved elemental detection as qualitative information, this LA-ICP-MS method offers also quantitative information by external calibration with matrix-matched gelatine standards. The sample set of this work included an unstained and a rhodanine stained section of each WD liver sample. While unstained sections of WD liver samples showed very distinct structures of the copper distribution with high copper concentrations, rhodanine stained sections revealed a blurred copper distribution with significant decreased concentrations in a range from 20 to more than 90%. This implies a copper removal from the liver tissue by complexation during the rhodanine staining. In contrast to this, a further HE stained sample of one WD liver sample did not show a significant decrease in the copper concentration and influence on the copper distribution in comparison to the unstained section. Therefore, HE staining can be combined with the analysis by means of LA-ICP-MS in two successive steps from one thin section of a biopsy specimen. This allows further information to be gained on the elemental distribution by LA-ICP-MS additional to results obtained by histological staining. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Combined toxicity of microcystin-LR and copper on lettuce (Lactuca sativa L.).

    PubMed

    Cao, Qing; Steinman, Alan D; Wan, Xiang; Xie, Liqiang

    2018-05-10

    Microcystins and copper commonly co-exist in the natural environment, but their combined toxicity remains unclear, especially in terrestrial plants. The present study investigated the toxicity effects of microcystin-LR (0, 5, 50, 500, 1000 μg L -1 ) and copper (0, 50, 500, 1000, 2000 μg L -1 ), both individually and in mixture, on the germination, growth and oxidative response of lettuce. The bioaccumulation of microcystin-LR and copper was also evaluated. Results showed that the decrease in lettuce germination induced by copper alone was not significantly different from that induced by the mixture, and the combined toxicity assessment showed a simple additive effect. Lettuce growth was not significantly reduced by microcystin-LR alone, whereas it was significantly reduced by copper alone and the mixture when copper concentration was higher than 500 μg L -1 . High concentrations of microcystin-LR (1000 μg L -1 ) and copper (≥50 μg L -1 ),as well as their mixture (≥50 + 500 μg L -1 ), induced oxidative stress in lettuce. A synergistic effect on the growth and antioxidative system of lettuce was observed when exposed to low concentrations of the mixture (≤50 + 500 μg L -1 ), whereas an antagonistic effect was observed at high concentrations (≥1000 + 2000 μg L -1 ). Moreover, the interaction of microcystin-LR and copper can increase their accumulation in lettuce. Our results suggest that the toxicity effects of microcystin-LR and copper are exacerbated when they co-exist in the natural environment at low concentrations, which not only negatively affects plant growth but also poses a potential risk to human health via the food chain. Copyright © 2018. Published by Elsevier Ltd.

  11. Heavy metals in wild rice from northern Wisconsin

    USGS Publications Warehouse

    Bennett, J.P.; Chiriboga, E.; Coleman, J.; Waller, D.M.

    2000-01-01

    Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.

  12. The Features of Copper Metabolism in the Rat Liver during Development

    PubMed Central

    2015-01-01

    Strong interest in copper homeostasis is due to the fact that copper is simultaneously a catalytic co-factor of the vital enzymes, a participant in signaling, and a toxic agent provoking oxidative stress. In mammals, during development copper metabolism is conformed to two types. In embryonic type copper metabolism (ETCM), newborns accumulate copper to high level in the liver because its excretion via bile is blocked; and serum copper concentration is low because ceruloplasmin (the main copper-containing protein of plasma) gene expression is repressed. In the late weaning, the ETCM switches to the adult type copper metabolism (ATCM), which is manifested by the unlocking of copper excretion and the induction of ceruloplasmin gene activity. The considerable progress has been made in the understanding of the molecular basis of copper metabolic turnover in the ATCM, but many aspects of the copper homeostasis in the ETCM remain unclear. The aim of this study was to investigate the copper metabolism during transition from the ETCM (up to 12-days-old) to the ATCM in the rats. It was shown that in the liver, copper was accumulated in the nuclei during the first 5 days of life, and then it was re-located to the mitochondria. In parallel with the mitochondria, copper bulk bound with cytosolic metallothionein was increased. All compartments of the liver cells rapidly lost most of their copper on the 13th day of life. In newborns, serum copper concentration was low, and its major fraction was associated with holo-Cp, however, a small portion of copper was bound to extracellular metallothionein and a substance that was slowly eluted during gel-filtration. In adults, serum copper concentration increased by about a factor of 3, while metallothionein-bound copper level decreased by a factor of 2. During development, the expression level of Cp, Sod1, Cox4i1, Atp7b, Ctr1, Ctr2, Cox17, and Ccs genes was significantly increased, and metallothionein was decreased. Atp7a gene’s activity was fully repressed. The copper routes in newborns are discussed. PMID:26474410

  13. Biodegradable chelate enhances the phytoextraction of copper by Oenothera picensis grown in copper-contaminated acid soils.

    PubMed

    González, Isabel; Cortes, Amparo; Neaman, Alexander; Rubio, Patricio

    2011-07-01

    Oenothera picensis plants (Fragrant Evening Primrose) grow in the acid soils contaminated by copper smelting in the coastal region of central Chile. We evaluated the effects of the biodegradable chelate MGDA (methylglycinediacetic acid) on copper extraction by O. picensis and on leaching of copper through the soil profile, using an ex situ experiment with soil columns of varying heights. MGDA was applied in four rates: 0 (control), 2, 6 and 10 mmol plant(-1). MGDA application significantly increased biomass production and foliar concentration, permitting an effective increase in copper extraction, from 0.09 mg plant(-1) in the control, to 1.3mg plant(-1) in the 6 and 10 mmol plant(-1) treatments. With 10 mmol plant(-1) rate of MGDA, the copper concentration in the leachate from the 30 cm columns was 20 times higher than in the control. For the 60 cm columns, copper concentration was 2 times higher than the control. It can be concluded that at increased soil depths, copper leaching would be minimal and that MGDA applications at the studied rates would not pose a high risk for leaching into groundwater. It can thus be stated that applications of MGDA are an effective and environmentally safe way to improve copper extraction by O. picensis in these soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Migration of copper from nanocopper/LDPE composite films.

    PubMed

    Liu, Fang; Hu, Chang-Ying; Zhao, Quan; Shi, Yu-Jie; Zhong, Huai-Ning

    2016-11-01

    Three nanocopper/low-density polyethylene (LDPE) composite films were tested in food simulants (3% acetic acid and 10% ethanol) and real food matrices (rice vinegar, bottled water and Chinese liquor) to explore the behaviours of copper migration using ICP-OES and GFAAS. The effects of exposure time, temperature, nanocopper concentration and contact media on the release of copper from nanocopper/LDPE composite films were studied. It was shown that the migration of copper into 10% ethanol was much less than that into 3% acetic acid at the same conditions. With the increase of nanocopper concentration, exposure time and temperature, the release of copper increased. Copper migration does not appear to be significant in the case of bottled water and Chinese liquor compared with rice vinegar with a maximum value of 0.54 μg mL -1 for the CF-0.25# bags at 70°C for 2 h. The presence and morphology of copper nanoparticles in the films and the topographical changes of the films were confirmed by field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). In this manner, copper nanoparticles of different morphologies, sizes and distribution were found, and samples with higher nanocopper concentration had a more irregular topography. In the case of Fourier transform infrared spectroscopy (FTIR), no chemical bonds formed between copper nanoparticles and LDPE. Copper nanoparticles were just as physically dispersed in LDPE.

  15. Environmental pollutant and necropsy data for ospreys from the eastern United States, 1975-1982

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Schmeling, Shelia K.; Anderson, Allen

    1987-01-01

    Twenty-three ospreys (Pandion haliaetus) found dead or moribund in the eastern United States during 1975–1982 were necropsied and selected tissues were analyzed for organo-chlorines and metals. Major causes or factors contributing to death were trauma, impact injuries, and emaciation. DDE was detected in 96% of the osprey carcasses, DDD in 65%, DDT and heptachlor epoxide in 13%, dieldrin, oxychlordane, and cis-nonachlor in 35%, cis-chlordane in 52%, trans-nonachlor in 45%, and PCB's in 83%. Carcasses of immature ospreys from the Chesapeake Bay had significantly lower concentrations of DDE, DDD + DDT, cis-chlordane, and PCB's than carcasses of adults from the same area. Concentrations of some organochlorines in ospreys from the Chesapeake Bay declined significantly from 1971–1973 to 1975–1982. Significant differences in concentrations of certain metals in the ospreys' livers were noted between time periods, and sex and age groups for birds from the Chesapeake Bay. During 1975–1982, adults had significantly lower concentrations of chromium, copper, and arsenic than immatures and nestlings, and adult males had higher mercury concentrations than adult females. Adult females had lower zinc concentrations in 1975–1982 than in 1971–1973. Immatures and nestlings had higher concentrations of chromium and lead in 1975–1982 than in 1971–1973. A slightly elevated concentration of chromium (1.7 ppm) or arsenic (3.2 ppm) was found in the livers of individual ospreys. Several ospreys had elevated concentrations of mercury in their livers; two ospreys had more than 20 ppm which may have contributed to their deaths.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang

    Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less

  17. Featured Article: Effect of copper on nuclear translocation of copper chaperone for superoxide dismutase-1

    PubMed Central

    Wang, Lin; Ge, Yan

    2016-01-01

    Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267

  18. Relationship among aqueous copper half-lives and responses of Pimephales promelas to a series of copper sulfate pentahydrate concentrations.

    PubMed

    Calomeni, Alyssa J; Kinley, Ciera M; Geer, Tyler D; Iwinski, Kyla J; Hendrikse, Maas; Rodgers, John H

    2018-04-01

    Copper algaecide exposures in situ are often of shorter duration than exposures for static toxicity experiments because aqueous concentrations in situ dissipate as a function of site-specific fate processes. Consequently, responses of organisms to static copper exposures may overestimate effects following in situ exposures. To understand the role of exposure duration for altering responses, Pimephales promelas survival was compared following static (96 h) and pulse (1.5, 4, 8, and 15 h half-lives) exposures of CuSO 4 •5H 2 O. Copper concentrations sorbed by fry indicated a consequence of different exposures. Responses of P. promelas to static exposures resulted in 96 h LC 50 s of 166 µgCu/L (95% confidence interval [CI], 142-189 µgCu/L) as soluble copper and 162 µgCu/L (CI, 140-183 µgCu/L) as acid soluble copper. Relative to static 96 h LC 50 s, exposures with half-lives of 1.5, 4 and 8 h resulted in LC 50 s 10, 3 and 2 times greater, respectively, for responses measured 96 h after exposure initiation. Copper concentrations extracted from fry exposed for 1.5, 4 and 8 h half-lives were less than the static experiment. However, copper sorbed by fry in the 15 h half-life experiment was not different than the static experiment. The relationship between 96 h LC 50 and 1/half-life was expressed using the equations y = 116 + 1360 × (R 2  = 0.97) for soluble copper and y = 147 + 1620 × (R 2  = 0.98) for acid soluble copper. Incorporation of exposure duration for predictions of P. promelas responses to copper pulse exposures increases prediction accuracy by an order of magnitude.

  19. Crystal structures of E. coli laccase CueO at different copper concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xu; Wei Zhiyi; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101

    2007-03-02

    CueO protein is a hypothetical bacterial laccase and a good laccase candidate for large scale industrial application. Four CueO crystal structures were determined at different copper concentrations. Low copper occupancy in apo-CueO and slow copper reconstitution process in CueO with exogenous copper were demonstrated. These observations well explain the copper dependence of CueO oxidase activity. Structural comparison between CueO and other three fungal laccase proteins indicates that Glu106 in CueO constitutes the primary counter-work for reconstitution of the trinuclear copper site. Mutation of Glu106 to a Phe enhanced CueO oxidation activity and supported this hypothesis. In addition, an extra {alpha}-helixmore » from Leu351 to Gly378 covers substrate biding pocket of CueO and might compromises the electron transfer from substrate to type I copper.« less

  20. Copper removal and microbial community analysis in single-chamber microbial fuel cell.

    PubMed

    Wu, Yining; Zhao, Xin; Jin, Min; Li, Yan; Li, Shuai; Kong, Fanying; Nan, Jun; Wang, Aijie

    2018-04-01

    In this study, copper removal and electricity generation were investigated in a single-chamber microbial fuel cell (MFC). Result showed that copper was efficiently removed in the membrane-less MFC with removal efficiency of 98.3% at the tolerable Cu 2+ concentration of 12.5 mg L -1 , the corresponding open circuit voltage and maximum power density were 0.78 V and 10.2 W m -3 , respectively. The mechanism analysis demonstrated that microbial electrochemical reduction contributed to the copper removal with the products of Cu and Cu 2 O deposited at biocathode. Moreover, the microbial community analysis indicated that microbial communities changed with different copper concentrations. The dominant phyla were Proteobacteria and Bacteroidetes which could play key roles in electricity generation, while Actinobacteria and Acidobacteria were also observed which were responsible for Cu-resistant and copper removal. It will be of important guiding significance for the recovery of copper from low concentration wastewater through single-chamber MFC with simultaneous energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma.

    PubMed

    Porcu, Cristiana; Antonucci, Laura; Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara

    2018-02-06

    Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies.

  2. Assessing the Release of Copper from Nanocopper-treated and Conventional Copper-treated Lumber into Marine Waters I: Concentrations and Rates

    EPA Science Inventory

    Little is known about the release of metal engineered nanomaterials (ENMs) from consumer goods, including lumber treated with micronized copper. Micronized copper is a recent form of antifouling wood preservative containing nanosized copper particles for use in pressure‐tre...

  3. Flotation as a remediation technique for heavily polluted dredged material. 1. A feasibility study.

    PubMed

    Cauwenberg, P; Verdonckt, F; Maes, A

    1998-01-19

    The flotation behaviour of highly polluted dredged material was investigated at different pH values by mechanical agitated (Denver) flotation. Up to 80% of cadmium, copper, lead and zinc could be concentrated in the froth layer which represented only 30% of the total mass. The maximum specificity for heavy metals, defined as the concentrating factor, was obtained at pH 8-9. The maximum recovery of heavy metals on the other hand was found to be reached at elevated pH values (pH 12). In addition the specificity of the flotation process for the transition metals could be assigned to their presence as metal sulphides in the dredged material. However, the interaction with organic matter is an important factor in determining their flotability. The carbonate fraction was irrelevant for the flotation behaviour of heavy metals.

  4. Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

    PubMed Central

    Seo, Youngsik; Cho, Young-Sik; Huh, Young-Duk; Park, Heonyong

    2016-01-01

    Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions (Cu+ and Cu2+), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped Cu2O and CuO crystals were prepared to test the role of the two different ions, Cu+ and Cu2+, respectively. The Cu2O crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The Cu2O crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. Cu2O crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit Cu2O-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of Cu+ ions in the vascular system, where Cu+ induces autophagy while Cu2+ has no detected effect. PMID:26743904

  5. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.

    PubMed

    Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady

    2011-05-30

    In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, <200mg/L) by ED, at the optimal conditions of voltage 40 V and water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions

    NASA Astrophysics Data System (ADS)

    Du, Wen-Li; Xu, Ying-Lei; Xu, Zi-Rong; Fan, Cheng-Li

    2008-02-01

    The present study was conducted to prepare and characterize chitosan nanoparticle loaded copper ions, and evaluate their antibacterial activity. Chitosan nanoparticles were prepared based on ionotropic gelation, and then the copper ions were loaded. The particle size, zeta potential and morphology were determined. Antibacterial activity was evaluated against E. coli K88 by determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in vitro. Results showed that the antibacterial activity was significantly enhanced by the loading of copper ions compared to those of chitosan nanoparticles and copper ions. The MIC and MBC of chitosan nanoparticle loaded copper ions were 21 times and 42 times lower than those of copper ions, respectively. To confirm the antibacterial mechanism, morphological changes of E. coli K88 treated by chitosan nanoparticle loaded copper ions were dynamically observed with an atomic force microscope (AFM). It was found that chitosan nanoparticle loaded copper ions killed E. coli K88 through damage to the cell membrane.

  7. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.

    PubMed

    Radford, David S; Kihlken, Margaret A; Borrelly, Gilles P M; Harwood, Colin R; Le Brun, Nick E; Cavet, Jennifer S

    2003-03-14

    The structure of the hypothetical copper-metallochaperone CopZ from Bacillus subtilis and its predicted partner CopA have been studied but their respective contributions to copper export, -import, -sequestration and -supply are unknown. DeltacopA was hypersensitive to copper and contained more copper atoms cell(-1) than wild-type. Expression from the copA operator-promoter increased in elevated copper (not other metals), consistent with a role in copper export. A bacterial two-hybrid assay revealed in vivo interaction between CopZ and the N-terminal domain of CopA but not that of a related transporter, YvgW, involved in cadmium-resistance. Activity of copper-requiring cytochrome caa(3) oxidase was retained in deltacopZ and deltacopA. DeltacopZ was only slightly copper-hypersensitive but deltacopZ/deltacopA was more sensitive than deltacopA, implying some action of CopZ that is independent of CopA. Significantly, deltacopZ contained fewer copper atoms cell(-1) than wild-type under these conditions. CopZ makes a net contribution to copper sequestration and/or recycling exceeding any donation to CopA for export.

  8. c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm

    PubMed Central

    Durand, Anne; Azzouzi, Asma; Bourbon, Marie-Line; Steunou, Anne-Soisig; Liotenberg, Sylviane; Maeshima, Akinori; Astier, Chantal; Argentini, Manuela; Saito, Shingo

    2015-01-01

    ABSTRACT In the absence of a tight control of copper entrance into cells, bacteria have evolved different systems to control copper concentration within the cytoplasm and the periplasm. Central to these systems, the Cu+ ATPase CopA plays a major role in copper tolerance and translocates copper from the cytoplasm to the periplasm. The fate of copper in the periplasm varies among species. Copper can be sequestered, oxidized, or released outside the cells. Here we describe the identification of CopI, a periplasmic protein present in many proteobacteria, and show its requirement for copper tolerance in Rubrivivax gelatinosus. The ΔcopI mutant is more susceptible to copper than the Cu+ ATPase copA mutant. CopI is induced by copper, localized in the periplasm and could bind copper. Interestingly, copper affects cytochrome c membrane complexes (cbb3 oxidase and photosystem) in both ΔcopI and copA-null mutants, but the causes are different. In the copA mutant, heme and chlorophyll synthesis are affected, whereas in ΔcopI mutant, the decrease is a consequence of impaired cytochrome c assembly. This impact on c-type cytochromes would contribute also to the copper toxicity in the periplasm of the wild-type cells when they are exposed to high copper concentrations. PMID:26396241

  9. Rate and Regulation of Copper Transport by Human Copper Transporter 1 (hCTR1)*

    PubMed Central

    Maryon, Edward B.; Molloy, Shannon A.; Ivy, Kristin; Yu, Huijun; Kaplan, Jack H.

    2013-01-01

    Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry. PMID:23658018

  10. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    USGS Publications Warehouse

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations in soil slightly exceed the U.S. Environmental Protection Agency toxicity-derived ecological soil-screening levels for avian wildlife. Plutonium concentration in the soil was near zero. Wheat-grain data were insufficient to determine any measurable effects from biosolids. Comparison with similar data from other parts of North America where biosolids were not applied indicates similar concentrations. However, the Deer Trail study area had higher nickel concentrations in wheat from both the biosolids-applied fields and the control fields. Plutonium content of the wheat was near zero. Ground-water levels generally declined at most wells during 1999 through 2003. Ground-water quality did not correlate with ground-water levels. Vertical ground-water gradients during 1999 through 2003 indicate that bedrock ground-water resources downgradient from the biosolids-applied areas are not likely to be contaminated by biosolids applications unless the gradients change as a result of pumping. Ground-water quality throughout the study area varied over time at each site and from site to site at the same time, but plutonium concentrations in the ground water always were near zero. Inorganic concentrations at well D6 were relatively high compared to other ground-water sites studied. Ground-water pH and concentrations of fluoride, nitrite, aluminum, arsenic, barium, chromium, cobalt, copper, lead, mercury, nickel, silver, zinc, and plutonium in the ground water of the study area met Colorado standards. Concentrations of chloride, sulfate, nitrate, boron, iron, manganese, and selenium exceeded Colorado ground-water standards at one or more wells. Nitrate concentrations at well D6 significantly (alpha = 0.05) exceeded the Colorado regulatory standard. Concentrations of arsenic, cadmium, chromium, lead, mercury, nickel, and zinc in ground water had no significant (alpha = 0.05) upward trends. During 1999-2003, concentrations of nitrate, copper, molybdenum, and selenium

  11. Chromated copper arsenate-treated fence posts in the agronomic landscape: soil properties controlling arsenic speciation and spatial distribution.

    PubMed

    Schwer Iii, Donald R; McNear, David H

    2011-01-01

    Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (∼8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Effect of short term oral cadmium exposure in rats fed low zinc and low copper diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panemangalore, M.; Lee, C.J.; Wilson, K.

    1986-03-05

    The effects of 0, 0.15 and 5.0 ppm Cd in drinking water was determined in 10 week old F-344 rats fed either control - C (30 ppm Zn + 5 ppm Cu), low Zn - LZn (5 ppm Zn), low copper - LCu (0.5 ppm Cu) and low Zn + low Cu - LZn + LCu (5 ppm Zn + 0.5 ppm Cu) diets for 8 weeks. All groups gained about 9 g/wk and neither the decrease in dietary Zn and Cu levels or Cd exposure altered wt gain or food intake (14 g/day). Liver Zn levels averaged about 19more » mg/g in all groups and were unaffected by either diet or Cd exposure; but metallothionein (MT) concentration increased from 19..mu..g/g to 40 ..mu..g/g in groups exposed to 5.0 ppm Cd and was lower in rats given LZn and LZn + LCu diet (pless than or equal to0.05). In contrast, kidney Zn levels declined in groups fed LZn + LCu diets, but exposure to Cd maintained Zn levels. Kidney MT concentration fell in response to LZn, LCu and LZn + LCu diets, while exposure to 5.0 ppm Cd elevated MT concentration almost 3 fold, however, LZn and LCu diets decreased the extent of MT induction (pless than or equal to0.05). Kidney Zn levels appear to be more susceptible to modulation by dietary Zn and Cu levels, and oral Cd exposure.« less

  13. Toxicity of copper on the growth of marine microalgae Pavlova sp. and its chlorophyll-a

    NASA Astrophysics Data System (ADS)

    Purbonegoro, T.; Suratno; Puspitasari, R.; Husna, N. A.

    2018-02-01

    Marine microalgae is the primary producer at the base of the marine food chain. Their sensitivity to metal contamination provides important information for predicting the environmental impact of pollution. Toxicity testing using marine microalgae Pavlova sp. was carried out to assess the toxicity of copper on the growth and chlorophyll-a content. Results of this study show that adverse effects were observed by the increase of copper concentration. Cell number began to decrease at the lowest concentration (13 μg/L) and reduced drastically at 98 μg/L. Minimum cell number was observed at the highest concentration (890 μg/L). The inhibition concentration (IC50) value of copper for Pavlova sp. was 51.46 μg/L and at concentrations >29 μgL-1 the chlorophyll-a content decreased dramatically compared to the control. A variation in cell size and morphology was also observed at the higher concentration by the increase in the cell size and loss of setae compared to normal cells.

  14. Natural radiation and its hazard in copper ore mines in Poland

    NASA Astrophysics Data System (ADS)

    Chau, Nguyen; Jodłowski, Paweł; Kalita, Stefan; Olko, Paweł; Chruściel, Edward; Maksymowicz, Adam; Waligórski, Michał; Bilski, Paweł; Budzanowski, Maciej

    2008-06-01

    The doses of gamma radiation, concentrations of radium isotopes in water and sediments, radon concentration and concentration of alpha potential energy of radon decay products in the copper ore mine and in the mining region in the vicinity of Lubin town in Poland are presented. These data served as a basis for the assessment of radiological hazard to the mine workers and general public. The results of this assessment indicate that radiological hazard in the region does not differ substantially from typical values associated with natural radiation background. The calculated average annual effective dose for copper miners is 1.48 mSv. In general, copper ore mines can be regarded as radiologically safe workplaces.

  15. Material flows generated by pyromet copper smelting

    USGS Publications Warehouse

    Goonan, T.G.

    2005-01-01

    Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.

  16. Retention of atmospheric Cu, Ni, Cd and Zn in an ombrotrophic peat profile near the Outokumpu Cu-Ni mine, SE-Finland

    NASA Astrophysics Data System (ADS)

    Rausch, N.; Nieminen, T. M.; Ukonmaanaho, L.; Cheburkin, A.; Krachler, M.; Shotyk, W.

    2003-05-01

    Peat cores taken from ombrotrophic bogs are widely used to reconstruct historical records of atmospheric lead and mercury déposition[1, 2]. In this study, the retention of copper, nickel, cadmium and zinc in peat bogs are studied by comparing high resolution, age dated concentration profiles with emissions from the main local source, the Outokumpu copper-nickel mine. An ombrotrophic peat core was taken from the vicinity of Outokumpu, E Finland. Copper and zinc concentrations of dry peat were measured by XRF, cadmium and nickel by GF-AAS, and sample ages by 210Pb. Only copper and nickel show enhanced concentrations in layers covering the mining period, indicating a retention of these elements. However, the more detailed comparison of ore production rates and concentrations in age-dated samples show clearly that only copper is likely to be permanently fixed, while nickel doesn't reflect the mining activity. Even though copper is retained in the upper part of the profile, a possible redeposition of this element by secondary processes (e.g., water table fluctuations) can not be excluded. This question will be resolved by further investigations, e.g. by pore water profiles.

  17. Biosorption of copper and lead ions by waste beer yeast.

    PubMed

    Han, Runping; Li, Hongkui; Li, Yanhu; Zhang, Jinghua; Xiao, Huijun; Shi, Jie

    2006-10-11

    Locally available waste beer yeast, a byproduct of brewing industry, was found to be a low cost and promising adsorbent for adsorbing copper and lead ions from wastewater. In this work, biosorption of copper and lead ions on waste beer yeast was investigated in batch mode. The equilibrium adsorptive quantity was determined to be a function of the solution pH, contact time, beer yeast concentration, salt concentration and initial concentration of copper and lead ions. The experimental results were fitted well to the Langmuir and Freundlich model isotherms. According to the parameters of Langmuir isotherm, the maximum biosorption capacities of copper and lead ions onto beer yeast were 0.0228 and 0.0277 mmol g(-1) at 293 K, respectively. The negative values of the standard free energy change (DeltaG degrees ) indicate spontaneous nature of the process. Competitive biosorption of two metal ions was investigated in terms of sorption quantity. The amount of one metal ion adsorbed onto unit weight of biosorbent (q(e)) decreased with increasing the competing metal ion concentration. The binding capacity for lead is more than for copper. Ion exchange is probably one of the main mechanism during adsorptive process.

  18. [Use of copper oxide wire particles (Copinox) for the prevention of congenital copper deficiency in a herd of German Improved Fawn breed of goat].

    PubMed

    Winter, P; Hochsteiner, W; Chizzola, R

    2004-10-01

    In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.

  19. Identification of water-quality trends using sediment cores from Dillon Reservoir, Summit County, Colorado

    USGS Publications Warehouse

    Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2001-01-01

    Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's. Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.

  20. Effects of an aged copper contamination on distribution of earthworms, reproduction and cocoon hatchability.

    PubMed

    Mirmonsef, Hassan; Hornum, Hanne D; Jensen, John; Holmstrup, Martin

    2017-01-01

    Contaminated soil is a problem throughout the industrialized world, and a significant proportion of these sites are polluted with heavy metals such as copper. Ecological risk assessment of contaminated sites requires ecotoxicological studies with spiked soils as well as in-situ ecological observations. Here, we report laboratory and field assessment of copper toxicity for earthworms at a Danish site (Hygum) exclusively contaminated with an increasing gradient in copper from background to highly toxic levels (>1000mgkg -1 dry soil). More specifically, we report effects on field populations, body contents of copper, hatching of earthworm cocoons and reproduction of the common species Aporrectodea tuberculata. Abundance of earthworms and cocoons decreased significantly from about 400-150m -2 along the gradient as the soil copper concentration increased from ca. 50 to ca. 1000mgkg -1 . At lower concentrations, the population was dominated by endogeic species, whereas at high concentrations the population was dominated by epigeic species. At high copper contents the internal concentration of copper was in the range 100-160mgkg -1 dry tissue. Despite the high internal copper contents, hatchability of field collected cocoons was not impaired in any species. The EC50 reproduction value of A. tuberculata was about 220mg copper kg -1 dry soil in the first two exposure periods, but nearly doubled in the third period suggesting that an acclimation response had occurred. Also in the laboratory reproduction test, cocoon hatchability was not reduced, but rather slightly stimulated by copper. Based on these results we discuss the possibility that acute exposure in laboratory experiments is more detrimental than exposure in a field situation, perhaps because increased tolerance may be acquired through natural selection and genetic adaptation through increased use of defense mechanisms such as metallothioneins. Further, we discuss that the rather high tissue copper level of earthworms from the Hygum site may have smaller effects in these free-ranging worms than it would have in acute-exposure laboratory tests because the copper is more efficiently sequestered and detoxified in the field situation where populations have been exposed for many generations. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.

    PubMed

    Costa, Marcela Brandão; Tavares, Francesca Valêncio; Martinez, Claudia Bueno; Colares, Ioni Gonçalves; Martins, Camila de Martinez Gaspar

    2018-07-15

    This study investigated the ability of Potamogeton pectinatus L. to accumulate copper and its effects on plants. In accumulation tests, macrophytes were exposed (96 h) to different copper concentrations (0-1000 µM) and the metal was measured in media and plant tissues (roots, stems and leaves) to determine the bioconcentration factor (BCF). Plants accumulated high concentrations of copper in a dose-dependent manner and roots was the main organ for copper accumulation. However, the more copper increased in water, the more BCF values decreased. It may be due to either saturation of copper uptake or down-regulation of metal uptake by plants. In the physiological and morphological analyses, plants were kept (96 h) in Hoagland nutrient solution without copper, in full Hoagland solution (0.5 µM Cu) and in Hoagland medium with copper from 1 to 100 µM. The absence and the presence of copper above to 1 µM inhibited photosynthesis. Chlorophylls and carotenoid levels also decreased with the excess of copper, a fact that may have affected the photosystem II-dependent of chlorophyll and caused photosynthesis suppression. Only macrophytes at 10 µM Cu showed decrease in length and number of leaves on the 10th day of the test, when they died. Chlorosis and necrosis were observed in control groups and groups with extra copper, but not in Hoalgand group. Overall, the macrophyte P. pectinatus can be considered a suitable plant for monitoring environments contaminated by copper, based on results of copper accumulation in the plant, decrease in pigment concentration and presence of chlorosis and necrosis. However, values of BCF based on fresh water tissues was not proper to indicate the use of P. pectinatus for cleaning environments contaminated by copper. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles wasmore » confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.« less

  3. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1991-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  4. Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1993-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  5. Controlled atmosphere for fabrication of cermet electrodes

    DOEpatents

    Ray, Siba P.; Woods, Robert W.

    1998-01-01

    A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

  6. Controlled atmosphere for fabrication of cermet electrodes

    DOEpatents

    Ray, S.P.; Woods, R.W.

    1998-08-11

    A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.

  7. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma

    PubMed Central

    Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara

    2018-01-01

    Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies. PMID:29507693

  8. Effects of dietary copper supplementation on production performance and plasma biochemical parameters in broiler chickens.

    PubMed

    Samanta, B; Biswas, A; Ghosh, P R

    2011-10-01

    A study was conducted to estimate the effect of copper (Cu) supplementation on growth performance and biochemical profiles of blood and meat in broiler chickens. A total of 240 d-old broiler chicks (Vencobb-100) were randomly divided into 12 groups, each of 20 chicks (4 treatments x 3 replicates). The basal diet (T₁) contained 215 g kg⁻¹ crude protein (CP), 12·76 MJ kg⁻¹ ME, 32 g kg⁻¹ total calcium and 5 g kg⁻¹ total phosphorus. T₂, T₃ and T₄ were formulated to contain an additional 75, 150 and 250 mg Cu kg⁻¹ diet, respectively. Copper sulphate pentahydrate (CuSO₄, 5H₂O) was used as the source of Cu. Significant reductions in plasma total cholesterol and triglyceride, and an elevated concentration of HDL-cholesterol, were observed in the chickens fed with 250 mg Cu kg⁻¹ (T₄) of feed at the 3rd and 6th week of the experiment. Total cholesterol in meat decreased significantly in the birds fed with dietary Cu at 250 mg kg⁻¹ (T₄) of feed. Growth performance was measured in terms of live weight gain, cumulative feed intake and feed conversion ratio at the end of d 21 and d 42 of the experiment, and the result was found to be commercially beneficial for the chickens receiving 150 mg Cu kg⁻¹ (T₃) of diet. The concentration of Cu in breast muscle and liver increased significantly at the end of experiment. From this study it can be concluded that supplementation with dietary Cu may be beneficial for production performance and plasma biochemical characteristics of broiler chickens.

  9. The copper spoil heap Knappenberg, Austria, as a model for metal habitats - Vegetation, substrate and contamination.

    PubMed

    Adlassnig, Wolfram; Weiss, Yasmin S; Sassmann, Stefan; Steinhauser, Georg; Hofhansl, Florian; Baumann, Nils; Lichtscheidl, Irene K; Lang, Ingeborg

    2016-09-01

    Historic mining in the Eastern Alps has left us with a legacy of numerous spoil heaps hosting specific, metal tolerant vegetation. Such habitats are characterized by elevated concentrations of toxic elements but also by high irradiation, a poorly developed substrate or extreme pH of the soil. This study investigates the distribution of vascular plants, mosses and lichens on a copper spoil heap on the ore bearing Knappenberg formed by Prebichl Layers and Werfener Schist in Lower Austria. It serves as a model for discriminating between various ecological traits and their effects on vegetation. Five distinct clusters were distinguished: (1) The bare, metal rich Central Spoil Heap was only colonised by highly resistant specialists. (2) The Northern and (3) Southern Peripheries contained less copper; the contrasting vegetation was best explained by the different microclimate. (4) A forest over acidic bedrock hosted a vegetation overlapping with the periphery of the spoil heap. (5) A forest over calcareous bedrock was similar to the spoil heap with regard to pH and humus content but hosted a vegetation differing strongly to all other habitats. Among the multiple toxic elements at the spoil heap, only Cu seems to exert a crucial influence on the vegetation pattern. Besides metal concentrations, irradiation, humidity, humus, pH and grain size distribution are important for the establishment of a metal tolerant vegetation. The difference between the species poor Northern and the diverse Southern Periphery can be explained by the microclimate rather than by the substrate. All plant species penetrating from the forest into the periphery of the spoil heap originate from the acidic but not from the calcareous bedrock. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Voltammetric determination of copper in selected pharmaceutical preparations--validation of the method.

    PubMed

    Lutka, Anna; Maruszewska, Małgorzata

    2011-01-01

    It were established and validated the conditions of voltammetric determination of copper in pharmaceutical preparations. The three selected preparations: Zincuprim (A), Wapń, cynk, miedź z wit. C (B), Vigor complete (V) contained different salts and different quantity of copper (II) and increasing number of accompanied ingredients. For the purpose to transfer copper into solution, the samples of powdered tablets of the first and second preparation were undergone extraction and of the third the mineralization procedures. The concentration of copper in solution was determined by differential pulse voltammetry (DP) using comparison with standard technique. In the validation process, the selectivity, accuracy, precision and linearity of DP determination of copper in three preparations were estimated. Copper was determined within the concentration range of 1-9 ppm (1-9 microg/mL): the mean recoveries approached 102% (A), 100% (B), 102% (V); the relative standard deviations of determinations (RSD) were 0.79-1.59% (A), 0.62-0.85% (B) and 1.68-2.28% (V), respectively. The mean recoveries and the RSDs of determination satisfied the requirements for the analyte concentration at the level 1-10 ppm. The statistical verification confirmed that the tested voltammetric method is suitable for determination of copper in pharmaceutical preparation.

  11. Role of drinking water copper in pathogenesis of oral submucous fibrosis: a prospective case control study.

    PubMed

    Arakeri, Gururaj; Hunasgi, Santosh; Colbert, Serryth; Merkx, M A W; Brennan, Peter A

    2014-07-01

    Although oral submucous fibrosis (OSMF) is thought to be multifactorial in origin, the chewing of areca nut is thought to be the main cause. Alkaloids and tannins in areca nut are responsible for fibrosis, but recent evidence has suggested that copper ions are also an important mediator, and in a small pilot study we recently found that OSMF was significantly associated with a raised concentration of copper in drinking water. We have further investigated this association in a heterogeneous population in Hyderabad-Karnataka, India, a region with a high incidence of the condition. We evaluated 3 groups, each of 100 patients: those with OSMF who chewed gutkha, those who chewed gutkha but did not have OSMF, and healthy controls who did not chew gutkha. The difference between the groups in the mean concentration of copper in water measured by atomic absorption spectrometry was significant (p<0.001). There were also significant differences between the groups in mean concentrations of serum copper, salivary copper, and ceruloplasmin (p<0.001). Our results confirm that copper in drinking water contributes to the pathogenesis of OSMF, but ingestion of copper is unlikely to be the sole cause. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  13. Water-quality assessment of the Kentucky River Basin, Kentucky; distribution of metals and other trace elements in sediment and water, 1987-90

    USGS Publications Warehouse

    Porter, Stephen D.; White, Kevin D.; Clark, J.R.

    1995-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is designed to provide a nationally consistent description of the current status of water quality, to define water-quality trends, and to relate past and present water-quality conditions to natural features, uses of land and water, and other water-quality effects from human activities. The Kentucky River Basin is one of four NAWQA pilot projects that focused primarily on the quality of surface water. Water, sediment, and bedrock samples were collected in the Kentucky River Basin during 1987-90 for the purpose of (1) describing the spatial distribution, transport, and temporal variability of metals and other trace elements in streams of the basin; (2) estimating mean annual loads, yields, and trends of constituent concentrations and identifying potential causes (or sources) of spatial patterns; (3) providing baseline information for concentrations of metals in streambed and suspended sediments; (4) identifying stream reaches in the Kentucky River Basin with chronic water-quality problems; and (5) evaluating the merits of the NAWQA pilot study-approach for the assessment of metals and other trace elements in a river system. The spatial distribution of metals and other trace elements in streambed sediments of the Kentucky River Basin is associated with regional differences of geology, land use and cover, and the results of human activities. Median concentrations of constituents differed significantly among physiographic regions of the basin because of relations to bedrock geochemistry and land disturbance. Concentrations of potentially toxic metals were large in urban and industrial areas of the basin. Elevated concentrations of certain metals were also found in streambed sediments of the Knobs Region because of the presence of Devonian shale bedrock. Elevated concentrations of lead and zinc found in streambed sediments of the Bluegrass Region are likely associated with urban stormwater runoff, point-source discharges, and waste-management practices. Concentrations of cadmium, chromium, copper, mercury, and silver were elevated in streambed sediments downstream from wastewater-treatment plant discharges. Streambed-sediment concentrations of barium, chromium, and lithium were elevated in streams that receive brine discharges from oil production. Elevated concentrations of antimony, arsenic, molybdenum, selenium, strontium, uranium, and vanadium in streambed sediments of the Kentucky River Basin were generally associated with natural sources. Concentrations of metals and other trace elements in water samples from fixed stations (stations where water-quality samples were collected for 3.5 years) in the Kentucky River Basin were generally related to stream discharge and the concentration of suspended sediment, whereas constituent concentrations in the suspended-sediment matrix were indicative of natural and human sources. Estimated mean annual loads and yields for most metals and other trace elements were associated with the transport of suspended sediment. Land disturbance, such as surface mining and agriculture, contribute to increased transport of sediment in streams, thereby increasing concentrations of metals in water samples during periods of intense or prolonged rainfall and increased stream discharge. Concentrations of many metals and trace elements were reduced during low streamflow. Although total-recoverable and dissolved concentrations of certain metals and trace elements were large in streams affected by land disturbance, concentrations of constituents in the suspendedsediment matrix were commonly large in streams in the Knobs and Eastern Coal Field Regions (because of relations with bedrock geochemistry) and in streams that receive wastewater or oil-well-brine discharges. Concentrations and mean annual load estimates for aluminum, chromium, copper, iron, lead, manganese, and mercury were larger than those obtained from data collected by a State agency, probably because of differences in sample-collection methodology, the range of discharge associated with water-quality samples, and laboratory analytical procedures. However, concentrations, loads, and yields of arsenic, barium, and zinc were similar to those determined from the State data. Significant upward trends in the concentrations of aluminum, iron, magnesium, manganese, and zinc were indicated at one or more fixed stations in the Kentucky River Basin during the past 10 to 15 years. Upward trends for concentrations of aluminum, iron, and manganese were found at sites that receive drainage from coal mines in the upper Kentucky River Basin, whereas upward trends for zinc may be associated with urban sources. Water-quality criteria established by the U.S. Environmental Protection Agency (USEPA) or the State of Kentucky for concentrations of aluminum, beryllium, cadmium, chromium, copper, iron, manganese, nickel, silver, and zinc were exceeded at one or more fixed stations in the Kentucky River Basin. On a qualitative basis, dissolved concentrations of certain metals and trace elements were large during low streamflow at sites where (1) concentrations of these constituents in underlying streambed sediments were large, or (2) dissolvedoxygen concentrations were small. Concentrations of barium, lithium, and strontium were large during low streamflow, which indicates the influence of ground-water baseflows on the quality of surface water during low flow. The effects of point-source discharges, landfills, and other wastemanagement practices are somewhat localized in the Kentucky River Basin and are best indicated by the spatial distribution of metals and other trace elements in streambed sediments and in the suspended-sediment fraction of water samples at stream locations near the source. It was not possible to quantify the contribution of point sources to the total transport of metals and other trace elements at fixed stations because data were not available for wastewater effluents. Quantification of baseline concentrations of metals and other trace elements in streambed sediments provides a basis for the detection of water-quality changes that may result from improvements in wastewater treatment or the implementation of best-management practices for controlling contamination from nonpoint sources in the Kentucky River Basin.

  14. Serial changes in selected serum constituents in low birth weight infants on peripheral parenteral nutrition with different zinc and copper supplements.

    PubMed

    Lockitch, G; Pendray, M R; Godolphin, W J; Quigley, G

    1985-07-01

    One hundred and five infants of birth weight 2000 g or less who received peripherally administered parenteral nutrition for periods of three or more weeks, were randomly assigned to groups receiving different amounts of zinc and copper supplement. The blood concentrations of zinc, copper, retinol-binding protein, prealbumin, alkaline phosphatase and aspartate transaminase were followed weekly. Mean serum zinc, retinol-binding protein and prealbumin declined significantly over time while alkaline phosphatase rose. Only the group receiving the highest zinc supplement maintained a mean serum zinc concentration within the normal range at seven weeks. No difference in the protein or enzyme concentrations was found between the different zinc supplement groups. No difference was seen in serum copper or ceruloplasmin between copper dose groups although one intravenous supplement was double that of the other.

  15. Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.

    PubMed

    Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana

    2017-11-08

    Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.

  16. Iatrogenic copper deficiency following information and drugs obtained over the Internet.

    PubMed

    Lang, T F; Glynne-Jones, R; Blake, S; Taylor, A; Kay, J D S

    2004-09-01

    We report the case of a 56-year-old woman with a 7-year history of metastatic cancer who presented with severe copper deficiency following self-treatment with the copper-chelating agent tetrathiomolybdate. This compound was used with the aim of inhibiting tumour angiogenesis and was obtained from the USA by placing an order on the internet. The patient exhibited severe neutropenia as her serum copper concentration fell from 19.8 micromol/L to 3.3 micromol/L and her caeruloplasmin concentration from 35 mg/dL to 4 mg/dL.

  17. Direct ROS scavenging activity of CueP from Salmonella enterica serovar Typhimurium.

    PubMed

    Yoon, Bo-Young; Yeom, Ji-Hyun; Kim, Jin-Sik; Um, Si-Hyeon; Jo, Inseong; Lee, Kangseok; Kim, Yong-Hak; Ha, Nam-Chul

    2014-02-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.

  18. Liver metal concentrations in Greater Sage-grouse (Centrocercus urophasianus).

    PubMed

    Dailey, Rebecca N; Raisbeck, Merl F; Siemion, Roger S; Cornish, Todd E

    2008-04-01

    Greater Sage-grouse (Centrocercus urophasianus) are a species of concern due to shrinking populations associated with habitat fragmentation and loss. Baseline health parameters for this species are limited or lacking, especially with regard to tissue metal concentrations. To obtain a range of tissue metal concentrations, livers were collected from 71 Greater Sage-grouse from Wyoming and Montana. Mean +/- SE metal concentrations (mg/kg wet weight) in liver were determined for vanadium (V) (0.12 +/- 0.01), chromium (Cr) (0.50 +/- 0.02), manganese (Mn) (2.68 +/- 0.11), iron (Fe) (1,019 +/- 103), nickel (Ni) (0.40 +/- 0.04), cobalt (Co) (0.08 +/- 0.02), copper (Cu) (6.43 +/- 0.40), mercury (Hg) (0.30 +/- 0.09), selenium (Se) (1.45 +/- 0.64), zinc (Zn) (59.2 +/- 4.70), molybdenum (Mo) (0.93 +/- 0.07), cadmium (Cd) (1.44 +/- 0.14), barium (Ba) (0.20 +/- 0.03), and lead (Pb) (0.17 +/- 0.03). In addition to providing baseline data, metal concentrations were compared between sex, age (juvenile/adult), and West Nile virus (WNv) groups (positive/negative). Adult birds had higher concentrations of Ni and Cd compared to juveniles. In addition, Zn and Cu concentrations were significantly elevated in WNv-positive birds.

  19. Multi-criteria ranking of copper concentrates according to their quality--an element of environmental management in the vicinity of copper--smelting complex in Bor, Serbia.

    PubMed

    Nikolić, Djordje; Jovanović, Ivan; Mihajlović, Ivan; Zivković, Zivan

    2009-01-01

    The results of multi-criteria ranking of copper concentrates by their quality, according to their content of useful and harmful components, are presented in this paper. Cu, Ag and Au were taken as useful components, while Pb, Zn, As, Cd, Hg, Bi and Sb were considered as harmful with adequate weight parameters. Considering its specific role in copper metallurgy, sulfur in the concentrate was considered in two scenarios. In the first scenario S was considered as a useful and in the other one as a harmful component. The ranking is done by implementing the PROMETHEE/GAIA method with an additional implementation of the special PROMETHEE V method, using the standard limitations of the heavy metals content in the concentrate. In this way, it is possible to perform an optimization of the input charge for the copper extraction from two aspects. The first aspect covers benefits from the content of useful metals, while the second deals with the protection of the environment, considering the content of harmful components of the charge. Using multi-criteria decision making for the sake of ranking the quality of copper concentrates, as described in this paper, could be considered as a contribution to the methodology of forming the market price of this product.

  20. Early Detection of Breast Cancer via Multiplane Correlation Breast Imaging

    DTIC Science & Technology

    2007-04-01

    thalassemia and sickle cell anemia) and Wilson’s disease (liver copper overload), are characterized by increased iron and copper concentration respectively...iron overload associated with thalassemia and sickle cell anemia) and Wilson’s disease (liver copper overload) are both characterized by increased...element concentration in the liver [4]. Patients suffering from thalassemia and sickle cell anemia often require weekly blood transfusions. With each

  1. The association between serum copper concentrations and cardiovascular disease risk factors in children and adolescents in NHANES.

    PubMed

    Zang, Xiaodong; Huang, Hesuyuan; Zhuang, Zhulun; Chen, Runsen; Xie, Zongyun; Xu, Cheng; Mo, Xuming

    2018-06-01

    Copper is an essential element in human beings, alterations in serum copper levels could potentially have effect on human health. To date, no data are available regarding how serum copper affects cardiovascular disease (CVD) risk factors in children and adolescents. We examined the association between serum copper levels and CVD risk factors in children and adolescents. We analyzed data consisting of 1427 subjects from a nationally representative sample of the US population in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. The CVD risk factors included total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, fasting glucose, glycohemoglobin, fasting insulin, and blood pressure. Multivariate and generalized linear regressions were performed to investigate associations adjusted for age, gender, ethnicity, poverty:income ratio (PIR), BMI, energy intake, and physical activity. We found significant associations between serum copper and total cholesterol (coefficient = 0.132; 95% CI 0.081, 0.182; P for trend < 0.001), glycohemoglobin (coefficient = 0.044; 95% CI 0.020, 0.069; P < 0.001), and fasting insulin (coefficient = 0.730; 95% CI 0.410, 1.050; P < 0.001) among the included participants. Moreover, in the generalized linear models, subjects with the highest copper levels demonstrated a 0.83% (95% CI 0.44%, 1.24%) greater increase in serum total cholesterol (p for trend < 0.001) when compared to participants with the lowest copper concentrations. Our results provide the first epidemiological evidence that serum copper concentrations are associated with total cholesterol concentrations in children and adolescents. However, the underlying mechanisms still need further exploration.

  2. Equilibrium and kinetic studies of copper biosorption by dead Ceriporia lacerata biomass isolated from the litter of an invasive plant in China.

    PubMed

    Li, Xiaona; Li, Airong; Long, Mingzhong; Tian, Xingjun

    2015-01-01

    Ceriporia lacerata, a strain of white-rot fungus isolated from the litter of an invasive plant (Solidago canadensis) in China, was little known about its properties and utilization. In this work, the copper(II) biosorption characteristics of formaldehyde inactivated C. lacerata biomass were examined as a function of initial pH, initial copper(II) concentration and contact time, and the adsorptive equilibrium and kinetics were simulated, too. The optimum pH was found to be 6.0 at experimental conditions of initial copper(II) concentration 100 mg/L, biomass dose 2 g/L, contact time 12 h, shaking rate 150 r/min and temperature 25°C. Biosorption equilibrium cost about 1 hour at experimental conditions of pH 6.0, initial copper(II) concentration 100 mg/L, C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C. At optimum pH 6.0, highest copper(II) biosorption amounts were 6.79 and 7.76 mg/g for initial copper(II) concentration of 100 and 200 mg/L, respectively (with other experimental parameters of C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C). The pseudo second-order adsorptive model gave the best adjustment for copper(II) biosorption kinetics. The equilibrium data fitted very well to both Langmuir and Freundlich adsorptive isotherm models. Without further acid or alkali treatment for improving adsorption properties, formaldehyde inactivated C. lacerata biomass possesses good biosorption characteristics on copper(II) removal from aqueous solutions.

  3. Development of graphite/copper composites utilizing engineered interfaces. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.

    1991-01-01

    In situ measurements of graphite/copper alloy contact angles were made using the sessile drop method. The interfacial energy values obtained from these measurements were then applied to a model for the fiber matrix interfacial debonding phenomenon found in graphite/copper composites. The formation obtained from the sessile drop tests led to the development of a copper alloy that suitably wets graphite. Characterization of graphite/copper alloy interfaces subjected to elevated temperatures was conducted using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Auger Electron Spectroscopy, and X Ray Diffraction analyses. These analyses indicated that during sessile drop tests conducted at 1130 C for 1 hour, copper alloys containing greater than 0.98 at pct chromium form continuous reaction layers of approx. 10 microns in thickness. The reaction layers are adherent to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 deg or less. X ray diffraction results indicate that the reaction layer is Cr3C2.

  4. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F.

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  5. Towards understanding the kinetic behaviour and limitations in photo-induced copper(i) catalyzed azide-alkyne cycloaddition (CuAAC) reactions.

    PubMed

    El-Zaatari, Bassil M; Shete, Abhishek U; Adzima, Brian J; Kloxin, Christopher J

    2016-09-14

    The kinetic behaviour of the photo-induced copper(i) catalyzed azide-alkyne cycloaddition (CuAAC) reaction was studied in detail using real-time Fourier transform infrared (FTIR) spectroscopy on both a solvent-based monofunctional and a neat polymer network forming system. The results in the solvent-based system showed near first-order kinetics on copper and photoinitiator concentrations up to a threshold value in which the kinetics switch to zeroth-order. This kinetic shift shows that the photo-CuAAC reaction is not susceptible from side reactions such as copper disproportionation, copper(i) reduction, and radical termination at the early stages of the reaction. The overall reaction rate and conversion is highly dependent on the initial concentrations of photoinitiator and copper(ii) as well as their relative ratios. The conversion was decreased when an excess of photoinitiator was utilized compared to its threshold value. Interestingly, the reaction showed an induction period at relatively low intensities. The induction period is decreased by increasing light intensity and photoinitiator concentration. The reaction trends and limitations were further observed in a solventless polymer network forming system, exhibiting a similar copper and photoinitiator threshold behaviour.

  6. Towards understanding the kinetic behaviour and limitations in photo-induced copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactions

    PubMed Central

    El-Zaatari, Bassil M.; Shete, Abhishek U.; Adzima, Brian J.; Kloxin, Christopher J.

    2016-01-01

    The kinetic behaviour of the photo-induced copper(I) catalyzed azide—alkyne cycloaddition (CuAAC) reaction was studied in detail using real-time Fourier Transform Infrared Spectroscopy (FTIR) on both a solvent-based monofunctional and a neat polymer network forming system. The results in the solvent-based system showed near first-order kinetics on copper and photoinitiator concentrations up to a threshold value in which the kinetics switch to zeroth-order. This kinetic shift shows that the photo-CuAAC reaction is not suseptible from side reactions such as copper disproportionation, copper(I) reduction, and radical termination at the early stages of the reaction. The overall reaction rate and conversion is highly dependent on the initial concentrations of photoinitiator and copper(II), as well as their relative ratios. The conversion was decreased when an excess of photoinitiator was utilized compared to its threshold value. Interestingly, the reaction showed an induction period at relatively low intensities. The induction period is decreased by increasing light intensity, and photoinitiator concentration. The reaction trends and limitations were further observed in a solventless polymer network forming system, exhibiting a similar copper and photoinitiator threshold behaviour. PMID:27711587

  7. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in Bowdoin National Wildlife Refuge and adjacent areas of the Milk River basin, northeastern Montana, 1986-87

    USGS Publications Warehouse

    Lambing, J.H.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    Concentrations of trace elements, radiochemicals, and pesticides in the Bowdoin National Wildlife Refuge lakes generally were not substantially larger than those in the water supplied from Dodson South Canal or in irrigation drainage. Concentrations of arsenic (47 micrograms/L), uranium (43 microg/L), and vanadium (51 microg/L) in Dry Lake Unit, and boron (1,000 microg/L) in Lake Bowdoin were notably larger than at other sites. Zinc concentrations in an irrigation drain (56 microg/L) and two shallow domestic wells (40 and 47 microg/L) were elevated relative to other sites. Concentrations of gross alpha radiation (64 picocuries/L) and gross beta radiation (71 picocuries/L) were elevated in Dry Lake Unit. Pesticides concentrations at all sites were 0.08 microg/L or less. Water use guidelines concentrations for boron, cadmium, uranium, zinc, and gross alpha radiation were slightly exceeded at several sites. In general, trace-constituent concentrations measured in the water do not indicate any potential toxicity problems in Bowdoin National Wildlife Refuge; however, highwater conditions in 1986 probably caused dilution of dissolved constituents compared to recent dry years. Trace element concentrations in bottom sediments of the refuge lakes were generally similar to background concentrations in the soils. The only exception was Dry Lake Unit, which had concentrations of chromium (99 micrograms/g), copper (37 microg/g), nickel (37 microg/g), vanadium (160 microg/g), and zinc (120 microg/g) that were about double the mean background concentrations. The maximum selenium concentration in bottom sediment was 0.6 microg/g. Pesticide concentrations in bottom sediments were less than analytical detection limits at all sites. With few exceptions, concentrations of trace elements and pesticides in biota generally were less than values known to produce harmful effects on growth or reproduction. (Lantz-PTT)

  8. Long-Term Effects of Orthophosphate Treatment on Copper Concentration

    EPA Science Inventory

    Laboratory, pilot, and field data collected support the theoretical “cupric hydroxide” copper solubility model. For the short time frames inherent in laboratory and pilot studies of copper solubility, and in initial field monitoring for the LCR from Tier 1 soldered copper sites,...

  9. Copper toxicity in aquaculture: A practical approach

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate is used as a therapeutant for various applications in aquaculture. There is a great deal of information on the toxicity of copper, especially in low-alkalinity waters; however, much of this information is fragmented, and a comprehensive guide of copper toxicity and safe concentration...

  10. Hydrogeochemical prospecting for porphyry copper deposits in the tropical-marine climate of Puerto Rico

    USGS Publications Warehouse

    Miller, W.R.; Ficklin, W.H.; Learned, R.E.

    1982-01-01

    A hydrogeochemical survey utilizing waters from streams and springs was conducted in the area of two known porphyry copper deposits in the tropical-marine climate of westcentral Puerto Rico. The most important pathfinder for regional hydrogeochemical surveys is sulfate which reflects the associated pyrite mineralization. Because of increased mobility due to intense chemical weathering and the low pH environment, dissolved copper can also be used as a pathfinder for regional surveys and has the advantage of distinguishing barren pyrite from pyrite associated with copper mineralization. For follow-up surveys, the most important pathfinders are copper, sulfate, pH, zinc, and fluoride. High concentrations of dissolved copper and moderate concentrations of sulfate is a diagnostic indication of nearby sources of copper minerals. An understanding of the geochemical processes taking place in the streambeds and the weathering environment, such as the precipitation of secondary copper minerals, contributes to the interpretation of the geochemical data and the selection of the most favorable areas for further exploration. ?? 1982.

  11. Summary of information on synthetic organic compounds and trace elements in tissue of aquatic biota, Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, 1974-96

    USGS Publications Warehouse

    Maret, Terry R.; Dutton, DeAnn M.

    1999-01-01

    As part of the Northern Rockies Intermontane Basins study of the National Water-Quality Assessment Program, data collected between 1974 and 1996 were compiled to describe contaminants in tissue of riverine species. Tissue-contaminant data from 11 monitoring programs and studies representing 28 sites in the study area were summarized. Tissue-contaminant data for most streams generally were lacking. Many studies have focused on and around mining-affected areas on the Clark Fork and Coeur d'Alene Rivers and their major tributaries. DDT and PCBs and their metabolites and congeners were the synthetic organic contaminants most commonly detected in fish tissue. Fish collected from the Spokane River in Washington contained elevated concentrations of PCB arochlors, some of which exceeded guidelines for the protection of human health and predatory wildlife. Tissue samples of fish from the Flathead River watershed contained higher-than-expected concentrations of PCBs, which might have resulted from atmospheric transport. Trace element concentrations in fish and macroinvertebrates collected in and around mining areas were elevated compared with background concentrations. Some cadmium, copper, lead, and mercury concentrations in fish tissue were elevated compared with results from other studies, and some exceeded guidelines. Macroinvertebrates from the Coeur d'Alene River contained higher concentrations of cadmium, lead, and zinc than did macroinvertebrates from other river systems in mining-affected areas. A few sportfish fillet samples, most from the Spokane River in Washington, were collected to assess human health risk. Concentrations of PCBs in these fillets exceeded screening values for the protection of human health. At present, there is no coordinated, long-term fish tissue monitoring program for rivers in the study area, even though contaminants are present in fish at levels considered a threat to human health. Development of a coordinated, centralized national data base for contaminants in fish tissue is needed. The National Water-Quality Assessment Program can provide a framework for other agencies to evaluate tissue contaminants in the Northern Rockies Intermontane Basins study area. As of 1996, there are no fish consumption advisories or fishing restrictions as a result of elevated contaminants on any rivers within the study area.

  12. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway.

    PubMed

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen

    2014-01-01

    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  13. A Schiff Base-Derived Copper (II) Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Zorofchian Moghadamtousi, Soheil; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen

    2014-01-01

    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents. PMID:24737979

  14. Modeling MIC copper release from drinking water pipes.

    PubMed

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as part of an ongoing ecological risk assessment to determine remedial actions for contaminated sediments in Lake Roosevelt. ?? 2007 Springer Science+Business Media, LLC.

  16. Effects of Copper and Selenium Supplementation on Performance and Lipid Metabolism in Confined Brangus Bulls

    PubMed Central

    Netto, Arlindo Saran; Zanetti, Marcus Antônio; Claro, Gustavo Ribeiro Del; de Melo, Mariza Pires; Vilela, Flávio Garcia; Correa, Lisia Bertonha

    2014-01-01

    Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on performance, feed efficiency, composition of fatty acids in Longissimus dorsi (LD) muscle, and cholesterol concentration in serum and in LD muscle and enzymes activities, reduced glutathione (GSH) and oxidized glutathione (GSSG). The treatments were: i) Control, without copper (Cu) and selenium (Se) supplementation; ii) Se, 2 mg Se/kg of dry matter such as sodium selenite; iii) Cu, 40 mg Cu/kg of dry matter such as copper sulfate; iv) Se/Cu, 2 mg Se/kg of dry matter such as sodium selenite and 40 mg Cu/kg of dry matter such as copper sulfate. LD muscle fatty acid composition was not influenced by the treatments (p>0.05). The serum concentration of cholesterol was not influenced by the treatments (p>0.05), however, the concentration of cholesterol in LD was lower in cattle supplemented with copper and selenium (p<0.05). Oxidized glutathione and reduced glutathione increased (p<0.05) with Cu, Se and Se/Cu supplementation. The supplementation of copper (40 mg/kg DM) and selenium (2 mg/kg DM) altered the metabolism of lipids in confined Brangus cattle, through a decrease in cholesterol deposition in the LD, possibly by changing the ratio between reduced glutathione/oxidized glutathione. Copper and selenium supplementation improved animal performance and feed efficiency (p<0.05) when compared to the control group, providing advantages in the production system, while also benefiting consumers by reducing cholesterol concentration in the meat. PMID:25049978

  17. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures.

    PubMed

    Zhang, Fang; LaBarge, Nicole; Yang, Wulin; Liu, Jia; Logan, Bruce E

    2015-03-01

    A thermally regenerative ammonia battery (TRAB) is a new approach for converting low-grade thermal energy into electricity by using an ammonia electrolyte and copper electrodes. TRAB operation at 72 °C produced a power density of 236 ± 8 Wm(-2), with a linear decrease in power to 95 ± 5 Wm(-2) at 23 °C. The improved power at higher temperatures was due to reduced electrode overpotentials and more favorable thermodynamics for the anode reaction (copper oxidation). The energy density varied with temperature and discharge rates, with a maximum of 650 Wh m(-3) at a discharge energy efficiency of 54% and a temperature of 37 °C. The energy efficiency calculated with chemical process simulation software indicated a Carnot-based efficiency of up to 13% and an overall thermal energy recovery of 0.5%. It should be possible to substantially improve these energy recoveries through optimization of electrolyte concentrations and by using improved ion-selective membranes and energy recovery systems such as heat exchangers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Church, S.E.; Kimball, B.A.

    2001-01-01

    The water quality, habitats, and biota of streams in the upper Animas River watershed of Colorado, USA, are affected by metal contamination associated with acid drainage. We determined metal concentrations in components of the food web of the Animas River and its tributaries - periphyton (aufwuchs), benthic invertebrates, and livers of brook trout (Salvelinus fontinalis) - and evaluated pathways of metal exposure and hazards of metal toxicity to stream biota. Concentrations of the toxic metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in periphyton, benthic invertebrates, and trout livers from one or more sites in the upper Animas River were significantly greater than those from reference sites. Periphyton from sites downstream from mixing zones of acid and neutral waters had elevated concentrations of aluminum (Al) and iron (Fe) reflecting deposition of colloidal Fe and Al oxides, and reduced algal biomass. Metal concentrations in benthic invertebrates reflected differences in feeding habits and body size among taxa, with greatest concentrations of Zn, Cu, and Cd in the small mayfly Rhithrogena, which feeds on periphyton, and greatest concentrations of Pb in the small stonefly Zapada, a detritivore. Concentrations of Zn and Pb decreased across each trophic linkage, whereas concentrations of Cu and Cd were similar across several trophic levels, suggesting that Cu and Cd were more efficiently transferred via dietary exposure. Concentrations of Cu in invertebrates and trout livers were more closely associated with impacts on trout populations and invertebrate communities than were concentrations of Zn, Cd, or Pb. Copper concentrations in livers of brook trout from the upper Animas River were substantially greater than background concentrations and approached levels associated with reduced brook trout populations in field studies and with toxic effects on other salmonids in laboratory studies. These results indicate that bioaccumulation and transfer of metals in stream food webs are significant components of metal exposure for stream biota of the upper Animas River watershed and suggest that chronic toxicity of Cu is an important factor limiting the distribution and abundance of brook trout populations in the watershed.

  19. SEM and AFM studies of dip-coated CuO nanofilms.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Ganesan, V

    2013-01-01

    Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  20. Spectroscopic investigation of different concentrations of the vapour deposited copper phthalocyanine as a "guest" in polyimide matrix.

    PubMed

    Georgiev, Anton; Yordanov, Dancho; Dimov, Dean; Assa, Jacob; Spassova, Erinche; Danev, Gencho

    2015-04-05

    Nanocomposite layers 250 nm copper phthalocyanine/polyimide prepared by simultaneous vapour deposition of three different sources were studied. Different concentrations of copper phthalocyanine as a "guest" in polyimide matrix as a function of conditions of the preparation have been determined by FTIR (Fourier Transform Infrared) and UV-VIS (Ultraviolet-Visible) spectroscopies. The aim was to estimate the possibility of the spectroscopic methods for quantitative determination of the "guest" and compare with the quality of the polyimide thin films in relation to the "guest" concentration. The band at 1334 cm(-1) has been used for quantitative estimation of "guest" in polyimide matrix. The concentrations of the copper phthalocyanine less than 20% require curve fitting techniques with Fourier self deconvolution. The relationship between "guest" concentrations and degree of imidization, as well as the electronic UV-VIS spectra are discussed in relation to the composition, imidization degree and the two crystallographic modification of the embedded chromophore. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry.

    PubMed

    Jensen, John; Larsen, Martin Mørk; Bak, Jesper

    2016-07-01

    The increasing consumption of copper and zinc in modern farming is linked to their documented benefit as growth promoting agents and usefulness for controlling diarrhoea. Copper and zinc are inert and non-degradable in the slurry and the environment and thereby introducing new challenges and concern. Therefore, a follow-up to pervious national soil monitoring programs on heavy metals was initiated in 2014 with special focus on the historical trends in soil concentrations of copper and zinc in Danish arable soils. Hereby it is possible to analyse trends for a 28 year period. Data shows that: 1) Amendment of soils with pig slurry has led to a significant increase in soil concentrations of copper and zinc, especially in the latest monitoring period from 1998 to 2014; 2) Predicted no-effect concentrations for soil dwelling species published by the European Union is exceeded for zinc in 45% of all soil samples, with the highest proportion on sandy soils; 3) The current use of zinc and copper in pig production may lead to leaching of metals, especially zinc, from fields fertilized with pig slurry in concentrations that may pose a risk to aquatic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Kinetic modeling of copper biosorption by immobilized biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veglio, F.; Beolchini, F.; Toro, L.

    1998-03-01

    Biosorption of heavy metals is one of the most promising technologies involved in the removal of toxic metals from industrial waste streams and natural waters. The kinetic modeling of copper biosorption by Arthrobacter sp. immobilized in a hydroxyethyl methacrylate-based matrix is reported in this work. The resin-biomass complex (RBC) has been used for copper biosorption in different conditions according to a factorial experiment. Factors investigated were cross-linker (trimethylolpropane trimethacrylate) concentration, biomass concentration in the solid, and particles` granulometry. A maximum copper specific uptake of abut 7 mg of Cu/g of biomass (dry weight) has been observed, in the case ofmore » a RBC with the following characteristics: 2% (w/w) cross-linker concentration, 8% (w/w) biomass concentration, and 425--750 {micro}m granulometry. The shrinking core model has been used for the fitting of experimental data. A good fit has been found in the case of controlling intraparticle diffusion in all experimental trials. The copper diffusion coefficient in RBC has been estimated from the slope of the regression lines. Values obtained for the diffusion coefficients do not differ from one another with respect to the estimated standard error. An average apparent copper diffusion coefficient of about 3 {times} 10{sup {minus}6} cm{sup 2}/s has been found.« less

  3. The evaluation of zinc and copper content in tooth enamel without any pathological changes - an in vitro study.

    PubMed

    Klimuszko, Elzbieta; Orywal, Karolina; Sierpinska, Teresa; Sidun, Jarosław; Golebiewska, Maria

    2018-01-01

    The objectives of the study were to evaluate the content of copper and zinc in individual layers of tooth enamel and to analyze the relationships between the study minerals in individual layers of tooth enamel. Fifteen human permanent teeth were cut off every 150 μm alongside the labial surface. Acid biopsy of each layer was performed. The zinc content was determined using the air-acetylene flame method. The copper content was determined using the electrothermal technique with argon. The mean zinc concentrations increased significantly starting from the outer enamel surface, with the maximum concentration in the 150-300 μm layer. The mean copper concentrations increased substantially from the outer enamel surface to a depth of 150 μm, and then a slight downward trend of this mineral levels was seen, down to a depth of 450 μm. Strong positive correlation was found between the zinc and copper concentrations at depths of 150-300, 450-600 and 600-750 μm. The levels of zinc and copper in the outer enamel layers may have an effect on the increased content of unipolar minerals at deeper enamel layers. The content of the study elements determined may reflect the process of mineralization and maturation of enamel in the pre-eruption period.

  4. Effect of copper sulphate treatment on natural phytoplanktonic communities.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Deluchat, Véronique; Briand, Jean-François; Lenain, Jean-François; Baudu, Michel; Amblard, Christian

    2006-12-01

    Copper sulphate treatment is widely used as a global and empirical method to remove or control phytoplankton blooms without precise description of the impact on phytoplanktonic populations. The effects of two copper sulphate treatments on natural phytoplanktonic communities sampled in the spring and summer seasons, were assessed by indoor mesocosm experiments. The initial copper-complexing capacity of each water sample was evaluated before each treatment. The copper concentrations applied were 80 microg l(-1) and 160 microg l(-1) of copper, below and above the water complexation capacity, respectively. The phytoplanktonic biomass recovered within a few days after treatment. The highest copper concentration, which generated a highly toxic environment, caused a global decrease in phytoplankton diversity, and led to the development and dominance of nanophytoplanktonic Chlorophyceae. In mesocosms treated with 80 microg l(-1) of copper, the effect on phytoplanktonic community size-class structure and composition was dependent on seasonal variation. This could be related to differences in community composition, and thus to species sensitivity to copper and to differences in copper bioavailability between spring and summer. Both treatments significantly affected cyanobacterial biomass and caused changes in the size-class structure and composition of phytoplanktonic communities which may imply modifications of the ecosystem structure and function.

  5. Reduction of the "burst release" of copper ions from copper-based intrauterine devices by organic inhibitors.

    PubMed

    Alvarez, Florencia; Schilardi, Patricia L; de Mele, Monica Fernández Lorenzo

    2012-01-01

    The copper intrauterine device is a contraceptive method that is based on the release of copper ions from a copper wire. Immediately after insertion, the dissolution of copper in the uterine fluid is markedly higher ("burst release") than that necessary for contraception action, leading to a variety of harmful effects. Pretreatments with organic compounds [thiourea (TU) and purine (PU), 10(-4)-10(-2) M concentration range, 1- and 3-h immersion times] were tested. The dissolution of copper with and without pretreatments in TU and PU solutions was analyzed by conventional electrochemical techniques and surface analysis. Pretreatments in PU solutions reduced the initial corrosion rate of copper in simulated uterine solutions, with inhibitory efficiencies that depend on the PU concentration and on the immersion time assayed. Inhibitory efficiency values higher than 98% for pretreatments with ≥10(-3) M PU were found. Conversely, after TU pretreatments, a high copper release was measured. It was concluded that 10(-3) M PU pretreatment is a promising strategy able to reduce the "burst release" of copper and to ensure contraceptive action. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effect of copper on Mytilus californianus and Mytilus edulis. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-06

    Mytilus edulis and Mytilus californianus have come into widespread use as valuable test animals in estimating the effects and extent of copper pollution, both naturally as indicators and under simulated conditions as bioassays. These mussels are known bioaccumulators of heavy metals. They have a broad distribution, and mutually exclusive habitats. How the mussel reacts to copper is directly related to how copper affects the physiology of the mussel. The filtration rate and oxygen consumption of Mytilus are known to decline by more than 50% under exposure to as low as 200 ppB Cu in the water. Decline in heart ratemore » (bradycardia) also occurs under exposure to copper. Byssus thread production suffers in copper concentrations of 500 ppB and higher. The ability of M. edulis to close its valves in the presence of copper has been documented by several researchers. Of all the physiological parameters, oxygen consumption, heart rate, and valve closure are basic physiological functions which are easily measured. Mortality of Mytilus edulis is known to occur at concentrations of copper 330 ppB and higher within four to five days. It would be advantageous to have a continuous monitoring of the heart, oxygen consumption, and valve gape during this period to determine the state of each and the contribution of each to the possible death of the mussel. This study involves monitoring the three above physiological functions under varying concentrations of copper. In both species, M. edulis and M. californianus, detailed toxicological response records were obtained for each function. These records were then used to compare the physiological responses of each species to different levels of ambient copper in order to explain the possibility of repeatable, species-specific, response patterns to copper. (ERB)« less

  7. Effect of copper on the performance and bacterial communities of activated sludge using Illumina MiSeq platforms.

    PubMed

    Sun, Fu-Lin; Fan, Lei-Lei; Xie, Guang-Jian

    2016-08-01

    The anaerobic-anoxic-aerobic (A2O) process is a highly efficient sewage treatment method, which uses complex bacterial communities. However, the effect of copper on this process and the bacterial communities involved remains unknown. In this study, a systematic investigation of the effect of persistent exposure of copper in the A2O wastewater treatment system was performed. An A2O device was designed to examine the effect of copper on the removal efficiency and microbial community compositions of activated sludge that was continuously treated with 10, 20, and 40 mg L(-1) copper, respectively. Surprisingly, a decrease in chemical oxygen demand (COD) and ammonia nitrogen (NH4N) removal efficiency was observed, and the toxicity of high copper concentration was significantly greater at 7d than at 1d. Proteobacteria, Bacteroidetes, Acidobacteria, Chlorobi, and Nitrospirae were the dominant bacterial taxa in the A2O system, and significant changes in microbial community were observed during the exposure period. Most of the dominant bacterial groups were easily susceptible to copper toxicity and diversely changed at different copper concentrations. However, not all the bacterial taxa were inhibited by copper treatment. At high copper concentration, many bacterial species were stimulated and their abundance increased. Cluster analysis and principal coordinate analysis (PCoA) based on operational taxonomic units (OTUs) revealed clear differences in the bacterial communities among the samples. These findings indicated that copper severely affected the performance and key microbial populations in the A2O system as well as disturbed the stability of the bacterial communities in the system, thus decreasing the removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Spatial investigation of the elemental distribution in Wilson's disease liver after d-penicillamine treatment by LA-ICP-MS.

    PubMed

    Hachmöller, Oliver; Zibert, Andree; Zischka, Hans; Sperling, Michael; Groba, Sara Reinartz; Grünewald, Inga; Wardelmann, Eva; Schmidt, Hartmut H-J; Karst, Uwe

    2017-12-01

    At present, the copper chelator d-penicillamine (DPA) is the first-line therapy of Wilson's disease (WD), which is characterized by an excessive copper overload. Lifelong DPA treatments aim to reduce the amount of detrimental excess copper retention in the liver and other organs. Although DPA shows beneficial effect in many patients, it may cause severe adverse effects. Despite several years of copper chelation therapy, discontinuation of DPA therapy can be linked to a rapidly progressing liver failure, indicating a high residual liver copper load. In order to investigate the spatial distribution of remaining copper and additional elements, such as zinc and iron, in rat and human liver samples after DPA treatment, a high resolution (spotsize of 10μm) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method was applied. Untreated LPP -/- rats, an established animal model for WD, appeared with a high overall copper concentration and a copper distribution of hotspots distributed over the liver tissue. In contrast, a low (>2-fold decreased) overall copper concentration was detected in liver of DPA treated animals. Importantly, however, copper distribution was highly inhomogeneous with lowest concentrations in direct proximity to blood vessels, as observed using novel zonal analysis. A human liver needle biopsy of a DPA treated WD patient substantiated the finding of an inhomogeneous copper deposition upon chelation therapy. In contrast, comparatively homogenous distributions of zinc and iron were observed. Our study indicates that a high resolution LA-ICP-MS analysis of liver samples is excellently suited to follow efficacy of chelator therapy in WD patients. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments.

    PubMed

    Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost

    2011-11-01

    Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Inheritable copper tolerance in the chlorophyte macroalga Enteromorpha intestinalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, S.; Williams, P.; Donkin, M.

    1995-12-31

    A study was carried out to determine if a population of Enteromorpha intestinalis, from a metal polluted site, exhibited copper tolerance. This work was in preparation for investigating stress protein patterns in copper tolerant and sensitive populations. The effects of copper on growth of E. intestinalis from three clean and one metal polluted site were compared. Growth was assessed by incubating thallus sections in a range of copper solutions and measuring increase in length. Offspring were cultured from clean and polluted sites and the effects of copper on their growth assessed, to determine if any tolerance was inheritable. Concentrations ofmore » the trace metals; copper, zinc and manganese in the populations were also determined. Over the range of copper concentrations tested (0--150 {micro}g/i), growth of the polluted site populations was not significantly affected (P > 0.05). However growth of the clean site populations was significantly depressed by exposure to 50 {micro}g/l. This pattern of response was also exhibited by the offspring. Trace metal concentrations in the clean site populations were very similar, however the polluted site population contained {sup {minus}}10 times the control site values of manganese and {approximately}35 times the values of zinc and copper. The results suggest that the polluted site population of E. intestinalis has developed a degree of copper tolerance which appears to have a genetic basis. This investigation is consistent with previous work into copper tolerance in ship-fouling populations of E. intestinalis var. compressa. A commercially available HSP70 antibody with a high degree of cross-reactivity to E. intestinalis has been identified and used to screen samples of the seaweed from the aforementioned populations.« less

  11. Copper in the intake and discharge zones of the Surry and Salem Nuclear Power Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, F.L.; Bishop, D.J.; Rice, D.W. Jr.

    Copper concentrations were measured in the soluble and particulate fractions of water samples and bedload sediments collected in intake and discharge areas of the Surry and Salem Nuclear Power Stations during normal operations. Additional samples of water and suspended particles were collected during startup of Unit 2 at the Salem Power Station. In water samples collected from Surry, total copper ranged from 6.5 to 24.7 and labile copper from 0.5 to 2.9 ..mu..g/L; in those from Salem, total copper ranged from 6.7 to 10.6 and labile from 0.9 to 3.8 ..mu..g/L. At both sites the highest total copper concentration wasmore » measured in January 1979 during a period of high runoff. In general, differences between influent and effluent waters were small; the maximum was 4.2 ..mu..g Cu/L. Copper concentration in the water during startup of Unit 2 of Salem was high initially (>2500 ..mu..g Cu/L) but was almost entirely in the particulate fraction; labile copper was only 0.6 ..mu..g/L. The apparent complexing capacity (ACC) of the waters from Surry ranged from 6 to 40 and those from Salem from 5 to 60 ..mu..g Cu/L. Ranges in dissolved organic carbon were smaller, 2.9 to 5.1 and 2.2 to 5.0 mg C/L for Surry and Salem, respectively, and showed no relationship with ACC. Ultrafiltration of discharge waters indicated that, in most samples, the largest fraction of copper in the untreated water was in the >10,000 <100,000 molecular weight fraction; in waters treated to destroy dissolved organic carbon, it was generally in the >100,000 molecular weight fraction.Copper concentrations in intact bedload sediments from the intake area of Surry ranged from 2.3 to 26 and of Salem from 36 to 74 ..mu..g/g dry weight; those in the discharge area of Surry ranged from 13 to 30 and of Salem from 3 to 67. We noted considerable spatial heterogeneity both at the intake and discharge areas, and higher copper concentrations in the <62-..mu..m fraction than in intact sediments.« less

  12. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.

    PubMed

    Lee, Changkeun; Hong, Seongjin; Kwon, Bong-Oh; Lee, Jung-Ho; Ryu, Jongseong; Park, Young-Gyu; Kang, Seong-Gil; Khim, Jong Seong

    2016-08-01

    Concern about leakage of carbon dioxide (CO2) from deep-sea storage in geological reservoirs is increasing because of its possible adverse effects on marine organisms locally or at nearby coastal areas both in sediment and water column. In the present study, we examined how elevated CO2 affects various intertidal epibenthic (benthic copepod), intertidal endobenthic (Manila clam and Venus clam), sub-tidal benthic (brittle starfish), and free-living (marine medaka) organisms in areas expected to be impacted by leakage. Acute lethal and sub-lethal effects were detected in the adult stage of all test organisms exposed to varying concentrations of CO2, due to the associated decline in pH (8.3 to 5.2) during 96-h exposure. However, intertidal organisms (such as benthic copepods and clams) showed remarkable resistance to elevated CO2, with the Venus clam being the most tolerant (LpH50 = 5.45). Sub-tidal species (such as brittle starfish [LpH50 = 6.16] and marine medaka [LpH50 = 5.91]) were more sensitive to elevated CO2 compared to intertidal species, possibly because they have fewer defensive capabilities. Of note, the exposure duration might regulate the degree of acute sub-lethal effects, as evidenced by the Venus clam, which showed a time-dependent effect to elevated CO2. Finally, copper was chosen as a model toxic element to find out the synergistic or antagonistic effects between ocean acidification and metal pollution. Combination of CO2 and Cu exposure enhances the adverse effects to organisms, generally supporting a synergistic effect scenario. Overall, the significant variation in the degree to which CO2 adversely affected organisms (viz., working range and strength) was clearly observed, supporting the general concept of species-dependent effects of elevated CO2.

  13. Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells.

    PubMed

    Li, Ying; Kang, Zhen-Long; Qiao, Na; Hu, Lian-Mei; Ma, Yong-Jiang; Liang, Xiao-Huan; Liu, Ji-Long; Yang, Zeng-Ming

    2017-05-01

    The aim of this study was to investigate the effects of copper ions on decidualization of human endometrial stromal cells (HESCs) cultured in vitro. Firstly, non-toxic concentrations of copper D-gluconate were screened in HESCs based on cell activity. Then, the effects of non-toxic concentrations of copper ions (0~250 μM) were examined on decidualization of human endometrial stromal cells. Our data demonstrated that the mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1were down-regulated during decidualization following the treatments with 100 or 250 μM copper ions. Meanwhile, the amount of malonaldehyde (MDA) in the supernatant of HESCs was increased. These results showed that in vitro decidualization of HESCs was impaired by copper treatment.

  14. Copper Doped Methylene Blue Sensitized Poly(vinyl alcohol)-Acrylamide Films for Stable Diffraction Efficiency

    NASA Astrophysics Data System (ADS)

    John, Beena Mary; Joseph, Rani; Sreekumar, K.; Sudha Kartha, C.

    2006-11-01

    Copper doped methylene blue sensitized poly(vinyl alcohol) (MBPVA)-acrylamide films were fabricated to improve the storage life of recorded gratings. The films were fabricated using gravity settling method and the copper chloride concentration was optimized as 3.18× 10-3 mol/l for a dye concentration of 6.2× 10-4 mol/l. The gratings recorded on the optimized film constitution could be stored for months with stable diffraction efficiency (24%) without any chemical or thermal fixing techniques. The resolution of the material is found to be unaffected with the addition of copper chloride.

  15. [Biomineralization of copper in Candida fukuyamaensis RCL-3].

    PubMed

    Irazusta, Verónica; Michel, Lucas; de Figueroa, Lucía I C

    2016-01-01

    Candida fukuyamaensis RCL-3 yeast has the ability to decrease copper concentration in a culture medium. High copper concentrations change the cell color from white/cream to brown. The effect of color change ceases with the addition of KCN or when cells are grown in a culture medium without sulfate ions. These results could be associated with CuS bioaccumulation in the cell surface. This report revealed that mineralization would be a mechanism used by this yeast for copper bioremediation. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Lingual dyskinesia and tics: a novel presentation of copper-metabolism disorder.

    PubMed

    Goez, Helly R; Jacob, Francois D; Yager, Jerome Y

    2011-02-01

    Copper is a trace element that is required for cellular respiration, neurotransmitter biosynthesis, pigment formation, antioxidant defense, peptide amidation, and formation of connective tissue. Abnormalities of copper metabolism have been linked with neurologic disorders that affect movement, such as Wilson disease and Menkes disease; however, the diagnosis of non-Wilson, non-Menkes-type copper-metabolism disorders has been more elusive, especially in cases with atypical characteristics. We present here the case of an adolescent with a novel presentation of copper-metabolism disorder who exhibited acute severe hemilingual dyskinesia and prominent tics, with ballismus of the upper limbs, but had normal brain and spinal MRI results and did not show any signs of dysarthria or dysphagia. His serum copper and ceruloplasmin levels were low, but his urinary copper level was elevated after penicillamine challenge. We conclude that copper-metabolism disorders should be included in the differential diagnosis for movement disorders, even in cases with highly unusual presentations, because many of them are treatable. Moreover, a connection between copper-metabolism disorders and tics is presented, to our knowledge, for the first time in humans; further investigation is needed to better establish this connection and understand its underlying pathophysiology.

  17. Role of Copper and Homocysteine in Pressure Overload Heart Failure

    PubMed Central

    Hughes, William M.; Rodriguez, Walter E.; Rosenberger, Dorothea; Chen, Jing; Sen, Utpal; Tyagi, Neetu; Moshal, Karni S.; Vacek, Thomas; Kang, Y. James

    2009-01-01

    Elevated levels of homocysteine (Hcy) (known as hyperhomocysteinemia HHcy) are involved in dilated cardiomyopathy. Hcy chelates copper and impairs copper-dependent enzymes. Copper deficiency has been linked to cardiovascular disease. We tested the hypothesis that copper supplement regresses left ventricular hypertrophy (LVH), fibrosis and endothelial dysfunction in pressure overload DCM mice hearts. The mice were grouped as sham, sham + Cu, aortic constriction (AC), and AC + Cu. Aortic constriction was performed by transverse aortic constriction. The mice were treated with or without 20 mg/kg copper supplement in the diet for 12 weeks. The cardiac function was assessed by echocardiography and electrocardiography. The matrix remodeling was assessed by measuring matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinases (TIMPs), and lysyl oxidase (LOX) by Western blot analyses. The results suggest that in AC mice, cardiac function was improved with copper supplement. TIMP-1 levels decreased in AC and were normalized in AC + Cu. Although MMP-9, TIMP-3, and LOX activity increased in AC and returned to baseline value in AC + Cu, copper supplement showed no significant effect on TIMP-4 activity after pressure overload. In conclusion, our data suggest that copper supplement helps improve cardiac function in a pressure overload dilated cardiomyopathic heart. PMID:18679830

  18. Diffusive Milli-Gels (DMG) for in situ assessment of metal bioavailability: A comparison with labile metal measurement using Chelex columns and acute toxicity to Ceriodaphnia dubia for copper in freshwaters.

    PubMed

    Perez, Magali; Simpson, Stuart L; Lespes, Gaëtane; King, Josh J; Adams, Merrin S; Jarolimek, Chad V; Grassl, Bruno; Schaumlöffel, Dirk

    2016-12-01

    Fluctuations in concentrations of bioavailable metals occur in most natural waters. In situ measurements are desirable to predict risks of adverse effects to aquatic organisms. We evaluated Diffusive Milli-Gels (DMG), a new in situ passive sampler, for assessing the bioavailability and toxicity of copper in waters exhibiting a wide range of characteristics. The performance was compared to an established Chelex-column method that measures labile copper concentrations by discrete sampling, and the ability to predict acute toxicity to the cladoceran, Ceriodaphnia dubia. The labile copper concentrations measured by the DMG and Chelex-column methods decreased with increasing dissolved organic carbon (DOC) (1.9-15 mg L -1 ) and hardness (21-270 mg CaCO 3  L -1 hardness), with 20-70% of total dissolved copper being present as labile copper. Toxicity decreased with increasing DOC and hardness. Strong linear relationships existed between the EC50 for C. dubia and DOC, and when the EC50 was related to either the labile copper concentrations measured by DMG (r 2  = 0.874) or the Chelex column (0.956) methods. The study demonstrates that the DMG passive sampler is a relevant tool for the in situ assessment of environmental risks posed by metals whose toxicity is strongly influenced by speciation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evidence of transboundary mercury and other pollutants in the Puyango-Tumbes River basin, Ecuador-Peru.

    PubMed

    Marshall, Bruce G; Veiga, Marcello M; Kaplan, Robert J; Adler Miserendino, Rebecca; Schudel, Gary; Bergquist, Bridget A; Guimarães, Jean R D; Sobral, Luis G S; Gonzalez-Mueller, Carolina

    2018-04-25

    In Portovelo in southern Ecuador, 87 gold processing centers along the Puyango-Tumbes River produce an estimated 6 tonnes of gold per annum using a combination of mercury amalgamation and/or cyanidation and processing poly-metallic ores. We analysed total Hg, Hg isotopes, total arsenic, cadmium, copper, lead and zinc in water and sediment along the Puyango in 2012-2014. The highest total mercury (THg) concentrations in sediments were found within a 40 km stretch downriver from the processing plants, with levels varying between 0.78-30.8 mg kg-1 during the dry season and 1.80-70.7 mg kg-1 during the wet season, with most concentrations above the CCME (Canadian Council of Ministers of the Environment) Probable Effect Level (PEL) of 0.5 mg kg-1. Data from mercury isotopic analyses support the conclusion that mercury use during gold processing in Portovelo is the source of Hg pollution found downstream in the Tumbes Delta in Peru, 160 km away. The majority of the water and sediment samples collected from the Puyango-Tumbes River had elevated concentrations of, arsenic, cadmium, copper, lead and zinc exceeding the CCME thresholds for the Protection of Aquatic Life. At monitoring points immediately below the processing plants, total dissolved concentrations of these metals exceeded the thresholds by 156-3567 times in surface waters and by 19-740 times in sediment. The results illustrate a significant transboundary pollution problem involving Hg and other toxic metals, amplified by the fact that the Puyango-Tumbes River is the only available water source in the semi-arid region of northern Peru.

  20. Responses of lucerne (Medicago sativa L.) and rhizobia to copper-based fungicide application in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Schneider, Martin; Dober, Melanie; Jöchlinger, Lisa; Keiblinger, Katharina; Soja, Gerhard; Mentler, Axel; Zechmeister-Boltenstern, Sophie; Bruckner, Alexander; Golestani Fard, Alireza; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    For more than 120 years, salts of copper (Cu) have been used in viticulture to prevent damages by fungal diseases. Due to restrictions in the use of synthetic fungicides and mineral fertilizers, organic viticulture depends on Cu as well as on biological nitrogen fixation. Here, we conducted an eco-toxicological pot experiment with an acidic, sandy soil and a calcareous, loamy soil and incrementally increasing fungicide application rates from 0 to 5000 mg Cu kg-1 soil. Lucerne (Medicago sativa L. cultivar. Plato) was grown in the pots for 3 months under greenhouse conditions. Acetylene reduction assays performed with harvested nodules showed no response to elevated soil Cu concentrations indicating that the nitrogen fixing capacity of rhizobia was not compromised by Cu in our experiment. Nevertheless, the nodule biomass was very sensitive to Cu and strongly decreased due to reduced amounts of fine roots and less energy supply by the plant. Legumes are known to be Cu-sensitive, and our contribution also showed a decrease in harvest by 50 % (EC50) at 21 mg kg-1 plant Cu tissue concentration in the acidic soil and at 30 mg kg-1 in the calcareous soil. This corresponded to diffusional fluxes measured by diffusive gradients in thin films (DGT) of 202 and 368 fmol cm-2 s-1, respectively. DGT measurements showed that in the acidic soil, Cu was 2 to 10 times more available for plants, depending on the concentration applied, than in the calcareous soil. A modeling approach for estimating the effective concentration (EC) by including the DGT-estimated plant Cu content and the pH produced more accurate values (NRMSE of 21.9 to 20.1 %) than EC directly estimated from DGT.

  1. The effect of copper from water and food: changes of serum nonceruloplasmin copper and brain's amyloid-beta in mice.

    PubMed

    Wu, Min; Han, Feifei; Gong, Weisha; Feng, Lifang; Han, Jianzhong

    2016-09-14

    Copper is an essential element and also produces adverse health consequences when overloaded. Food and water are the main sources of copper intake, however few studies have been conducted to investigate the difference between the ways of its intake in water and food in animals. In this study, copper was fed to mice with food as well as water (two groups: water and diet) for three months at concentrations of 6, 15 and 30 ppm. The copper concentration in water was adjusted for keeping the same amount during its intake in food. The experimental studies show a slow growth rate, lower hepatic reduced glutathione (GSH)/superoxide dismutase (SOD) activity and higher serum 'free' copper in the water group. The brain's soluble amyloid-beta 1-42 (Aβ42) of the water group was significantly higher than that of the diet group at the levels of 6 and 15 ppm. In conclusion, copper in the water group significantly increased the soluble Aβ42 in the brain and the 'free' copper in the serum, decreased the growth rate and hepatic GSH/SOD activity. The research studies carried out suggest that the copper in water is more 'toxic' than copper in diet and may increase the risk of Alzheimer's disease (AD).

  2. Too much is bad--an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions.

    PubMed

    Anjum, Naser A; Singh, Harminder P; Khan, M Iqbal R; Masood, Asim; Per, Tasir S; Negi, Asha; Batish, Daizy R; Khan, Nafees A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-03-01

    Heavy metal ions such as cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn) are considered essential/beneficial for optimal plant growth, development, and productivity. However, these ions readily impact functions of many enzymes and proteins, halt metabolism, and exhibit phytotoxicity at supra-optimum supply. Nevertheless, the concentrations of these heavy metal ions are increasing in agricultural soils worldwide via both natural and anthropogenic sources that need immediate attention. Considering recent breakthroughs on Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: (a) overviews the status in soils and their uptake, transport, and significance in plants; (b) critically discusses their elevated level-mediated toxicity to both plant growth/development and cell/genome; (c) briefly cross talks on the significance of potential interactions between previous plant-beneficial heavy metal ions in plants; and (d) highlights so far unexplored aspects in the current context.

  3. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    PubMed

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  4. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.

    PubMed

    Tao, Hu-Chun; Liang, Min; Li, Wei; Zhang, Li-Juan; Ni, Jin-Ren; Wu, Wei-Min

    2011-05-15

    Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu(2)O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1L) with different concentrations of CuSO(4) solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu(2+)/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m(3) at an initial 6412.5 ± 26.7 mg Cu(2+)/L concentration. High Cu(2+) removal efficiency (>99%) and final Cu(2+) concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3mg/L) was observed at an initial 196.2 ± 0.4 mg Cu(2+)/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu(2+) was reduced to cuprous oxide (Cu(2)O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu(2+) concentration (0.1M) but not in the others. The sustainability of high Cu(2+) removal (>96%) by MFC was further examined by fed-batch mode for eight cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Water requirements of the copper industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration was higher in dissolved solids and was harder than the water used in smelting and refining. Water used in mining and ore concentration had a median dissolved solids content of about 400 ppm and a median hardness (as CaCO3) of about 200 ppm. The median values for water used in smelting and refining were only half these amounts.

  6. Copper removal from contaminated soils by soil washing process using camellian-derived saponin

    NASA Astrophysics Data System (ADS)

    Reyes, Arturo; Fernanda Campos, Maria; Videla, Álvaro; Letelier, María Victoria; Fuentes, Bárbara

    2015-04-01

    Antofagasta Region in North of Chile has been the main copper producer district in the world. As a consequence of a lack of mining closure regulation, a large number of abandon small-to-medium size metal-contaminated sites have been identified in the last survey performed by the Chilean Government. Therefore, more research development on sustainable reclamation technologies must be made in this extreme arid-dry zone. The objective of this study is to test the effectiveness of soil remediation by washing contaminated soil using camellian-derived saponin for the mobilization of copper. Soil samples were taken from an abandoned copper mine site located at 30 km North Antofagasta city. They were dried and sieved at 75 µm for physico-chemical characterization. A commercial saponin extracted from camellias seed was used as biosurfactant. The soil used contains 67.4 % sand, 26.3 % silt and 6.3 % clay. The soil is highly saline (electric conductivity, 61 mScm-1), with low organic matter content (0.41%), with pH 7.30, and a high copper concentration (2200 mg Kg-1 soil). According to the sequential extraction procedure of the whole soil, copper species are mainly as exchangeable fraction (608.2 mg Kg-1 soil) and reducible fraction (787.3 mg Kg-1 soil), whereas the oxidizable and residual fractions are around 205.7 and 598.8 mg Kg-1 soil, respectively. Soil particles under 75 µm contain higher copper concentrations (1242 mg Kg-1 soil) than the particle fraction over 75 µm (912 mg Kg-1 soil). All washing assays were conducted in triplicate using a standard batch technique with and without pH adjustment. The testing protocols includes evaluation of four solid to liquid ratio (0.5:50; 1.0:50; 2.0:50, and 5.0:50) and three saponin concentrations (0, 1, and 4 mg L-1). After shaking (24 h, 20±1 °C) and subsequently filtration (0.45 µm), the supernatants were analyzed for copper and pH. The removal efficiencies of copper by saponin solutions were calculated in according to the concentrations of copper in aqueous solution and its initial concentration on contaminated soil. It was found along this study that the washing of soils reaches a maximum performance when a 0.5:50 ratio soil:water, and 4 mg L-1 of saponin solution were used, in comparison with any other ratios and saponin dosage evaluated. Moreover, when saponin solution (4 mg L-1) was adjusted at pH 4.0, the efficiency of copper removal increased more than three times (98.3 mg Kg-1 soil) in comparison with the washing without pH adjustment (27.7 mg Kg-1 soil soil). Copper removal was found to be dependent on saponin concentration. The carboxyl group of the saponin hydrophilic head molecule could form copper-aquo complexes, which contribute to the mobilization of copper. However, a low pH is also necessary to solubilize and release copper from soil allowing interaction with saponin. It can be concluded that the use of saponin for washing soils containing copper is a cost-effective and environmental friendly alternative for cleaning and remediation of contaminated soils in the Antofagasta Region.

  7. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    ERIC Educational Resources Information Center

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  8. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  9. Effect of copper and silver ionization on Legionella pneumophila eradication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.E.; Vidic, R.D.; Stout, J.E.

    1995-11-01

    The presence of Legionella pneumophila in water distribution systems has been epidemiologically linked to hospital-acquired Legionnaires` disease. The objective of this study was to evaluate the efficiency of copper and silver ions for inactivation of Legionella pneumophila. Experimental results showed that L. pneumophila was completely inactivated at copper concentration of 0.1 mg/L within the period of 2.5 hours while 6-log reduction requires a Ct value of 0.8 mg/L*hour. On the other hand, more than 24 hours was required to completely eradicate L. pneumophila at the highest silver ion concentration (0.08 mg/L) tested and only 4-log reduction is observed for Ctmore » value of 0.8 mg/L*hour. The effective synergism of these ions in eradicating L. pneumophila was observed for copper concentrations of 0.05 and silver concentration of 0.04 mg/L. One approach for the control of L. pneumophila in water distribution systems is to initiate copper/silver ion concentrations at 0.4/0.04 mg/L to achieve complete eradication of L. pneumophila already present in the water distribution system (as established in previous studies) followed by a lower residual (0.05/0.04 mg/L) protection against L. pneumophila in the incoming water.« less

  10. Selection of associated heterotrophs by methane-oxidizing bacteria at different copper concentrations.

    PubMed

    van der Ha, David; Vanwonterghem, Inka; Hoefman, Sven; De Vos, Paul; Boon, Nico

    2013-03-01

    Due to the increasing atmospheric concentration of the greenhouse gas methane, more knowledge is needed on the management of methanotrophic communities. While most studies have focused on the characteristics of the methane-oxidizing bacteria (MOB), less is known about their interactions with the associated heterotrophs. Interpretative tools based on denaturing gradient gel electrophoresis allowed to evaluate the influence of copper-an important enzymatic regulator for MOB-on the activity and composition of the bacterial community. Over 30 days, enrichments with 0.1, 1.0 and 10 μM Cu(2+) respectively, showed comparable methane oxidation activities. The different copper concentrations did not create major shifts in the methanotrophic communities, as a Methylomonas sp. was able to establish dominance at all different copper concentrations by switching between both known methane monooxygenases. The associated heterotrophic communities showed continuous shifts, but over time all cultures evolved to a comparable composition, independent of the copper concentration. This indicates that the MOB selected for certain heterotrophs, possibly fulfilling vital processes such as removal of toxic compounds. The presence of a large heterotrophic food web indirectly depending on methane as sole carbon and energy source was confirmed by a clone library wherein MOB only formed a minority of the identified species.

  11. Lake sediments record prehistoric lead pollution related to early copper production in North America.

    PubMed

    Pompeani, David P; Abbott, Mark B; Steinman, Byron A; Bain, Daniel J

    2013-06-04

    The mining and use of copper by prehistoric people on Michigan's Keweenaw Peninsula is one of the oldest examples of metalworking. We analyzed the concentration of lead, titanium, magnesium, iron, and organic matter in sediment cores recovered from three lakes located near mine pits to investigate the timing, location, and magnitude of ancient copper mining pollution. Lead concentrations were normalized to lithogenic metals and organic matter to account for processes that can influence natural (or background) lead delivery. Nearly simultaneous lead enrichments occurred at Lake Manganese and Copper Falls Lake ∼8000 and 7000 years before present (yr BP), indicating that copper extraction occurred concurrently in at least two locations on the peninsula. The poor temporal coherence among the lead enrichments from ∼6300 to 5000 yr BP at each lake suggests that the focus of copper mining and annealing shifted through time. In sediment younger than ∼5000 yr BP, lead concentrations remain at background levels at all three lakes, excluding historic lead increases starting ∼150 yr BP. Our work demonstrates that lead emissions associated with both the historic and Old Copper Complex tradition are detectable and can be used to determine the temporal and geographic pattern of metal pollution.

  12. Evidence for extreme partitioning of copper into a magmatic vapor phase.

    PubMed

    Lowenstern, J B; Mahood, G A; Rivers, M L; Sutton, S R

    1991-06-07

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits.

  13. Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction.

    PubMed

    Han, Baisui; Altansukh, Batnasan; Haga, Kazutoshi; Stevanović, Zoran; Jonović, Radojka; Avramović, Ljiljana; Urosević, Daniela; Takasaki, Yasushi; Masuda, Nobuyuki; Ishiyama, Daizo; Shibayama, Atsushi

    2018-06-15

    Sulfide copper mineral, typically Chalcopyrite (CuFeS 2 ), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of un‒recovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of low‒grade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using high‒pressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS 2 as main copper mineral) by HPL in a H 2 O media in the presence of pyrite, whereas the iron was co‒dissolved with copper according to an equation given as C Cu  = 38.40 × C Fe . To avoid co‒dissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPL‒solvent extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Low Hepatic Tissue Copper in Pediatric Nonalcoholic Fatty Liver Disease.

    PubMed

    Mendoza, Michael; Caltharp, Shelley; Song, Ming; Collin, Lindsay; Konomi, Juna V; McClain, Craig J; Vos, Miriam B

    2017-07-01

    Animal models and studies in adults have demonstrated that copper restriction increases severity of liver injury in nonalcoholic fatty liver disease (NAFLD). This has not been studied in children. We aimed to determine if lower tissue copper is associated with increased NAFLD severity in children. This was a retrospective study of pediatric patients who had a liver biopsy including a hepatic copper quantitation. The primary outcome compared hepatic copper concentration in NAFLD versus non-NAFLD. Secondary outcomes compared hepatic copper levels against steatosis, fibrosis, lobular inflammation, balloon degeneration, and NAFLD activity score (NAS). The study analysis included 150 pediatric subjects (102 with NAFLD and 48 non-NAFLD). After adjusting for age, body mass index z score, gamma glutamyl transferase, alanine aminotransferase, and total bilirubin, NAFLD subjects had lower levels of hepatic copper than non-NAFLD (P = 0.005). In addition, tissue copper concentration decreased as steatosis severity increased (P < 0.001). Copper levels were not associated with degree of fibrosis, lobular inflammation, portal inflammation, or balloon degeneration. In this cohort of pediatric subjects with NAFLD, we observed decreased tissue copper levels in subjects with NAFLD when compared with non-NAFLD subjects. In addition, tissue copper levels were lower in subjects with nonalcoholic steatohepatitis, a more severe form of the disease, when compared with steatosis alone. Further studies are needed to explore the relationship between copper levels and NAFLD progression.

  15. Evidence for the role of copper in the injury process of coliform bacteria in drinking water. [Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domek, M.J.; LeChevallier, M.W.; Cameron, S.C.

    1984-08-01

    Low levels of copper in chlorine-free distribution water caused injury of coliform populations. Monitoring of 44 drinking water samples indicated that 64% of the coliform population was injured. Physical and chemical parameters were measured, including three heavy metals (Cu, Cd, and Pb). Copper concentrations were important, ranging from 0.007 to 0.54 mg/liter. Statistical analyses of these factors were used to develop a model to predict coliform injury. The model predicted almost 90% injury with a copper concentration near the mean observed value (0.158 mg/liter) in distribution waters. Laboratory studies with copper concentrations of 0.025 and 0.050 mg/liter in an inorganicmore » carbon buffer under controlled conditions of temperature and pH caused over 90% injury within 6 and 2 days, respectively. Studies of the metabolism of injured Escherichia coli cells indicated that the respiratory chain is at least one site of damage in injured cells.« less

  16. Biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) exposed to in vivo sub-lethal copper concentrations

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Gu, Zhongqi; Liu, Hong; Shen, Heding; Yang, Jinglong

    2012-09-01

    Many aquatic organisms are negatively affected by exposure to high copper concentrations. We investigated the biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) to copper exposure. In vivo bioassays using M. coruscus and different copper concentrations were conducted. The activity of six biomarkers, namely superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured. Survival rates decreased with increased copper concentrations and exposure times. The LC50 values at 48, 72, and 96 h exposure were 0.48, 0.37, and 0.32 mg/L, respectively. Within digestive glands, CAT activity increased with increasing Cu concentrations. The activity of AKP showed no significant change, while the remaining four enzymes showed decreasing activity with increasing Cu concentrations. Within the gills, AKP activity increased when the Cu concentration was 0.05 mg/L, but showed no significant changes at higher concentrations. Activity of CAT and ACP within gills tended to decrease with increasing Cu concentration. The activity of SOD and GPT decreased at an exposure concentration of 0.2 mg/L. GOT activity within gills decreased at 0.1 mg/L and increased at an exposure concentration of 0.2 mg/L. Within the adductor muscle, AKP activity increased at 0.05 mg/L but did not change at higher exposure concentrations. ACP activity within adductor muscle tissue showed no change, while activities of CAT, GOT and GPT decreased with increasing Cu concentrations. SOD activity within the adductor muscle tissue significantly decreased at the 0.02, 0.05 and 0.2 mg/L exposure concentrations. Our results show tissue specific differences for the six biomarkers in for M. coruscus. Our findings provide the basis for the establishment of reference activity levels against which biomarker changes can be estimated, and are essential preliminary steps in development of in vivo bioassays.

  17. Select tissue mineral concentrations and chronic wasting disease status in mule deer from North-central Colorado.

    PubMed

    Wolfe, Lisa L; Conner, Mary M; Bedwell, Cathy L; Lukacs, Paul M; Miller, Michael W

    2010-07-01

    Trace mineral imbalances have been suggested as having a causative or contributory role in chronic wasting disease (CWD), a prion disease of several North American cervid species. To begin exploring relationships between tissue mineral concentrations and CWD in natural systems, we measured liver tissue concentrations of copper, manganese, and molybdenum in samples from 447 apparently healthy, adult (> or = 2 yr old) mule deer (Odocoileus hemionus) culled or vehicle killed from free-ranging populations in north-central Colorado, United States, where CWD occurs naturally; we also measured copper concentrations in brain-stem (medulla oblongata at the obex) tissue from 181 of these deer. Analyses revealed a wide range of concentrations of all three minerals among sampled deer (copper: 5.6-331 ppm in liver, 1.5-31.9 ppm in obex; manganese: 0.1-21.4 ppm in liver; molybdenum: 0.5-4.0 ppm in liver). Bayesian multiple regression analysis revealed a negative association between obex copper (-0.097; 95% credible interval -0.192 to -0.006) and the probability of sampled deer also being infected with CWD, as well as a positive association between liver manganese (0.158; 95% credible interval 0.066 to 0.253) and probability of infection. We could not discern whether the tendencies toward lower brain-stem copper concentrations or higher systemic manganese concentrations in infected deer preceded prion infection or rather were the result of infection and its subsequent effects, although the distribution of trace mineral concentrations in infected deer seemed more suggestive of the latter.

  18. Assessment of the Zinc and Copper Status in Alpaca.

    PubMed

    Pechová, A; Husáková, T; Pavlata, L; Holasová, M; Hauptmanová, K

    2018-02-01

    This study was performed with the aim of investigating the concentration of zinc and copper in the blood of healthy alpacas (Vicugna pacos) kept in central Europe and to compare the concentration of Zn and Cu in plasma and in whole blood. A further objective was to evaluate blood Zn and Cu in relation to different micromineral supplementation, age and sex groups of alpacas. A total of 299 alpacas (224 adults and 75 crias) from 18 farms were included in this study. The concentrations of copper and zinc in plasma/whole blood were measured by flame atomic absorption spectrometry. The results of this study show high individual variability in plasma Zn (median 3.54, range 1.56-8.01 μmol/l), whole blood Zn (median 10.01, range 6.23-75.0 μmol/l), plasma Cu (median 7.53, range 2.93-16.41 μmol/l) and whole blood Cu (median 6.33, range 3.02-13.95 μmol/l). Plasma Zn was not significantly influenced by sex, age or feeding group. Whole blood Zn was only significantly higher in females than in males. The intake of Zn in all groups was equal to or higher than the nutritional recommendation. During excessive supplementation, Zn absorption decreased and thus blood Zn did not reflect the higher intake. Only a weak correlation was found (Spearman correlation coefficient r = 0.384; p > 0.01; n = 204) between plasma and whole blood Zn concentrations. Plasma copper concentration was significantly influenced by age, sex and feeding; whole blood Cu by age and feeding. However, neither plasma Cu nor whole blood Cu reflected the intake of the element. We found a close correlation between plasma and blood copper concentrations (Spearman correlation coefficient r = 0.9043; p ≤ 0.01; n = 99). According to our results, copper in plasma or blood is not a good indicator of copper intake.

  19. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    NASA Astrophysics Data System (ADS)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  20. Is Exposure to Macondo Oil Reflected in the Otolith Chemistry of Marsh-Resident Fish?

    PubMed Central

    López-Duarte, Paola C.; Fodrie, F. Joel; Jensen, Olaf P.; Whitehead, Andrew; Galvez, Fernando; Dubansky, Benjamin; Able, Kenneth W.

    2016-01-01

    Genomic and physiological responses in Gulf killifish (Fundulus grandis) in the northern Gulf of Mexico have confirmed oil exposure of resident marsh fish following the Macondo blowout in 2010. Using these same fish, we evaluated otolith microchemistry as a method for assessing oil exposure history. Laser-ablation inductively-coupled-plasma mass spectrometry was used to analyze the chemical composition of sagittal otoliths to assess whether a trace metal signature could be detected in the otoliths of F. grandis collected from a Macondo-oil impacted site in 2010, post-spill relative to pre-spill, as well as versus fish from areas not impacted by the spill. We found no evidence of increased concentrations of two elements associated with oil contamination (nickel and vanadium) in F. grandis otoliths regardless of Macondo oil exposure history. One potential explanation for this is that Macondo oil is relatively depleted of those metals compared to other crude oils globally. During and after the spill, however, elevated levels of barium, lead, and to a lesser degree, copper were detected in killifish otoliths at the oil-impacted collection site in coastal Louisiana. This may reflect oil contact or other environmental perturbations that occurred concomitant with oiling. For example, increases in barium in otoliths from oil-exposed fish followed (temporally) freshwater diversions in Louisiana in 2010. This implicates (but does not conclusively demonstrate) freshwater diversions from the Mississippi River (with previously recorded higher concentrations of lead and copper), designed to halt the ingress of oil, as a mechanism for elevated elemental uptake in otoliths of Louisiana marsh fishes. These results highlight the potentially complex and indirect effects of the Macondo oil spill and human responses to it on Gulf of Mexico ecosystems, and emphasize the need to consider the multiple stressors acting simultaneously on inshore fish communities. PMID:27682216

  1. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds.

    PubMed

    Waters, Brian M; Chu, Heng-Hsuan; Didonato, Raymond J; Roberts, Louis A; Eisley, Robynn B; Lahner, Brett; Salt, David E; Walker, Elsbeth L

    2006-08-01

    Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. Beta-glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues.

  2. Structural and electronic properties of copper-doped chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Guzman, David M.; Strachan, Alejandro

    2017-10-01

    Using ab initio molecular dynamics based on density functional theory, we study the atomic and electronic structure, and transport properties of copper-doped germanium-based chalcogenide glasses. These mixed ionic-electronic conductor materials exhibit resistance or threshold switching under external electric field depending on slight variations of chemical composition. Understanding the origin of the transport character is essential for the functionalization of glassy chalcogenides for nanoelectronics applications. To this end, we generated atomic structures for GeX3 and GeX6 (X = S, Se, Te) at different copper concentrations and characterized the atomic origin of electronic states responsible for transport and the tendency of copper clustering as a function of metal concentration. Our results show that copper dissolution energies explain the tendency of copper to agglomerate in telluride glasses, consistent with filamentary conduction. In contrast, copper is less prone to cluster in sulfides and selenides leading to hysteresisless threshold switching where the nature of transport is dominated by electronic midgap defects derived from polar chalcogen bonds and copper atoms. Simulated I -V curves show that at least 35% by weight of copper is required to achieve the current demands of threshold-based devices for memory applications.

  3. Copper Corrosion and Biocorrosion Events in Premise Plumbing

    PubMed Central

    Fischer, Diego A.; Alsina, Marco A.; Pastén, Pablo A.

    2017-01-01

    Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects. A conceptual model is proposed and the mathematical models are reviewed. PMID:28872628

  4. Copper Corrosion and Biocorrosion Events in Premise Plumbing.

    PubMed

    Vargas, Ignacio T; Fischer, Diego A; Alsina, Marco A; Pavissich, Juan P; Pastén, Pablo A; Pizarro, Gonzalo E

    2017-09-05

    Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects. A conceptual model is proposed and the mathematical models are reviewed.

  5. Characterization of Stormflows and Wastewater Treatment-Plant Effluent Discharges on Water Quality, Suspended Sediment, and Stream Morphology for Fountain and Monument Creek Watersheds, Colorado, 1981-2006

    USGS Publications Warehouse

    Mau, David P.; Stogner, Sr., Robert W.; Edelmann, Patrick

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median concentrations of dissolved nitrite plus nitrate ranged from 5.1 to 6.1 mg/L and were 4 to 7 times larger than concentrations at the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). The source of these larger dissolved nitrite plus nitrate concentrations has not been identified, but the fact that all measurements had elevated dissolved nitrite plus nitrate concentrations indicates a relatively constant source. Most stormflow concentrations of dissolved trace elements were smaller than concentrations from base-flow or normal-flow samples. However, median concentrations of total arsenic, copper, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during base flow or normal flow. Concentrations of dissolved and total copper, total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc ranged from 3 to 27 times larger at site 07103707 (FoCr_8th) than site 07103700 (FoCr_Manitou) during base flow, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek. The likely source area is Gold Hill Mesa, a former tailings pile for a gold refinery located just upstream from the confluence with Monument Creek, and upstream from site 07103707 (FoCr_8th). Farther downstream in Fountain Creek, stormflow samples for total copper, manganese, lead, nickel, and zinc were larger at the downstream site near the city of Security, site 07105800 (FoCr_Security), than at the upstream site near Janitell Road, site 07105530 (FoCr_Janitell), compared with other main-stem sites and indicated a relatively large source of these metals between the two sites. Nitrogen, phosphorus, and trace-element loads substantially increased during stormflow. Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with normal flow. The Apr

  6. ESD coating of copper with TiC and TiB2 based ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Talas, S.; Mertgenç, E.; Gökçe, B.

    2016-08-01

    In automotive industry, the spot welding is a general practice to join smaller sections of a car. This welding is specifically carried out in short time and in an elevated number with certain pressure applied on copper electrodes. In addition, copper electrodes are expected to endure against cyclic mechanical pressure and temperature that is released during the passage of the current. The deformation and oxidation behaviour of copper electrodes during service appear with increasing temperature of medium and they also need to be cleaned and cooled or replaced for the continuation of joining process. The coating of copper electrodes with ceramic matrix composites can provide alternative excellent high temperature strength and ensures both economic and efficient use of resources. This study shows that the ESD coating of copper electrodes with a continuous film of ceramic phase ensures an improved resistance to thermal effects during the service and the change in content of film may be critical for cyclic alloying.

  7. Effects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts.

    PubMed

    Ganda, E K; Bisinotto, R S; Vasquez, A K; Teixeira, A G V; Machado, V S; Foditsch, C; Bicalho, M; Lima, F S; Stephens, L; Gomes, M S; Dias, J M; Bicalho, R C

    2016-09-01

    Objectives of this clinical trial were to evaluate the effects of injectable trace mineral supplementation (ITMS) on somatic cell count (SCC), linear score (LS), milk yield, milk fat and protein contents, subclinical mastitis cure, and incidence of clinical mastitis in cows with elevated SCC. Holstein cows from a commercial dairy farm in New York were evaluated for subclinical mastitis, defined as SCC ≥200×10(3) cells/mL on the test day preceding enrollment. Cows with a history of treatment for clinical mastitis in the current lactation and those pregnant for more than 150d were not eligible for enrollment. Cows fitting inclusion criteria were randomly allocated to 1 of 2 treatment groups. Cows assigned to ITMS (n=306) received 1 subcutaneous injection containing zinc (300mg), manganese (50mg), selenium (25mg), and copper (75mg) at enrollment (d 0). Control cows (CTRL; n=314) received 1 subcutaneous injection of sterile saline solution. Following treatment, visual assessment of milk was performed daily, and cows with abnormal milk (i.e., presence of flakes, clots, or serous milk) were diagnosed with clinical mastitis (CM). Chronic clinical mastitis was defined as cows with 3 or more cases of CM. Milk yield, milk fat and protein contents, SCC, and LS were evaluated once monthly. Additionally, randomly selected animals were sampled to test serum concentrations of selected minerals on d0 and 30 (n=30 cows/treatment). Treatment did not affect serum concentrations of calcium, magnesium, phosphorus, potassium, copper, iron, manganese, selenium, and zinc on d30. Injectable supplementation with trace minerals did not improve overall cure of subclinical mastitis (CTRL=42.8 vs. ITMS=46.5%), although a tendency was observed in cows with 3 or more lactations (CTRL=27.1 vs. ITMS=40.0%). Supplementation did not reduce treatment incidence of CM (CTRL=48.2 vs. ITMS=41.7%); however, it tended to reduce the proportion of cows diagnosed with chronic CM (CTRL=16.9 vs. ITMS=12.0%), particularly among first-lactation cows (CTRL=18.4 vs. ITMS=7.6%). Cure of subclinical mastitis was associated with higher serum concentrations of phosphorus and selenium on d30. Supplementing trace minerals to cows with elevated SCC had no effect on milk yield, milk fat and protein contents, SCC, and LS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Molecular Characterization of CTR-type Copper Transporters in an Oceanic Diatom, Thalassiosira oceanica 1005

    NASA Astrophysics Data System (ADS)

    Kong, L.; Price, N. M.

    2016-02-01

    Copper is an essential micronutrient for phytoplankton growth because of its role as a redox cofactor in electron transfer proteins in photosynthesis and respiration, and a potentially limiting resource in parts of the open sea. Thalassiosira oceanica 1005 can grow at inorganic copper concentrations varying from 10 fmol/L to 10 nmol/L by regulating copper uptake across plasma membrane. Four putative CTR-type copper transporter genes (ToCTR1, ToCTR2, ToCTR3.1 and ToCTR3.2) were identified by BLASTP search against the T. oceanica genome. Predicted gene models were revised by assembled mRNA sequencing transcripts and updated gene models contained all conserved features of characterized CTR-type copper transporters. ToCTR3.1 and ToCTR3.2 may arise from one another by gene duplication as they shared a sequence similarity of 97.6% with a peptide insertion of 5 amino acids at N-terminus of ToCTR3.1. The expression of ToCTR1, ToCTR2 and ToCTR3.1/3.2 was upregulated in low copper concentrations, but only ToCTR3.1/3.2 showed a significant increase (2.5 fold) in copper-starved cells. Both ToCTR3.1 and ToCTR3.2 restored growth of a yeast double mutant, Saccharomyces cerevisiae ctr1Δctr3Δ, in copper deficient medium. GFP-fused ToCTR expression showed that some ToCTR3.1 localized to the plasma membrane but a large portion was retained in the endoplasmic reticulum. Inefficient targeting of ToCTR3.1 to the yeast outer membrane may explain poorer growth compared to the Saccharomyces native ScCTR1 transformant. Thus, diatom CTR genes encoding CTR-type copper transporters show high-affinity copper uptake and their regulation may enable diatoms to survive in ocean environments containing a wide range of copper concentrations.

  9. The presence of algae mitigates the toxicity of copper-based algaecides to a nontarget organism.

    PubMed

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest that typical concentrations used to control algae can cause deleterious acute impacts to nontarget organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. The present research measured the influence of algae on algaecide exposure and subsequent response of the nontarget species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (p < 0.05) in D. magna 48-h median lethal concentration (LC50) values were found when algae were present in exposures along with a copper salt or a chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 μg Cu/L, whereas Captain increased from 353.8 to 414.2 and 588.5 μg Cu/L in no algae, 5 × 10 5 , and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to D. magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to nontarget organisms. Environ Toxicol Chem 2018;9999:1-11. © 2018 SETAC. © 2018 SETAC.

  10. Efficient removal of copper from wastewater by using mechanically activated calcium carbonate.

    PubMed

    Hu, Huimin; Li, Xuewei; Huang, Pengwu; Zhang, Qiwu; Yuan, Wenyi

    2017-12-01

    Copper removal from aqueous solution is necessary from the stances of both environmental protection and copper resource recycling. It is important to develop a new chemical precipitation method suitable for removing copper particularly at low concentration as the case of waste mine water, with regards to the various problems related to the current precipitation methods by using strong alkalis or soluble sulfides. In this research, we studied a possible chemical precipitation of copper ions at concentration around 60 mg/L or lower by cogrinding copper sulfate in water with calcium carbonate (CaCO 3 ) using wet stirred ball milling. With the aid of ball milling, copper precipitation as a basic sulfate (posnjakite: Cu 4 (SO 4 ) (OH) 6 ·H 2 O) occurred at a very high copper removal rate of 99.76%, to reduce the residual copper concentration in the solution less than 0.5 mg/L, reaching the discharge limit, even with the addition amount of CaCO 3 as a stoichiometric ratio of CaCO 3 /Cu 2+ at 1:1. It is more interesting to notice that, at the same conditions, other heavy metals such as Ni, Mn, Zn and Cd do not precipitate obviously just with CaCO 3 addition at CaCO 3 /M 2+ at 1:1 so that the precipitate without the impurities can be processed as good source to recover copper. This newly proposed concept can be further developed to treat wastewaters with other metals to serve both purposes of environmental purification and resource recovery in a similar way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Metal-Macrofauna Interactions Determine Microbial Community Structure and Function in Copper Contaminated Sediments

    PubMed Central

    Mayor, Daniel J.; Gray, Nia B.; Elver-Evans, Joanna; Midwood, Andrew J.; Thornton, Barry

    2013-01-01

    Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs) all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management. PMID:23741430

  12. Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Bilgin, A.; Jaffe, P. R.

    2017-12-01

    Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.

  13. Metal-macrofauna interactions determine microbial community structure and function in copper contaminated sediments.

    PubMed

    Mayor, Daniel J; Gray, Nia B; Elver-Evans, Joanna; Midwood, Andrew J; Thornton, Barry

    2013-01-01

    Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs) all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management.

  14. Effect of copper treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis.

    PubMed

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Zhang, Wei-Peng; Bajic, Vladimir; Qian, Pei-Yuan

    2014-11-04

    Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper treatment on the community structure and functional gene composition, revealing that copper treatment had a selective effect on the functions of the bacterial community in the sponge. These findings suggest that copper pollution has an ecological impact on the sponge symbiont. The analysis showed that the untreated sponges hosted symbiotic autotrophic bacteria as dominant species, and the high-concentration copper treatment enriched for a heterotrophic bacterial community with enrichment for genes important for bacterial motility, supplementary cellular components, signaling and regulation, and virulence. Microscopic observation showed obvious bacterial aggregation and a reduction of sponge cell numbers in treated sponges, which suggested the formation of aggregates to reduce the copper concentration. The enrichment for functions of directional bacterial movement and supplementary cellular components and the formation of bacterial aggregates and phage enrichment are novel findings in sponge studies. Copyright © 2014 Tian et al.

  15. Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry

    PubMed Central

    2008-01-01

    The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed “click chemistry”, is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists. PMID:18680289

  16. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1992-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  17. Second-generation difluorinated cyclooctynes for copper-free click chemistry.

    PubMed

    Codelli, Julian A; Baskin, Jeremy M; Agard, Nicholas J; Bertozzi, Carolyn R

    2008-08-27

    The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed "click chemistry", is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists.

  18. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1993-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  19. Evaluation of some heavy metals residues in batteries and deep litter rearing systems in Japanese quail meat and offal in Egypt

    PubMed Central

    Ahmed, Ali M.; Hamed, Dalia M.; Elsharawy, Nagwa T.

    2017-01-01

    Aim: The main objectives of this study were for comparing the effect of batteries and deep litter rearing systems of domesticated Japanese quail, Coturnix coturnix japonica, on the concentration levels of cadmium, copper, lead, and zinc from the quail meat and offal in Ismailia, Egypt. Materials and Methods: A total of 40 quail meat and their offal samples were randomly collected from two main quail rearing systems: Battery (Group I) and deep litter system (Group II) for determination of concentration levels of cadmium, copper, lead, and zinc. In addition, 80 water and feed samples were randomly collected from water and feeders of both systems in the Food Hygiene Laboratory, Faculty of Veterinary Medicine, Suez Canal University for heavy metals determination. Results: The mean concentration levels of cadmium, copper, lead, and zinc in Group I were 0.010, 0.027, 1.137, and 0.516 ppm and for Group II were 0.093, 0.832, 0.601, and 1.651 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail feed in Group I were 1.114, 1.606, 5.822, and 35.11 ppm and for Group II were 3.010, 2.576, 5.852, and 23.616 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail meat for Group I were 0.058, 5.902, 10.244, and 290 ppm and for Group II were 0.086, 6.092, 0.136, and 1.280 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc for liver samples in Group I were 0.15, 8.32, 1.05, and 3.41 ppm and for Group II were 0.13, 8.88, 0.95, and 4.21 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in kidney samples for the Group I were 0.24, 4.21, 1.96, and 4.03 ppm and for Group II were 0.20, 5.00, 1.56, and 3.78 ppm, respectively. Kidney had the highest concentration levels of heavy metals followed by liver then muscles. The highest concentration levels of copper were observed in liver samples. The order of the levels of these trace elements obtained from the four different quail organs is Ca > Pb > Zn > Cu. Lead and cadmium concentration levels in quail meat samples were exceeded the Egyptian standardization limits and suggesting a health threat from lead and cadmium to the quail consumers. Conclusion: Battery rearing system is more hygienic than deep litter system from the point of heavy metals pollution of water and feeds of quail. Feed samples from battery system had means concentration levels of lead not significantly higher (p>0.05) than those samples from deep litter system. Meanwhile, water samples from battery system had means concentration levels of cadmium, copper, and zinc significantly higher (p>0.05) than those samples from deep litter system. Quail may carry health risks to consumers. PMID:28344413

  20. Evaluation of some heavy metals residues in batteries and deep litter rearing systems in Japanese quail meat and offal in Egypt.

    PubMed

    Ahmed, Ali M; Hamed, Dalia M; Elsharawy, Nagwa T

    2017-02-01

    The main objectives of this study were for comparing the effect of batteries and deep litter rearing systems of domesticated Japanese quail, Coturnix coturnix japonica , on the concentration levels of cadmium, copper, lead, and zinc from the quail meat and offal in Ismailia, Egypt. A total of 40 quail meat and their offal samples were randomly collected from two main quail rearing systems: Battery (Group I) and deep litter system (Group II) for determination of concentration levels of cadmium, copper, lead, and zinc. In addition, 80 water and feed samples were randomly collected from water and feeders of both systems in the Food Hygiene Laboratory, Faculty of Veterinary Medicine, Suez Canal University for heavy metals determination. The mean concentration levels of cadmium, copper, lead, and zinc in Group I were 0.010, 0.027, 1.137, and 0.516 ppm and for Group II were 0.093, 0.832, 0.601, and 1.651 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail feed in Group I were 1.114, 1.606, 5.822, and 35.11 ppm and for Group II were 3.010, 2.576, 5.852, and 23.616 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail meat for Group I were 0.058, 5.902, 10.244, and 290 ppm and for Group II were 0.086, 6.092, 0.136, and 1.280 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc for liver samples in Group I were 0.15, 8.32, 1.05, and 3.41 ppm and for Group II were 0.13, 8.88, 0.95, and 4.21 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in kidney samples for the Group I were 0.24, 4.21, 1.96, and 4.03 ppm and for Group II were 0.20, 5.00, 1.56, and 3.78 ppm, respectively. Kidney had the highest concentration levels of heavy metals followed by liver then muscles. The highest concentration levels of copper were observed in liver samples. The order of the levels of these trace elements obtained from the four different quail organs is Ca > Pb > Zn > Cu. Lead and cadmium concentration levels in quail meat samples were exceeded the Egyptian standardization limits and suggesting a health threat from lead and cadmium to the quail consumers. Battery rearing system is more hygienic than deep litter system from the point of heavy metals pollution of water and feeds of quail. Feed samples from battery system had means concentration levels of lead not significantly higher (p>0.05) than those samples from deep litter system. Meanwhile, water samples from battery system had means concentration levels of cadmium, copper, and zinc significantly higher (p>0.05) than those samples from deep litter system. Quail may carry health risks to consumers.

  1. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production.

    PubMed

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2016-05-15

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent concentrations of below 0.01 mg NH4-N L(-1), and had a long-term effect on nitrification performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Trace metals associated with deep-sea tailings placement at the Batu Hijau copper-gold mine, Sumbawa, Indonesia.

    PubMed

    Angel, Brad M; Simpson, Stuart L; Jarolimek, Chad V; Jung, Rob; Waworuntu, Jorina; Batterham, Grant

    2013-08-15

    The Batu Hijau copper-gold mine on the island of Sumbawa, Indonesia operates a deep-sea tailings placement (DSTP) facility to dispose of the tailings within the offshore Senunu Canyon. The concentrations of trace metals in tailings, waters, and sediments from locations in the vicinity of the DSTP were determined during surveys in 2004 and 2009. In coastal and deep seawater samples from Alas Strait and the South Coast of Sumbawa, the dissolved concentrations of Ag, As, Cd, Cr, Hg, Pb and Zn were in the sub μg/L range. Dissolved copper concentrations ranged from 0.05 to 0.65 μg/L for all depths at these sites. Dissolved copper concentrations were the highest in the bottom-water from within the tailings plume inside Senunu Canyon, with up to 6.5 μg Cu/L measured in close proximity to the tailings discharge. In general, the concentrations of dissolved and particulate metals were similar in 2004 and 2009. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    NASA Astrophysics Data System (ADS)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  4. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  5. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  6. The Myxococcus xanthus two-component system CorSR regulates expression of a gene cluster involved in maintaining copper tolerance during growth and development.

    PubMed

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ-Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.

  7. Evaluation of Serum Levels of Zinc, Copper, Iron, and Zinc/Copper Ratio in Cutaneous Leishmaniasis

    PubMed Central

    Pourfallah, F; Javadian, S; Zamani, Z; Saghiri, R; Sadeghi, S; Zarea, B; Faiaz, Sh; Mirkhani, F; Fatemi, N

    2009-01-01

    Background: The purpose of this study was to evaluate the levels of zinc (Zn), copper (Cu), iron (Fe) and zinc/ copper ratio in the serum of patients with cutaneous leishmaniasis in Qom Province, center of Iran. Methods: Serum levels of zinc and copper were determined by flame atomic absorption spectrophotometer and serum iron concentration was measured by using an Auto Analyzer. The study group consisted of 60 patients with cutaneous leishmaniasis and the control group of 100 healthy volunteers from the same area who were not exposed to cutaneous leishmaniasis. Result: There were no statistically significant differences in age and body mass index between the two groups. Serum Zn (P< 0.001) and Fe (P< 0.05) levels were lower in patients with cutaneous leishmaniasis than the control group. We also found serum Cu concentration (P< 0.05) in the patient group was significantly higher than that of the control group. However, zinc/ copper ratio (P< 0.001) was lower in patients with cutaneous leishmaniasis than in the control group. Conclusion: Our data indicated that Zn/Cu ratio was significantly lower in patients with CL as compared to the controls. Earlier reports suggest that, this ratio imbalance could be a useful marker for immune dysfunction in leishmaniasis. There was also strong association of Zn, Cu and Fe with CL. It suggests the use of blood zinc, copper, iron concentration and the copper/zinc ratio (Zn/Cu), as a means for estimating the prognosis of CL. PMID:22808376

  8. The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    PubMed Central

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J.; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains. PMID:23874560

  9. Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by γ-Secretase and Amyloid-β Peptide Production.

    PubMed

    Gerber, Hermeto; Wu, Fang; Dimitrov, Mitko; Garcia Osuna, Guillermo M; Fraering, Patrick C

    2017-03-03

    Recent evidence suggests involvement of biometal homeostasis in the pathological mechanisms in Alzheimer's disease (AD). For example, increased intracellular copper or zinc has been linked to a reduction in secreted levels of the AD-causing amyloid-β peptide (Aβ). However, little is known about whether these biometals modulate the generation of Aβ. In the present study we demonstrate in both cell-free and cell-based assays that zinc and copper regulate Aβ production by distinct molecular mechanisms affecting the processing by γ-secretase of its Aβ precursor protein substrate APP-C99. We found that Zn 2+ induces APP-C99 dimerization, which prevents its cleavage by γ-secretase and Aβ production, with an IC 50 value of 15 μm Importantly, at this concentration, Zn 2+ also drastically raised the production of the aggregation-prone Aβ43 found in the senile plaques of AD brains and elevated the Aβ43:Aβ40 ratio, a promising biomarker for neurotoxicity and AD. We further demonstrate that the APP-C99 histidine residues His-6, His-13, and His-14 control the Zn 2+ -dependent APP-C99 dimerization and inhibition of Aβ production, whereas the increased Aβ43:Aβ40 ratio is substrate dimerization-independent and involves the known Zn 2+ binding lysine Lys-28 residue that orientates the APP-C99 transmembrane domain within the lipid bilayer. Unlike zinc, copper inhibited Aβ production by directly targeting the subunits presenilin and nicastrin in the γ-secretase complex. Altogether, our data demonstrate that zinc and copper differentially modulate Aβ production. They further suggest that dimerization of APP-C99 or the specific targeting of individual residues regulating the production of the long, toxic Aβ species, may offer two therapeutic strategies for preventing AD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The response of Isidorella newcombi to copper exposure: Using an integrated biological framework to interpret transcriptomic responses from RNA-seq analysis.

    PubMed

    Ubrihien, Rodney P; Ezaz, Tariq; Taylor, Anne M; Stevens, Mark M; Krikowa, Frank; Foster, Simon; Maher, William A

    2017-04-01

    This study describes the transcriptomic response of the Australian endemic freshwater gastropod Isidorella newcombi exposed to 80±1μg/L of copper for 3days. Analysis of copper tissue concentration, lysosomal membrane destabilisation and RNA-seq were conducted. Copper tissue concentrations confirmed that copper was bioaccumulated by the snails. Increased lysosomal membrane destabilisation in the copper-exposed snails indicated that the snails were stressed as a result of the exposure. Both copper tissue concentrations and lysosomal destabilisation were significantly greater in snails exposed to copper. In order to interpret the RNA-seq data from an ecotoxicological perspective an integrated biological response model was developed that grouped transcriptomic responses into those associated with copper transport and storage, survival mechanisms and cell death. A conceptual model of expected transcriptomic changes resulting from the copper exposure was developed as a basis to assess transcriptomic responses. Transcriptomic changes were evident at all the three levels of the integrated biological response model. Despite lacking statistical significance, increased expression of the gene encoding copper transporting ATPase provided an indication of increased internal transport of copper. Increased expression of genes associated with endocytosis are associated with increased transport of copper to the lysosome for storage in a detoxified form. Survival mechanisms included metabolic depression and processes associated with cellular repair and recycling. There was transcriptomic evidence of increased cell death by apoptosis in the copper-exposed organisms. Increased apoptosis is supported by the increase in lysosomal membrane destabilisation in the copper-exposed snails. Transcriptomic changes relating to apoptosis, phagocytosis, protein degradation and the lysosome were evident and these processes can be linked to the degradation of post-apoptotic debris. The study identified contaminant specific transcriptomic markers as well as markers of general stress. From an ecotoxicological perspective, the use of a framework to group transcriptomic responses into those associated with copper transport, survival and cell death assisted with the complex process of interpretation of RNA-seq data. The broad adoption of such a framework in ecotoxicology studies would assist in comparison between studies and the identification of reliable transcriptomic markers of contaminant exposure and response. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Leaching of a copper flotation concentrate with ammonium persulfate in an autoclave system

    NASA Astrophysics Data System (ADS)

    Deniz Turan, M.; Soner Altundoğan, H.

    2014-09-01

    The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave system. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.

  12. Absorption Spectroscopy Analysis of Calcium-Phosphate Glasses Highly Doped with Monovalent Copper.

    PubMed

    Jiménez, José A

    2016-06-03

    CaO-P2 O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt-quench method through CuO and SnO co-doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu(+) ions on the optical band-gap energies, which were estimated on the basis of indirect-allowed transitions. The copper(I) content is estimated in the CuO/SnO-containing glasses after the assessment of the concentration dependence of Cu(2+) absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu(+) concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5-10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu(+) -Cu(+) interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band-gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease.

    PubMed

    Cheung, Carlos Chun Ho; Soon, Choong Yee; Chuang, Chia-Lin; Phillips, Anthony R J; Zhang, Shaoping; Cooper, Garth J S

    2015-09-01

    Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium, cobalt and copper.

    PubMed

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2017-12-01

    Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Juvenile roach (Rutilus rutilus) increase their anaerobic metabolism in response to copper exposure in laboratory conditions.

    PubMed

    Maes, Virginie; Betoulle, Stéphane; Jaffal, Ali; Dedourge-Geffard, Odile; Delahaut, Laurence; Geffard, Alain; Palluel, Olivier; Sanchez, Wilfried; Paris-Palacios, Séverine; Vettier, Aurélie; David, Elise

    2016-07-01

    This study aims to determine the potential impairment of cell energy synthesis processes (glycolysis and respiratory chain pathways) by copper in juvenile roach at different regulation levels by using a multi-marker approach. Juvenile roach were exposed to 0, 10, 50, and 100 µg/L of copper for 7 days in laboratory conditions. The glycolysis pathway was assessed by measuring the relative expression levels of 4 genes encoding glycolysis enzymes. The respiratory chain was studied by assessing the electron transport system and cytochrome c oxidase gene expression. Muscle mitochondria ultrastructure was studied, and antioxidant responses were measured. Furthermore, the main energy reserves-carbohydrates, lipids, and proteins-were measured, and cellular energy was evaluated by measuring ATP, ADP, AMP and IMP concentrations. This study revealed a disturbance of the cell energy metabolism due to copper exposure, with a significant decrease in adenylate energy charge in roach exposed to 10 μg/L of copper after 1 day. Moreover, ATP concentrations significantly decreased in roach exposed to 10 μg/L of copper after 1 day. This significant decrease persisted in roach exposed to 50 µg/L of copper after 7 days. AMP concentrations increased in all contaminated fish after 1 day of exposure. In parallel, the relative expression of 3 genes encoding for glycolysis enzymes increased in all contaminated fish after 1 day of copper exposure. Focusing on the respiratory chain, cytochrome c oxidase gene expression also increased in all contaminated fish at the two time-points. The activity of the electron transport system was not disturbed by copper, except in roach exposed to 100 µg/L of copper after 1 day. Copper induced a metabolic stress. Juvenile roach seemed to respond to the ensuing high energy demand by increasing their anaerobic metabolism, but the energy produced by the anaerobic metabolism is unable to compensate for the stress induced by copper after 7 days. This multi-marker approach allows us to reach a greater understanding of the effects of copper on the physiological responses of juvenile roach.

  16. Characterization of failure processes in tungsten copper composites under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.

    1989-01-01

    A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.

  17. The insulation of copper wire by the electrostatic coating process

    NASA Astrophysics Data System (ADS)

    Wells, M. G. H.

    1983-06-01

    A review of the fluidized bed electrostatic coating process and materials available for application to flat copper conductor has been made. Lengths of wire were rolled and electrostatically coated with two epoxy insulations. Electrical tests were made in air on coated samples at room and elevated temperatures. Compatibility tests in the cooling/lubricating turbine oil at temperatures up to 220 deg. C were also made. Recommendations for additional work are provided.

  18. Adverse health effects in Canada geese (Branta canadensis) associated with waste from zinc and lead mines in the Tri-State Mining District (Kansas, Oklahoma, and Missouri, USA).

    PubMed

    van der Merwe, Deon; Carpenter, James W; Nietfeld, Jerome C; Miesner, John F

    2011-07-01

    Lead and zinc poisoning have been recorded in a variety of bird species, including migrating waterfowl such as Canada Geese (Branta canadensis), at sites contaminated with mine waste from lead and zinc mines in the Tri-State Mining District, Kansas, Oklahoma, and Missouri, USA. The adverse health impacts from mine waste on these birds may, however, be more extensive than is apparent from incidental reports of clinical disease. To characterize health impacts from mine waste on Canada Geese that do not have observable signs of poisoning, four to eight apparently healthy birds per site were collected from four contaminated sites and an uncontaminated reference site, and examined for physical and physiologic evidence of metals poisoning. Tissue concentrations of silver, aluminum, arsenic, barium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, nickel, lead, selenium, thallium, vanadium, and zinc were determined by inductively coupled plasma mass spectroscopy. Adverse health effects due to lead were characterized by assessing blood δ-aminolevulinic acid dehydratase (ALAD) enzyme activity. Adverse effects associated with zinc poisoning were determined from histologic examination of pancreas tissues. Elevated tissue lead concentrations and inhibited blood ALAD enzyme activities were consistently found in birds at all contaminated sites. Histopathologic signs of zinc poisoning, including fibrosis and vacuolization, were associated with elevated pancreatic zinc concentrations at one of the study sites. Adverse health effects associated with other analyzed elements, or tissue concentrations indicating potentially toxic exposure levels to these elements, were not observed.

  19. Arsenic contamination in the Kanker district of central-east India: geology and health effects.

    PubMed

    Pandey, P K; Sharma, R; Roy, M; Roy, S; Pandey, M

    2006-10-01

    This paper identifies newer areas of arsenic contamination in the District Kanker, which adjoins the District Rajnandgaon where high contamination has been reported earlier. A correlation with the mobile phase episodes of arsenic contamination has been identified, which further hinges on the complex geology of the area. Arsenic concentrations in both surface and groundwater, aquatic organisms (snail and water weeds) soil and vegetation of Kanker district and its adjoining area have been reported here. The region has been found to contain an elevated level of arsenic. All segments of the ecoysystem are contaminated with arsenic at varying degrees. The levels of arsenic vary constantly depending on the season and location. An analysis of groundwater from 89 locations in the Kanker district has shown high values of arsenic, iron and manganese (mean: 144, 914 and 371 microg L(-1), respectively). The surface water of the region shows elevated levels of arsenic, which is influenced by the geological mineralised zonation. The most prevalent species in the groundwater is As(III), whereas the surface water of the rivers shows a significant contamination with the As(V) species. The analysis shows a bio-concentration of the toxic metals arsenic, nickel, copper and chromium. Higher arsenic concentrations (groundwater concentrations greater than 50 microg L(-1)) are associated with sedimentary deposits derived from volcanic rocks, hence mineral leaching appears to be the source of arsenic contamination. Higher levels of arsenic and manganese in the Kanker district have been found to cause impacts on the flora and fauna. A case study of episodic arsenical diarrhoea is presented.

  20. Long-term stake evaluations of waterborne copper systems

    Treesearch

    Stan Lebow; Cherilyn Hatfield; Douglas Crawford; Bessie Woodward

    2003-01-01

    Limitations on the use of chromated copper arsenate (CCA) have heightened interest in use of arsenic-free copper-based alternatives. For decades, the USDA Forest Products Laboratory has been evaluating several of these systems in stake plots. Southern Pine 38- by 89- by 457-mm (1.5- by 3.5- by 18-inch) stakes were treated with varying concentrations of acid copper...

  1. Forensic discrimination of copper wire using trace element concentrations.

    PubMed

    Dettman, Joshua R; Cassabaum, Alyssa A; Saunders, Christopher P; Snyder, Deanna L; Buscaglia, JoAnn

    2014-08-19

    Copper may be recovered as evidence in high-profile cases such as thefts and improvised explosive device incidents; comparison of copper samples from the crime scene and those associated with the subject of an investigation can provide probative associative evidence and investigative support. A solution-based inductively coupled plasma mass spectrometry method for measuring trace element concentrations in high-purity copper was developed using standard reference materials. The method was evaluated for its ability to use trace element profiles to statistically discriminate between copper samples considering the precision of the measurement and manufacturing processes. The discriminating power was estimated by comparing samples chosen on the basis of the copper refining and production process to represent the within-source (samples expected to be similar) and between-source (samples expected to be different) variability using multivariate parametric- and empirical-based data simulation models with bootstrap resampling. If the false exclusion rate is set to 5%, >90% of the copper samples can be correctly determined to originate from different sources using a parametric-based model and >87% with an empirical-based approach. These results demonstrate the potential utility of the developed method for the comparison of copper samples encountered as forensic evidence.

  2. Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions.

    PubMed

    Barrett, Sophie E; Watmough, Shaun A

    2015-11-01

    The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [FEATURES OF THE CONTENT OF MOVABLE FORMS OF HEAVY METALS AND SELENIUM IN SOILS OF THE YAROSLAVL REGION].

    PubMed

    Bakaeva, E A; Eremeyshvili, A V

    2016-01-01

    With the use of the method of inversion voltammetry there was analyzed the content of movableforms of trace elements: (selenium, zinc, copper lead, cadmium) in soils in the Yaroslavl district of the Yaroslavl region, and also content of zinc, copper lead, cadmium in soils and snow cover in the city of Yaroslavl. According to values of concentrations of movable compounds in soils determined trace elements can be ranked into the following row: zinc > lead > copper > selenium > cadmium. There was revealed insufficient if compared with literature data concentrations, content of movable compounds of selenium, copper and zinc in examined explored soils. The maximal concentrations of lead are revealed in the close proximity to both the city of Yaroslavl and large highways of the city. It indicates to the anthropogenic pollution of soils by this element.

  4. Colorimetric assay of copper ions based on the inhibition of peroxidase-like activity of MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Li, Zhihong; Liu, Xueting; Zhong, Jianhai; Lin, Tianran; Guo, Liangqia; Fu, Fengfu

    2017-10-01

    The peroxidase-like catalytic activity of MoS2 nanomaterials has been utilized for colorimetric bioassays and medical diagnostics. However, the application of peroxidase-like catalytic activity of MoS2 nanomaterials in environmental analysis was seldom explored. Herein, copper ions were found to inhibit the peroxidase-like catalytic activity of MoS2 nanosheets, which can catalyze the oxidation of 3, 3‧, 5, 5‧-tetramethylbenzidine by H2O2 to produce a colorimetric product. Based on this finding, a simple sensitive colorimetric method for the detection of copper ions was developed. In the presence of copper ions, the absorbance and color of the solution decreased with the increasing concentration of copper ions. The color of the solution can be used to semi-quantitative on-site assay of copper ions by naked eyes. A linear relationship between the absorbance and the concentration of copper ions was observed in the range of 0.4-4.0 μmol L- 1 with a detection limit of 92 nmol L- 1, which was much lower than the maximum contaminant level of copper in drinking water legislated by the Environmental Protection Agency of USA and the World Health Organization. The method was applied to detect copper ions in environmental water samples with satisfactory results.

  5. Organic Complexation of Dissolved Copper and Iron from Shipboard Incubations in the Central California Current System: Investigating the Impacts of Light Conditions and Phytoplankton Growth on Iron- and Copper-Binding Ligand Characteristics

    NASA Astrophysics Data System (ADS)

    Mellett, T.; Parker, C.; Brown, M.; Coale, T.; Duckham, C.; Chappell, D.; Maldonado, M. T.; Bruland, K. W.; Buck, K. N.

    2016-02-01

    Two shipboard incubation experiments were carried out in July of 2014 to investigate potential sources and sinks of iron- and copper-binding organic ligands in the surface ocean. Seawater for the experiments was collected from the central California Current System (cCCS) and incubated under varying light conditions and in the presence and absence of natural phytoplankton communities. Incubation treatments were sampled over a period of up to 3 days for measurements of total dissolved copper and iron, and for the concentration and conditional stability constants of copper- and iron-binding organic ligands. Dissolved copper and iron were determined by inductively coupled plasma-mass spectrometry (ICP-MS) following preconcentration on a Nobias PA1 resin. Organic ligand characteristics for iron and copper were determined using a method of competitive ligand exchange-absorptive cathodic stripping voltammetry (CLE-ACSV) with the added competing ligand salicylaldoxime. Trends in ligand concentrations and conditional stability constants across the different treatments and over the course of the incubation experiments will be presented.

  6. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS.more » Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.« less

  7. Synthesis and Characterization of Pure Copper Nanostructures Using Wood Inherent Architecture as a Natural Template

    NASA Astrophysics Data System (ADS)

    Dong, Youming; Wang, Kaili; Tan, Yi; Wang, Qingchun; Li, Jianzhang; Mark, Hughes; Zhang, Shifeng

    2018-04-01

    The inherent sophisticated structure of wood inspires researchers to use it as a natural template for synthesizing functional nanoparticles. In this study, pure copper nanoparticles were synthesized using poplar wood as a natural inexpensive and renewable template. The crystal structure and morphologies of the copper nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy. The optical properties, antibacterial properties, and stability of the hybrid wood materials were also tested. Due to the hierarchical and anisotropic structure and electron-rich components of wood, pure copper nanoparticles with high stability were synthesized with fcc structure and uniform sizes and then assembled into corncob-like copper deposits along the wood cell lumina. The products of nanoparticles depended strongly on the initial OH- concentration. With an increase in OH- concentration, Cu2O gradually decreased and Cu remained. Due to the restrictions inherent in wood structure, the derived Cu nanoparticles showed similar grain size in spite of increased Cu2+ concentration. This combination of Cu nanostructures and wood exhibited remarkable optical and antibacterial properties.

  8. Bioaccumulation Using Surrogate Samplers (Bass): Evaluation Of A Passive Sampler As An Alternative Monitoring Tool For Environmental Contaminants At The Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.; Knox, A.; Kuhne, W.

    2015-10-15

    DOE sites conduct traditional environmental monitoring programs that require collecting, processing, and analyzing water, sediment, and fish samples. However, recently developed passive sampling technologies, such as Diffusive Gradient in Thin films (DGT), may measure the chemical phases that are available and toxic to organisms (the bioavailable fraction), thereby producing more accurate and economical results than traditional methods.  Our laboratory study showed that dissolved copper concentrations measured by DGT probes were strongly correlated with the uptake of copper by Lumbriculus variegatus, an aquatic worm, and with concentrations of copper measured by conventional methods.  Dissolved copper concentrations in DGT probes increased with timemore » of exposure, paralleling the increase in copper with time that ocurred in Lumbriculus.  Additional studies with a combination of seven dissolved metals showed similar results.  These findings support the use of DGT as a biomimetic monitoring tool and provide a basis for refinement of these methods for cost-effective environmental monitoring at DOE sites.« less

  9. Copper stress and filamentous fungus Humicola lutea 103 - ultrastructural changes and activities of key metabolic enzymes.

    PubMed

    Krumova, Ekaterina Ts; Stoitsova, Stoyanka R; Paunova-Krasteva, Tsvetelina S; Pashova, Svetlana B; Angelova, Maria B

    2012-12-01

    Humicola lutea 103 is a copper-tolerant fungal strain able to grow in the presence of 300 μg·mL(-1) Cu(2+) under submerged cultivation. To prevent the consequences of copper overload, microorganisms have evolved molecular mechanisms that regulate its uptake, intracellular traffic, storage, and efflux. In spite of this avoidance strategy, high heavy-metal concentrations caused distinct and widespread ultrastructural alterations in H. lutea. The mitochondria were the first and main target of the toxic action. The effect of copper on activities of the key enzymes (hexokinase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase) included in the 3 main metabolic pathways, glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle, was investigated. High metal concentrations exhibited a dramatic negative effect on hexokinase, while the other 3 enzymes showed a significant and dose-dependent stimulation. On the basis of the present and previous results we concluded that the copper-induced oxidative stress plays an important role in the fungal tolerance to high Cu (2+) concentrations.

  10. The Effect of CaO on Gas/Slag/Matte/Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and P(SO2) = 0.25 Atm

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.

  11. Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction

    NASA Astrophysics Data System (ADS)

    Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan

    2017-04-01

    The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.

  12. ROS dependent copper toxicity in Hydra-biochemical and molecular study.

    PubMed

    Zeeshan, Mohammed; Murugadas, Anbazhagan; Ghaskadbi, Surendra; Rajendran, Ramasamy Babu; Akbarsha, Mohammad Abdulkader

    2016-01-01

    Copper, an essential microelement, is known to be toxic to aquatic life at concentrations higher than that could be tolerated. Copper-induced oxidative stress has been documented in vitro, yet the in vivo effects of metal-induced oxidative stress have not been extensively studied in the lower invertebrates. The objective of the present study has been to find the effect of ROS-mediated toxicity of environmentally relevant concentrations of copper at organismal and cellular levels in Hydra magnipapillata. Exposure to copper at sublethal concentrations (0.06 and 0.1mg/L) for 24 or 48h resulted in generation of significant levels of intracellular reactive oxygen species (ROS). We infer that the free radicals here originate predominantly at the lysosomes but partly at the mitochondria also as visualized by H2-DHCFDA staining. Quantitative real-time PCR of RNA extracted from copper-exposed polyps revealed dose-dependent up-regulation of all antioxidant response genes (CAT, SOD, GPx, GST, GR, G6PD). Concurrent increase of Hsp70 and FoxO genes suggests the ability of polyps to respond to stress, which at 48h was not the same as at 24h. Interestingly, the transcript levels of all genes were down-regulated at 48h as compared to 24h incubation period. Comet assay indicated copper as a powerful genotoxicant, and the DNA damage was dose- as well as duration-dependent. Western blotting of proteins (Bax, Bcl-2 and caspase-3) confirmed ROS-mediated mitochondrial cell death in copper-exposed animals. These changes correlated well with changes in morphology, regeneration and aspects of reproduction. Taken together, the results indicate increased production of intracellular ROS in Hydra on copper exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  14. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿

    PubMed Central

    Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600

  15. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    PubMed Central

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  16. The pH dependence of silicon-iron interaction in rats.

    PubMed

    Jia, X; Emerick, R J; Kayongo-Male, H

    1997-01-01

    A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

  17. [Estimation of mercury in the urine of cigarette smokers].

    PubMed

    Kulikowska-Karpińska, Elżbieta; Zdanowicz, Magdalena; Gałażyn-Sidorczuk, Małgorzata

    Cigarette smoking is one of the most common habits of the modern world. According to a NATPOL PLU study, every third adult Pole is dependent on nicotine. Tobacco smoke contains about 5,000 components, of which over 1,000 are very toxic chemical substances (3,4-benzopyrene, heavy metals, free radicals, hydrogen cyanide, nitrogen oxides and N-nitrosamines). Exposure to tobacco smoke is an example of a complex, with a significant number of interactions. To assess the concentration of copper in the urine of smokers. Based on the results, an attempt was made to determine whether smoking can affect the level of copper in the body. The study involved 170 healthy volunteers, 99 smokers and 71 non-smokers (control group). The age of patients in both groups were in the range of 20-60 years. The mean age for men and women was 41 years. The average length of cigarette smoking was 18 years for women and 21 years for men, and the number of cigarettes smoked 1-40 ⁄ 24. The urine concentrations of Cu were determined by atomic absorption spectrometry (AAS) and serum creatinine kinetic method using a set of BIOLAB. Cu concentration in urine was expressed in mg / g creatinine. Smokers were found to have reduced levels of copper in the urine, depending on sex, age and brand of cigarettes. In male smokers, copper concentration in the urine was dependent on age and time of smoking, whereas among women this relationship was not observed. Cigarette smoking significantly influences the level of copper in the urine. Both female and male smokers showed reduced levels of copper in the urine, which may indicate its increased accumulation in the body. Excessive accumulation of copper is very dangerous since it may exhibit toxic effects towards many organs and systems.

  18. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  19. Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress.

    PubMed

    Irazusta, Verónica; Estévez, Cristina; Amoroso, María Julia; de Figueroa, Lucía I C

    2012-06-01

    In order to understand the mechanism involved in Rhodotorula mucilaginosa RCL-11 resistance to copper a proteomic study was conducted. Atomic absorption spectroscopy showed that the copper concentration in the medium decreased from 0.5 to 0.19 mM 48 h after inoculation of the yeast. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed expression of differential bands between cells with and without copper. In order to study this difference, two-dimensional electrophoresis of R. mucilaginosa RCL-11 exposed to Cu for 16, 24, and 48 h was carried out. Identification of differentially expressed proteins was performed by MALDI-TOF/TOF. Ten of the 16 spots identified belonged to heat shock proteins. Superoxide dismutase, methionine synthase and beta-glucosidase were also found over-expressed at high copper concentrations. The results obtained in the present work show that when R. mucilaginosa RCL-11 is exposed to 0.5 mM copper, differential proteins, involved in cell resistance mechanisms, are expressed.

  20. Characterization of polycyclic aromatic hydrocarbons in soil close to secondary copper and aluminum smelters.

    PubMed

    Hu, Jicheng; Wu, Jing; Zha, Xiaoshuo; Yang, Chen; Hua, Ying; Wang, Ying; Jin, Jun

    2017-04-01

    A total of 35 surface soil samples around two secondary copper smelters and one secondary aluminum smelter were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The concentrations of PAHs were highest when the soil sample sites were closest to the secondary copper smelters. And, a level gradient of PAHs was observed in soil samples according to the distance from two secondary copper smelters, respectively. The results suggested that PAH concentrations in surrounding soils may be influenced by secondary copper smelters investigated, whereas no such gradient was observed in soils around the secondary aluminum smelter. Further analysis revealed that PAH patterns in soil samples also showed some difference between secondary copper and aluminum smelter, which may be attributed to the difference in their fuel and smelting process. PAH patterns and diagnostic ratios indicated that biomass burning may be also an important source of PAHs in the surrounding soil in addition to the emissions from the plants investigated.

  1. Methane and Trichloroethylene Degradation by Methylosinus trichosporium OB3b Expressing Particulate Methane Monooxygenase

    PubMed Central

    Lontoh, Sonny; Semrau, Jeremy D.

    1998-01-01

    Whole-cell assays of methane and trichloroethylene (TCE) consumption have been performed on Methylosinus trichosporium OB3b expressing particulate methane monooxygenase (pMMO). From these assays it is apparent that varying the growth concentration of copper causes a change in the kinetics of methane and TCE degradation. For M. trichosporium OB3b, increasing the copper growth concentration from 2.5 to 20 μM caused the maximal degradation rate of methane (Vmax) to decrease from 300 to 82 nmol of methane/min/mg of protein. The methane concentration at half the maximal degradation rate (Ks) also decreased from 62 to 8.3 μM. The pseudo-first-order rate constant for methane, Vmax/Ks, doubled from 4.9 × 10−3 to 9.9 × 10−3 liters/min/mg of protein, however, as the growth concentration of copper increased from 2.5 to 20 μM. TCE degradation by M. trichosporium OB3b was also examined with varying copper and formate concentrations. M. trichosporium OB3b grown with 2.5 μM copper was unable to degrade TCE in both the absence and presence of an exogenous source of reducing equivalents in the form of formate. Cells grown with 20 μM copper, however, were able to degrade TCE regardless of whether formate was provided. Without formate the Vmax for TCE was 2.5 nmol/min/mg of protein, while providing formate increased the Vmax to 4.1 nmol/min/mg of protein. The affinity for TCE also increased with increasing copper, as seen by a change in Ks from 36 to 7.9 μM. Vmax/Ks for TCE degradation by pMMO also increased from 6.9 × 10−5 to 5.2 × 10−4 liters/min/mg of protein with the addition of formate. From these whole-cell studies it is apparent that the amount of copper available is critical in determining the oxidation of substrates in methanotrophs that are expressing only pMMO. PMID:16349516

  2. Distribution and seasonal dynamics of arsenic in a shallow lake in northwestern New Jersey, USA

    USGS Publications Warehouse

    Barringer, J.L.; Szabo, Z.; Wilson, T.P.; Bonin, J.L.; Kratzer, T.; Cenno, K.; Romagna, T.; Alebus, M.; Hirst, B.

    2011-01-01

    Elevated concentrations of arsenic (As) occurred during warm months in water from the outlet of Lake Mohawk in northwestern New Jersey. The shallow manmade lake is surrounded by residential development and used for recreation. Eutrophic conditions are addressed by alum and copper sulfate applications and aerators operating in the summer. In September 2005, arsenite was dominant in hypoxic to anoxic bottom water. Filterable As concentrations were about 1.6-2 times higher than those in the upper water column (23-25 ??g/L, mostly arsenate). Hypoxic/anoxic and near-neutral bottom conditions formed during the summer, but became more oxic and alkaline as winter approached. Acid-leachable As concentrations in lake-bed sediments ranged up to 694 mg/kg in highly organic material from the tops of sediment cores but were <15 mg/kg in geologic substrate. During warm months, reduced As from the sediment diffuses into the water column and is oxidized; mixing by aerators, wind, and boat traffic spreads arsenate and metals, some in particulate form, throughout the water column. Similar levels of As in sediments of lakes treated with arsenic pesticides indicate that most of the As in Lake Mohawk probably derives from past use of arsenical pesticides, although records of applications are lacking. The annual loss of As at the lake outlet is only about 0.01% of the As calculated to be in the sediments, indicating that elevated levels of As in the lake will persist for decades. ?? 2010 US Government.

  3. Population impacts in white sucker (Catostomus commersonii) exposed to oil sands-derived contaminants in the Athabasca River.

    PubMed

    Arens, Collin J; Arens, Jennifer C; Hogan, Natacha S; Kavanagh, Richard J; Berrue, Fabrice; Van Der Kraak, Glen J; van den Heuvel, Michael R

    2017-08-01

    Biological and chemical endpoints were measured in white sucker collected downstream of Athabasca oil sands developments (AB, Canada) and compared with those at Calling Lake (AB, Canada), a reference location upstream of the Athabasca oil sands deposit. Naphthenic acid concentrations were also measured at 14 sites in the Athabasca River watershed. Concentrations of naphthenic acids were elevated in tributaries adjacent to oil sands mining developments. Tributary naphthenic acid profiles were more similar to aged oil sands process water than samples from the Athabasca River, suggesting an influence of tailings in the tributaries. White sucker showed higher energy storage in the Athabasca River as indicated by significantly higher condition and liver size. White sucker were not investing that energy into reproductive effort as measured by gonad size and fecundity, which were significantly reduced relative to the reference location. White sucker showed increased exposure to polycyclic aromatic hydrocarbons as indicated by hepatic cytochrome P4501A (CYP1A) activity and fluorescent bile metabolites, as well as higher concentrations of naphthenic acids in bile. Cadmium, copper, nickel, and selenium were also elevated in white sucker liver tissue compared with the reference location. Based on the exposure profile and response pattern observed, effects on energy storage and utilization in white sucker from the Athabasca River most likely resulted from exposure to polycyclic aromatic hydrocarbons derived from petrogenic and pyrolytic sources. Environ Toxicol Chem 2017;36:2058-2067. © 2017 SETAC. © 2017 SETAC.

  4. Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece.

    PubMed

    Antoniadis, Vasileios; Golia, Evangelia E; Shaheen, Sabry M; Rinklebe, Jörg

    2017-04-01

    Elevated concentrations of potentially toxic elements (PTEs) are usually found in areas of intense industrial activity. Thriasio Plain is a plain near Athens, Greece, where most of the heavy industry of the country has been situated for decades, but it also is a residential and horticultural area. We aimed at measuring the levels of PTEs in soils and indigenous plant species and assessing the health risk associated with direct soil ingestion. Samples of soils at roadsides and growing plants were collected from 31 sites of that area. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn were measured in both soils (as pseudo-total) and aerial plant tissues. We found that As, Cd, Cr, Cu, Ni, Pb and Zn were higher than maximum regulatory limits. Element concentrations in plants were rather lower than expected, probably because indigenous plants have developed excluder behaviour over time. Copper and Zn soil-to-plant coefficients were highest among the other elements; for Cu this was unexpected, and probably associated with recent Cu-releasing industrial activity. Risk assessment analysis indicated that As was the element contributing more than 50 % of the health risk related to direct soil ingestion, followed by Cr, Pb, and, surprisingly, Mn. We concluded that in a multi-element contamination situation, elevated risk of PTEs (such as As, Cr and Pb) may reduce the tolerance limits of exposure to less-toxic elements (here, Mn).

  5. EXPERIMENTAL INVESTIGATION OF PIC FORMATION ...

    EPA Pesticide Factsheets

    The report gives results of experiments to assess: (1) the effect of residual copper retained in an incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing chlorofluorocarbons (CFCs); and (2) the formation of chlorinated and aromatic products of incomplete combustion (PICs), including PCDD/PCDFs, during incineration of CFC recycling residue and hydrochlorofluorocarbons (HCFCs). High concentrations of PCDD/PCDFs (23,800 ng/dscm at 7% O2) measured in FY91 during incineration of CFC-12 in a turbulent flame reactor (TFR) could not be repeated in the present study. Repetition tests conducted in the same facility under similar operating conditions resulted in PCDD/PCDF concentrations of 118ng/dscm at 7% O2. However, results of the present study suggest that residual copper retained in an incineration facility possibly promotes the formation of PCDD/PCDFs during incineration of CFC-12 which does not contain copper. Tests conducted in the TFR resulted in measured PCDD/PCDF concentrations of 386-454 ng/dscm at 7% O2 during incineration of CFC-12 which followed incineration of copper-containing compounds. These results suggest that CFCs may best be incinerated in incinerators which do not treat any copper-containing waste prior to CFC incineration. Report available at NTIS as PB96152186. To share information

  6. Magnetic separation of heavy metal ions and evaluation based on surface-enhanced Raman spectroscopy: copper(II) ions as a case study.

    PubMed

    Yan, Xue; Zhang, Xue-Jiao; Yuan, Ya-Xian; Han, San-Yang; Xu, Min-Min; Gu, Ren'ao; Yao, Jian-Lin

    2013-11-01

    A new approach was developed for the magnetic separation of copper(II) ions with easy operation and high efficiency. p-Mercaptobenzoic acid served as the modified tag of Fe2O3@Au nanoparticles both for the chelation ligand and Raman reporter. Through the chelation between the copper(II) ions and carboxyl groups on the gold shell, the Fe2O3@Au nanoparticles aggregated to form networks that were enriched and separated from the solution by a magnet. A significant decrease in the concentration of copper(II) ions in the supernatant solution was observed. An extremely sensitive method based on surface-enhanced Raman spectroscopy was employed to detect free copper(II) ions that remained after the magnetic separation, and thus to evaluate the separation efficiency. The results indicated the intensities of the surface-enhanced Raman spectroscopy bands from p-mercaptobenzoic acid were dependent on the concentration of copper(II) ions, and the concentration was decreased by several orders of magnitude after the magnetic separation. The present protocol effectively decreased the total amount of heavy metal ions in the solution. This approach opens a potential application in the magnetic separation and highly sensitive detection of heavy metal ions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil.

    PubMed

    Chong, Teik Min; Yin, Wai-Fong; Chen, Jian-Woon; Mondy, Samuel; Grandclément, Catherine; Faure, Denis; Dessaux, Yves; Chan, Kok-Gan

    2016-12-01

    Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.

  8. Barnacles as biomonitors of trace metal availabilities in Hong Kong coastal waters: changes in space and time.

    PubMed

    Rainbow, P S; Blackmore, G

    2001-06-01

    The use of selected organisms as biomonitors of trace metal bioavailabilities allows comparisons to be made over space and time. The concentrations of 11 trace metals (arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, silver, zinc) were measured in the bodies of two barnacle species, Balanus amphitrite and Tetraclita squamosa, from up to 18 littoral sites from Hong Kong coastal waters in April 1998. These data provide evidence on the geographical variation in metal bioavailabilities at this time, and are compared selectively against historical data sets for 1986 and 1989. Geographical variation in bioavailabilities is clear for several metals, with hotspots for arsenic, copper, nickel and silver at Chai Wan Kok, and for lead in Junk Bay. Victoria Harbour sites head the rankings for silver and arsenic, and Tolo Harbour sites exhibit relatively elevated cobalt, manganese and zinc. Many bioavailabilities of trace metals to barnacles are lower in Hong Kong coastal waters in 1998 than in 1986. The two barnacle species are widespread and the extensive data set presented is a benchmark which can be compared to the results of similar biomonitoring programmes elsewhere in the Indo-Pacific and beyond.

  9. Geochemical characterization of slags, other mines wastes, and their leachates from the Elizabeth and Ely mines (Vermont), the Ducktown mining district (Tennessee), and the Clayton smelter site (Idaho)

    USGS Publications Warehouse

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Meier, Allen L.; Briggs, Paul H.

    2003-01-01

    Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements. Two types of mine waste were examined in this study: sintered waste rock and slag. The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits), from the Copper Basin mining district near Ducktown, Tennessee (Besshi-type massive sulfide deposits), and from the Clayton silver mine in the Bayhorse mining district, Idaho (polymetallic vein and replacement deposits). The data in this report are presented as a compilation with minimal interpretation or discussion. A detailed discussion and interpretation of the slag data are presented in a companion paper. Data collected from sintered waste rock and slag include: (1) bulk rock chemistry, (2) mineralogy, (3) and the distribution of trace elements among phases for the slag samples. In addition, the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States.

  10. Environmental concentrations of copper, chromium, and arsenic released from a chromated-copper-arsenate-(CCA-C-) treated wetland boardwalk

    Treesearch

    Stan T. Lebow; Daniel Foster

    2005-01-01

    A study was conducted to evaluate environmental accumulation and mobility of total copper, chromium, and arsenic adjacent to a chromated-copper-arsenate-(CCA-C-) treated wetland boardwalk. The study was considered a severe test because it included a large volume of treated wood in a site with high annual rainfall. Soil and sediment samples were collected before...

  11. Small mammal-heavy metal concentrations from mined and control sites

    USGS Publications Warehouse

    Smith, G.J.; Rongstad, O.J.

    1982-01-01

    Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.

  12. Acute gastrointestinal effects of graded levels of copper in drinking water.

    PubMed Central

    Pizarro, F; Olivares, M; Uauy, R; Contreras, P; Rebelo, A; Gidi, V

    1999-01-01

    The objective of this study was to determine the acute gastrointestinal effects caused by the consumption of drinking water containing graded levels of added copper. Sixty healthy, adult women were randomly assigned to receive copper [Cu(II)] at four concentrations in their drinking water following a Latin-square design. Each group (n = 15) received tap water with no added copper, 1, 3, and 5 mg Cu/l of added copper sulfate for a 2-week study period, followed by 1 week of standard tap water. The subjects recorded their water consumption and gastrointestinal symptoms daily on a special form. The average daily consumption of water was 1.64 liters per subject, regardless of the amount of copper added. Final serum copper, ceruloplasmin, and liver enzymes were measured in all subjects and were not different from baseline concentrations. Twenty-one subjects (35%) recorded gastrointestinal disturbances sometime during the study, 9 had diarrhea, some with abdominal pain and vomiting, and 12 subjects presented abdominal pain, nausea, or vomiting. There was no association between copper levels in drinking water and diarrhea. However, nausea, abdominal pain, or vomiting were significantly related to copper concentrations in water. The recorded incidence rate of these symptoms was 5, 2, 17, and 15% while ingesting water with 0, 1, 3, and 5 mg Cu/l, respectively (overall [chi]2 = 11.3, p<0.01; Cu [less than/equal to]1 mg/l versus Cu [Greater than/equal to]3 mg/l, [chi]2, p<0.01). When subjects interrupted their consumption of drinking water with added copper, most symptoms disappeared. We conclude that under the conditions of the study, there was no association between aggregate copper in drinking water within the range of 0-5 mg/l and diarrhea, but a [Greater than/equal to]3 mg Cu/l level of ionized copper was associated with nausea, abdominal pain, or vomiting. Additional studies with sufficient numbers of subjects are needed to define thresholds for specific gastrointestinal symptoms with precision and to extrapolate these results to the population at large. Images Figure 1 Figure 2 PMID:9924006

  13. The effects of acid precipitation runoff episodes on reservoir and tapwater quality in an Appalachian Mountain water supply.

    PubMed Central

    Sharpe, W E; DeWalle, D R

    1990-01-01

    The aluminum concentration and Ryznar Index increased and the pH decreased in a small Appalachian water supply reservoir following acid precipitation runoff episodes. Concomitant increases in tapwater aluminum and decreases in tapwater pH were also observed at two homes in the water distribution system. Lead concentrations in the tapwater of one home frequently exceeded recommended levels, although spatial and temporal variation in tapwater copper and lead concentrations was considerable. Since source water and reservoir water copper and lead concentrations were much lower, the increased copper and lead concentrations in tapwater were attributed to corrosion of household plumbing. Tapwater copper concentration correlated well with tapwater pH and tapwater temperature. Asbestos fibers were not detected in tapwater. The asbestos-cement pipe in the water distribution system was protected by a spontaneous metallic coating that inhibited fiber release from the pipe. Several simultaneous reactions were hypothesized to be taking place in the distribution system that involved corrosion of metallic components and coating of asbestos-cement pipe components in part with corrosion products and in part by cations of watershed origin. Greater water quality changes might be expected in areas of higher atmospheric deposition. Images FIGURE 5. FIGURE 6. PMID:2088742

  14. Effect of immobilized biosorbents on the heavy metals (Cu2+) biosorption with variations of temperature and initial concentration of waste

    NASA Astrophysics Data System (ADS)

    Siwi, W. P.; Rinanti, A.; Silalahi, M. D. S.; Hadisoebroto, R.; Fachrul, M. F.

    2018-01-01

    The aims of research is to studying the efficiency of copper removal by combining immobilized microalgae with optimizations of temperature and initial Copper concentration. The research was conducted in batch culture with temperature variations of 25°C, 30°C, and 35°C, as well as initial Cu2+ concentrations (mg/l) of 3, 5, 10, 15 and 20 using monoculture of S. cerevisiae, Chlorella sp., and mixed culture of them both as immobilized biosorbents. The optimum adsorption of 83.4% obtained in temperature of 30°C with an initial waste concentration of 17.62 mg/l, initial biomass concentration of 200 mg, pH of 4, and 120 minutes detention time by the immobilized mixed culture biosorbent. The cell morphology examined using Scanning Electron Microscope (SEM) has proved that the biosorbent surface was damaged after being in contact with copper (waste), implying that heavy metals (molecules) attach to different functional cell surfaces and change the biosorbent surface. The adsorption process of this research follows Langmuir Isotherm with the R2 value close to 1. The immobilized mixed culture biosorbent is capable of optimally removing copper at temperature of 30°C and initial Cu2+ concentration of 17.62 mg/l.

  15. Study of contaminant transport at an open-tipping waste disposal site.

    PubMed

    Ashraf, Muhammad Aqeel; Yusoff, Ismail; Yusof, Mohamad; Alias, Yatimah

    2013-07-01

    Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.

  16. The effects of CaEDTA injection on lead, zinc, copper and ALAD in erythrocyte, plasma and urine in lead-exposed workers: a 24-h observation.

    PubMed

    Aono, H; Araki, S

    1984-01-01

    To evaluate the effects of calcium disodium ethylenediamine tetraacetate (CaEDTA) on the concentrations of lead, zinc and copper in plasma, erythrocyte and urine, and the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocyte, we administered CaEDTA in 1-h intravenous infusion to ten male gun metal founders with blood-lead concentration of 39 to 64 micrograms/dl (mean 49 micrograms/dl). We found that the plasma concentration of lead, following a rapid rise within the first 3 h, fell temporarily to the level significantly lower than the initial level 19 h after start of the infusion. The plasma concentration of zinc fell to the minimal level 5 h after the infusion; and the erythrocyte concentration of zinc and the ALAD activity concurrently rose to the maximal level 5 h after the infusion. By contrast, no significant alteration was observed in the concentrations of copper in plasma and erythrocyte. The maximal level of urinary metal excretion was attained during the period between 1 and 2 h after start of CaEDTA infusion for lead; within 2 h for zinc; and between 2 and 4 h for copper. The urinary metal excretion returned to the initial level 14 to 24 h after infusion for zinc and copper; but lead excretion was still higher than the initial level during this period. The difference in the kinetics of the three metals following CaEDTA injection is discussed in the light of these findings.

  17. Communication between the N and C Termini Is Required for Copper-stimulated Ser/Thr Phosphorylation of Cu(I)-ATPase (ATP7B)*

    PubMed Central

    Braiterman, Lelita T.; Gupta, Arnab; Chaerkady, Raghothama; Cole, Robert N.; Hubbard, Ann L.

    2015-01-01

    The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated (“hyperphosphorylated”) in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration. PMID:25666620

  18. Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment.

    PubMed

    Roman, Yblin E; De Schamphelaere, Karel A C; Nguyen, Lien T H; Janssen, Colin R

    2007-11-15

    Five benthic organisms commonly used for sediment toxicity testing were chronically (28 to 35 days) exposed to copper in standard laboratory-formulated sediment (following Organization for Economic Cooperation and Development guidelines) and lethal and sub-lethal toxicities were evaluated. Sub-lethal endpoints considered were reproduction and biomass production for Lumbriculus variegatus, growth and reproduction for Tubifex tubifex, growth and emergence for Chironomus riparius, and growth for Gammarus pulex and Hyalella azteca. Expressed on whole-sediment basis the observed lethal sensitivity ranking (from most to least sensitive) was: G. pulex>L. variegatus>H. azteca=C. riparius=T. tubifex, with median chronic lethal concentrations (LC50) between 151 and 327 mg/kg dry wt. The sub-lethal sensitivity ranking (from most to least sensitive, with the most sensitive endpoint between parentheses): C. riparius (emergence)>T. tubifex (reproduction)=L. variegatus (reproduction)>G. pulex (growth)>H. azteca (growth), with median effective concentrations (EC50) between 59.2 and 194 mg/kg dry wt. No observed effect concentrations (NOEC) or 10% effective concentrations (EC10) for the five benthic invertebrates were used to perform a preliminary risk assessment for copper in freshwater sediment by means of (a) the "assessment factor approach" or (b) the statistical extrapolation approach (species sensitivity distribution). Depending on the data (NOEC or EC10) and the methodology used, we calculated a Predicted No Effect Concentration (PNEC) for sediment between 3.3 and 47.1 mg Cu/dry wt. This range is similar to the range of natural (geochemical) background concentrations of copper in sediments in Europe, i.e. 90% of sediments have a concentration between 5 and 49 mg Cu/kg dry wt. A detailed analysis of the outcome of this preliminary exercise highlighted that multiple issues need to be explored for achieving a scientifically more sound risk assessment and for the development of robust sediment quality criteria for copper, including (i) the use of the assessment factor approach vs. the statistical extrapolation approach, (ii) the importance of bioavailability modifying factors (e.g., organic carbon, acid volatile sulfide), and (iii) the influence of prevailing geochemical (bioavailable) background concentrations on the copper sensitivity of local benthic biota.

  19. A historical case of beaten-copper cranium.

    PubMed

    Rühli, Frank J; Nicklisch, Nicole; Alt, Kurt W

    2007-01-01

    The authors present the oldest historical case of a so-called beaten-copper cranium. The typical pattern was identified on a skull from a child, probably a boy, who died at approximately 6 years of age and was buried in a provisional cemetery used during the siege of Hanau, Germany, in 1635 and 1636. Morphological and radiological analyses of the severe digitate impressions ubiquitous on the child's endocranium support the diagnosis of chronically elevated intracranial pressure due to hydrocephalus.

  20. Hand-held optical sensor using denatured antibody coated electro-active polymer for ultra-trace detection of copper in blood serum and environmental samples.

    PubMed

    Chandra, Sutapa; Dhawangale, Arvind; Mukherji, Soumyo

    2018-07-01

    An optimum copper concentration in environment is highly desired for all forms of life. We have developed an ultrasensitive copper sensor which functions from femto to micro molar concentration accurately (R 2 = 0.98). The sensor is based on denatured antibody immunoglobulin G (IgG), immobilized on polyaniline (PAni) which in turn is the coating on the core of an optical fiber. The sensing relies on changes in evanescent wave absorbance in the presence of the analyte. The sensor showed excellent selectivity towards Cu (II) ions over all other metal ions. The sensor was tested with lake and marine water samples to determine unknown concentrations of copper ions and the recovery results were within 90-115%, indicating reasonable accuracy. We further integrated the fiber-optic sensor with a miniaturized hand-held instrumentation platform to develop an accurate and field deployable device which can broadly be applicable to determine Cu (II) concentration in a wide range of systems - natural water bodies, soil as well as blood serum. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

    USGS Publications Warehouse

    Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou

    2005-01-01

    Idaho has. Although erodable soils are likely a cause of elevated turbidities, suspended-sediment concentrations were not strongly correlated with turbidities. Dissolved-solids and hardness concentrations were strongly correlated. This is probably because the limestones present in some basins are more soluble than the igneous rocks that predominate in others. Low hardness in streams of northern Idaho, where watersheds are underlain by resistant igneous rocks, enhances the toxicity of some trace elements to aquatic life in these streams. Only a few measurements of dissolved-oxygen concentrations at six sites were less than 6.0 milligrams per liter, the Idaho minimum criterion for protection of aquatic organisms. High supersaturations of dissolved oxygen at four sites suggest excessive photosynthetic activity by algal communities. Nighttime monitoring would help determine whether dissolved-oxygen concentrations at these sites might fall below the Idaho criterion. Data from four sites suggest that dissolved-oxygen concentrations may have decreased over time. The pH at 15 sites sometimes fell outside the range specified (6.5-9.0) for the protection of aquatic organisms in Idaho streams. Values exceeded 9.0 at 10 sites, probably because of excessive algal photosynthetic activity in waters where carbonate rocks are present. Values were sometimes less than 6.5 at five sites in areas of mountain bedrock geology where pH is likely to be naturally low. Mining activities also may contribute to low pH at some of these sites. Inorganic nitrogen and total phosphorus concentrations commonly exceeded those considered sufficient for supporting excess algal production (0.3 and 0.1 milligrams per liter, respectively). Data from a few sites suggest that nitrogen and(or) phosphorus concentrations might be changing over time. Low concentrations of nitrogen and phosphorus at six sites, most representing forested basins, might make them good candidates as reference sites that represent naturally occurring nutrient concentrations. Trace elements examined for this report were cadmium, copper, lead, mercury, selenium, and zinc. In water, many trace-element concentrations were below the minimum analytical reporting levels. Concentrations of cadmium, copper, lead, and zinc generally were highest in mined and other mineral-rich basins in northern Idaho. Concentrations of mercury were

  2. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    PubMed Central

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  3. Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L.

    PubMed

    Liu, Donghua; Jiang, Wusheng; Meng, Qingmin; Zou, Jin; Gu, Jiegang; Zeng, Muai

    2009-04-01

    Different copper concentrations, as well as different exposure times, were applied to investigate both cytogenetical and ultrastructural alterations in garlic (Allium sativum L.) meristem cells. Results showed that the mitotic index decreased progressively when either copper concentration or exposure time increased. C-mitosis, anaphase bridges, chromosome stickiness and broken nuclei were observed in the copper treated root tip cells. Some particulates containing the argyrophilic NOR-associated proteins were distributed in the nucleus of the root-tip cells and the amount of this particulate material progressively increased with increasing exposure time. Finally, the nucleolar material was extruded from the nucleus into the cytoplasm. Also, increased dictyosome vesicles in number, formation of cytoplasmic vesicles containing electron dense granules, altered mitochondrial shape, disruption of nuclear membranes, condensation of chromatin material, disintegration of organelles were observed. The mechanisms of detoxification and tolerance of copper are briefly discussed.

  4. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species have adapted on such stress. The aim of this study is to investigate the behaviour of copper in plants and to assess its potential effect on the surrounding environment. To detect copper in biological samples electrochemical methods were employed particularly differential pulse voltammetry (DPV). Copper gave signals at 0.02 V measured by DPV. The obtained calibration dependence was linear (R2 = 0.995). Further, this method was utilized for determination of copper in real soil samples obtained from previously mentioned heavy-metal-polluted mining area. The content varied within range from tens to hundreds of mg of copper per kg of the soil. Moreover, we focused on investigation of copper influence on seedlings of Norway spruce. The seedlings were treated with copper (0, 0.1, 10 and 100 mM) for four weeks. We observed anatomical-morphological changes and other biochemical parameters in plants. We determined that seedlings synthesized more than 48 % protective thiols (glutathione and phytochelatins) compared to control ones. We investigated copper distribution in plant tissues by diphenylcarbazide staining. We found out that copper is highly accumulated in parenchymal stalk cells. In needles, change in auto-fluorescence of parenchymal cells of mesoderm similarly to endodermis cells. Besides, we analyzed samples of plants from the polluted area (spruce, pin, birch). The data obtained well correlated with previously mentioned. Acknowledgement The work on this experiment was supported by grant: INCHEMBIOL MSM0021622412.

  5. Induction of oxidative DNA damage by mesalamine in the presence of copper: a potential mechanism for mesalamine anticancer activity.

    PubMed

    Zimmerman, Ryan P; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P; Wang, Jianmin; Li, Yunbo

    2011-02-27

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Overexpression of copper transporter CTR1 in the brain barrier of North Ronaldsay sheep: implications for the study of neurodegenerative disease.

    PubMed

    Haywood, S; Vaillant, C

    2014-01-01

    Age-related regulatory failure of the brain barrier towards the influx of redox metals such as copper and iron may be associated with the pathological changes that characterize dementias such as Alzheimer's diseases (ADs) and amyotrophic lateral sclerosis (ALS). The integrity of the brain barrier to regulate copper in the brain is maintained by the complex interplay of membrane-located transporters, of which copper transporter 1 (CTR1) exerts a defining role. North Ronaldsay (NR) sheep are a primitive breed that have adapted to a copper-deficient environment by an enhanced uptake of the metal, resulting in copper overload in the liver and brain. This study reports that CTR1 is overexpressed in both the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB) of adult NR sheep when compared with a domesticated breed. The excess copper is stored ultimately in astrocytes as non-injurious copper-metallothionein (MT). NR sheep have apparently retained an immature regulatory setting for CTR1 in the BBB, promoting facilitated copper uptake into the brain. This putative failure of maturation of CTR1 allows insight into the regulatory control of brain copper homeostasis, whereby the BBB and BCB act in concert to sequester excess copper and protect neurons from injury. The elevated copper content of the ageing human brain may derive from a dysregulation of CTR1 at the brain barrier, with a return to the default (immature) setting and implications for neurodegenerative disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii

    NASA Astrophysics Data System (ADS)

    Davarpanah, Elham; Guilhermino, Lúcia

    2015-12-01

    As the accumulation of microplastics continues to rise in the marine environment, more knowledge on their potential toxic effects on marine organisms is needed to assess their risks to environmental and human health. Thus, the goal of the present study was to investigate the effects of fluorescent red polyethylene plastic micro-spheres 1-5 μm diameter (used as microplastic model and hereafter indicated as MP), alone and in mixture with copper, on the population growth of the marine microalgae Tetraselmis chuii. Two null hypotheses were tested: (H01) Exposure to MP concentrations in ppb range does not affect the average specific growth rate of T. chuii; (H02) MP do not interact with the toxicity of copper to T. chuii. In laboratory bioassays, T. chuii cultures were exposed for 96 h to MP concentrations ranging from 0.046 to 1.472 mg/l), concentrations of copper alone ranging from 0.02 to 0.64 mg/l, and the same concentrations of copper in the presence of 0.184 mg/l of MP in test media. No significant effects of MP on T. chuii population growth were found (p > 0.05), leading to the acceptance of H01. Copper alone significantly decreased the population growth of T. chuii with EC10, EC20 and EC50 of 0.009, 0.023 and 0.139 mg/l, respectively. The corresponding values in the presence of MP were 0.012, 0.029 and 0.145 mg/l, respectively. Moreover, the study found no significant differences between the toxicity curves of copper in the presence and absence of MP (p > 0.05), leading to the acceptance of H02. Despite these findings, because microplastics are known to adsorb and accumulate copper, aged pellets more than virgin ones, and the toxicity of smaller particles may be higher, further studies on the combined effects of copper and microplastics on microalgae should be performed, especially under long-term exposures to nano-sized aged microplastics.

  8. The effect of natural and anthropogenic factors on sorption of copper in chernozem

    NASA Astrophysics Data System (ADS)

    Bauer, Tatiana; Minkina, Tatiana; Mandzhieva, Saglara; Pinskii, David; Linnik, Vitaly; Sushkova, Svetlana

    2016-04-01

    The aim of this work was to study the effect of the attendant anions and particle-size distribution on the adsorption of copper by ordinary chernozem. Solutions of HM nitrates, acetates, chlorides, and sulfates were used to study the effect of the chemical composition of added copper salts on the adsorption of copper by an ordinary chernozem. Samples of the soil sieved through a 1-mm sieve in the natural ionic form and soil fraction with different particle size (clay - the particle with size < 1μm and physical clay < 10 μm) were treated with solutions of the corresponding copper salts at a soil : solution ratio of 1:10. The concentrations of the initial copper solutions were 0.02, 0.05, 0.08, 0.1, 0.3, 0.5, and 1.0 mM/L. The range of Cu2+ concentrations in the studied system covers different geochemical situations corresponding to the actual levels of soil contamination with the metal under study. The suspensions were shaken for 1 h, left to stand for 24 h, and then filtered. The contents of the HM in the filtrates were determined by atomic absorption spectrometry (AAS). The contents of the adsorbed copper cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions. The isotherms of copper adsorption from the metal nitrate, chloride, and sulfate solutions have near linear shapes and, hence, can be satisfactorily described by a Henry or Freundlich equation: Cads = KH •Ceq.(1) Cads = KF •Ceqn,(2) where Cadsis the content of the adsorbed cations, mM/kg soil;Ceq is the concentration of copper in the equilibrium solution, mM/L; KH and KF denote the Henry and Freundlich adsorption coefficients, respectively, kg/L. The isotherm of Cu2+ adsorption by ordinary chernozem from acetate solutions is described by the Langmuir equation: Cads = C∞ÊLC / (1 + ÊLC), (3) where Cadsis the content of the adsorbed cations, mM/kg soil;C∞ is the maximum adsorption of the HM, mM/kg soil; ÊL is the affinity constant, L/mM; C is the concentration of the HM in the equilibrium solution, mM/L. According to the values of KH, the binding strength of the copper cations adsorbed from different salt solutions decreases in the series: Cu(Ac)2(1880,5± 76,2) > CuCl2(1442,8±113,5) > Cu(NO3)2(911,4 ± 31,1) >> CuSO4(165,3 ± 12,9). Thus, copper is most strongly adsorbed from the acetate solution and least strongly from the sulfate solution. The adsorption of copper by clay and physical clay fractions from the ordinary chernozem was of limited character and followed the (3) equation. In the particle-size fractions separated from the soils, the concentrations of copper decreased with the decreasing particle size. The values of ÊL and C∞characterizing the HM adsorption by the chernozem and its particle-size fractions formed the following sequence: clay (80,20±20,29 and 28,45±0,46 > physical clay (58,20±14,54 and 22,15±1,22) > entire soil (38,80±12,33 and 17,58±3,038). This work was supported by the Russian Ministry of Education and Science, project no. 5.885.2014/K, Russian Foundation for Basic Research, projects no. 14-05-00586 À

  9. [Synthesis, characterization and fluorescent properties of copper phthalocyanine derivates substituted by aliphatic alcohol].

    PubMed

    Zhang, Liang; Xu, Qing-Feng; Lu, Jian-Mei; Yao, She-Chun

    2007-04-01

    A series of copper phthalocyanine derivatives substituted by aliphatic chain were obtained by the reaction of tetra-formyl chloride copper phthalocyanine and aliphatic alcohol such as n-butyl alcohol, n-amyl alcohol, n-hexyl alcohol, n-caprylic alcohol and lauryl alcohol. IR, UV-Vis, elemental analysis and 1H NMR verified the structures and substituting degree. The solubility and the relationship between fluorescence and concentration and substituting group were studied in organic solution. It was confirmed that the solubility in organic solution was improved greatly, the fluorescence did not change in linear according to the concentration and the fluorescence of copper phthalocyanine derivatives substituted by the long alkyl was stronger than that substituted by the relatively short alkyl.

  10. Influences of magnetic field on the fractal morphology in copper electrodeposition

    NASA Astrophysics Data System (ADS)

    Sudibyo; How, M. B.; Aziz, N.

    2018-01-01

    Copper magneto-electrodeposition (MED) is used decrease roughening in the copper electrodeposition process. This technology plays a vital role in electrodeposition process to synthesize metal alloy, thin film, multilayer, nanowires, multilayer nanowires, dot array and nano contacts. The effects of magnetic fields on copper electrodeposition are investigated in terms of variations in the magnetic field strength and the electrolyte concentration. Based on the experimental results, the mere presence of magnetic field would result in a compact deposit. As the magnetic field strength is increased, the deposit grows denser. The increment in concentration also leads to the increase the deposited size. The SEM image analysis showed that the magnetic field has a significant effect on the surface morphology of electrodeposits.

  11. Hemoglobin and hematocrit values in the fish Oreochromis mossambicus (Peters) after short term exposure to copper and mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyriac, P.J.; Antony, A.; Nambisan, P.N.K.

    1989-08-01

    Hematology is used as an index of health status in a number of fish species. Hematological changes have been detected following different types of stress conditions like exposure to pollutants, diseases, hypoxia, etc. Copper and mercury are two known aquatic pollutants. Though copper is an essential micro-nutrient, it is highly toxic at high concentrations. Mercury has no biological function to serve and causes serious impairment in the metabolic and physiological functions of the body. In this paper hematocrit and hemoglobin (Hb) values in the fish Oreochromis mossambicus separately exposed to two different sublethal concentrations of copper and mercury for amore » period of 168 h are reported.« less

  12. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding.

    PubMed

    Cao, Yini; Ma, Chuanxin; Chen, Guangcai; Zhang, Jianfeng; Xing, Baoshan

    2017-06-01

    To explore the joint effect of copper (Cu) and flooding on Salix integra Thunb. (S. integra), the physiological and biochemical parameters of the seedlings grown in Cu amended soil (50, 150, 450 mg kg -1 ) with or without the flooding for 60 days were evaluated. The results suggested that the flooding significantly inhibited the root growth in terms of root length and root tips. The Cu exposures of 50 and 150 mg kg -1 notably enhanced the root growth as compared to the control. Majority of Cu was accumulated in S. integra roots, while flooding significantly reduced the Cu content, except the 150 mg kg -1 Cu treatment, but the iron (Fe) and manganese (Mn) content on the root surface were both markedly increased relative to non-flooded control. The malonaldehyde (MDA) and glutathione (GSH) contents in leaves showed a dose-response upon Cu exposure. Soil flooding enhanced the GSH level, which displayed 4.50-49.59% increases compared to its respective non-flooded treatment, while no difference was evident on MDA contents between the flooding and the non-flooded treatments. Both superoxide dismutase (SOD) and peroxidase (POD) activities were boosted while the catalase (CAT) was suppressed with increasing Cu exposure dose, and soil flooding reduced the POD and CAT activities. The elevated Cu level caused the evident increases of root calcium (Ca), potassium (K), and sulfur (S) concentrations and decreases of root phosphorus (P), sodium (Na), and zinc (Zn) concentrations. Soil flooding increased the concentrations of Fe, S, Na, Ca, and magnesium (Mg) in S. integra root. Taken together, our results suggested S. integra has high tolerance to the joint stress from Cu and flooding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Copper toxicity in the spiny dogfish (Squalus acanthias): urea loss contributes to the osmoregulatory disturbance.

    PubMed

    De Boeck, G; Hattink, J; Franklin, N M; Bucking, C P; Wood, S; Walsh, P J; Wood, C M

    2007-08-30

    Previous research showed that the spiny dogfish, Squalus acanthias, is much more sensitive to silver exposure than typical marine teleosts. The aim of the present study was to investigate if spiny dogfish were equally sensitive to copper exposure and whether the toxic mechanisms were the same. We exposed cannulated and non-cannulated spiny dogfish to measured concentrations of Cu (nominally 0, 500, 1000 and 1500 microg L(-1) Cu) for 72-96 h. All Cu exposures induced acidosis and lactate accumulation of either a temporary (500 microg L(-1)) or more persistent nature (1000 and 1500 microg L(-1)). At the two highest Cu concentrations, gill Na(+)/K(+)-ATPase activities were reduced by 45% (1000 microg L(-1)) and 62% (1500 microg L(-1)), and plasma Na(+) and Cl(-) concentrations increased by approximately 50 mM each. At the same time urea excretion doubled and plasma urea dropped by approximately 100 mM. Together with plasma urea, plasma TMAO levels dropped proportionally, indicating that the general impermeability of the gills was compromised. Overall plasma osmolarity did not change. Cu accumulation was limited with significant increases in plasma Cu and elevated gill and kidney Cu burdens at 1000 and 1500 microg L(-1). We conclude that Cu, like Ag, exerts toxic effect on Na(+)/K(+)-ATPase activities in the shark similar to those of teleosts, but there is an additional toxic action on elasmobranch urea retention capacities. With a 96 h LC(50) in the 800-1000 microg L(-1) range, overall sensitivity of spiny dogfish for Cu is, in contrast with its sensitivity to Ag, only slightly lower than in typical marine teleosts.

  14. Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds1

    PubMed Central

    Waters, Brian M.; Chu, Heng-Hsuan; DiDonato, Raymond J.; Roberts, Louis A.; Eisley, Robynn B.; Lahner, Brett; Salt, David E.; Walker, Elsbeth L.

    2006-01-01

    Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. β-Glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues. PMID:16815956

  15. Biomineralization of copper: Solutions for waste remediation and biomining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, C.R.; Thompson, S.A.; Crusberg, T.C.

    1997-12-31

    The fungus Penicillium ochro-chloron is able to extract copper from aqueous solutions and form insoluble copper precipitates within the matrix of fungal mycelia. The formation of these complexes is probably a detoxification mechanism used by the organism to deal with the potentially lethal concentrations of heavy metals. Metal immobilization occurs external to the cells but within the mycelia when the solubility products of copper phosphate and copper oxalate are exceeded. This process may be exploited in biomining to remove and recover copper and perhaps other heavy metals that have become solubilized in pit mine lakes.

  16. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    NASA Astrophysics Data System (ADS)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  17. High mortality rates occur in copper deficient rats exposed to a normally nonlethal endotoxin treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSilvestro, R.; Joseph, E.; Yang, F.L.

    Endotoxin hepatotoxicity is proposed to occur by processes which could be retarded by 3 copper enzymes: ceruloplasmin, Cu-Zn superoxide dismutase (SOD), and extracellular (EC) SOD. Weanling rats fed low copper for 40 days showed low activity levels of these enzymes, and a very high mortality rate 20 h after endotoxin injection. No rats fed adequate copper died from this treatment. In addition, serum transaminase activities, indicators of liver damage, were elevated by 3 h to a greater extent in the deficient rats than in the adequates. The high susceptibility to endotoxemia in the deficient rats was not associated with lowmore » hepatic glutathione, high liver malondialedhyde, nor restricted metallothionein induction 3 h after endotoxin injection. Endotoxin reduced serum EC SOD activities in adequate and deficient rats, but final values were lower in the latter. Studies on roles of specific copper enzymes in resistance to endotoxemia are currently underway.« less

  18. Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula.

    PubMed

    Ai, Chenbing; McCarthy, Samuel; Liang, Yuting; Rudrappa, Deepak; Qiu, Guanzhou; Blum, Paul

    2017-12-01

    Adaptive laboratory evolution (ALE) was employed to isolate arsenate and copper cross-resistant strains, from the copper-resistant M. sedula CuR1. The evolved strains, M. sedula ARS50-1 and M. sedula ARS50-2, contained 12 and 13 additional mutations, respectively, relative to M. sedula CuR1. Bioleaching capacity of a defined consortium (consisting of a naturally occurring strain and a genetically engineered copper sensitive strain) was increased by introduction of M. sedula ARS50-2, with 5.31 and 26.29% more copper recovered from enargite at a pulp density (PD) of 1 and 3% (w/v), respectively. M. sedula ARS50-2 arose as the predominant species and modulated the proportions of the other two strains after it had been introduced. Collectively, the higher Cu 2+ resistance trait of M. sedula ARS50-2 resulted in a modulated microbial community structure, and consolidating enargite bioleaching especially at elevated PD.

  19. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger antibacterial activity than copper vermiculite against E. coli. With 200 ppm exfoliated copper vermiculite in bacteria suspension (4.68 ppm of metal copper), the reduction of viable bacteria are 99.8% at 1 hour, and >99.9% at 2 hours. With 10 ppm exfoliated copper vermiculite in bacteria dilution (0.234 ppm of copper atoms), the reduction of viable E. coli reached 98.7% at 1 hour, and >95.6% at 2 hours. Molds have the potential to cause health problems, such as allergic reactions, irritations, and mycotoxins, and damage to buildings, historic relics, properties, etc. Since copper has better antifungal property, an initial antifungal activity of copper vermiculite was evaluated in this study. Fat-free milk was used to develop molds in the test samples by saturated samples. Incubated at 36°C for 48 hours, all of the surfaces of untreated control samples, including micron-sized vermiculite, exfoliated vermiculite, bentonite, and kaolin, have been covered by thick mold layers. However, there were no mold showed on copper vermiculite and exfoliated copper vermiculite. Even after the incubation was lasted for 10 days, copper vermiculite and exfoliated copper vermiculite did not show any mold on the surface. These results exhibited copper vermiculite has excellent antifungal activities against mold. Stability of copper ions in copper vermiculite was measured by aqueous leaching process. Copper vermiculite and exfoliated copper vermiculite were put into distilled water in a ratio of 2.0g/100ml, and then implemented leaching processes by continuously shaking (leaching) and statically storing (soaking) for desired periods of time, respectively. According to the analytic result by inductively coupled plasma spectroscopy (ICP), the major metals released were copper, magnesium, iron, silicon, and aluminum. The release rate of copper depends on the environmental conditions. Under the dynamic leaching condition, all the major elements had shown linear leaching rates, and slowly increases along with the leaching time. Copper concentration in 1 hour leached solutions had sufficient concentration to inhibit E. coli in aqueous solution. Lasting for 1 month, 1 gram of copper vermiculite only released 185mug of copper. At this velocity, 11.5 years are required to completely exhaust the copper atoms from copper vermiculite. A soaking process provided a lower release rate than leaching process. Comparably, exfoliated copper vermiculite had lower copper concentration, stronger antimicrobial effect, but faster release rate than copper vermiculite, due to their different structure characteristics. (Abstract shortened by UMI.)

  20. Effect of environmental lead pollution on blood lead levels in traffic police constables in Islamabad, Pakistan.

    PubMed

    Agha, Farida; Sadaruddin, Agha; Khatoon, Naz

    2005-10-01

    To determine the blood lead levels and trace elements (copper and manganese) in traffic police constables in Islamabad in order to assess the effects of environmental pollution on the levels of metals in body fluids. Blood samples were collected from 47 male traffic police constables, 21 to 45 years of age, posted in different areas of Islamabad and controlling traffic from 3 months to 18 years, 8 hours/day, 6 days/week. Adolescent males (13-19 years), residing in comparatively clean and very low traffic areas were included as controls. Blood lead, copper, and manganese concentrations were estimated by atomic absorption spectrophotometry. The mean blood lead level among constables (27.27 microg/dl) was significantly (p<0.0001) high as compared to controls (3.22 microg/dl). Twenty one percent constables had elevated blood lead levels (over 25 microg/dl) and 13% had levels above the safety limit (40 microg/dl). No correlation was found between blood lead levels and length of service. No significant difference was found in the mean values for copper between traffic constables (93.49 microg/dl) and controls (71.15 microg/dl). The mean blood manganese levels in traffic constables (21.94 microg/dl) were significantly (p<0.0001) higher than in controls (1.70 microg/dl). The mean blood lead levels were significantly high in traffic constables of Karachi (47.7 microg/dl) as compared to Islamabad (27.2 microg/dl), which shows direct relation of rise in blood lead levels with vehicle exhaust. Environmental lead pollution is associated with an increased blood lead concentration in those who are regularly exposed to vehicle exhaust in high traffic areas. The degree of lead pollution arising from vehicle exhaust differs in Karachi and Islamabad. Exposure to air containing dust particles rich in manganese may affect blood manganese levels.

  1. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    NASA Astrophysics Data System (ADS)

    Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.

    2011-08-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  2. CCS and SOD1 mRNA are reduced after copper supplementation in peripheral mononuclear cells of individuals with high serum ceruloplasmin concentration.

    PubMed

    Suazo, Miriam; Olivares, Felipe; Mendez, Marco A; Pulgar, Rodrigo; Prohaska, Joseph R; Arredondo, Miguel; Pizarro, Fernando; Olivares, Manuel; Araya, Magdalena; González, Mauricio

    2008-04-01

    The limits of copper homeostatic regulation in humans are not known, making it difficult to define the milder effects of early copper excess. Furthermore, a robust assay to facilitate the detection of early stages of copper excess is needed. To address these issues, we assessed changes in relative mRNA abundance of methallothionein 2A (MT2A), prion (PrP), amyloid precursor-like protein 2 (APLP2), Cu/Zn superoxide dismutase (SOD1) and its copper chaperone (CCS) in peripheral mononuclear cells (PMNCs) from healthy adults representing the 5% highest and lowest extremes in the distribution curve of serum ceruloplasmin (Cp) concentrations of 800 individuals. The intracellular Cu content was also determined. PMNCs were isolated from individuals before and after exposure to a single daily dose of 10 mg Cu (as CuSO(4)) for 2 months. Results showed that although there were fluctuations in serum Cp values of the samples assessed before copper exposure, no significant differences were observed in cell copper content or in the relative abundance of MT2A, PrP and APLP2 transcripts in PMNCs. Also, these values were not modified after copper supplementation. However, CCS and SOD1 mRNA levels were reduced in PMNCs after copper supplementation in the individuals with the high Cp values, suggesting that they should be further explored as biomarkers of moderate copper overload in humans.

  3. Serum Copper Status in School-Age Children and Pregnant Women in China Nutrition and Health Survey 2010-2012.

    PubMed

    Liu, Xiaobing; Piao, Jianhua; Zhang, Yu; Li, Min; Li, Weidong; Yang, Lichen; Yang, Xiaoguang

    2016-10-01

    Serum copper is an insensitive but reliable biomarker reflecting the change of copper nutritional status in both depleted and replete populations. The current study aimed to establish the reference values of serum copper in school-age children and pregnant women in China and to explore the adequate range of serum copper for both these two categories of people. A multistage, stratified, random sampling combined with probability proportionate to regional size sampling method was employed. A total of 4019 subjects (2736 school-age children and 1283 pregnant women) were selected from China Nutrition and Health Survey 2010-2012 (CNHS 2010-2012). The concentration of serum copper was determined by sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). The adequate range of serum copper was determined by the logistic sigmoid saturation curve of the median derivatives. The median concentration of serum copper was 1140.9 μg/L with a range of 746.7-1677.6 μg/L for school-age children and 1933.4 μg/L with a range of 947.4-3391.4 μg/L for pregnant women. The adequate range of serum copper was 905.7-1440.7 μg/L for school-age children and 1308.8-2537.8 μg/L for pregnant women. These parameters represent an essential prerequisite for the assessment of copper nutritional status, as well as nutrition interventions.

  4. Transcuprein is a Macroglobulin Regulated by Copper and Iron Availability

    PubMed Central

    Liu, Nanmei; Lo, Louis Shi-li; Askary, S. Hassan; Jones, LaTrice; Kidane, Theodros Z.; Nguyen, Trisha Trang Minh; Goforth, Jeremy; Chu, Yu-Hsiang; Vivas, Esther; Tsai, Monta; Westbrook, Terence; Linder, Maria C.

    2009-01-01

    SUMMARY Transcuprein is a high affinity copper carrier in the plasma involved in the initial distribution of copper entering the blood from the digestive tract. To identify and obtain cDNA for this protein, it was purified from rat plasma by size exclusion and copper chelate affinity chromatography, and amino acid sequences were obtained. These revealed a 190 kDa glycosylated protein identified as the macroglobulin, α1inhibitorIII, the main macroglobulin of rodent blood plasma. Albumin (65 kDa) co-purified in variable amounts and was concluded to be a contaminant (although it transiently can bind the macroglobulin). The main macroglobulin in human blood plasma (α2-macroglobulin), homologous to α1inhibitorIII, also bound copper tightly. Expression of α1I3 (transcuprein) mRNA by the liver was examined in rats with and without copper deficiency, using quantitative PCR and Northern analysis. Protein expression was examined by Western blotting. Deficient rats with 40% less ceruloplasmin oxidase activity and liver copper concentrations expressed about twice as much α1I3 mRNA, but circulating levels of transcuprein did not differ. Iron deficiency, which increased liver copper concentrations 3-fold, reduced transcuprein mRNA expression and 7circulating levels of transcuprein relative to what occurred in rats with normal or excess iron. We conclude that transcupreins are specific macroglobulins that not only carry zinc but also transport copper in the blood; and that their expression can be modulated by copper and iron availability. PMID:17363239

  5. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.

  6. [Analysis the cupric ion release characteristics of different copper raw materials in intrauterine device in vitro using ICP method].

    PubMed

    Lu, Hua; Ding, Tingting; Yao, Tianping; Sun, Jiao

    2014-05-01

    To study the Cupric ion release characteristics of different copper raw materials in intrauterine device in vitro by ICP. Reveal the relationship between purity and shape of Cu-IUD copper and copper ion release. According to a certain proportion, the copper raw materials were 100 times diluted into the simulated uterine solution at 37 +/- 0.5 degrees C. Replaced medium at certain time points and collected soaking liquid. Using ICP analyzed the concentration of copper ion released. The largest daily release of copper ions was in the first 7 days. There was no statistically significant difference between the copper ion release amount of 99.99% and 99.95% purity copper wire (P > 0.05). The release of copper ion of the copper wire was far greater than that of the copper pipe in early stage (P < 0.01). The release amount decreased and stabilized at 56 day. Release characteristics of copper ion could effectively analysis by ICP. And in the same area, the release amount of copper ions of copper wire was greater than that of copper pipe.

  7. [Antibacterial activity of copper salts against microorganisms isolated from chronic infected wounds].

    PubMed

    Febré, Naldy; Silva, Viviana; Báez, Andrea; Palza, Humberto; Delgado, Katherine; Aburto, Isabel; Silva, Victor

    2016-12-01

    The antimicrobial activity of copper (Cu+2) is recognized and used as an antimicrobial agent. To evaluate the antimicrobial activity of copper against microorganisms obtained from chronic cutaneous wound infections. Five chemical products that contained copper particles in their composition were tested (zeolite, silica, acetate, nitrate and nanoparticle of copper). The antimicrobial activity against antibiotic resistant strains usually isolated from chronic cutaneous wound infections was determined for two of the products with better performance in copper release. The minimal inhibitory and minimal bactericidal concentrations of copper acetate and nitrate were similar, fluctuating between 400-2,000 µg/ml. The studied copper salts show great potential to be used to control both gram positive and gram negative, antibiotic resistant bacteria isolated from wound infections.

  8. Ring World

    NASA Image and Video Library

    2007-03-01

    Our robotic emissary, flying high above Saturn, captured this view of an alien copper-colored ring world. The overexposed planet has deliberately been removed to show the unlit rings alone, seen from an elevation of 60 degrees

  9. Priority-pollutant trace elements in streambed sediments of the Cook Inlet basin, Alaska, 1998-2000

    USGS Publications Warehouse

    Frenzel, Steven A.

    2002-01-01

    Trace element concentrations in 48 streambed sediment samples collected at 47 sites in the Cook Inlet Basin, Alaska, were compared to concentrations from studies in the conterminous United States using identical methods and to Probable Effect Concentrations. Concentrations of arsenic, chromium, mercury, and nickel in the 0.063-mm size fraction of streambed sediments from the Cook Inlet Basin were elevated relative to reference sites in the conterminous United States. Concentrations of cadmium, lead, and zinc were highest at the most urbanized site in Anchorage and at two sites downstream from an ore body in Lake Clark National Park and Preserve. At least 35 percent of the 48 samples collected in the Cook Inlet Basin exceeded the Probable Effect Concentration for arsenic, chromium, or nickel. More than 50 percent of the samples were considered to have low potential toxicity for cadmium, lead, mercury, nickel, selenium, and zinc. A Probable Effect Concentration quotient that reflects the combined toxicity of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc was exceeded in 44 percent of the samples from the Cook Inlet Basin. The potential toxicity was high in the Denali and Lake Clark National Parks and Preserves where organic carbon concentrations in streambed sediments were low. However, potential toxicity results should be considered in context with the very small amounts of fine-grained sediment present in the streambed sediments of the Cook Inlet Basin.

  10. Influence of electron donors and copper concentration on geochemical and mineralogical processes under conditions of biological sulphate reduction

    NASA Astrophysics Data System (ADS)

    Wolicka, Dorota; Borkowski, Andrzej

    2014-03-01

    Sulphidogenous microorganism communities were isolated from soil polluted by crude oil. The study was focused on determining the influence of 1) copper (II) concentration on the activity of selected microorganism communities and 2) the applied electron donor on the course and evolution of mineral-forming processes under conditions favouring growth of sulphate-reducing bacteria (SRB). The influence of copper concentration on the activity of selected microorganism communities and the type of mineral phases formed was determined during experiments in which copper (II) chloride at concentrations of 0.1, 0.2, 0.5 and 0.7 g/L was added to SRB cultures. The experiments were performed in two variants: with ethanol (4 g/L) or lactate (4 g/L) as the sole carbon source. In order to determine the taxonomic composition of the selected microorganism communities, the 16S rRNA method was used. Results of this analysis confirmed the presence of Desulfovibrio, Desulfohalobium, Desulfotalea, Thermotoga, Solibacter, Gramella, Anaeromyxobacter and Myxococcus sp. in the stationary cultures. The post-culture sediments contained covelline (CuS) and digenite (Cu9S5 ). Based on the results, it can be stated that the type of carbon source applied during incubation plays a crucial role in determining the mineral composition of the post-culture sediments. Thus, regardless of the amount of copper ion introduced to a culture with lactate as the sole carbon source, no copper sulphide was observed in the post-culture sediments. Cultures with ethanol as the sole carbon source, on the other hand, yielded covelline or digenite in all post-culture sediments.

  11. Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC.

    PubMed Central

    Tatara, G M; Dybas, M J; Criddle, C S

    1993-01-01

    Under denitrifying conditions, Pseudomonas sp. strain KC transforms carbon tetrachloride (CT) to carbon dioxide via a complex but as yet undetermined mechanism. Transformation rates were first order with respect to CT concentration over the CT concentration range examined (0 to 100 micrograms/liter) and proportional to protein concentration, giving pseudo-second-order kinetics overall. Addition of ferric iron (1 to 20 microM) to an actively transforming culture inhibited CT transformation, and the degree of inhibition increased with increasing iron concentration. By removing iron from the trace metals solution or by removing iron-containing precipitate from the growth medium, higher second-order rate coefficients were obtained. Copper also plays a role in CT transformation. Copper was toxic at neutral pH. By adjusting the medium pH to 8.2, soluble iron and copper levels decreased as a precipitate formed, and CT transformation rates increased. However, cultures grown at high pH without any added trace copper (1 microM) exhibited slower growth rates and greatly reduced rates of CT transformation, indicating that copper is required for CT transformation. The use of pH adjustment to decrease iron solubility, to avoid copper toxicity, and to provide a selective advantage for strain KC was evaluated by using soil slurries and groundwater containing high levels of iron. In samples adjusted to pH 8.2 and inoculated with strain KC, CT disappeared rapidly in the absence or presence of acetate or nitrate supplements. CT did not disappear in pH-adjusted controls that were not inoculated with strain KC. PMID:8357248

  12. Porphyry copper enrichment linked to excess aluminium in plagioclase

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; Herrington, R. J.; Morris, A.

    2016-03-01

    Porphyry copper deposits provide around 75%, 50% and 20% of world copper, molybdenum and gold, respectively. The deposits are mainly centred on calc-alkaline porphyry magmatic systems in subduction zone settings. Although calc-alkaline magmas are relatively common, large porphyry copper deposits are extremely rare and increasingly difficult to discover. Here, we compile existing geochemical data for magmatic plagioclase, a dominant mineral in calc-alkaline rocks, from fertile (porphyry-associated) and barren magmatic systems worldwide, barren examples having no associated porphyry deposit. We show that plagioclase from fertile systems is distinct in containing `excess’ aluminium. This signature is clearly demonstrated in a case study carried out on plagioclase from the fertile La Paloma and Los Sulfatos copper porphyry systems in Chile. Further, the presence of concentric zones of high excess aluminium suggests its incorporation as a result of magmatic processes. As excess aluminium has been linked to high melt water contents, the concentric zones may record injections of hydrous fluid or fluid-rich melts into the sub-porphyry magma chamber. We propose that excess aluminium may exclude copper from plagioclase, so enriching the remaining melts. Furthermore, this chemical signature can be used as an exploration indicator for copper porphyry deposits.

  13. The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit

    PubMed Central

    Alissa, Eman M; Bahijri, Suhad M; Lamb, David J; Ferns, Gordon A A

    2004-01-01

    It has previously been shown that dietary copper can modulate the extent of atherosclerosis in the thoracic aorta of cholesterol-fed rabbits. The metabolism of copper and zinc are closely related, and it has been hypothesized that the balance of dietary copper to zinc may be important in determining coronary risk. Hence, we have investigated the interaction between dietary copper and zinc in atherogenesis in the New Zealand White rabbit. Juvenile male rabbits were randomly allocated to eight groups. Four groups were fed a normal chow diet with zinc (0.5%, w/w), copper (0.2%, w/w), copper plus zinc or neither in their drinking water for 12 weeks. Four other groups were fed a diet containing 0.25–1% (w/w) cholesterol plus zinc, copper, both or neither. Serum cholesterol of individual animals was maintained at approximately 20 mmol/l. Integrated plasma cholesterol levels were similar for all groups receiving cholesterol and significantly higher than those in the chow-fed groups (P < 0.001). Aortic copper concentrations were higher in the animals receiving cholesterol diets with copper compared to rabbits receiving normal chow and copper (P < 0.001). Aortic zinc content was significantly higher in cholesterol-fed rabbits supplemented with zinc alone or with copper than in those fed cholesterol alone (P < 0.001). Plasma ceruloplasmin concentrations were significantly higher in groups receiving cholesterol, irrespective of their trace element supplementation (P < 0.001). However, trace element supplementation increased the level significantly (P < 0.05). Trace element supplements did not appear to affect erythrocyte superoxide dismutase in the cholesterol-fed animals; however, zinc supplementation was associated with a significant increase in the enzyme in chow-fed animals (P < 0.05). The activity of the enzyme per mg of protein in aortic tissue was higher in animals receiving copper in the presence of cholesterol (P < 0.05) but not significantly so in its absence. Dietary trace element supplementation in cholesterol-fed animals was associated with a significant reduction in aortic lesion area. Plasma thiobarbituric acid-reactive substances and FOX concentrations were both significantly higher in the cholesterol-fed rabbits compared with the animals that fed on a chow diet (P < 0.001), and these were reduced significantly by dietary copper or zinc supplementation (P < 0.001). Hence, dietary supplements of copper or zinc at the doses used both inhibited aortic atherogenesis in the cholesterol-fed rabbits, although there was no significant additional effect when given in combination. PMID:15379959

  14. Assessment of Trace Element Concentrations in Birds of Prey in Korea.

    PubMed

    Kim, Jungsoo; Oh, Jong-Min

    2016-07-01

    This study presents liver concentrations of trace elements of cinereous vultures (Aegypius monachus), common buzzards (Buteo buteo), common kestrels (Falco tinnunculus), and Eurasian eagle owls (Bubo bubo) collected in Korea from 2007 to 2008. Iron (Fe), manganese (Mn), copper (Cu), lead (Pb), and cadmium (Cd) concentrations in common kestrel juveniles were greater than in other juveniles of birds of prey. Adult cinereous vultures had greater Fe, Pb, and Cd concentrations than in those of other species, but common kestrels had greater Mn and Cu concentrations than in those of other birds of prey. Zinc concentrations in Eurasian eagle owl juveniles and adults were greater than in juveniles and adults of other species, respectively. In common kestrels, Fe, Cu, Pb, and Cd concentrations were significantly greater in adults than in juveniles. In Eurasian eagle owls, only Pb concentrations were greater in adults than in juveniles. Essential elements, such as Fe, Zn, Mn, and Cu concentrations, were within the range of other birds of prey studies. Seventeen individual birds of prey (30 %) were at a level considered Pb exposed (6-30 µg/g dw). This is a greater proportion than reported earlier in herons, egrets, and other birds from Korea. Elevated Pb concentration might be attributed to ingestion of Pb shot and bullet fragments for cinereous vultures and common buzzards, and urbanization for common kestrels. Cadmium concentrations in birds of prey were within the background concentrations (<3 µg/g dw) for wild birds.

  15. Chemically modified Moringa oleifera seed husks as low cost adsorbent for removal of copper from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ghafar, Faridah; Mohtar, Aminullah; Sapawe, Norzahir; Hadi, Norulakmal Nor; Salleh, Marmy Roshaidah Mohd

    2017-12-01

    Moringa oleifera husks (MOH) are an agricultural byproduct that may have potential as adsorbent for removal of heavy metal ions in wastewater such as copper (Cu2+). The release of Cu2+ to the environment by the mining and electroplating industries cause a major problem because it is toxic and can cause liver and kidney problems. Hence, it is important to remove copper before the wastewater can be discharged to the environment. In order to increase the adsorption capacity, the MOH was chemically modified using citric acid. The raw and modified MOH were analyzed using Fourier Transform Infra-Red (FTIR) for identification of functional groups present at the adsorbent surface. The adsorption study was carried out using the batch technique in water bath shaker investigating different parameters; adsorbent dosage (30 - 70 g/L), initial concentration of copper (30 - 150 mg/L), contact time (2 - 90 min), temperature (27 - 60 °C) at constant agitation of 100 rpm. The concentrations of copper in aqueous solution before and after the adsorption process was analyzed using Atomic Absorption Spectrum (AAS). The highest percentage removal of copper was found at 10g/L of adsorbent dosage with 30 mg/L of initial concentration and temperature 30 °C. It was also observed that the adsorption of copper by MOH was approaching to equilibrium at 60 min of reaction time. From the FTIR analysis, it was found that the MOH contains hydroxyl, carboxyl and amine groups. The high adsorption capacity of modified MOH to remove copper from aqueous solution makes it preferable and attractive alternative to commercial adsorbent.

  16. Geochemical constraints on adakites of different origins and copper mineralization

    USGS Publications Warehouse

    Sun, W.-D.; Ling, M.-X.; Chung, S.-L.; Ding, X.; Yang, X.-Y.; Liang, H.-Y.; Fan, W.-M.; Goldfarb, R.; Yin, Q.-Z.

    2012-01-01

    The petrogenesis of adakites holds important clues to the formation of the continental crust and copper ?? gold porphyry mineralization. However, it remains highly debated as to whether adakites form by slab melting, by partial melting of the lower continental crust, or by fractional crystallization of normal arc magmas. Here, we show that to form adakitic signature, partial melting of a subducting oceanic slab would require high pressure at depths of >50 km, whereas partial melting of the lower continental crust would require the presence of plagioclase and thus shallower depths and additional water. These two types of adakites can be discriminated using geochemical indexes. Compiled data show that adakites from circum-Pacific regions, which have close affinity to subduction of young hot oceanic plate, can be clearly discriminated from adakites from the Dabie Mountains and the Tibetan Plateau, which have been attributed to partial melting of continental crust, in Sr/Y-versus-La/Yb diagram. Given that oceanic crust has copper concentrations about two times higher than those in the continental crust, whereas the high oxygen fugacity in the subduction environment promotes the release of copper during partial melting, slab melting provides the most efficient mechanism to concentrate copper and gold; slab melts would be more than two times greater in copper (and also gold) concentrations than lower continental crust melts and normal arc magmas. Thus, identification of slab melt adakites is important for predicting exploration targets for copper- and gold-porphyry ore deposits. This explains the close association of ridge subduction with large porphyry copper deposits because ridge subduction is the most favorable place for slab melting. ?? 2012 by The University of Chicago.

  17. Absorption of metals in mulloway (Argyrosomus japonicus) after ingesting nickel-plated carbon-steel hooks.

    PubMed

    McGrath, Shane P; Reichelt-Brushett, Amanda J; Butcher, Paul A; Cairns, Stuart C

    2014-08-01

    Previous research has alluded to the potential of metals being absorbed by fish after ingesting fishing hooks, which may have adverse effects on fish health and the organisms that consume them. Subsequently, this study aimed to quantify the potential of mulloway (Argyrosomus japonicus) to absorb metals during the decay of ingested nickel-plated carbon-steel hooks. Twenty-five treatment fish were allowed to ingest nickel-plated carbon-steel hooks during angling and then monitored with 25 controls (untreated fish) for up to 42 days for hook ejection and mortality. Blood, liver and muscle samples were collected from treatment, control and 14 wild-caught individuals to determine the concentrations of chromium, cobalt, copper, iron, manganese and nickel. The results showed that increased oxidation influenced hook ejection, and that hook-ingested fish had significantly elevated concentrations of nickel in their liver and blood, but not muscle. This research has shown that there is an avenue for metal absorption from ingested hooks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Purification of CdZnTe by electromigration

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-01

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 μm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. A CZT detector fabricated from the middle portion of the electro-migrated CZT boule showed an improved mobility-lifetime product of 0.91 × 10-2 cm2/V, compared with that of 1.4 × 10-3 cm2/V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.

  19. Purification of CdZnTe by Electromigration

    DOE PAGES

    Kim, K.; Kim, Sangsu; Hong, Jinki; ...

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of themore » electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10 -2 cm 2 /V, compared to that of 1.4 10 -3 cm 2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.« less

  20. Escondida Mine, Chile

    NASA Image and Video Library

    2001-10-22

    This ASTER image covers 30 by 37 km in the Atacama Desert, Chile and was acquired on April 23, 2000. The Escondida Cu-Au-Ag open-pit mine is at an elevation of 3050 m, and came on stream in 1990. Current capacity is 127,000 tons/day of ore; in 1999 production totaled 827,000 tons of copper, 150,000 ounces of gold and 3.53 million ounces of silver. Primary concentration of the ore is done on-site; the concentrate is then sent to the coast for further processing through a 170 km long, 9 pipe. Escondida is related geologically to three porphyry bodies intruded along the Chilean West Fissure Fault System. A high grade supergene cap overlies primary sulfide ore. This image is a conventional 3-2-1 RGB composite. Figure 1 displays SWIR bands 4-6-8 in RGB, and highlights lithologic and alteration differences of surface units. The image is located at 24.3 degrees south latitude and 69.1 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11090

Top