Sample records for elevated core body

  1. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.

    PubMed

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 degrees C at a whole-body-averaged specific absorption rate of 0.08 W kg(-1), which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  2. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.

    PubMed

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.

  3. Influence of hypo- and hyperthermia on death time estimation - A simulation study.

    PubMed

    Muggenthaler, H; Hubig, M; Schenkl, S; Mall, G

    2017-09-01

    Numerous physiological and pathological mechanisms can cause elevated or lowered body core temperatures. Deviations from the physiological level of about 37°C can influence temperature based death time estimations. However, it has not been investigated by means of thermodynamics, to which extent hypo- and hyperthermia bias death time estimates. Using numerical simulation, the present study investigates the errors inherent in temperature based death time estimation in case of elevated or lowered body core temperatures before death. The most considerable errors with regard to the normothermic model occur in the first few hours post-mortem. With decreasing body core temperature and increasing post-mortem time the error diminishes and stagnates at a nearly constant level. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Disgust elevates core body temperature and up-regulates certain oral immune markers.

    PubMed

    Stevenson, Richard J; Hodgson, Deborah; Oaten, Megan J; Moussavi, Mahta; Langberg, Rebekah; Case, Trevor I; Barouei, Javad

    2012-10-01

    Recent findings suggest that disgust can activate particular aspects of the immune system. In this study we examine whether disgust can also elevate core body temperature (BT), a further feature of an immune response to disease. In addition, we also examined whether food based disgust--a core eliciting stimulus--may be a more potent immune stimulus than non-food based disgust. Healthy males were randomly assigned to view one of four sets of images--food disgust, non-food disgust, food control and negative emotion control. Measures of BT, salivary immune and related markers, and self-report data, were collected before, and at two time points after image viewing. Disgust elevated BT relative to the negative emotion control condition, as did food images. Different mechanisms appeared to account for these effects on BT, with higher initial levels of Tumor Necrosis Factor alpha (TNF-a) and disgust, predictive of BT increases in the disgust conditions. Disgust also increased TNF-a, and albumin levels, relative to the control conditions. Type of disgust exerted little effect. These findings further support the idea that disgust impacts upon immune function, and that disgust serves primarily a disease avoidance function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers.

    PubMed

    Angle, T Craig; Gillette, Robert L

    2011-04-01

    This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog.

  6. Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers

    PubMed Central

    Angle, T. Craig; Gillette, Robert L.

    2011-01-01

    This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog. PMID:21731189

  7. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-04-01

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  8. Effect of a warm footbath before bedtime on body temperature and sleep in older adults with good and poor sleep: an experimental crossover trial.

    PubMed

    Liao, Wen-Chun; Wang, Lee; Kuo, Ching-Pyng; Lo, Chyi; Chiu, Ming-Jang; Ting, Hua

    2013-12-01

    The decrease in core body temperature before sleep onset and during sleep is associated with dilation of peripheral blood vessels, which permits heat dissipation from the body core to the periphery. A lower core temperature coupled with a higher distal (hands and feet) temperature before sleep are associated with shorter sleep latency and better sleep quality. A warm footbath is thought to facilitate heat dissipation to improve sleep outcomes. This study examined the effect of a warm footbath (40°C water temperature, 20-min duration) on body temperature and sleep in older adults (≥55 years) with good and poor sleep. Two groups and an experimental crossover design was used. Forty-three adults responded to our flyer and 25 participants aged 59.8±3.7 years (poor sleeper with a Pittsburgh Sleep Quality Index score≥5=17; good sleepers with a Pittsburgh Sleep Quality Index score<5=8) completed this study. All participants had body temperatures (core, abdomen, and foot) and polysomnography recorded for 3 consecutive nights. The first night was for adaptation and sleep apnea screening. Participants were then randomly assigned to either the structured foot bathing first (second night) and non-bathing second (third night) condition or the non-bathing first (second night) and foot bathing second (third night) condition. A footbath before sleep significantly increased and retained foot temperatures in both good and poor sleepers. The pattern of core temperatures during foot bathing was gradually elevated (poor sleepers vs. good sleepers=+0.40±0.58°C vs. +0.66±0.17°C). There were no significant changes in polysomnographic sleep and perceived sleep quality between non-bathing and bathing nights for both groups. A footbath of 40°C water temperature and 20-min duration before sleep onset increases foot temperatures and distal-proximal skin temperature gradients to facilitate vessel dilatation and elevates core temperature to provide heat load to the body. This footbath does not alter sleep in older adults with good and poor sleep. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Behavioural thermoregulation and the relative roles of convection and radiation in a basking butterfly.

    PubMed

    Barton, Madeleine; Porter, Warren; Kearney, Michael

    2014-04-01

    Poikilothermic animals are often reliant on behavioural thermoregulation to elevate core-body temperature above the temperature of their surroundings. Butterflies are able to do this by altering body posture and location while basking, however the specific mechanisms that achieve such regulation vary among species. The role of the wings has been particularly difficult to describe, with uncertainty surrounding whether they are positioned to reduce convective heat loss or to maximise heat gained through radiation. Characterisation of the extent to which these processes affect core-body temperature will provide insights into the way in which a species׳ thermal sensitivity and morphological traits have evolved. We conducted field and laboratory measurements to assess how basking posture affects the core-body temperature of an Australian butterfly, the common brown (Heteronympha merope). We show that, with wings held open, heat lost through convection is reduced while heat gained through radiation is simultaneously maximised. These responses have been incorporated into a biophysical model that accurately predicts the core-body temperature of basking specimens in the field, providing a powerful tool to explore how climate constrains the distribution and abundance of basking butterflies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Petrology of deep drill hole, Kilauea Volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grose, L.T.; Keller, G.V.

    1976-12-01

    The first deep drill hole (1262 m TD) at the summit of an active volcano (1102 m elev) was drilled in 1973 at Kilauea volcano, Hawaii with support from NSF and USGS. The hole is located within southern margin of Kilauea caldera in northern part of a 15 km/sup 2/ triangular block bounded by east rift zone, Koae fault zone, and southwest rift zone-a summit area relatively free of faults, rifts, and extrusions. Nearest eruptions are from fissures 1.2 km away which are active in 1974 and which do not trend toward the drill hole. Core recovery totals 47 mmore » from 29 core runs at rather evenly spaced intervals to total depth. Megascopic, thin-section, and X-ray examination reveals: (1) Recovered core is essentially vesicular, intergranular, nonporphyritic to porphyritic olivine basalt with minor olivine diabase, picrite diabase, and basalt, (2) Hyaloclastite and pillow basalt are absent, (3) Below water table (614 m elev) with increasing depth, vesicularity decreases, and density, crystallinity, competence, vesicle fill, and alteration irregularly increase, (4) Alteration first occurs at water table where calcite and silica partially fill vesticles and olivine is partially serpentinized, (5) At about 570 m elev massive serpentinization of olivine and deposition of montmorillonite-nontronite occur; at about 210 m elev truscottite and tobermorite occur in vesicles; at about 35 m elev mordenite occurs in vesicles, (6) Bottom-hole cores have complete filling of vesicles with silica, minor silica replacement, and complete alteration of olivine, and (7) Plagioclase is unaltered. Chemical analyses of bottom-hole cores are similar to those of modern summit lavas. Alteration and low porosity in bottom-hole cores plus abrupt temperature increase suggest the drill hole penetrated a self-sealed ''cap rock'' to a hydrothermal convection cell and possibly a magma body.« less

  11. FDTD computation of temperature elevation in the elderly for far-field RF exposures.

    PubMed

    Nomura, Tomoki; Laakso, Ilkka; Hirata, Akimasa

    2014-03-01

    Core temperature elevation and perspiration in younger and older adults is investigated for plane-wave exposure at whole-body averaged specific absorption rate of 0.4 W kg(-1). Numeric Japanese male model is considered together with a thermoregulatory response formula proposed in the authors' previous study. The frequencies considered were at 65 MHz and 2 GHz where the total power absorption in humans becomes maximal for the allowable power density prescribed in the international guidelines. From the computational results used here, the core temperature elevation in the older adult model was larger than that in the younger one at both frequencies. The reason for this difference is attributable to the difference of sweating, which is originated from the difference in the threshold activating the sweating and the decline in sweating in the legs.

  12. Increasing heat storage by wearing extra clothing during upper body exercise up-regulates heat shock protein 70 but does not modify the cytokine response.

    PubMed

    Leicht, Christof A; Papanagopoulos, Aris; Haghighat, Sam; Faulkner, Steve H

    2017-09-01

    Plasma heat shock protein 70 (HSP70) concentrations rise during heat stress, which can independently induce cytokine production. Upper body exercise normally results in modest body temperature elevations. The aim of this study was to investigate the impacts of additional clothing on the body temperature, cytokine and HSP70 responses during this exercise modality. Thirteen males performed 45-min constant-load arm cranking at 63% maximum aerobic power (62 ± 7%V̇O 2peak ) in either a non-permeable whole-body suit (intervention, INT) or shorts and T-shirt (control, CON). Exercise resulted in a significant increase of IL-6 and IL-1ra plasma concentrations (P < 0.001), with no difference between conditions (P > 0.19). The increase in HSP70 from pre to post was only significant for INT (0.12 ± 0.11ng∙mL -1 , P < 0.01 vs. 0.04 ± 0.18 ng∙mL -1 , P = 0.77). Immediately following exercise, T core was elevated by 0.46 ± 0.29 (INT) and 0.37 ± 0.23ºC (CON), respectively (P < 0.01), with no difference between conditions (P = 0.16). The rise in mean T skin (2.88 ± 0.50 and 0.30 ± 0.89ºC, respectively) and maximum heat storage (3.24 ± 1.08 and 1.20 ± 1.04 J∙g -1 , respectively) was higher during INT (P < 0.01). Despite large differences in heat storage between conditions, the HSP70 elevations during INT, even though significant, were very modest. Possibly, the T core elevations were too low to induce a more pronounced HSP70 response to ultimately affect cytokine production.

  13. Severe carbon monoxide poisoning complicated by hypothermia: a case report.

    PubMed

    Kamijo, Yoshito; Ide, Toshimitsu; Ide, Ayako; Soma, Kazui

    2011-03-01

    It is proposed that the significant elevation of interleukin-6 (>400 pg/mL) in cerebrospinal fluid during the early phase of carbon monoxide poisoning may be a predictive biomarker for the development of delayed encephalopathy. A 52-year-old man presented to the emergency department with severe carbon monoxide poisoning. On arrival, the patient was comatose with decorticate rigidity (Glasgow Coma Scale, E1V1M3). His core body temperature, measured in the urinary bladder, was 32.4°C. Laboratory blood analysis revealed elevated CO-Hb (36.0%) and metabolic acidosis with elevated lactate (pH 7.081; base excess [BE], -19.2 mmol/L; HCO3, -9.8 mmol/L; lactate, 168.8 mg/dL). After treatment with hyperbaric oxygen and several different rewarming techniques, he became alert and his core body temperature increased to normal. Interleukin-6 in cerebrospinal fluid at 5.5 hours after his last exposure to carbon monoxide was significantly elevated (752 pg/mL). However, he did not develop delayed encephalopathy. In this case, hypothermia in the range of therapeutic hypothermia (32°C to 34°C) may have suppressed formation of reactive oxygen species and subsequent lipid peroxydation, preventing the development of delayed encephalopathy. Therapeutic hypothermia initiated soon after the last exposure to carbon monoxide may be an effective prophylactic method for preventing the development of delayed encephalopathy.

  14. Re-Evaluation of HSE DATA in Light of High P-T Partitioning Data: Late Chondritic Addition to Inner Solar System Bodies Not Always Required for HSE

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2015-01-01

    Studies of terrestrial peridotite and martian and achondritic meteorites have led to the conclusion that addition of chondritic material to growing planets or planetesimals, after core formation, occurred on Earth, Moon, Mars, asteroid 4 Vesta, and the parent body of the angritic meteorites. One study even proposed that this was a common process in the final stages of growth. These conclusions are based al-most entirely on the 8 highly siderophile elements (HSE; Re, Au, Pt, Pd, Rh, Ru, Ir, Os), which have been used to argue for late accretion of chondritic material to the Earth after core formation was complete. This idea was originally proposed because the D(metal/silicate) values for the HSE are very high (greater than 10,000), yet their concentration in the terrestrial mantle is too high to be consistent with such high Ds. The HSE in the terrestrial mantle also are present in chondritic relative abundances and hence require similar Ds if this was the result of core-mantle equilibration. The conclusion that late chondritic additions are required for all five of these bodies is based on the chondritic relative abundances of the HSE, as well as their elevated concentrations in the samples. An easy solution is to call upon addition of chondritic material to the mantle of each body, just after core formation; however, in practice this means similar additions of chondritic materials to each body just after core formation which ranges from approximately 4-5 Ma after T(sub 0) for 4 Vesta and the angrites, to 10-25 Ma for Mars, to 35 to 60 Ma for Moon and perhaps the Earth. Since the work of there has been a realization that high PT conditions can lower the partition coefficients of many siderophile elements, indicating that high PT conditions (magma ocean stage) can potentially explain elevated siderophile element abundances. However, detailed high PT partitioning data have been lacking for many of the HSE to evaluate whether such ideas are viable for all four bodies. Re-cent partitioning studies have covered P, T, fO2, and compositional ranges that allow values to be predicted at conditions relevant to these five inner solar system bodies. Because the D(HSE) metal/silicate are lowered substantially at higher PT conditions and natural com-positions (FeNi metallic liquids and peridotites) it is natural to re-examine the role of core formation on the HSE patterns in a variety of inner solar system bodies. Here I will discuss other processes (including high PT core formation for Mars, Moon and Earth) that can produce the observed HSE patterns, and demonstrate that there are viable hypotheses other than the "one size fits all" hypothesis of late chondritic additions.

  15. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  16. Circadian changes in core body temperature, metabolic rate and locomotor activity in rats on a high-protein, carbohydrate-free diet.

    PubMed

    Yamaoka, Ippei; Hagi, Mieko; Doi, Masako

    2009-12-01

    Ingestion of a high-protein meal results in body weight loss due to elevated energy expenditure, while also increasing satiety and decreasing subsequent food intake. The present study aimed to clarify the effects of a high-protein, carbohydrate-free diet (HPCFD) on these physiological indicators from a circadian perspective. Rats were given HPCFD or a pair-fed normal protein content diet (20% protein; NPD) for 4 d. The HPCFD group lost more body weight than the NPD group. Oxygen consumption (VO(2)) in the HPCFD group did not change during the experimental period, and tended to be higher during the light (L) phase than in the NPD group. Carbon dioxide production (VCO(2)) during the L phase was higher in the HPCFD group than in the NPD group, where VCO(2) was gradually decreased during the last dark (D) phase and throughout the L phase. The HPCFD group exhibited higher daily core body temperature (T(b)), particularly during the late D phase and throughout the L phase when compared to the NPD group. Locomotor activities during the D phase of the NPD group tended to gradually increase and were thus significantly higher than in the HPCFD group. These results suggest that HPCFD, even if energy intake is insufficient, maintains circadian changes in metabolic rates, resulting in maintenance of elevated daily T(b) and body weight reduction without increasing activity.

  17. 78 FR 56174 - In-Core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ...-core thermocouples at different elevations and radial positions throughout the reactor core to enable... different elevations and radial positions throughout the reactor core to enable NPP operators to accurately... NPPs with in-core thermocouples at different elevations and radial positions throughout the reactor...

  18. Early Planetary Differentiation: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    2006-01-01

    We currently have extensive data for four different terrestrial bodies of the inner solar system: Earth, the Moon, Mars, and the Eucrite Parent Body [EPB]. All formed early cores; but all(?) have mantles with elevated concentrations of highly sidero-phile elements, suggestive of the addition of a late "veneer". Two appear to have undergone extensive differentiation consistent with a global magma ocean. One appears to be inconsistent with a simple model of "low-pressure" chondritic differentiation. Thus, there seems to be no single, simple paradigm for understand-ing early differentiation.

  19. Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats.

    PubMed

    Yamaoka, Ippei; Nakayama, Mitsuo; Miki, Takanori; Yokoyama, Toshifumi; Takeuchi, Yoshiki

    2008-02-01

    We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.

  20. Effect of innovative building design on physical activity.

    PubMed

    Nicoll, Gayle; Zimring, Craig

    2009-01-01

    Stair climbing can be a low-cost and relatively accessible way to add everyday physical activity, but many building stairwells are inaccessible or unpleasant and elevators are far more convenient. This study explores the use of and attitude toward stairs in an innovative office building where the main elevators for able-bodied users stop only at every third floor ("skip-stop" elevators). These users are expected to walk up or down nearby stairs that have been made open and appealing ("skip-stop" stairs). The study takes advantage of a natural experiment. Some workers' offices were clustered around the skip-stop elevator and the stairs, whereas others had access to a traditional elevator core, that is, an elevator that stopped at each floor with nearby fire exit stairs. Stair use on the open skip-stop stairs and enclosed fire stairs was measured using infrared monitors and card-reader activity logs. An online survey of employees (N=299, a 17.4% response rate) gathered information on stair use and attitudes and behaviors toward physical activity; interviews with key personnel identified major implementation issues. The skip-stop stair was used 33 times more than the enclosed stair of the traditional elevator core, with 72% of survey participants reporting daily stair use. Although implementation issues related to organizational objectives, costs, security, barrier-free accessibility, and building codes exist, the skip-stop feature offers a successful strategy for increasing stair use in workplaces.

  1. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.

    PubMed

    Miller, D B; O'Callaghan, J P

    1994-08-01

    In the companion paper we demonstrated that d-methamphetamine (d-METH), d-methylenedioxyamphetamine (d-MDA) and d-methylenedioxymethamephetamine (d-MDMA), but not d-fenfluramine (d-FEN), appear to damage dopaminergic projections to the striatum of the mouse. An elevation in core temperature also was associated with exposure to d-METH, d-MDA and d-MDMA, whereas exposure to d-FEN lowered core temperature. Given these findings, we examined the effects of temperature on substituted amphetamine (AMP)-induced neurotoxicity in the C57BL/6J mouse. Levels of striatal dopamine (DA) and glial fibrillary acidic protein (GFAP) were taken as indicators of neurotoxicity. Alterations in ambient temperature, pretreatment with drugs reported to cause hypothermia in the mouse and hypothermia induced by restraint stress were used to affect AMP-induced neurotoxicity. Mice received d-METH (10 mg/kg), d-MDA (20 mg/kg) or d-MDMA (20 mg/kg) every 2 hr for a total of four s.c. injections. All three AMPs increased core temperature and caused large (> 75%) decreases in striatal dopamine and large (> 300%) increases in striatal glial fibrillary acidic protein 72 hr after the last injection. Lowering ambient temperature from 22 degrees C to 15 degrees C blocked (d-MDA and d-MDMA) or severely attenuated (d-METH) these effects. Pretreatment with MK-801 lowered core temperature and blocked AMP-induced neurotoxicity; elevation of ambient temperature during this regimen elevated core temperature and markedly attenuated the neuroprotective effects of MK-801. Pretreatment with MK-801 also lowered core temperature in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice but did not block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice

    PubMed Central

    Zhou, Peng; Robles-Murguia, Maricela; Mathew, Deepa; Duffield, Giles E.

    2016-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2−/− mice. Moreover, in Id2−/− BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner. PMID:27144179

  3. The Effects of Increased Body Temperature on Motor Control during Golf Putting

    PubMed Central

    Mathers, John F.; Grealy, Madeleine A.

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed. PMID:27630588

  4. Thermal Stress and Toxicity | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  5. Ingestive behavior and body temperature during the ovarian cycle in normotensive and hypertensive rats.

    PubMed

    Rashotte, Michael E; Ackert, Allison M; Overton, J Michael

    2002-01-01

    The relationship between ingestive behavior (eating + drinking) and core body temperature (T(b)) in naturally cycling female rats was compared in a normotensive strain (Sprague-Dawley; SD) and a hypertensive strain reputed to have chronically elevated T(b) (spontaneously hypertensive rats; SHR). T(b) (by telemetry) and ingestive behavior (automated recording) were quantified every 30 s. Ingestive behavior and T(b) were related on all days of the ovarian cycle in both strains, but the strength of that relationship was reduced on the day of estrus (E) compared with nonestrous days. Several strain differences in T(b) were found as well. In SHR, dark-phase T(b) was elevated on E, whereas SD remained at the lower nonestrous values. Fluctuations in dark-phase T(b) were correlated with ingestive behavior in both strains but had greater amplitude in SHR except on E. Short-term fasting or sucrose availability did not eliminate elevated dark-phase T(b) on E in SHR. We propose that estrus-related changes unique to SHR may indicate heightened thermal reactivity to hormonal changes, ingestive behavior, and general locomotor activity.

  6. Optical imaging characterizing brain response to thermal insult in injured rodent

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.

    2018-02-01

    We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.

  7. Water turnover and core temperature on Mount Rainier.

    PubMed

    Hailes, Walter S; Cuddy, John S; Slivka, Dustin S; Hansen, Kent; Ruby, Brent C

    2012-09-01

    Hydration is an important logistical consideration for persons performing in austere environments because water demands must be balanced with the burden of carrying water. Seven novice climbers participated in a study to determine the hydration kinetics and core temperatures associated with a successful summit of Mount Rainier. Ingestible radio-equipped thermometer capsules were swallowed to monitor core temperature, and an oral dose of deuterium (0.12 ± 0.02 g·kg⁻¹ body weight) was administered to determine hydration kinetics. Mean core temperature throughout the 5.5-hour climb to Camp Muir (3000 m) was 37.6 ± 0.3°C. Water turnover was 95.0 ± 17.5 mL·kg⁻¹·24 h⁻¹ over the duration of the 43-hour study. There was a trend for reduced body mass from before (75.9 ± 13.0 kg) to after (74.8 ± 12.5 kg) the climb (P = .06), and urine specific gravity increased from before (1.013 ± 0.002) to after (1.022 ± 0.006) the climb (P = .004). Hydration demands of climbing Mount Rainier are highly elevated despite modest fluctuations in core temperature. Participants experienced hypohydration but were able to maintain sufficient hydration to successfully summit Mount Rainier and return home safely. Copyright © 2012 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding.

    PubMed

    Pardon, Marie-Christine; Kendall, David A; Pérez-Diaz, Fernando; Duxon, Mark S; Marsden, Charles A

    2004-08-01

    The present study investigated whether the 'psychological threat' induced by sensory contact with an aggressive conspecific would be a sufficient factor in inducing behavioural and physiological disturbances. Repeated sensory contact with an aggressive mouse (social threat) in a partitioned cage was compared with repeated exposure to a novel partitioned cage in male NMRI mice. We first examined parameters of stress responsiveness (body weight, plasma corticosterone levels, frequency of self-grooming and defecation). The temperature and physical activity responses to stress were also recorded during and after the 4 weeks of stress using radiotelemetry. Finally, cognitivo-emotional performance was assessed after acute stress and 2 and 4 weeks of stress by measuring decision making, sequential alternation performance and behaviour in the elevated T-maze. Social threat had a greater impact than novel cage exposure on most parameters of stress responsiveness, although mice did not habituate to either stressor. Social threat rapidly led to an anticipatory rise in core body temperature and physical activity before the scheduled stress sessions. Such anticipation developed within the first week and persisted for 9 days after ending the stress procedure. Some memory impairment in the sequential alternation test was found in stressed mice, independent of the stressor. After 4 weeks of stress, inhibitory avoidance in the elevated T-maze was enhanced in socially stressed mice and reduced in novel cage mice. The sustained anticipation of stress in the social threat group preceded aversive responding. It remains to be established whether anticipation contributes to the development of aversive responses.

  9. 77 FR 30435 - In-core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [Docket No. PRM-50-105; NRC-2012-0056] In-core Thermocouples at Different Elevations and Radial Positions in Reactor Core AGENCY: Nuclear Regulatory Commission... of operating licenses for nuclear power plants (``NPP'') to operate NPPs with in-core thermocouples...

  10. Impact of Elevated Core Body Temperature on Attention Networks.

    PubMed

    Liu, Kai; Jiang, Qingjun; Li, Li; Li, Bo; Yang, Zhen; Qian, Shaowen; Li, Min; Sun, Gang

    2015-12-01

    Cognitive function can be impaired after passive heat exposure and with an elevation in core body temperature (Tcore). This study examined the dynamic correlation among passive heat exposure, Tcore, and cognition. We gave the Attention Network Test of alerting, orienting, and executive control to five groups of five young men who were being exposed to a hyperthermic condition (50°C, 40% relative humidity) for 0, 10, 20, 30, or 40 minutes. We used the participants' reaction time, accuracy (correct responses), efficiency (accuracy÷reaction time), and Tcore to estimate optimal curve models for best fit of data. We could not estimate an appropriate curve model for either alerting or orienting with Tcore, change in Tcore, or duration of passive heat exposure. We estimated quadratic models for Tcore and duration (adjusted R=0.752), change in Tcore and duration (0.906), executive control score and duration (0.509), and efficiency of executive control and duration (0.293). We estimated linear models for executive control score and Tcore (0.479), efficiency of executive control and Tcore (0.261), executive control score and change in Tcore (0.279), and efficiency of executive control and change in Tcore (0.262). Different attentional abilities had different sensitivities to thermal stress. Executive control of attention deteriorated linearly with a rise in Tcore within the normal physiologic range, but deteriorated nonlinearly with longer passive heat exposure.

  11. Thermometry, calorimetry, and mean body temperature during heat stress.

    PubMed

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  12. Post-Landing Orion Crew Survival in Warm Ocean Areas: A Case Study in Iterative Environmental Design

    NASA Technical Reports Server (NTRS)

    Rains, George E.; Bue, Grant C.; Pantermuehl, Jerry

    2008-01-01

    The Orion crew module (CM) is being designed to perform survivable land and water landings. There are many issues associated with post-landing crew survival. In general, the most challenging of the realistic Orion landing scenarios from an environmental control standpoint is the off-nominal water landing. Available power and other consumables will be very limited after landing, and it may not be possible to provide full environmental control within the crew cabin for very long after splashdown. Given the bulk and thermal insulation characteristics of the crew-worn pressure suits, landing in a warm tropical ocean area would pose a risk to crew survival from elevated core body temperatures, if for some reason the crewmembers were not able to remove their suits and/or exit the vehicle. This paper summarizes the analyses performed and conclusions reached regarding post-landing crew survival following a water landing, from the standpoint of the crew s core body temperatures.

  13. The maximum evaporative potential of constant wear immersion suits influences the risk of excessive heat strain for helicopter aircrew

    PubMed Central

    2018-01-01

    The heat exchange properties of aircrew clothing including a Constant Wear Immersion Suit (CWIS), and the environmental conditions in which heat strain would impair operational performance, were investigated. The maximum evaporative potential (im/clo) of six clothing ensembles (three with a flight suit (FLY) and three with a CWIS) of varying undergarment layers were measured with a heated sweating manikin. Biophysical modelling estimated the environmental conditions in which body core temperature would elevate above 38.0°C during routine flight. The im/clo was reduced with additional undergarment layers, and was more restricted in CWIS compared to FLY ensembles. A significant linear relationship (r2 = 0.98, P<0.001) was observed between im/clo and the highest wet-bulb globe temperature in which the flight scenario could be completed without body core temperature exceeding 38.0°C. These findings provide a valuable tool for clothing manufacturers and mission planners for the development and selection of CWIS’s for aircrew. PMID:29723267

  14. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  15. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, A.D.; Overstreet, D.H.; Crocker, J.M.

    1986-06-01

    Rats treated with iodine-131 were confirmed to be hypothyroid by their reduced baseline core body temperatures, reduced serum thyroxine concentrations and elevated serum thyroid stimulating hormone concentrations. When hypothyroid rats were compared to euthyroid controls they were more sensitive to the effects of apomorphine (1.0 mumol/kg) on stereotypy, operant responding and body temperature and showed a smaller reduction in locomotor activity after injection of haloperidol (0.25 mumol/kg). Receptor binding studies on striatal homogenates indicated that hypothyroid rats had increased concentrations of D2 dopamine receptors but there was no change in the affinity. It is concluded that hypothyroidism increases dopamine receptormore » sensitivity by increasing receptor concentration.« less

  16. Enhancement of myofibrillar proteolysis following infusion of amino acid mixture correlates positively with elevation of core body temperature in rats.

    PubMed

    Yamaoka, Ippei; Mikura, Mayumi; Nishimura, Masuhiro; Doi, Masako; Kawano, Yuichi; Nakayama, Mitsuo

    2008-12-01

    Administration of an amino acid (AA) mixture stimulates muscle protein synthesis and elevates core body temperature (T(b)), as characteristically found under anesthetic conditions. We tested the hypothesis that not only AA given, but also AA produced by degradation of endogenous muscular protein are provided for muscle protein synthesis, which is further reflected in T(b) modifications. Rats were intravenously administered an AA mixture or saline in combination with the anesthetic propofol or lipid emulsion. We measured plasma 3-methylhistidine (MeHis) concentrations as an index of myofibrillar protein degradation, rectal temperature and mRNA expression of atrogin-1, MuRF-1 and ubiquitin in gastrocnemius and soleus muscles of rats following 3 h infusion of test solutions. T(b) did not differ significantly between conscious groups, but was higher in the AA group than in the saline group among anesthetized rats. Plasma MeHis concentrations were higher in the AA group than in the saline group under both conditions. Plasma MeHis levels correlated positively with T(b) of rats under both conditions. AA administration decreased mRNA levels of atrogin-1 and ubiquitin in gastrocnemius muscle and all mRNA levels in soleus muscle. These results suggest that AA administration enhances myofibrillar protein degradation and that the change is a determinant of T(b) modification by AA administration. However, the mechanisms underlying AA administration-associated enhancement of myofibrillar proteolysis remains yet to be determined.

  17. Brown adipose tissue thermogenesis does not explain the intra-administration hyperthermic sign-reversal induced by serial administrations of 60% nitrous oxide to rats.

    PubMed

    Al-Noori, Salwa; Ramsay, Douglas S; Cimpan, Andreas; Maltzer, Zoe; Zou, Jessie; Kaiyala, Karl J

    2016-08-01

    Initial administration of ≥60% nitrous oxide (N2O) to rats promotes hypothermia primarily by increasing whole-body heat loss. We hypothesized that the drug promotes heat loss via the tail and might initially inhibit thermogenesis via brown adipose tissue (BAT), major organs of thermoregulation in rodents. Following repeated administrations, N2O inhalation evokes hyperthermia underlain by increased whole-body heat production. We hypothesized that elevated BAT thermogenesis plays a role in this thermoregulatory sign reversal. Using dual probe telemetric temperature implants and infrared (IR) thermography, we assessed the effects of nine repeated 60% N2O administrations compared to control (con) administrations on core temperature, BAT temperature, lumbar back temperature and tail temperature. Telemetric core temperature, telemetric BAT temperature, and IR BAT temperature were reduced significantly during initial 60% N2O inhalation (p≤0.001 compared to con). IR thermography revealed that acute N2O administration unexpectedly reduced tail temperature (p=0.0001) and also inhibited IR lumbar temperature (p<0.0001). In the 9th session, N2O inhalation significantly increased telemetric core temperature (p=0.007) indicative of a hyperthermic sign reversal, yet compared to control administrations, telemetric BAT temperature (p=0.86), IR BAT temperature (p=0.85) and tail temperature (p=0.47) did not differ significantly. Thus, an initial administration of 60% N2O at 21°C may promote hypothermia via reduced BAT thermogenesis accompanied by tail vasoconstriction as a compensatory mechanism to limit body heat loss. Following repeated N2O administrations rats exhibit a hyperthermic core temperature but a normalized BAT temperature, suggesting induction of a hyperthermia-promoting thermogenic adaptation of unknown origin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Heat strain during military training activities: The dilemma of balancing force protection and operational capability.

    PubMed

    Hunt, Andrew P; Billing, Daniel C; Patterson, Mark J; Caldwell, Joanne N

    2016-01-01

    Military activities in hot environments pose 2 competing demands: the requirement to perform realistic training to develop operational capability with the necessity to protect armed forces personnel against heat-related illness. To ascertain whether work duration limits for protection against heat-related illness restrict military activities, this study examined the heat strain and risks of heat-related illness when conducting a military activity above the prescribed work duration limits. Thirty-seven soldiers conducted a march (10 km; ∼5.5 km h -1 ) carrying 41.8 ± 3.6 kg of equipment in 23.1 ± 1.8°C wet-bulb globe temperature. Body core temperature was recorded throughout and upon completion, or withdrawal, participants rated their severity of heat-related symptoms. Twenty-three soldiers completed the march in 107 ± 6.4 min (Completers); 9 were symptomatic for heat exhaustion, withdrawing after 71.6 ± 10.1 min (Symptomatic); and five were removed for body core temperature above 39.0°C (Hyperthermic) after 58.4 ± 4.5 min. Body core temperature was significantly higher in the Hyperthermic (39.03 ± 0.26°C), than Symptomatic (38.34 ± 0.44°C; P = 0.007 ) and Completers (37.94 ± 0.37°C; P<0.001 ) after 50 min. Heat-related symptom severity was significantly higher among Symptomatic (28.4 ± 11.8) compared to Completers (15.0 ± 9.8, P = 0.006 ) and Hyperthermic (13.0 ± 9.6, P = 0.029 ). The force protection provided by work duration limits may be preventing the majority of personnel from conducting activities in hot environments, thereby constraining a commander's mandate to develop an optimised military force. The dissociation between heat-related symptoms and body core temperature elevation suggests that the physiological mechanisms underpinning exhaustion during exertional heat stress should be re-examined to determine the most appropriate physiological criteria for prescribing work duration limits.

  19. Relationships between brain and body temperature, clinical and imaging outcomes after ischemic stroke

    PubMed Central

    Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M

    2013-01-01

    Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281

  20. A wider view on gastric erosion: detailed evaluation of complex somatic and behavioral changes in rats treated with indomethacin at gastric ulcerogenic dose.

    PubMed

    Filaretova, L P; Bagaeva, T R; Morozova, O Y; Zelena, D

    2014-10-01

    Gastric erosion is widespread side effect of nonsteroidal anti-inflammatory drugs. To examine the complexity of the brain-gut axis regulation, indomethacin-induced gastric erosion formation was studied in connection with somatic and behavioral changes. During a constant telemetric recording of heart rate, body temperature, and locomotion of male rats we examined the effects of 24 h fasting, indomethacin (35 mg/kg s.c.) injection, and refeeding at 4 h. Behavior was analyzed on elevated plus maze (EPM) at 24 h and somatic changes at 72 h. Gastric erosion developed 4 h after indomethacin injection, healed 72 h later contrasted by large injury in the small intestine. As classical signs of chronic stress, body and thymus weight were reduced while adrenal weight was enhanced 72 h after indomethacin injection. Fasting by itself changed all telemetrically recorded parameters with most prominent decrease in heart rate. Indomethacin induced similar diminishing effects with earliest and strongest temperature decrease. As a sign of more anxious phenotype locomotion reducing effect of indomethacin injection was detected on EPM. The EPM-induced temperature elevation was missing in indomethacin-treated animals. Fasting by itself induce somatic changes, which can make the animals more vulnerable to ulcerogenic stimuli. Development of indomethacin-induced gastrointestinal lesions happened in parallel with disturbances of heart rate, core body temperature, and chronic stress-like somatic changes as well as anxiety-like behavior. We have to be more aware of the existence of the brain-gut axis and should study changes in the whole body rather than focusing on a specific organ. elevated plus maze.

  1. Fitness characteristics of a suburban special weapons and tactics team.

    PubMed

    Pryor, Riana R; Colburn, Deanna; Crill, Matthew T; Hostler, David P; Suyama, J

    2012-03-01

    Special Weapons and Tactics (SWAT) operators are specialized law enforcement officers who traditionally perform their duties with higher anticipated workloads because of additional body armor, weapons, and equipment used for enhanced operations and protection. This elevated workload increases the need for SWAT operators to improve or maintain their physical fitness to consistently perform routine operations. Typical tasks require trunk rotation, overhead upper extremity use, upper and lower body strength use, and long waiting periods followed by explosive movements while wearing additional equipment. Eleven male SWAT operators from 1 SWAT team performed flexibility, strength, power, and aerobic capacity tests and a variety of job-related tasks. Data were compared with age- and gender-based normative data. Fitness testing revealed that officers ranked high on tests of muscular strength (leg strength, 90th percentile; bench press, 85th percentile); however, body composition (55th percentile), core body strength, and flexibility ranked lower. Furthermore, aerobic capacity and muscular power had a wide range of scores and were also not ideal to support maximal performance during routine operations. These data can assist exercise specialists choose fitness programs specifically for job-related tasks of SWAT operators when creating fitness programs. Fitness programming for law enforcement should focus on improving aerobic fitness, flexibility, core strength, and muscular power while maintaining muscular strength to meet the needs of these specialized officers.

  2. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2015-01-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.

  3. Topsy-turvy: turning the counter-current heat exchange of leatherback turtles upside down.

    PubMed

    Davenport, John; Jones, T Todd; Work, Thierry M; Balazs, George H

    2015-10-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting. © 2015 The Author(s).

  4. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    PubMed

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo.

  5. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd

    NASA Astrophysics Data System (ADS)

    Wohlers, Anke; Wood, Bernard J.

    2015-04-01

    Recent 142Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a `hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the `hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an 142Nd/144Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the `missing' heat source for the geodynamo.

  6. A comparison of technologies used for estimation of body temperature.

    PubMed

    Mangat, Jasdip; Standley, Thomas; Prevost, Andrew; Vasconcelos, Joana; White, Paul

    2010-09-01

    Body temperature measurement is an important clinical parameter. The performance of a number of non-invasive thermometers was measured by comparing intra- and inter-operator variability (n = 100) and clinical accuracy (n = 61). Variability was elevated in febrile compared to normothermic subjects for axillary and oral electronic contact thermometer measures and a temporal artery thermometer (p < 0.001 for both). Temporal artery thermometry and one mode of an infrared tympanic thermometer demonstrated significant clinical inaccuracy (p < 0.001 for both). Electronic contact thermometer repeatability and reproducibility are highly variable in febrile adults both in the axilla and oral cavity. Infrared thermometry of the skin over the superficial temporal artery is unreliable for measuring core body temperature, particularly in febrile subjects and patients in theatre. The infrared tympanic thermometers tested are acceptable for clinical practice; however, care should be exercised with the different modes of operation offered.

  7. Exertional heat stroke and acute liver failure: a late dysfunction

    PubMed Central

    Carvalho, Ana Sofia; Rodeia, Simão C; Silvestre, Joana; Póvoa, Pedro

    2016-01-01

    Heat stroke (HS) is defined as a severe elevation of core body temperature along with central nervous system dysfunction. Exertional heat stroke (EHS) with acute liver failure (ALF) is a rare condition. The authors report the case of a 25-year-old man with a history of cognitive enhancers’ intake who developed hyperthermia and neurological impairment while running an outdoor marathon. The patient was cooled and returned to normal body temperature after 6 h. He subsequently developed ALF and was transferred to the intensive care unit. Over-the-counter drug intake may have been related to heat intolerance and contributed to the event. The patient was successfully treated with conservative measures. In the presence of EHS, it is crucial to act promptly with aggressive total body cooling, in order to prevent progression of the clinical syndrome. Liver function must also be monitored, since it can be a late organ dysfunction. PMID:26969359

  8. The effects of passive heating and head-cooling on perception of exercise in the heat.

    PubMed

    Simmons, Shona E; Mündel, Toby; Jones, David A

    2008-09-01

    The capacity to perform exercise is reduced in a hot environment when compared to cooler conditions. A limiting factor appears to be a higher core body temperature (T (core)) and it has been suggested that an elevated T (core) reduces the drive to exercise, this being reflected in higher ratings of perceived exertion (RPE). The purpose of the present study was to determine whether passive heating to increase T (core) would have a detrimental effect on RPE and thermal comfort during subsequent exercise in the heat and whether head-cooling during passive heating would attenuate these unpleasant sensations of an elevated T (core) during subsequent exercise in the heat. Nine physically-active, non-heat-acclimated volunteers [6 males, 3 females; age: 21 +/- 1 year, VO(2max) 50 +/- 9 ml kg(-1).min(-1), peak power output: 286 +/- 43 W (mean +/- SD)] performed two 12-minute constant-load cycling tests at 70% VO(2max) in a warm-dry environment (34 +/- 1 degrees C, relative humidity <30%) separated by a period of passive heating in a sauna (68 +/- 3 degrees C) to increase T (core). In one trial, subjects had their head and face cooled continually in the sauna (HC), the other trial was a control (CON). Passive heating increased T (core) by 1.22 +/- 0.03 degrees C in the CON and by 0.75 +/- 0.07 degrees C in the HC trial (P < 0.01). Passive heating increased weighted mean skin temperature (T (msk)) in both the CON and HC trials (P < 0.01), however, head-cooling lowered T (msk) during passive heating (P < 0.05). Exercise time following passive heating was reduced in both the CON and HC trials (P < 0.05). Passive heating increased RPE (P < 0.01), however, RPE was lower following passive heating with head-cooling (P < 0.05). There was a significant correlation between T (core) and RPE (r = 0.82, P < 0.001). In conclusion, our results suggest increased RPE during exercise in the heat is primarily due to the increase in T (core). Furthermore, head-cooling attenuates the rise in T (core) and the effect on RPE is proportional to the rise on T (core).

  9. Shivering heat production and body fat protect the core from cooling during body immersion, but not during head submersion: a structural equation model.

    PubMed

    Pretorius, Thea; Lix, Lisa; Giesbrecht, Gordon

    2011-03-01

    Previous studies showed that core cooling rates are similar when only the head or only the body is cooled. Structural equation modeling was used on data from two cold water studies involving body-only, or whole body (including head) cooling. Exposure of both the body and head increased core cooling, while only body cooling elicited shivering. Body fat attenuates shivering and core cooling. It is postulated that this protection occurs mainly during body cooling where fat acts as insulation against cold. This explains why head cooling increases surface heat loss with only 11% while increasing core cooling by 39%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The Role of Carbon in Core Formation Under Highly Reducing Conditions With Implications for the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E..; McCubbin, Francis M.; Ross, D. Kent; Draper, David S.

    2017-01-01

    Results from the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft have shown elevated abundances of carbon on the surface of Mercury. Furthermore, the X-Ray Spectrometer on board MESSENGER measured elevated abundances of sulfur and low abundances of iron, suggesting the planet's oxygen fugacity (fO2) is several log10 units below the Iron-Wüstite (IW) buffer. Similar to the role of other volatiles (e.g. sulfur) on highly reducing planetary bodies, carbon is expected to behave differently than it would under higher fO2. As discussed by Nittler et al. and Hauck et al., under such highly reducing conditions, the majority of the iron partitions into the core. On Mercury, this resulted in a relatively large core and a thin mantle. Using a composition similar to the largest volcanic field on the planet (the northern volcanic plains), Vander Kaaden and McCubbin conducted sink-float experiments to determine the density of melts and minerals on Mercury. They showed that graphite would be the only buoyant mineral in a mercurian magma ocean. Therefore, Vander Kaaden and McCubbin proposed a possible primary flotation crust on the planet composed of graphite. Concurrently, Peplowski et al. used GRS data from MESSENGER to show an average northern hemisphere abundance of C on the planet of 1.4 +/- 0.9 wt%. However, as this result was only at the one-sigma detection limit, possible carbon abundances at the three-sigma detection limit for Mercury range from 0 to 4.1 wt% carbon. Additionally, Murchie et al. investigated the possible darkening agent on Mercury and concluded that coarse-grained graphite could darken high reflectance plains to the low reflectance material. To further test the possibility of elevated abundances of carbon in Mercury's crust, Peplowski et al. used the low-altitude MESSENGER data to show that carbon is the only material consistent with both the visible to near-infrared spectra and the neutron measurements of low reflectance material on Mercury, confirming that C is the primary darkening agent on Mercury. Confirmation of carbon on the planet prompts many questions regarding the role of carbon during the differentiation and evolution of Mercury. Given the elevated abundances of both S and C on Mercury's surface, it begs the question, what is the core composition of the planet? This study seeks to understand the impact of C as a light element on potential core compositions on Mercury.

  11. Core body temperature in obesity.

    PubMed

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) <30] and obese (BMI ≥30) adults swallowed wireless core temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  12. Core body temperature in obesity123

    PubMed Central

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C

    2011-01-01

    Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) <30] and obese (BMI ≥30) adults swallowed wireless core temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Conclusions: Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952

  13. Blood electrolytes and exercise in relation to temperature regulation in man

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1973-01-01

    Current knowledge and theories about the relation of blood electrolytes and exercise to thermoregulation in man are reviewed. It is shown that the elevation of body temperature during physical exercise is a regulated process and is not due to a failure of the heat dissipating mechanisms. Core and skin temperatures do not provide sufficient information to account for the control of sweating during exercise. Evidence is presented that suggests an association between equilibrium levels of rectal temperature and the osmotic concentration of the blood with essentially no influence of variations in plasma volume.

  14. Effects of MDMA on body temperature in humans

    PubMed Central

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046

  15. Mammal-like muscles power swimming in a cold-water shark.

    PubMed

    Bernal, Diego; Donley, Jeanine M; Shadwick, Robert E; Syme, Douglas A

    2005-10-27

    Effects of temperature on muscle contraction and powering movement are profound, outwardly obvious, and of great consequence to survival. To cope with the effects of environmental temperature fluctuations, endothermic birds and mammals maintain a relatively warm and constant body temperature, whereas most fishes and other vertebrates are ectothermic and conform to their thermal niche, compromising performance at colder temperatures. However, within the fishes the tunas and lamnid sharks deviate from the ectothermic strategy, maintaining elevated core body temperatures that presumably confer physiological advantages for their roles as fast and continuously swimming pelagic predators. Here we show that the salmon shark, a lamnid inhabiting cold, north Pacific waters, has become so specialized for endothermy that its red, aerobic, locomotor muscles, which power continuous swimming, seem mammal-like, functioning only within a markedly elevated temperature range (20-30 degrees C). These muscles are ineffectual if exposed to the cool water temperatures, and when warmed even 10 degrees C above ambient they still produce only 25-50% of the power produced at 26 degrees C. In contrast, the white muscles, powering burst swimming, do not show such a marked thermal dependence and work well across a wide range of temperatures.

  16. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679.

    PubMed

    Gosset, James R; Beaumont, Kevin; Matsuura, Tomomi; Winchester, Wendy; Attkins, Neil; Glatt, Sophie; Lightbown, Ian; Ulrich, Kristina; Roberts, Sonia; Harris, Jolie; Mesic, Emir; van Steeg, Tamara; Hijdra, Diana; van der Graaf, Piet H

    2017-11-15

    PF-05105679 is a moderately potent TRPM8 blocker which has been evaluated for the treatment of cold pain sensitivity. The TRPM8 channel is responsible for the sensation of cold environmental temperatures and has been implicated in regulation of core body temperature. Consequently, blockade of TRPM8 has been suggested to result in lowering of core body temperature. As part of the progression to human studies, the effect of PF-05105679 on core body temperature has been investigated in animals. Safety pharmacology studies showed that PF-05105679 reduced core body temperature in a manner that was inversely related to body weight of the species tested (greater exposure to PF-05105679 was required to lower temperature by 1°C in higher species). Based on an allometric (body weight) relationship, it was hypothesized that PF-05105679 would not lower core body temperature in humans at exposures that could exhibit pharmacological effects on cold pain sensation. On administration to humans, PF-05105679 was indeed effective at reversing the cold pain sensation associated with the cold pressor test in the absence of effects on core body temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The brain can be thought of as a tool.

    PubMed

    Harré, Rom

    2012-09-01

    In this paper I argue that the recent tendency to elevate neuropsychology to the status of the one true scientific core of studies of people thinking, feeling, acting and perceiving is not best understood as a simple mereological fallacy, that is the fallacy of ascribing certain properties of wholes to their parts, in particular mental concepts to the material brain as a part of a person. In defending Svend Brinkmann's way of undermining the claims of neuroscience against the criticism offered by Gaeto and Cornejo of the cognitive task-brain as tool proposal, I argue that a person's brain is part of the body of that person, but that the body is not a part of a person. Hence the use of person-concepts to describe brain activity is not a mereological fallacy. Rather human bodies are sites for people. Material tools can be fashioned or found at such sites. It is a fallacy to present neuroscience as the core of psychology but it is the error of deriving an `ought' from an 'is' as identified by David Hume. Where to look for a positive guide to a philosophically respectable psychology, that is a study program that does justice to the phenomena of human thinking, feeling, acting and perceiving, without falling into logical and semantic traps. I show how to adapt Aristotle's schema for 'complete explanation' to this role.

  18. Quantifying large-scale historical formation of accommodation in the Mississippi Delta

    USGS Publications Warehouse

    Morton, Robert A.; Bernier, Julie C.; Kelso, Kyle W.; Barras, John A.

    2010-01-01

    Large volumes of new accommodation have formed within the Mississippi Delta plain since the mid-1950s in association with rapid conversion of coastal wetlands to open water. The three-dimensional aspects and processes responsible for accommodation formation were quantified by comparing surface elevations, water depths, and vertical displacements of stratigraphic contacts that were correlated between short sediment cores. Integration of data from remotely sensed images, sediment cores, and water-depth surveys at 10 geologically diverse areas in the delta plain provided a basis for estimating the total volume of accommodation formed by interior-wetland subsidence and subsequent erosion. Results indicate that at most of the study areas subsidence was a greater contributor than erosion to the formation of accommodation associated with wetland loss. Tens of millions of cubic meters of accommodation formed rapidly at each of the large open-water bodies that were formerly continuous interior delta-plain marsh. Together the individual study areas account for more than 440 × 106 × m3 of new accommodation that formed as holes in the Mississippi River delta-plain fabric between 1956 and 2004. This large volume provides an estimate of the new sediment that would be needed just at the study areas to restore the delta-plain wetlands to their pre-1956 areal extent and elevations.

  19. The impact of exercise-induced core body temperature elevations on coagulation responses.

    PubMed

    Veltmeijer, Matthijs T W; Eijsvogels, Thijs M H; Barteling, Wideke; Verbeek-Knobbe, Kitty; van Heerde, Waander L; Hopman, Maria T E

    2017-02-01

    Exercise induces changes in haemostatic parameters and core body temperature (CBT). We aimed to assess whether exercise-induced elevations in CBT induce pro-thrombotic changes in a dose-dependent manner. Observational study. CBT and haemostatic responses were measured in 62 participants of a 15-km road race at baseline and immediately after finishing. As haemostasis assays are routinely performed at 37°C, we corrected the assay temperature for the individual's actual CBT at baseline and finish in a subgroup of n=25. All subjects (44±11 years, 69% male) completed the race at a speed of 12.1±1.8km/h. CBT increased significantly from 37.6±0.4°C to 39.4±0.8°C (p<0.001). Post-exercise, haemostatic activity was increased, as expressed by accelerated thrombin generation and an attenuated plasmin response. Synchronizing assay temperature to the subjects' actual CBT resulted in additional differences and stronger acceleration of thrombin generation parameters. This study demonstrates that exercise induces a prothrombotic state, which might be partially dependent on the magnitude of the exercise-induced CBT rise. Synchronizing the assay temperature to approximate the subject's CBT is essential to obtain more accurate insight in the haemostatic balance during thermoregulatory challenging situations. Finally, this study shows that short-lasting exposure to a CBT of 41.2°C does not result in clinical symptoms of severe coagulation. We therefore hypothesize that prolonged exposure to a high CBT or an individual-specific CBT threshold needs to be exceeded before derailment of the haemostatic balance occurs. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. The Role of Carbon in Exotic Crust Formation on Mercury

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.

    2018-01-01

    The terrestrial planets that comprise our inner Solar System, including the Moon, are all rocky bodies that have differentiated into a crust, mantle, and core. Furthermore, all of these bodies have undergone various igneous processes since their time of primary crust formation. These processes have resurfaced each of these bodies, at least in part, resulting in the production of a secondary crust, to which Mercury is no exception. From its first flyby encounter with Mercury on January 14, 2008, the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft collected data on the structure, chemical makeup, and density of the planet among other important characteristics. The X-Ray Spectrometer on board MESSENGER measured elevated abundances of sulfur and low abundances of iron, suggesting the planets oxygen fugacity (fO2) is several log10 units below the Iron-Wustite buffer. Similar to the role of other volatiles (e.g. sulfur) on highly reducing planetary bodies, carbon is expected to behave differently in an oxygen starved environment than it does in an oxygen enriched environment (e.g., Earth).

  1. Mercury in the Walker River Basin, Nevada and California--sources, distribution, and potential effects on the ecosystem

    USGS Publications Warehouse

    Seiler, Ralph L.; Lico, Michael S.; Wiemeyer Evers, David C.

    2004-01-01

    Mercury is one of the most serious contaminants of water, sediment, and biota in Nevada because of its use during 19th century mining activities to recover gold and silver from ores. In 1998, mercury problems were discovered in the Walker River Basin of California and Nevada when blood drawn from three common loons from Walker Lake was analyzed and found to have severely elevated mercury levels. From 1999 to 2001, the U.S. Geological Survey and the U.S. Fish and Wildlife Service collected water, sediment, and biological samples to determine mercury sources, distribution, and potential effects on the Walker River Basin ecosystem. Total-mercury concentrations ranged from 0.62 to 57.11 ng/L in streams from the Walker River system and ranged from 1.02 to 26.8 ng/L in lakes and reservoirs. Total-mercury concentrations in streambed sediment ranged from 1 to 13,600 ng/g, and methylmercury concentrations ranged from 0.07 to 32.1 ng/g. The sediment-effects threshold for mercury for fresh-water invertebrates is 200 ng/g, which was exceeded at nine stream sites in the Walker River Basin. The highest mercury concentrations were in streams with historic mines and milling operations in the watershed. The highest mercury concentration in sediment, 13,600 ng/g, was found in Bodie Creek near Bodie, Calif., a site of extensive gold mining and milling activities during the 19th century. Sediment cores taken from Walker Lake show total-mercury concentrations exceeding 1,000 ng/g at depths greater than 15 cm below lake bottom. The presence of 137Cs above 8 cm in one core indicates that the upper 8 cm was deposited sometime after 1963. The mercury peak at 46 cm in that core, 2,660 ng/g, likely represents the peak of mining and gold extraction in the Bodie and Aurora mining districts between 1870 and 1880. Mercury concentrations in aquatic invertebrates at all sites downstream from mining activities in the Rough Creek watershed, which drains the Bodie and Aurora mining districts, were elevated (range 0.263 to 0.863 ?g/g, dry weight). Mercury concentrations in the Walker Lake tui chub, the most abundant and likely prey for common loons, ranged from approximately 0.09 ?g/g to approximately 0.9 ?g/g (wet weight). Larger tui chub in the lake, which are most likely older, had the highest mercury concentrations. Blood samples from 94 common loons collected at Walker Lake between 1998 and 2001 contained a mean mercury concentration of 2.96 ?g/g (standard deviation 1.72 ?g/g). These levels were substantially higher than those found in more than 1,600 common loons tested across North America. Among the 1,600 common loons, the greatest blood mercury concentration, 9.46 ?g/g, was from a loon at Walker Lake. According to risk assessments for northeastern North America, blood mercury concentrations exceeding 3.0 ?g/g cause behavioral, reproductive, and physiological effects. At least 52 percent of the loons at Walker Lake are at risk for adverse effects from mercury on the basis of their blood-mercury concentrations. The larger loons staging in the spring are the most at risk group. The elevated mercury levels found in tui chub and common loons indicate that there is a potential threat to the well being and reproduction of fish and wildlife that use Walker Lake. Wildlife that use Weber Reservoir may also be at risk because it is the first reservoir downstream from mining activities in the Bodie and Aurora areas and mercury concentrations in sediment were elevated. Additional data on mercury concentrations in top level predators, such as piscivorous fish and birds, are needed to assess public health and other environmental risks.

  2. Heat Loss is Impaired in Older Men on the Day following Prolonged Work in the Heat.

    PubMed

    Notley, Sean R; Meade, Robert D; DʼSouza, Andrew W; Friesen, Brian J; Kenny, Glen P

    2018-04-21

    Prolonged work in the heat may exacerbate the rise in core temperature on the next work day, especially in older workers who display impairments in whole-body heat loss that increase body heat storage and core temperature relative to young adults during heat stress. We therefore evaluated whether whole-body heat loss in older adults was impaired on the day following prolonged work in the heat. Whole-body heat exchange and heat storage were assessed in nine older (53-64 years) males during three, 30-min bouts of semi-recumbent cycling at fixed rates of metabolic heat production (150 (Ex1), 200 (Ex2), 250 Wm (Ex3)), each separated by 15-min recovery, in hot-dry conditions (40°C, 20% relative humidity), immediately prior to (Day 1), and on the day following (Day 2), a prolonged, work simulation (~7.5 h) involving moderate-intensity intermittent exercise in hot-dry conditions (38°C, 34% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was quantified as the temporal summation of heat production and loss. Total heat loss (mean±SD) during Ex1 did not differ between Day 1 and 2 (151±15 and 147±14 Wm, respectively; P=0.27), but was attenuated on Day 2 during Ex2 (181±15 Wm) and Ex3 (218±16 Wm) relative to Day 1 (192±14 and 230±19 Wm, respectively; both P<0.01). Consequently, body heat storage throughout the protocol on Day 2 (276±114 kJ) was 31% greater than on Day 1 (191±87 kJ; P<0.01). Prolonged work in the heat causes next-day impairments in whole-body heat loss, which exacerbate heat storage and may elevate the risk of heat-injury on the following day in older workers.

  3. Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure

    PubMed Central

    Tupone, Domenico

    2014-01-01

    SUMMARY Thermogenesis, the production of heat energy, is the specific, neurally-regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically-driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis. PMID:24630813

  4. Constraints on The Coupled Thermal Evolution of the Earth's Core and Mantle, The Age of The Inner Core, And The Origin of the 186Os/188Os Core(?) Signal in Plume-Derived Lavas

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2005-12-01

    Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5-14 TW. In the absence of heat-producing elements in the core, such high heat flow rates require an inner core younger than ~1 Ga and preclude the development of significant 186Os enrichment in the outer core. Experimental studies suggest that potassium may partition into Fe-S-O liquids during core formation. Radioactive decay of potassium in the core could provide an additional heat source and reconcile geophysical evidence for high core/mantle heat flow with apparent geochemical evidence for an ancient inner core. However, high concentrations of chalcophile elements such as Cu in the mantle are inconsistent with significant segregation of a S-rich liquid during core formation, precluding K partitioning into the core by this mechanism. Furthermore, core formation scenarios that would lead to high K content in the core (e.g., core formation prior to terrestrial volatile depletion) also result in high core Pb concentrations. Core/mantle interaction would then produce strong negative correlations between 186Os/188Os and 207Pb/204Pb ratios, but such correlations are not observed. In summary, elevated 186Os/188Os ratios in some plume-derived lavas are unlikely to reflect core/mantle interaction because the inner core is too young for this isotopic signature to have developed in the outer core. Melt generation from pyroxenite or fractionation of PGEs between sulfide melts and monosulfide solid solutions provide alternative mechanisms for generating ancient mantle reservoirs with elevated Pt/Os and 186Os/188Os.

  5. Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Walker, R. J.; Goldstein, J. I.; Yang, J.; McDonough, W. F.; Rumble, D.; Chabot, N. L.; Ash, R. D.; Corrigan, C. M.; Michael, J. R.; Kotula, P. G.

    2011-11-01

    We report analyses of 14 group IVA iron meteorites, and the ungrouped but possibly related, Elephant Moraine (EET) 83230, for siderophile elements by laser ablation ICP-MS and isotope dilution. EET was also analyzed for oxygen isotopic composition and metallographic structure, and Fuzzy Creek, currently the IVA with the highest Ni concentration, was analyzed for metallographic structure. Highly siderophile elements (HSE) Re, Os and Ir concentrations vary by nearly three orders of magnitude over the entire range of IVA irons, while Ru, Pt and Pd vary by less than factors of five. Chondrite normalized abundances of HSE form nested patterns consistent with progressive crystal-liquid fractionation. Attempts to collectively model the HSE abundances resulting from fractional crystallization achieved best results for 3 wt.% S, compared to 0.5 or 9 wt.% S. Consistent with prior studies, concentrations of HSE and other refractory siderophile elements estimated for the bulk IVA core and its parent body are in generally chondritic proportions. Projected abundances of Pd and Au, relative to more refractory HSE, are slightly elevated and modestly differ from L/LL chondrites, which some have linked with group IVA, based on oxygen isotope similarities. Abundance trends for the moderately volatile and siderophile element Ga cannot be adequately modeled for any S concentration, the cause of which remains enigmatic. Further, concentrations of some moderately volatile and siderophile elements indicate marked, progressive depletions in the IVA system. However, if the IVA core began crystallization with ˜3 wt.% S, depletions of more volatile elements cannot be explained as a result of prior volatilization/condensation processes. The initial IVA core had an approximately chondritic Ni/Co ratio, but a fractionated Fe/Ni ratio of ˜10, indicates an Fe-depleted core. This composition is most easily accounted for by assuming that the surrounding silicate shell was enriched in iron, consistent with an oxidized parent body. The depletions in Ga may reflect decreased siderophilic behavior in a relatively oxidized body, and more favorable partitioning into the silicate portion of the parent body. Phosphate inclusions in EET show Δ 17O values within the range measured for silicates in IVA iron meteorites. EET has a typical ataxitic microstructure with precipitates of kamacite within a matrix of plessite. Chemical and isotopic evidence for a genetic relation between EET and group IVA is strong, but the high Ni content and the newly determined, rapid cooling rate of this meteorite show that it should continue to be classified as ungrouped. Previously reported metallographic cooling rates for IVA iron meteorites have been interpreted to indicate an inwardly crystallizing, ˜150 km radius metallic body with little or no silicate mantle. Hence, the IVA group was likely formed as a mass of molten metal separated from a much larger parent body that was broken apart by a large impact. Given the apparent genetic relation with IVA, EET was most likely generated via crystal-liquid fractionation in another, smaller body spawned from the same initial liquid during the impact event that generated the IVA body.

  6. Examining body mass index in an urban core population: from health screening to physician visit.

    PubMed

    O'Connor, Kaitlin Ann; Sahrmann, Julie Marie; Magie, Richard E; Segars, Larry W

    2013-04-01

    BACKGROUND. Childhood obesity is commonly encountered in the primary care office and disproportionately affects those from low income or minority backgrounds. To determine how accurately primary care clinicians in an urban setting identified patients with body mass indices (BMIs) at or above the 95th percentile for age and to determine which obesity treatment strategies are used. The study population consisted of school-aged, inner-city children with a BMI at or above the 95th percentile for age whose charts were made available for data collection by retrospective chart review. A total of 158 patient medical charts were reviewed. Of these, 90 (57%) patients failed to be identified by the provider as having an elevated BMI. Obesity treatment was initiated in only 68 (43%) of these patients. Providers are not effectively recognizing childhood obesity and are not consistently implementing effective obesity treatment strategies.

  7. Nuclear reactor downcomer flow deflector

    DOEpatents

    Gilmore, Charles B [Greensburg, PA; Altman, David A [Pittsburgh, PA; Singleton, Norman R [Murrysville, PA

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  8. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    PubMed Central

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  9. Effects of Cooling During Exercise on Thermoregulatory Responses of Men With Paraplegia.

    PubMed

    Bongers, Coen C W G; Eijsvogels, Thijs M H; van Nes, Ilse J W; Hopman, Maria T E; Thijssen, Dick H J

    2016-05-01

    People with spinal cord injury (SCI) have an altered afferent input to the thermoregulatory center, resulting in a reduced efferent response (vasomotor control and sweating capacity) below the level of the lesion. Consequently, core body temperature rises more rapidly during exercise in individuals with SCI compared with people who are able-bodied. Cooling strategies may reduce the thermophysiological strain in SCI. The aim of this study was to examine the effects of a cooling vest on the core body temperature response of people with a thoracic SCI during submaximal exercise. Ten men (mean age=44 years, SD=11) with a thoracic lesion (T4-T5 or below) participated in this randomized crossover study. Participants performed two 45-minute exercise bouts at 50% maximal workload (ambient temperature 25°C), with participants randomized to a group wearing a cooling vest or a group wearing no vest (separate days). Core body temperature and skin temperature were continuously measured, and thermal sensation was assessed every 3 minutes. Exercise resulted in an increased core body temperature, skin temperature, and thermal sensation, whereas cooling did not affect core body temperature. The cooling vest effectively decreased skin temperature, increased the core-to-trunk skin temperature gradient, and tended to lower thermal sensation compared with the control condition. The lack of differences in core body temperature among conditions may be a result of the relative moderate ambient temperature in which the exercise was performed. Despite effectively lowering skin temperature and increasing the core-to-trunk skin temperature gradient, there was no impact of the cooling vest on the exercise-induced increase in core body temperature in men with low thoracic SCI. © 2016 American Physical Therapy Association.

  10. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures.

    PubMed

    Zamora-Camacho, Francisco Javier; Rubiño-Hispán, María Virtudes; Reguera, Senda; Moreno-Rueda, Gregorio

    2015-08-01

    Sprint speed has a capital relevance in most animals' fitness, mainly for fleeing from predators. Sprint performance is maximal within a certain range of body temperatures in ectotherms, whose thermal upkeep relies on exogenous thermal sources. Ectotherms can respond to diverse thermal environments either by shifting their thermal preferences or maintaining them through different adaptive mechanisms. Here, we tested whether maximum sprint speed of a lizard that shows conservative thermal ecology along a 2200-meter elevational gradient differs with body temperature in lizards from different elevations. Lizards ran faster at optimum than at suboptimum body temperature. Notably, high-elevation lizards were not faster than mid- and low-elevation lizards at suboptimum body temperature, despite their low-quality thermal environment. This result suggests that both preferred body temperature and thermal dependence of speed performance are co-adapted along the elevational gradient. High-elevation lizards display a number of thermoregulatory strategies that allow them to achieve high optimum body temperatures in a low thermal-quality habitat and thus maximize speed performance. As for reproductive condition, we did not find any effect of it on sprint speed, or any significant interaction with elevation or body temperature. However, strikingly, gravid females were significantly slower than males and non-gravid females at suboptimum temperature, but performed similarly well at optimal temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Non-invasive monitoring of core body temperature rhythms over 72 h in 10 bedridden elderly patients with disorders of consciousness in a Japanese hospital: a pilot study.

    PubMed

    Matsumoto, Masaru; Sugama, Junko; Okuwa, Mayumi; Dai, Misako; Matsuo, Junko; Sanada, Hiromi

    2013-01-01

    The purpose of this study was to elucidate the body core temperature rhythms of bedridden elderly patients with disorders of consciousness (DOC) in a Japanese hospital using a simple, non-invasive, deep-body thermometer. We measured body core temperature on the surface of abdomen in 10 bedridden elderly patients with DOC continuously over 72 h. A non-heated core body temperature thermometer was used. The cycle of the body core temperature rhythm was initially derived by using the least squares method. Then, based on that rhythm, the mean, amplitude, and times of day of the highest and lowest body temperatures during the optimum cycle were determined using the cosinor method. We found a 24-h cycle in seven of the 10 patients. One patient had a 6-h, one a 12-h, and one a 63-h cycle. The mean value of the cosine curve in the respective optimum cycles was 36.48 ± 0.34 °C, and the amplitude was 0.22 ± 0.09 °C. Of the seven subjects with 24-h cycles, the highest body temperature occurred between 12:58 and 14:44 h in four. In addition to 24-h cycles of core temperature rhythm, short cycles of 12 and 6-h and a long cycle of 63-h were seen. In order to understand the temperature rhythms of bedridden elderly patients with DOC, it is necessary to monitor their core body temperatures, ideally using a simple, non-invasive device. In the future, it will be important to investigate the relationship of the core temperature rhythm to nursing care and living environment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Prediction of human core body temperature using non-invasive measurement methods.

    PubMed

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  13. Pre-hibernation energy reserves in a temperate anuran, Rana chensinensis, along a relatively fine elevational gradient

    USGS Publications Warehouse

    Lu, X.; Li, B.; Li, Y.; Ma, X.; Fellers, G.M.

    2008-01-01

    Temperate anurans have energy substrates in the liver, fat bodies, carcass and gonads; these stores provide support for metabolism and egg production during hibernation, and for breeding activities in spring. This paper compares the energy budget shortly before hibernation among Rana chensinensis populations at elevations of 1400, 1700 and 2000 m along a river in northern China. The larger frogs, regardless of elevation, had relatively heavy storage organs and the masses of nearly all these organs were positively correlated with each other. After controlling for the effect of body size, we found no significant difference in energetic organ mass among different age classes for each of the three populations. There were sexual differences in energy strategy. Males in all populations accumulated greater reserves in liver, fat bodies and carcass than did females. In contrast, females put more energy into their ovaries and oviducts. Frogs from higher elevations tended to have heavier organs than those from lower elevations; however, the pattern did not vary systematically along fine environmental gradients. Mid-elevation R. chensinensis built up significantly more reserves than low-elevation individuals, but were similar to their highland conspecifics. Males from higher elevations tended to have heavier liver and fat bodies; females were similar in liver and ovary mass across all elevations, but formed heavier fat bodies, oviducts and somatic tissue at higher elevation sites.

  14. Cenozoic topographic and climatic response to changing tectonic boundary conditions in Western North America

    NASA Astrophysics Data System (ADS)

    Kent-Corson, Malinda L.; Sherman, Laura S.; Mulch, Andreas; Chamberlain, C. Page

    2006-12-01

    This study presents an oxygen isotopic record from the Paleocene to the Pliocene based on the analysis of predominantly paleosol carbonate from intermontane basins in southwestern Montana and eastern Idaho. δ18O values of calcite decrease by 7 to 10‰ between ˜ 50 and 47 Ma in southwestern Montana and Idaho most likely as a result of an increase in elevation of 2.5 to 3.5 km. This rise in elevation is roughly contemporaneous with the emplacement of the nearby Challis Volcanics, and the formation of metamorphic core complexes in the hinterland of the Sevier thrust belt. Moreover, when compared to previous oxygen isotopic studies that show oxygen isotopic shifts of similar magnitude occurring later (in the late Eocene to early Oligocene in northeastern Nevada, and late Oligocene to Miocene in southern Nevada), the results of this study add to a growing body of evidence for a spatial and temporal migration of high surface elevations from north to south in the Great Basin of western United States. This surface uplift history supports tectonic models calling for north to south removal of the Farallon slab or delamination of the mantle lithosphere.

  15. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin.

    PubMed

    Dubins, Jeffrey S; Sanchez-Alavez, Manuel; Zhukov, Victor; Sanchez-Gonzalez, Alejandro; Moroncini, Gianluca; Carvajal-Gonzalez, Santos; Hadcock, John R; Bartfai, Tamas; Conti, Bruno

    2012-10-01

    The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15°C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916±952 pg/mL vs. 23474±1507 pg/mL, P<.01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Effects of 12 Weeks Resistance Training on Serum Irisin in Older Male Adults.

    PubMed

    Zhao, Jiexiu; Su, Zhongjun; Qu, Chaoyi; Dong, Yanan

    2017-01-01

    Background: To assess the effects of resistance training on circulating irisin concentration in older male adults, and to investigate the association between resistance training induced alteration of irisin and body fat. Methods: Seventeen older adults (mean age is 62.1 years old) were randomized into old control group (male, n = 7), and old training group (male, n = 10). The control group has no any exercise intervention. The resistance training group underwent leg muscle strength and core strength training program two times/wk, 55 min/class for 12 weeks. Before and after the intervention, we evaluated serum irisin level and body composition. Results: Serum irisin level was significantly increased in the resistance training group after the 12 weeks intervention period ( P < 0.01), but not in the control group. In the resistance training group, the reduction in whole-body fat percent was negatively correlated with the increase in serum irisin level ( r = -0.705, P < 0.05). Conclusion: After the 12 weeks intervention, circulating irisin levels were significantly elevated in the older adults. In summary, serum irisin may be involved in the regulation of body fat in older male adults.

  18. Physiological and Selective Attention Demands during an International Rally Motor Sport Event

    PubMed Central

    Turner, Anthony P.; Richards, Hugh

    2015-01-01

    Purpose. To monitor physiological and attention responses of drivers and codrivers during a World Rally Championship (WRC) event. Methods. Observational data were collected from ten male drivers/codrivers on heart rate (HR), core body (T core) and skin temperature (T sk), hydration status (urine osmolality), fluid intake (self-report), and visual and auditory selective attention (performance tests). Measures were taken pre-, mid-, and postcompetition day and also during the precompetition reconnaissance. Results. In ambient temperatures of 20.1°C (in-car peak 33.9°C) mean (SD) peak HR and T core were significantly elevated (P < 0.05) during rally compared to reconnaissance (166 (17) versus 111 (16) beats·min−1 and 38.5 (0.4) versus 37.6 (0.2)°C, resp.). Values during competitive stages were substantially higher in drivers. High urine osmolality was indicated in some drivers within competition. Attention was maintained during the event but was significantly lower prerally, though with considerable individual variation. Conclusions. Environmental and physical demands during rally competition produced significant physiological responses. Challenges to thermoregulation, hydration status, and cognitive function need to be addressed to minimise potentially negative effects on performance and safety. PMID:25866799

  19. Physiological and selective attention demands during an international rally motor sport event.

    PubMed

    Turner, Anthony P; Richards, Hugh

    2015-01-01

    To monitor physiological and attention responses of drivers and codrivers during a World Rally Championship (WRC) event. Observational data were collected from ten male drivers/codrivers on heart rate (HR), core body (T core) and skin temperature (T sk), hydration status (urine osmolality), fluid intake (self-report), and visual and auditory selective attention (performance tests). Measures were taken pre-, mid-, and postcompetition day and also during the precompetition reconnaissance. In ambient temperatures of 20.1°C (in-car peak 33.9°C) mean (SD) peak HR and T core were significantly elevated (P < 0.05) during rally compared to reconnaissance (166 (17) versus 111 (16) beats · min(-1) and 38.5 (0.4) versus 37.6 (0.2)°C, resp.). Values during competitive stages were substantially higher in drivers. High urine osmolality was indicated in some drivers within competition. Attention was maintained during the event but was significantly lower prerally, though with considerable individual variation. Environmental and physical demands during rally competition produced significant physiological responses. Challenges to thermoregulation, hydration status, and cognitive function need to be addressed to minimise potentially negative effects on performance and safety.

  20. Human ferritin for tumor detection and therapy.

    PubMed

    Fan, Kelong; Gao, Lizeng; Yan, Xiyun

    2013-01-01

    Ferritin, a major iron storage protein found in most living organisms, is composed of a 24-subunit protein cage with a hollow interior cavity. Serum ferritin serves as a critical marker to detect total body iron status. However, recent research reveals a number of novel functions of ferritin besides iron storage; for example, a ferritin receptor, transferrin receptor 1 (TfR1), has been identified and serum ferritin levels are found to be elevated in tumors. A particular new finding is that magnetoferritin nanoparticles, biomimetically synthesized using H-chain ferritin to form a 24-subunit cage with an iron oxide core, possess intrinsic dual functionality, the protein shell specifically targeting tumors and the iron oxide core catalyzing peroxidase substrates to produce a color reaction allowing visualization of tumor tissues. Here we attempt to summarize current research on ferritin, particularly newly identified functions related to tumors, in order to address current challenges and highlight future directions. Copyright © 2013 Wiley Periodicals, Inc.

  1. Daily and estrous rhythmicity of body temperature in domestic cattle

    PubMed Central

    Piccione, Giuseppe; Caola, Giovanni; Refinetti, Roberto

    2003-01-01

    Background Rhythmicity in core body temperature has been extensively studied in humans and laboratory animals but much less in farm animals. Extending the study of rhythmicity of body temperature to farm animals is important not only from a comparative perspective but also from an economic perspective, as greater knowledge of this process can lead to improvements in livestock production practices. In this study in cattle, we investigated the maturation of the daily rhythm of body temperature in newborn calves, characterized the parameters of the daily rhythm in young cows, and studied the oscillation in body temperature associated with the estrous cycle in adult cows. Results We found that the daily rhythm of body temperature is absent at birth but matures fully during the first two months of life. The mature rhythm had a mean level of 38.3°C, a range of excursion of 1.4°C, and was more robust than that of any mammalian species previously studied (90% of maximal robustness). Sexually mature cows also exhibited a robust estrous rhythm of body temperature. An elevation of about 1.3°C was observed every 21 days on the day of estrus. Small seasonal variations in this pattern were observed. Conclusion In conclusion, calves exhibit a very robust daily rhythm of body temperature, although this rhythm is absent at birth and develops during the first two months of life. Adult cows exhibit also 21-day rhythmicity in body temperature reflecting the duration of the estrous cycle. PMID:12882649

  2. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    PubMed

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    PubMed Central

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-01-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role. PMID:27804981

  4. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    NASA Astrophysics Data System (ADS)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  5. Parallel body shape divergence in the Neotropical fish genus Rhoadsia (Teleostei: Characidae) along elevational gradients of the western slopes of the Ecuadorian Andes

    PubMed Central

    Malato, Grace; Shervette, Virginia R.; Navarrete Amaya, Ronald; Valdiviezo Rivera, Jonathan; Nugra Salazar, Fredy; Calle Delgado, Paola; Karpan, Kirby C.

    2017-01-01

    Neotropical mountain streams are important contributors of biological diversity. Two species of the characid genus Rhoadsia differing for an ecologically important morphological trait, body depth, have been described from mountain streams of the western slopes of the Andes in Ecuador. Rhoadsia altipinna is a deeper-bodied species reported from low elevations in southwestern Ecuador and northern Peru, and Rhoadsia minor is a more streamlined species that was described from high elevations (>1200 m) in the Esmeraldas drainage in northwestern Ecuador. Little is known about these species and their validity as distinct species has been questioned. In this study, we examine how their body shape varies along replicated elevational gradients in different drainages of western Ecuador using geometric morphometrics and the fineness ratio. We also use sequences of the mitochondrial cytochrome oxidase c I gene and the second intron of the S7 nuclear gene to examine whether genetic data are consistent with the existence of two species. We found that body depth varies continuously among populations within drainages as a function of elevation, and that body shape overlaps among drainages, such that low elevation populations of R. minor in the Esmeraldas drainage have similar body depths to higher elevation R. altipinna in southern drainages. Although a common general trend of declining body depth with elevation is clear, the pattern and magnitude of body shape divergence differed among drainages. Sequencing of mitochondrial and nuclear genes failed to meet strict criteria for the recognition of two species (e.g., reciprocal monophyly and deep genetic structure). However, there was a large component of genetic variation for the COI gene that segregated among drainages, indicating significant genetic divergence associated with geographic isolation. Continued research on Rhoadsia in western Ecuador may yield significant insight into adaptation and speciation in Neotropical mountain streams. PMID:28658255

  6. Evaluating Precipitation Elevation Gradients in the Alaska Range using Ice Core and Alpine Weather Station Records

    NASA Astrophysics Data System (ADS)

    McConnell, E.; Osterberg, E. C.; Winski, D.; Kreutz, K. J.; Wake, C. P.; Campbell, S. W.; Ferris, D. G.; Birkel, S. D.

    2016-12-01

    Precipitation in Alaska is sensitive to the Aleutian Low (ALow) pressure system and North Pacific sea-surface temperatures, as shown by the increase in Alaskan sub-Arctic precipitation associated with the 1976 shift to the positive phase of the Pacific Decadal Oscillation (PDO). Precipitation in the high-elevation accumulation zones of Alaskan alpine glaciers provides critical mass input for glacial mass balance, which has been declining in recent decades from warmer summer temperatures despite the winter precipitation increase. Twin >1500-year ice cores collected from the summit plateau of Mount Hunter in Denali National Park, Alaska show a remarkable doubling of annual snow accumulation over the past 150 years, with most of the change observed in the winter. Other alpine ice cores collected from the Alaska and Saint Elias ranges show similar snowfall increases over recent decades. However, although Alaskan weather stations at low elevation recorded a 7-38% increase in winter precipitation across the 1976 PDO transition, this increase is not as substantial as that recorded in the Mt. Hunter ice core. Weather stations at high-elevation alpine sites are comparatively rare, and reasons for the enhanced precipitation trends at high elevation in Alaska remain unclear. Here we use Automatic Weather Station data from the Mt. Hunter drill site (3,900 m a.s.l) and from nearby Denali climber's Base Camp (2,195 m a.s.l.) to evaluate the relationships between alpine and lowland Alaskan precipitation on annual, seasonal, and storm-event temporal scales from 2008-2016. Both stations are located on snow and have sonic snow depth sounders to record daily precipitation. We focus on the role of variable ALow and North Pacific High strength in influencing Alaskan precipitation elevational gradients, particularly in association with the extreme 2015-2016 El Niño event, the 2009-2010 moderate El Niño event, and the 2010-2011 moderate La Niña event. Our analysis will improve our paleoclimate interpretations of the 1200-year Mt. Hunter accumulation record, and improve our ability to integrate low-elevation hydroclimate proxies from lake sediment cores.

  7. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity.

    PubMed

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  8. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity

    NASA Astrophysics Data System (ADS)

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  9. A 400-Year Ice Core Melt Layer Record of Summertime Warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike

    2018-04-01

    Warming in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two ice cores collected from Mt. Hunter in Denali National Park in the central Alaska Range. The ice core record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the ice core drill site and find that the increase in melt production represents a summer warming rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this warming.

  10. Effects of Burn Injuries on Thermoregulatory and Cardiovascular Responses in Soldiers: Implications for the Standards of Medical Fitness

    DTIC Science & Technology

    2017-10-01

    greater elevation in core temperature during exercise. In exercise-based rehabilitation or physically demanding occupational settings, activities...Military Health System Research 2 Symposium. We have initiated data collection for Aim 1B (assessment of the impact of large/small statue on...resulting in exacerbated elevations in core temperature and greater risk of heat illness during physical activities. Since the capacity for

  11. Elevating body temperature enhances hematopoiesis and neutrophil recovery after total body irradiation in an IL-1-, IL-17-, and G-CSF-dependent manner.

    PubMed

    Capitano, Maegan L; Nemeth, Michael J; Mace, Thomas A; Salisbury-Ruf, Christi; Segal, Brahm H; McCarthy, Philip L; Repasky, Elizabeth A

    2012-09-27

    Neutropenia is a common side effect of cytotoxic chemotherapy and radiation, increasing the risk of infection in these patients. Here we examined the impact of body temperature on neutrophil recovery in the blood and bone marrow after total body irradiation (TBI). Mice were exposed to either 3 or 6 Gy TBI followed by a mild heat treatment that temporarily raised core body temperature to approximately 39.5°C. Neutrophil recovery was then compared with control mice that received either TBI alone heat treatment alone. Mice that received both TBI and heat treatment exhibited a significant increase in the rate of neutrophil recovery in the blood and an increase in the number of marrow hematopoietic stem cells and neutrophil progenitors compared with that seen in mice that received either TBI or heat alone. The combination treatment also increased G-CSF concentrations in the serum, bone marrow, and intestinal tissue and IL-17, IL-1β, and IL-1α concentrations in the intestinal tissue after TBI. Neutralizing G-CSF or inhibiting IL-17 or IL-1 signaling significantly blocked the thermally mediated increase in neutrophil numbers. These findings suggest that a physiologically relevant increase in body temperature can accelerate recovery from neutropenia after TBI through a G-CSF-, IL-17-, and IL-1-dependent mechanism.

  12. Elevating body temperature enhances hematopoiesis and neutrophil recovery after total body irradiation in an IL-1–, IL-17–, and G-CSF–dependent manner

    PubMed Central

    Capitano, Maegan L.; Nemeth, Michael J.; Mace, Thomas A.; Salisbury-Ruf, Christi; Segal, Brahm H.; McCarthy, Philip L.

    2012-01-01

    Neutropenia is a common side effect of cytotoxic chemotherapy and radiation, increasing the risk of infection in these patients. Here we examined the impact of body temperature on neutrophil recovery in the blood and bone marrow after total body irradiation (TBI). Mice were exposed to either 3 or 6 Gy TBI followed by a mild heat treatment that temporarily raised core body temperature to approximately 39.5°C. Neutrophil recovery was then compared with control mice that received either TBI alone heat treatment alone. Mice that received both TBI and heat treatment exhibited a significant increase in the rate of neutrophil recovery in the blood and an increase in the number of marrow hematopoietic stem cells and neutrophil progenitors compared with that seen in mice that received either TBI or heat alone. The combination treatment also increased G-CSF concentrations in the serum, bone marrow, and intestinal tissue and IL-17, IL-1β, and IL-1α concentrations in the intestinal tissue after TBI. Neutralizing G-CSF or inhibiting IL-17 or IL-1 signaling significantly blocked the thermally mediated increase in neutrophil numbers. These findings suggest that a physiologically relevant increase in body temperature can accelerate recovery from neutropenia after TBI through a G-CSF–, IL-17–, and IL-1–dependent mechanism. PMID:22806894

  13. Elevated body temperature is linked to fatigue in an Italian sample of relapsing-remitting multiple sclerosis patients.

    PubMed

    Leavitt, V M; De Meo, E; Riccitelli, G; Rocca, M A; Comi, G; Filippi, M; Sumowski, J F

    2015-11-01

    Elevated body temperature was recently reported for the first time in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy controls. In addition, warmer body temperature was associated with worse fatigue. These findings are highly novel, may indicate a novel pathophysiology for MS fatigue, and therefore warrant replication in a geographically separate sample. Here, we investigated body temperature and its association to fatigue in an Italian sample of 44 RRMS patients and 44 age- and sex-matched healthy controls. Consistent with our original report, we found elevated body temperature in the RRMS sample compared to healthy controls. Warmer body temperature was associated with worse fatigue, thereby supporting the notion of endogenous temperature elevations in patients with RRMS as a novel pathophysiological factor underlying fatigue. Our findings highlight a paradigm shift in our understanding of the effect of heat in RRMS, from exogenous (i.e., Uhthoff's phenomenon) to endogenous. Although randomized controlled trials of cooling treatments (i.e., aspirin, cooling garments) to reduce fatigue in RRMS have been successful, consideration of endogenously elevated body temperature as the underlying target will enhance our development of novel treatments.

  14. A role for the thermal environment in defining co-stimulation requirements for CD4+ T cell activation

    PubMed Central

    Zynda, Evan R; Grimm, Melissa J; Yuan, Min; Zhong, Lingwen; Mace, Thomas A; Capitano, Maegan; Ostberg, Julie R; Lee, Kelvin P; Pralle, Arnd; Repasky, Elizabeth A

    2015-01-01

    Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significantly elevated for at least several hours at a time. Thus, as blood cells circulate throughout the body, physiologically relevant variations in surrounding tissue temperature can occur; moreover, shifts in core temperature occur during daily circadian cycles. This study has addressed the fundamental question of whether the threshold of stimulation needed to activate lymphocytes is influenced by temperature increases associated with physiologically relevant increases in temperature. We report that the need for co-stimulation of CD4+ T cells via CD28 ligation for the production of IL-2 is significantly reduced when cells are exposed to fever-range temperature. Moreover, even in the presence of sufficient CD28 ligation, provision of extra heat further increases IL-2 production. Additional in vivo and in vitro data (using both thermal and chemical modulation of membrane fluidity) support the hypothesis that the mechanism by which temperature modulates co-stimulation is linked to increases in membrane fluidity and membrane macromolecular clustering in the plasma membrane. Thermally-regulated changes in plasma membrane organization in response to physiological increases in temperature may assist in the geographical control of lymphocyte activation, i.e., stimulating activation in lymph nodes rather than in cooler surface regions, and further, may temporarily and reversibly enable CD4+ T cells to become more quickly and easily activated during times of infection during fever. PMID:26131730

  15. Organizational influence of the postnatal testosterone surge on the circadian rhythm of core body temperature of adult male rats.

    PubMed

    Zuloaga, Damian G; McGivern, Robert F; Handa, Robert J

    2009-05-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates physiological and behavioral circadian rhythms such as activity, body temperature, and hormone secretion. Circadian rhythms coordinated by the SCN often show sex differences arising from both organizational and activational effects of gonadal hormones. In males, little is known about the organizational role of testosterone on the circadian regulation of core body temperature (CBT) in adulthood. To explore this, we castrated or sham-operated male rats on the day of birth, and at 4 months of age, implanted them with transmitters that measured CBT rhythms under a 12:12 light/dark cycle. This study revealed a significantly earlier rise in CBT during the light phase in neonatally castrated males. Subsequently, we found that treating neonatally castrated males with testosterone propionate (TP) in adulthood did not reverse the effect of neonatal castration, thus indicating an organizational role for testosterone. In contrast, a single injection of TP at the time of neonatal surgery, to mimic the postnatal surge of testosterone, coupled with TP treatment in adulthood, normalized the circadian rise in CBT. In a final study we examined CBT circadian rhythms in intact adult male and female rats and detected no differences in the rise of CBT during the light phase, although there was a greater overall elevation in female CBT. Together, results of these studies reveal an early organizational role of testosterone in males on the timing of the circadian rise of CBT, a difference that does not appear to reflect "defeminization".

  16. Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core

    DOE PAGES

    Matthes, M.; Fischer-Godde, M.; Kruijer, T. S.; ...

    2017-09-07

    To constrain the timescales and processes involved in the crystallization and cooling of protoplanetary cores, we examined the Pd-Ag isotope systematics of the IVA iron meteorites Muonionalusta and Gibeon. A Pd-Ag isochron for Muonionalusta provides an initial 107Pd/ 108Pd = (2.57 ± 0.07) × 10 -5. The three metal samples analyzed from Gibeon plot below the Muonionalusta isochron, but these samples also show significant effects of cosmic ray-induced neutron capture reactions, as is evident from 196Pt excesses in the Gibeon samples. After correction for neutron capture effects on Ag isotopes, the Gibeon samples plot on the Muonionalusta isochron, indicating thatmore » these two IVA irons have indistinguishable initial 107Pd/ 108Pd. Collectively, the Pd-Ag data indicate cooling of the IVA core below Pd-Ag closure between 2.9 ± 0.4 Ma and 8.9 ± 0.6 Ma after CAI formation, where this age range reflects uncertainties in the initial 107Pd/ 108Pd ratios of the solar system, which in turn result from uncertainties in the Pb-Pb age of Muonionalusta. The Ag isotopic data indicate that the IVA core initially evolved with a modestly elevated Pd/Ag, but the low Ag concentrations measured for some metal samples indicate derivation from a source with much lower Ag contents and, hence, higher Pd/Ag. These contrasting observations can be reconciled if the IVA irons crystallized from an initially more Ag-rich core, followed by extraction of Fe-S melts during compaction of the nearly solidified core. Owing to its strong tendency to partition into Fe-S melts, Ag was removed from the IVA core during compaction, leading to the very low Ag concentration observed in metal samples of IVA irons. Alternatively, Ag was lost by evaporation from a still molten metallic body just prior to the onset of crystallization. The Pd-Ag isotopic data indicate that Muonionalusta cooled at >500 K/Ma through the Pd-Ag closure temperature of ~900 K, consistent with the rapid cooling inferred from metallographic cooling rates for IVA irons. Finally, combined, these observations are consistent with cooling of IVA irons in a metallic body with little or no silicate mantle.« less

  17. Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core

    NASA Astrophysics Data System (ADS)

    Matthes, M.; Fischer-Gödde, M.; Kruijer, T. S.; Kleine, T.

    2018-01-01

    To constrain the timescales and processes involved in the crystallization and cooling of protoplanetary cores, we examined the Pd-Ag isotope systematics of the IVA iron meteorites Muonionalusta and Gibeon. A Pd-Ag isochron for Muonionalusta provides an initial 107Pd/108Pd = (2.57 ± 0.07) × 10-5. The three metal samples analyzed from Gibeon plot below the Muonionalusta isochron, but these samples also show significant effects of cosmic ray-induced neutron capture reactions, as is evident from 196Pt excesses in the Gibeon samples. After correction for neutron capture effects on Ag isotopes, the Gibeon samples plot on the Muonionalusta isochron, indicating that these two IVA irons have indistinguishable initial 107Pd/108Pd. Collectively, the Pd-Ag data indicate cooling of the IVA core below Pd-Ag closure between 2.9 ± 0.4 Ma and 8.9 ± 0.6 Ma after CAI formation, where this age range reflects uncertainties in the initial 107Pd/108Pd ratios of the solar system, which in turn result from uncertainties in the Pb-Pb age of Muonionalusta. The Ag isotopic data indicate that the IVA core initially evolved with a modestly elevated Pd/Ag, but the low Ag concentrations measured for some metal samples indicate derivation from a source with much lower Ag contents and, hence, higher Pd/Ag. These contrasting observations can be reconciled if the IVA irons crystallized from an initially more Ag-rich core, followed by extraction of Fe-S melts during compaction of the nearly solidified core. Owing to its strong tendency to partition into Fe-S melts, Ag was removed from the IVA core during compaction, leading to the very low Ag concentration observed in metal samples of IVA irons. Alternatively, Ag was lost by evaporation from a still molten metallic body just prior to the onset of crystallization. The Pd-Ag isotopic data indicate that Muonionalusta cooled at >500 K/Ma through the Pd-Ag closure temperature of ∼900 K, consistent with the rapid cooling inferred from metallographic cooling rates for IVA irons. Combined, these observations are consistent with cooling of IVA irons in a metallic body with little or no silicate mantle.

  18. Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthes, M.; Fischer-Godde, M.; Kruijer, T. S.

    To constrain the timescales and processes involved in the crystallization and cooling of protoplanetary cores, we examined the Pd-Ag isotope systematics of the IVA iron meteorites Muonionalusta and Gibeon. A Pd-Ag isochron for Muonionalusta provides an initial 107Pd/ 108Pd = (2.57 ± 0.07) × 10 -5. The three metal samples analyzed from Gibeon plot below the Muonionalusta isochron, but these samples also show significant effects of cosmic ray-induced neutron capture reactions, as is evident from 196Pt excesses in the Gibeon samples. After correction for neutron capture effects on Ag isotopes, the Gibeon samples plot on the Muonionalusta isochron, indicating thatmore » these two IVA irons have indistinguishable initial 107Pd/ 108Pd. Collectively, the Pd-Ag data indicate cooling of the IVA core below Pd-Ag closure between 2.9 ± 0.4 Ma and 8.9 ± 0.6 Ma after CAI formation, where this age range reflects uncertainties in the initial 107Pd/ 108Pd ratios of the solar system, which in turn result from uncertainties in the Pb-Pb age of Muonionalusta. The Ag isotopic data indicate that the IVA core initially evolved with a modestly elevated Pd/Ag, but the low Ag concentrations measured for some metal samples indicate derivation from a source with much lower Ag contents and, hence, higher Pd/Ag. These contrasting observations can be reconciled if the IVA irons crystallized from an initially more Ag-rich core, followed by extraction of Fe-S melts during compaction of the nearly solidified core. Owing to its strong tendency to partition into Fe-S melts, Ag was removed from the IVA core during compaction, leading to the very low Ag concentration observed in metal samples of IVA irons. Alternatively, Ag was lost by evaporation from a still molten metallic body just prior to the onset of crystallization. The Pd-Ag isotopic data indicate that Muonionalusta cooled at >500 K/Ma through the Pd-Ag closure temperature of ~900 K, consistent with the rapid cooling inferred from metallographic cooling rates for IVA irons. Finally, combined, these observations are consistent with cooling of IVA irons in a metallic body with little or no silicate mantle.« less

  19. Bergmann's Rule rules body size in an ectotherm: heat conservation in a lizard along a 2200-metre elevational gradient.

    PubMed

    Zamora-Camacho, F J; Reguera, S; Moreno-Rueda, G

    2014-12-01

    Bergmann's Rule predicts larger body sizes in colder habitats, increasing organisms' ability to conserve heat. Originally formulated for endotherms, it is controversial whether Bergmann's Rule may be applicable to ectotherms, given that larger ectotherms show diminished capacity for heating up. We predict that Bergmann's Rule will be applicable to ectotherms when the benefits of a higher conservation of heat due to a larger body size overcompensate for decreased capacity to heating up. We test this hypothesis in the lizard Psammodromus algirus, which shows increased body size with elevation in Sierra Nevada (SE Spain). We measured heating and cooling rates of lizards from different elevations (from 300 to 2500 m above sea level) under controlled conditions. We found no significant differences in the heating rate along an elevational gradient. However, the cooling rate diminished with elevation and body size: highland lizards, with larger masses, have a higher thermal inertia for cooling, which allows them to maintain heat for more time and keep a high body temperature despite the lower thermal availability. Consequently, the net gaining of heat increased with elevation and body size. This study highlights that the heat conservation mechanism for explaining Bergmann's Rule works and is applicable to ectotherms, depending on the thermal benefits and costs associated with larger body sizes. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  20. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    PubMed

    Veltmeijer, Matthijs T W; Veeneman, Dineke; Bongers, Coen C C W; Netea, Mihai G; van der Meer, Jos W; Eijsvogels, Thijs M H; Hopman, Maria T E

    2017-05-01

    Exercise increases core body temperature (T C ) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in T C by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in T C is partly caused by an altered hypothalamic temperature set point. Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. T C , skin temperature, and heart rate were measured continuously during the submaximal exercise tests. Baseline values of T C , skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak T C was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔT C was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P < .02) but not in APAP (1.7°C ± 0.5°C) vs CTRL. No differences were observed in skin temperature and heart-rate responses across conditions. The combined administration of acetaminophen and ibuprofen resulted in an attenuated increase in T C during exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in T C .

  1. Elevation of cardiac troponin I during non-exertional heat-related illnesses in the context of a heatwave

    PubMed Central

    2010-01-01

    Introduction The prognostic value of cardiac troponin I (cTnI) in patients having a heat-related illness during a heat wave has been poorly documented. Methods In a post hoc analysis, we evaluated 514 patients admitted to emergency departments during the August 2003 heat wave in Paris, having a core temperature >38.5°C and who had analysis of cTnI levels. cTnI was considered as normal, moderately elevated (abnormality threshold to 1.5 ng.mL-1), or severely elevated (>1.5 ng.mL-1). Patients were classified according to our previously described risk score (high, intermediate, and low-risk of death). Results Mean age was 84 ± 12 years, mean body temperature 40.3 ± 1.2°C. cTnI was moderately elevated in 165 (32%) and severely elevated in 97 (19%) patients. One-year survival was significantly decreased in patients with moderate or severe increase in cTnI (24 and 46% vs 58%, all P < 0.05). Using logistic regression, four independent variables were associated with an elevated cTnI: previous coronary artery disease, Glasgow coma scale <12, serum creatinine >120 μmol.L-1, and heart rate >110 bpm. Using Cox regression, only severely elevated cTnI was an independent prognostic factor (hazard ratio 1.93, 95% confidence interval 1.35 to 2.77) when risk score was taken into account. One-year survival was decreased in patients with elevated cTnI only in high risk patients (17 vs 31%, P = 0.04). Conclusions cTnI is frequently elevated in patients with non-exertional heat-related illnesses during a heat wave and is an independent risk factor only in high risk patients where severe increase (>1.5 ng.mL-1) indicates severe myocardial damage. PMID:20507603

  2. Occupational heat strain in a hot underground metal mine.

    PubMed

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R

    2014-04-01

    In a hot underground metal mine, this study evaluated the relationship between job task, physical body type, work shift, and heat strain. Thirty-one miners were evaluated during 98 shifts while performing deep shaft-sinking tasks. Continuous core body temperature, heart rate, pre- and postshift urine specific gravity (USG), and body mass index were measured. Cutting and welding tasks were associated with significantly (P < 0.05) increased core body temperature, maximum heart rate, and increased postshift urine specific gravity. Miners in the obese level II and III body mass index categories, as well as those working night shift, had lower core body temperatures (P < 0.05). This study confirms that job task, body type, and shift are risk factors for heat strain.

  3. Analyses of the Stability and Core Taxonomic Memberships of the Human Microbiome

    PubMed Central

    Li, Kelvin; Bihan, Monika; Methé, Barbara A.

    2013-01-01

    Analyses of the taxonomic diversity associated with the human microbiome continue to be an area of great importance. The study of the nature and extent of the commonly shared taxa (“core”), versus those less prevalent, establishes a baseline for comparing healthy and diseased groups by quantifying the variation among people, across body habitats and over time. The National Institutes of Health (NIH) sponsored Human Microbiome Project (HMP) has provided an unprecedented opportunity to examine and better define what constitutes the taxonomic core within and across body habitats and individuals through pyrosequencing-based profiling of 16S rRNA gene sequences from oral, skin, distal gut (stool), and vaginal body habitats from over 200 healthy individuals. A two-parameter model is introduced to quantitatively identify the core taxonomic members of each body habitat’s microbiota across the healthy cohort. Using only cutoffs for taxonomic ubiquity and abundance, core taxonomic members were identified for each of the 18 body habitats and also for the 4 higher-level body regions. Although many microbes were shared at low abundance, they exhibited a relatively continuous spread in both their abundance and ubiquity, as opposed to a more discretized separation. The numbers of core taxa members in the body regions are comparatively small and stable, reflecting the relatively high, but conserved, interpersonal variability within the cohort. Core sizes increased across the body regions in the order of: vagina, skin, stool, and oral cavity. A number of “minor” oral taxonomic core were also identified by their majority presence across the cohort, but with relatively low and stable abundances. A method for quantifying the difference between two cohorts was introduced and applied to samples collected on a second visit, revealing that over time, the oral, skin, and stool body regions tended to be more transient in their taxonomic structure than the vaginal body region. PMID:23671663

  4. Effect of a single 3-hour exposure to bright light on core body temperature and sleep in humans.

    PubMed

    Dijk, D J; Cajochen, C; Borbély, A A

    1991-01-02

    Seven human subjects were exposed to bright light (BL, approx. 2500 lux) and dim light (DL, approx. 6 lux) during 3 h prior to nocturnal sleep, in a cross-over design. At the end of the BL exposure period core body temperature was significantly higher than at the end of the DL exposure period. The difference in core body temperature persisted during the first 4 h of sleep. The latency to sleep onset was increased after BL exposure. Rapid-eye movement sleep (REMS) and slow-wave sleep (SWS; stage 3 + 4 of non-REMS) were not significantly changed. Eight subjects were exposed to BL from 20.30 to 23.30 h while their eyes were covered or uncovered. During BL exposure with uncovered eyes, core body temperature decreased significantly less than during exposure with covered eyes. We conclude that bright light immediately affects core body temperature and that this effect is mediated via the eyes.

  5. Probing Core Processes in the Earth and Small Bodies Using Paleomagnetism

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Weiss, B. P.; Lima, E. A.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.

    2015-12-01

    Convective motion in the cores of differentiated metal-silicate bodies may sustain a global dynamo magnetic field. Progressive crystallization in a dynamo-generating core is expected to play a central role in determining the observable properties of the hosted magnetic field. Importantly, the release of light elements and latent heat during core crystallization is a key source of entropy for sustaining core convection. Therefore, the persistence and intensity of a dynamo magnetic field depend directly on the extent and style of core crystallization. We present and discuss paleomagnetic data from the Earth and asteroid-sized bodies to characterize internally generated magnetic fields during the early histories of these objects. In the case of the Earth, recent and ongoing paleomagnetic experiments of zircons from the Jack Hills of Australia can potentially constrain the existence and intensity of the geodynamo before 3.5 Ga. If robust, such measurements hold strong implications for the energy budget of the Earth's early core and the dynamics of the early mantle. We will discuss both recently published and preliminary results and assess carefully the challenges and uncertainties of paleomagnetic experimentation on ancient zircon samples. In the case of small bodies, several classes of meteorites record ancient magnetic fields likely produced by core dynamos on their parent bodies. Data from the CV carbonaceous chondrites and pallasites indicate that dynamos in planetesimal-sized bodies persisted for a broad range of timescales between ~10 My and >100 My. Meanwhile, measurements of the angrite group of achondrites show that their earliest-forming members crystallized in an almost non-magnetic environment, suggesting a delayed onset of the planetesimal dynamo until several My after initial differentiation. We will discuss the possible causes for this observed diversity of small body dynamo properties, including the role of core crystallization and the distribution of short-lived radioisotopes.

  6. GH and IGF1: roles in energy metabolism of long-living GH mutant mice.

    PubMed

    Brown-Borg, Holly M; Bartke, Andrzej

    2012-06-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.

  7. Spatial Variability of Climate Signatures Recorded in an Array of Shallow Firn Cores from the Western Greenland Percolation Zone

    NASA Astrophysics Data System (ADS)

    Thundercloud, Z. R.; Osterberg, E. C.; Ferris, D. G.; Graeter, K.; Lewis, G.; Hawley, R. L.; Marshall, H. P.

    2016-12-01

    Greenland ice cores provide seasonally to annually resolved proxy records of past temperature, accumulation and atmospheric circulation. Most Greenland ice cores have been collected from the dry snow zone at elevations greater than 2500 m to produce records of North Atlantic paleoclimate over the last full glacial cycle. Ice cores collected from more costal regions, however, provide the opportunity to develop regional-scale records of climate conditions along ice sheet margins where recent temperature and precipitation changes have been larger than those in the ice sheet interior. These cores are more readily comparable to lake sediment and landscape (i.e. moraine) records from the ice sheet margin, and are potentially more sensitive to sea-ice variability due to the proximity to the coast. Here we present major ion and stable isotope records from an array of firn cores (40-55 year records) collected in the western Greenland percolation zone, and assess the spatial variability of ice core statistical relationships with the North Atlantic Oscillation (NAO) and Baffin Bay sea ice extent. Seven cores were collected from elevations of 2100-2500 m along a 400-km segment of the ice sheet from Dye-2 to Milcent as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project from May-June 2016. They were sampled by a continuous melter system at Dartmouth College, and analyzed using Dionex ion chromatographs and a Picarro L2130-i laser ring-down spectrometer. We focus on the signature of the NAO and Baffin Bay sea ice extent in the sea-salt, dust, deuterium excess (d-excess), and methanesulfonic acid (MSA) firn core records, and assess the special variability of these climate-ice core relationships across the study area. Climate reanalysis data indicate that NAO-ice core correlations should be stronger at lower elevation in the percolation zone than high in the dry snow zone. Our results will provide valuable insight into the sensitivity of Greenland ice core paleoclimate reconstructions to the specific ice core location, and thereby aid in site selection for deeper ice cores that could span the Holocene.

  8. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  9. Can body temperature dysregulation explain the co-occurrence between overweight/obesity, sleep impairment, late-night eating, and a sedentary lifestyle?

    PubMed

    Brown, Rhonda F; Thorsteinsson, Einar B; Smithson, Michael; Birmingham, C Laird; Aljarallah, Hessah; Nolan, Christopher

    2017-12-01

    Overweight/obesity, sleep disturbance, night eating, and a sedentary lifestyle are common co-occurring problems. There is a tendency for them to co-occur together more often than they occur alone. In some cases, there is clarity as to the time course and evolution of the phenomena. However, specific mechanism(s) that are proposed to explain a single co-occurrence cannot fully explain the more generalized tendency to develop concurrent symptoms and/or disorders after developing one of the phenomena. Nor is there a clinical theory with any utility in explaining the development of co-occurring symptoms, disorders and behaviour and the mechanism(s) by which they occur. Thus, we propose a specific mechanism-dysregulation of core body temperature (CBT) that interferes with sleep onset-to explain the development of the concurrences. A detailed review of the literature related to CBT and the phenomena that can alter CBT or are altered by CBT is provided. Overweight/obesity, sleep disturbance and certain behaviour (e.g. late-night eating, sedentarism) were linked to elevated CBT, especially an elevated nocturnal CBT. A number of existing therapies including drugs (e.g. antidepressants), behavioural therapies (e.g. sleep restriction therapy) and bright light therapy can also reduce CBT. An elevation in nocturnal CBT that interferes with sleep onset can parsimoniously explain the development and perpetuation of common co-occurring symptoms, disorders and behaviour including overweight/obesity, sleep disturbance, late-night eating, and sedentarism. Nonetheless, a significant correlation between CBT and the above symptoms, disorders and behaviour does not necessarily imply causation. Thus, statistical and methodological issues of relevance to this enquiry are discussed including the likely presence of autocorrelation. Level V, narrative review.

  10. Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats

    PubMed Central

    Ravenelle, Rebecca; Santolucito, Hayley B.; Byrnes, Elizabeth M.; Byrnes, John J.; Tiffany Donaldson, S.

    2014-01-01

    Environmental enrichment can modulate mild and chronic stress, responses to anxiogenic stimuli as well as drug vulnerability in a number of animal models. The current study was designed to examine the impact of postnatal environmental enrichment on selectively bred 4th generation high (HAn) and low anxiety (LAn) male rats. After weaning, animals were placed in isolated, social and enriched environments (e.g., toys, wheels, ropes, changed weekly). We measured anxiety-like behavior (ALB) on the elevated plus maze (EPM; trial 1 at PND 46, trial 2 at PND 63), amphetamine (0.5 mg/kg, IP)-induced locomotor behavior, basal and post anxiogenic stimuli changes in (1) plasma corticosterone, (2) blood pressure and (3) core body temperature. Initially, animals showed consistent trait differences on EPM with HAn showing more ALB but after 40 days in select housing, HAn rats reared in an enriched environment (EE) showed less ALB and diminished AMPH-induced activity compared to HAn animals housed in isolated (IE) and social environments (SE). In the physiological tests, animals housed in EE showed elevated adrenocortical responses to forced novel object exposure but decreased body temperature and blood pressure changes after an air puff stressor. All animals reared in EE and SE had elevated BDNF-positive cells in the central amygdala (CeA), CA1 and CA2 hippocampal regions and the caudate putamen, but these differences were most pronounced in HAn rats for CeA, CA1 and CA2. Overall, these findings suggest that environmental enrichment offers benefits for trait anxiety rats including a reduction in behavioral and physiological responses to anxiogenic stimuli and amphetamine sensitivity, and these responses correlate with changes in BDNF expression in the central amygdala, hippocampus and the caudate putamen. PMID:24713371

  11. Impact of water temperature and stressor controllability on swim stress-induced changes in body temperature, serum corticosterone, and immobility in rats.

    PubMed

    Drugan, Robert C; Eren, Senem; Hazi, Agnes; Silva, Jennifer; Christianson, John P; Kent, Stephen

    2005-10-01

    The present study compared the effects of three different water temperatures (20, 25, and 30 degrees C) and stressor controllability on several physiological and behavioral endpoints in an intermittent swim stress paradigm. The escape latency of rats in the 20 and 25 degrees C water was less than that observed for the 30 degrees C group. Both escape and yoked groups at 20 and 25 degrees C exhibited moderate to severe hypothermia following the swim stress session that returned to prestress levels 30-40 min post-stress. At 30 degrees C core body temperature (Tb) only decreased by 1 degree C for either swim group. Following swim, serum corticosterone (CORT) levels were significantly elevated in both escape and yoked groups in comparison to confined and home cage controls. The confined control group showed a significant elevation that was approximately halfway between the home cage control and the swim stress groups. At 30 degrees C, there was still a significant elevation of serum CORT in both swim groups in comparison to confined and home cage controls. Therefore, 30 degrees C appears to be the optimal water temperature to evaluate stress controllability effects in the current paradigm. In a final experiment, swim stressor controllability effects were examined in a 5 min forced swim test (FST) 24 h following the initial stress exposure. Rats exposed to yoked-inescapable swim stress at 30 degrees C exhibited more immobility than their escapable swim stress and confined counterparts, while the escape and confined controls did not differ. These results demonstrate that the behavioral deficits observed in the FST are attributable to the stress of inescapable swim and not swim stress per se.

  12. Sensitization of Depressive-like Behavior during Repeated Maternal Separation is Associated with More-Rapid Increase in Core Body Temperature and Reduced Plasma Cortisol Levels

    PubMed Central

    Yusko, Brittany; Hawk, Kiel; Schiml, Patricia A.; Deak, Terrence; Hennessy, Michael B.

    2011-01-01

    Infant guinea pigs exhibit a 2-stage response to maternal separation: an initial active stage, characterized by vocalizing, and a second passive stage marked by depressive-like behavior (hunched posture, prolonged eye-closure, extensive piloerection) that appears to be mediated by proinflammatory activity. Recently we found that pups showed an enhanced (i.e., sensitized) depressive-like behavioral response during repeated separation. Further, core body temperature was higher during the beginning of a second separation compared to the first, suggesting a more-rapid stress-induced febrile response to separation the second day, though the possibility that temperature was already elevated prior to the second separation could not be ruled out. Therefore, the present study examined temperature prior to, and during, 2 daily separations. We also examined the temperature response to a third separation conducted 3 days after the second, and assessed the effect of repeated separation on plasma cortisol levels. Core temperature did not differ just prior to the separations, but showed a more-rapid increase and then decline during both a second and third separation than during a first. Temperature responses were not associated with changes in motor activity. Depressive-like behavior was greater during the second and third separations. Pups separated a first time showed a larger plasma cortisol response at the conclusion of separation than did animals of the same age separated a third time. In all, the results indicate that the sensitization of depressive-like behavior during repeated separations over several days is accompanied by a more-rapid febrile response that may be related to a reduction of glucocorticoid suppression. PMID:22079581

  13. [Clinical significance of peak body temperature, white blood cell count, and C-reactive protein level in febrile episodes among geriatric inpatients].

    PubMed

    Ikematsu, H; Nabeshima, A; Yamaga, S; Yamaji, K; Kakuda, K; Ueno, K; Hayashi, J; Shirai, T; Hara, H; Kashiwagi, S

    1997-06-01

    To investigate the clinical implication of peak body temperature, peripheral blood white blood cell (WBC) count, and serum C-reactive protein (CRP) level in febrile symptoms among geriatric hospitalized patients, they were analyzed in 968 febrile episodes obtained from 433 hospitalized patients in the referred hospital. Episodes of one day duration were most frequent (41.6%). WBC count was elevated over 8000/microliters in 475 episodes (49.1%) and CRP exceeded 1.0 mg/dl in 770 episodes (79.5%). Frequency of WBC elevation decreased and frequency of CRP elevation increased according to the time course. The mean value of CRP increased significantly according to the time course. The frequency of WBC count increase and CRP elevation and their averages correlated to the peak body temperature. The peak body temperature displayed the most striking correlation to the length of febrile episodes among three clinical indicators, peak body temperature, WBC count, and CRP level. These results indicate that the elevation of WBC count and/or CRP level is frequent in geriatric patients with febrile symptoms. Peak body temperature may serve as a clinical indicator of the severy of the febrile disease occurring in geriatric patients.

  14. Systemic salt loading decreases body temperature and increases heat-escape/cold-seeking behaviour via the central AT1 and V1 receptors in rats.

    PubMed

    Konishi, Masahiro; Nagashima, Kei; Kanosue, Kazuyuki

    2002-11-15

    Salt loading decreases body core temperature (T(core)) at neutral ambient temperature (26 degrees C) and increases heat-escape/cold-seeking behaviour in desalivated rats. In this study, we tested the hypothesis that brain angiotensin II (AII) and arginine vasopressin (AVP) are associated with these responses. Surgically desalivated rats (n = 28) were administered an injection (S.C., 10 ml kg(-1)) of either normal saline (154 mM, NS) or hypertonic saline (2500 mM, HS) following an intracerebroventricular injection (10 microl kg(-1)) of an AII AT(1)-receptor antagonist (candesartan, 5 microg microl(-1)), an AVP V(1)-receptor antagonist ((beta-mercapto-beta, beta-cyclopenta-methylene propionyl(1), O-Me-Tyr(2), Arg(8))-vasopressin, 0.5 microg microl(-1)), or normal saline (154 mM). Each rat was placed in a behaviour box, first at 26 degrees C for 1 h to allow the measurement of baseline T(core) and movement. The ambient temperature was then elevated to 40 degrees C for the next 2 h, during which time the rat was able to trigger a 0 degrees C air reward for 30 s by moving into a specific area of the box (operant behaviour). The S.C. HS significantly decreased baseline T(core) at 26 degrees C (36.5 +/- 0.1 degrees C) and increased counts of operant behaviour at 40 degrees C (57 +/- 3) compared with results obtained following S.C. NS injection (37.4 +/- 0.1 degrees C and 42 +/- 1, respectively). These responses to s.c. HS were inhibited by the intracerebroventricular injection of AT(1) (37.3 +/- 0.1 degrees C and 43 +/- 2, respectively; P < 0.05) and V(1) antagonists (37.2 +/- 0.2 degrees C and 42 +/- 2, respectively; P < 0.05), although administration of both antagonists with S.C. NS had no effect. These results suggest that brain AII and AVP are involved in the decrease in T(core) observed at neutral ambient temperature and the increase in heat-escape/cold-seeking behaviour in response to osmotic stimulation, via the central AT(1) and V(1) receptors, respectively

  15. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    PubMed

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  16. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    NASA Astrophysics Data System (ADS)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  17. Few-body modes of binary formation in core collapse

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Heggie, Douglas C.; Hut, Piet; Makino, Junichiro

    2013-11-01

    At the moment of deepest core collapse, a star cluster core contains less than ten stars. This small number makes the traditional treatment of hard binary formation, assuming a homogeneous background density, suspect. In a previous paper, we have found that indeed the conventional wisdom of binary formation, based on three-body encounters, is incorrect. Here we refine that insight, by further dissecting the subsequent steps leading to hard binary formation. For this purpose, we add some analysis tools in order to make the study less subjective. We find that the conventional treatment does remain valid for direct three-body scattering, but fails for resonant three-body scattering. Especially democratic resonance scattering, which forms an important part of the analytical theory of three-body binary formation, takes too much space and time to be approximated as being isolated, in the context of a cluster core around core collapse. We conclude that, while three-body encounters can be analytically approximated as isolated, subsequent strong perturbations typically occur whenever those encounters give rise to democratic resonances. We present analytical estimates postdicting our numerical results. If we only had been a bit more clever, we could have predicted this qualitative behaviour.

  18. Diet of land birds along an elevational gradient in Papua New Guinea.

    PubMed

    Sam, Katerina; Koane, Bonny; Jeppy, Samuel; Sykorova, Jana; Novotny, Vojtech

    2017-03-09

    Food preferences and exploitation are crucial to many aspects of avian ecology and are of increasing importance as we progress in our understanding of community ecology. We studied birds and their feeding specialization in the Central Range of Papua New Guinea, at eight study sites along a complete (200 to 3700 m a.s.l.) rainforest elevational gradient. The relative species richness and abundance increased with increasing elevation for insect and nectar eating birds, and decreased with elevation for fruit feeding birds. Using emetic tartar, we coerced 999 individuals from 99 bird species to regurgitate their stomach contents and studied these food samples. The proportion of arthropods in food samples increased with increasing elevation at the expense of plant material. Body size of arthropods eaten by birds decreased with increasing elevation. This reflected the parallel elevational trend in the body size of arthropods available in the forest understory. Body size of insectivorous birds was significantly positively correlated with the body size of arthropods they ate. Coleoptera were the most exploited arthropods, followed by Araneae, Hymenoptera, and Lepidoptera. Selectivity indexes showed that most of the arthropod taxa were taken opportunistically, reflecting the spatial patterns in arthropod abundances to which the birds were exposed.

  19. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    PubMed

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  20. The Impact of Obesity on Back and Core Muscular Endurance in Firefighters

    PubMed Central

    Mayer, John M.; Nuzzo, James L.; Chen, Ren; Quillen, William S.; Verna, Joe L.; Miro, Rebecca; Dagenais, Simon

    2012-01-01

    The purpose of this study was to assess the relationships between obesity and measures of back and core muscular endurance in firefighters. Methods. A cross-sectional study was conducted in career firefighters without low back pain. Obesity measures included body mass index (BMI) and body fat percentage assessed with air displacement plethysmography. Muscular endurance was assessed with the Modified Biering Sorensen (back) and Plank (core) tests. Relationships were explored using t-tests and regression analyses. Results. Of the 83 participants enrolled, 24 (29%) were obese (BMI ≥ 30). Back and core muscular endurance was 27% lower for obese participants. Significant negative correlations were observed for BMI and body fat percentage with back and core endurance (r = −0.42 to −0.52). Stepwise regression models including one obesity measure (BMI, body fat percentage, and fat mass/fat-free mass), along with age and self-reported physical exercise, accounted for 17–19% of the variance in back muscular endurance and 29–37% of the variance in core muscular endurance. Conclusions. Obesity is associated with reduced back and core muscular endurance in firefighters, which may increase the risk of musculoskeletal injuries. Obesity should be considered along with back and core muscular endurance when designing exercise programs for back pain prevention in firefighters. PMID:23213491

  1. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: a randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction.

    PubMed

    Erlinge, David; Götberg, Matthias; Lang, Irene; Holzer, Michael; Noc, Marko; Clemmensen, Peter; Jensen, Ulf; Metzler, Bernhard; James, Stefan; Bötker, Hans Erik; Omerovic, Elmir; Engblom, Henrik; Carlsson, Marcus; Arheden, Håkan; Ostlund, Ollie; Wallentin, Lars; Harnek, Jan; Olivecrona, Göran K

    2014-05-13

    The aim of this study was to confirm the cardioprotective effects of hypothermia using a combination of cold saline and endovascular cooling. Hypothermia has been reported to reduce infarct size (IS) in patients with ST-segment elevation myocardial infarctions. In a multicenter study, 120 patients with ST-segment elevation myocardial infarctions (<6 h) scheduled to undergo percutaneous coronary intervention were randomized to hypothermia induced by the rapid infusion of 600 to 2,000 ml cold saline and endovascular cooling or standard of care. Hypothermia was initiated before percutaneous coronary intervention and continued for 1 h after reperfusion. The primary end point was IS as a percent of myocardium at risk (MaR), assessed by cardiac magnetic resonance imaging at 4 ± 2 days. Mean times from symptom onset to randomization were 129 ± 56 min in patients receiving hypothermia and 132 ± 64 min in controls. Patients randomized to hypothermia achieved a core body temperature of 34.7°C before reperfusion, with a 9-min longer door-to-balloon time. Median IS/MaR was not significantly reduced (hypothermia: 40.5% [interquartile range: 29.3% to 57.8%; control: 46.6% [interquartile range: 37.8% to 63.4%]; relative reduction 13%; p = 0.15). The incidence of heart failure was lower with hypothermia at 45 ± 15 days (3% vs. 14%, p < 0.05), with no mortality. Exploratory analysis of early anterior infarctions (0 to 4 h) found a reduction in IS/MaR of 33% (p < 0.05) and an absolute reduction of IS/left ventricular volume of 6.2% (p = 0.15). Hypothermia induced by cold saline and endovascular cooling was feasible and safe, and it rapidly reduced core temperature with minor reperfusion delay. The primary end point of IS/MaR was not significantly reduced. Lower incidence of heart failure and a possible effect in patients with early anterior ST-segment elevation myocardial infarctions need confirmation. (Efficacy of Endovascular Catheter Cooling Combined With Cold Saline for the Treatment of Acute Myocardial Infarction [CHILL-MI]; NCT01379261). Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. 76 FR 63910 - Notice of Availability for Exclusive, Non-Exclusive, or Partially-Exclusive Licensing of an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ..., or Partially-Exclusive Licensing of an Invention Concerning Method for Estimating Core Body... Serial No. 61/572,677, entitled ``Method for Estimating Core Body Temperature from Heart Rate,'' filed on... core temperature from heart rate. The invention further relates to a method of determining impending...

  3. Food Craving as a Mediator between Addictive-like Eating and Problematic Eating Outcomes

    PubMed Central

    Joyner, Michelle A.; Gearhardt, Ashley N.; White, Marney A.

    2015-01-01

    Background There is growing interest and debate about whether an addictive process contributes to problematic eating outcomes, such as obesity. Craving is a core component of addiction, but there has been little research on the relationship between addictive-like eating, craving, and eating-related concerns. In the current study, we examine the effect of both overall food craving and craving for different types of food on the relationship between addictive-like eating symptoms and elevated body mass index (BMI) and binge eating episodes. Methods In a community sample (n = 283), we conducted analyses to examine whether overall craving mediated the association between addictive-like eating and elevated BMI, as well as binge eating frequency. We also ran separate mediational models examining the indirect effect of cravings for sweets, fats, carbohydrates, and fast food fats on these same associations. Results Overall food craving was a significant partial mediator in the relationships between addictive-like eating and both elevated BMI and binge eating episodes. Cravings for sweets and other carbohydrates significantly mediated the relationship between addictive-like eating and binge eating episodes, while cravings for fats significantly mediated the relationship between addictive-like eating and elevated BMI. Conclusions Craving appears to be an important component in the pathway between addictive-like eating and problematic eating outcomes. The current results highlight the importance of further evaluating the role of an addictive process in problematic eating behaviors and potentially targeting food cravings in intervention approaches. PMID:26262570

  4. Food craving as a mediator between addictive-like eating and problematic eating outcomes.

    PubMed

    Joyner, Michelle A; Gearhardt, Ashley N; White, Marney A

    2015-12-01

    There is growing interest and debate about whether an addictive process contributes to problematic eating outcomes, such as obesity. Craving is a core component of addiction, but there has been little research on the relationship between addictive-like eating, craving, and eating-related concerns. In the current study, we examine the effect of both overall food craving and craving for different types of food on the relationship between addictive-like eating symptoms and elevated body mass index (BMI) and binge eating episodes. In a community sample (n=283), we conducted analyses to examine whether overall craving mediated the association between addictive-like eating and elevated BMI, as well as binge eating frequency. We also ran separate mediational models examining the indirect effect of cravings for sweets, fats, carbohydrates, and fast food fats on these same associations. Overall food craving was a significant partial mediator in the relationships between addictive-like eating and both elevated BMI and binge eating episodes. Cravings for sweets and other carbohydrates significantly mediated the relationship between addictive-like eating and binge eating episodes, while cravings for fats significantly mediated the relationship between addictive-like eating and elevated BMI. Craving appears to be an important component in the pathway between addictive-like eating and problematic eating outcomes. The current results highlight the importance of further evaluating the role of an addictive process in problematic eating behaviors and potentially targeting food cravings in intervention approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Axial bone-socket displacement for persons with a traumatic transtibial amputation: The effect of elevated vacuum suspension at progressive body-weight loads.

    PubMed

    Darter, Benjamin J; Sinitski, Kirill; Wilken, Jason M

    2016-10-01

    Elevated vacuum suspension systems use a pump to draw air from the socket with the intent of reducing bone-socket motion as compared to passive suction systems. However, it remains unknown if elevated vacuum suspension systems decrease limb displacement uniformly during transitions from unloaded to full-body-weight support. To compare limb-socket motion between elevated vacuum and passive suction suspension sockets using a controlled loading paradigm. Comparative analysis. Persons with transtibial amputation were assessed while wearing either an elevated vacuum or passive suction suspension socket. Digital video fluoroscopy was used to measure axial bone-socket motion while the limb was loaded in 20% body-weight increments. An analysis of variance model was used to compare between suspension types. Total axial displacement (0%-100% body weight) was significantly lower using the elevated vacuum (vacuum: 1.3 cm, passive suction: 1.8 cm; p < 0.0001). Total displacement decreased primarily due to decreased motion during initial loading (0%-20%; p < 0.0001). Other body-weight intervals were not significantly different between systems. Elevated vacuum suspension reduced axial limb-socket motion by maintaining position of the limb within the socket during unloaded conditions. Elevated vacuum provided no meaningful improvement in limb-socket motion past initial loading. Excessive bone-socket motion contributes to poor residual limb health. Our results suggest elevated vacuum suspensions can reduce this axial displacement. Visual assessment of the images suggests that this occurs through the reduction or elimination of the air pocket between the liner and socket wall while the limb is unloaded. © The International Society for Prosthetics and Orthotics 2015.

  6. Assessment of Effectiveness of Cool Coat in Reducing Heat Strain among Workers in Steel Industry.

    PubMed

    Parameswarappa, S B; Narayana, J

    2017-01-01

    A research study was conducted to assess the effectiveness of cool coat in reducing heat strain among workers exposed to heat in a steel plant located in south India. The study consists of assessing heat strain of workers exposed to heat in a steel plant by measuring physiological reactions of workers such as pulse rate and core body temperature with and without cool coat. The coal coat taken for this study was procured from M/s Yamuna Industries, Noida. Out of 140 employees exposed to heat hazard, 101 employees were examined in this study. Study was done in important production units in steel plant having heat hazard. Workers were interviewed and examined and information regarding thermal comfort was collected. First, the heat strain was assessed when the workers were not using cool coats. The air temperature was measured at all hot zone workplaces and found in the range of 34 0 C to 39.4 0 C (Mean: 36.54 0 C & S.D: 1.54). Physiological response such as core body temperature, pulse rate and blood pressure of workers exposed to heat hazard were measured before & after work to know the heat strain sustained by workers when they were working. Maximum core body temperature after work was found to be 39.3 0 C (Mean; 38.52 & S.D; 0.7). Maximum pulse rate of workers after work was found to be 120 beats/minute (Mean; 94.96 beats/minute, S.D: 13.11). The study indicate core body temperature of workers was found more than the permissible exposure limit prescribed by ACGIH, indicating the heat strain sustained by workers is significant, whereas the pulse rate and blood pressure was found normal & not exceeded the limits. Second, with cool coat, the heat strain was assessed among 10 workers selected from the 101 employees. Core body temperature was measured before and soon after work, The core body temperature recorded soon after work was in the range of 35.5 - 37.20C (Mean 36.36, SD= 0.52), indicating a drop in the core body temperature. In this study, a core body temperature rise in the range of 1 0 -1.4 0 C was noticed when the employees were not wearing cool coats. Whereas, with the usage of cool coat a rise in core body temperature was not found and in many coat wearing workers a drop in core body temperature (0.2 to 0.9 0 C) was noticed. Employees revealed that the cool coats was comfortable to use and provided the thermal comforts. The study concluded that the cool coat taken for this study was found effective in reducing the heat strain.

  7. Assessment of Effectiveness of Cool Coat in Reducing Heat Strain among Workers in Steel Industry

    PubMed Central

    Parameswarappa, S. B.; Narayana, J.

    2017-01-01

    A research study was conducted to assess the effectiveness of cool coat in reducing heat strain among workers exposed to heat in a steel plant located in south India. The study consists of assessing heat strain of workers exposed to heat in a steel plant by measuring physiological reactions of workers such as pulse rate and core body temperature with and without cool coat. The coal coat taken for this study was procured from M/s Yamuna Industries, Noida. Out of 140 employees exposed to heat hazard, 101 employees were examined in this study. Study was done in important production units in steel plant having heat hazard. Workers were interviewed and examined and information regarding thermal comfort was collected. First, the heat strain was assessed when the workers were not using cool coats. The air temperature was measured at all hot zone workplaces and found in the range of 34 0 C to 39.4 0 C (Mean: 36.54 0 C & S.D: 1.54). Physiological response such as core body temperature, pulse rate and blood pressure of workers exposed to heat hazard were measured before & after work to know the heat strain sustained by workers when they were working. Maximum core body temperature after work was found to be 39.3 0 C (Mean; 38.52 & S.D; 0.7). Maximum pulse rate of workers after work was found to be 120 beats/minute (Mean; 94.96 beats/minute, S.D: 13.11). The study indicate core body temperature of workers was found more than the permissible exposure limit prescribed by ACGIH, indicating the heat strain sustained by workers is significant, whereas the pulse rate and blood pressure was found normal & not exceeded the limits. Second, with cool coat, the heat strain was assessed among 10 workers selected from the 101 employees. Core body temperature was measured before and soon after work, The core body temperature recorded soon after work was in the range of 35.5 - 37.20C (Mean 36.36, SD= 0.52), indicating a drop in the core body temperature. In this study, a core body temperature rise in the range of 1 0 -1.4 0 C was noticed when the employees were not wearing cool coats. Whereas, with the usage of cool coat a rise in core body temperature was not found and in many coat wearing workers a drop in core body temperature (0.2 to 0.9 0 C) was noticed. Employees revealed that the cool coats was comfortable to use and provided the thermal comforts. The study concluded that the cool coat taken for this study was found effective in reducing the heat strain. PMID:29391745

  8. Dietary nitrate reduces the O2 cost of desert marching but elevates the rise in core temperature.

    PubMed

    Kuennen, Matthew; Jansen, Lisa; Gillum, Trevor; Granados, Jorge; Castillo, Weston; Nabiyar, Ahmad; Christmas, Kevin

    2015-12-01

    Dietary nitrate (NO3 (-)) supplementation reduces the O2 cost of fixed-workload tasks performed in temperate environments but has not been examined in the heat. If this effect were retained it could reduce heatstroke risk in military personnel that are deployed for desert combat. Nine men completed three 45 min loaded battle marches at a standard cadence (4.83 km h(-1)/1.5 % grade) while wearing full combat gear [BDU, boots, body armor (8 kg), NBC suit] and carrying a loaded rucksack (16 kg). The 1st March (FAM) commenced in a temperate environment. The 2nd and 3rd commenced in simulated dry desert conditions (41 °C/20 % RH) and required subjects to ingest the beetroot juice equivalent of 8.4 mmol NO3 (-) (BRJ) or a NO3 (-) depleted placebo (PLA) for 6 days prior. VO2, VCO2, V E, core (T re), skin (T sk), and mean body (T b) temperatures, HR, and physiological strain index (PSI) were measured continuously. Thermal sensation, generalized discomfort, and perceived exertion (RPE) were measured at 5 min intervals. Heat storage (HS) was calculated. Blood markers of gastrointestinal permeability (TNF, Il-6, HO-1) were measured before and after exercise. VO2 in BRJ was lower than PLA from 1 to 12; 16 to 26; and 29 to 45 min of exercise (p < 0.05). VCO2 in BRJ was lower than PLA from 1 to 12 min (p < 0.05). V E in BRJ was lower than PLA from 1 to 20 min of exercise (p < 0.05). T re and T b in BRJ exceeded PLA from 16 to 45 min (p < 0.05). TNF, Il-6, and HO-1 were reduced in BRJ (p < 0.05) while HR, PSI, Tsk, and HS were not altered (p > 0.05). Thermal sensation, generalized discomfort, and RPE were elevated in BRJ from 40 to 45, 25 to 45, and 10 to 45 min, respectively (p < 0.01). Metabolic efficiency was improved in BRJ. Paradoxically, body temperatures rose more. This was not due to gut permeability. Therefore, we speculate that based on elimination of other possibilities, blood redistribution from skin to skeletal muscle may have contributed to impaired heat exchange.

  9. Shivering heat production and core cooling during head-in and head-out immersion in 17 degrees C water.

    PubMed

    Pretorius, Thea; Cahill, Farrell; Kocay, Sheila; Giesbrecht, Gordon G

    2008-05-01

    Many cold-water scenarios cause the head to be partially or fully immersed (e.g., ship wreck survival, scuba diving, cold-water adventure swim racing, cold-water drowning, etc.). However, the specific effects of head cold exposure are minimally understood. This study isolated the effect of whole-head submersion in cold water on surface heat loss and body core cooling when the protective shivering mechanism was intact. Eight healthy men were studied in 17 degrees C water under four conditions: the body was either insulated or exposed, with the head either out of the water or completely submersed under the water within each insulated/exposed subcondition. Submersion of the head (7% of the body surface area) in the body-exposed condition increased total heat loss by 11% (P < 0.05). After 45 min, head-submersion increased core cooling by 343% in the body-insulated subcondition (head-out: 0.13 +/- 0.2 degree C, head-in: 0.47 +/- 0.3 degree C; P < 0.05) and by 56% in the body-exposed subcondition (head-out: 0.40 +/- 0.3 degree C and head-in: 0.73 +/- 0.6 degree C; P < 0.05). In both body-exposed and body-insulated subconditions, head submersion increased the rate of core cooling disproportionally more than the relative increase in total heat loss. This exaggerated core-cooling effect is consistent with a head cooling induced reduction of the thermal core, which could be stimulated by cooling of thermosensitive and/or trigeminal receptors in the scalp, neck, and face. These cooling effects of head submersion are not prevented by shivering heat production.

  10. Thermal effects of dorsal head immersion in cold water on nonshivering humans.

    PubMed

    Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M

    2005-11-01

    Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P < 0.01). Heat loss from the dorsal head and upper chest was approximately proportional to the extra surface area that was immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.

  11. Core body temperature during competition in the heat: National Boys' 14s Junior Championships.

    PubMed

    Bergeron, Michael F; McLeod, Kathryn S; Coyle, John F

    2007-11-01

    To examine on-court core body temperature (T(C)) and sweat loss, as well as pre- and post-play hydration status, in elite adolescent tennis players during a national championships event in a hot climate. Eight healthy, fit, young male tennis players (mean (SD) age 13.9 (0.9) years; mass 56.0 (10.7) kg; height 169.2 (14.7) cm) were evaluated during first-round singles competition at the National Boys' 14s Junior Championships in the heat (wet-bulb globe temperature (WBGT) 29.6 (0.4) degrees C). Five of those same players were also evaluated during a same-day doubles match (WBGT 31.3 (0.5) degrees C). During doubles (4.37 (0.35) h after singles), pre-play urine specific gravity (USG) (1.025 (0.002); p = 0.06) and total sweat loss (1.9 (0.2) litres; p = 0.10) tended to be higher before and during doubles, respectively, compared to singles. However, percentage change in body mass (-0.5 (0.3) %) tended to be comparatively less (p = 0.08), even though the doubles matches were generally longer (106.6 (11.2) vs 78.8 (10.9) min; p = 0.09) and the degree minutes total was greater (p = 0.04). T(C) increased (p<0.001) during singles and remained elevated, even after 10 min following the end of play. Notably, pre-play (singles) USG was strongly associated (p = 0.005) with the players' final T(C) (38.7 (0.3) degrees C) recorded at the end of singles play. Junior tennis players who begin a match not well hydrated could have progressively increasing thermal strain and a greater risk for exertional heat illness as the match advances.

  12. Lower core body temperature and greater body fat are components of a human thrifty phenotype.

    PubMed

    Reinhardt, M; Schlögl, M; Bonfiglio, S; Votruba, S B; Krakoff, J; Thearle, M S

    2016-05-01

    In small studies, a thrifty human phenotype, defined by a greater 24-hour energy expenditure (EE) decrease with fasting, is associated with less weight loss during caloric restriction. In rodents, models of diet-induced obesity often have a phenotype including a reduced EE and decreased core body temperature. We assessed whether a thrifty human phenotype associates with differences in core body temperature or body composition. Data for this cross-sectional analysis were obtained from 77 individuals participating in one of two normal physiology studies while housed on our clinical research unit. Twenty-four-hour EE using a whole-room indirect calorimeter and 24-h core body temperature were measured during 24 h each of fasting and 200% overfeeding with a diet consisting of 50% carbohydrates, 20% protein and 30% fat. Body composition was measured by dual X-ray absorptiometry. To account for the effects of body size on EE, changes in EE were expressed as a percentage change from 24-hour EE (%EE) during energy balance. A greater %EE decrease with fasting correlated with a smaller %EE increase with overfeeding (r=0.27, P=0.02). The %EE decrease with fasting was associated with both fat mass and abdominal fat mass, even after accounting for covariates (β=-0.16 (95% CI: -0.26, -0.06) %EE per kg fat mass, P=0.003; β=-0.0004 (-0.0007, -0.00004) %EE kg(-1) abdominal fat mass, P=0.03). In men, a greater %EE decrease in response to fasting was associated with a lower 24- h core body temperature, even after adjusting for covariates (β=1.43 (0.72, 2.15) %EE per 0.1 °C, P=0.0003). Thrifty individuals, as defined by a larger EE decrease with fasting, were more likely to have greater overall and abdominal adiposity as well as lower core body temperature consistent with a more efficient metabolism.

  13. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  14. The effect of warmed inspired gases on body temperature during arthroscopic shoulder surgery under general anesthesia.

    PubMed

    Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong

    2013-07-01

    Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.

  15. Diet of land birds along an elevational gradient in Papua New Guinea

    PubMed Central

    Sam, Katerina; Koane, Bonny; Jeppy, Samuel; Sykorova, Jana; Novotny, Vojtech

    2017-01-01

    Food preferences and exploitation are crucial to many aspects of avian ecology and are of increasing importance as we progress in our understanding of community ecology. We studied birds and their feeding specialization in the Central Range of Papua New Guinea, at eight study sites along a complete (200 to 3700 m a.s.l.) rainforest elevational gradient. The relative species richness and abundance increased with increasing elevation for insect and nectar eating birds, and decreased with elevation for fruit feeding birds. Using emetic tartar, we coerced 999 individuals from 99 bird species to regurgitate their stomach contents and studied these food samples. The proportion of arthropods in food samples increased with increasing elevation at the expense of plant material. Body size of arthropods eaten by birds decreased with increasing elevation. This reflected the parallel elevational trend in the body size of arthropods available in the forest understory. Body size of insectivorous birds was significantly positively correlated with the body size of arthropods they ate. Coleoptera were the most exploited arthropods, followed by Araneae, Hymenoptera, and Lepidoptera. Selectivity indexes showed that most of the arthropod taxa were taken opportunistically, reflecting the spatial patterns in arthropod abundances to which the birds were exposed. PMID:28276508

  16. Excess weight, arterial pressure and physical activity in commuting to school: correlations.

    PubMed

    Silva, Kelly S; Lopes, Adair S

    2008-08-01

    The prevalence of obesity and elevated arterial pressure (AP) has increased in children and adolescents, whereas physical activity has decreased. To identify and correlate excess weight, body fat and elevated AP among active and passive students with the way they commute to school. One thousand five hundred and seventy students aged 7 to 12 years participated in the study conducted in João Pessoa, state of Paraíba. Students completed a questionnaire about the way they commuted to school (active = walking/biking or passive = by car/motorcycle/bus) and the time spent traveling to school. Excess weight was determined by BMI > or =25 kg/m(2), excess body fat as > or =85th percentile for tricipital fold measurement, and high AP as > or =90th percentile. Chi-square test and Poisson's regression were used for the analysis. Active commuting was associated with a lower prevalence of excess weight and body fat as compared to passive commuting (p<0.05). The prevalence ratio (PR) of excess weight was associated with excess body fat (Male: PR= 6.45 95%CI= 4.55-9.14; Female: PR= 4.10 95%CI= 3.09-5.45), elevated SAP [Systolic Arterial Pressure] (Male: PR= 1.99 95%CI= 1.30-3.06; Female: PR= 2.09 95%CI= 1.45-3.01), and elevated DAP [Diastolic Arterial Pressure] in girls (PR = 1.96 95%CI= 1.41-2.75). No association with active commuting was observed (p>0.05) Passive commuting to school showed a correlation with excess weight and body fat but not with elevated AP. Excess weight was associated with excessive body fat and elevated AP. Excess weight should be prevented as a way to avoid fat accumulation and AP elevation.

  17. Comparison of three methods of temperature measurement in hypothermic, euthermic, and hyperthermic dogs.

    PubMed

    Greer, Rebecca J; Cohn, Leah A; Dodam, John R; Wagner-Mann, Colette C; Mann, F A

    2007-06-15

    To assess the reliability and accuracy of a predictive rectal thermometer, an infrared auricular thermometer designed for veterinary use, and a subcutaneous temperature-sensing microchip for measurement of core body temperature over various temperature conditions in dogs. Prospective study. 8 purpose-bred dogs. A minimum of 7 days prior to study commencement, a subcutaneous temperature-sensing microchip was implanted in 1 of 3 locations (interscapular, lateral aspect of shoulder, or sacral region) in each dog. For comparison with temperatures measured via rectal thermometer, infrared auricular thermometer, and microchip, core body temperature was measured via a thermistor-tipped pulmonary artery (TTPA) catheter. Hypothermia was induced during anesthesia at the time of TTPA catheter placement; on 3 occasions after placement of the catheter, hyperthermia was induced via administration of a low dose of endotoxin. Near-simultaneous duplicate temperature measurements were recorded from the TTPA catheter, the rectal thermometer, auricular thermometer, and subcutaneous microchips during hypothermia, euthermia, and hyperthermia. Reliability (variability) of temperature measurement for each device and agreement between each device measurement and core body temperature were assessed. Variability between duplicate near-simultaneous temperature measurements was greatest for the auricular thermometer and least for the TTPA catheter. Measurements obtained by use of the rectal thermometer were in closest agreement with core body temperature; for all other devices, temperature readings typically underestimated core body temperature. Among the 3 methods of temperature measurement, rectal thermometry provided the most accurate estimation of core body temperature in dogs.

  18. Body mass index influences prostate cancer risk at biopsy in Japanese men.

    PubMed

    Masuda, Hitoshi; Kagawa, Makoto; Kawakami, Satoru; Numao, Noboru; Matsuoka, Yoh; Yokoyama, Minato; Yamamoto, Shinya; Yonese, Junji; Fukui, Iwao; Kihara, Kazunori

    2013-07-01

    To determine the relationship between body mass index and prostate cancer risk at biopsy in Japanese men, and to compared the risk with that of Caucasian men. We retrospectively evaluated 3966 men with prostate-specific antigen levels from 2.5 to 19.9 ng/mL who underwent an initial extended prostate biopsy. Using logistic regression, odds ratios of each body mass index category for risk of prostate cancer and high-grade disease (Gleason score ≥4 + 3) were estimated after controlling for age, prostate-specific antigen, %free prostate-specific antigen, prostate volume, digital rectal examination findings, family history of prostate cancer and the number of biopsy cores. Patients were divided into six categories according to their body mass index (kg/m(2) ) as follows: <21.0, 21.0-22.9, 23.0-24.9, 25.0-26.9, 27.0-29.9 and ≥30.0. A significant positive association was observed between body mass index and prostate cancer risk at biopsy, with an increased risk observed in men whose body mass index was ≥27.0 compared with the reference group. A significantly increased risk starting at body mass index ≥25.0 was found in high-grade disease. In contrast to our results, there has been no reported increase in the risk of prostate cancer at biopsy in Caucasians within the overweight range (body mass index of 25.0-29.9 based on World Health Organization classification). Japanese men within the overweight body mass index range who have an elevated prostate-specific antigen level also have a significant risk of harboring prostate cancer, especially high-grade disease. Overweight Japanese might be at greater prostate cancer risk at biopsy than overweight Caucasians. © 2012 The Japanese Urological Association.

  19. Elevational and Spatial Gradients of Atmospheric Metal Pollution in the North Pacific

    NASA Astrophysics Data System (ADS)

    Jongebloed, U. A.; Osterberg, E. C.; Kreutz, K. J.; Ferris, D. G.; Campbell, S.; Saylor, P. L.; Winski, D.; Handley, M.

    2017-12-01

    The industrial revolution has led to a several-fold increase in the atmospheric concentrations of heavy metals and metalloids including Pb, Cd, Cu, Zn, Hg and As. Modern emissions inventories identify Asia as the largest emitter of many of these toxic pollutants, which are subsequently transported eastwards across the North Pacific Ocean by prevailing westerly winds in the mid-upper troposphere. Previous ice cores collected from the Yukon Territory in the eastern North Pacific reveal evolution-dependent metal pollution histories; the highest (5300 m elevation) core from Mt. Logan records a nearly pure trans-Pacific Asian pollution record, whereas cores from lower sites like the Eclipse Icefield (3017 m) record a complex combination of Asian and more local North American emission. However, it is unclear if this elevation gradient of pollution sources is found in other regions of the North Pacific. Furthermore, the previous ice core records end in the late 1990's, before efforts by some Asian nations to reduce metal pollution, and it is unknown if North Pacific atmospheric metal concentrations have declined in response to these efforts. Here we investigate metal and metalloid concentrations and sources recorded in ice core and snow pit samples recovered from a vertical transect spanning 2200 - 5242 m within Denali National Park in the Central Alaska Range. We compare these metal concentrations and crustal enrichment factors to data from the Yukon Territory to investigate North Pacific regional metal gradients. We also present preliminary results from a new 60 m ice core from the Eclipse Icefield to evaluate recent trends in metal concentrations since the end of the Mt. Logan and original Eclipse records in 1998, and compare this to the recent metal pollution history recorded in the 2013 Denali Ice Core collected from the summit plateau (3900 m) of Mt. Hunter.

  20. Characteristics of crushed rocks observed in drilled cores in landslide bodies located in accretionary complexes

    NASA Astrophysics Data System (ADS)

    Wakizaka, Yasuhiko

    2013-10-01

    The recent development of high-quality boring, which uses foam surfactants, has made it possible to examine the detailed geological constitution and structure of landslide bodies. However, geological information related to landslides has not been obtained appropriately even from undisturbed high-quality drilled cores. Moreover, it has been difficult to distinguish between rocks crushed by landslide movement and the fault breccia in accretionary complexes. We examined the detailed geology of high-quality drilled cores of landslide bodies on the Shimanto Belt and the Chichibu Belt. The fault breccia near the landslide bodies was found to exhibit planar fabrics while the crushed breccias in the landslide bodies showed a random fabric. We discovered that classifying the degree of crushing and inspecting the planar fabrics of rocks are effective in the geological determination of landslide bodies.

  1. Brünnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives.

    PubMed

    Niizuma, Yasuaki; Gabrielsen, Geir W; Sato, Katsufumi; Watanuki, Yutaka; Naito, Yasuhiko

    2007-06-01

    A major challenge for diving birds, reptiles, and mammals is regulating body temperature while conserving oxygen through a reduction in metabolic processes. To gain insight into how these needs are met, we measured dive depth and body temperatures at the core or periphery between the skin and abdominal muscles simultaneously in freely diving Brünnich's guillemots (Uria lomvia), an arctic seabird, using an implantable data logger (16-mm diameter, 50-mm length, 14-g mass, Little Leonardo Ltd., Tokyo). Guillemots exhibited increased body core temperatures, but decreased peripheral temperatures, during diving. Heat conservation within the body core appeared to result from the combined effect of peripheral vasoconstriction and a high wing beat frequency that generates heat. Conversely, the observed tissue hypothermia in the periphery should reduce metabolic processes as well as heat loss to the water. These physiological effects are likely one of the key physiological adaptations that makes guillemots to perform as an efficient predator in arctic waters.

  2. Method for tracking core-contributed publications.

    PubMed

    Loomis, Cynthia A; Curchoe, Carol Lynn

    2012-12-01

    Accurately tracking core-contributed publications is an important and often difficult task. Many core laboratories are supported by programmatic grants (such as Cancer Center Support Grant and Clinical Translational Science Awards) or generate data with instruments funded through S10, Major Research Instrumentation, or other granting mechanisms. Core laboratories provide their research communities with state-of-the-art instrumentation and expertise, elevating research. It is crucial to demonstrate the specific projects that have benefited from core services and expertise. We discuss here the method we developed for tracking core contributed publications.

  3. Time-Resolved Records of Magnetic Activity on the Pallasite Parent Body and Psyche

    NASA Astrophysics Data System (ADS)

    Bryson, J. F. J.; Nichols, C. I. O.; Herrero-Albillos, J.; Kronast, F.; Kasama, T.; Alimadadi, H.; van der Laan, G.; Nimmo, F.; Harrison, R. J.

    2014-12-01

    Although many small bodies apparently generated dynamo fields in the early solar system, the nature and temporal evolution of these fields has remained enigmatic. Time-resolved records of the Earth's planetary field have been essential in understanding the dynamic history of our planet, and equivalent information from asteroids could provide a unique insight into the development of the solar system. Here we present time-resolved records of magnetic activity on the main-group pallasite parent body and (16) Psyche, obtained using newly-developed nanomagnetic imaging techniques. For the pallasite parent body, the inferred field direction remained relatively constant and the intensity was initially stable at ~100 μT before it decreased in two discrete steps down to 0 μT. We interpret this behaviour as due to vigorous dynamo activity driven by compositional convection in the core, ultimately transitioning from a dipolar to multipolar field as the inner core grew from the bottom-up. For Psyche (measured from IVA iron meteorites), the inferred field direction reversed, while the intensity remained stable at >50 μT. Psyche cooled rapidly as an unmantled core, although the resulting thermal convection alone cannot explain these observations. Instead, this behaviour required top-down core solidification, and is attributed either to compositional convection (if the core also solidified from the bottom-up) or convection generated directly by top-down solidification (e.g. Fe-snow). The mechanism governing convection in small body cores is an open question (due partly to uncertainties in the direction of core solidification), and these observations suggest that unconventional (i.e. not thermal) mechanisms acted in the early solar system. These mechanisms are very efficient at generating convection, implying a long-lasting and widespread epoch of dynamo activity among small bodies in the early solar system.

  4. Active and passive heat stress similarly compromise tolerance to a simulated hemorrhagic challenge.

    PubMed

    Pearson, J; Lucas, R A I; Schlader, Z J; Zhao, J; Gagnon, D; Crandall, C G

    2014-10-01

    Passive heat stress increases core and skin temperatures and reduces tolerance to simulated hemorrhage (lower body negative pressure; LBNP). We tested whether exercise-induced heat stress reduces LBNP tolerance to a greater extent relative to passive heat stress, when skin and core temperatures are similar. Eight participants (6 males, 32 ± 7 yr, 176 ± 8 cm, 77.0 ± 9.8 kg) underwent LBNP to presyncope on three separate and randomized occasions: 1) passive heat stress, 2) exercise in a hot environment (40°C) where skin temperature was moderate (36°C, active 36), and 3) exercise in a hot environment (40°C) where skin temperature was matched relative to that achieved during passive heat stress (∼38°C, active 38). LBNP tolerance was quantified using the cumulative stress index (CSI). Before LBNP, increases in core temperature from baseline were not different between trials (1.18 ± 0.20°C; P > 0.05). Also before LBNP, mean skin temperature was similar between passive heat stress (38.2 ± 0.5°C) and active 38 (38.2 ± 0.8°C; P = 0.90) trials, whereas it was reduced in the active 36 trial (36.6 ± 0.5°C; P ≤ 0.05 compared with passive heat stress and active 38). LBNP tolerance was not different between passive heat stress and active 38 trials (383 ± 223 and 322 ± 178 CSI, respectively; P = 0.12), but both were similarly reduced relative to active 36 (516 ± 147 CSI, both P ≤ 0.05). LBNP tolerance is not different between heat stresses induced either passively or by exercise in a hot environment when skin temperatures are similarly elevated. However, LBNP tolerance is influenced by the magnitude of the elevation in skin temperature following exercise induced heat stress. Copyright © 2014 the American Physiological Society.

  5. Stable Isotope Systematics in Grasshopper Assemblages Along an Elevation Gradient, Colorado

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Evans, S.; Dean, J.; Nufio, C.

    2012-12-01

    Insects comprise over three quarters of all animal species, yet studies of body water isotopic composition are limited to only the cockroach, the hoverfly, and chironomid flies. These studies suggest that oxygen and hydrogen isotopic compositions in body water are primarily controlled by dietary water sources, with modification from respiratory and metabolic processes. In particular, outward diffusion of isotopically depleted water vapor through insect spiracles at low humidity enriches residual body water in 18O and 2H (D). Stable isotope compositions (δ18O and δD) also respond to gradients in elevation and humidity, but these influences remain poorly understood. In this study, we measured grasshopper body water and local vegetation isotopic compositions along an elevation gradient in Colorado to evaluate three hypotheses: 1) Insect body water isotopic composition is directly related to food source water composition 2) Water vapor transport alters body water isotopic compositions relative to original diet sources, and 3) Elevation gradients influence isotopic compositions in insect body water. Thirty-five species of grasshopper were collected from 14 locations in Colorado grasslands, ranging in elevation from 450 to 800 meters (n=131). Body water was distilled from previously frozen grasshopper specimens using a vacuum extraction line, furnaces (90 °C), and liquid nitrogen traps. Water samples were then analyzed for δ18O and δD on an LGR Liquid Water Isotope Analyzer, housed in the Department of Geosciences, Boise State University. Grasshopper body water isotopic compositions show wide variation, with values ranging between -76.64‰ to +42.82‰ in δD and -3.06‰ to +26.78‰ in δ18O. Precipitation δ18O values over the entire Earth excluding the poles vary by approximately 30‰, comparable to the total range measured in our single study area. Most grasshopper values deviate from the global meteoric water line relating δ18O and δD in precipitation, consistent with evaporative enrichment in food (plants) due to plant transpiration. However, grasshopper body water from any given location is further enriched in 18O and D relative to food. Isotopic values decrease slightly with increasing elevation, but some specific grasshopper species appear more sensitive to elevation. Overall, evaporative enrichment of 18O and D in this relatively dry environment appears the strongest factors influencing grasshopper compositions.

  6. The correlation between the amplitude of Osborn wave and core body temperature.

    PubMed

    Omar, Hesham R; Camporesi, Enrico M

    2015-08-01

    Several reports illustrate an inverse correlation between the Osborn wave (J wave) amplitude and core body temperature. We attempted to study the strength of this correlation. We reviewed all articles reporting hypothermic J waves from 1950-2014 for patient demographics, core body temperature in Celsius (°C), amplitude of the J wave in millimeters (mm), lead with the highest amplitude of J wave, presence of acidosis, PO2, electrolytes and outcome. In cases with more than one electrocardiogram (ECG), the respective core body temperature and J wave amplitude of each ECG were recorded. The main study outcome is to evaluate the correlation between the J wave amplitude and core body temperature in the admission ECG. We have also examined the strength of this relationship in cases with more than one ECG. We attempted to find the most frequent lead that recorded the highest amplitude of the J wave in addition to the correlation between the amplitude of J wave and pH. We found 64 articles comprising a total of 68 cases. When analyzing only cases with more than one reported ECG, there was a strong inverse correlation (r = - 0.682, p<0.001) between J wave amplitude and body temperature: however, when analyzing admission ECG of all cases, the correlation was only moderate (r = - 0.410, p<0.001). The lead with the highest amplitude of the J wave was V4 (44% of the cases, p<0.001) followed by V3 (23.7% of the cases, p<0.001). The amplitude of the J wave in the admission ECG of hypothermic patients may not accurately predict the core body temperature. © The European Society of Cardiology 2014.

  7. Comparison of 2 protocols to increase circulating progesterone concentration before timed artificial insemination in lactating dairy cows with or without elevated body temperature.

    PubMed

    Pereira, M H C; Wiltbank, M C; Guida, T G; Lopes, F R; Vasconcelos, J L M

    2017-10-01

    Two treatments designed to increase circulating progesterone concentration (P4) during preovulatory follicle development were compared. One treatment used 2 intravaginal P4 implants (controlled internal drug-releasing inserts; CIDR) and the other used a GnRH treatment at beginning of the protocol. Lactating Holstein cows that had been diagnosed as nonpregnant were randomly assigned to receive timed artificial insemination (TAI) following 1 of 2 treatments (n = 1,638 breedings): (1) GnRH: CIDR+ 2 mg of estradiol (E2) benzoate + 100 µg of GnRH on d -11, PGF 2α on d -4, CIDR withdrawal + 1.0 mg of E2-cypionate + PGF 2α ) on d -2, and TAI on d 0; or (2) 2CIDR: 2 CIDR + 2 mg of E2-benzoate on d -11, 1 CIDR withdrawn + PGF 2α on d -4, second CIDR withdrawn + 1.0 mg of E2-cypionate + PGF 2α on d -2, and TAI on d 0. Milk yield was measured daily between d 0 and d 7. Rectal temperature was measured using a digital thermometer at d 0 and 7, and elevated body temperature was defined as an average rectal temperature ≥39.1°C. Pregnancy diagnoses were performed on d 32 and 60 after TAI. We detected no effect of treatments on pregnancy per AI or pregnancy loss regardless of elevated body temperature, body condition score, parity, milk yield, or presence or absence of a corpus luteum (CL) on d -11 or d -4. Pregnancy per AI at 60 d was reduced [elevated body temperature = 22.8% (162/709), no elevated body temperature 34.1% (279/817)] and pregnancy loss tended to increase [elevated body temperature = 20.2% (41/203), no elevated body temperature 14.4% (47/326)] in cows with elevated body temperature. Various physiological measurements associated with greater fertility were also reduced in cows with elevated body temperature, such as percentage of cows with a CL at PGF 2α (decreased 7.9%), ovulatory follicle diameter (decreased 0.51 mm), expression of estrus (decreased 5.1%), and ovulation near TAI (decreased 2.8%) compared with cows without elevated body temperature. A greater proportion of cows (30.2%) had a CL at PGF 2α in the GnRH treatment [74.1% (570/763)] than in the 2CIDR treatment [56.9% (434/763)]; however, circulating P4 concentration was greater at the time of PGF 2α treatment (d -4) for cows 2CIDR (4.26 ± 0.13 ng/mL) than in cows in GnRH (3.99 ± 0.14 ng/mL). Thus, these 2 protocols yield similar fertility results that might be due to somewhat different physiological alterations. Treatment with GnRH increased the proportion of cows with a CL at PGF 2α ; however, the 2CIDR protocol increased circulating P4 under all circumstances. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. A Tissue Propagation Model for Validating Close-Proximity Biomedical Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Bonds, Q.; Herzig, P.; Weller, T.

    2016-01-01

    The propagation of thermally-generated electromagnetic emissions through stratified human tissue is studied herein using a non-coherent mathematical model. The model is developed to complement subsurface body temperature measurements performed using a close proximity microwave radiometer. The model takes into account losses and reflections as thermal emissions propagate through the body, before being emitted at the skin surface. The derivation is presented in four stages and applied to the human core phantom, a physical representation of a stomach volume of skin, muscle, and blood-fatty tissue. A drop in core body temperature is simulated via the human core phantom and the response of the propagation model is correlated to the radiometric measurement. The results are comparable, with differences on the order of 1.5 - 3%. Hence the plausibility of core body temperature extraction via close proximity radiometry is demonstrated, given that the electromagnetic characteristics of the stratified tissue layers are known.

  9. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  10. Interleukin-1β and interleukin-6 enhance thermal prolongation of the LCR in decerebrate piglets.

    PubMed

    Xia, Luxi; Bartlett, Donald; Leiter, J C

    2016-08-01

    Thermal stress and prior upper respiratory tract infection are risk factors for the Sudden Infant Death Syndrome. The adverse effects of prior infection are likely mediated by interleukin-1β (IL-1β). Therefore, we examined the single and combined effects of IL-1β and elevated body temperature on the duration of the Laryngeal Chemoreflex (LCR) in decerebrate neonatal piglets ranging in age from post-natal day (P) 3 to P7. We examined the effects of intraperitoneal (I.P.) injections of 0.3mg/Kg IL-1β with or without I.P. 10mg/Kg indomethacin pretreatment on the duration of the LCR, and in the same animals we also examined the duration of the LCR when body temperature was elevated approximately 2°C. We found that IL-1β significantly increased the duration of the LCR even when body temperature was held constant. There was a significant multiplicative effect when elevated body temperature was combined with IL-1β treatment: prolongation of the LCR was significantly greater than the sum of independent thermal and IL-1β-induced prolongations of the LCR. The effects of IL-1β, but not elevated body temperature, were blocked by pretreatment with indomethacin alone. We also tested the interaction between IL-6 given directly into the nucleus of the solitary tract (NTS) bilaterally in 100ngm microinjections of 50μL and pretreatment with indomethacin. Here again, there was a multiplicative effect of IL-6 treatment and elevated body temperature, which significantly prolonged the LCR. The effect of IL-6 on the LCR, but not elevated body temperature, was blocked by pretreatment with indomethacin. We conclude that cytokines interact with elevated body temperature, probably through direct thermal effects on TRPV1 receptors expressed pre-synaptically in the NTS and through cytokine-dependent sensitization of the TRPV1 receptor. This sensitization is likely initiated by cyclo-oxygenase-2 dependent synthesis of prostaglandin E2, which is stimulated by elevated levels of IL-1β or IL-6. Inflammatory sensitization of the LCR coupled with thermal prolongation of the LCR may increase the propensity for apnea and Sudden Infant Death Syndrome. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Interleukin-1β and interleukin-6 enhance thermal prolongation of the LCR in decerebrate piglets

    PubMed Central

    Xia, Luxi; Bartlett, Donald; Leiter, J.C.

    2017-01-01

    Thermal stress and prior upper respiratory tract infection are risk factors for the Sudden Infant Death Syndrome. The adverse effects of prior infection are likely mediated by interleukin-1β (IL-1β). Therefore, we examined the single and combined effects of IL-1β and elevated body temperature on the duration of the Laryngeal Chemoreflex (LCR) in decerebrate neonatal piglets ranging in age from post-natal day (P) 3 to P7. We examined the effects of intraperitoneal (I.P.) injections of 0.3 mg/Kg IL-1β with or without I.P. 10 mg/Kg indomethacin pretreatment on the duration of the LCR, and in the same animals we also examined the duration of the LCR when body temperature was elevated approximately 2 °C. We found that IL-1β significantly increased the duration of the LCR even when body temperature was held constant. There was a significant multiplicative effect when elevated body temperature was combined with IL-1β treatment: prolongation of the LCR was significantly greater than the sum of independent thermal and IL-1β-induced prolongations of the LCR. The effects of IL-1β, but not elevated body temperature, were blocked by pretreatment with indomethacin alone. We also tested the interaction between IL-6 given directly into the nucleus of the solitary tract (NTS) bilaterally in 100 ngm microinjections of 50 μL and pre-treatment with indomethacin. Here again, there was a multiplicative effect of IL-6 treatment and elevated body temperature, which significantly prolonged the LCR. The effect of IL-6 on the LCR, but not elevated body temperature, was blocked by pretreatment with indomethacin. We conclude that cytokines interact with elevated body temperature, probably through direct thermal effects on TRPV1 receptors expressed pre-synaptically in the NTS and through cytokine-dependent sensitization of the TRPV1 receptor. This sensitization is likely initiated by cyclo-oxygenase-2 dependent synthesis of prostaglandin E2, which is stimulated by elevated levels of IL-1β or IL-6. Inflammatory sensitization of the LCR coupled with thermal prolongation of the LCR may increase the propensity for apnea and Sudden Infant Death Syndrome. PMID:27181326

  12. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure.

    PubMed

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B; Verberne, Hein J

    2017-01-01

    Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid). The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.

  13. Housing temperature influences the pattern of heat shock protein induction in mice following mild whole body hyperthermia.

    PubMed

    Eng, Jason W-L; Reed, Chelsey B; Kokolus, Kathleen M; Repasky, Elizabeth A

    2014-12-01

    Researchers studying the murine response to stress generally use mice housed under standard, nationally mandated conditions as controls. Few investigators are concerned whether basic physical aspects of mouse housing could be an additional source of stress, capable of influencing the subsequent impact of an experimentally applied stressor. We have recently become aware of the potential for housing conditions to impact important physiological and immunological properties in mice. Here we sought to determine whether housing mice at standard temperature (ST; 22 °C) vs. thermoneutral temperature (TT; 30 °C) influences baseline expression of heat shock proteins (HSPs) and their typical induction following a whole body heating. There were no significant differences in baseline expression of HSPs at ST and TT. However, in several cases, the induction of Hsp70, Hsp110 and Hsp90 in tissues of mice maintained at ST was greater than at TT following 6 h of heating (which elevated core body temperature to 39.5 °C). This loss of HSP induction was also seen when mice housed at ST were treated with propranolol, a β-adrenergic receptor antagonist, used clinically to treat hypertension and stress. Taken together, these data show that housing temperature significantly influences the expression of HSPs in mice after whole body heating and thus should be considered when stress responses are studied in mice.

  14. Interacting effects of latitude, mass, age, and sex on winter survival of Surf Scoters (Melanitta perspicillata): Implications for differential migration

    USGS Publications Warehouse

    Uher-Koch, Brian D.; Esler, Daniel N.; Iverson, Samuel A.; Ward, David; Boyd, Sean; Kirk, Molly; Lewis, Tyler L.; VanStratt, Corey S.; Brodhead, Katherine M.; Hupp, Jerry W.; Schmutz, Joel A.

    2016-01-01

    We quantified variation in winter survival of Surf Scoters (Melanitta perspicillata (L., 1758)) across nearly 30° of latitude on the Pacific coast of North America to evaluate potential effects on winter distributions, including observed differential distributions of age and sex classes. We monitored fates of 297 radio-marked Surf Scoters at three study sites: (1) near the northern periphery of their wintering range in southeast Alaska, USA, (2) the range core in British Columbia, Canada, and (3) the southern periphery in Baja California, Mexico. We detected 34 mortalities and determined that survival averaged lower at the range peripheries than in the range core, was lower during mid-winter than during late winter at all sites, and was positively correlated with body mass within locations. Although neither age nor sex class had direct effects, mass effects led to differential survival patterns among classes. When simultaneously incorporating these interacting influences, adult males of mean mass for their location had highest survival at the northern range periphery in Alaska, whereas adult females and juveniles had higher survival at the range core and the southern periphery. Our observations help to explain patterns of differential migration and distribution reported for this species and highlight seasonal periods (mid-winter) and locations (range peripheries) of elevated levels of mortality for demographically important age–sex classes (adult females).

  15. Holocene thinning of the Greenland ice sheet.

    PubMed

    Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M

    2009-09-17

    On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.

  16. Effects of spaceflight on the proliferation of jejunal mucosal cells

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Moeller, C. L.; Sawyer, Heywood R.; Smirnov, K. L.

    1991-01-01

    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity due to microgravity conditions encountered during spaceflight would be demonstrable in cells and tissues characterized by a rapid rate of turnover. Jejunal mucosal cells were chosen as a model since these cells are among the most rapidly proliferating in the body. Accordingly, the percentage of mitotic cells present in the crypts of Lieberkuhn in each of 5 rats flown on the COSMOS 2044 mission were compared to the percentage of mitotic cells present in the crypts in rats included in each of 3 ground control groups (i.e., vivarium, synchronous and caudal-elevated). No significant difference (p greater than .05) was detected in mitotic indices between the flight and vivarium group. Although the ability of jejunal mucosal cells to divide by mitosis was not impaired in flight group, there was, however, a reduction in the length of villi and depth of crypts. The concommitant reduction in villus length and crypth depth in the flight group probably reflects changes in connective tissue components within the core of villi.

  17. A cast metal core for a deformed implant body: case report.

    PubMed

    Soeno, Kohyoh; Jimbo, Ryo; Sawase, Takashi; Taira, Yohsuke

    2006-12-01

    The present report consists of a clinical evaluation of an osseointegrated implant using a cast metal core instead of abutment for a deformed implant body. The intramobile connector insert for the implant in the mandibular left first premolar region broke 7 years after the superstructure was attached to the implant system. The intramobile connector insert was replaced, and the prosthesis was reattached, but the new intramobile connector insert broke again 2 weeks later. A thorough examination confirmed deformation of the upper section of the implant body in the mandibular left first molar region. Breakage of the new intramobile connector insert in the mandibular left first premolar region was believed to be due to deformation of the implant body in the mandibular left first molar region. Therefore, a cast metal core was used to deal with the deformation of the implant body in this region. Although slight bone resorption was observed around the implant body after 5 years, no major problems were found in the implant body itself.

  18. Thermal effects of whole head submersion in cold water on nonshivering humans.

    PubMed

    Pretorius, Thea; Bristow, Gerald K; Steinman, Alan M; Giesbrecht, Gordon G

    2006-08-01

    This study isolated the effect of whole head submersion in cold water, on surface heat loss and body core cooling, when the confounding effect of shivering heat production was pharmacologically eliminated. Eight healthy male subjects were studied in 17 degrees C water under four conditions: the body was either insulated or uninsulated, with the head either above the water or completely submersed in each body-insulation subcondition. Shivering was abolished with buspirone (30 mg) and meperidine (2.5 mg/kg), and subjects breathed compressed air throughout all trials. Over the first 30 min of immersion, exposure of the head increased core cooling both in the body-insulated conditions (head out: 0.47 +/- 0.2 degrees C, head in: 0.77 +/- 0.2 degrees C; P < 0.05) and the body-exposed conditions (head out: 0.84 +/- 0.2 degrees C and head in: 1.17 +/- 0.5 degrees C; P < 0.02). Submersion of the head (7% of the body surface area) in the body-exposed conditions increased total heat loss by only 10%. In both body-exposed and body-insulated conditions, head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss. This may be explained by a redistribution of blood flow in response to stimulation of thermosensitive and/or trigeminal receptors in the scalp, neck and face, where a given amount of heat loss would have a greater cooling effect on a smaller perfused body mass. In 17 degrees C water, the head does not contribute relatively more than the rest of the body to surface heat loss; however, a cold-induced reduction of perfused body mass may allow this small increase in heat loss to cause a relatively larger cooling of the body core.

  19. Detecting Near-Surface Ice Formation Over Time Using the Kennaugh Elements Approach From TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Fernandes, L.

    2016-12-01

    The summer melting has increased substantially at higher elevations on the Canadian Arctic ice caps. The resulting meltwater percolates into the upper layers of snow and firn and then refreeze, building massive ice bodies. It seems likely that these within-firn ice bodies now limit meltwater penetration into the firn and may be creating a feedback whereby the fraction of melt that runs off to the ocean is increasing. Although changes in firn structure as presence of ice layers and ice bodies are well documented over the Devon ice cap, the firm has shown that it exerts a crucial role to predict more accurately the contribution of small ice caps to the sea level rise. However it is still challenging to assess the extent of these features within the shallow subsurface using ice cores and GPR (Ground Penetrating Radar) data collected along a limited number of linear transects. Studying changes in the distribution of ice bodies' formation over time has the potential to provide information about how the growth of ice bodies in the firn is affecting the pattern of water flow in the firn layer. The objective is investigate the potential of Kennaugh Elements (KE) derived from x-band SAR (Synthetic Aperture Radar) for mapping the distribution and growth of large ice bodies within the firn and the evolution of their distribution over time. The evaluation of this method could reveal a new approach suitable for other glacierized regions that would reduce the costs and amount of field work for studying such properties.

  20. Effect of altered core body temperature on glottal closing force.

    PubMed

    Wadie, Mikhail; Li, Juan; Sasaki, Clarence T

    2011-10-01

    A basic function of the larynx is to provide sphincteric protection of the lower airway, initiated by a brain stem-mediated glottal closure reflex. Glottal closing force is defined as the measured pressure generated between the vocal folds during glottal closure. One of the factors thought to affect the glottal closure reflex is a variation in core body temperature. Four adult male Yorkshire pigs were used in this study. The subjects were studied under control conditions (37 degreesC), hyperthermic conditions (38 degrees C to 41 degrees C), and hypothermic conditions (36 degrees C to 34 degrees C). We demonstrated that the glottal closing force increased significantly with an increase in core body temperature and also decreased significantly with decreased core body temperature. These results are supported by neurophysiological changes demonstrated by other studies in pups and adult dogs in response to altered core body temperatures. The mechanism for these responses is thought to reside centrally, rather than in the peripheral nervous system. We hope that a better understanding of these aspects of glottal closure will alter the care of many patients with postanesthesia hypothermia and many sedated inmates and will also further enhance preventive measures needed to decrease the incidence of sudden infant death syndrome in overheated or febrile infants.

  1. Nuclear reactor apparatus

    DOEpatents

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  2. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    PubMed

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Two-stage Uplift of Granite-Gneiss-Migmatite Complex (GGMC) of Çataldaǧ Core Complex (Western Anatolia, Turkey): the role of detachment faults on uplift processes

    NASA Astrophysics Data System (ADS)

    Kamaci, Omer; Altunkaynak, Safak

    2016-04-01

    The most recently identified core complex of western Anatolia (Turkey), the Çataldaǧ Core Complex (ÇCC) consists of a granite-gneiss-migmatite complex (GGMC) representing deep crustal rocks of NW Turkey and a shallow level granodioritic body (ÇG: Çataldaǧ granodiorite). The GGMC is Latest Eocene-Early Oligocene and ÇG is Early Miocene in age, and both were exhumed in the footwall of the Çataldaǧ Detachment Fault Zone (ÇDFZ) in the Early Miocene. On the basis of correlation of age data and the closure temperatures of zircon, monazite, muscovite, biotite and K-feldspar, the T-time history of GGMC reveals that GGMC has experienced at least two stages of cooling and uplift, from 33.8 to 30.1 Ma and 21.3 to 20.7 Ma. In stage I, from 33.8 to 30.1 Ma, the cooling rate of GGMC was relatively slow (35°C/my) however cooling rate increase dramatically to ≥500°C/my in stage II between 21.3 and 20.7 Ma. T-time history also indicate that GGMC was elevated to the final location in at least 8-13 My according to the monazite and zircon and mica ages obtained from the same rock. Rapid slab rollback at the Hellenic trench at ca. 23 Ma may have increased extension rates leading to the development of detachment faults (i.e. ÇDFZ), core complexes and associated syn-extensional granitoids in Western Anatolia and the Aegean extensional province.

  4. Body Fatness and Risk for Elevated Blood Pressure, Total Cholesterol, and Serum Lipoprotein Ratios in Children and Adolescents.

    ERIC Educational Resources Information Center

    Williams, Daniel P.; And Others

    1992-01-01

    Examines the relationship between body fat percent and risk for elevated blood pressure, serum total cholesterol, and serum lipoprotein ratios in 1,230 African-American and 2,090 white 5-18 year olds (1,667 males and 1,653 females). Results support body fatness standards in children and adolescents as cardiovascular risk factors. (SLD)

  5. Gravitational mechanism of active life of the Earth, planets and satellites

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial bodies on shells of the given body. Dynamical oblatenesses of shells, thus, characterize the endogenous activity of a planet by external celestial bodies. Other important factor of endogenous activity of a planet is a eccentric position of the centers of mass of the shells (for example, of the core and the mantle). The eccentricity of the shells is inherited during geological evolution of a planet as system of shells (Barkin, 2002). Consequences of exitation of the Earth system. The new tides (Barkin, 2005) are caused by relative displacements of the core and mantle. These displacements are reflected in variations of many natural processes due to gravitational action of the core. The displacing core causes deformations of all layers of viscous-elastic mantle. In the given work from more general positions the mechanisms of excitation of a system of shells of the Earth under action of a gravitational attraction of the Sun, the Moon and planets, the phenomena of their relative swings, translational displacements and turns relatively from each other, and the wide list geodynamical consequences of the specified excitation of the Earth are studied. At once we shall emphasize, that the developed geodynamic model has allowed to carry out the important dynamic researches of displacements of shells of the Earth, their deformations and changes, and variations of its natural processes and for the first time to explain the nature of such fundamental phenomena and processes in geodynamics, geology and geophysics as: cyclicity of natural processes and its mechanism; power of processes in various time scales; unity of cyclic processes and universality of their frequency bases; synchronism of geodynamic, geophysical, biophysical and social events; inversion, contrast and opposite directed changes of activity of natural processes in opposite hemispheres of the Earth; step-by-step variations of natural processes, sawtooth course of activity of natural processes in various time scales; orderliness in an distribution of geological formations on the Earth, planets and satellites; existence of antipodal formations on planets and satellites; the phenomenon of twisting of hemispheres of bodies of solar system, twisting of layers and latitudinal zones of shells of celestial bodies including inner layers and shells, etc. All the specified phenomena from the resulted list to some extent are discussed in the given work and illustrated on the basis of modern researches in Earth's sciences and the researches executed by means of space missions. In a complex, the executed researches have shown universality of discussed mechanisms and their important role in dynamics and geoevolution of planets and satellites in other planetary systems, and also stars and pulsars with the systems of planets (Barkin, 2009). Cyclicity. The excitation on the part of external celestial bodies of the system core-mantle depends from relative positions of external celestial bodies, from particularities of their perturbed orbital motions and from rotary motion of the planet. The specified motions have a cyclic nature which is shown in various time scales. Hence, and excitation of shells and their layers will have also cyclic character and to be shown in various time scales. Hence, cyclic variations of all planetary natural processes in all the variety widely should be observed, as takes place in reality. The periods of variations are characterized by extremely wide range - from hours up to tens and hundreds millions years. If the core makes slow secular drift relatively to the mantle all layers and shells of the Earth test secular deformation, thermodynamic and other changes. The cavity of the core and its flows are changed slowly that results in secular variations of a magnetic field (Barkin, 2002, 2009). Inversion and asymmetry of cyclic and secular variations of natural processes. The essence of it rather wide distributed phenomena is, that activity of natural processes varies in an antiphase in opposite hemispheres of the Earth (first of all in northern and southern hemispheres). Told concerns to all geodynamic and geophysical processes, to variations of physical fields, to tectonic and geodetic reorganizations of layers of the Earth, to redistributions of atmospheric, oceanic and other fluid masses of the Earth. The certain asymmetry of displays of processes in northern and southern hemispheres on the other hand is marked. So secular trends of some processes are contrast in northern and southern hemispheres, i.e. velocities of secular changes are essentially different. All described phenomena are caused first of all by cyclic oscillations and secular drift of the core to the north (in present epoch). In longer time scales the similar phenomena of inversion, dissymmetry also have place and determine a nature and style of displacements of continents and lithospheric plates, planetary magmatic activity and plume tectonics as a whole, formation of mountains, elevations and depressions, systems of lineaments and cracks, regressions and transgressions of sea level (Barkin, 2002). Synchronous steps of activity of natural processes. 'For an explanation of observably step-by-step variations of geodynamic and geophysical processes the mechanism of sharp sporadic relative displacements of the core and the mantle and deformations of the mantle in the certain periods of time (the phenomenon of "galloping of the core') is offered.

  6. Paleomagnetic Evidence for Partial Differentiation of the Silicate-Bearing IIE Iron Meteorite Parent Body

    NASA Astrophysics Data System (ADS)

    Maurel, C.; Bryson, J. F. J.; Weiss, B. P.; Scholl, A.

    2016-12-01

    The identification of dozens of petrologically diverse chondritic and achondritic meteoritic groups indicates that a diversity of planetesimals formed in the early solar system. It is commonly thought that planetesimals formed as either unmelted or else fully differentiated bodies, implying that chondrites and achondrites cannot have originated on a single body. However, it has been suggested that partially melted bodies with chondritic crusts and achondritic interiors may also have formed. This alternative proposal is supported by the recent identification of post-accretional remanent magnetization in CV, H chondrites, and also possibly in CM chondrites, which has been interpreted as possible evidence for a core dynamo on their parent bodies. Other piece of evidence suggesting the existence of partially differentiated bodies is the existence of the silicate-bearing IIE iron meteorites. The IIEs are composed of a Fe-Ni alloy matrix containing a mixture of chondritic, primitive achondritic, and chondritic silicate inclusions that likely formed on a single parent body. Therefore, IIEs may sample all three putative layers of a layered, partially differentiated body. On the other hand, the siderophile element compositions of the matrix metal demonstrate that it is not the product of fractional crystallization of a molten core. This suggests that the matrix metal is derived from isolated reservoirs of metal in the mantle and/or crust. It is unknown whether a large-scale metallic core, not represented by known meteorite samples, also formed on the same parent planetesimal. We can search for evidence of a molten, advecting core by assessing whether IIE irons contain remanent magnetization produced by a core dynamo. With this goal, we studied the paleomagnetism of a cloudy zone (CZ) interface in the Fe-Ni matrix of the IIE iron Colomera using X-ray photoelectron emission microscopy (XPEEM). Our initial results suggest that a steady, intense magnetic field was present during the gradual formation of the CZ. This may indicate the existence of an advecting core on the IIE parent body, which would support the hypothesis of a partially differentiated structure. We are continuing to test this conclusion with further XPEEM measurements on Colomera and other IIE irons.

  7. Paleomagnetic Evidence for Partial Differentiation of the Silicate-Bearing IIE Iron Meteorite Parent Body

    NASA Astrophysics Data System (ADS)

    Maurel, C.; Bryson, J. F. J.; Weiss, B. P.; Scholl, A.

    2017-12-01

    The identification of dozens of petrologically diverse chondritic and achondritic meteoritic groups indicates that a diversity of planetesimals formed in the early solar system. It is commonly thought that planetesimals formed as either unmelted or else fully differentiated bodies, implying that chondrites and achondrites cannot have originated on a single body. However, it has been suggested that partially melted bodies with chondritic crusts and achondritic interiors may also have formed. This alternative proposal is supported by the recent identification of post-accretional remanent magnetization in CV, H chondrites, and also possibly in CM chondrites, which has been interpreted as possible evidence for a core dynamo on their parent bodies. Other piece of evidence suggesting the existence of partially differentiated bodies is the existence of the silicate-bearing IIE iron meteorites. The IIEs are composed of a Fe-Ni alloy matrix containing a mixture of chondritic, primitive achondritic, and chondritic silicate inclusions that likely formed on a single parent body. Therefore, IIEs may sample all three putative layers of a layered, partially differentiated body. On the other hand, the siderophile element compositions of the matrix metal demonstrate that it is not the product of fractional crystallization of a molten core. This suggests that the matrix metal is derived from isolated reservoirs of metal in the mantle and/or crust. It is unknown whether a large-scale metallic core, not represented by known meteorite samples, also formed on the same parent planetesimal. We can search for evidence of a molten, advecting core by assessing whether IIE irons contain remanent magnetization produced by a core dynamo. With this goal, we studied the paleomagnetism of a cloudy zone (CZ) interface in the Fe-Ni matrix of the IIE iron Colomera using X-ray photoelectron emission microscopy (XPEEM). Our initial results suggest that a steady, intense magnetic field was present during the gradual formation of the CZ. This may indicate the existence of an advecting core on the IIE parent body, which would support the hypothesis of a partially differentiated structure. We are continuing to test this conclusion with further XPEEM measurements on Colomera and other IIE irons.

  8. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure

    PubMed Central

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Purpose Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. Methods In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,—transversum,—descendens and sigmoid). Results The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Conclusion Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss. PMID:28464031

  9. Beyond the classic thermoneutral zone

    PubMed Central

    Kingma, Boris RM; Frijns, Arjan JH; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached. PMID:27583296

  10. Beyond the classic thermoneutral zone: Including thermal comfort.

    PubMed

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  11. Core Body and Skin Temperature in Type 1 Narcolepsy in Daily Life; Effects of Sodium Oxybate and Prediction of Sleep Attacks.

    PubMed

    van der Heide, Astrid; Werth, Esther; Donjacour, Claire E H M; Reijntjes, Robert H A M; Lammers, Gert Jan; Van Someren, Eus J W; Baumann, Christian R; Fronczek, Rolf

    2016-11-01

    Previous laboratory studies in narcolepsy patients showed altered core body and skin temperatures, which are hypothesised to be related to a disturbed sleep wake regulation. In this ambulatory study we assessed temperature profiles in normal daily life, and whether sleep attacks are heralded by changes in skin temperature. Furthermore, the effects of three months of treatment with sodium oxybate (SXB) were investigated. Twenty-five narcolepsy patients and 15 healthy controls were included. Core body, proximal and distal skin temperatures, and sleep-wake state were measured simultaneously for 24 hours in ambulatory patients. This procedure was repeated in 16 narcolepsy patients after at least 3 months of stable treatment with SXB. Increases in distal skin temperature and distal-to-proximal temperature gradient (DPG) strongly predicted daytime sleep attacks (P < 0.001). As compared to controls, patients had a higher proximal and distal skin temperature in the morning, and a lower distal skin temperature during the night (all P < 0.05). Furthermore, they had a higher core body temperature during the first part of the night (P < 0.05), which SXB decreased (F = 4.99, df = 1, P = 0.03) to a level similar to controls. SXB did not affect skin temperature. This ambulatory study demonstrates that daytime sleep attacks were preceded by clear changes in distal skin temperature and DPG. Furthermore, changes in core body and skin temperature in narcolepsy, previously only studied in laboratory settings, were partially confirmed. Treatment with SXB resulted in a normalisation of the core body temperature profile. Future studies should explore whether predictive temperature changes can be used to signal or even prevent sleep attacks. © 2016 Associated Professional Sleep Societies, LLC.

  12. Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.

    PubMed

    O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason

    2016-01-01

    Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.

  13. Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain)

    NASA Astrophysics Data System (ADS)

    Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio

    2016-05-01

    Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (Tb) and laboratory-preferred (Tpref) body temperatures of lizards with different reproductive conditions, as well as ambient (Ta) and copper-model operative temperature (Te), which we used to determine thermal quality of the habitat (de), accuracy (db), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while Ta constrained Tb only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, Tpref dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (Te > Tpref). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, db and de-db were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.

  14. THE EFFICACY OF AN EIGHT-WEEK CORE STABILIZATION PROGRAM ON CORE MUSCLE FUNCTION AND ENDURANCE: A RANDOMIZED TRIAL

    PubMed Central

    Sperier, Aubrey D.; Hopkins, Colleen F.; Griffiths, Bridgette D.; Principe, Molly F.; Schnall, Barri L.; Bell, Johanna C.; Koppenhaver, Shane L.

    2016-01-01

    ABSTRACT Background Body armor is credited with increased survival rates in soldiers but the additional axial load may negatively impact the biomechanics of the spine resulting in low back pain. Multiple studies have found that lumbar stabilization programs are superior to generalized programs for patients with chronic low back pain. It is not known if such programs produce objective changes in trunk muscle function with wear of body armor. Hypothesis/Purpose An eight-week core stability exercise program would result in a larger improvement in physical endurance and abdominal muscle thickness than a control intervention. The purpose of this study was to assess the effectiveness of an eight-week core stability exercise program on physical endurance and abdominal muscle thickness with and without wear of body armor. Study Design Randomized controlled trial Methods Participants (N = 33) were randomized into either the core strengthening exercise group or the control group. Testing included ultrasound imaging of abdominal muscle thickness in hook-lying and standing with and without body armor and timed measures of endurance. Results There were statistically significant group by time interactions for transversus abdominis muscle contraction thickness during standing, both with (p = 0.018) and without body armor (p = 0.038). The main effect for hold-time during the horizontal side-support (p = 0.016) indicated improvement over time regardless of group. There was a significant group by time interaction (p = 0.014) for horizontal side-support hold-time when compliance with the exercise protocol was set at 85%, indicating more improvement in the core stabilization group than in the control group. Conclusion Performing an eight-week core stabilization exercise program significantly improves transversus abdominis muscle activation in standing and standing with body armor. When compliant with the exercises, such a program may increase trunk strength and muscle endurance. Levels of Evidence Therapy, Level 2b PMID:27525175

  15. Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz

    NASA Astrophysics Data System (ADS)

    Sasaki, Kensuke; Mizuno, Maya; Wake, Kanako; Watanabe, Soichi

    2017-09-01

    In this study, we present an assessment of human-body exposure to an electromagnetic field at frequencies ranging from 10 GHz to 1 THz. The energy absorption and temperature elevation were assessed by solving boundary value problems of the one-dimensional Maxwell equations and a bioheat equation for a multilayer plane model. Dielectric properties were measured in~vitro at frequencies of up to 1 THz at body temperature. A Monte Carlo simulation was conducted to assess variations of the transmittance into a skin surface and temperature elevation inside a body by considering the variation of the tissue thickness due to individual differences among human bodies. Furthermore, the impact of the dielectric properties of adipose tissue on temperature elevation, for which large discrepancies between our present measurement results and those in past works were observed, was also examined. We found that the dielectric properties of adipose tissue do not impact on temperature elevation at frequencies over 30 GHz. The potential risk of skin burn was discussed on the basis of the temperature elevation in millimeter-wave and terahertz-wave exposure. Furthermore, the consistency of the basic restrictions in the international guidelines set by ICNIRP was discussed.

  16. Ten-core versus 16-core transrectal ultrasonography guided prostate biopsy for detection of prostatic carcinoma: a prospective comparative study in Indian population

    PubMed Central

    Prakash, V. Surya; Mohan, G. Chandra; Krishnaiah, S. Venkata; Vijaykumar, V.; Babu, G. Ramesh; Reddy, G. Vijaya Bhaskar; Mahaboob, V. S.

    2013-01-01

    Purpose: To compare the cancer detection rate in patients with raised serum prostate-specific antigen (PSA) or abnormal digital rectal examination (DRE) results between the 10-core and the 16-core biopsy techniques in an Indian population. Methods: Between November 2010 and November 2012, 95 men aged >50 years who presented to the Urology Department with lower urinary tract symptoms, elevated serum PSA, and/or abnormal DRE findings underwent transrectal ultrasonography (TRUS)-guided prostate biopsy. A total of 53 patients underwent 10-core biopsy and 42 patients underwent 16-core biopsy. Results: Of the 53 men in the 10-core group, 8 had cancer, whereas in the 16-core biopsy group, 23 of 42 men had cancer. Detection of prostate cancer was significantly higher in patients who underwent 16-core biopsy than in those who underwent 10-core biopsy (P<0.001). Among the 95 men, 44 men had abnormal DRE findings (46.3%), of whom 23 showed cancer (52.27%). Of 51 men with normal DRE findings and elevated PSA, 8 men had malignancy with a cancer detection rate of 15.68%. Among 20 men with PSA between 4.1 and 10 ng/mL, 2 (10%) had cancer. In 31 men with PSA between 10.1 and 20 ng/mL, 3 cancers (9.67%) were detected, and in 44 men with PSA >20 ng/mL, 26 cancers were detected (59.09%). Conclusions: The cancer detection rate with 16-core TRUS-guided biopsy is significantly higher than that with 10-core biopsy (54.76% vs. 15.09%, P<0.001). In patients with both normal and abnormal DRE findings, 16-core biopsy has a better detection rate than the 10-core biopsy protocol. With increasing PSA, there is a high rate of detection of prostate cancer in both 10-core and 16-core biopsy patients. PMID:24392441

  17. Ten-core versus 16-core transrectal ultrasonography guided prostate biopsy for detection of prostatic carcinoma: a prospective comparative study in Indian population.

    PubMed

    Prakash, V Surya; Mohan, G Chandra; Krishnaiah, S Venkata; Vijaykumar, V; Babu, G Ramesh; Reddy, G Vijaya Bhaskar; Mahaboob, V S

    2013-01-01

    To compare the cancer detection rate in patients with raised serum prostate-specific antigen (PSA) or abnormal digital rectal examination (DRE) results between the 10-core and the 16-core biopsy techniques in an Indian population. Between November 2010 and November 2012, 95 men aged >50 years who presented to the Urology Department with lower urinary tract symptoms, elevated serum PSA, and/or abnormal DRE findings underwent transrectal ultrasonography (TRUS)-guided prostate biopsy. A total of 53 patients underwent 10-core biopsy and 42 patients underwent 16-core biopsy. Of the 53 men in the 10-core group, 8 had cancer, whereas in the 16-core biopsy group, 23 of 42 men had cancer. Detection of prostate cancer was significantly higher in patients who underwent 16-core biopsy than in those who underwent 10-core biopsy (P<0.001). Among the 95 men, 44 men had abnormal DRE findings (46.3%), of whom 23 showed cancer (52.27%). Of 51 men with normal DRE findings and elevated PSA, 8 men had malignancy with a cancer detection rate of 15.68%. Among 20 men with PSA between 4.1 and 10 ng/mL, 2 (10%) had cancer. In 31 men with PSA between 10.1 and 20 ng/mL, 3 cancers (9.67%) were detected, and in 44 men with PSA >20 ng/mL, 26 cancers were detected (59.09%). The cancer detection rate with 16-core TRUS-guided biopsy is significantly higher than that with 10-core biopsy (54.76% vs. 15.09%, P<0.001). In patients with both normal and abnormal DRE findings, 16-core biopsy has a better detection rate than the 10-core biopsy protocol. With increasing PSA, there is a high rate of detection of prostate cancer in both 10-core and 16-core biopsy patients.

  18. Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application

    NASA Astrophysics Data System (ADS)

    Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.

    2016-03-01

    The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.

  19. Evaluating Core Quality for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.

    2012-01-01

    Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).

  20. Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats.

    PubMed

    Ravenelle, R; Santolucito, H B; Byrnes, E M; Byrnes, J J; Donaldson, S T

    2014-06-13

    Environmental enrichment can modulate mild and chronic stress, responses to anxiogenic stimuli as well as drug vulnerability in a number of animal models. The current study was designed to examine the impact of postnatal environmental enrichment on selectively bred 4th generation high- (HAn) and low-anxiety (LAn) male rats. After weaning, animals were placed in isolated (IE), social (SE) and enriched environments (EE) (e.g., toys, wheels, ropes, changed weekly). We measured anxiety-like behavior (ALB) on the elevated plus maze (EPM; trial 1 at postnatal day (PND) 46, trial 2 at PND 63), amphetamine (AMPH) (0.5mg/kg, IP)-induced locomotor behavior, basal and post anxiogenic stimuli changes in (1) plasma corticosterone, (2) blood pressure and (3) core body temperature. Initially, animals showed consistent trait differences on EPM with HAn showing more ALB but after 40 days in select housing, HAn rats reared in an EE showed less ALB and diminished AMPH-induced activity compared to HAn animals housed in IE and SE. In the physiological tests, animals housed in EE showed elevated adrenocortical responses to forced novel object exposure but decreased body temperature and blood pressure changes after an air puff stressor. All animals reared in EE and SE had elevated brain-derived neurotrophic factor (BDNF)-positive cells in the central amygdala (CeA), CA1 and CA2 hippocampal regions and the caudate putamen, but these differences were most pronounced in HAn rats for CeA, CA1 and CA2. Overall, these findings suggest that environmental enrichment offers benefits for trait anxiety rats including a reduction in behavioral and physiological responses to anxiogenic stimuli and AMPH sensitivity, and these responses correlate with changes in BDNF expression in the central amygdala, hippocampus and the caudate putamen. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Core Body and Skin Temperature in Type 1 Narcolepsy in Daily Life; Effects of Sodium Oxybate and Prediction of Sleep Attacks

    PubMed Central

    van der Heide, Astrid; Werth, Esther; Donjacour, Claire E.H.M.; Reijntjes, Robert H.A.M.; Lammers, Gert Jan; Van Someren, Eus J.W.; Baumann, Christian R.; Fronczek, Rolf

    2016-01-01

    Study Objectives: Previous laboratory studies in narcolepsy patients showed altered core body and skin temperatures, which are hypothesised to be related to a disturbed sleep wake regulation. In this ambulatory study we assessed temperature profiles in normal daily life, and whether sleep attacks are heralded by changes in skin temperature. Furthermore, the effects of three months of treatment with sodium oxybate (SXB) were investigated. Methods: Twenty-five narcolepsy patients and 15 healthy controls were included. Core body, proximal and distal skin temperatures, and sleep-wake state were measured simultaneously for 24 hours in ambulatory patients. This procedure was repeated in 16 narcolepsy patients after at least 3 months of stable treatment with SXB. Results: Increases in distal skin temperature and distal-to-proximal temperature gradient (DPG) strongly predicted daytime sleep attacks (P < 0.001). As compared to controls, patients had a higher proximal and distal skin temperature in the morning, and a lower distal skin temperature during the night (all P < 0.05). Furthermore, they had a higher core body temperature during the first part of the night (P < 0.05), which SXB decreased (F = 4.99, df = 1, P = 0.03) to a level similar to controls. SXB did not affect skin temperature. Conclusions: This ambulatory study demonstrates that daytime sleep attacks were preceded by clear changes in distal skin temperature and DPG. Furthermore, changes in core body and skin temperature in narcolepsy, previously only studied in laboratory settings, were partially confirmed. Treatment with SXB resulted in a normalisation of the core body temperature profile. Future studies should explore whether predictive temperature changes can be used to signal or even prevent sleep attacks. Citation: van der Heide A, Werth E, Donjacour CE, Reijntjes RH, Lammers GJ, Van Someren EJ, Baumann CR, Fronczek R. Core body and skin temperature in type 1 narcolepsy in daily life; effects of sodium oxybate and prediction of sleep attacks. SLEEP 2016;39(11):1941–1949. PMID:27568803

  2. Effect of antiperspirants on whole body sweat rate and thermoregulation.

    PubMed

    Burry, J S; Evans, R L; Rawlings, A V; Shiu, J

    2003-08-01

    It is well established that the evaporation of sweat from the human body surface is the main mechanism by which heat balance is maintained following a rise in body core temperature. Since the introduction of the first brand name antiperspirant in the United States during the early 1900s, antiperspirant products designed to control underarm wetness have grown to represent one of the largest cosmetic categories in most global markets. However, although axillary sweating only constitutes less than 1% of whole body sweat rate, consumers, particularly in hot countries, have begun to articulate the concern that antiperspirants may interfere with the body's natural cooling process. To investigate this, we undertook carefully designed experiments that measured the effects of axillary antiperspirant application on whole body sweat rate and body core temperature, following a regimen of exercise-induced heat stress in a hot environment in human volunteers. Our data show clearly that although antiperspirant prevents sweat production in the axillary area, this does not impact the ability of the body to thermoregulate following a rise in body core temperature. Thus, recent consumer questioning over this aspect of antiperspirant use appears to be unwarranted.

  3. Body temperatures of selected amphibian and reptile species.

    PubMed

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  4. Discovery of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442): a temperature-neutral transient receptor potential vanilloid-1 (TRPV1) antagonist with analgesic efficacy.

    PubMed

    Voight, Eric A; Gomtsyan, Arthur R; Daanen, Jerome F; Perner, Richard J; Schmidt, Robert G; Bayburt, Erol K; DiDomenico, Stanley; McDonald, Heath A; Puttfarcken, Pamela S; Chen, Jun; Neelands, Torben R; Bianchi, Bruce R; Han, Ping; Reilly, Regina M; Franklin, Pamela H; Segreti, Jason A; Nelson, Richard A; Su, Zhi; King, Andrew J; Polakowski, James S; Baker, Scott J; Gauvin, Donna M; Lewis, LaGeisha R; Mikusa, Joseph P; Joshi, Shailen K; Faltynek, Connie R; Kym, Philip R; Kort, Michael E

    2014-09-11

    The synthesis and characterization of a series of selective, orally bioavailable 1-(chroman-4-yl)urea TRPV1 antagonists is described. Whereas first-generation antagonists that inhibit all modes of TRPV1 activation can elicit hyperthermia, the compounds disclosed herein do not elevate core body temperature in preclinical models and only partially block acid activation of TRPV1. Advancing the SAR of this series led to the eventual identification of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442, 52), an analogue that possesses excellent pharmacological selectivity, has a favorable pharmacokinetic profile, and demonstrates good efficacy against osteoarthritis pain in rodents.

  5. Melting phase relations in the Fe-S and Fe-S-O systems at core conditions in small terrestrial bodies

    NASA Astrophysics Data System (ADS)

    Pommier, Anne; Laurenz, Vera; Davies, Christopher J.; Frost, Daniel J.

    2018-05-01

    We report an experimental investigation of phase equilibria in the Fe-S and Fe-S-O systems. Experiments were performed at high temperatures (1400-1850 °C) and high pressures (14 and 20 GPa) using a multi-anvil apparatus. The results of this study are used to understand the effect of sulfur and oxygen on core dynamics in small terrestrial bodies. We observe that the formation of solid FeO grains occurs at the Fe-S liquid - Fe solid interface at high temperature ( > 1400 °C at 20 GPa). Oxygen fugacities calculated for each O-bearing sample show that redox conditions vary from ΔIW = -0.65 to 0. Considering the relative density of each phase and existing evolutionary models of terrestrial cores, we apply our experimental results to the cores of Mars and Ganymede. We suggest that the presence of FeO in small terrestrial bodies tends to contribute to outer-core compositional stratification. Depending on the redox and thermal history of the planet, FeO may also help form a transitional redox zone at the core-mantle boundary.

  6. Use of thermal imagery for estimation of core body temperature during precooling, exertion, and recovery in wildland firefighter protective clothing.

    PubMed

    Bourlai, Thirimachos; Pryor, Riana R; Suyama, Joe; Reis, Steven E; Hostler, David

    2012-01-01

    Monitoring core body temperature to identify heat stress in first responders and in individuals participating in mass gatherings (e.g., marathons) is difficult. This study utilized high-sensitivity thermal imaging technology to predict the core temperature of human subjects at a distance while performing simulated field operations wearing thermal protective garments. Six male subjects participating in a study of precooling prior to exertion in wildland firefighter thermal protective clothing had thermal images of the face captured with a high-resolution thermal imaging camera concomitant with measures of core and skin temperature before, during, and after treadmill exercise in a heated room. Correlations and measures of agreement between core temperature and thermal imaging-based temperature were performed. The subjects walked an average (± standard deviation) of 42.6 (±5.9) minutes and a distance of 4.2 (±0.6) km on the treadmill. Mean heart rate at the end of exercise was 152 (±33) bpm and core body temperature at the end of exercise was 38.3°C (±0.7°C). A visual relationship and a strong correlation between core temperature and thermal imaging of the face were identified in all subjects, with the closest relationship and best agreement occurring during exercise. The Bland-Altman test of agreement during exercise revealed the majority of measurement pairs to be within two standard deviations of the measured temperature. High-resolution thermal imaging in the middle-wave infrared spectrum (3-5 μm) can be used to accurately estimate core body temperature during exertion in a hot room while participants are wearing wildland firefighting garments. Although this technology is promising, it must be refined. Using alternative measurement sites such as the skin over the carotid artery, using multiple measurement sites, or adding pulse detection may improve the estimation of body temperature by thermal imagery.

  7. Body Dissatisfaction Among Sexual Minority Men: Psychological and Sexual Health Outcomes.

    PubMed

    Blashill, Aaron J; Tomassilli, Julia; Biello, Katie; O'Cleirigh, Conall; Safren, Steven A; Mayer, Kenneth H

    2016-07-01

    Body dissatisfaction is common among sexual minority (i.e., gay and bisexual) men; however, few studies have investigated the relationship between body dissatisfaction and psychosexual health variables among this population. The data that do exist are exclusively cross-sectional, casting uncertainty regarding temporal associations. Thus, the aims of the current study were to assess the prospective relationship between body dissatisfaction and psychological and sexual health outcomes. Participants were 131 gay and bisexual men who completed a battery of self-report measures across two time points (baseline and 3-month follow-up), including assessment of body dissatisfaction, depressive symptoms, and sexual health variables (sexual self-efficacy and sexual anxiety). Generalized linear modeling was employed to assess the prospective relationship between body dissatisfaction and outcomes variables, accounting for non-normal distributions. Body dissatisfaction significantly predicted elevated depressive symptoms (B = .21, p = .01), lower sexual self-efficacy (B = -.22, p = .04), and elevated sexual anxiety (B = .05, p = .03). Elevated body dissatisfaction is prospectively associated with negative psychological and sexual health outcomes. Given the high prevalence of body image concerns in sexual minority men, depression and/or HIV/STI prevention programs may benefit from routinely assessing for body dissatisfaction among this population, and addressing those who report concerns.

  8. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz.

    PubMed

    Oizumi, Takuya; Laakso, Ilkka; Hirata, Akimasa; Fujiwara, Osamu; Watanabe, Soichi; Taki, Masao; Kojima, Masami; Sasaki, Hiroshi; Sasaki, Kazuyuki

    2013-07-01

    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye.

  9. Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation

    PubMed Central

    Epperson, L. Elaine; Rose, James C.; Carey, Hannah V.

    2010-01-01

    Hibernators are unique among mammals in their ability to survive extended periods of time with core body temperatures near freezing and with dramatically reduced heart, respiratory, and metabolic rates in a state known as torpor. To gain insight into the molecular events underlying this remarkable physiological phenotype, we applied a proteomic screening approach to identify liver proteins that differ between the summer active (SA) and the entrance (Ent) phase of winter hibernation in 13-lined ground squirrels. The relative abundance of 1,600 protein spots separated on two-dimensional gels was quantitatively determined using fluorescence difference gel electrophoresis, and 74 unique proteins exhibiting significant differences between the two states were identified using liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Proteins elevated in Ent hibernators included liver fatty acid-binding protein, fatty acid transporter, and 3-hydroxy-3-methylglutaryl-CoA synthase, which support the known metabolic fuel switch to lipid and ketone body utilization in winter. Several proteins involved in protein stability and protein folding were also elevated in the Ent phase, consistent with previous findings. In contrast to transcript screening results, there was a surprising increase in the abundance of proteins involved in protein synthesis during Ent hibernation, including several initiation and elongation factors. This finding, coupled with decreased abundance of numerous proteins involved in amino acid and nitrogen metabolism, supports the intriguing hypothesis that the mechanism of protein preservation and resynthesis is used by hibernating ground squirrels to help avoid nitrogen toxicity and ensure preservation of essential amino acids throughout the long winter fast. PMID:19923364

  10. Building Daily 30-meter Spatial Resolution Maps of Surface Water Bodies from MODIS Data Using a Novel Technique for Transferring Information Across Space and Time

    NASA Astrophysics Data System (ADS)

    Khandelwal, A.; Karpatne, A.; Kumar, V.

    2017-12-01

    In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.

  11. The effect of study type on body weight and tumor incidence in B6C3F1 mice fed the NTP-2000 diet.

    PubMed

    Marino, Dale J

    2012-07-01

    The B6C3F1 mouse is the standard mouse strain used in National Toxicology Program (NTP) carcinogenesis studies. Over time, increased liver tumorigenesis that was correlated with elevated body weights was noted in males and females. NTP therefore replaced the NIH-07 diet with the NTP-2000 diet and returned to group housing of females as lower body weights were noted in group housed mice. However, recent studies reported study-type differences in body weights at 3 months using the NTP-2000 diet with higher weights evident in drinking water and inhalation studies compared to feed studies. Therefore, body weight and tumor incidence data were collected for untreated control mice from all 2-year NTP feed (12), drinking water (8), water gavage (6) and inhalation (10) studies that used the NTP-2000 diet in order to assess the impact of study type on body weights and tumor incidences. Results show statistically significant elevated body weights and liver tumor incidences in males and females from drinking water, water gavage and inhalation studies compared to results from feed studies. Thus, the elevated body weights and liver tumorigenesis noted in mice using the NIH-07 diet were also evident using the NTP-2000 diet, which was introduced to address body weight elevations. Given the study-type dependent effects noted, these results emphasize the importance of carefully selecting historical control data for B6C3F1 mice. Moreover, because of the association between body weight and liver tumorigenesis, these results may have implications regarding dose-level selection for carcinogenicity studies involving B6C3F1 mice based on the maximum tolerated dose.

  12. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms.

    PubMed

    Seebacher, Frank; Little, Alexander G

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  13. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    PubMed Central

    Seebacher, Frank; Little, Alexander G.

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits. PMID:28824463

  14. AAFCS Resources for Elevating Research and Scholarship in FCS

    ERIC Educational Resources Information Center

    Myers, Lori A.

    2017-01-01

    Elevating research and supporting scholarship are both a responsibility and core value of all family and consumer sciences (FCS) professionals. This responsibility may involve: (1) Introducing the research process under graduate students; (2) Guiding the research of graduate students; (3) Mentoring a junior faculty member to establish a research…

  15. Promyelocytic Leukemia (Pml) Nuclear Bodies Are Protein Structures That Do Not Accumulate RNA

    PubMed Central

    Boisvert, François-Michel; Hendzel, Michael J.; Bazett-Jones, David P.

    2000-01-01

    The promyelocytic leukemia (PML) nuclear body (also referred to as ND10, POD, and Kr body) is involved in oncogenesis and viral infection. This subnuclear domain has been reported to be rich in RNA and a site of nascent RNA synthesis, implicating its direct involvement in the regulation of gene expression. We used an analytical transmission electron microscopic method to determine the structure and composition of PML nuclear bodies and the surrounding nucleoplasm. Electron spectroscopic imaging (ESI) demonstrates that the core of the PML nuclear body is a dense, protein-based structure, 250 nm in diameter, which does not contain detectable nucleic acid. Although PML nuclear bodies contain neither chromatin nor nascent RNA, newly synthesized RNA is associated with the periphery of the PML nuclear body, and is found within the chromatin-depleted region of the nucleoplasm immediately surrounding the core of the PML nuclear body. We further show that the RNA does not accumulate in the protein core of the structure. Our results dismiss the hypothesis that the PML nuclear body is a site of transcription, but support the model in which the PML nuclear body may contribute to the formation of a favorable nuclear environment for the expression of specific genes. PMID:10648561

  16. Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain).

    PubMed

    Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio

    2016-05-01

    Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (T(b)) and laboratory-preferred (T(pref)) body temperatures of lizards with different reproductive conditions, as well as ambient (T(a)) and copper-model operative temperature (T(e)), which we used to determine thermal quality of the habitat (d(e)), accuracy (d(b)), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while T(a) constrained T(b) only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, T(pref) dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (T(e) > T(pref)). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, d(b) and d(e)-d(b) were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.

  17. Sex Hormones, Sleep, and Core Body Temperature in Older Postmenopausal Women

    PubMed Central

    Murphy, Patricia J.; Campbell, Scott S.

    2007-01-01

    Study Objectives: Assessment of relationships between polysomnographic sleep, sex hormones, and core body temperature in postmenopausal women. Design and Participants: Ten women aged 57 to 71 years, at least 5 years past menopause. Setting: Laboratory of Human Chronobiology at Weill Cornell Medical College. Interventions: N/A. Measurements and Results: Lower estradiol (E2) and higher luteinizing hormone (LH) levels were significantly correlated with indices of poor sleep quality. Relationships between LH and polysomnographic variables were more robust than those for E2. Significant increases from basal LH levels (i.e., LH pulses) occurred more frequently after sleep onset than prior to sleep onset, and 30 of 32 of these LH pulses occurred prior to long awakenings from sleep. In addition, higher body core temperature prior to and during sleep was significantly correlated with poorer sleep efficiency and higher LH levels. Conclusions: Most investigations of relationships between sleep, sex hormones, and body temperature have focused on perimenopausal women, menopausal phenomena such as hot flashes, the role of declining estrogen, and treatment with exogenous estrogen. The current results suggest that altered levels of both sex steroids and gonadotropins may contribute to sleep disturbance in older women and confirm the results of previous studies indicating that higher body core temperature is associated with poorer sleep quality, even in women without vasomotor symptoms. The findings also raise the possibility of alternate treatment avenues for menopause- and age-related sleep disturbance that focus on altering LH levels. Citation: Murphy PJ; Campbell SS. Sex hormones, sleep, and core body temperature in older postmenopausal women. SLEEP 2007;30(12):1788-1794. PMID:18246988

  18. Lunar Science from Lunar Laser Ranging

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2013-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, tidal Love number k2, and moment of inertia differences. There is weaker sensitivity to flattening of the core/mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to variations in lunar rotation, orientation and tidal displacements. Past solutions using the LLR data have given results for Love numbers plus dissipation due to solid-body tides and fluid core. Detection of the fluid core polar minus equatorial moment of inertia difference due to CMB flattening is weakly significant. This strengthens the case for a fluid lunar core. Future approaches are considered to detect a solid inner core.

  19. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  20. National Program for Inspection of Non-Federal Dams. Shoe Pond Dam (MA 00183) Danvers River Basin, Beverly, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1979-09-01

    2%𔃾 foot long earth embankment with a concrete core wall. The dam is in fair condition. The dam has been classified in the "small" size and in the...The dam at Shoe Pond is a 17 foot high, 250 foot long earth embankment with a concrete core wall. The dam, which was originally constructed in 190I...elevation (EL) 20.5. Discharge flows down a concrete -lined chute and into a lower pond. The difference in elevation between the ""’"_".-..o upper and

  1. Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.

    PubMed

    Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  2. Radiation from wireless technology elevates blood glucose and body temperature in 40-year-old type 1 diabetic male.

    PubMed

    Kleiber, Catherine E

    2017-01-01

    A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.

  3. Coastal landscape evolution on the western margin of the Bahía Blanca Estuary (Argentina) mirrors a non-uniform sea-level fall after the mid-Holocene highstand

    NASA Astrophysics Data System (ADS)

    Pratolongo, Paula; Piovan, María Julia; Cuadrado, Diana G.; Gómez, Eduardo A.

    2017-08-01

    Sedimentary descriptions and radiocarbon ages from two cores obtained from coastal plains along the western margin of the Bahía Blanca Estuary (Argentina) were integrated with previous information on landscape patterns and plant associations to infer landscape evolution during the mid-to-late Holocene. The study area comprises at least two marine terraces of different elevations. The old marine plain (OMP), at an average elevation of 5 m above mean tidal level (MTL), is a nearly continuous flat surface. The Recent marine plain (RMP), 2 to 3 m above MTL, is a mosaic of topographic highs and elongated depressions that may correspond to former tidal channels. Mollusks at the base of the OMP core (site elevation 5.09 m above MTL), with ages between 5,660 ± 30 and 5,470 ± 30 years BP, indicate a subtidal setting near the inland limits of the marine ingression. The sandy bottom of the core is interpreted as the last stage of the transgressive phase, followed by a tight sequence of dark laminated muds topped by a thick layer of massive gray muds. The RMP core (site elevation 1.80 m above MTL) has a similar sedimentary sequence, but unconformities appear at lower elevations and the massive mud deposits are less developed. The thickness of the grayish mud layer is a major difference between the OMP and RMP cores, but deeper layers have similar ages, suggesting a common origin at the end of the transgressive phase. The overlying massive muds would correspond to rapid sedimentation during a high sea-level stillstand or slow regression. It is proposed that, after a rapid sea-level drop to about 3 m above MTL, a flat and continuous surface corresponding to the OMP emerged, and more recent coastal dynamics shaped the dissected landscape of the RMP. For the Bahía Blanca Estuary, smooth regressive trends have been proposed after the mid-Holocene highstand, but also stepped curves. A stillstand or slowly dropping sea level was described around 3,850 ± 100 years BP, as well as negative relative sea-level oscillations. In this study, the differentiation between the OMP and the RMP supports the occurrence of a stepped regressive trend that, at least locally, presented two different stages.

  4. Elevational Distribution and Conservation Biogeography of Phanaeine Dung Beetles (Coleoptera: Scarabaeinae) in Bolivia

    PubMed Central

    Herzog, Sebastian K.; Hamel-Leigue, A. Caroli; Larsen, Trond H.; Mann, Darren J.; Soria-Auza, Rodrigo W.; Gill, Bruce D.; Edmonds, W. D.; Spector, Sacha

    2013-01-01

    Insect macroecology and conservation biogeography studies are disproportionately scarce, especially in the Neotropics. Dung beetles are an ideal focal taxon for biodiversity research and conservation. Using distribution and body size data on the ecologically important Phanaeini, the best-known Neotropical dung beetle tribe, we determined elevational patterns of species richness, endemism, body size, and elevational range in Bolivia, specifically testing Bergmann’s and Rapoport’s rule. Richness of all 39 species and of 15 ecoregional endemics showed a hump-shaped pattern peaking at 400 m, but overall declined strongly with elevation up to 4000 m. The relationship between endemic and total species richness appeared to be curvilinear, providing only partial support for the null hypothesis that species-rich areas are more likely to be centers of endemism by chance alone. An elevational increase in the proportion of ecoregional endemics suggests that deterministic factors also appear to influence endemism in the Andes. When controlling for the effect of area using different species-area relationships, the statistically significant richness peak became more pronounced and shifted upslope to 750 m. Larger species did not have higher elevational mid-points, and mean body size decreased significantly with elevation, contradicting Bergmann’s rule. Rapoport’s rule was supported: species with higher elevational mid-points had broader elevational ranges, and mean elevational range increased significantly with elevation. The elevational decrease of phanaeine richness is in accordance with studies that demonstrated the combined influence of temperature and water availability on species diversity, but also is consistent with niche conservatism. For invertebrates, confirmation of Rapoport’s and refutation of Bergmann’s rule appear to be scale-invariant general patterns. Analyses of biogeographic patterns across elevational gradients can provide important insights for identifying conservation priorities. Phanaeines with narrow elevational ranges on isolated low-elevation mountains in eastern Bolivia are at greatest climate-change related extinction risk from range-shift gaps and mountaintop extinctions. PMID:23717678

  5. Elevational distribution and conservation biogeography of phanaeine dung beetles (Coleoptera: Scarabaeinae) in Bolivia.

    PubMed

    Herzog, Sebastian K; Hamel-Leigue, A Caroli; Larsen, Trond H; Mann, Darren J; Soria-Auza, Rodrigo W; Gill, Bruce D; Edmonds, W D; Spector, Sacha

    2013-01-01

    Insect macroecology and conservation biogeography studies are disproportionately scarce, especially in the Neotropics. Dung beetles are an ideal focal taxon for biodiversity research and conservation. Using distribution and body size data on the ecologically important Phanaeini, the best-known Neotropical dung beetle tribe, we determined elevational patterns of species richness, endemism, body size, and elevational range in Bolivia, specifically testing Bergmann's and Rapoport's rule. Richness of all 39 species and of 15 ecoregional endemics showed a hump-shaped pattern peaking at 400 m, but overall declined strongly with elevation up to 4000 m. The relationship between endemic and total species richness appeared to be curvilinear, providing only partial support for the null hypothesis that species-rich areas are more likely to be centers of endemism by chance alone. An elevational increase in the proportion of ecoregional endemics suggests that deterministic factors also appear to influence endemism in the Andes. When controlling for the effect of area using different species-area relationships, the statistically significant richness peak became more pronounced and shifted upslope to 750 m. Larger species did not have higher elevational mid-points, and mean body size decreased significantly with elevation, contradicting Bergmann's rule. Rapoport's rule was supported: species with higher elevational mid-points had broader elevational ranges, and mean elevational range increased significantly with elevation. The elevational decrease of phanaeine richness is in accordance with studies that demonstrated the combined influence of temperature and water availability on species diversity, but also is consistent with niche conservatism. For invertebrates, confirmation of Rapoport's and refutation of Bergmann's rule appear to be scale-invariant general patterns. Analyses of biogeographic patterns across elevational gradients can provide important insights for identifying conservation priorities. Phanaeines with narrow elevational ranges on isolated low-elevation mountains in eastern Bolivia are at greatest climate-change related extinction risk from range-shift gaps and mountaintop extinctions.

  6. Central Control of Brown Adipose Tissue Thermogenesis

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.; Tupone, Domenico

    2011-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described. PMID:22389645

  7. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  8. Central control of thermogenesis in mammals

    PubMed Central

    Morrison, Shaun F.; Nakamura, Kazuhiro; Madden, Christopher J.

    2008-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis. PMID:18469069

  9. Laminated grid and web magnetic cores

    DOEpatents

    Sefko, John; Pavlik, Norman M.

    1984-01-01

    A laminated magnetic core characterized by an electromagnetic core having core legs which comprise elongated apertures and edge notches disposed transversely to the longitudinal axis of the legs, such as high reluctance cores with linear magnetization characteristics for high voltage shunt reactors. In one embodiment the apertures include compact bodies of microlaminations for more flexibility and control in adjusting permeability and/or core reluctance.

  10. Sarcopenia is a risk factor for elevated aminotransferase in men independently of body mass index, dietary habits, and physical activity.

    PubMed

    Yoo, Ki Deok; Jun, Dae Won; Lee, Kang Nyeong; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Choi, Ho Soon

    2015-04-01

    Aminotransferase activity is a surrogate marker of liver injury showing strong correlations with obesity and metabolic syndrome. However, elevated aminotransferase activity is not uncommon in non-obese and non-alcoholic patients in clinical practice. To examine the relationship between sarcopenia and aminotransferase activity in a large population-based cohort. Data from the Korean National Health and Nutrition Examinations were used. A total of 13,431 subjects were included. A whole-body dual X-ray absorptiometry scan was performed on each patient to measure total and regional muscle mass. Appendicular skeletal muscle mass indices were also obtained. The prevalence of sarcopenia was significantly higher in the group with elevated aminotransferase levels than in the normal liver enzyme group (males: 26.5% vs. 16.9%; females: 38.3% vs. 22.1%, p<0.05). The skeletal muscle index was negatively correlated with most cardiometabolic risk factors, including fasting glucose and cholesterol levels. The frequency of elevated aminotransferase increased in male patients with sarcopenia after adjusting for potential confounding factors including age, body mass index, fasting glucose level, dietary, and exercise habits. However, the correlation was no longer observed in women after adjusting for body mass index. Sarcopenia is a risk factor for elevated aminotransferase in men, independently of body mass index, dietary habits, and physical activity. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. To Demonstrate an Integrated Solution for Plasma-Material Interfaces Compatible with an Optimized Core Plasma

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis

    2009-11-01

    The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.

  12. Effect of change in ambient temperature on core temperature during the daytime.

    PubMed

    Kakitsuba, Naoshi; White, Matthew D

    2014-07-01

    In this study, the hypothesis is tested that continuous increases in ambient temperature (Ta) during daytime would give elevated core and skin temperatures, and consequently better thermal sensation and comfort. Rectal temperature (Tre), skin temperatures and regional dry heat losses at 7 sites were continuously measured for 10 Japanese male subjects in three thermal conditions: cond. 1, stepwise increases in Ta from 26 °C at 9 h00 to 30 °C at 18 h00; cond. 2, steady Ta at 28 °C from 9 h00 to 18 h00 and cond. 3, stepwise decreases in Ta from 30 °C at 9 h00 to 26 °C at 18 h00. Oxygen consumption was measured and thermal sensation and comfort votes were monitored at 15 min intervals. Body weight loss was measured at 1 h intervals. While Tre increased continuously in the morning period in any condition, it increased to a significantly greater (p<0.05) 36.9±0.3 °C at 18 h00 in cond. 1 relative to 36.7±0.28 °C in Cond. 2 and 36.5±0.37 °C in cond. 3. Better thermal comfort was observed in the afternoon and the evening in Cond.1 as compared with the other 2 conditions. Thus, a progressive and appropriate increase in Ta may induce optimal cycle in core temperature during daytime, particularly for a resting person.

  13. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  14. Temperature Monitoring and Perioperative Thermoregulation

    PubMed Central

    Sessler, Daniel I.

    2008-01-01

    Most clinically available thermometers accurately report the temperature of whatever tissue is being measured. The difficulty is that no reliably core-temperature measuring sites are completely non-invasive and easy to use — especially in patients not having general anesthesia. Nonetheless, temperature can be reliably measured in most patients. Body temperature should be measured in patients having general anesthesia exceeding 30 minutes in duration, and in patients having major operations under neuraxial anesthesia. Core body temperature is normally tightly regulated. All general anesthetics produce a profound dose-dependent reduction in the core temperature triggering cold defenses including arterio-venous shunt vasoconstriction and shivering. Anesthetic-induced impairment of normal thermoregulatory control, and the resulting core-to-peripheral redistribution of body heat, is the primary cause of hypothermia in most patients. Neuraxial anesthesia also impairs thermoregulatory control, although to a lesser extant than general anesthesia. Prolonged epidural analgesia is associated with hyperthermia whose cause remains unknown. PMID:18648241

  15. Factors associated with elevated plateau pressure in patients with acute lung injury receiving lower tidal volume ventilation.

    PubMed

    Prescott, Hallie C; Brower, Roy G; Cooke, Colin R; Phillips, Gary; O'Brien, James M

    2013-03-01

    Lung-protective ventilation with lower tidal volume and lower plateau pressure improves mortality in patients with acute lung injury and acute respiratory distress syndrome. We sought to determine the incidence of elevated plateau pressure in acute lung injury /acute respiratory distress syndrome patients receiving lower tidal volume ventilation and to determine the factors that predict elevated plateau pressure in these patients. We used data from 1398 participants in Acute Respiratory Distress Syndrome Network trials, who received lower tidal volume ventilation (≤ 6.5mL/kg predicted body weight). We considered patients with a plateau pressure greater than 30cm H2O and/or a tidal volume less than 5.5mL/kg predicted body weight on study day 1 to have "elevated plateau pressure." We used logistic regression to identify baseline clinical variables associated with elevated plateau pressure and to develop a model to predict elevated plateau pressure using a subset of 1,188 patients. We validated the model in the 210 patients not used for model development. Medical centers participating in Acute Respiratory Distress Syndrome Network clinical trials. None. Of the 1,398 patients in our study, 288 (20.6%) had elevated plateau pressure on day 1. Severity of illness indices and demographic factors (younger age, greater body mass index, and non-white race) were independently associated with elevated plateau pressure. The multivariable logistic regression model for predicting elevated plateau pressure had an area under the receiving operator characteristic curve of 0.71 for both the developmental and the validation subsets. acute lung injury patients receiving lower tidal volume ventilation often have a plateau pressure that exceeds Acute Respiratory Distress Syndrome Network goals. Race, body mass index, and severity of lung injury are each independently associated with elevated plateau pressure. Selecting a smaller initial tidal volume for non-white patients and patients with higher severity of illness may decrease the incidence of elevated plateau pressure. Prospective studies are needed to evaluate this approach.

  16. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans

    PubMed Central

    Soare, Andreea; Cangemi, Roberto; Omodei, Daniela; Holloszy, John O.; Fontana, Luigi

    2011-01-01

    Reduction of body temperature has been proposed to contribute to the increased lifespan in calorie restricted animals and mice overexpressing the uncoupling protein-2 in hypocretin neurons. However, nothing is known regarding the long-term effects of calorie restriction (CR) with adequate nutrition on body temperature in humans. In this study, 24-hour core body temperature was measured every minute by using ingested telemetric capsules in 24 men and women (mean age 53.7±9.4 yrs) consuming a CR diet for an average of 6 years, 24 age- and sex-matched sedentary (WD) and 24 body fat-matched exercise-trained (EX) volunteers, who were eating Western diets. The CR and EX groups were significantly leaner than the WD group. Energy intake was lower in the CR group (1769±348 kcal/d) than in the WD (2302±668 kcal/d) and EX (2798±760 kcal/d) groups (P<0.0001). Mean 24-hour, day-time and night-time core body temperatures were all significantly lower in the CR group than in the WD and EX groups (P≤0.01). Long-term CR with adequate nutrition in lean and weight-stable healthy humans is associated with a sustained reduction in core body temperature, similar to that found in CR rodents and monkeys. This adaptation is likely due to CR itself, rather than to leanness, and may be involved in slowing the rate of aging. PMID:21483032

  17. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.

  18. A Histological Analysis of Visceral Organs to Evaluate the Effect of Duration of Heating From Refrigeration to Core Body Temperature for Ballistics Investigations.

    PubMed

    Humphrey, Caitlin; Kumaratilake, Jaliya

    2017-12-01

    Animal organs have been used in ballistics research to investigate the effects on human organs. Such organs are refrigerated until the investigation to minimize autolytic degradation and at times have been reheated to the human core body temperature to simulate the in situ environment. The aim of this investigation was to study the microstructural changes that may occur in fresh chilled visceral organs of the thorax and abdomen (ie, heart, lung, liver, and kidney) during the period of reheating to 37°C. Fifty-millimeter cubes of porcine heart, lung, liver, and kidney were taken rapidly after slaughter, chilled overnight, and the next morning were reheated to core body temperature (37°C). Histological changes occurring in the tissues during the reheating phase were investigated. The findings indicated that no cytoplasmic or nuclear changes occurred in any of the tissues during the period of reheating. Therefore, reheating of animal organs to the human core body temperature is not necessary, if the organs are refrigerated.

  19. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies.

    PubMed

    Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C

    2013-10-09

    Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.

  20. The influence of metabolic heat production on body temperature of a small lizard, Anolis carolinensis.

    PubMed

    Brown, Richard P; Au, Timothy

    2009-06-01

    Little is known about the impact of increased metabolism on body temperatures of small ectotherms. We found that postprandial metabolic rates of 5 g Anolis carolinensis lizards were elevated by factorial increases of 2.3+/-1.0 (mean+/-S.E.) at 26 degrees C and 3.8+/-2.1 at 30 degrees C over their fasting rates. Cloacal body temperatures exceeded environmental temperatures by a small amount in fasted individuals (26 degrees C: 0.3+/-0.02 degrees C, 30 degrees C: 0.3+/-0.02 degrees C), and by a significantly larger amount in fed individuals (26 degrees C: 1.0+/-0.06 degrees C, 30 degrees C: 0.8+/-0.08 degrees C). We conclude that an increased metabolic rate due to specific dynamic action leads to a small but significant elevation of body temperature in this species. Comparisons with thermal increments reported for a large (750 g) varanid lizard suggest that body size has only a minor influence on body-air temperature differentials of ectotherms. This is consistent with theoretical predictions. Finally, endogenous heat production could help elevate body temperatures in the wild and therefore play a minor role in thermoregulation.

  1. Conventional and novel body temperature measurement during rest and exercise induced hyperthermia.

    PubMed

    Towey, Colin; Easton, Chris; Simpson, Robert; Pedlar, Charles

    2017-01-01

    Despite technological advances in thermal sensory equipment, few core temperature (T CORE ) measurement techniques have met the established validity criteria in exercise science. Additionally, there is debate as to what method serves as the most practically viable, yet upholds the proposed measurement accuracy. This study assessed the accuracy of current and novel T CORE measurement techniques in comparison to rectal temperature (T REC ) as a reference standard. Fifteen well-trained subjects (11 male, 4 female) completed 60min of exercise at an intensity equating to the lactate threshold; measured via a discontinuous exercise test. T REC was significantly elevated from resting values (37.2±0.3°C) at the end of moderate intensity exercise (39.6±0.04°C; P=0.001). Intestinal telemetric pill (T PILL ) temperature and temporal artery temperature (T TEM ) did not differ significantly from T REC at rest or during exercise (P>0.05). However, aural canal temperature (T AUR ) and thermal imaging temperature (T IMA ) were both significantly lower than T REC (P<0.05). Bland Altman analysis revealed only T PILL was within acceptable limits of agreement (mean bias; 0.04°C), while T TEM , T AUR and T IMA demonstrated mean bias values outside of the acceptable range (>0.27°C). Against T REC , these results support the use of T PILL over all other techniques as a valid measure of T CORE at rest and during exercise induced hyperthermia. Novel findings illustrate that T IMA (when measured at the inner eye canthus) shows poor agreement to T REC during rest and exercise, which is similar to other 'surface' measures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Within-subject correlations between evening-related changes in body temperature and melatonin in the spinal cord injured.

    PubMed

    Jones, Helen; Eijsvogels, Thijs M H; Nyakayiru, Jean; Verheggen, Rebecca J H M; Thompson, Andrew; Groothuis, Jan T; Atkinson, Greg; Hopman, Maria T E; Thijssen, Dick H J

    2014-03-01

    Individuals with a spinal cord injury (SCI) demonstrate altered circadian variation in thermoregulatory control. Recently, we reported that tetraplegia is associated with a blunted release of melatonin in the evening. In order to examine whether this finding relates to circadian thermoregulation, we compared the correlations between evening changes in melatonin, core and skin temperature between thoracic and cervical SCI and able-bodied participants. In 10 able-bodied, 9 paraplegic and 8 tetraplegic participants, we measured, between 1900 and 2300 h, core temperature, proximal skin temperature (above and below the level of the lesion) and physical activity. Salivary melatonin was also sampled during this period and analyzed using enzyme linked immunosorbant assay. Between 1900 and 2300 h, core and upper limb skin temperature gradually decreased in all groups (p = 0.01). A significant group × time interaction was evident in lower body skin temperature (p = 0.03). Lower body skin temperature was significantly higher in able-bodied controls compared with tetraplegics between 1900 and 2000 h (p < 0.05). In able-bodied and paraplegic participants, the changes in melatonin and core temperature were inversely correlated (r = -0.44 and -0.54, respectively, both p = 0.01). Melatonin and mean skin temperature changes were also inversely correlated (able-bodied controls: r = -0.24; p = 0.05 and paraplegics: r = -0.30; p= 0.02). The inverse correlation between evening changes in melatonin and thermoregulation is of a similar magnitude in paraplegic and able-bodied controls. In contrast, changes in skin temperature, below the level of the lesion, are unrelated to changes in melatonin in tetraplegics.

  3. An IR Sensor Based Smart System to Approximate Core Body Temperature.

    PubMed

    Ray, Partha Pratim

    2017-08-01

    Herein demonstrated experiment studies two methods, namely convection and body resistance, to approximate human core body temperature. The proposed system is highly energy efficient that consumes only 165 mW power and runs on 5 VDC source. The implemented solution employs an IR thermographic sensor of industry grade along with AT Mega 328 breakout board. Ordinarily, the IR sensor is placed 1.5-30 cm away from human forehead (i.e., non-invasive) and measured the raw data in terms of skin and ambient temperature which is then converted using appropriate approximation formula to find out core body temperature. The raw data is plotted, visualized, and stored instantaneously in a local machine by means of two tools such as Makerplot, and JAVA-JAR. The test is performed when human object is in complete rest and after 10 min of walk. Achieved results are compared with the CoreTemp CM-210 sensor (by Terumo, Japan) which is calculated to be 0.7 °F different from the average value of BCT, obtained by the proposed IR sensor system. Upon a slight modification, the presented model can be connected with a remotely placed Internet of Things cloud service, which may be useful to inform and predict the user's core body temperature through a probabilistic view. It is also comprehended that such system can be useful as wearable device to be worn on at the hat attachable way.

  4. Climate Change: The Evidence and Our Options

    ERIC Educational Resources Information Center

    Thompson, Lonnie G.

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low…

  5. Leading with Focus: Elevating the Essentials for School and District Improvement

    ERIC Educational Resources Information Center

    Schmoker, Mike

    2016-01-01

    In his 2011 ASCD best-seller "Focus: Elevating the Essentials to Radically Improve Student Learning," author Mike Schmoker described a fresh approach to K-12 teaching built on three core elements: a focused and coherent curriculum; clear, structured lessons; and purposeful reading and writing, or authentic literacy. Now, in "Leading…

  6. Ana3 is a conserved protein required for the structural integrity of centrioles and basal bodies.

    PubMed

    Stevens, Naomi R; Dobbelaere, Jeroen; Wainman, Alan; Gergely, Fanni; Raff, Jordan W

    2009-11-02

    Recent studies have identified a conserved "core" of proteins that are required for centriole duplication. A small number of additional proteins have recently been identified as potential duplication factors, but it is unclear whether any of these proteins are components of the core duplication machinery. In this study, we investigate the function of one of these proteins, Drosophila melanogaster Ana3. We show that Ana3 is present in centrioles and basal bodies, but its behavior is distinct from that of the core duplication proteins. Most importantly, we find that Ana3 is required for the structural integrity of both centrioles and basal bodies and for centriole cohesion, but it is not essential for centriole duplication. We show that Ana3 has a mammalian homologue, Rotatin, that also localizes to centrioles and basal bodies and appears to be essential for cilia function. Thus, Ana3 defines a conserved family of centriolar proteins and plays an important part in ensuring the structural integrity of centrioles and basal bodies.

  7. Body fatness, body core temperature, and heat loss during moderate-intensity exercise.

    PubMed

    Limbaugh, Jayme D; Wimer, Gregory S; Long, Lynn H; Baird, William H

    2013-11-01

    This study examined the influence of body fatness on body core temperature and heat loss responses during moderate-intensity exercise. Nine men with lower body fat and eight men with higher body fat, matched for aerobic fitness, completed 1 h of recumbent cycling at the same absolute intensity in a warm environment (30 degrees C, 40% RH). Percent body fat was measured by hydrostatic weighing, using oxygen dilution to determine residual volume. Esophageal temperature (T(es)), mean skin temperature (T(sk)), and local sweat rate (m(sw)) were measured at rest and continuously during exercise while forearm blood flow (FBF) was measured at rest and every 10 min during exercise. The lower body fat and higher body fat groups were successfully matched for aerobic fitness, removing the influence of body fatness, given that V/O2(peak) was 50.72 +/- 7.34 and 50.43 +/- 5.01 ml x kg LBM(-1) x min(-1), respectively. When compared to lower body fat individuals, % body fat, body surface area (A(D)), and body mass were higher and A(D)/ mass was lower in higher body fat individuals. T(es), T(sk), FBF, m(sw), and the slope of m(sw):T(es) were not different between groups. Metabolic heat production was similar between the lower body fat (299.7 +/- 40.5 W x m(-2)) and higher body fat (288.1 +/- 30.6 W x m(-2)) subjects, respectively. Dry and evaporative heat loss, as well as heat storage during exercise, were not different between groups. These data suggest that there is no effect of body fatness on body core temperature or heat loss responses during moderate-intensity exercise in a warm environment.

  8. Nicotine and elevated body temperature reduce the complexity of the genioglossus and diaphragm EMG signals in rats during early maturation

    NASA Astrophysics Data System (ADS)

    Akkurt, David; Akay, Yasemin M.; Akay, Metin

    2009-10-01

    In this paper, we examined the effect of nicotine exposure and increased body temperature on the complexity (dynamics) of the genioglossus muscle (EMGg) and the diaphragm muscle (EMGdia) to explore the effects of nicotine and hyperthermia. Nonlinear dynamical analysis of the EMGdia and EMGg signals was performed using the approximate entropy method on 15 (7 saline- and 8 nicotine-treated) juvenile rats (P25-P35) and 19 (11 saline- and 8 nicotine-treated) young adult rats (P36-P44). The mean complexity values were calculated over the ten consecutive breaths using the approximate entropy method during mild elevated body temperature (38 °C) and severe elevated body temperature (39-40 °C) in two groups. In the first (nicotine) group, rats were treated with single injections of nicotine enough to produce brain levels of nicotine similar to those achieved in human smokers (2.5 (mg kg-1)/day) until the recording day. In the second (control) group, rats were treated with injections of saline, beginning at postnatal 5 days until the recording day. Our results show that warming the rat by 2-3 °C and nicotine exposure significantly decreased the complexity of the EMGdia and EMGg for the juvenile age group. This reduction in the complexity of the EMGdia and EMGg for the nicotine group was much greater than the normal during elevated body temperatures. We speculate that the generalized depressive effects of nicotine exposure and elevated body temperature on the respiratory neural firing rate and the behavior of the central respiratory network could be responsible for the drastic decrease in the complexity of the EMGdia and EMGg signals, the outputs of the respiratory neural network during early maturation.

  9. Living on the edge: Space use of Eurasian red squirrels in marginal high-elevation habitat

    NASA Astrophysics Data System (ADS)

    Romeo, Claudia; Wauters, Lucas A.; Preatoni, Damiano; Tosi, Guido; Martinoli, Adriano

    2010-11-01

    In marginal habitats located at the edge of a species' range, environmental conditions are frequently extreme and individuals may be subject to different selective pressures compared to central populations. These so-called edge or marginal populations tend to have lower densities and reproductive rates than populations located in more suitable habitats, but little is known about local adaptations in spacing behavior. We studied space use and social organization in a population of Eurasian red squirrels ( Sciurus vulgaris) in a high-elevation marginal habitat of dwarf mountain pine ( Pinus mugo) and compared it with spacing patterns in high-quality Scots pine ( Pinus sylvestris) forest at lower-elevation. Home ranges and core areas were larger in the marginal habitat. In both habitats, males used larger home ranges than females, but sex differences in core area size were significant only in the edge population. Patterns of core area overlap were similar in both habitats with intra-sexual territoriality among adult females and higher degrees of inter-sexual overlap, typical for the species throughout its range. However, low densities in the edge population resulted in higher female by males overlap in spring-summer, suggesting males increased home ranges and core areas during mating season to augment access to estrus females. Thus, in the marginal habitat, with low food abundance and low population densities, linked with extreme winter conditions, squirrels, especially males, used large home ranges. Finally, squirrels responded more strongly to variation in food availability (inverse relation between home range size and seed abundance), and even to fluctuations in density (inverse relation between core area size and density of animals of the same sex), in the marginal than in the high-quality habitat, suggesting high behavioral plasticity to respond to the ecological constraints in marginal habitats.

  10. Developing comprehensive and Brief ICF core sets for morbid obesity for disability assessment in Taiwan: a preliminary study.

    PubMed

    Lin, Y-N; Chang, K-H; Lin, C-Y; Hsu, M-I; Chen, H-C; Chen, H-H; Liou, T-H

    2014-04-01

    The International Classification of Functioning, Disability, and Health (ICF) provides a framework for measuring functioning and disability based on a biopsychosocial model. The aim of this study was to develop comprehensive and brief ICF core sets for morbid obesity for disability assessment in Taiwan. Observational Other Twenty-nine multidisciplinary experts of ICF METHODS: The questionnaire contained 112 obesity-relevant and second-level ICF categories. Using a 5-point Likert scale, the participants rated the significance of the effects of each category on the heath status of people with obesity. Correlation between an individual's score and the average score of the group indicated consensus. The categories were selected for the comprehensive core set for obesity if more than 50% of the experts rated them as "important" in the third round of the Delphi exercise, and for the brief core set if more than 80% of the experts rated them "very important." Twenty-nine experts participated in the study. These included 18 physicians, 4 dieticians, 3 physical therapists, 2 nurses, and 2 ICF experts. The comprehensive core set for morbid obesity contained 61 categories. Of these, 26 categories were from the component body function, 8 were from body structure, 18 were from activities and participation, and 9 were from environmental factors. The brief core set for obesity disability contained 29 categories. Of these, 19 categories were from the component body function, 3 were from body structure, 6 were from activities and participation, and one was from environmental factors. The comprehensive and brief ICF core sets provide comprehensive information on the health effects of morbid obesity and concise information for clinical practice. Comprehensive and brief core sets were created after three rounds of Delphi technique. Further validation study of these core sets by applying to patients with morbid obesity is needed. The comprehensive ICF core set for morbid obesity provides comprehensive information on the health effects of morbid obesity; the brief core set can provide concise information for clinical practice.

  11. Thermal evolution and core formation of planetesimals

    NASA Astrophysics Data System (ADS)

    Suwa, Taichi; Nagahara, Hiroko

    2017-04-01

    Planetesimals did not get an adequate thermal energy by accretion to form large scale magma ocean because of smaller radii, masses, gravity and accretion energy, however, there are various evidences for the presence of core in planetesimals: 4-Vesta has a core and non-magmatic iron meteorites were segregated metal in bodies that did not experience silicate melting. It has been pointed out that accretion time of planetesimals controls melting and differentiation, because short lived nuclides are plausible heat source. Other factors such as radiative cooling from the surface and thermal conductivity, would also affect thermal evolution of planetesimals. Furthermore, percolation of Fe-S melt through silicate matrix is controlled by the porosity and grain size of silicates and dihedral angle between the melt and silicates. Therefore, the interior structure of planetesimals should be considered by taking the accretion, growth, and thermal evolution of the interior simultaneously. We make a numerical simulation with a spherical 1D model on the basis of the model by Neuman, which is a non-stationary heat conduction equation. We specifically pay attention to the process at temperatures between eutectic temperature Fe-FeS (1213K) and silicate solidus (1425K) and the surface tension of the melt that governs percolation. The model contains three free parameters, formation time, accretion duration, and final size of the planetesimals. The results show that the interior structure can be divided to four types: Type A is undifferentiated, Type B is differentiated to core and mantle of which core was formed by Fe-S melt percolation, Type C is partially differentiated to FeS core and mantle, where mantle retains residual Fe metal, and Type D is differentiated to core and mantle by metal separation in silicate magma. Type A would correspond to the parent bodies of chondrites, and Type B (and Type C?) core would be the source of non-magmatic iron meteorites. Type D would be parent bodies for 4 Vesta and angrites. The conditions for the four types of planetesimals are throuly investigated as a function of the three parameters, accretion time, accreting duration, and palnetesimal size. We found that the planetesimal interior is strongly controlled by the formation time: planetesimals formed after 3 Ma after CAIs would be undifferentiated (Type A) regardless of the planetary size, whereas most of them formed within 1 Ma are Type D (differentiated bodies with magmatically formed core). Types B and C bodies are preferentially formed between 1 and 3 Ma after CAIs. Longer accretion duration tends to be resulted in formation of Types A, B and C. The present work predicts the planetesimal interior structure if we know the formation age with the isotopic measurements of samples and the size of the body, which would be a very powerful tool for future explorations of small bodies except for very small (< 20 km) bodies.

  12. European validation of The Comprehensive International Classification of Functioning, Disability and Health Core Set for Osteoarthritis from the perspective of patients with osteoarthritis of the knee or hip.

    PubMed

    Weigl, Martin; Wild, Heike

    2017-09-15

    To validate the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis from the patient perspective in Europe. This multicenter cross-sectional study involved 375 patients with knee or hip osteoarthritis. Trained health professionals completed the Comprehensive Core Set, and patients completed the Short-Form 36 questionnaire. Content validity was evaluated by calculating prevalences of impairments in body function and structures, limitations in activities and participation and environmental factors, which were either barriers or facilitators. Convergent construct validity was evaluated by correlating the International Classification of Functioning, Disability and Health categories with the Short-Form 36 Physical Component Score and the SF-36 Mental Component Score in a subgroup of 259 patients. The prevalences of all body function, body structure and activities and participation categories were >40%, >32% and >20%, respectively, and all environmental factors were relevant for >16% of patients. Few categories showed relevant differences between knee and hip osteoarthritis. All body function categories and all but two activities and participation categories showed significant correlations with the Physical Component Score. Body functions from the ICF chapter Mental Functions showed higher correlations with the Mental Component Score than with the Physical Component Score. This study supports the validity of the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis. Implications for Rehabilitation Comprehensive International Classification of Functioning, Disability and Health Core Sets were developed as practical tools for application in multidisciplinary assessments. The validity of the Comprehensive International Classification of Functioning, Disability and Health Core Set for Osteoarthritis in this study supports its application in European patients with osteoarthritis. The differences in results between this Europe validation study and a previous Singaporean validation study underscore the need to validate the International Classification of Functioning, Disability and Health Core Sets in different regions of the world.

  13. Is propensity to obesity associated with the diurnal pattern of core body temperature?

    PubMed

    Hynd, P I; Czerwinski, V H; McWhorter, T J

    2014-02-01

    Obesity affects more than half a billion people worldwide, but the underlying causes remain unresolved. It has been proposed that propensity to obesity may be associated with differences between individuals in metabolic efficiency and in the energy used for homeothermy. It has also been suggested that obese-prone individuals differ in their responsiveness to circadian rhythms. We investigated both these hypotheses by measuring the core body temperature at regular and frequent intervals over a diurnal cycle, using indigestible temperature loggers in two breeds of canines known to differ in propensity to obesity, but prior to divergence in fatness. Greyhounds (obesity-resistant) and Labradors (obesity-prone) were fed indigestible temperature loggers. Gastrointestinal temperature was recorded at 10-min intervals for the period of transit of the logger. Diet, body condition score, activity level and environment were similar for both groups. Energy digestibility was also measured. The mean core body temperature in obesity-resistant dogs (38.27 °C) was slightly higher (P<0.001) than in obesity-prone dogs (38.18 °C) and the former had a greater variation (P<0.001) in 24h circadian core temperature. There were no differences in diet digestibility. Canines differing in propensity to obesity, but prior to its onset, differed little in mean core temperature, supporting similar findings in already-obese and lean humans. Obese-prone dogs were less variable in daily core temperature fluctuations, suggestive of a degree of circadian decoupling.

  14. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    PubMed

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.

  15. Toxicity of sediment cores collected from the Ashtabula River in northeastern Ohio, USA, to the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to sediment-dwelling organisms. ?? 2009 US Government.

  16. Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: complete relaxation of one-body observables.

    PubMed

    Wright, Tod M; Rigol, Marcos; Davis, Matthew J; Kheruntsyan, Karén V

    2014-08-01

    We demonstrate the role of interactions in driving the relaxation of an isolated integrable quantum system following a sudden quench. We consider a family of integrable hard-core lattice anyon models that continuously interpolates between noninteracting spinless fermions and strongly interacting hard-core bosons. A generalized Jordan-Wigner transformation maps the entire family to noninteracting fermions. We find that, aside from the singular free-fermion limit, the entire single-particle density matrix and, therefore, all one-body observables relax to the predictions of the generalized Gibbs ensemble (GGE). This demonstrates that, in the presence of interactions, correlations between particles in the many-body wave function provide the effective dissipation required to drive the relaxation of all one-body observables to the GGE. This relaxation does not depend on translational invariance or the tracing out of any spatial domain of the system.

  17. Hot flashes, core body temperature, and metabolic parameters in breast cancer survivors.

    PubMed

    Carpenter, Janet S; Gilchrist, Janet M; Chen, Kong; Gautam, Shiva; Freedman, Robert R

    2004-01-01

    To examine core body temperature, energy expenditure, and respiratory quotient among breast cancer survivors experiencing hot flashes and compare these data to published studies from healthy women. In an observational study, nine breast cancer survivors with daily hot flashes who met specified criteria spent 24 hours in a temperature- and humidity-controlled whole-room indirect calorimeter (ie, metabolic room). Demographic and disease/treatment information were obtained and the following were measured: hot flashes via sternal skin conductance monitoring (sampled every second); core body temperature via an ingested radiotelemetry pill (sampled every 10 seconds); and energy expenditure and respiratory quotient via a whole-room indirect calorimeter (calculated every minute). Circadian analysis of core temperature indicated wide variability with disrupted circadian rhythm noted in all women. Core temperature began to rise 20 minutes pre-flash to 7 minutes pre-flash (0.09 degrees C increase). Increases in energy expenditure and respiratory quotient increased with each hot flash. Findings are comparable to published data from healthy women and warrant replication in larger, more diverse samples of women treated for breast cancer.

  18. Reliability of an infrared forehead skin thermometer for core temperature measurements.

    PubMed

    Kistemaker, J A; Den Hartog, E A; Daanen, H A M

    2006-01-01

    The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal sensor, with an oesophageal sensor and with the SensorTouch. After entering a warm chamber the SensorTouch underestimated the core temperature during the first 10 minutes. After that, the SensorTouch was not significantly different from the core temperature, with an average difference of 0.5 degrees C (SD 0.5 degrees C) in the first study and 0.3 degrees C (SD 0.2 degrees C) in the second study. The largest differences between the SensorTouch and the core temperature existed 15 minutes after the start of the exercise. During this period the SensorTouch was significantly higher than the core temperature. The SensorTouch did not provide reliable values of the body temperature during periods of increasing body temperature, but the SensorTouch might work under stable conditions.

  19. Reference breast temperature: proposal of an equation.

    PubMed

    Souza, Gladis Aparecida Galindo Reisemberger de; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso Neto, Carlos; Neves, Eduardo Borba

    2015-01-01

    To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies.

  20. Electron microscope study of the vitelline body of some spider oocytes.

    PubMed

    SOTELO, J R; TRUJILLO-CENOZ, O

    1957-03-25

    THE STRUCTURE OF THE VITELLINE NUCLEI OF LYCOSIDAE AND THOMISIDAE WAS DESCRIBED AS FOLLOWS: Vitelline nuclei are constituted of two parts: (a) a peripheral layer (vitelline body cortex), and (b) a central core. The vitelline body cortex is demonstrated to be formed by many cisternae of the endoplasmic reticulum among which mitochondria and Golgi elements are intermingled. The central core is made up mainly of a special type of body described under the name of "capsulated body." Capsulated bodies comprise a capsular layer, limited by a membrane, and two central masses called "geminated masses," each one limited by a double membrane. Irregular masses of closely packed vesicles are found in some cases among the capsulated bodies and free vesicles are present in large numbers. The optical properties of the vitelline body cortex compared with the electron microscope findings lead us to the concept that this layer is a "composite body" according to Weiner's theory.

  1. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  2. Experiment K-7-17: Effects of Spaceflight on the Proliferation of Jejunal Mucosal Cells

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Moeller, C. L.; Sawyer, H. R.; Smirnov, K. L.

    1994-01-01

    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity due to microgravity conditions encountered during spaceflight would be demonstrable in cells and tissues characterized by a rapid rate of turnover. Jejunal mucosal cells were chosen as a model since these cells are among the most rapidly proliferating in the body. Accordingly, the percentage of mitotic cells present in the crypts of Lieberkuhn in each of 5 rats flown on the COSMOS 2044 mission were compared to the percentage of mitotic cells present in the crypts in rats included in each of 3 ground control groups (i.e., vivarium, synchronous and caudal-elevated). No significant difference (p greater than .05) was detected in mitotic indices between the flight and vivarium group. Although the ability of jejunal mucosal cells to divide by mitosis was not impaired in flight group, there was, however, a reduction in the length of villi and depth of crypts. The concommitant reduction in villus length and crypth depth in the flight group probably reflects changes in connective tissue components within the core of villi.

  3. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater.

    PubMed

    Dowd, W Wesley; Somero, George N

    2013-02-01

    Coping with environmental stress may involve combinations of behavioral and physiological responses. We examined potential interactions between adult mussels' simple behavioral repertoire - opening/closing of the shell valves - and thermal stress physiology in common-gardened individuals of three Mytilus congeners found on the West Coast of North America: two native species (M. californianus and M. trossulus) and one invasive species from the Mediterranean (M. galloprovincialis). We first continuously monitored valve behavior over three consecutive days on which body temperatures were gradually increased, either in air or in seawater. A temperature threshold effect was evident between 25 and 33°C in several behavioral measures. Mussels tended to spend much less time with the valves in a sealed position following exposure to 33°C body temperature, especially when exposed in air. This behavior could not be explained by decreases in adductor muscle glycogen (stores of this metabolic fuel actually increased in some scenarios), impacts of forced valve sealing on long-term survival (none observed in a second experiment), or loss of contractile function in the adductor muscles (individuals exhibited as many or more valve adduction movements following elevated body temperature compared with controls). We hypothesize that this reduced propensity to seal the valves following thermal extremes represents avoidance of hypoxia-reoxygenation cycles and concomitant oxidative stress. We further conjecture that prolonged valve gaping following episodes of elevated body temperature may have important ecological consequences by affecting species interactions. We then examined survival over a 90 day period following exposure to elevated body temperature and/or emersion, observing ongoing mortality throughout this monitoring period. Survival varied significantly among species (M. trossulus had the lowest survival) and among experimental contexts (survival was lowest after experiencing elevated body temperature in seawater). Surprisingly, we observed no cumulative impact on survival of 3 days relative to 1 day of exposure to elevated body temperature. The delayed mortality and context-specific outcomes we observed have important implications for the design of future experiments and for interpretation of field distribution patterns of these species. Ultimately, variation in the catalog of physiological and behavioral capacities among closely related or sympatric species is likely to complicate prediction of the ecological consequences of global change and species invasions.

  4. Extracerebral deep-body cold sensitivity in the Pekin duck.

    PubMed

    Inomoto, T; Simon, E

    1981-09-01

    Pekin ducks, in which cerebral cold sensitivity is negligible, were submitted to general body cooling at warm, thermoneutral, and cold ambient temperature (Ta) with an intestinal thermode. In some animals, hypothermia was enhanced by additional hypothalamic cooling that suppressed cold defense. In other animals, the spinal cord was cooled, either selectively or during intestinal cooling. From core temperature (Tc) and metabolic heat production (M) an overall cold sensitivity of about -5 to -6 W . kg-1 . degrees C-1 was determined at thermoneutrality. Maximum M amounted to four to five times the resting M of 3.8 W . kg-1 and was attained when Tc fell by 2.5 degrees C or more. In the cold, threshold Tc for the activation of M was elevated; overall cold sensitivity remained constant. In the warmth, threshold Tc was lowered; overall cold sensitivity was reduced, if mean skin temperature (Tsk) remained at aout 39 degrees C or higher. Spinal cold sensitivity amounted to about -0.25 W . kg-1 . degrees C-1 at normal Tc and thermoneutral and warm Ta; it increased to aout -0.50 W . kg-1 . degrees C-1 in the cold and during hypothermia. Peripheral cold sensitivity was estimated from Tsk and M as -0.4 to -0.8 W . kg-1 . degrees C-1. It is concluded that overall cold sensitivity in ducks mainly depends on deep-body temperature sensors outside of the central nervous system.

  5. Tibetan Glaciers as Integrators and Sentinels of Climate Change

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Tandong, Y.; Davis, M. E.; Kehrwald, N. M.; Mosley-Thompson, E. S.

    2008-12-01

    Information from ice cores collected over the last two decades across the Tibetan Plateau demonstrates that this is a climatically diverse and complex region. Records spanning more than 500,000 years have been recovered from the Guliya ice cap in the far northwestern Kunlun Mountains, where the climate is dominated by the westerly flow over the Eurasian land mass. Shorter records (less than 10,000 years) have been recovered from ice fields in the central Himalaya to the south, where a monsoonal climate regime dominates and the annual accumulation is high. On decadal and longer timescales IPCC climate models predict that continued anthropogenic greenhouse gas emissions will force air temperature to increase faster at higher elevations. This vertical amplification will be greatest in low latitudes due to upper tropospheric humidity and water vapor feedback. Meteorological records across the Tibetan Plateau indicate that temperatures have risen since the mid-1950s and the rate of warming is greater (0.3°C per decade) at the higher elevation stations. Likewise, the stable isotopic compositions of ice cores across the Plateau show an overall the 20th Century enrichment that is greatest at the highest elevation sites. Glaciers in the central Himalayas, including many around the Tibetan Plateau, are experiencing an accelerating rate of ice loss, due in part to current temperature trends and associated feedbacks. Ice loss in the central Himalayas is evident from ice cores recovered in 2006 from the Naimona'nyi ice field. Unlike previous cores from glaciers around the world, including those drilled across the Tibetan Plateau, the Naimona'nyi cores lack the elevated levels of beta radioactivity from the decay of 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. This suggests that net mass (ice) loss has exceeded accumulation on this glacier since at least 1950. If the climate conditions that govern the mass balance on Naimona'nyi extend to other glaciers in the region, the implications for future water resources in South Asia could be dire as these glaciers feed the headwaters of the Indus, Ganges and Brahmaputra Rivers which sustain the world's most populous region.

  6. The elevator illusion results from the combination of body orientation and egocentric perception.

    PubMed

    Paillard, A; Denise, P; Barraud, P-A; Roux, A; Cian, C

    2009-10-30

    Perception of body orientation and apparent location of objects are altered when humans are using assisted means of locomotion and the resultant of the imposed acceleration and gravity is no longer aligned with the gravitational vertical. As the otolithic system cannot discriminate the acceleration of gravity from sustained inertial accelerations, individuals would perceive the resultant acceleration vector (GiA) as the vertical. However, when subjects are aligned on the GiA, an increase in the magnitude of GiA induced a lowering of the apparent visual horizon (i.e. "elevator illusion"). The main aim of this study was to quantify the contribution of body and egocentric perception in the elevator illusion. While being exposed to 1G and 1.3G and aligned on the GiA acceleration, subjects (N=20) were asked (1) to set a luminous target to the subjective horizon, (2) to set a luminous target on "straight ahead" position (egocentric task) and (3) to rotate a tilting tube to their subjective perception of body orientation. Results showed that increasing GiA lowered horizon and egocentric settings and induces a backward body tilt perception. Moreover, the elevator illusion can be expressed as the additive combination of two processes: one that is dependent on body tilt perception, and the other that is dependent on egocentric perception. Both misperceptions in hypergravity may be considered to be a consequence of excessive shearing of the otolith organs. However large inter-individual differences in body tilt perception were observed. This last result was discussed in terms of the contribution of extravestibular graviceptors.

  7. Work volume and strength training responses to resistive exercise improve with periodic heat extraction from the palm.

    PubMed

    Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig

    2012-09-01

    Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.

  8. Deriving the nuclear shell model from first principles

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under Grants Nos. DESC0008485 and DE-FG02-87ER40371, the Higher Education Council of Turkey(YOK), and the Ministry of Education and Science of Russian Fed. under contracts P521 and 14.v37.21.1297.

  9. Heterothermy in large mammals: inevitable or implemented?

    PubMed

    Hetem, Robyn S; Maloney, Shane K; Fuller, Andrea; Mitchell, Duncan

    2016-02-01

    Advances in biologging techniques over the past 20 years have allowed for the remote and continuous measurement of body temperatures in free-living mammals. While there is an abundance of literature on heterothermy in small mammals, fewer studies have investigated the daily variability of body core temperature in larger mammals. Here we review measures of heterothermy and the factors that influence heterothermy in large mammals in their natural habitats, focussing on large mammalian herbivores. The mean 24 h body core temperatures for 17 species of large mammalian herbivores (>10 kg) decreased by ∼1.3°C for each 10-fold increase in body mass, a relationship that remained significant following phylogenetic correction. The degree of heterothermy, as measured by the 24 h amplitude of body core temperature rhythm, was independent of body mass and appeared to be driven primarily by energy and water limitations. When faced with the competing demands of osmoregulation, energy acquisition and water or energy use for thermoregulation, large mammalian herbivores appear to relax the precision of thermoregulation thereby conserving body water and energy. Such relaxation may entail a cost in that an animal moves closer to its thermal limits for performance. Maintaining homeostasis requires trade-offs between regulated systems, and homeothermy apparently is not accorded the highest priority; large mammals are able to maintain optimal homeothermy only if they are well nourished, hydrated, and not compromised energetically. We propose that the amplitude of the 24 h rhythm of body core temperature provides a useful index of any compromise experienced by a free-living large mammal and may predict the performance and fitness of an animal. © 2014 Cambridge Philosophical Society.

  10. Thermal evolution of trans-Neptunian objects, icy satellites, and minor icy planets in the early solar system

    NASA Astrophysics Data System (ADS)

    Bhatia, Gurpreet Kaur; Sahijpal, Sandeep

    2017-12-01

    Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100-2500 km. These icy bodies include trans-Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy-rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact-induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.

  11. Apparatus for establishing flow of a fluid mass having a known velocity

    NASA Technical Reports Server (NTRS)

    Price, P.; Veikins, O.; Bate, E. R., Jr.; Jones, R. H. (Inventor)

    1974-01-01

    An apparatus for establishing a flow of fluid mass, such as gas, having a known velocity is introduced. The apparatus is characterized by an hermetically sealed chamber conforming to a closed-loop configuration and including a throat and a plurality of axially displaceable pistons for sweeping through the throat a stream of gas including a core and an unsheared boundary layer. Within the throat there is a cylindrical coring body concentrically related to the throat for receiving the core, and a chamber surrounding the cylindrical body for drawing off the boundary layer, whereby the velocity of the core is liberated from the effects of the velocity of the boundary layer.

  12. Rates of nitrogen mineralization across an elevation and vegetation gradient in the Southern Appalachians

    Treesearch

    Jennifer D. Knoepp; Wayne T. Swank

    1998-01-01

    The authors measured nitrogen (N) transformation rates for six years to examine temporal variation across the vegetation and elevation gradient that exists within the Coweeta Hydrologic Laboratory. Net N mineralization and nitrification rates were measured using 28-day in situ closed core incubations. Incubations were conducted at various intervals, ranging from...

  13. Child and Adolescent Affective and Behavioral Distress and Elevated Adult Body Mass Index

    ERIC Educational Resources Information Center

    McClure, Heather H.; Eddy, J. Mark; Kjellstrand, Jean M.; Snodgrass, J. Josh; Martinez, Charles R., Jr.

    2012-01-01

    Obesity rates throughout the world have risen rapidly in recent decades, and are now a leading cause of morbidity and mortality. Several studies indicate that behavioral and affective distress in childhood may be linked to elevated adult body mass index (BMI). The present study utilizes data from a 20-year longitudinal study to examine the…

  14. To probe a core

    NASA Astrophysics Data System (ADS)

    2017-04-01

    Hidden under many kilometres of silicate mantle material, the cores of Earth and other planets are hard to investigate. The Psyche spacecraft, designed to visit a metal body that may be a core stripped of its mantle, could bring a close-up view.

  15. Effects of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food intake, and body weight.

    PubMed

    Horii, Yuko; Tanida, Mamoru; Shen, Jiao; Hirata, Tetsuya; Kawamura, Naomi; Wada, Atsunori; Nagai, Katsuya

    2010-08-02

    Eucommia ulmoides Oliver leaf extracts (ELE) have been shown to exert a hypolipidemic effect in hamsters. Therefore, it was hypothesized that ELE might affect lipid metabolism via changes in autonomic nerve activities and causes changes in thermogenesis and body weight. We examined this hypothesis, and found that intraduodenal (ID) injection of ELE elevated epididymal white adipose tissue sympathetic nerve activity (WAT-SNA) and interscapular brown adipose tissue sympathetic nerve activity (BAT-SNA) in urethane-anesthetized rats and elevated the plasma concentration of free fatty acids (FFA) (a marker of lipolysis) and body temperature (BT) (a marker of thermogenesis) in conscious rats. Furthermore, it was observed that ID administration of ELE decreased gastric vagal nerve activity (GVNA) in urethane-anesthetized rats, and that ELE given as food reduced food intake, body and abdominal adipose tissue weights and decreased plasma triglyceride level. These findings suggest that ELE stimulates lipolysis and thermogenesis through elevations in WAT-SNA and BAT-SNA, respectively, suppresses appetite by inhibiting the activities of the parasympathetic nerves innervating the gastrointestinal tract, including GVNA, and decreases the amount of abdominal fat and body weight via these changes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Heat storage in Asian elephants during submaximal exercise: behavioral regulation of thermoregulatory constraints on activity in endothermic gigantotherms.

    PubMed

    Rowe, M F; Bakken, G S; Ratliff, J J; Langman, V A

    2013-05-15

    Gigantic size presents both opportunities and challenges in thermoregulation. Allometric scaling relationships suggest that gigantic animals have difficulty dissipating metabolic heat. Large body size permits the maintenance of fairly constant core body temperatures in ectothermic animals by means of gigantothermy. Conversely, gigantothermy combined with endothermic metabolic rate and activity likely results in heat production rates that exceed heat loss rates. In tropical environments, it has been suggested that a substantial rate of heat storage might result in a potentially lethal rise in core body temperature in both elephants and endothermic dinosaurs. However, the behavioral choice of nocturnal activity might reduce heat storage. We sought to test the hypothesis that there is a functionally significant relationship between heat storage and locomotion in Asian elephants (Elephas maximus), and model the thermoregulatory constraints on activity in elephants and a similarly sized migratory dinosaur, Edmontosaurus. Pre- and post-exercise (N=37 trials) measurements of core body temperature and skin temperature, using thermography were made in two adult female Asian elephants at the Audubon Zoo in New Orleans, LA, USA. Over ambient air temperatures ranging from 8 to 34.5°C, when elephants exercised in full sun, ~56 to 100% of active metabolic heat production was stored in core body tissues. We estimate that during nocturnal activity, in the absence of solar radiation, between 5 and 64% of metabolic heat production would be stored in core tissues. Potentially lethal rates of heat storage in active elephants and Edmontosaurus could be behaviorally regulated by nocturnal activity.

  17. Swimming Three Ice Miles within Fifteen Hours.

    PubMed

    Stjepanovic, Mirko; Nikolaidis, Pantelis T.; Knechtle, Beat

    2017-08-31

    Ice Mile swimming (1608 m in water of below 5 °Celsius) is becoming increasingly popular. This case study aimed to identify body core temperature and selected haematological and biochemical parameters before and after repeated Ice Miles. An experienced ice swimmer completed three consecutive Ice Miles within 15 h. Swim times, body core temperatures, and selected urinary and haematological parameters were recorded. Body core temperature reached its maximum between 5, 8 and 15 min after immersion (37.7°C, 38.1°C, and 38.0°C, respectively). The swimmer suffered hypothermia during the first Ice Mile (35.4°C) and body core temperature dropped furthermore to 34.5°C during recovery after the first Ice Mile. He developed a metabolic acidosis in both the first and the last Ice Mile (pH 7.31 and pH 7.34, respectively). We observed hyperkalaemia ([K⁺] > 5.5 mM) after the second Ice Mile (6.9 mM). This was followed by a drop in [K⁺] to3.7 mM after the third Ice Mile. Anticipatory thermogenesis (i.e. an initial increase of body core temperature after immersion in ice cold water) seems to be a physiological response in a trained athlete. The results suggest that swimming in ice-cold water leads to a metabolic acidosis, which the swimmer compensates with hyperventilation (i.e. leading to respiratory alkalosis). The shift of serum [K⁺] could increase the risk of a cardiac arrhythmia. Further studies addressing the physiology and potential risks of Ice Mile swimming are required to substantiate this finding.

  18. Effects of peripheral cold application on core body temperature and haemodynamic parameters in febrile patients.

    PubMed

    Asgar Pour, Hossein; Yavuz, Meryem

    2014-04-01

    This study designed to assess the effects of peripheral cold application (PCA) on core body temperature and haemodynamic parameters in febrile patients. This study was an experimental, repeated-measures performed in the neurosurgical intensive-care unit. The research sample included all patients with fever in postoperative period. PCA was performed for 20 min. During fever, systolic blood pressure, mean arterial blood pressure and arterial oxygen saturation (O2 Sat) decreased by 5.07 ± 7.89 mm Hg, 0.191 ± 6.00 mm Hg and 0.742% ± 0.97%, respectively, whereas the pulse rate and diastolic blood pressure increased by 8.528 ± 4.42 beats/ min and 1.842 ± 6.9 mmHg, respectively. Immediately after PCA, core body temperature and pulse rate decreased by 0.3°C, 3.3 beats/min, respectively, whereas systolic, diastolic, mean arterial blood pressure and O2 Sat increased by, 1.40 mm Hg, 1.87 mm Hg, 0.98 mmHg and 0.27%, respectively. Thirty minutes after the end of PCA, core body temperature, diastolic, mean arterial blood pressure and pulse rate decreased by 0.57°C, 0.34 mm Hg, 0.60 mm Hg and 4.5 beats/min, respectively, whereas systolic blood pressure and O2 Sat increased by 0.98 mm Hg and 0.04%, respectively. The present results showed that PCA increases systolic, diastolic, mean arterial blood pressure and O2 Sat, and decreases core body temperature and pulse rate. © 2013 Wiley Publishing Asia Pty Ltd.

  19. Body Temperature Measurements for Metabolic Phenotyping in Mice.

    PubMed

    Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A

    2017-01-01

    Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses.

  20. Biophysical aspects of human thermoregulation during heat stress.

    PubMed

    Cramer, Matthew N; Jay, Ollie

    2016-04-01

    Humans maintain a relatively constant core temperature through the dynamic balance between endogenous heat production and heat dissipation to the surrounding environment. In response to metabolic or environmental disturbances to heat balance, the autonomic nervous system initiates cutaneous vasodilation and eccrine sweating to facilitate higher rates of dry (primarily convection and radiation) and evaporative transfer from the body surface; however, absolute heat losses are ultimately governed by the properties of the skin and the environment. Over the duration of a heat exposure, the cumulative imbalance between heat production and heat dissipation leads to body heat storage, but the consequent change in core temperature, which has implications for health and safety in occupational and athletic settings particularly among certain clinical populations, involves a complex interaction between changes in body heat content and the body's morphological characteristics (mass, surface area, and tissue composition) that collectively determine the body's thermal inertia. The aim of this review is to highlight the biophysical aspects of human core temperature regulation by outlining the principles of human energy exchange and examining the influence of body morphology during exercise and environmental heat stress. An understanding of the biophysical factors influencing core temperature will enable researchers and practitioners to better identify and treat individuals/populations most vulnerable to heat illness and injury during exercise and extreme heat events. Further, appropriate guidelines may be developed to optimize health, safety, and work performance during heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    PubMed Central

    Talebi, Elnaz; Tahir, Mahmood Md.; Yasreen, Airil

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system. PMID:24526915

  2. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways.

    PubMed

    Derous, Davina; Mitchell, Sharon E; Green, Cara L; Chen, Luonan; Han, Jing-Dong J; Wang, Yingchun; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex

    2016-04-01

    Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.

  3. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways

    PubMed Central

    Green, Cara L.; Chen, Luonan; Han, Jing‐Dong J.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Speakman, John R.; Douglas, Alex

    2016-01-01

    Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti‐ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin‐like growth factor 1 (IGF‐1), insulin, and tumor necrosis factor alpha (TNF‐α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF‐α, leptin and IGF‐1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes. PMID:26945906

  4. Physiological response to firefighting activities of various work cycles using extended duration and prototype SCBA.

    PubMed

    Kesler, Richard M; Ensari, Ipek; Bollaert, Rachel E; Motl, Robert W; Hsiao-Wecksler, Elizabeth T; Rosengren, Karl S; Fernhall, Bo; Smith, Denise L; Horn, Gavin P

    2018-03-01

    Firefighters' self-contained breathing apparatus (SCBA) protects the respiratory system during firefighting but increases the physiological burden. Extended duration SCBA (>30 min) have increased air supply, potentially increasing the duration of firefighting work cycles. To examine the effects of SCBA configuration and work cycle (length and rest), 30 firefighters completed seven trials using different SCBA and one or two bouts of simulated firefighting following work cycles common in the United States. Heart rate, core temperature, oxygen consumption, work output and self-reported perceptions were recorded during all activities. Varying SCBA resulted in few differences in these parameters. However, during a second bout, work output significantly declined while heart rates and core temperatures were elevated relative to a single bout. Thirty seven per cent of the subjects were unable to complete the second bout in at least one of the two-bout conditions. These firefighters had lower fitness and higher body mass than those who completed all assigned tasks. Practitioner Summary: The effects of extended duration SCBA and work/rest cycles on physiological parameters and work output have not been examined. Cylinder size had minimal effects, but extended work cycles with no rest resulted in increased physiological strain and decreased work output. This effect was more pronounced in firefighters with lower fitness.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Andrew J

    A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice themore » average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.« less

  6. The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System.

    PubMed

    Thommes, E W; Duncan, M J; Levison, H F

    1999-12-09

    Planets are believed to have formed through the accumulation of a large number of small bodies. In the case of the gas-giant planets Jupiter and Saturn, they accreted a significant amount of gas directly from the protosolar nebula after accumulating solid cores of about 5-15 Earth masses. Such models, however, have been unable to produce the smaller ice giants Uranus and Neptune at their present locations, because in that region of the Solar System the small planetary bodies will have been more widely spaced, and less tightly bound gravitationally to the Sun. When applied to the current Jupiter-Saturn zone, a recent theory predicts that, in addition to the solid cores of Jupiter and Saturn, two or three other solid bodies of comparable mass are likely to have formed. Here we report the results of model calculations that demonstrate that such cores will have been gravitationally scattered outwards as Jupiter, and perhaps Saturn, accreted nebular gas. The orbits of these cores then evolve into orbits that resemble those of Uranus and Neptune, as a result of gravitational interactions with the small bodies in the outer disk of the protosolar nebula.

  7. Landscape-scale habitat selection by fishers translocated to the Olympic Peninsula of Washington

    USGS Publications Warehouse

    Lewis, Jeffrey C.; Jenkins, Kurt J.; Happe, Patricia J.; Manson, David J.; McCalmon, Marc

    2016-01-01

    The fisher was extirpated from much of the Pacific Northwestern United States during the mid- to late-1900s and is now proposed for federal listing as a threatened species in all or part of its west coast range. Following the translocation of 90 fishers from central British Columbia, Canada, to the Olympic Peninsula of Washington State from 2008 to 2010, we investigated the landscape-scale habitat selection of reintroduced fishers across a broad range of forest ages and disturbance histories, providing the first information on habitat relationships of newly reintroduced fishers in coastal coniferous forests in the Pacific Northwest. We developed 17 a priori models to evaluate several habitat-selection hypotheses based on premises of habitat models used to forecast habitat suitability for the reintroduced population. Further, we hypothesized that female fishers, because of their smaller body size than males, greater vulnerability to predation, and specific reproductive requirements, would be more selective than males for mid- to late-seral forest communities, where complex forest structural elements provide secure foraging, resting, and denning sites. We assessed 11 forest structure and landscape characteristics within the home range core-areas used by 19 females and 12 males and within randomly placed pseudo core areas that represented available habitats. We used case-controlled logistic regression to compare the characteristics of used and pseudo core areas and to assess selection by male and female fishers. Females were more selective of core area placement than males. Fifteen of 19 females (79%) and 5 of 12 males (42%) selected core areas within federal lands that encompassed primarily forests with an overstory of mid-sized or large trees. Male fishers exhibited only weak selection for core areas dominated by forests with an overstory of small trees, primarily on land managed for timber production or at high elevations. The amount of natural open area best distinguished the use of core areas between males and females, with females using substantially less natural open area than males. Although sex-specific selection has been suspected for fishers, we identified factors that distinguish the selection of core areas by females from those of males, information which will be valuable to managers planning reintroductions or providing suitable habitat to promote fisher recovery in the Pacific Northwest.

  8. Low back pain in 17 countries, a Rasch analysis of the ICF core set for low back pain.

    PubMed

    Røe, Cecilie; Bautz-Holter, Erik; Cieza, Alarcos

    2013-03-01

    Previous studies indicate that a worldwide measurement tool may be developed based on the International Classification of Functioning Disability and Health (ICF) Core Sets for chronic conditions. The aim of the present study was to explore the possibility of constructing a cross-cultural measurement of functioning for patients with low back pain (LBP) on the basis of the Comprehensive ICF Core Set for LBP and to evaluate the properties of the ICF Core Set. The Comprehensive ICF Core Set for LBP was scored by health professionals for 972 patients with LBP from 17 countries. Qualifier levels of the categories, invariance across age, sex and countries, construct validity and the ordering of the categories in the components of body function, body structure, activities and participation were explored by Rasch analysis. The item-trait χ2-statistics showed that the 53 categories in the ICF Core Set for LBP did not fit the Rasch model (P<0.001). The main challenge was the invariance in the responses according to country. Analysis of the four countries with the largest sample sizes indicated that the data from Germany fit the Rasch model, and the data from Norway, Serbia and Kuwait in terms of the components of body functions and activities and participation also fit the model. The component of body functions and activity and participation had a negative mean location, -2.19 (SD 1.19) and -2.98 (SD 1.07), respectively. The negative location indicates that the ICF Core Set reflects patients with a lower level of function than the present patient sample. The present results indicate that it may be possible to construct a clinical measure of function on the basis of the Comprehensive ICF Core Set for LBP by calculating country-specific scores before pooling the data.

  9. Water immersion for post incident cooling of firefighters; a review of practical fire ground cooling modalities.

    PubMed

    Brearley, Matt; Walker, Anthony

    2015-01-01

    Rapidly cooling firefighters post emergency response is likely to increase the operational effectiveness of fire services during prolonged incidents. A variety of techniques have therefore been examined to return firefighters core body temperature to safe levels prior to fire scene re-entry or redeployment. The recommendation of forearm immersion (HFI) in cold water by the National Fire and Protection Association preceded implementation of this active cooling modality by a number of fire services in North America, South East Asia and Australia. The vascularity of the hands and forearms may expedite body heat removal, however, immersion of the torso, pelvis and/or lower body, otherwise known as multi-segment immersion (MSI), exposes a greater proportion of the body surface to water than HFI, potentially increasing the rates of cooling conferred. Therefore, this review sought to establish the efficacy of HFI and MSI to rapidly reduce firefighters core body temperature to safe working levels during rest periods. A total of 38 studies with 55 treatments (43 MSI, 12 HFI) were reviewed. The core body temperature cooling rates conferred by MSI were generally classified as ideal (n = 23) with a range of ~0.01 to 0.35 °C min(-1). In contrast, all HFI treatments resulted in unacceptably slow core body temperature cooling rates (~0.01 to 0.05 °C min(-1)). Based upon the extensive field of research supporting immersion of large body surface areas and comparable logistics of establishing HFI or MSI, it is recommended that fire and rescue management reassess their approach to fireground rehabilitation of responders. Specifically, we question the use of HFI to rapidly lower firefighter core body temperature during rest periods. By utilising MSI to restore firefighter Tc to safe working levels, fire and rescue services would adopt an evidence based approach to maintaining operational capability during arduous, sustained responses. While the optimal MSI protocol will be determined by the specifics of an individual response, maximising the body surface area immersed in circulated water of up to 26 °C for 15 min is likely to return firefighter Tc to safe working levels during rest periods. Utilising cooler water temperatures will expedite Tc cooling and minimise immersion duration.

  10. Pilates and pregnancy.

    PubMed

    Balogh, Adi

    2005-05-01

    Pregnancy is associated with a number of musculoskeletal problems. It is important to educate all mothers, as well as those involved in ante- and postnatal care with advice on bras and exercises that are safe in pregnancy (in particular pelvic floor exercises). There is not much that can be done to alter the inevitable physiological and hormonal changes of pregnancy. However, by strengthening the core stabilising muscles around the pelvis and spine, and improving the breathing pattern, it is hoped that one can optimise the body for the challenges it may face. Pilates is based on the principle that a central core is developed and then movements are introduced to challenge this core stability. This philosophy is clearly applicable in pregnancy--a significant test both mentally and physically on the mother's body. By maximising the mother's core stability before and during pregnancy, it should be possible to limit any potential harm. Returning to exercise soon after the birth is important for the mother's physical and mental wellbeing--she looks after her baby's body for nine months, who cares for hers?

  11. Hemispherical Anisotropic Patterns of the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Mattesini, M.; Belonoshko, A. B.; Buforn, E.; Ramirez, M.; Simak, S. I.; Udias, A.; Mao, H.; Ahuja, R.

    2010-12-01

    It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves travelling ˜3% faster along polar paths than along equatorial directions. However, hemispherical anisotropic patterns of solid Earth's core are rather complex, and the commonly used hexagonal-close-packed (hcp) iron phase might be insufficient to account for seismological observations. We show that the data we collected are in good agreement with the presence of two anisotropically specular east and west core hemispheres. The detected travel-time anomalies can only be disclosed by a lattice preferred orientation of a body-centered-cubic iron aggregate (bcc), having a fraction of their [111] crystal axes parallel to the Earth's rotation axis. This is a compelling evidence for the presence of a body-centered-cubic Fe phase at the top 100 km of the Earth's inner core.

  12. The effects of amino acid infusions on core body temperature during the perioperative period: a systematic review.

    PubMed

    Zhou, Bo; Wang, Gang; Yang, Shuofei; He, Xiandi; Liu, Yun

    2014-12-01

    The aim of this systematic review was to determine the effect of amino acid infusions on core body temperature and shivering. We searched the PubMed, EMBASE, CINAHL, and Cochrane Register of Controlled Trials databases to identify randomized controlled trials that met the inclusion criteria. A total of 11 eligible trials involving 506 participants were identified. Amino acid infusions were associated with shorter periods of mechanical ventilation and hospitalization and less perioperative shivering, mechanical intubation, and hospitalization in surgical patients without hepatic, renal, or severe metabolic disorders. It is recommended that infusions are warmed before administration to avoid further decrease in core body temperature. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  13. Partially Ventilated Transom Flow Elevations-Unsteady Analysis

    DTIC Science & Technology

    2016-06-30

    family of hulls that have a common fore-body with varying after-bodies. This project expands the investigation into unsteady transom flow elevations two...incident waves on the stream wise discontinuity in hull geometry due to varying transom configurations ranging from round bilge to deep-vee sections...transom. Turbulence Stimulation Hama strips were used for turbulence stimulation on the hull . Four strips of electrical tape with a combined

  14. Modification of Surface Density of a Porous Medium

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M. (Inventor); Espinoza, Christian (Inventor)

    2016-01-01

    A method for increasing density of a region of a porous, phenolic bonded ("PPB") body adjacent to a selected surface to increase failure tensile strength of the adjacent region and/or to decrease surface recession at elevated temperatures. When the surface-densified PPB body is brought together with a substrate, having a higher failure tensile strength, to form a composite body with a PPB body/substrate interface, the location of tensile failure is moved to a location spaced apart from the interface, the failure tensile strength of the PPB body is increased, and surface recession of the material at elevated temperature is reduced. The method deposits and allows diffusion of a phenolic substance on the selected surface. The PPB body and the substrate may be heated and brought together to form the composite body. The phenolic substance is allowed to diffuse into the PPB body, to volatilize and to cure, to provide a processed body with an increased surface density.

  15. Baseline glucocorticoids are drivers of body mass gain in a diving seabird

    USGS Publications Warehouse

    Hennin, Holly; Berlin, Alicia; Love, Oliver P.

    2016-01-01

    Life-history trade-offs are influenced by variation in individual state, with individuals in better condition often completing life-history stages with greater success. Although resource accrual significantly impacts key life-history decisions such as the timing of reproduction, little is known about the underlying mechanisms driving resource accumulation. Baseline corticosterone (CORT, the primary avian glucocorticoid) mediates daily and seasonal energetics, responds to changes in food availability, and has been linked to foraging behavior, making it a strong potential driver of individual variation in resource accrual and deposition. Working with a captive colony of white-winged scoters (Melanitta fusca deglandi), we aimed to causally determine whether variation in baseline CORT drives individual body mass gains mediated through fattening rate (plasma triglycerides corrected for body mass). We implanted individuals with each of three treatment pellets to elevate CORT within a baseline range in a randomized order: control, low dose of CORT, high dose of CORT, then blood sampled and recorded body mass over a two-week period to track changes in baseline CORT, body mass, and fattening rates. The high CORT treatment significantly elevated levels of plasma hormone for a short period of time within the biologically relevant, baseline range for this species, but importantly did not inhibit the function of the HPA (hypothalamic–pituitary–adrenal) axis. Furthermore, an elevation in baseline CORT resulted in a consistent increase in body mass throughout the trial period compared to controls. This is some of the first empirical evidence demonstrating that elevations of baseline CORT within a biologically relevant range have a causal, direct, and positive influence on changes in body mass.

  16. Baseline glucocorticoids are drivers of body mass gain in a diving seabird.

    PubMed

    Hennin, Holly L; Wells-Berlin, Alicia M; Love, Oliver P

    2016-03-01

    Life-history trade-offs are influenced by variation in individual state, with individuals in better condition often completing life-history stages with greater success. Although resource accrual significantly impacts key life-history decisions such as the timing of reproduction, little is known about the underlying mechanisms driving resource accumulation. Baseline corticosterone (CORT, the primary avian glucocorticoid) mediates daily and seasonal energetics, responds to changes in food availability, and has been linked to foraging behavior, making it a strong potential driver of individual variation in resource accrual and deposition. Working with a captive colony of white-winged scoters (Melanitta fusca deglandi), we aimed to causally determine whether variation in baseline CORT drives individual body mass gains mediated through fattening rate (plasma triglycerides corrected for body mass). We implanted individuals with each of three treatment pellets to elevate CORT within a baseline range in a randomized order: control, low dose of CORT, high dose of CORT, then blood sampled and recorded body mass over a two-week period to track changes in baseline CORT, body mass, and fattening rates. The high CORT treatment significantly elevated levels of plasma hormone for a short period of time within the biologically relevant, baseline range for this species, but importantly did not inhibit the function of the HPA (hypothalamic-pituitary-adrenal) axis. Furthermore, an elevation in baseline CORT resulted in a consistent increase in body mass throughout the trial period compared to controls. This is some of the first empirical evidence demonstrating that elevations of baseline CORT within a biologically relevant range have a causal, direct, and positive influence on changes in body mass.

  17. Loss of histaminergic modulation of thermoregulation and energy homeostasis in obese mice.

    PubMed

    Sethi, J; Sanchez-Alavez, M; Tabarean, I V

    2012-08-16

    Histamine acts centrally to increase energy expenditure and reduce body weight by mechanisms not fully understood. It has been suggested that in the obese state hypothalamic histamine signaling is altered. Previous studies have also shown that histamine acting in the preoptic area controls thermoregulation. We aimed to study the influence of preoptic histamine on body temperature and energy homeostasis in control and obese mice. Activating histamine receptors in the preoptic area by increasing the concentration of endogenous histamine or by local injection of specific agonists induced an elevation of core body temperature and decreased respiratory exchange ratio (RER). In addition, the food intake was significantly decreased. The hyperthermic effect was associated with a rapid increase in mRNA expression of uncoupling proteins in thermogenic tissues, the most pronounced being that of uncoupling protein (UCP) 1 in brown adipose tissue and of UCP2 in white adipose tissue. In diet-induced obese mice histamine had much diminished hyperthermic effects as well as reduced effect on RER. Similarly, the ability of preoptic histamine signaling to increase the expression of uncoupling proteins was abolished. We also found that the expression of mRNA encoding the H1 receptor subtype in the preoptic area was significantly lower in obese animals. These results indicate that histamine signaling in the preoptic area modulates energy homeostasis by regulating body temperature, metabolic parameters and food intake and that the obese state is associated with a decrease in neurotransmitter's influence. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. A preliminary report on the effect of elevated temperature exposure on the mechanical properties of titanium-alloy honeycomb-core sandwich panels.

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Cain, R. L.

    1971-01-01

    A study has been initiated to determine the effects of elevated-temperature exposure on the room-temperature mechanical properties of titanium honeycomb-core sandwich panels fabricated by brazing or spot diffusion bonding. Only flatwise tensile properties following exposure have been determined to date. Preliminary results indicate very little change in the flatwise tensile strength of sandwich panels fabricated by spot diffusion bonding following exposures of 10,000 hr at 600 and 800 F and 1000 hr at 1000 F. Titanium panels fabricated by using a Ti-Zr-Be braze alloy are susceptible to oxidation at elevated temperature and experience flatwise tensile strength degradation after continuous exposures of 7500 hr at 600 F, 1000 hr at 800 F, and less than 100 hr at 1000 F. It is possible that the exposure life of the brazed panels may be substantially increased if the panel edges are sealed to prevent oxidation of the braze alloy.

  19. Reference breast temperature: proposal of an equation

    PubMed Central

    de Souza, Gladis Aparecida Galindo Reisemberger; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso, Carlos; Neves, Eduardo Borba

    2015-01-01

    ABSTRACT Objective To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Methods Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. Results We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. Conclusion The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies. PMID:26761549

  20. Vascular adaptations for heat conservation in the tail of Florida manatees (Trichechus manatus latirostris)

    PubMed Central

    Rommel, Sentiel A; Caplan, Heather

    2003-01-01

    Although Florida manatees (Trichechus manatus latirostris) have relatively low basal metabolic rates for aquatic mammals of their size, they maintain normal mammalian core temperatures. We describe vascular structures in the manatee tail that permit countercurrent heat exchange (CCHE) to conserve thermal energy. Approximately 1000 arteries juxtaposed to 2000 veins are found at the cranial end of the caudal vascular bundle (CVB); these numbers decrease caudally, but the 1 : 2 ratio of arteries to veins persists. Arterial walls are relatively thin when compared to those previously described in vascular countercurrent heat exchangers in cetaceans. It is assumed that CCHE in the CVB helps manatees to maintain core temperatures. Activity in warm water, however, mandates a mechanism that prevents elevated core temperatures. The tail could transfer heat to the environment if arterial blood delivered to the skin were warmer than the surrounding water; unfortunately, CCHE prevents this heat transfer. We describe deep caudal veins that provide a collateral venous return from the tail. This return, which is physically outside the CVB, reduces the venous volume within the bundle and allows arterial expansion and increased arterial supply to the skin, and thus helps prevent elevated core temperatures. PMID:12739612

  1. Vascular adaptations for heat conservation in the tail of Florida manatees (Trichechus manatus latirostris).

    PubMed

    Rommel, Sentiel A; Caplan, Heather

    2003-04-01

    Although Florida manatees (Trichechus manatus latirostris) have relatively low basal metabolic rates for aquatic mammals of their size, they maintain normal mammalian core temperatures. We describe vascular structures in the manatee tail that permit countercurrent heat exchange (CCHE) to conserve thermal energy. Approximately 1000 arteries juxtaposed to 2000 veins are found at the cranial end of the caudal vascular bundle (CVB); these numbers decrease caudally, but the 1:2 ratio of arteries to veins persists. Arterial walls are relatively thin when compared to those previously described in vascular countercurrent heat exchangers in cetaceans. It is assumed that CCHE in the CVB helps manatees to maintain core temperatures. Activity in warm water, however, mandates a mechanism that prevents elevated core temperatures. The tail could transfer heat to the environment if arterial blood delivered to the skin were warmer than the surrounding water; unfortunately, CCHE prevents this heat transfer. We describe deep caudal veins that provide a collateral venous return from the tail. This return, which is physically outside the CVB, reduces the venous volume within the bundle and allows arterial expansion and increased arterial supply to the skin, and thus helps prevent elevated core temperatures.

  2. Is Oral Temperature an Accurate Measurement of Deep Body Temperature? A Systematic Review

    PubMed Central

    Mazerolle, Stephanie M.; Ganio, Matthew S.; Casa, Douglas J.; Vingren, Jakob; Klau, Jennifer

    2011-01-01

    Context: Oral temperature might not be a valid method to assess core body temperature. However, many clinicians, including athletic trainers, use it rather than criterion standard methods, such as rectal thermometry. Objective: To critically evaluate original research addressing the validity of using oral temperature as a measurement of core body temperature during periods of rest and changing core temperature. Data Sources: In July 2010, we searched the electronic databases PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus, Academic Search Premier, and the Cochrane Library for the following concepts: core body temperature, oral, and thermometers. Controlled vocabulary was used, when available, as well as key words and variations of those key words. The search was limited to articles focusing on temperature readings and studies involving human participants. Data Synthesis: Original research was reviewed using the Physiotherapy Evidence Database (PEDro). Sixteen studies met the inclusion criteria and subsequently were evaluated by 2 independent reviewers. All 16 were included in the review because they met the minimal PEDro score of 4 points (of 10 possible points), with all but 2 scoring 5 points. A critical review of these studies indicated a disparity between oral and criterion standard temperature methods (eg, rectal and esophageal) specifically as the temperature increased. The difference was −0.50°C ± 0.31°C at rest and −0.58°C ± 0.75°C during a nonsteady state. Conclusions: Evidence suggests that, regardless of whether the assessment is recorded at rest or during periods of changing core temperature, oral temperature is an unsuitable diagnostic tool for determining body temperature because many measures demonstrated differences greater than the predetermined validity threshold of 0.27°C (0.5°F). In addition, the differences were greatest at the highest rectal temperatures. Oral temperature cannot accurately reflect core body temperature, probably because it is influenced by factors such as ambient air temperature, probe placement, and ingestion of fluids. Any reliance on oral temperature in an emergency, such as exertional heat stroke, might grossly underestimate temperature and delay proper diagnosis and treatment. PMID:22488144

  3. Is oral temperature an accurate measurement of deep body temperature? A systematic review.

    PubMed

    Mazerolle, Stephanie M; Ganio, Matthew S; Casa, Douglas J; Vingren, Jakob; Klau, Jennifer

    2011-01-01

    Oral temperature might not be a valid method to assess core body temperature. However, many clinicians, including athletic trainers, use it rather than criterion standard methods, such as rectal thermometry. To critically evaluate original research addressing the validity of using oral temperature as a measurement of core body temperature during periods of rest and changing core temperature. In July 2010, we searched the electronic databases PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus, Academic Search Premier, and the Cochrane Library for the following concepts: core body temperature, oral, and thermometers. Controlled vocabulary was used, when available, as well as key words and variations of those key words. The search was limited to articles focusing on temperature readings and studies involving human participants. Original research was reviewed using the Physiotherapy Evidence Database (PEDro). Sixteen studies met the inclusion criteria and subsequently were evaluated by 2 independent reviewers. All 16 were included in the review because they met the minimal PEDro score of 4 points (of 10 possible points), with all but 2 scoring 5 points. A critical review of these studies indicated a disparity between oral and criterion standard temperature methods (eg, rectal and esophageal) specifically as the temperature increased. The difference was -0.50°C ± 0.31°C at rest and -0.58°C ± 0.75°C during a nonsteady state. Evidence suggests that, regardless of whether the assessment is recorded at rest or during periods of changing core temperature, oral temperature is an unsuitable diagnostic tool for determining body temperature because many measures demonstrated differences greater than the predetermined validity threshold of 0.27°C (0.5°F). In addition, the differences were greatest at the highest rectal temperatures. Oral temperature cannot accurately reflect core body temperature, probably because it is influenced by factors such as ambient air temperature, probe placement, and ingestion of fluids. Any reliance on oral temperature in an emergency, such as exertional heat stroke, might grossly underestimate temperature and delay proper diagnosis and treatment.

  4. Origin of igneous meteorites and differentiated asteroids

    NASA Astrophysics Data System (ADS)

    Scott, E.; Goldstein, J.; Asphaug, E.; Bottke, W.; Moskovitz, N.; Keil, K.

    2014-07-01

    Introduction: Igneously formed meteorites and asteroids provide major challenges to our understanding of the formation and evolution of the asteroid belt. The numbers and types of differentiated meteorites and non-chondritic asteroids appear to be incompatible with an origin by fragmentation of numerous Vesta-like bodies by hypervelocity impacts in the asteroid belt over 4 Gyr. We lack asteroids and achondrites from the olivine-rich mantles of the parent bodies of the 12 groups of iron meteorites and the ˜70 ungrouped irons, the 2 groups of pallasites and the 4--6 ungrouped pallasites. We lack mantle and core samples from the parent asteroids of the basaltic achondrites that do not come from Vesta, viz., angrites and the ungrouped eucrites like NWA 011 and Ibitira. How could core samples have been extracted from numerous differentiated bodies when Vesta's basaltic crust was preserved? Where is the missing Psyche family of differentiated asteroids including the complementary mantle and crustal asteroids [1]? Why are meteorites derived from far more differentiated parent bodies than chondritic parent bodies even though C and S class chondritic asteroids dominate the asteroid belt? New paradigm. Our studies of meteorites, impact modeling, and dynamical studies suggest a new paradigm in which differentiated asteroids accreted at 1--2 au less than 2 Myr after CAI formation [2]. They were rapidly melted by 26Al and disrupted by hit-and-run impacts [3] while still molten or semi-molten when planetary embryos were accreting. Metallic Fe-Ni bodies derived from core material cooled rapidly with little or no silicate insulation less than 4 Myr after CAI formation [4]. Fragments of differentiated planetesimals were subsequently tossed into the asteroid belt. Meteorite evidence for early disruption of differentiated asteroids. If iron meteorites were samples of Fe-Ni cores of bodies that cooled slowly inside silicate mantles over ˜50--100 Myr, irons from each core would have almost indistinguishable cooling rates as thermal gradients across cores would have been minimal. Irons in groups IIIAB, IVA, and IVB have chemical crystallization trends showing that they cooled in three separate bodies. However, each shows a wide range of cooling rates [4]. Group IVA irons cooled through 500°C at 6600--100 °C/Myr in a metallic body of radius 150 ± 50 km with scarcely any silicate insulation [5]. The Pb-Pb age of 4565.3 ± 0.1 Myr for a IVA iron [6] confirms that these irons cooled to ˜300°C only 2--3 Myr after CAI formation. Multiple hit-and-run impacts may have separated core and mantle material during accretion [7] as hypervelocity impacts do not efficiently separate cores from mantles. Thermal histories and magnetic properties of main group pallasites also require early catastrophic disruption of their primary parent body [8,9]. Conclusions. The anomalous properties of differentiated asteroids and meteorites cannot be explained by concealing differentiated planetesimals under chondritic crusts [10] as meteorite breccias and the apparent compositional homogeneity of asteroid families are inconsistent with this model. Like Burbine et al. [11], we attribute the lack of olivine mantle meteorites and asteroids to collisional grinding of weaker silicate and the preferential survival of stronger metallic Fe,Ni fragments. But we infer that asteroid break up occurred very early inside 2 au, not in the asteroid belt over 4 Gyr. Vesta may have preserved its crust due to early ejection into the asteroid belt. It is the smallest terrestrial planet --- not an archetypal differentiated asteroid.

  5. Stress-induced cardiomyopathy caused by heat stroke.

    PubMed

    Chen, Wei-Ta; Lin, Cheng-Hsin; Hsieh, Ming-Hsiung; Huang, Chun-Yao; Yeh, Jong-Shiuan

    2012-07-01

    Heat stroke is defined by central nervous system abnormalities and failure of proper maintenance of thermoregulation as a result of high core body temperature ensuing from exposure to high environmental temperatures or strenuous exercise. Common complications include acute respiratory distress syndrome, disseminated intravascular coagulation, acute renal injury, hepatic injury, and rhabdomyolysis. Myocardial injury may also occur during heat stroke, resulting in cardiac enzyme increase and ST-segment changes on the ECG. Such findings might behave as diagnostic pitfalls by mimicking the presentation of coronary artery occlusive myocardial infarction. A previous case report described a patient with heat stroke and ST-segment elevation, in which the definite cause of the ST-segment elevation was unclear; however, acute myocardial infarction caused by coronary artery disease was ruled out according to the clinical signs, serial ECG changes, and serum level of cardiac biomarkers. Stress-induced cardiomyopathy (Takotsubo cardiomyopathy) was suspected, but it could not be confirmed because of the lack of coronary angiography. We herein report a case of heat stroke presenting with ST-segment elevation and cardiogenic shock. Coronary angiography was performed and coronary artery occlusive myocardial infarction was ruled out because of the presence of patent coronary arteries. Left ventriculography showed midventricular and apical hypokinesis, and stress-induced cardiomyopathy was then determined to be the appropriate diagnosis. Heat stroke causes increase of serum catecholamine levels, in which oversecretion and abnormal responses to catecholamines are a possible cause of stress-induced cardiomyopathy. Catecholamines may therefore be the key in linking heat stroke and stress-induced cardiomyopathy. Copyright © 2011. Published by Mosby, Inc.

  6. Patterns of activity and body temperature of Aldabra giant tortoises in relation to environmental temperature.

    PubMed

    Falcón, Wilfredo; Baxter, Rich P; Furrer, Samuel; Bauert, Martin; Hatt, Jean-Michel; Schaepman-Strub, Gabriela; Ozgul, Arpat; Bunbury, Nancy; Clauss, Marcus; Hansen, Dennis M

    2018-02-01

    We studied the temperature relations of wild and zoo Aldabra giant tortoises ( Aldabrachelys gigantea ) focusing on (1) the relationship between environmental temperature and tortoise activity patterns ( n  = 8 wild individuals) and (2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to different environmental temperature ranges (seasons; n  = 4 wild and n  = 5 zoo individuals). In addition, we surveyed the literature to review the effect of body mass on core body temperature range in relation to environmental temperature in the Testudinidae. Diurnal activity of tortoises was bimodally distributed and influenced by environmental temperature and season. The mean air temperature at which activity is maximized was 27.9°C, with a range of 25.8-31.7°C. Furthermore, air temperature explained changes in the core body temperature better than did mass, and only during the coldest trial, did tortoises with higher mass show more stable temperatures. Our results, together with the overall Testudinidae overview, suggest that, once variation in environmental temperature has been taken into account, there is little effect of mass on the temperature stability of tortoises. Moreover, the presence of thermal inertia in an individual tortoise depends on the environmental temperatures, and we found no evidence for inertial homeothermy. Finally, patterns of core and external body temperatures in comparison with environmental temperatures suggest that Aldabra giant tortoises act as mixed conformer-regulators. Our study provides a baseline to manage the thermal environment of wild and rewilded populations of an important island ecosystem engineer species in an era of climate change.

  7. Increased visceral tissue perfusion with heated, humidified carbon dioxide insufflation during open abdominal surgery in a rodent model.

    PubMed

    Robson, Jonathan P; Kokhanenko, Pavlo; Marshall, Jean K; Phillips, Anthony R; van der Linden, Jan

    2018-01-01

    Tissue perfusion during surgery is important in reducing surgical site infections and promoting healing. This study aimed to determine if insufflation of the open abdomen with heated, humidified (HH) carbon dioxide (CO2) increased visceral tissue perfusion and core body temperature during open abdominal surgery in a rodent model. Using two different rodent models of open abdominal surgery, visceral perfusion and core temperature were measured. Visceral perfusion was investigated using a repeated measures crossover experiment with rodents receiving the same sequence of two alternating treatments: exposure to ambient air (no insufflation) and insufflation with HH CO2. Core body temperature was measured using an independent experimental design with three treatment groups: ambient air, HH CO2 and cold, dry (CD) CO2. Visceral perfusion was measured by laser speckle contrast analysis (LASCA) and core body temperature was measured with a rectal thermometer. Insufflation with HH CO2 into a rodent open abdominal cavity significantly increased visceral tissue perfusion (2.4 perfusion units (PU)/min (95% CI 1.23-3.58); p<0.0001) compared with ambient air, which significantly reduced visceral blood flow (-5.20 PU/min (95% CI -6.83- -3.58); p<0.0001). Insufflation of HH CO2 into the open abdominal cavity significantly increased core body temperature (+1.15 ± 0.14°C) compared with open cavities exposed to ambient air (-0.65 ± 0.52°C; p = 0.037), or cavities insufflated with CD CO2 (-0.73 ± 0.33°C; p = 0.006). Abdominal visceral temperatures also increased with HH CO2 insufflation compared with ambient air or CD CO2, as shown by infrared thermography. This study reports for the first time the use of LASCA to measure visceral perfusion in open abdominal surgery and shows that insufflation of open abdominal cavities with HH CO2 significantly increases visceral tissue perfusion and core body temperature.

  8. Acute starvation alters lipopolysaccharide-induced fever in leptin-dependent and -independent mechanisms in rats.

    PubMed

    Inoue, Wataru; Luheshi, Giamal N

    2010-12-01

    A decrease in leptin levels with the onset of starvation triggers a myriad of physiological responses including immunosuppression and hypometabolism/hypothermia, both of which can counteract the fever response to pathogens. Here we examined the role of leptin in LPS-induced fever in rats that were fasted for 48 h prior to inflammation with or without leptin replacement (12 μg/day). The preinflammation fasting alone caused a progressive hypothermia that was almost completely reversed by leptin replacement. The LPS (100 μg/kg)-induced elevation in core body temperature (T(core)) was attenuated in the fasted animals at 2-6 h after the injection, an effect that was not reversed by leptin replacement. Increasing the LPS dose to 1,000 μg/kg caused a long-lasting fever that remained unabated for up to 36 h after the injection in the fed rats. This sustained response was strongly attenuated in the fasted rats whose T(core) started to decrease by 18 h after the injection. Leptin replacement almost completely restored the prolonged fever. The attenuation of the prolonged fever in the fasted animals was accompanied by the diminution of proinflammatory PGE(2) in the cerebrospinal fluid and mRNA of proopiomelanocortin (POMC) in the hypothalamus. Leptin replacement prevented the fasting-induced reduction of POMC but not PGE(2). Moreover, the leptin-dependent fever maintenance correlated closely with hypothalamic POMC levels (r = 0.77, P < 0.001). These results suggest that reduced leptin levels during starvation attenuate the sustained fever response by lowering hypothalamic POMC tone but not PGE(2) synthesis.

  9. Core Formation and Evolution of Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2014-01-01

    The howardites, eucrites, and diogenites (HEDs) are a suite of related meteorite types that formed by igneous and impact processes on the same parent body. Multiple lines of evidence, including infrared spectroscopy of the asteroid belt and the petrology and geochemistry of the HEDs, suggest that the asteroid 4 Vesta is the parent body for the HEDs. Observations by NASA's Dawn spacecraft mission strongly support the conclusion that the HEDs are from Vesta. The abundances of the moderately siderophile elements Ni, Co, Mo, W, and P in eucrites require that most or all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. These observations place important constraints on the mode and timescale of core formation on Vesta. Possible core formation mechanisms include porous flow, which potentially could occur prior to initiation of silicate melting, and metallic rain in a largely molten silicate magma ocean. Once the core forms, convection within the core could possible sustain a magnetic dynamo for a period of time. We consider each process in turn.

  10. Amphetamine enhances endurance by increasing heat dissipation.

    PubMed

    Morozova, Ekaterina; Yoo, Yeonjoo; Behrouzvaziri, Abolhassan; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, Yaroslav

    2016-09-01

    Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine-trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine-treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise-induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. The influence of the time of day on core temperature and lower body power output in elite rugby union sevens players.

    PubMed

    West, Daniel J; Cook, Christian J; Beaven, Martyn C; Kilduff, Liam P

    2014-06-01

    Core temperature typically displays a low circadian in the morning before peaking later in the day, and these changes occur within small physiological ranges. Body temperature plays an important role in physical performance, and some athletes may be required to train and compete in both the morning and evening. However, the influence of the circadian change in body temperature and its influence on physical performance in elite athletes are unclear. This study examined the effects of the time of day on core temperature and lower body power output in elite rugby union sevens players. Sixteen elite rugby union sevens players completed morning (in AM) countermovement jump and core temperature (Tcore) measurement, which were then repeated later the same day (in PM). Countermovement jump was processed for peak power output (PPO). Data were analyzed using paired samples t-test and Pearson's product moment correlation and are presented in mean ± SD. Tcore significantly increased from AM to PM (AM, 36.92 ± 0.23 vs. PM, 37.18 ± 0.18° C; P < 0.001) with PPO significantly increasing from AM to PM in all 16 players (AM, 5248 ± 366 vs. PM, 5413 ± 361 W; P < 0.001). The delta change in Tcore (0.26 ± 0.13° C) and PPO (164 ± 78 W) was significantly related (r = 0.781; P < 0.001). In conclusion, small circadian changes in core temperature can influence physical performance in elite athletes. Coaches should seek to use strategies, which may raise morning body temperature to offset the circadian low in the morning.

  12. Core excitations across the neutron shell gap in 207Tl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, E.; Podolyák, Zs.; Grawe, H.

    2015-05-05

    The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less

  13. Morphology of the lingual papillae in the fishing cat.

    PubMed

    Emura, Shoichi; Okumura, Toshihiko; Chen, Huayue

    2014-01-01

    We examined the dorsal lingual surface of an adult fishing cat (Prionailurus viverrinus) by scanning electron microscopy. The filiform papillae on the lingual apex had several pointed processes. The connective tissue core of the filiform papillae resembleda a well in shape. The filiform papillae on the anterior part of the lingual body were large and cylindrical in shape. The connective tissue core of the filiform papillae consisted of a large conical papilla. The filiform papillae on the central part of the lingual body were large and conical. The connective tissue core of the filiform papillae consisted of a large main process and some secondary processes. The connective tissue core of the fungiform papillae did not have processes. The vallate papillae were surrounded by a groove and a pad. The top of the connective tissue core of the vallate papillae had a rough surface with no spines.

  14. Compositional and mineralogical zoning by inward crystallization of mafic magma: evidence from the Guwoon hornblende gabbro-diorite Complex, Hwacheon, Korea.

    NASA Astrophysics Data System (ADS)

    Park, Y.-R.; Kim, G.-Y.

    2009-04-01

    The small body, ca. 1.3 by 1.6km, of a hot-air ballon shape hornblende gabbro - diorite Complex, in Gowoonri, Hwacheon, Korea consists of marginal diorite and central hornblende gabbro. The volumetrically dominant hornblende gabbro in the core of the Complex shows a zoned distribution with three layers distinguished by different dominant mafic mineral phases. From the margin toward the core of the hornblende gabbro body, the domintant mafic minerals change from amphibole phenocryst of nearly rounded shape in cross section with pyroxene pseudomorph through prismatic shape of amphibole to polycrystalline biotite aggregates. Systematic variations in geochemical characteristics among three distinct zones of hornblende gabbro body are also observed. From the outer zone toward the core, major oxides such as MnO, MgO, and CaO show a decreasing tendency, whereas total FeO/(total FeO + MgO) value shows an increasing tendency. Concentrations of trace elements also show systematic variations. Where incompatible elements such as Ba and Th increase, compatible elements like Cr and Sc decrease from the margin toward the core. The zonal distribution divided by change in dominant mafic mineral phase from pyroxene through amphibole to biotite, and systematic compositional changes in both major and trace elements from the outer zone toward the core of the hornblende gabbro body suggest that an inward crystallization mechanism played a major role in the formation of the hornblende gabbro in Guwoonri, Hwacheon, Korea.

  15. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    PubMed Central

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  16. a Novel Method for Automation of 3d Hydro Break Line Generation from LIDAR Data Using Matlab

    NASA Astrophysics Data System (ADS)

    Toscano, G. J.; Gopalam, U.; Devarajan, V.

    2013-08-01

    Water body detection is necessary to generate hydro break lines, which are in turn useful in creating deliverables such as TINs, contours, DEMs from LiDAR data. Hydro flattening follows the detection and delineation of water bodies (lakes, rivers, ponds, reservoirs, streams etc.) with hydro break lines. Manual hydro break line generation is time consuming and expensive. Accuracy and processing time depend on the number of vertices marked for delineation of break lines. Automation with minimal human intervention is desired for this operation. This paper proposes using a novel histogram analysis of LiDAR elevation data and LiDAR intensity data to automatically detect water bodies. Detection of water bodies using elevation information was verified by checking against LiDAR intensity data since the spectral reflectance of water bodies is very small compared with that of land and vegetation in near infra-red wavelength range. Detection of water bodies using LiDAR intensity data was also verified by checking against LiDAR elevation data. False detections were removed using morphological operations and 3D break lines were generated. Finally, a comparison of automatically generated break lines with their semi-automated/manual counterparts was performed to assess the accuracy of the proposed method and the results were discussed.

  17. EVALUATION OF HYDRAULIC CONDUCTIVITIES CALCULATED FROM MULTIPORT-PERMEAMETER MEASUREMENTS

    EPA Science Inventory

    A multiport permeameter was developed for use in estimating hydraulic conductivity over intact sections of aquifer core using the core liner as the permeameter body. Six cores obtained from one borehole through the upper 9 m of a stratified glacial-outwash aquifer were used to ev...

  18. The Role of Body Crystallization in Asteroidal Cores

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.

    1993-07-01

    Large fractionations (factors of 2000-6000) in Ir/Ni and other ratios demonstrate that the magmatic groups of iron meteorites formed by fractional crystallization, and thus that the residual liquid remained well stirred during core crystallization. Past models have relied on solidification at the base or the top of the core, but body crystallization offers an attractive alternative. The simplest of the earlier models involved convective maxing induced by the liberation of heat and light elements (especially S) during upward crystallization from the center of the core. Other models involving downward crystallization from the core-mantle interface are based on the fact that temperatures at this location are slightly lower than those at the center; no whole-core stirring mechanism is provided by these models. Haack and Scott recently published a variant of the downward crystallization model involving the growth of giant (kilometer-scale) dendrites. Because crystallization creates a boundary layer enriched in S that does not participate in the convection, these models require several K of supercooling to induce crystallization (this undercooling is much greater than the temperature difference between the center of the core and the core-mantle interface). Buoyant forces will occasionally remove droplets of the basal boundary fluid; thus it was thinner and its degree of undercooling less than in that at the ceiling of the magma chamber. Homogeneous nucleation of metals is difficult to achieve; generally 200-300 K of undercooling is required, much more than could possibly occur in an asteroidal core. Crystals could, however, nucleate in the magma body on chromite, probably the first liquidus phase (A. Kracher, personal communication, notes that this is required to explain why Cr behaved like a compatible element despite having a solid/liquid D < 1). In addition, some tiny, submillimeter dendrites that formed at the top of the core must have pinched off and fallen into the magma. Such seeds settle as a result of buoyant forces (thus stirring the magma) and, as a result, achieve very thin boundary layers and require low degrees of undercooling in order to crystallize. The rate of core crystallization is limited by the rate of heat transport across the core-mantle interface. If sufficient nuclei are available at different sites, the bulk of the crystallization occurs where undercooling is least. It is possible that a larger fraction of the total crystallization occurred in the body of the magma than at its base or ceiling.

  19. Body Dysmorphic Symptoms, Functional Impairment, and Depression: The Role of Appearance-Based Teasing.

    PubMed

    Weingarden, Hilary; Renshaw, Keith D

    2016-01-01

    Body dysmorphic disorder is associated with elevated social and occupational impairment and comorbid depression, but research on risk factors for body dysmorphic symptoms and associated outcomes is limited. Appearance-based teasing may be a potential risk factor. To examine the specificity of this factor, the authors assessed self-reported appearance-based teasing, body dysmorphic, and obsessive-compulsive symptom severity, functional impairment (i.e., social, occupational, family impairment), and depression in a nonclinical sample of undergraduates. As hypothesized, appearance-based teasing was positively correlated with body dysmorphic symptoms. The correlation between teasing and body dysmorphic symptoms was stronger than that between teasing and obsessive-compulsive symptom severity. Last, body dysmorphic symptom severity and appearance-based teasing interacted in predicting functional impairment and depression. Specifically, appearance-based teasing was positively associated with depression and functional impairment only in those with elevated body dysmorphic symptoms. When a similar moderation was tested with obsessive-compulsive, in place of body dysmorphic, symptom severity, the interaction was nonsignificant. Findings support theory that appearance-based teasing is a specific risk factor for body dysmorphic symptoms and associated functional impairment.

  20. Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia

    PubMed Central

    Matsumoto, Rae R.; Seminerio, Michael J.; Turner, Ryan C.; Robson, Matthew J.; Nguyen, Linda; Miller, Diane B.; O’Callaghan, James P.

    2015-01-01

    Reports of methamphetamine-related emergency room visits suggest that elevated body temperature is a universal presenting symptom, with lethal overdoses generally associated with extreme hyperthermia. This review summarizes the available information on methamphetamine toxicity as it pertains to elevations in body temperature. First, a brief overview of thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, future areas of investigation are proposed, as further studies are needed to provide greater insight into the mechanisms that mediate the alterations in body temperature elicited by methamphetamine. PMID:24836729

  1. Investigation of the Effects of Teaching Core Exerciseson Young Soccer Players

    ERIC Educational Resources Information Center

    Yapici, Aysegül

    2016-01-01

    The objective of this study is to investigate the effects of teaching core exercises on some motoric parameters in young soccer players. 32 amateur male football players from Afjet Afyonspor and Muglaspor football team; 16 experimental group (average age 13.75 ± 0.46 years; mean body height 1.65.± 0.09 cm; mean body mass 52.88 ± 8.04 kg) and 16…

  2. The role of fluid temperature and form on endurance performance in the heat.

    PubMed

    Tan, P M S; Lee, J K W

    2015-06-01

    Exercising in the heat often results in an excessive increase in body core temperature, which can be detrimental to health and endurance performance. Research in recent years has shifted toward the optimum temperature at which drinks should be ingested. The ingestion of cold drinks can reduce body core temperature before exercise but less so during exercise. Temperature of drinks does not seem to have an effect on the rate of gastric emptying and intestinal absorption. Manipulating the specific heat capacity of a solution can further induce a greater heat sink. Ingestion of ice slurry exploits the additional energy required to convert the solution from ice to water (enthalpy of fusion). Body core temperature is occasionally observed to be higher at the point of exhaustion with the ingestion of ice slurry. There is growing evidence to suggest that ingesting ice slurry is an effective and practical strategy to prevent excessive rise of body core temperature and improve endurance performance. This information is especially important when only a fixed amount of fluid is allowed to be carried, often seen in some ultra-endurance events and military operations. Future studies should evaluate the efficacy of ice slurry in various exercise and environmental conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Relations of Depressive Symptoms and Antidepressant Use to Body Mass Index and Selected Biomarkers for Diabetes and Cardiovascular Disease

    PubMed Central

    Balasubramanian, Raji; Pagoto, Sherry L.; Schneider, Kristin L.; Hébert, James R.; Phillips, Lawrence S.; Goveas, Joseph S.; Culver, Annie L.; Olendzki, Barbara C.; Beck, James; Smoller, Jordan W.; Sepavich, Deidre M.; Ockene, Judith K.; Uebelacker, Lisa; Zorn, Martha; Liu, Simin

    2013-01-01

    Objectives. We investigated whether depressive symptoms and antidepressant use are associated with biomarkers for glucose dysregulation and inflammation, body mass index (BMI), and waist circumference. Methods. Postmenopausal women were recruited into the Women’s Health Initiative from 1993 to 1998, and data were collected at regular intervals through 2005. We used multiple linear regression models to examine whether depressive symptoms and antidepressant use are associated with BMI, waist circumference, and biomarkers. Results. Analysis of data from 71 809 women who completed all relevant baseline and year 3 assessments showed that both elevated depressive symptoms and antidepressant use were significantly associated with higher BMI and waist circumference. Among 1950 women, elevated depressive symptoms were significantly associated with increased insulin levels and measures of insulin resistance. Analyses of baseline data from 2242 women showed that both elevated depressive symptoms and antidepressant use were associated with higher C-reactive protein levels. Conclusions. Monitoring body habitus and other biomarkers among women with elevated depression symptoms or taking antidepressant medication may be prudent to prevent diabetes and cardiovascular disease. PMID:23763394

  4. Effects of Aerobic Fitness and Adiposity on Coagulation Biomarkers in Men vs. Women with Elevated Blood Pressure

    PubMed Central

    Wilson, Kathleen L.; Tomfohr, Lianne; Edwards, Kate; Knott, Cindy; Hong, Suzi; Redwine, Laura; Calfas, Karen; Rock, Cheryl L.; von Känel, Roland; Mills, Paul J.

    2012-01-01

    A hypercoagulable state is a potential mechanism linking elevated blood pressure (BP), adiposity and a sedentary lifestyle to development of coronary heart disease (CHD). We examined relationships among aerobic fitness and adiposity in 76 sedentary subjects with elevated BP. Blood levels of plasminogen activator inhibitor-1 (PAI-1), D-dimer, von Willebrand factor (vWF) and thrombomodulin were assessed as biomarkers of coagulation. In individuals with elevated BP, percent body fat and fitness were associated with biomarkers indicative of a hypercoagulable state, even after demographic and metabolic factors were considered. D-dimer was positively associated with percent body fat (beta=0.37, p=0.003). PAI-1 was higher in men than in women (beta=−0.31, p=0.015) and associated with lower VO2peak (beta=−0.35, p=0.024). Thrombomodulin was positively associated with VO2peak (beta=0.56, p< 0.01). vWF was not significantly associated with fitness or adiposity. Our results emphasise that both percent body fat and physical fitness are important in the maintenance of haemostatic balance. PMID:23105963

  5. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests

    NASA Astrophysics Data System (ADS)

    Girardin, C. A. J.; Aragão, L. E. O. C.; Malhi, Y.; Huaraca Huasco, W.; Metcalfe, D. B.; Durand, L.; Mamani, M.; Silva-Espejo, J. E.; Whittaker, R. J.

    2013-01-01

    The key role of tropical forest belowground carbon stocks and fluxes is well recognised as one of the main components of the terrestrial ecosystem carbon cycle. This study presents the first detailed investigation of spatial and temporal patterns of fine root stocks and fluxes in tropical forests along an elevational gradient, ranging from the Peruvian Andes (3020 m) to lowland Amazonia (194 m), with mean annual temperatures of 11.8°C to 26.4 °C and annual rainfall values of 1900 to 1560 mm yr-1, respectively. Specifically, we analyse abiotic parameters controlling fine root dynamics, fine root growth characteristics, and seasonality of net primary productivity along the elevation gradient. Root and soil carbon stocks were measured by means of soil cores, and fine root productivity was recorded using rhizotron chambers and ingrowth cores. We find that mean annual fine root below ground net primary productivity in the montane forests (0-30 cm depth) ranged between 4.27±0.56 Mg C ha-1 yr-1 (1855 m) and 1.72±0.87 Mg C ha-1 yr-1 (3020 m). These values include a correction for finest roots (<0.6 mm diameter), which we suspect are under sampled, resulting in an underestimation of fine roots by up to 31% in current ingrowth core counting methods. We investigate the spatial and seasonal variation of fine root dynamics using soil depth profiles and an analysis of seasonal amplitude along the elevation gradient. We report a stronger seasonality of NPPFineRoot within the cloud immersion zone, most likely synchronised to seasonality of solar radiation. Finally, we provide the first insights into root growth characteristics along a tropical elevation transect: fine root area and fine root length increase significantly in the montane cloud forest. These insights into belowground carbon dynamics of tropical lowland and montane forests have significant implications for our understanding of the global tropical forest carbon cycle.

  6. Identifying potential barriers to physical activity adherence: anxiety sensitivity and body mass as predictors of fear during exercise.

    PubMed

    Smits, Jasper A J; Tart, Candyce D; Presnell, Katherine; Rosenfield, David; Otto, Michael W

    2010-01-01

    A growing body of work suggests that obese adults are less likely to adhere to exercise than normal-weight adults because they experience greater levels of discomfort and distress during exercise sessions. The present study introduces and provides a preliminary test of the hypothesis that the distress experienced during exercise among persons with elevated body mass index is particularly high among those who fear somatic arousal (i.e. elevated anxiety sensitivity [AS]). Young adults were randomly assigned to complete 20 min of treadmill exercise (at 70% of their age-adjusted predicted maximum heart rate) or 20 min of rest. Body mass, AS, and negative affect were measured at baseline, and fear was measured at 4-min intervals during the experimental phase. Consistent with the authors' hypothesis, there was a significant Exercise x BMI x ASI interaction (sr(2) = .08), suggesting that the greatest fear levels during exercise were observed among participants with high body mass, but only if they also had elevated AS. These findings offer a new approach for identifying specific vulnerable individuals and have clear clinical implications, given that the amplification factor of AS can be modified with clinical intervention.

  7. Paleomagnetic Records of Ancient Core Dynamos

    NASA Astrophysics Data System (ADS)

    Tikoo, S. M.

    2018-05-01

    We review paleomagnetic results that constrain the field intensities and longevities of ancient core dynamos operating within the Moon as well as within the parent bodies of several meteorite classes.

  8. Needle Biopsy

    MedlinePlus

    ... needle biopsy procedures include fine-needle aspiration and core needle biopsy. Needle biopsy may be used to ... hollow needle to draw cells from your body. Core needle biopsy. This type of needle biopsy uses ...

  9. Spatial distribution and trends in trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls in Lake Worth sediment, Fort Worth, Texas

    USGS Publications Warehouse

    Harwell, Glenn Richard; Van Metre, Peter C.; Wilson, Jennifer T.; Mahler, Barbara J.

    2003-01-01

    In spring 2000, the Texas Department of Health issued a fish consumption advisory for Lake Worth in Fort Worth, Texas, because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish. In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey collected 21 surficial sediment samples and three gravity core sediment samples to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of hydrophobic contaminants to Lake Worth. Compared to reference (background) concentrations in the upper lake, elevated PCB concentrations were detected in the surficial sediment samples collected in Woods Inlet, which receives surface runoff from Air Force facilities and urban areas. Gravity cores from Woods Inlet and from the main part of the lake near the dam indicate that the concentrations of PCBs were three to five times higher in the 1960s than in 2000. A regression method was used to normalize sediment concentrations of trace elements for natural variations and to distinguish natural and anthropogenic contributions to sediments. Concentrations of several trace elements—cadmium, chromium, copper, lead, and zinc—were elevated in sediments in Woods Inlet, along the shoreline of Air Force facilities, and in the main lake near the dam. Concentrations of these five trace elements have decreased since 1970. Polycyclic aromatic hydrocarbons also were elevated in the same areas of the lake. Concentrations of total polycyclic aromatic hydrocarbons, normalized with organic carbon, were mostly stable in the upper lake but steadily increased near the dam, except for small decreases since 1980. The Woods Inlet gravity core showed the largest increase of the three core sites beginning about 1940; total polycyclic aromatic hydrocarbon concentrations in post-1940 sediments from the core showed three apparent peaks about 1960, 1984, and 2000. The concentrations of organochlorine pesticides were low relative to consensus-based sediment-quality guidelines and either decreased or remained constant since 1970. The two likely sources of hydrophobic contaminants to the lake are urban areas around the lake and the drainage area of Meandering Road Creek that contributes runoff to Woods Inlet and includes Air Force facilities.

  10. Body and brain temperature coupling: the critical role of cerebral blood flow

    PubMed Central

    Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.

    2010-01-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681

  11. Body and brain temperature coupling: the critical role of cerebral blood flow.

    PubMed

    Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A

    2009-08-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.

  12. Probing the Inner Core with P'P'

    NASA Astrophysics Data System (ADS)

    Day, E. A.; Irving, J. C. E.

    2015-12-01

    Geophysical observations of the inner core today improve our understanding not just of the processes occurring in the core at the present, but also those that have occurred in the past. As the inner core freezes it may record clues as to the state of the Earth at the time of growth, although the texture of the inner core may also be modified through post-solidification mechanisms. The seismic structure of the inner core is not simple; the dominant pattern is one of anisotropic and isotropic differences between the Eastern and Western 'hemispheres' of the inner core. Additionally, there is evidence for an innermost inner core, layering of the uppermost inner core, and possibly super-rotation of the inner core relative to the mantle. Most body wave studies of inner core structure use PKP-PKIKP differential travel times to constrain velocity variations within the inner core. However, body wave studies are inherently limited by the geometry of fixed sources and stations, and thus there are some areas of the inner core that are relatively under-sampled, even in today's data-rich world. Here, we examine the differential travel times of the different branches of P'P' (PKIKPPKIKP and PKPPKP), comparing the arrival time of inner core sensitive branch, P'P'df, with the arrival times of branches that only reach the outer core. By using P'P' we are able to exploit alternative ray geometries and sample different regions of the inner core to those areas accessible to studies which utilize PKIKP. We use both linear and non-linear stacking methods to make observations of small amplitude P'P' phases. These measurements match the broad scale hemispherical pattern of anisotropy in the inner core.

  13. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/pharmacodynamic analysis of three phase 1 trials

    PubMed Central

    Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep

    2013-01-01

    Aim To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Methods Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. nonmem was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. Results The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax, 2.2 (1.9, 2.7)°C; ABT-102 EC50, 20 (15, 28) ng ml−1; tolerance T50, 28 (20, 43) h. Conclusions At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. PMID:22966986

  14. Anisotropy of the innermost inner core from body wave and normal mode observations

    NASA Astrophysics Data System (ADS)

    Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.

    2016-12-01

    It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.

  15. Hormone Replacement Therapy, Iron, and Breast Cancer

    DTIC Science & Technology

    2004-11-01

    accumulates due to the mutation of the HFE gene (hemochromatosis EeJ, iron elevated in the mouse body mimics the post-menopausal condition. In the present...model. Since iron slowly accumulates due to the mutation of the HFE gene (hemochromatosis Fe), iron elevated in the mouse body mimics the post...menopausal condition. Development of iron overloaded transgenic mice: The murine HFE gene is structurally similar to the human gene . Four different HFE gene

  16. Central circuitries for body temperature regulation and fever.

    PubMed

    Nakamura, Kazuhiro

    2011-11-01

    Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.

  17. Age, state, environment, and season dependence of senescence in body mass.

    PubMed

    Kroeger, Svenja B; Blumstein, Daniel T; Armitage, Kenneth B; Reid, Jane M; Martin, Julien G A

    2018-02-01

    Senescence is a highly variable process that comprises both age-dependent and state-dependent components and can be greatly affected by environmental conditions. However, few studies have quantified the magnitude of age-dependent and state-dependent senescence in key life-history traits across individuals inhabiting different spatially structured and seasonal environments. We used longitudinal data from wild female yellow-bellied marmots ( Marmota flaviventer ), living in two adjacent environments that differ in elevation and associated phenology, to quantify how age and individual state, measured as "time to death," affect body mass senescence in different environments. Further, we quantified how patterns of senescence differed between two biologically distinct seasons, spring, and late summer. Body mass senescence had an age-dependent component, expressed as a decrease in mass in old age. Overall, estimated age-dependent senescence was greater in females living in the more favorable lower elevation environment, than in the harsher higher elevation environment, and greater in late summer than in spring. Body mass senescence also had a state-dependent component, captured by effects of time to death, but only in the more favorable lower elevation environment. In spring, body mass gradually decreased from 2 years before death, whereas in late summer, state-dependent effects were expressed as a terminal decrease in body mass in the last year of life. Contrary to expectations, we found that senescence was more likely to be observed under more favorable environmental conditions, rather than under harsher conditions. By further demonstrating that senescence patterns differ among seasons, our results imply that within-year temporal environmental variation must be considered alongside spatial environmental variation in order to characterize and understand the pattern and magnitude of senescence in wild populations.

  18. METHOD FOR TREATING GRAPHITE PRODUCT

    DOEpatents

    Gurinsky, D.H.

    1961-08-01

    A method is described for treating a carbon body with a carbonyl consisting of nickel, iron, and mixtures thereof. The carbonyl is decomposed in a non-oxidizing atmosphere into a mixture of the metal and carbon monoxide on the surface of a carbon body heated to above the decomposition point of the carbonyl. The temperature is increased of the carbon body to an elevated temperature above the point at which a liquid eutectic mixture of the metal and carbon of the carbon body is formed at the surface and below that at which substantial carburization occurs. The elevated temperature is maintained whereby the liquid mixture flows over the surface of the carbon body. The carbon body is cooled below the decomposition temperature of the carbonyl of the metal and to a temperature suitable for forming the carbonyl of the metal. The carbon body is then contacted with carbon monoxide at the carbonyl-forming temperature, whereby carbonyl of the metal is formed in and on the carbon body. The carbonyl is removed from the carbon body by gasifying the carbonyl. (AEC)

  19. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin

    USGS Publications Warehouse

    Dean, W.E.; Gardner, J.V.; Piper, D.Z.

    1997-01-01

    Evidence from sediments in cores collected from within the present oxygen-minimum zone (OMZ; 600-1200 m) on the central and northern California margins record several episodes during the last interstadial (OIS-3, ca. 60-24 ka) of deposition of laminated sediments containing elevated concentrations of several trace elements indicative of anoxic conditions (e.g., Mo, Ni, Zn, and Cu). The presence of abundant well-preserved organic matter, as well as lack of bioturbation and the presence of elevated concentrations of Mo and other trace elements, all support the theory that the OMZ in the northeastern Pacific Ocean was more intense, possibly anoxic, at several times during the late Pleistocene. Sediments of all ages in cores from the southern California margin contain elevated concentrations of Mo, suggesting that this area has always had higher rates of sulfate reduction than either the central or northern California areas. Most of the Ba in sediments in all cores collected on the upper continental slope (200-2700 m) off California and southern Oregon is derived from detrital clastic material, and this source did not change much in time. However, the amount of biogenic Ba did vary with time, and these variations closely follow the temporal variations in organic C (Corg) mass accumulation rate. Using Ba and Corg mass accumulation rates as proxy variables for productivity, all cores show that organic productivity under the California Current upwelling system was highest during OIS-3 and the Holocene, and lowest during the last glacial interval (LGI, ca. 24-10 ka). All paleoproductivity proxy variables indicate that the southern California area has always experienced higher productivity than other areas under the California Current, at least over the last 50 ky. Copyright ?? 1997 Elsevier Science Ltd.

  20. Earth's Climate History from Glaciers and Ice Cores

    NASA Astrophysics Data System (ADS)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  1. Range of earth structure nonuniqueness implied by body wave observations.

    NASA Technical Reports Server (NTRS)

    Wiggins, R. A.; Mcmechan, G. A.; Toksoz, M. N.

    1973-01-01

    The Herglotz-Wiechert integral for the direct inversion of ray parameter versus distance curves can be manipulated to find the envelope of all possible models consistent with geometrical body wave observations (travel time and ray parameter versus distance). Such an extremal inversion approach has been used to find the uncertainty bounds for the velocity structure in the mantle and core. It is found, for example, that there is an uncertainty of plus or minus 40 km in the radius of the inner core boundary, plus or minus 18 km at the core-mantle boundary, and plus or minus 35 km at the 435-km transition zone. The velocity uncertainty is about plus or minus 0.08 km/sec for P and S waves in the lower mantle and about plus or minus 0.20 km/sec in the core. Experiments with various combinations of ray types in the core indicate that rather crude observations of SKKS-SKS travel times confine the range of possible models far more dramatically than do the most precise estimates of PmKP travel times. Comparisons of results from extremal inversion and linearized perturbation inversions indicate that body wave behavior is too strongly nonlinear for linearized schemes to be effective for predicting uncertainty.

  2. Determinants of food resource assimilation by stream insects along a tropical elevation gradient.

    PubMed

    Atkinson, Carla L; Encalada, Andrea C; Rugenski, Amanda T; Thomas, Steve A; Landeira-Dabarca, Andrea; Poff, N LeRoy; Flecker, Alexander S

    2018-04-26

    Food resource availability varies along gradients of elevation where riparian vegetative cover exerts control on the relative availability of allochthonous and autochthonous resources in streams. Still, little is known about how elevation gradients can alter the availability and quality of resources and how stream food webs respond. We sampled habitat characteristics, stable isotope signatures (δ 13 C, δ 15 N, δ 2 Η) and the carbon, nitrogen and phosphorus composition of basal food resources and insects in 11 streams of similar size along an elevation gradient from 1260 to 4045 m on the northeastern slope of the Ecuadorian Andean-Amazon region. Algal-based (autochthonous) food resources primarily supported insects occurring at higher elevations, but at low elevations there was a shift to greater allochthony, corresponding with lower light availability and reduced epilithon resource abundance. Additionally, percent phosphorus (%P) of both autochthonous and allochthonous food resources and of body tissue for some abundant insect taxa (stonefly Anacroneuria and mayfly Andesiops) declined with increasing elevation, despite the greater autochthony at high elevation. Allochthonous food resources were always a lower quality food resource, as indicated by higher C:N, N:P, and lower %P, across elevation in comparison to autochthonous resources, but autochthonous resources had higher %P than allochthonous resources across all elevations and comprised a greater portion of high-elevation insect resource assimilation. Aquatic insects may be able to compensate for the lower quality of both resource types at high elevations through altered body stoichiometry, even though higher quality autochthonous-based foods are in high abundance at high elevations.

  3. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia.

    PubMed

    Herrmann, Oliver; Tarabin, Victoria; Suzuki, Shigeaki; Attigah, Nicolas; Coserea, Irinel; Schneider, Armin; Vogel, Johannes; Prinz, Simone; Schwab, Stefan; Monyer, Hannah; Brombacher, Frank; Schwaninger, Markus

    2003-04-01

    Although the function of fever is still unclear, it is now beyond doubt that body temperature influences the outcome of brain damage. An elevated body temperature is often found in stroke patients and denotes a bad prognosis. However, the pathophysiologic basis and treatment options of elevated body temperature after stroke are still unknown. Cerebral ischemia rapidly induced neuronal interleukin-6 (IL-6) expression in mice. In IL-6-deficient mice, body temperature was markedly decreased after middle cerebral artery occlusion (MCAO), but infarct size was comparable to that in control mice. If body temperature was controlled by external warming after MCAO, IL-6-deficient mice had a reduced survival, worse neurologic status, and larger infarcts than control animals. In cell culture, IL-6 exerted an antiapoptotic and neuroprotective effect. These data suggest that IL-6 is a key regulator of body temperature and an endogenous neuroprotectant in cerebral ischemia. Neuroprotective properties apparently compensate for its pyretic action after MCAO and enhance the safety of this endogenous pyrogen.

  4. Differences in Body Fat Distribution Play a Role in the Lower Levels of Elevated Fasting Glucose amongst Ghanaian Migrant Women Compared to Men.

    PubMed

    Nicolaou, Mary; Kunst, Anton E; Busschers, Wim B; van Valkengoed, Irene G; Dijkshoorn, Henriette; Boateng, Linda; Brewster, Lizzy M; Snijder, Marieke B; Stronks, Karien; Agyemang, Charles

    2013-01-01

    Despite higher levels of obesity, West African migrant women appear to have lower rates of type 2 diabetes than their male counterparts. We investigated the role of body fat distribution in these differences. Cross-sectional study of Ghanaian migrants (97 men, 115 women) aged 18-60 years in Amsterdam, the Netherlands. Weight, height, waist and hip circumferences were measured. Logistic regression was used to explore the association of BMI, waist and hip measurements with elevated fasting glucose (glucose≥5.6 mmol/L). Linear regression was used to study the association of the same parameters with fasting glucose. Mean BMI, waist and hip circumferences were higher in women than men while the prevalence of elevated fasting glucose was higher in men than in women, 33% versus 19%. With adjustment for age only, men were non-significantly more likely than women to have an elevated fasting glucose, odds ratio (OR) 1.81, 95% CI: 0.95, 3.46. With correction for BMI, the higher odds among men increased and were statistically significant (OR 2.84, 95% CI: 1.32, 6.10), but with consideration of body fat distribution (by adding both hip and waist in the analysis) differences were no longer significant (OR 1.56 95% CI: 0.66, 3.68). Analysis with fasting glucose as continuous outcome measure showed somewhat similar results. Compared to men, the lower rates of elevated fasting glucose observed among Ghanaian women may be partly due to a more favorable body fat distribution, characterized by both hip and waist measurements.

  5. Low body temperature in long-lived Ames dwarf mice at rest and during stress.

    PubMed

    Hunter, W S; Croson, W B; Bartke, A; Gentry, M V; Meliska, C J

    1999-09-01

    Among homeothermic animals, larger species generally have lower metabolic rates and live longer than do smaller species. Because Ames dwarf mice (dwarfs) live approximately 1 year longer than their larger normal sex- and age-matched siblings (normals), we hypothesized that they would have lower body core temperature (Tco). We, therefore, measured Tco of six dwarfs and six normals during 24-h periods of ad lib feeding, 24-h food deprivation, and emotional stress induced by cage switching. With ad lib feeding, Tco of dwarfs averaged 1.6 degrees C lower than normals; during food deprivation, Tco of both dwarfs and controls was significantly lower than when food was available ad lib; and following cage switch, Tco was elevated in both groups. However, during all three experiments, Tco was significantly lower in dwarfs than in normals. These data support the hypothesis that Ames dwarf mice, which live longer than normal size controls, maintain lower Tco than normals. Because dwarfs are deficient in thyroid stimulating hormone (TSH) and growth hormone (GH), their low Tco may be a result of reduced thermogenesis due to lack of those hormones. However, whether low Tco per se is related to the increased longevity of the dwarf mice remains an interesting possibility to be investigated.

  6. Toroidal core winder

    DOEpatents

    Potthoff, Clifford M.

    1978-01-01

    The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.

  7. Orion Post-Landing Crew Thermal Control Modeling and Analysis Results

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia D.; Bue, Grant; Rains, George E.

    2009-01-01

    In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.

  8. Insight into the latitudinal distribution of methane emissions throughout the Holocene from ice core methane records.

    NASA Astrophysics Data System (ADS)

    Sowers, T. A.; Vladimirova, D.; Blunier, T.

    2017-12-01

    During the preAnthropogenic era (prior to 1600AD) the interpolar CH4 gradient (IPG) is effectively dictated by the ratio of tropical to Pan Arctic CH4 emissions. IPG records from ice cores in Greenland and Antarctica provide fundamental information for assessing the latitudinal distribution of CH4 emissions and their relation to global climate change. We recently constructed a high-resolution (100yr) record of IPG changes throughout the Holocene using the ReCAP (E. Greenland) and WAIS (W. Antarctica) ice cores. Contemporaneous samples from both cores were analyzed on the same day to minimize analytical uncertainties associated with IPG reconstructions. CH4results from the WAIS core were indistinguishable from previous results suggesting our analytical scheme was intact (± 3ppb). Our reconstructed IPG showed early Holocene IPG values of 65ppb declining throughout the Holocene to values approximating 45 ppb during the latest portion of the Holocene (preAnthropogenic). We then utilized an eight box atmospheric methane box model (EBAMM) to quantify emission scenarios that agree with ice core CH4 records (concentration, IPG and isotopic composition). Our results are consistent with the idea that early Holocene peatland development in the PanArctic regions followed glacier retreat near the end of the last glacial termination contributing an additional 20Tg of CH4/yr relative to the late Holocene. In addition, we had to invoke elevated biomass burning emissions (40Tg/yr) during the early Holocene to account for the elevated d13CH4 values.

  9. The Science of Inaccurate Temperatures: Explaining How the Bahamas Did Not Form in a Jacuzzi

    NASA Astrophysics Data System (ADS)

    Murray, S.; Swart, P. K.; McNeill, D. F.

    2016-12-01

    The Bahamas archipelago is a carbonate platform that formed in the warm waters of the Gulf Stream current. Using clumped isotope paleothermometry, it has been shown that carbonates extending back through the Miocene taken from cores throughout the Bahamas have all precipitated from fluids at temperatures similar to what is found in the Bahamas in the present day (15 to 35°C). However, in a single core, (Clino), collected off the western edge of Great Bahama Bank, Δ47 values have been measured which suggest formation at significantly warmer temperatures (42 to 53°C). These values are present in spite of the fact that the sediments have never been deeply buried. In a parallel study, these same cores were measured for their carbonate associated sulfate (CAS). The only core that presented evidence of elevated CAS, indicative of bacterial sulfate reduction (BSR), was the Clino core. In this core the clumped isotope temperatures are correlated with changes in the δ34S of the CAS. This finding suggests that BSR can have a significant effect on the Δ47 value producing erroneous temperatures. This is further supported by examining a carbonate concretion with extreme negative δ13C values (-30‰) taken as evidence of BSR. The clumped isotope temperatures in this nodule are elevated relative to its burial history with an increase of 15 °C from the outer edge of the concretion to the center. The increase in temperature correlates well with the decreasing δ13C suggesting increasing fractionation associated with BSR is directly impacting the clumped isotope measurements.

  10. Warming up with an ice vest: core body temperature before and after cross-country racing.

    PubMed

    Hunter, Iain; Hopkins, J Ty; Casa, Douglas J

    2006-01-01

    Athletes running in a hot, humid environment may have an increased risk of heat illness. In the 2004 Olympic Games, American and Australian athletes were provided with ice vests designed to cool their bodies before performance. The vest appeared to be effective in keeping body temperatures down and improving the performance of the marathoners. However, body temperatures have not been reported when the vest was used before an actual competition. To determine if wearing the Nike Ice-Vest decreased core temperature (Tc) before and during athletic performance in warm (26 degrees C to 27 degrees C), humid (relative humidity = 50% to 75%) conditions. A 2 x 3 mixed-model design was used to compare groups (ice vest, no ice vest) across changes in temperature from baseline (10 minutes and 1 minute before the race and immediately after the race). 2005 Big Wave Invitational 4-km race in Hawaii and 2005 Great American 5-km race in North Carolina. Eighteen women from a National Collegiate Athletic Association Division I cross-country team who participated in either the Big Wave Invitational or the Great American Race. Four hours before the start of the race, the athletes ingested radiotelemetry temperature sensors. One hour before the start of the race, Tc was recorded, and half of the athletes donned a Nike Ice-Vest, which was removed immediately before the race. Additional Tc readings were taken at 10 minutes and 1 minute before the start of the race and immediately after the race. Ten minutes before the start of the race, Tc was elevated by 0.84 degrees C +/- 0.37 degrees C in the no-vest group, compared with 0.29 degrees C +/- 0.56 degrees C in the ice-vest group ( P < .01). This difference in Tc persisted at 1 minute before the start. Immediately after the finish, the increase in Tc averaged 2.75 degrees C +/- 0.62 degrees C in the no-vest group and 2.12 degrees C +/- 0.62 degrees C in the ice-vest group ( P < .01). Wearing an ice vest before cross-country performance in warm, humid conditions allowed athletes to start and finish the competition with a lower Tc than did those who did not wear a vest.

  11. Associations between adiposity indicators and elevated blood pressure among Chinese children and adolescents.

    PubMed

    Dong, B; Wang, Z; Wang, H-J; Ma, J

    2015-04-01

    Adiposity is closely related to elevated blood pressure (BP); however, which adiposity indicator is the best predictor of elevated BP among children and adolescents is unclear. To clarify this, 99,366 participants aged 7-17 years from the Chinese National Survey on Students' Constitution and Health in 2010 were included in this study. The adiposity indicators, including weight, body mass index (BMI), waist circumference, waist-to-height ratio (WHtR), hip circumference, body adiposity index (BAI), waist-to-hip ratio (WHR) and skinfold thickness, were converted into z-scores before use. The associations between elevated BP and adiposity indicators z-scores were assessed by using logistic regression model and area under the receiver operating characteristic curve (AUC). In general, BAI, BMI and WHtR z-scores were superior for predicting elevated BP compared with weight, waist circumference, hip circumference, WHR and skinfold thickness z-scores. In both sexes, BMI z-score revealed slightly higher AUCs than other indicators. Our findings suggest that general adiposity indicators were equivalent, if not superior, to abdominal adiposity indicators to predict elevated BP. BMI could be a better predictor of elevated BP than other studied adiposity indicators in children.

  12. Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature.

    PubMed

    Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J

    2017-09-01

    Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.

  13. POMC neurons in heat: A link between warm temperatures and appetite suppression.

    PubMed

    Vicent, Maria A; Mook, Conor L; Carter, Matthew E

    2018-05-01

    When core body temperature increases, appetite and food consumption decline. A higher core body temperature can occur during exercise, during exposure to warm environmental temperatures, or during a fever, yet the mechanisms that link relatively warm temperatures to appetite suppression are unknown. A recent study in PLOS Biology demonstrates that neurons in the mouse hypothalamus that express pro-opiomelanocortin (POMC), a neural population well known to suppress food intake, also express a temperature-sensitive ion channel, transient receptor potential vanilloid 1 (TRPV1). Slight increases in body temperature cause a TRPV1-dependent increase in activity in POMC neurons, which suppresses feeding in mice. Taken together, this study suggests a novel mechanism linking body temperature and food-seeking behavior.

  14. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    PubMed

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Feasibility study of full-reactor gas core demonstration test

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.

    1973-01-01

    Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.

  16. Effects of post-hatch brooding temperature on broiler behavior, welfare, and growth.

    PubMed

    Henriksen, S; Bilde, T; Riber, A B

    2016-10-01

    An elevated brooding temperature during the first wk post hatch of broilers may potentially increase activity levels and reduce welfare problems in terms of non- and slow-starters, lameness, and contact dermatitis. The effects of an elevated brooding temperature the first 7 d post hatch on behavior, welfare, and growth of Ross 308 broilers were investigated. Groups of 28 broilers (14 males and 14 females) were distributed in a balanced way according to their hatching weight (below or above mean), the age of parent breeders (28 or 50 wk of age), and initial brooding temperature (normal 33°C; warm: 37°C) resulting in 8 different treatment groups. Behavioral data were collected on d zero to 6 of age, data on body weight on d zero, 7, 21, and 34 of age, and data on gait and contact dermatitis on d 21 and 34 of age. An elevated brooding temperature resulted in increased body temperature of broilers 5 h after placement (39.9 ± 0.04°C vs. 39.1 ± 0.04°C; P < 0.0001) whereas no difference was found 24 h after placement (P = 0.35). Broilers reared with elevated brooding temperature initiated feeding and drinking earlier, apart from broilers with low hatching weight from old parent breeders (P < 0.0001). They also showed higher activity levels from d one to 6 of age (P < 0.0001) and a higher inter-individual distance at d zero and one of age (P < 0.0001). Broilers with a high hatching weight reared at normal brooding temperature had a higher prevalence of hock burns at d 34 of age (P = 0.001). Broilers reared at elevated brooding temperature had lower body weight at d 7 of age (P < 0.0001); however, no difference appeared from d 21 of age (P = 0.58). No effect of brooding temperature was found on body weight uniformity (P = 0.81). In conclusion, the welfare of broilers may be improved from an elevated brooding temperature the first 7 d post hatch without affecting body weight uniformity and final body weight. © 2016 Poultry Science Association Inc.

  17. Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera

    NASA Astrophysics Data System (ADS)

    Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro

    2015-07-01

    Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.

  18. A new generation of effective core potentials for correlated calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani

    Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less

  19. A new generation of effective core potentials for correlated calculations

    DOE PAGES

    Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani; ...

    2017-12-12

    Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less

  20. The effect of humidified heated breathing circuit on core body temperature in perioperative hypothermia during thyroid surgery.

    PubMed

    Park, Hue Jung; Moon, Ho Sik; Moon, Se Ho; Do Jeong, Hyeon; Jeon, Young Jae; Do Han, Keung; Koh, Hyun Jung

    2017-01-01

    Purpose: During general anesthesia, human body easily reaches a hypothermic state, which is mainly caused by heat redistribution. Most studies suggested that humidified heated breathing circuits (HHBC) have little influence on maintenance of the core temperature during early phase of anesthesia. This study was aimed at examining heat preservation effect with HHBC in case of undergoing surgery with less exposure of surgical fields and short surgical duration. Methods: Patients aged 19 to 70 yr - old, ASA-PS I or II who were scheduled for elective thyroidectomy were assigned and divided to the group using HHBC (G1) and the group using conventional circuit (G2) by random allocation. During operation, core, skin, and room temperatures were measured every 5minutes by specific thermometer. Results: G1 was decreased by a lesser extent than G2 in core temperature, apparently higher at 30 and 60 minutes after induction. Skin and room temperatures showed no differences between the two groups (p>0.05). Consequently, we confirmed HHBC efficiently prevented a decrease in core temperature during early period in small operation which has difficulty in preparing warming devices or environments were not usually considered. Conclusions: This study showed that HHBC influences heat redistribution in early period of operation and can lessen the magnitude of the decrease in core body temperature. Therefore, it can be applied efficiently for other active warming devices in mild hypothermia.

  1. Uncoupling proteins and sleep deprivation.

    PubMed

    Cirelli, C; Tononi, G

    2004-07-01

    In both humans and animals sleep deprivation (SD) produces an increase in food intake and in energy expenditure (EE). The increase in EE is a core element of the SD syndrome and, in rats, is negatively correlated with survival rate. However, the mechanisms involved are not understood. A large component of resting EE is accounted for by the mitochondrial proton leak, which is mediated by uncoupling proteins (UCPs). We measured UCP2, UCP3, and UCP5 mRNA levels in rats during the spontaneous sleep/waking cycle and after short (8 hours) and long (7 days) SD. During spontaneous sleep and waking there was no change in the level of mitochondrial uncoupling as measured by UCPs expression, either in the brain or in peripheral tissues. During SD, by contrast, UCP3 expression in skeletal muscle was elevated, but the increase was similar, compared to sleep, after both short-term and long-term SD. UCP2 expression, on the other hand, was strongly increased in the liver and skeletal muscle of long-term sleep deprived animals and much less so, or not at all, in yoked controls or in rats that lost only 8 hours of sleep. Since the skeletal muscle is the largest tissue in the body, an elevated muscular expression of UCP2 is likely to affect the overall resting EE and may thus contribute to its increase after SD.

  2. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide.

    PubMed

    Fonken, Laura K; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high or low heat loss.

    PubMed

    Mousel, M R; Stroup, W W; Nielsen, M K

    2001-04-01

    Daily locomotor activity, core body temperature, and their circadian rhythms were measured in lines of mice selected for high (MH) or low (ML) heat loss and unselected controls (MC). Lines were created by selecting for 16 generations in each of three replicates. Collection of locomotor activity and core temperature data spanned Generations 20 and 21 for a total of 352 mice. Physical activity and core body temperature data were accumulated using implanted transmitters and continuous automated collection. Measurement for each animal was for 3 d. Activity was recorded for each half hour and then averaged for the day; temperature was averaged daily; circadian rhythm was expressed in 12-h (light vs dark) or 6-h periods as well as by fitting cyclic models. Activity means were transformed to log base 2 to lessen heterogeneity of variance within lines. Heat loss for a 15-h period beginning at 1630 and feed intake for 7 d were measured on 74 additional mice in order to estimate the relationship between locomotor activity and heat loss or feed intake. Selection lines were different (P < 0.01) for both locomotor activity and core body temperature. Differences were due to selection (MH-ML, P < 0.01), and there was no evidence of asymmetry of response (P > 0.38). Retransformed from log base 2 to the scale of measurement, mean activity counts were 308, 210, and 150 for MH, MC, and ML, respectively. Mean core temperatures were 37.2, 36.9, and 36.7 degrees C for MH, MC, and ML (P < 0.01), respectively. Females had greater physical activity (P < 0.01) and body temperature (P < 0.01) than males. There was no evidence of a sex x selection criterion interaction for either activity or temperature (P > 0.20). Overall phenotypic correlation between body temperature and log base 2 activity was 0.43 (P < 0.01). Periods during the day were different for both 12- and 6-h analyses (P < 0.01), but there were no period x selection criterion interactions (P > 0.1) for physical activity or body temperature. More sensitive cyclic models revealed significant (P < 0.01) 24-, 12-, 8-, and 6-h cycles that differed (P < 0.01) among lines. Estimated differences between MH and ML mice in feed intake and heat loss due to locomotor activity were 36 and 11.5%, respectively. Variation in activity thus contributed to variation in feed intake.

  4. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers

    PubMed Central

    Osinchuk, Stephanie; Taylor, Susan M.; Shmon, Cindy L.; Pharr, John; Campbell, John

    2014-01-01

    This study evaluated the CorTemp® ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp® sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and −0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and −1.1°C. PMID:25320380

  5. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    PubMed

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  6. Deep mantle structure as a reference frame for movements in and on the Earth.

    PubMed

    Torsvik, Trond H; van der Voo, Rob; Doubrovine, Pavel V; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D; Trønnes, Reidar G; Webb, Susan J; Bull, Abigail L

    2014-06-17

    Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.

  7. Canine blood volume and cardiovascular function during hyperthermia.

    PubMed

    Miki, K; Morimoto, T; Nose, H; Itoh, T; Yamada, S

    1983-08-01

    The effect of acute hyperthermia on hemodynamic functions and blood volume regulation was examined on eight splenectomized dogs. Elevation of core body temperature by 2 degrees C over 90 min caused significant increase in cardiac output (11.2 +/- 12.5 ml X min-1 X kg-1 or about 10%) and significant decrease in total peripheral resistance (TPR; -1.3 +/- 1.0 mmHg X s X ml-1 or about 20%), whereas blood volume (BV), plasma oncotic pressure, and intravascular protein mass remained unchanged. Thus the raised core temperature caused peripheral vasodilation with decreased TPR and compensatory increase in cardiac output. Because BV remained unchanged during warming, mobilization of extravascular fluid did not occur; only the redistribution of blood to the vasodilated cutaneous circulation took place. To assess the effects of heat stress on transvascular fluid equilibrium, Ringer solution (10.7 ml X kg-1 X 10 min-1) was infused under normothermic and hyperthermic conditions. The volume of fluid retained within the intravascular space under equilibrium state was 33.5% in hyperthermia and 9.4% in normothermia. In hyperthermia, the transvascular fluid shift and urinary output were decreased both during and after infusion. The role of preferential fluid retention within the intravascular space observed during hyperthermia was discussed in relation to the mechanism to maintain cardiovascular function and BV under heat stress.

  8. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin

    2017-02-01

    The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.

  9. Perisinusoidal cell hypertrophy in a patient with acquired immunodeficiency syndrome.

    PubMed

    Kossaifi, T; Dupon, M; Le Bail, B; Lacut, Y; Balabaud, C; Bioulac-Sage, P

    1990-08-01

    A 33-year-old heterosexual white man underwent a liver biopsy for determination of mild elevation of aminotransferase levels (aspartate aminotransferase, two times; alanine aminotransferase, three times). The patient had acquired immunodeficiency syndrome (stage IVC2) with tuberculosis of the lymph nodes. Antibody to hepatitis B surface antigen and antibody to hepatitis B core antigen were positive. Syphillis tests were positive. Liver architecture was normal; sinusoids were dilated with perisinusoidal, centrilobular, and portal fibrosis. On a 1-micron-thick section and under electron microscopy, perisinusoidal cells appeared to be massively loaded with lipids, while endothelial cells contained numerous dense bodies. Some hepatocytes presented evidence of cell damage. Sinusoids were infiltrated by an increased number of lymphocytes and macrophages. This patient who had recently been treated for tuberculosis was not taking extra vitamin A. He had no disease so far reported as being associated with perisinusoidal cell hypertrophy. This case and others are evidence that acquired immunodeficiency syndrome represents another cause of perisinusoidal cell hypertrophy in which there is no documented hypervitaminosis A.

  10. Carbon dioxide balneotherapy and cardiovascular disease.

    PubMed

    Pagourelias, Efstathios D; Zorou, Paraskevi G; Tsaligopoulos, Miltiadis; Athyros, Vasilis G; Karagiannis, Asterios; Efthimiadis, Georgios K

    2011-09-01

    Carbon dioxide (CO(2)) balneotherapy is a kind of remedy with a wide spectrum of applications which have been used since the Middle Ages. However, its potential use as an adjuvant therapeutic option in patients with cardiovascular disease is not yet fully clarified. We performed a thorough review of MEDLINE Database, EMBASE, ISI WEB of Knowledge, COCHRANE database and sites funded by balneotherapy centers across Europe in order to recognize relevant studies and aggregate evidence supporting the use of CO(2) baths in various cardiovascular diseases. The three main effects of CO(2) hydrotherapy during whole body or partial immersion, including decline in core temperature, an increase in cutaneous blood flow, and an elevation of the score on thermal sensation, are analyzed on a pathophysiology basis. Additionally, the indications and contra-indications of the method are presented in an evidence-based way, while the need for new methodologically sufficient studies examining the use of CO(2) baths in other cardiovascular substrates is discussed.

  11. Carbon dioxide balneotherapy and cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Pagourelias, Efstathios D.; Zorou, Paraskevi G.; Tsaligopoulos, Miltiadis; Athyros, Vasilis G.; Karagiannis, Asterios; Efthimiadis, Georgios K.

    2011-09-01

    Carbon dioxide (CO2) balneotherapy is a kind of remedy with a wide spectrum of applications which have been used since the Middle Ages. However, its potential use as an adjuvant therapeutic option in patients with cardiovascular disease is not yet fully clarified. We performed a thorough review of MEDLINE Database, EMBASE, ISI WEB of Knowledge, COCHRANE database and sites funded by balneotherapy centers across Europe in order to recognize relevant studies and aggregate evidence supporting the use of CO2 baths in various cardiovascular diseases. The three main effects of CO2 hydrotherapy during whole body or partial immersion, including decline in core temperature, an increase in cutaneous blood flow, and an elevation of the score on thermal sensation, are analyzed on a pathophysiology basis. Additionally, the indications and contra-indications of the method are presented in an evidence-based way, while the need for new methodologically sufficient studies examining the use of CO2 baths in other cardiovascular substrates is discussed.

  12. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments

    USGS Publications Warehouse

    Cahoon, D.R.; Marin, P.E.; Black, B.K.; Lynch, J.C.

    2000-01-01

    High-resolution measures of vertical accretion, elevation, and compaction of shallow-water sediments are fundamental to understanding the processes that control elevation change and the mechanisms of progradation (e.g., development of mudflats and intertidal wetlands) in coastal systems. Yet, measurements of elevation by traditional survey methods often are of low accuracy because of the compressible nature of the substrates. Nor do they provide measures of vertical accretion or sediment compaction. This paper evaluates the use in shallow-water systems of an approach designed to measure these variables in vegetated wetlands. The approach employs simultaneous measures of elevation from temporary benchmarks using a sedimentation-erosion table (SET) and vertical accretion from marker horizons with sediment cores collected with a cryogenic coring apparatus. The measures are made with a level of resolution sufficient to distinguish between the influence of surface and subsurface processes on elevation, thus providing quantitative estimates of shallow subsidence. The SET-marker horizon approach was evaluated on a developing splay created by an artificial crevasse of a distributary in the Mississippi River delta. The approach provided high-resolution measures of vertical accretion (48.3 ' 2.0 cm.) and elevation (36.7 ' 1.6 cm) over a 4-year period, with the difference between the two indicating the amount of shallow subsidence. In addition, by laying new marker horizons in later years, the approach provided rates not only of shallow subsidence (3.9 ' 0.5 cm y-1) but also compaction of newly deposited seiments (2.1 ' 0.6 cm y-1) and compaction of underlying sediments (1.8 ' 2.0 cm y-1 ) over a two-year period. Hence, the SET-marker horizon approach has widespread applicability in both emergent wetland and shallow water environments for providing high resolution measures of the processes controlling elevation change.

  13. WatER: The proposed Water Elevation Recovery satellite mission

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Mognard, N.; Rodriguez, E.; Participants, W.

    2005-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water storage and discharge globally. The core mission objective is to describe and understand the continental water cycle and the hydrological processes (e.g., floodplain hydraulics) at work in a river basin. The key question that will be answered by WatER is: "Where is water stored on Earth's land surfaces, and how does this storage vary in space and time?" WatER will facilitate societal needs by (1) improving our understanding of flood hazards; (2) freely providing water volume information to countries who critically rely on rivers that cross political borders; and (3) mapping the variations in water bodies that contribute to disease vectors (e.g., malaria). Conventional altimeter profiles are, without question, incapable of supplying the measurements needed to address scientific and societal questions. WatER will repeatedly measure the spatially distributed water surface elevations (h) of wetlands, rivers, lakes, reservoirs, etc. Successive h measurements yield dh/dt, (t is time), hence a volumetric change in water stored or lost. Individual images of h yield dh/dx (x is distance), hence surface water slope, which is necessary for estimating streamflow. WatER's main instrument is a Ka-band radar interferometer (KaRIN) which is the only technology capable of supplying the required imaging capability of h. KaRIN has a rich heritage based on (1) the many highly successful ocean observing radar altimeters, (2) the Shuttle Radar Topography Mission (SRTM), and (3) the development effort of the Wide Swath Ocean Altimeter (WSOA). The interferometric altimeter is a near-nadir viewing, 120 km wideswath based instrument that uses interferometric SAR processing of the returned pulses to yield single-look 5m azimuth and 10m to 70m range resolution, with an elevation accuracy of approximately 50 cm. Polynomial based averaging of heights along the water body increases the height accuracy to about 3 cm. The entire globe is covered twice every 16 days and orbit subcycles allow the average visit to be about half this time at low to mid-latitudes, and almost daily at high latitudes. The WatER mission is an international effort with a large, supporting scientific community. It is already proposed as an ESA Earth Explorer Core mission and will also be jointly submitted to NASA's Earth System Science Pathfinder program. WatER is designed to meet high priority targets for all nations and will provide essential data for the EU Water Framework Directive and the European Flood Alert System. WatER will meet the United Nations call for a "greater focus on water related issues", responds to the hydroclimatological needs of the International Working Group on Earth Observations, and answers the U.S. federal government call to focus on our "ability to measure, monitor, and forecast U.S. and global supplies of fresh water".

  14. Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults

    PubMed Central

    Kenny, Glen P.; Poirier, Martin P.; Metsios, George S.; Boulay, Pierre; Dervis, Sheila; Friesen, Brian J.; Malcolm, Janine; Sigal, Ronald J.; Seely, Andrew J. E.; Flouris, Andreas D.

    2017-01-01

    ABSTRACT We examined whether older individuals experience greater levels of hyperthermia and cardiovascular strain during an extreme heat exposure compared to young adults. During a 3-hour extreme heat exposure (44°C, 30% relative humidity), we compared body heat storage, core temperature (rectal, visceral) and cardiovascular (heart rate, cardiac output, mean arterial pressure, limb blood flow) responses of young adults (n = 30, 19–28 years) against those of older adults (n = 30, 55–73 years). Direct calorimetry measured whole-body evaporative and dry heat exchange. Body heat storage was calculated as the temporal summation of heat production (indirect calorimetry) and whole-body heat loss (direct calorimetry) over the exposure period. While both groups gained a similar amount of heat in the first hour, the older adults showed an attenuated increase in evaporative heat loss (p < 0.033) in the first 30-min. Thereafter, the older adults were unable to compensate for a greater rate of heat gain (11 ± 1 ; p < 0.05) with a corresponding increase in evaporative heat loss. Older adults stored more heat (358 ± 173 kJ) relative to their younger (202 ± 92 kJ; p < 0.001) counterparts at the end of the exposure leading to greater elevations in rectal (p = 0.043) and visceral (p = 0.05) temperatures, albeit not clinically significant (rise < 0.5°C). Older adults experienced a reduction in calf blood flow (p < 0.01) with heat stress, yet no differences in cardiac output, blood pressure or heart rate. We conclude, in healthy habitually active individuals, despite no clinically observable cardiovascular or temperature changes, older adults experience greater heat gain and decreased limb perfusion in response to 3-hour heat exposure. PMID:28349096

  15. Acute concomitant effects of MDMA binge dosing on extracellular 5-HT, locomotion and body temperature and the long-term effect on novel object discrimination in rats.

    PubMed

    Rodsiri, Ratchanee; Spicer, Clare; Green, A Richard; Marsden, Charles A; Fone, Kevin C F

    2011-02-01

    3,4-methylenedioxymethamphetamine (MDMA, ecstasy) produces an acute release of 5-HT in the brain, together with increased locomotion and hyperthermia. This study examined whether the acute functional changes of locomotor activity and body temperature are related to enhanced 5-HT release induced by MDMA. We concomitantly measured changes in extraneuronal 5-HT by in vivo brain microdialysis and used radiotelemetry to measure locomotion and body temperature to establish whether any positive correlations occur between these three parameters. 'Binge-type' repeated administration of low doses of MDMA (3 and 6 mg/kg given at 2-h intervals three times) were given to provide drug exposure similar to that experienced by recreational drug users. MDMA induced acute hyperactivity, changes in core body temperature (both hypothermia and hyperthermia) and elevation of hippocampal 5-HT overflow, all of which were dependent on the dose of MDMA administered. The change in locomotor activity and the magnitude of the hyperthermia appeared to be unrelated both to each other and to the magnitude of MDMA-induced 5-HT release. The study also found evidence of long-term disruption of novel object discrimination 2 weeks following "binge-type" repeated MDMA administration. MDMA-induced 5-HT release in the brain was not responsible for either the hyperthermia or increased locomotor activity that occurred. Since neither dose schedule of MDMA induced a neurotoxic loss of brain 5-HT 2 weeks after its administration, the impairment of recognition memory found in novel object discrimination probably results from other long-term changes yet to be established.

  16. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature?

    PubMed Central

    Gutierrez, Silvia; Carnes, Ansley; Finucane, Beth; Oelsner, Gabrielle Musci William; Hicks, Lucretia; Russell, Gregory B.; Liu, Chun; Turner, Christopher P.

    2010-01-01

    General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature. PMID:20298758

  17. Order-picking in deep cold--physiological responses of younger and older females. Part 2: body core temperature and skin surface temperature.

    PubMed

    Baldus, Sandra; Kluth, Karsten; Strasser, Helmut

    2012-01-01

    So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.

  18. Guest-host polymer fibers for nonlinear optics

    NASA Astrophysics Data System (ADS)

    Kuzyk, M. G.; Paek, U. C.; Dirk, C. W.

    1991-08-01

    We report on the fabrication of poly(methyl methacrylate) (PMMA) nonlinear optical fibers with dye-doped cores. The dye-doped cores have an elevated refractive index that defines a waveguiding region with a large third-order susceptibility and with single-mode dimensions. The measured third-order susceptibility of a squarylium-doped PMMA film material and the measured optical loss of the dye-doped fiber core results in a figure of merit that is suitable for all-optical device applications at λ=1.3 μm. The impact of further improvements in PMMA loss and chromophore nonlinearity are also discussed.

  19. Evaluation of 2 Heat-Mitigation Methods in Army Trainees.

    PubMed

    Sefton, JoEllen M; McAdam, J S; Pascoe, David D; Lohse, K R; Banda, Robert L; Henault, Corbin B; Cherrington, Andrew R; Adams, N E

    2016-11-01

     Heat injury is a significant threat to military trainees. Different methods of heat mitigation are in use across military units. Mist fans are 1 of several methods used in the hot and humid climate of Fort Benning, Georgia.  To determine if (1) the mist fan or the cooling towel effectively lowered participant core temperature in the humid environment found at Fort Benning and (2) the mist fan or the cooling towel presented additional physiologic or safety benefits or detriments when used in this environment.  Randomized controlled clinical trial.  Laboratory environmental chamber.  Thirty-five physically active men aged 19 to 35 years.  (1) Mist fan, (2) commercial cooling towel, (3) passive-cooling (no intervention) control. All treatments lasted 20 minutes. Participants ran on a treadmill at 60% V̇o 2 max.  Rectal core temperature, heart rate, thermal comfort, perceived temperature, perceived wetness, and blood pressure.  Average core temperature increased during 20 minutes of cooling (F 1,28 = 64.76, P < .001, η p 2 = 0.70), regardless of group (F 1,28 = 3.41, P = .08, η p 2 = 0.11) or condition (F 1,28 < 1.0). Core temperature, heart rate, and blood pressure did not differ among the 3 conditions. Perceived temperature during 20 minutes of cooling decreased (F 1,30 = 141.19, P < .001, η p 2 = 0.83) regardless of group or condition. Perceived temperature was lower with the mist-fan treatment than with the control treatment (F 1,15 = 7.38, P = .02, η p 2 = 0.32). The mist-fan group perceived themselves to be cooler even at elevated core temperatures.  The mist fan and cooling towel were both ineffective at lowering core temperature. Core temperature continued to increase after exercise in all groups. The mist fan produced feelings of coolness while the core temperature remained elevated, possibly increasing the risk of heat illness.

  20. Evaluation of 2 Heat-Mitigation Methods in Army Trainees

    PubMed Central

    Sefton, JoEllen M.; McAdam, J. S.; Pascoe, David D.; Lohse, K. R.; Banda, Robert L.; Henault, Corbin B.; Cherrington, Andrew R.; Adams, N. E.

    2016-01-01

    Context: Heat injury is a significant threat to military trainees. Different methods of heat mitigation are in use across military units. Mist fans are 1 of several methods used in the hot and humid climate of Fort Benning, Georgia. Objectives: To determine if (1) the mist fan or the cooling towel effectively lowered participant core temperature in the humid environment found at Fort Benning and (2) the mist fan or the cooling towel presented additional physiologic or safety benefits or detriments when used in this environment. Design: Randomized controlled clinical trial. Setting: Laboratory environmental chamber. Patients or Other Participants: Thirty-five physically active men aged 19 to 35 years. Intervention(s): (1) Mist fan, (2) commercial cooling towel, (3) passive-cooling (no intervention) control. All treatments lasted 20 minutes. Participants ran on a treadmill at 60% V̇o2max. Main Outcome Measure(s): Rectal core temperature, heart rate, thermal comfort, perceived temperature, perceived wetness, and blood pressure. Results: Average core temperature increased during 20 minutes of cooling (F1,28 = 64.76, P < .001, ηp2 = 0.70), regardless of group (F1,28 = 3.41, P = .08, ηp2 = 0.11) or condition (F1,28 < 1.0). Core temperature, heart rate, and blood pressure did not differ among the 3 conditions. Perceived temperature during 20 minutes of cooling decreased (F1,30 = 141.19, P < .001, ηp2 = 0.83) regardless of group or condition. Perceived temperature was lower with the mist-fan treatment than with the control treatment (F1,15 = 7.38, P = .02, ηp2 = 0.32). The mist-fan group perceived themselves to be cooler even at elevated core temperatures. Conclusions: The mist fan and cooling towel were both ineffective at lowering core temperature. Core temperature continued to increase after exercise in all groups. The mist fan produced feelings of coolness while the core temperature remained elevated, possibly increasing the risk of heat illness. PMID:27710091

  1. Core body temperature as adjunct to endpoint determination in murine median lethal dose testing of rattlesnake venom.

    PubMed

    Cates, Charles C; McCabe, James G; Lawson, Gregory W; Couto, Marcelo A

    2014-12-01

    Median lethal dose (LD50) testing in mice is the 'gold standard' for evaluating the lethality of snake venoms and the effectiveness of interventions. As part of a study to determine the murine LD50 of the venom of 3 species of rattlesnake, temperature data were collected in an attempt to more precisely define humane endpoints. We used an 'up-and-down' methodology of estimating the LD50 that involved serial intraperitoneal injection of predetermined concentrations of venom. By using a rectal thermistor probe, body temperature was taken once before administration and at various times after venom exposure. All but one mouse showed a marked, immediate, dose-dependent drop in temperature of approximately 2 to 6°C at 15 to 45 min after administration. The lowest temperature sustained by any surviving mouse was 33.2°C. Surviving mice generally returned to near-baseline temperatures within 2 h after venom administration, whereas mice that did not survive continued to show a gradual decline in temperature until death or euthanasia. Logistic regression modeling controlling for the effects of baseline core body temperature and venom type showed that core body temperature was a significant predictor of survival. Linear regression of the interaction of time and survival was used to estimate temperatures predictive of death at the earliest time point and demonstrated that venom type had a significant influence on temperature values. Overall, our data suggest that core body temperature is a useful adjunct to monitoring for endpoints in LD50 studies and may be a valuable predictor of survival in venom studies.

  2. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    PubMed

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  3. Rapid down-regulation of testicular androgen biosynthesis at increased environmental temperature is due to cytochrome P450c17 (CYP17) thermolability in Leydig cells, but not in endoplasmic reticulum membranes.

    PubMed

    Kühn-Velten, W N

    1996-01-01

    To identify possible molecular targets in moderate heat-induced, short-term derangements of rat testicular endocrine function, rates of androgen and precursor biosynthesis and key enzyme concentrations were compared at 38 degrees C (normal body core temperature) and 31 degrees C (normal scrotal temperature) in three in-vitro models of decreasing complexity and increasing specificity. In purified Leydig cells and similarly in decapsulated testes, gross testosterone secretion was by 20% higher at 38 degrees C under basal conditions and during the initial phase of stimulation with hCG or cAMP; longer (> 1 hour) exposure to the elevated temperature resulted in a marked decrease (52% after 3 hours) of testosterone response to hCG or cAMP as compared to the corresponding rates at 31 degrees C. This phenomenon was neither due to the development of hormone resistance at the receptor level nor to restricted cholesterol supply and turnover nor to increased testosterone accumulation. Whereas mitochondrial CYP11A (cytochrome P450cscc: cholesterol monooxygenase) was absolutely temperature-insensitive in all systems tested, CYP17 (cytochrome P450c17: steroid-17 alpha-monooxygenase/C17, 20-aldolase) in the smooth endoplasmic reticulum responded with a 57% loss in whole testes and 39% loss in purified Leydig cells upon a 3-hour temperature elevation from 31 degrees C to 38 degrees C. In contrast, CYP17 was stable (4% loss) when tested directly in microsomal membranes. It is concluded that CYP17, but not CYP11A, is very sensitive towards even moderate elevation of environmental temperature, and that this apparent lability is not an intrinsic property of the enzyme protein but rather mediated by heat-activated intracellular factors.

  4. Changes in Body Mass Index and the Trajectory of Depressive Symptoms Among Rural Men and Women.

    PubMed

    Chang, Jen Jen; Salas, Joanne; Tabet, Maya; Kasper, Zachary; Elder, Keith; Staley, Holly; Brownson, Ross C

    2017-04-01

    This study examined the association between body mass index (BMI) changes over time and the risk of elevated depressive symptoms in a cohort of Midwestern rural adults. The longitudinal study used data from a telephone survey in 2005 including 1,475 men and women enrolled in the Walk the Ozarks to Wellness Project from 12 rural communities in Missouri, Arkansas, and Tennessee. Multilevel random intercept mixed models were used to estimate adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the association between BMI calculated from self-reported height and body weight and elevated depressive symptoms, adjusting for sociodemographic, behavioral, and medical variables. Elevated depressive symptoms were common in this rural population (17%-19%) and the mean BMI was 28 kg/m 2 . For each unit increase in BMI over time, representing an average increase of about 5.8 pounds from baseline weight, there was a 6% increased odds of elevated depressive symptoms (aOR: 1.06, 95% CI: 1.02-1.12). Our findings hold important public health implications given the increasing rates of overweight and obesity over the past couple of decades, particularly among rural adults. © 2016 National Rural Health Association.

  5. Asbestos bodies and the diagnosis of asbestosis in chrysotile workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, J.; Churg, A.

    1986-01-01

    It has been suggested that because chrysotile asbestos forms asbestos bodies poorly, use of the traditional histologic requirements (diffuse interstitial fibrosis plus asbestos bodies) for the diagnosis of asbestosis, may lead to an underdiagnosis of this condition in workers exposed only to chrysotile. Lungs from 25 chrysotile miners with diffuse interstitial fibrosis were examined. Asbestos bodies were found easily in histologic section using hematoxylin and eosin stains in all cases. Mineralogic analysis of four cases showed that 46 of 72 (64%) bodies isolated and examined contained chrysotile cores, and 21 of 72 (29%) bodies contained cores of the amphiboles tremolitemore » and actinolite. By contrast, tremolite and actinolite constituted the majority of uncoated fibers in these cases. The mean length for bodies formed on chrysotile was 35 ..mu..m, and for bodies formed on tremolite or actinolite, 36 ..mu..m. The authors conclude that (1) the usual histologic criteria for the diagnosis of asbestos are applicable to chrysotile-exposed workers; (2) in workers with occupational chrysotile exposure, bodies form readily on this mineral; and (3) asbestos bodies in these lungs reflect the presence of long asbestos fibers.« less

  6. Heart rate and core temperature responses of elite pit crews during automobile races.

    PubMed

    Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy

    2011-08-01

    There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.

  7. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    PubMed

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Continuous exposure of animals to methylisobutylketone

    NASA Technical Reports Server (NTRS)

    Vernot, E. H.; Macewen, J. D.; Harris, E. S.

    1971-01-01

    Continuous exposure of dogs, monkeys, mice, and rats to MIBK for two weeks and all animals except mice for 90 days resulted in measurable adverse effects only in the case of rats. Rat kidney weights and kidney to body weight ratios were significantly elevated after exposure to 410 mg/cu m for two weeks, and kidney and liver organ weights and organ to body weight ratios were elevated after exposure to 820 mg/cu m for two weeks and to 410 mg/cu m for 90 days.

  9. The impact of exposure to films of natural and built environments on state body appreciation.

    PubMed

    Swami, Viren; Pickering, Mark; Barron, David; Patel, Shreepali

    2018-06-12

    Previous work has shown that exposure to images of nature results in elevated state body appreciation, but static images may lack ecological validity. Here, we examined the impact of exposure to short films of simulated, first-person walks in natural or built environments. Thirty-six university students completed a measure of state body appreciation before and after watching films of either a walk in a natural or a built environment created specifically for the present study. Two weeks later, they completed the same task but watched the other film type. Results indicated that exposure to the film of a natural environment resulted in significantly elevated state body appreciation (d = 0.66). There was no significant change in state body appreciation following exposure to the film of the built environment (d = 0.14). These findings suggest that exposure to films depicting the natural environment may promote immediate, moderate-sized improvements in state body image. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Chronic suppression of μ-opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats.

    PubMed

    Lenard, N R; Zheng, H; Berthoud, H-R

    2010-06-01

    To test the hypothesis that micro-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic micro-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. Chronic blockade of micro-opioid receptor signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4-5 days) of the irreversible receptor antagonist beta-funaltrexamine (BFNA) over 3-5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure and regular chow (each nutritionally complete) or regular chow only. Intake of each food item, body weight and body fat mass were monitored throughout the study. The BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain and fat accretion, compared with vehicle control injections. The injection of BFNA in the core did not significantly change these parameters in chow-fed control rats. The injection of BFNA in the core and shell differentially affected intake of the two palatable food items: in the core, BFNA significantly reduced the intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced the intake of Ensure, but not of high-fat, compared with vehicle treatment. Endogenous micro-opioid receptor signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.

  11. Kinematics of Globular Cluster: new Perspectives of Energy Equipartition from N-body Simulations

    NASA Astrophysics Data System (ADS)

    Kim, Hyunwoo; Pasquato, Mario; Yoon, Suk-jin

    2018-01-01

    Globular clusters (GCs) evolve dynamically through gravitational two-body interactions between stars. We investigated the evolution towards energy equipartition in GCs using direct n-body simulations in NBODY6. If a GC reaches full energy equipartition, the velocity dispersion as a function of stars’ mass becomes a power law with exponent -1/2. However, our n-body simulations never reach full equipartition, which is similar to Trenti & van de Marel (2013) results. Instead we found that in simulations with a shallow mass spectrum the best fit exponent becomes positive slightly before core collapse time. This inversion is a new result, which can be used as a kinematic predictor of core collapse. We are currently exploring applications of this inversion indicator to the detection of intermediate mass black holes.

  12. Rotational spectral variations of asteroid (8) Flora Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1984-01-01

    The surface material and the surface material heterogeneities of the asteroid Flora are characterized using the best available data sets and the most sophisticated interpretive calibrations. Five spectrally derived mineralogic and patrologic properties of the surface assemblage of Flora which are relevant to whether this body is a differentiated or undifferentiated object are considered: bulk mineralogy, mafic mineral assemblage, metallic phase, pyroxene composition and structural type, and mineralogic variation. All of these properties indicate that Flora is a differentiated body. Flora is probably the residual core of an intensely heated, thermally evolved, and magnetically differentiated planetesimal which was subsequently disrupted. The present surface sample layers formed at or near the core-mantle boundary in the parent body.

  13. The Development of an Integrated Science Core Curriculum for Allied Health Students

    ERIC Educational Resources Information Center

    Sesney, John; And Others

    1977-01-01

    The article describes the development of BioMedical Sciences Core at Weber State College in Ogden, Utah for introductory level allied health students. The design of the "Core" curriculum is to integrate the disciplines of physics, chemistry, anatomy, physiology, and microbiology as they relate to the human body rather than teaching the traditional…

  14. Heat strain in cold.

    PubMed

    Rintamäki, Hannu; Rissanen, Sirkka

    2006-07-01

    In spite of increased environmental cold stress, heat strain is possible also in a cold environment. The body heat balance depends on three factors: environmental thermal conditions, metabolic heat production and thermal insulation of clothing and other protective garments. As physical exercise may increase metabolic heat production from rest values by ten times or even more, the required thermal insulation of clothing may vary accordingly. However, in most outdoor work, and often in indoor cold work, too, the thermal insulation of clothing is impractical, difficult or impossible to adjust according to the changes in physical activity. This is especially true with whole body covering garments like chemical protective clothing. As a result of this imbalance, heat strain may develop. In cold all the signs of heat strain (core temperature above 38 degrees C, warm or hot thermal sensations, increased cutaneous circulation and sweating) may not be present at the same time. Heat strain in cold may be whole body heat strain or related only to torso or core temperature. Together with heat strain in torso or body core, there can be at the same time even cold strain in peripheral parts and/or superficial layers of the body. In cold environment both the preservation of insulation and facilitation of heat loss are important. Development of clothing design is still needed to allow easy adjustments of thermal insulation.

  15. [Effects of lacto-vegetarian diet and stabilization core exercises on body composition and pain in women with fibromyalgia: randomized controlled trial].

    PubMed

    Martínez-Rodríguez, Alejandro; Leyva-Vela, Belén; Martínez-García, Alba; Nadal-Nicolás, Yolanda

    2018-03-01

    fibromyalgia is a disease of unknown origin characterized by chronic muscular pain. The lack of knowledge about this disease is one of the main causes that makes complex to make a diagnosis and an appropriate treatment. the main objective of this study was to know the efficacy of a physiotherapy treatment combined with a lacto-vegetarian dietary-nutritional intervention, on low back pain and body composition in women with fibromyalgia. twenty-one women were randomly divided into three groups: A (core stabilization exercises + lacto-vegetarian diet), B (placebo + lacto-vegetarian diet) and C (control). The intervention lasted 4 weeks. Pain assessments (EVA scale) and body composition (bioimpedance) were performed at the beginning and at the end of the intervention. group A showed significant changes in pain reduction and body composition at the end of the intervention, increasing muscle mass and decreasing fat mass. In addition, this group significantly improved outcomes compared to groups B and C. The correlations showed a relationship between muscle mass and pain reduction referred to at the end of the study in patients in group A. four-week intervention program combining core stabilization exercises plus lacto-vegetarian diet in patients with fibromyalgia who have low back pain contributes to pain reduction and improved body composition.

  16. Cooler biologically compatible core body temperatures may prolong longevity and combat neurodegenerative disorders.

    PubMed

    Salerian, Alen J; Saleri, Nansen G

    2006-01-01

    Scientific evidence suggests the critical role of temperature in regulating three mechanisms contributing to cellular damage: Oxidative stress, oxygen demand overload and inflammation. In this article, we propose that the Arrhenius rate law has a profound impact on aging and a variety of neurodegenerative disorders including Alzheimer's disease, and we review the supporting evidence. Published studies suggest empirical correlations between temperature and lifespan of various organisms, bolstering the hypothesis that variations in lifespan may stem from differences in the mitochondrial production rates of radicals - a process also influenced by temperature. Given the exponential temperature dependency of all biochemical factors, cooler body temperatures may promote longevity and combat neurodegenerative disorders. This promises to offer extraordinary yet unexplored weapons against two formidable enemies of the human body: aging and neurodegenerative disorders. Stated in the form of a thesis referred to as Salerian and Saleri Temperature Thesis (SSTT): "Cooler biologically compatible core body temperatures prolong lifespan and are of value to combat illness". Double blind studies of SSTT in therapeutic strategies against amyotrophic lateral sclerosis (ALS) or early-stage Alzheimer's disease may offer a reasonable first stage to validate SSTT. In view of the known rapid progressive neurodegeneration associated with ALS, minute variations in core body temperature may, in fact, demonstrate statistically significant differences in disease progression.

  17. Effect of the percentage of body fat on surgical, clinical and pathological outcomes in women with endometrial cancer.

    PubMed

    Kerimoglu, Ozlem Secilmis; Pekin, Aybike; Yilmaz, Setenay Arzu; Yavas, Guler; Beyhekim, Fatma; Demirtaş, Ayşe Ayda; Dogan, Nasuh Utku; İlhan, Tolgay Tuyan; Celik, Cetin

    2015-03-01

    This study used the measure of percentage of body fat (%BF) to define obesity and evaluated the effect of percentage of %BF on clinical, surgical and pathological features in women with endometrial cancer. Between 2011 and 2013, bioelectrical impedance analysis and body size measurements of 94 patients whose endometrial biopsy revealed endometrial cancer were obtained. Patients were divided into two groups according to body mass index (BMI) (normal, < 30 kg/m(2); elevated, ≥ 30 kg/m(2)), and also classified by %BF (normal, < 32%; elevated, ≥ 32%). The patients' mean age was 55.0 ± 10.9 years. Mean %BF and BMI were 40.8% ± 9.8% and 32.9 ± 7.5, respectively. Eighty-three (88%) patients were obese according to %BF; 54 (57%) were obese according to BMI. Patients with elevated %BF were more likely to have less than 50% myometrial invasion (P = 0.004). Significantly more para-aortic lymph nodes were retrieved in patients with normal %BF or BMI (P < 0.001, P < 0.001). Patients with elevated %BF had longer operating times (P = 0.043) and were more likely to have stage I disease than patients with normal %BF (P < 0.001). Endometrial cancer patients with an elevated %BF are more likely to have stage I disease and less than 50% myometrial invasion than patients with normal %BF. Defining obesity by BF may provide better estimation of obesity prevalence in patients with endometrial cancer and further understanding the relationship between BF with endometrial cancer may give more information about the effects of obesity on endometrial cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  18. Primary sedimentary structures and the internal architecture of a Martian sand body in search of evidence for sand transport and deposition

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit

    1988-01-01

    Lunar experiences show that unmanned sample return missions, despite limitations on sample size, can produce invaluable data to infer crustal processes, regolith processes, regolith-atmosphere/ionosphere interaction processes, etc. Drill cores provide a record of regolith evolution as well as a more complete sample of the regolith than small scoops and/or rakes. It is proposed that: (1) a hole be drilled in a sand body to obtain continuous oriented cores; a depth of about 10 m would be compatible with what we know of bed form hierarchy of terrestrial stream deposits; (2) two trenches, at right angles to each other and close to the drill-hole, be dug and the walls scraped lightly such that primary/internal sedimentary structures of the sand body become visible; (3) the walls of the trenches be made gravitationally stable by impregnation techniques; (4) acetate or other peels of a strip on each wall be taken; and (5) appropriately scaled photographs of the walls be taken at different sun-angles to ensure maximum ease of interpretation of sedimentary structures; and, to correlate these structural features with those in the core at different depth levels of the core.

  19. Relativistic many-body XMCD theory including core degenerate effects

    NASA Astrophysics Data System (ADS)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.

  20. Excess growing-season water limits lowland black spruce productivity

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.

    2015-12-01

    The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.

  1. 17 CFR 38.1150 - Core Principle 22.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... CONTRACT MARKETS Diversity of Board of Directors § 38.1150 Core Principle 22. The board of trade, if a... other decision-making bodies (as determined by the Commission) of the board of trade from among, and to...

  2. 17 CFR 38.1150 - Core Principle 22.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONTRACT MARKETS Diversity of Board of Directors § 38.1150 Core Principle 22. The board of trade, if a... other decision-making bodies (as determined by the Commission) of the board of trade from among, and to...

  3. Hypertension, Cardiovascular Risk Factors and Anti-Hypertensive Medication Utilization among HIV-infected Individuals in Rakai, Uganda

    PubMed Central

    Sander, Laura D.; Newell, Kevin; Ssebbowa, Paschal; Serwadda, David; Quinn, Thomas C.; Gray, Ronald H.; Wawer, Maria J.; Mondo, George; Reynolds, Steven

    2014-01-01

    Objectives To assess the prevalence of hypertension, elevated blood pressure and cardiovascular risk factors among HIV-positive individuals in rural Rakai District, Uganda. Methods We assessed 426 HIV-positive individuals in Rakai, Uganda from 2007 to 2010. Prevalence of hypertension and elevated blood pressure assessed by clinical measurement was compared to clinician-recorded hypertension in case report forms. Multiple logistic regression and z-tests were used to examine the association of hypertension and elevated blood pressure with age, sex, body mass index, CD4 cell count, and anti-retroviral treatment (ART) use. For individuals on anti-hypertensives, medication utilization was reviewed. Results The prevalence of hypertension (two elevated blood pressure readings at different time points) was 8.0% (95% CI: 5.4–10.6%), and that of elevated blood pressure (one elevated blood pressure reading) was 26.3% (95% CI: 22.1–30.5%). Age ≥50 years and higher body mass index were positively associated with elevated blood pressure. ART use, time on ART, and CD4 cell count were not associated with hypertension. 83% of subjects diagnosed with hypertension were on anti-hypertensive medications, most commonly beta-blockers and calcium channel blockers. Conclusions Hypertension is common among HIV-positive individuals in rural Uganda. PMID:25430847

  4. Are concurrent systematic cores needed at the time of targeted biopsy in patients with prior negative prostate biopsies?

    PubMed

    Albisinni, S; Aoun, F; Noel, A; El Rassy, E; Lemort, M; Paesmans, M; van Velthoven, R; Roumeguère, T; Peltier, A

    2018-01-01

    MRI-guided targeted biopsies are advised in patients who have undergone an initial series of negative systematic biopsies, in whom prostate cancer (PCa) suspicion remains elevated. The aim of the study was to evaluate whether, in men with prior negative prostate biopsies, systematic cores are also warranted at the time of an MRI-targeted repeat biopsy. We enrolled patients with prior negative biopsy undergoing real time MRI/TRUS fusion guided prostate biopsy at our institute between 2014 and 2016. Patients with at least one index lesion on multiparametric MRI were included. All eligible patients underwent both systematic random biopsies (12-14 cores) and targeted biopsies (2-4 cores). The study included 74 men with a median age of 65 years, PSA level of 9.27ng/mL, and prostatic volume of 45ml. The overall PCa detection rate and the clinically significant cancer detection rate were 56.7% and 39.2%, respectively. Targeted cores demonstrated similar clinically significant PCa detection rate compared to systematic cores (33.8% vs. 28.4%, P=0.38) with significantly less tissue sampling. Indeed, a combination approach was significantly superior to a targeted-only in overall PCa detection (+16.7% overall detection rate, P=0.007). Although differences in clinically significant PCa detection were statistically non-significant (P=0.13), a combination approach did allow detecting 7 extra clinically significant PCas (+13.8%). In patients with elevated PSA and prior negative biopsies, concurrent systematic sampling may be needed at the time of targeted biopsy in order to maximize PCa detection rate. Larger studies are needed to validate our findings. 4. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. NASADEM Global Elevation Model of Earth: Methods for the Refinement and Merger of SRTM and ASTER GDEM

    NASA Astrophysics Data System (ADS)

    Crippen, R. E.; Buckley, S.; Agram, P. S.; Belz, J. E.; Gurrola, E. M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J. M.; Neumann, M.; Nguyen, Q.; Rosen, P. A.; Shimada, J.; Simard, M.; Tung, W.

    2016-12-01

    NASADEM is a near-global elevation model that is being produced primarily by completely reprocessing the Shuttle Radar Topography Mission (SRTM) radar data and then merging it with refined ASTER GDEM elevations. The new and improved SRTM elevations in NASADEM result from better vertical control of each SRTM data swath via reference to ICESat elevations and from SRTM void reductions using advanced interferometric unwrapping algorithms. Errors in SRTM (due to incorrect interferometric unwrapping) are rare but can be found and removed via a detector that relies upon pattern analysis within synergistic comparisons of SRTM and GDEM. Remnant voids in SRTM are filled primarily by GDEM3, but with removal of GDEM glitches that are mostly related to clouds. GDEM glitch removal uses a measure of curvature and then spatial filtering to detect, isolate, and delete anomalous spikes and pits that are uncharacteristic of natural topography. Water masking uses the original SRTM Water Body Dataset (SWBD), but with errors corrected via a new ASTER Water Body Database. The improved SRTM, GDEM, and water body databases will be made available individually in addition to our merged product, which is particularly important for the SRTM dataset, which stands as a February 2000 baseline for many topographic change studies. New and forthcoming freely available elevation data (at reduced resolutions) from the ALOS PRISM World 3D and TanDEM-X projects will contribute to the critical but not yet reached goal of a complete, high-quality elevation model of Earth, and they are expected to provide additional validation for NASADEM. Indeed, cross validation among all of these datasets is a vital part of reaching that goal. The value of elevation data is difficult to overstate. These data are used in nearly all types of geophysical study conducted at or near Earth's surface.

  6. The Last Interglacial History of the Antarctic Ice sheet

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Siddall, Mark; Milne, Glenn A.; Masson-Delmotte, Valerie; Wolff, Eric; Hindmarsh, Richard C. A.

    2014-05-01

    In this paper we present a summary of the work which was conducted as part of the 'PAST4FUTURE -WP4.1: Sea Level and Ice sheets' project. The overall aim of this study was to understand the response of the Antarctic Ice sheet (AIS) to climate forcing during the Last interglacial (LIG) and its contribution to the observed higher than present sea level during this period. The study involved the application and development of a novel technique which combined East Antarctic stable isotope ice core data with the output from a Glacial Isostatic Adjustment (GIA) model [Bradley et al., 2012]. We investigated if the stable isotope ice core data are sensitive to detecting isostatically driven changes in the surface elevation driven by changes in the ice-loading history of the AIS and if so, could we address some key questions relating to the LIG history of the AIS. Although it is believed that the West Antarctic Ice sheet (WAIS) reduced in size during the LIG compared to the Holocene, major uncertainties and unknowns remain unresolved: Did the WAIS collapse? What would the contribution of such a collapse be the higher than present LIG eustatic sea level (ESL)? We will show that a simulated collapse of the WAIS does not generate a significant elevation driven signal at the EAIS LIG ice core sites, and as such, these ice core records cannot be used to assess WAIS stability over this period. However, we will present 'treasure maps' [Bradley et al., 2012] to identify regions of the AIS where results from geological studies and/or new paleoclimate data may be sensitive to detecting a WAIS collapse. These maps can act as a useful tool for the wider science community/field scientists as a guide to highlight sites suitable to constrain the evolution of the WAIS during the LIG. Studies have proposed that the surface temperature across the East Antarctic Ice Sheet (EAIS) was significantly warmer, 2-5°C during the LIG compared to present [Lang and Wolff, 2011]. These higher temperatures are estimated primarily using the difference in the δD peak in the LIG stable isotope ice core data relative to the records for the present interglacial; a feature which is referred to as the 'LIG overshoot'. Generally studies have attributed most of this signal to changes in the Antarctic climate [Masson-Delmotte et al., 2011]. However, a previously overlooked contribution is the influence of changes in surface elevation driven by changes in ice-loading history of the EAIS [Bradley et al., 2013]. We will show that introducing a relatively moderate reduction in the amount of thickening of the EAIS over the LIG, can generate a significant elevation driven δD signal at the EAIS ice core sites, and as such elevation effects can account for a significant fraction of the LIG overshoot. We will conclude that the potential contribution of this process must be considered when using the EAIS stable isotope ice core data to make estimated of the LIG surface temperature. Finally, we will provide estimates of the contribution of the AIS to both ESL and to the higher than observed relative sea level during the LIG. Bradley, S. L., M. Siddall, G. A. Milne, V. Masson-Delmotte, and E. Wolff (2012), Where might we find evidence of a Last Interglacial West Antarctic Ice Sheet collapse in Antarctic ice core records?, Global and Planetary Change, 88-89(0), 64-75. Bradley, S. L., M. Siddall, G. A. Milne, V. Masson-Delmotte, and E. Wolff (2013), Combining ice core records and ice sheet models to explore the evolution of the East Antarctic Ice sheet during the Last Interglacial period, Global and Planetary Change, 100, 278-290. Lang, N., and E. W. Wolff (2011), Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives, Clim. Past., 7(2), 361-380. Masson-Delmotte, V., et al. (2011), A comparison of the present and last interglacial periods in six Antarctic ice cores, Clim. Past., 7(2), 397-423.

  7. Changes in body fluid compartments on re-induction to high altitude and effect of diuretics

    NASA Astrophysics Data System (ADS)

    Singh, M. V.; Rawal, S. B.; Tyagi, A. K.; Bhagat, Maj J. K.; Parshad, R.; Divekar, H. M.

    1988-03-01

    Studies were carried out in 29 healthy young adults in the Indian Army stationed in the plains and posted at an elevation of 3500 m for more than 6 months. After exposure to a low elevation in Delhi (260 m) for 3 weeks they were reinduced to a height of 3500 m. The subjects were divided into three groups, each of which was treated with either placebo or acetazolamide or spironolactone. The drug treatment was started immediately after their landing at high altitude and continued for 2 days only. Total body water, extracellular fluid, intracellular fluid, plasma volume, blood pH, PaO2, PaCO2 and blood viscosity were determined on exposure at Delhi and on re-induction to high altitude. Plasma volume was increased after the descent from high altitude and remained high for up to 21 day's study. This increased plasma volume may have some significance in the pathogenesis of pulmonary oedema. Total body water and intracellular fluid content were increased at 260 m elevation, while extracellular fluid decreased. On re-induction there was a decrease in total body water with no change in the extracellular fluid content.

  8. Adherence to Bergmann's rule by lizards may depend on thermoregulatory mode: support from a nocturnal gecko.

    PubMed

    Penniket, Sophie; Cree, Alison

    2015-06-01

    Bergmann's rule predicts an increase in body size with decreasing environmental temperature; however, the converse pattern has been found in the majority of lizards studied to date. For these ectotherms, small body size may provide thermal benefits (rapid heat uptake when basking), which would be highly advantageous in cold environments. Yet such an advantage may not exist in nocturnal lizards (which do not avidly bask), in which Bergmann's rule has not been closely studied. We have examined whether the body size of a primarily nocturnal gecko, Woodworthia "Otago/Southland" changed with elevation and operative temperature (determined using physical copper models). In a laboratory study, we investigated whether thermoregulatory mode (heliothermy or thigmothermy) alters the effect of body size on heating and cooling rates. This gecko followed Bergmann's rule, thereby showing the opposite of the dominant pattern in diurnal lizards. Size at maturity, maximum size of adults and size at birth were larger at higher elevations and at lower operative temperatures. Using physical models, we found that large body size can confer thermal benefits for nocturnal lizards that remain within diurnal retreats. Bergmann's rule should not be dismissed for all lizards. Our results clearly support Bergmann's rule for at least one thigmothermic species, for which large body size may provide thermal benefits. Future studies on Bergmann's rule in lizards should consider thermoregulatory mode. We advocate that this ecogeographic rule be examined in relation to operative temperature measured at field sites. Finally, we predict that climate warming may weaken the relationship between body size and elevation in this gecko.

  9. Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose.

    PubMed

    Yaghoobi, N; Al-Waili, Noori; Ghayour-Mobarhan, M; Parizadeh, S M R; Abasalti, Z; Yaghoobi, Z; Yaghoobi, F; Esmaeili, H; Kazemi-Bajestani, S M R; Aghasizadeh, R; Saloom, Khelod Y; Ferns, G A A

    2008-04-20

    It has been found that honey ameliorates cardiovascular risk factors in healthy individuals and in patients with elevated risk factors. The present study investigated the effect of natural honey on total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triacylglycerole, C-reactive protein (CRP), fasting blood glucose (FBG), and body weight in overweight individuals. There were 55 patients, overweight or obese, who were randomly recruited into the study and assigned into two groups: control group (17 subjects) and experimental group (38 subjects). Patients in the control group received 70 g of sucrose daily for a maximum of 30 days and patients in the experimental group received 70 g of natural honey for the same period. In the control and experimental groups, body weight, body mass index, body fat weight, total cholesterol, LDL-C, HDL-C, triacylglycerole, FBG, and CRP were measured before treatment and at day 31 after the commencement of treatment. Results showed that honey caused a mild reduction in body weight (1.3%) and body fat (1.1%). Honey reduced total cholesterol (3%), LDL-C (5.8), triacylglycerole (11%), FBG (4.2%), and CRP (3.2%), and increased HDL-C (3.3%) in subjects with normal values, while in patients with elevated variables, honey caused reduction in total cholesterol by 3.3%, LDL-C by 4.3%, triacylglycerole by 19%, and CRP by 3.3% (p < 0.05). It is our conclusion that consumption of natural honey reduces cardiovascular risk factors, particularly in subjects with elevated risk factors, and it does not increase body weight in overweight or obese subjects.

  10. Lunar Rotation and the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    2003-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.

  11. Validation of the Comprehensive ICF Core Set for obstructive pulmonary diseases from the patient's perspective.

    PubMed

    Marques, Alda; Jácome, Cristina; Gonçalves, Ana; Silva, Sara; Lucas, Carla; Cruz, Joana; Gabriel, Raquel

    2014-06-01

    This study aimed to validate the Comprehensive International Classification of Functioning, Disability and Health (ICF) Core Set for obstructive pulmonary diseases (OPDs) from the perspective of patients with chronic obstructive pulmonary disease. A cross-sectional qualitative study was carried out with outpatients with chronic obstructive pulmonary disease using focus groups with an ICF-based approach. Qualitative data were analysed using the meaning condensation procedure by two researchers with expertise in the ICF. Thirty-two participants (37.5% women; 63.8 ± 11.3 years old) were included in six focus groups. A total of 61 (86%) ICF categories of the Comprehensive ICF Core Set for OPD were confirmed. Thirty-nine additional second-level categories not included in the Core Set were identified: 15 from the body functions component, four from the body structures, nine from the activities and participation and 11 from the environmental factors. The majority of the categories included in the Comprehensive ICF Core Set for OPD were confirmed from the patients' perspective. However, additional categories, not included in the Core Set, were also reported. The categories included in the Core Set were not confirmed and the additional categories need to be investigated further to develop an instrument tailored to patients' needs. This will promote patient-centred assessments and rehabilitation interventions.

  12. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  13. Uranus and Neptune: Refugees from the Jupiter-Saturn zone?

    NASA Astrophysics Data System (ADS)

    Thommes, E. W.; Duncan, M. J.; Levison, H. F.

    1999-09-01

    Plantesimal accretion models of planet formation have been quite successful at reproducing the terrestrial region of the Solar System. However, in the outer Solar System these models run into problems, and it becomes very difficult to grow bodies to the current mass of the ``ice giants," Uranus and Neptune. Here we present an alternative scenario to in-situ formation of the ice giants. In addition to the Jupiter and Saturn solid cores, several more bodies of mass ~ 10 MEarth or more are likely to have formed in the region between 4 and 10 AU. As Jupiter's core, and perhaps Saturn's, accreted nebular gas, the other nearby bodies must have been scattered outward. Dynamical friction with the trans-Saturnian part of the planetesimal disk would have acted to decouple these ``failed cores" from their scatterer, and to circularize their orbits. Numerical simulations presented here show that systems very similar to our outer Solar System (including Uranus, Neptune, the Kuiper belt, and the scattered disk) are a natural product of this process.

  14. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature.

    PubMed

    Lee, C N; Gebremedhin, K G; Parkhurst, A; Hillman, P E

    2015-09-01

    There has been increasing interest to measure core-body temperature in cattle using internal probes. This study examined the placement of HOBO water temperature probe with an anchor, referred to as the "sensor pack" (Hillman et al. Appl Eng Agric ASAE 25(2):291-296, 2009) in the vagina of multiparous Holstein cows under grazing conditions. Two types of anchors were used: (a) long "fingers" (4.5-6 cm), and (b) short "fingers" (3.5 cm). The long-finger anchors stayed in one position while the short-finger anchors were not stable in one position (rotate) within the vagina canal and in some cases came out. Vaginal temperatures were recorded every minute and the data collected were then analyzed using exponential mixed model regression for non-linear data. The results showed that the core-body temperatures for the short-finger anchors were lower than the long-finger anchors. This implied that the placement of the temperature sensor within the vagina cavity may affect the data collected.

  15. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature

    NASA Astrophysics Data System (ADS)

    Lee, C. N.; Gebremedhin, K. G.; Parkhurst, A.; Hillman, P. E.

    2015-09-01

    There has been increasing interest to measure core-body temperature in cattle using internal probes. This study examined the placement of HOBO water temperature probe with an anchor, referred to as the "sensor pack" (Hillman et al. Appl Eng Agric ASAE 25(2):291-296, 2009) in the vagina of multiparous Holstein cows under grazing conditions. Two types of anchors were used: (a) long "fingers" (4.5-6 cm), and (b) short "fingers" (3.5 cm). The long-finger anchors stayed in one position while the short-finger anchors were not stable in one position (rotate) within the vagina canal and in some cases came out. Vaginal temperatures were recorded every minute and the data collected were then analyzed using exponential mixed model regression for non-linear data. The results showed that the core-body temperatures for the short-finger anchors were lower than the long-finger anchors. This implied that the placement of the temperature sensor within the vagina cavity may affect the data collected.

  16. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfectedmore » with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.« less

  17. Stress-induced behaviour in adult and old rats: effects of neonatal asphyxia, body temperature and chelation of iron.

    PubMed

    Rogalska, J; Caputa, M; Wentowska, K; Nowakowska, A

    2006-11-01

    Perinatal asphyxia in mammals leads to iron accumulation in the brain, which results in delayed neurobehavioural disturbances, including impaired learning and abnormal alertness over their entire life span. The aim of this investigation was to verify our hypothesis that newborn rats, showing reduced normal body temperature, are protected against neurotoxicity of the asphyxia up to senescence. Alertness was studied in adult and old male Wistar rats after exposure to critical neonatal anoxia: (i) at physiological neonatal body temperature of 33 degrees C, (ii) at body temperature elevated to 37 degrees C, or (iii) at body temperature elevated to 39 degrees C (the thermal conditions remained unchanged both during anoxia and for 2 h postanoxia). To elucidate the effect of iron-dependent postanoxic oxidative damage to the brain, half of the group (iii) was injected with deferoxamine, a chelator of iron. Postanoxic behavioural disturbances were recorded in open-field, elevated plus-maze, and sudden silence tests when the rats reached the age of 12 and 24 months. Open-field stress-induced motor activity was reduced in rats subjected to neonatal anoxia under hyperthermic conditions. In contrast, these rats were hyperactive in the plus-maze test. Both the plus-maze and sudden silence tests show reduced alertness of these rats to external stimuli signalling potential dangers. The behavioural disturbances were prevented by body temperature of 33 degrees C and by administration of deferoxamine.

  18. Interactions among dietary boron, molybdenum, and magnesium in the chick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, C.D.; Nielsen, F.H.

    The authors have previously reported that dietary B affects plasma Mo concentrations in chicks fed inadequate levels of Mg and cholecalciferol (vit. D/sub 3/). Because of this finding, they studied the effect of dietary Mo and Mg on the signs of B deficiency in vit. D/sub 3/ deprived chicks. In a fully crossed, 2 x 2 x 2 factorially arranged experiment, day-old cockerel chicks (19 per group) were fed a ground corn-casein-corn oil based diet (containing 0.850 mg B, 0.319 mg Mo, and 125 IU vit. D/sub 3//kg) supplemented with B at 0 or 3 mg/kg, Mo at 0 ormore » 20 mg/kg, and Mg at 300 or 500 mg/kg. After four weeks, B deprivation depressed growth and elevated the plasma glucose and the brain wt/body wt ratio. Low dietary Mo elevated the heart wt/body wt ratio. An interaction between B and Mg affected hemoglobin and plasma alkaline phosphatase and an interaction between B and Mo affected the heart wt/body wt and liver wt/body wt ratios. Mg deficiency gave usual signs including depressed growth, plasma alkaline phosphatase, glucose, and spleen and liver wt/body wt ratios and elevated hematocrit and brain wt/body wt ratio. The findings suggest that physiological levels of Mg and Mo affect B metabolism. The effects of low dietary Mo on vit. D/sub 3/ and/or Mg-deficient chicks needs to be elucidated.« less

  19. Elevational characteristics of the archaeal community in full-scale activated sludge wastewater treatment plants at a 3,660-meter elevational scale.

    PubMed

    Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing

    2017-07-01

    Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.

  20. International Classification of Functioning, Disability and Health core set for physical health of older adults.

    PubMed

    Ruaro, João A; Ruaro, Marinêz B; Guerra, Ricardo O

    2014-01-01

    To facilitate a systematic, comprehensive description of functioning and to enable the use of the International Classification of Functioning, Disability and Health (ICF) in clinical practice and research, core sets have been developed. The aim of this study was to propose a version of the ICF core set to classify the physical health of older adults. The proposition of the ICF core set was based on the Delphi technique. The panel of experts included 8 Brazilian researchers (physical therapists, medical doctors, nurses, and physical educators). The communication was wholly electronic. In total, there were 5 rounds of interactivity between the participants to arrive at the final version of the construct. The ICF core set presented 30 categories (14 on body functions, 4 on body structures, 9 on activities or participation, and 3 on environmental factors) and had a Cronbach α of 0.964. The presented core set is a secure, fast, and accurate instrument for assessing the physical health and engagement of older adults. It defines points related to functioning and health that are relevant when evaluating this population, as well as when reevaluating it and monitoring changes.

  1. Consensus on core phenomena and statements describing Basic Body Awareness Therapy within the movement awareness domain in physiotherapy.

    PubMed

    Skjaerven, L H; Mattsson, M; Catalan-Matamoros, D; Parker, A; Gard, G; Gyllensten, A Lundvik

    2018-02-26

    Physiotherapists are facing complex health challenges in the treatment of persons suffering from long-lasting musculoskeletal disorders and mental health problems. Basic Body Awareness Therapy (BBAT) is a physiotherapy approach within the movement awareness domain developed to bridge physical, mental, and relational health challenges. The purpose of this study was to reach a consensus on core phenomena and statements describing BBAT. A consensus-building process was conducted using the nominal group technique (NGT). Twenty-one BBAT experts from 10 European countries participated in a concentrated weekend workshop of 20 hours. All participants signed informed consent. Participants reached a consensus on 138 core phenomena, clustered in three overarching categories: clinical core, historical roots, and research and evaluation phenomena. Of the 106 clinical core phenomena, the participants agreed on three categories of phenomena: movement quality, movement awareness practice, and movement awareness therapy and pedagogy. Furthermore, the participants reached 100 percent consensus on 16 of 30 statements describing BBAT. This study provides a consensus on core phenomena and statements describing BBAT. The data reveal phenomena implemented when promoting movement quality through movement awareness. Data provide clarity in some aspects of the vocabulary as fundamental theory. Further reearch will be developed.

  2. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.

    2017-01-01

    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  3. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  4. A nonmagnetic differentiated early planetary body

    DOE PAGES

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; ...

    2017-06-19

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<~1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. Finally, this supports a recent conclusion that the solar nebula had dissipated by ~4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  5. A nonmagnetic differentiated early planetary body

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; Gattacceca, Jérôme; Shuster, David L.; Downey, Brynna; Hu, Jinping; Fu, Roger R.; Kuan, Aaron T.; Suavet, Clément; Irving, Anthony J.; Wang, Jun; Wang, Jiajun

    2017-06-01

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating that it last cooled in a near-zero field (<∼1.7 μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al-Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. This supports a recent conclusion that the solar nebula had dissipated by ∼4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.

  6. Does Pre-Cooling With Whole-Body Immersion Affect Thermal Sensation or Perceived Exertion?: A Critically-Appraised Topic.

    PubMed

    Wohlfert, Timothy M; Miller, Kevin C

    2018-02-21

    Clinical Scenario: Exertional heat stroke (EHS) is a potentially deadly heat illness and poses a significant health risk to athletes; EHS survival rates are near 100% if properly recognized and treated. 1 Whole body cold water immersion (CWI) is the most effective method of lowering body core temperature. 2 Precooling (PC) with CWI before exercise may prevent severe hyperthermia and/or EHS by increasing the body's overall heat-storage capacity. 3 However, PC may also alter athletes' perception of how hot they feel or how hard they are exercising. Consequently, they may be unable to accurately perceive their body core temperature or how hard they are working which may predispose them to severe hyperthermia or EHS. Does PC with whole-body CWI affect thermal sensation (TS) or rating of perceived exertion (RPE) during exercise in the heat? In four studies, 4-7 RPE during exercise ranged from 12 ± 2 to 20 ± 3 with no clinically meaningful differences between PC and control trials. Thermal sensation scores ranged from 2 ± 1 to 8 ± 0.5 in control trials and from 2 ± 1 to 7.5 ± 0.5 during PC trials. Clinical Bottom Line: Precooling did not cause clinically-meaningful differences in RPE or TS during exercise. It is unlikely PC would predispose athletes to EHS by altering perceptions of exercise intensity or body core temperature. Strength of Recommendation: None of the reviewed studies 4-7 (all level 2 studies with PEDro scores ≥5) suggest PC with CWI influences RPE or TS in exercising males.

  7. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less

  8. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu

    2016-02-15

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reportsmore » were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.« less

  9. Effects of feedback-based balance and core resistance training vs. Pilates training on balance and muscle function in older women: a randomized-controlled trial.

    PubMed

    Markovic, Goran; Sarabon, Nejc; Greblo, Zrinka; Krizanic, Valerija

    2015-01-01

    Aging is associated with decline in physical function that could result in the development of physical impairment and disability. Hence, interventions that simultaneously challenge balance ability, trunk (core) and extremity strength of older adults could be particularly effective in preserving and enhancing these physical functions. The purpose of this study was to compare the effects of feedback-based balance and core resistance training utilizing the a special computer-controlled device (Huber®) with the conventional Pilates training on balance ability, neuromuscular function and body composition of healthy older women. Thirty-four older women (age: 70±4 years) were randomly assigned to a Huber group (n=17) or Pilates group (n=17). Both groups trained for 8 weeks, 3 times a week. Maximal isometric strength of the trunk flexors, extensors, and lateral flexors, leg power, upper-body strength, single- and dual-task static balance, and body composition were measured before and after the intervention programs. Significant group×time interactions and main effects of time (p<0.05) were found for body composition, balance ability in standard and dual-task conditions, all trunk muscle strength variables, and leg power in favor of the Huber group. The observed improvements in balance ability under both standard and dual-task conditions in the Huber group were mainly the result of enhanced postural control in medial-lateral direction (p<0.05). Feedback-based balance and core resistance training proved to be more effective in improving single- and dual-task balance ability, trunk muscle strength, leg power, and body composition of healthy older women than the traditional Pilates training. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Core Body Temperature as Adjunct to Endpoint Determination in Murine Median Lethal Dose Testing of Rattlesnake Venom

    PubMed Central

    Cates, Charles C; McCabe, James G; Lawson, Gregory W; Couto, Marcelo A

    2014-01-01

    Median lethal dose (LD50) testing in mice is the ‘gold standard’ for evaluating the lethality of snake venoms and the effectiveness of interventions. As part of a study to determine the murine LD50 of the venom of 3 species of rattlesnake, temperature data were collected in an attempt to more precisely define humane endpoints. We used an ‘up-and-down’ methodology of estimating the LD50 that involved serial intraperitoneal injection of predetermined concentrations of venom. By using a rectal thermistor probe, body temperature was taken once before administration and at various times after venom exposure. All but one mouse showed a marked, immediate, dose-dependent drop in temperature of approximately 2 to 6 °C at 15 to 45 min after administration. The lowest temperature sustained by any surviving mouse was 33.2 °C. Surviving mice generally returned to near-baseline temperatures within 2 h after venom administration, whereas mice that did not survive continued to show a gradual decline in temperature until death or euthanasia. Logistic regression modeling controlling for the effects of baseline core body temperature and venom type showed that core body temperature was a significant predictor of survival. Linear regression of the interaction of time and survival was used to estimate temperatures predictive of death at the earliest time point and demonstrated that venom type had a significant influence on temperature values. Overall, our data suggest that core body temperature is a useful adjunct to monitoring for endpoints in LD50 studies and may be a valuable predictor of survival in venom studies. PMID:25527024

  11. Voluntary fluid intake and core temperature responses in adolescent tennis players: sports beverage versus water.

    PubMed

    Bergeron, M F; Waller, J L; Marinik, E L

    2006-05-01

    To examine differences in ad libitum fluid intake, comparing a 6% carbohydrate/electrolyte drink (CHO-E) and water, and associated differences in core temperature and other selected physiological and perceptual responses in adolescent athletes during tennis training in the heat. Fourteen healthy, fit, young tennis players (nine male; five female; mean (SD) age 15.1 (1.4) years; weight 60.6 (8.3) kg; height 172.8 (8.6) cm) completed two 120 minute tennis specific training sessions on separate days (randomised, crossover design) in a warm environment (wet bulb globe temperature: CHO-E, 79.3 (2.6) degrees F; water, 79.9 (2.2) degrees F; p>0.05). There were no significant differences (p>0.05) between the trials with respect to fluid intake, urine volume, fluid retention, sweat loss, perceived exertion, thirst, or gastrointestinal discomfort. However, there was a difference (p<0.05) in the percentage body weight change after training (CHO-E, -0.5 (0.7)%; water, -0.9 (0.6)%). Urine specific gravity before training (CHO-E, 1.024 (0.006); water, 1.025 (0.005)) did not correlate significantly (p>0.05) with any of these measurements or with core body temperature. In examining the main effect for trial, the CHO-E trial showed a significantly lower (p<0.001) mean body temperature (irrespective of measurement time) than the water trial. However, the mean body temperature in each trial was not associated (p>0.05) with fluid intake, fluid retention, sweat loss, or percentage body weight change. Ad libitum consumption of a CHO-E drink may be more effective than water in minimising fluid deficits and mean core temperature responses during tennis and other similar training in adolescent athletes.

  12. Core Problem: Does the CV Parent Body Magnetization require differentiation?

    NASA Astrophysics Data System (ADS)

    O'Brien, T.; Tarduno, J. A.; Smirnov, A. V.

    2016-12-01

    Evidence for the presence of past dynamos from magnetic studies of meteorites can provide key information on the nature and evolution of parent bodies. However, the suggestion of a past core dynamo for the CV parent body based on the study of the Allende meteorite has led to a paradox: a core dynamo requires differentiation, evidence for which is missing in the meteorite record. The key parameter used to distinguish core dynamo versus external field mechanisms is absolute field paleointensity, with high values (>>1 μT) favoring the former. Here we explore the fundamental requirements for absolute field intensity measurement in the Allende meteorite: single domain grains that are non-interacting. Magnetic hysteresis and directional data define strong magnetic interactions, negating a standard interpretation of paleointensity measurements in terms of absolute paleofield values. The Allende low field magnetic susceptibility is dominated by magnetite and FeNi grains, whereas the magnetic remanence is carried by an iron sulfide whose remanence-carrying capacity increases with laboratory cycling at constant field values, indicating reordering. The iron sulfide and FeNi grains are in close proximity, providing mineralogical context for interactions. We interpret the magnetization of Allende to record the intense early solar wind with metal-sulfide interactions amplifying the field, giving the false impression of a higher field value in some prior studies. An undifferentiated CV parent body is thus compatible with Allende's magnetization. Early solar wind magnetization should be the null hypothesis for evaluating the source of magnetization for chondrites and other meteorites.

  13. In silico evolution of the Drosophila gap gene regulatory sequence under elevated mutational pressure.

    PubMed

    Chertkova, Aleksandra A; Schiffman, Joshua S; Nuzhdin, Sergey V; Kozlov, Konstantin N; Samsonova, Maria G; Gursky, Vitaly V

    2017-02-07

    Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.

  14. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile

    USGS Publications Warehouse

    Drees, Kevin P.; Neilson, Julia W.; Betancourt, Julio L.; Quade, Jay; Henderson, David A.; Pryor, Barry M.; Maier, Raina M.

    2006-01-01

    Soils from the hyperarid Atacama Desert of northern Chile were sampled along an east-west elevational transect (23.75 to 24.70 degrees S) through the driest sector to compare the relative structure of bacterial communities. Analysis of denaturing gradient gel electrophoresis (DGGE) profiles from each of the samples revealed that microbial communities from the extreme hyperarid core of the desert clustered separately from all of the remaining communities. Bands sequenced from DGGE profiles of two samples taken at a 22-month interval from this core region revealed the presence of similar populations dominated by bacteria from the Gemmatimonadetes and Planctomycetes phyla.

  15. Role of muscle IL-6 in gender-specific metabolism in mice

    PubMed Central

    Fernandez-Perez, Antonio; Mogas, Aina; Giralt, Mercedes; Comes, Gemma; Fernandez-Gayol, Olaya; Vallejo, Mario; Hidalgo, Juan

    2017-01-01

    The aim of the present work was to further explore the physiological roles of muscle-derived IL-6. Adult-floxed and conditional skeletal muscle IL-6 knock out male and female mice were used to study energy expenditure (indirect calorimetry at rest and during treadmill exercise, and body temperature cycle during the light phase) and energy intake (response to fast/refeeding). We also evaluated the responses to leptin and the activity of the insulin signalling pathway in skeletal muscle and liver by phosphorylation of Akt at Ser 473. The stress response was also studied. Results indicate a relevant role of muscle IL-6 in maintaining energy homeostasis, especially in males. Absence of muscle IL-6 in male mice results in lower core body temperature in the light phase, increased respiratory exchange ratio (RER) both at rest and during exercise, increased expression of TCA cycle marked gene, citrate synthase in muscle, reduced fat storage and decreased body weight and food consumption in response to leptin. In females, muscle IL-6 deficiency increases VO2 and CO2 levels similarly. Also in contrast to males, energy expenditure (EE) measured over 48h reveals a significant elevation in female mice with muscle IL-6 deficiency; moreover, they show a modified response to fasting-refeeding and to restraint stress. The present results contribute to the understanding of the role of muscle IL-6 in male and female mouse metabolism, not only during exercise but also in the basal state and in situations where energy balance is altered. PMID:28319140

  16. Increase in skeletal-muscle glycogenolysis and perceived exertion with progressive dehydration during cycling in hydrated men.

    PubMed

    Logan-Sprenger, Heather M; Heigenhauser, George J F; Jones, Graham L; Spriet, Lawrence L

    2013-06-01

    This study investigated the effects of progressive mild dehydration during cycling on whole-body substrate oxidation and skeletal-muscle metabolism in recreationally active men. Subjects (N = 9) cycled for 120 min at ~65% peak oxygen uptake (VO2peak 22.7 °C, 32% relative humidity) with water to replace sweat losses (HYD) or without fluid (DEH). Blood samples were taken at rest and every 20 min, and muscle biopsies were taken at rest and at 40, 80, and 120 min of exercise. Subjects lost 0.8%, 1.8%, and 2.7% body mass (BM) after 40, 80, and 120 min of cycling in the DEH trial while sweat loss was not significantly different between trials. Heart rate was greater in the DEH trial from 60 to 120 min, and core temperature was greater from 75 to 120 min. Rating of perceived exertion was higher in the DEH trial from 30 to 120 min. There were no differences in VO2, respiratory-exchange ratio, total carbohydrate (CHO) oxidation (HYD 312 ± 9 vs. DEH 307 ± 10 g), or sweat rate between trials. Blood lactate was significantly greater in the DEH trial from 20 to 120 min with no difference in plasma free fatty acids or epinephrine. Glycogenolysis was significantly greater (24%) over the entire DEH vs. HYD trial (433 ± 44 vs. 349 ± 27 mmol · kg-1 · dm-1). In conclusion, dehydration of <2% BM elevated physiological parameters and perceived exertion, as well as muscle glycogenolysis, during exercise without affecting whole-body CHO oxidation.

  17. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation

    USGS Publications Warehouse

    McKee, K.L.; Cahoon, D.R.; Feller, Ilka C.

    2007-01-01

    Aim The long-term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove-dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3-year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon-dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon-dated cores at the study sites with a sea-level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea-level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea-level rise. These findings have relevance for predicting the effects of sea-level rise and biophysical processes on tropical mangrove ecosystems.

  18. Firefighter Work Duration Influences the Extent of Acute Kidney Injury.

    PubMed

    Schlader, Zachary J; Chapman, Christopher L; Sarker, Suman; Russo, Lindsey; Rideout, Todd C; Parker, Mark D; Johnson, Blair D; Hostler, David

    2017-08-01

    We tested the hypothesis that elevations in biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and dehydration elicited by two common firefighter work durations. Twenty-nine healthy adults (10 females) wearing firefighter protective clothing completed two randomized trials where they walked at 4.8 km·h, 5% grade in a 38°C, 50% RH environment. In the short trial, subjects completed two 20-min exercise bouts. In the long trial (LONG), subjects completed three 20-min exercise bouts. Each exercise bout was separated by 10 min of standing rest in an ~20°C environment. Venous blood samples were obtained before and immediately after exercise, and after 1 h recovery. Dependent variables included changes in core temperature, body weight, plasma volume, serum creatinine, and plasma neutrophil gelatinase-associated lipocalin, a marker of renal tubule injury. Changes in core temperature (+2.0°C ± 0.7°C vs +1.1°C ± 0.4°C, P < 0.01), body weight (-0.9% ± 0.6% vs -0.5% ± 0.5%, P < 0.01), and plasma volume (-11% ± 5% vs -8% ± 6%, P < 0.01) during exercise were greater in LONG. Increases in creatinine were higher in LONG postexercise (0.18 ± 0.15 vs 0.08 ± 0.07 mg·dL, P < 0.01) and after recovery (0.21 ± 0.16 vs 0.14 ± 0.10 mg·dL, P < 0.01). Increases in neutrophil gelatinase-associated lipocalin were greater in LONG postexercise (27.0 ± 20.5 vs 12.7 ± 18.0 ng·mL, P = 0.01) and after recovery (16.9 ± 15.6 vs 1.5 ± 15.1 ng·mL, P = 0.02). Biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and hypovolemia elicited by exercise in the heat.

  19. Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors.

    PubMed

    Carrick, David; Haig, Caroline; Rauhalammi, Sam; Ahmed, Nadeem; Mordi, Ify; McEntegart, Margaret; Petrie, Mark C; Eteiba, Hany; Hood, Stuart; Watkins, Stuart; Lindsay, Mitchell; Mahrous, Ahmed; Ford, Ian; Tzemos, Niko; Sattar, Naveed; Welsh, Paul; Radjenovic, Aleksandra; Oldroyd, Keith G; Berry, Colin

    2016-04-01

    To assess the prognostic significance of infarct core tissue characteristics using cardiac magnetic resonance (CMR) imaging in survivors of acute ST-elevation myocardial infarction (STEMI). We performed an observational prospective single centre cohort study in 300 reperfused STEMI patients (mean ± SD age 59 ± 12 years, 74% male) who underwent CMR 2 days and 6 months post-myocardial infarction (n = 267). Native T1 was measured in myocardial regions of interest (n = 288). Adverse remodelling was defined as an increase in left ventricular (LV) end-diastolic volume ≥20% at 6 months. All-cause death or first heart failure hospitalization was a pre-specified outcome that was assessed during follow-up (median duration 845 days). One hundred and sixty (56%) patients had a hypo-intense infarct core disclosed by native T1. In multivariable regression, infarct core native T1 was inversely associated with adverse remodelling [odds ratio (95% confidence interval (CI)] per 10 ms reduction in native T1: 0.91 (0.82, 0.00); P = 0.061). Thirty (10.4%) of 288 patients died or experienced a heart failure event and 13 of these events occurred post-discharge. Native T1 values (ms) within the hypo-intense infarct core (n = 160 STEMI patients) were inversely associated with the risk of all-cause death or first hospitalization for heart failure post-discharge (for a 10 ms increase in native T1: hazard ratio 0.730, 95% CI 0.617, 0.863; P < 0.001) including after adjustment for left ventricular ejection fraction, infarct core T2 and myocardial haemorrhage. The prognostic results for microvascular obstruction were similar. Infarct core native T1 represents a novel non-contrast CMR biomarker with potential for infarct characterization and prognostication in STEMI survivors. Confirmatory studies are warranted. CLINICALTRIALS. NCT02072850. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  20. HCV IRES-Mediated Core Expression in Zebrafish

    PubMed Central

    Zhang, Jing-Pu; Hu, Zhan-Ying; Tong, Jun-Wei; Ding, Cun-Bao; Peng, Zong-Gen; Zhao, Li-Xun; Song, Dan-Qing; Jiang, Jian-Dong

    2013-01-01

    The lack of small animal models for hepatitis C virus has impeded the discovery and development of anti-HCV drugs. HCV-IRES plays an important role in HCV gene expression, and is an attractive target for antiviral therapy. In this study, we report a zebrafish model with a biscistron expression construct that can co-transcribe GFP and HCV-core genes by human hepatic lipase promoter and zebrafish liver fatty acid binding protein enhancer. HCV core translation was designed mediated by HCV-IRES sequence and gfp was by a canonical cap-dependent mechanism. Results of fluorescence image and in situ hybridization indicate that expression of HCV core and GFP is liver-specific; RT-PCR and Western blotting show that both core and gfp expression are elevated in a time-dependent manner for both transcription and translation. It means that the HCV-IRES exerted its role in this zebrafish model. Furthermore, the liver-pathological impact associated with HCV-infection was detected by examination of gene markers and some of them were elevated, such as adiponectin receptor, heparanase, TGF-β, PDGF-α, etc. The model was used to evaluate three clinical drugs, ribavirin, IFNα-2b and vitamin B12. The results show that vitamin B12 inhibited core expression in mRNA and protein levels in dose-dependent manner, but failed to impact gfp expression. Also VB12 down-regulated some gene transcriptions involved in fat liver, liver fibrosis and HCV-associated pathological process in the larvae. It reveals that HCV-IRES responds to vitamin B12 sensitively in the zebrafish model. Ribavirin did not disturb core expression, hinting that HCV-IRES is not a target site of ribavirin. IFNα-2b was not active, which maybe resulted from its degradation in vivo for the long time. These findings demonstrate the feasibility of the zebrafish model for screening of anti-HCV drugs targeting to HCV-IRES. The zebrafish system provides a novel evidence of using zebrafish as a HCV model organism. PMID:23469178

  1. Investigating Holocene Glacial and Pluvials Events in the Sierra Nevada of California

    NASA Astrophysics Data System (ADS)

    Ashford, J.; Sickman, J. O.; Lucero, D. M.; Kirby, M.; Gray, A. B.

    2016-12-01

    Understanding interannual and decadal variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental record and uncertainty caused by extrapolating paleoclimate data from lower elevation systems to the alpine snow deposition zone. Longer paleo records from high elevation systems are necessary to provide a more accurate record of snow water content and extreme precipitation events over millennial timescales that can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake, an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning along with grain-size analysis at 1-2 cm increments. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K year record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating fine grained, light-dark bands (1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. The sand to gravel sized clasts are most likely associated with extreme precipitation events. Preliminary grain-size analysis results show evidence of isolated extreme hydrologic events and sections of increased event frequency which we hypothesize are the result of atmospheric rivers intersecting the southern Sierra Nevada outside of the snow covered period.

  2. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).

    PubMed

    Brown, Kelly J; Downs, Colleen T

    2006-01-01

    Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.

  3. Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.

  4. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  5. A model of the Greenland ice sheet deglaciation

    NASA Astrophysics Data System (ADS)

    Lecavalier, Benoit

    The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.

  6. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Larry Don; Miller, David Torbet

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots ofmore » both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.« less

  7. Mass loss on Himalayan glacier endangers water resources

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie M.; Thompson, Lonnie G.; Tandong, Yao; Mosley-Thompson, Ellen; Schotterer, Ulrich; Alfimov, Vasily; Beer, Jürg; Eikenberg, Jost; Davis, Mary E.

    2008-11-01

    Ice cores drilled from glaciers around the world generally contain horizons with elevated levels of beta radioactivity including 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. Ice cores collected in 2006 from Naimona'nyi Glacier in the Himalaya (Tibet) lack these distinctive marker horizons suggesting no net accumulation of mass (ice) since at least 1950. Naimona'nyi is the highest glacier (6050 masl) documented to be losing mass annually suggesting the possibility of similar mass loss on other high-elevation glaciers in low and mid-latitudes under a warmer Earth scenario. If climatic conditions dominating the mass balance of Naimona'nyi extend to other glaciers in the region, the implications for water resources could be serious as these glaciers feed the headwaters of the Indus, Ganges, and Brahmaputra Rivers that sustain one of the world's most populous regions.

  8. Usefulness of 68Ga-DOTA-RGD (αvβ3) PET/CT Imaging in Thyroglobulin Elevation With Negative Iodine Scintigraphy.

    PubMed

    Vatsa, Rakhee; Shykla, Jaya; Mittal, Bhagwant Rai; Bhusari, Priya; Sood, Apurva; Basher, Rajender Kumar; Bhattacharya, Anish

    2017-06-01

    TENIS (thyroglobulin elevation with negative iodine scintigraphy) syndrome in patients with differentiated thyroid carcinoma is not a rare finding. In such patients, F-FDG PET/CT can help in disease evaluation. RGD tripeptide, used for imaging angiogenesis, may also help in disease detection in patients with negative radioiodine whole-body scan. We present 1 such case in whom Ga-RGD tripeptide imaging was helpful in disease detection in the setting of negative radioiodine whole-body scan.

  9. Effect of storms on Barrier Island dynamics, Core Banks, Cape Lookout National Seashore, North Carolina, 1960-2001

    USGS Publications Warehouse

    Riggs, Stanley R.; Ames, Dorothea V.

    2007-01-01

    The effect of storms on long-term dynamics of barrier islands was evaluated on Core Banks, a series of barrier islands that extend from Cape Lookout to Okracoke Inlet in the Cape Lookout National Seashore, North Carolina. Shoreline and elevation changes were determined by comparing 77 profiles and associated reference markers established by the U.S. Army Corps of Engineers (USACE) on Core Banks from June 1960 to July 1962 to a follow-up survey by Godfrey and Godfrey (G&G) in 1971 and a survey by the Department of Geology at East Carolina University (ECU) in 2001, in which 57 of the original 77 profiles were located. Evaluation of the baseline data associated with the USACE study supplies an important record of barrier island response to two specific storm events—Hurricane Donna in September 1960 and the Ash Wednesday extra-tropical cyclone in March 1962. The 1962 USACE survey was followed by 9 years characterized by no major storms; this low-energy period was captured by the G&G survey in 1971. The G&G survey was followed by 22 years characterized by occasional small to moderate storms. Starting in 1993, however, and continuing through 1999, the North Carolina coast experienced a major increase in storm activity, with seven major hurricanes impacting Core Banks. Both the USACE 1960–1962 and G&G 1962–1971 surveys produced short-term data sets that reflected very different sets of weather conditions. The ECU 2001 survey data were then compared with the USACE 1960 survey data to develop a long-term (41 years) data set for shoreline erosion on Core Banks. Those resulting long-term data were compared with the long-term (52 years) data sets by the North Carolina Division of Coastal Management (NCDCM) from 1940–1992 and 1946–1998; a strong positive correlation and very similar rates of average annual erosion resulted. However, the ECU and NCDCM long-term data sets did not correlate with either of the USACE and G&G short-term survey data and had very different average annual erosion rates. The average annual long-term rate of shoreline erosion for all of Core Banks and for both the ECU 1960–2001 and the NCDCM 1946–1998 surveys was -5 feet per year (ft/yr). These long-term rates of shoreline recession are in strong contrast with the short-term, storm-dominated rates of shoreline erosion for all of Core Banks developed by the USACE 1960–1961 and USACE 1961–1962 surveys, which have average annual erosion rates of -40 ft/yr and -26 ft/yr, respectively, and range from -226 feet (ft) to +153 ft. The combined short-term, storm-dominated shoreline erosion rate for the USACE surveys (1960–1962) was -36 ft/yr. In contrast, the average annual short-term, non-stormy period G&G 1962–1971 survey demonstrated shoreline accretion for all of Core Banks with an average annual rate of +12 ft/yr. In general, North Core Banks has higher erosion and accretion rates than South Core Banks. In the 1961 survey, the USACE installed 231 reference markers (RM-0 is closest to the ocean and RM-2 is farthest from the ocean) along the 77 profiles, as well as 33 reference markers labeled RM-4, RM-6, and RM-8 in the wider portions of the islands. The G&G survey recovered a total of 141 reference markers (61 percent), and the ECU survey recovered a total of 83 reference markers (36 percent) of the RM-0, RM-1, and RM-2 markers. The average ground elevation measured by the USACE in 1961 was RM-0 = +5.8 ft, RM-1 = +5.2 ft, and RM-2 = +4.8 ft. The G&G 1970 survey measured average ground elevations of RM-0 = +6.7 ft, RM-1 = +6.4 ft, and RM-2 = +6.1 ft, and the average ground elevation measured by ECU in 2001 was RM-0 = +10.1 ft, RM-1 = +9.1 ft, and RM-2 = +8.5 ft. The latter numbers represent approximately an overall 72-percent increase in island elevation from 1961 to 2001. Based on aerial photographic time-slice analyses, it is hypothesized that this increase in island elevation occurred during the post-1962 period with storm overwash systematically raising the island elevation through time, which in turn led to decreased numbers of overwash events. The latter processes and responses in turn led to a substantial increase in vegetative growth on the barrier island, as well as submerged aquatic vegetation on the back-barrier sand shoals. Integration of the USACE, G&G, ECU, and NCDCM shoreline erosion data for Core Banks shows several important points about shoreline recession. (1) The ECU and NCDCM data sets demonstrate that there is an ongoing net, long-term, but small-scale shoreline recession associated with Core Banks; (2) the USACE short-term data sets demonstrate that processes associated with individual storm events or sets of events produce extremely large-scale changes that include both erosion and accretion; (3) the short-term, non-stormy period data set of G&G demonstrates that if given enough time between storm events, barriers can rebuild to their pre-storm period conditions; and (4) the post-storm response generally tends to approach the pre-storm location, but rarely reaches it before the next storm or stormy period sets in. The result is the net long-term change documented by both the ECU 1960–2001 and NCDCM 1946–1998 Core Banks data sets that resulted in erosion rates ranging from 0 to -30 ft/yr with net annual average recession rates of -5 ft/yr. Analysis and comparison of these data sets supply important information for understanding the dynamics and responses of barrier island systems through time. In addition, the results of the present study on Core Banks supply essential process-response information that can be used to design and implement management plans for the Cape Lookout and Cape Hatteras National Seashores and for other seashores in the U.S. National Park Service system.

  10. Phenotypic clines, energy balances and ecological responses to climate change.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G

    2014-01-01

    The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  11. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  12. Iron Isotope Constraints on Planetesimal Core Formation

    NASA Astrophysics Data System (ADS)

    Jordan, M.; Young, E. D.

    2016-12-01

    The prevalence of iron in both planetary cores and silicate mantles renders the element a valuable tool for understanding core formation. Magmatic iron meteorites exhibit an enrichment in 57Fe/54Fe relative to chondrites and HED meteorites. This is suggestive of heavy Fe partitioning into the cores of differentiated bodies. If iron isotope fractionation accompanies core formation, we can elucidate details about the history of accretion for planetary bodies as well as their compositions and relative core sizes. The equilibrium 57Fe/54Fe between metal and silicate is necessary for understanding observed iron isotope compositions and placing constraints on core formation. We measure this fractionation in two Aubrite meteorites, Norton County and Mount Egerton, which have known temperatures of equilibration and equilibrated silicon isotopes. Iron was purified using ion-exchange chromatography. Data were collected on a ThermoFinnigan NeptuneTM multiple-collector inductively coupled plasma-source mass spectrometer (MC-ICP-MS) run in wet plasma mode. The measured fractionation Δ57Femetal-silicate is 0.08‰ ± 0.039 (2 SE) for Norton County and 0.09‰ ± 0.019 (2 SE) for Mount Egerton, indicating that the heavy isotopes of Fe partition into the metallic phase. These rocks are in isotopic equilibrium at a temperature of 1130 K and 1200 K ± 80 K, respectively. The concentration of the heavy isotopes of iron in the metallic phase is consistent with recent experimental studies. Using our measured metal-silicate Fe isotope fractionation and the resulting temperature calibration, while taking into account impurities in the metallic phase and temperatures of equilibration, determine that core formation could explain the observed difference between magmatic iron meteorites and chondrites if parent bodies have small cores. In order to verify that Rayleigh distillation during fractional crystallization was not a cause of iron isotope fractionation in iron meteorites, we measured iron isotope ratios in a suite of iron meteorites representing a large range of degrees of fractional crystallization. We find no clear variation in 57Fe/54Fe among these samples.

  13. Shock wave propagation in layered planetary embryos

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Jafar; Ivanov, Boris A.

    2014-05-01

    The propagation of impact-induced shock wave inside a planetary embryo is investigated using the Hugoniot equations and a new scaling law, governing the particle velocity variations along a shock ray inside a spherical body. The scaling law is adopted to determine the impact heating of a growing embryo in its early stage when it is an undifferentiated and uniform body. The new scaling law, similar to other existing scaling laws, is not suitable for a large differentiated embryo consisting of a silicate mantle overlying an iron core. An algorithm is developed in this study on the basis of the ray theory in a spherically symmetric body which relates the shock parameters at the top of the core to those at the base of the mantle, thus enabling the adoption of scaling laws to estimate the impact heating of both the mantle and the core. The algorithm is applied to two embryo models: a simple two-layered model with a uniform mantle overlying a uniform core, and a model where the pre-shock density and acoustic velocity of the embryo are radially dependent. The former illustrates details of the particle velocity, shock pressure, and temperature increase behind the shock front in a 2D axisymmetric geometry. The latter provides a means to compare the results with those obtained by a hydrocode simulation. The agreement between the results of the two techniques in revealing the effects of the core-mantle boundary on the shock wave transmission across the boundary is encouraging.

  14. Comparison of Microchip Transponder and Noncontact Infrared Thermometry with Rectal Thermometry in Domestic Swine (Sus scrofa domestica)

    PubMed Central

    Jara, Amanda L; Hanson, Jarod M; Gabbard, Jon D; Johnson, Scott K; Register, Emery T; He, Biao

    2016-01-01

    During disease outbreaks, core temperature is a useful health metric in swine, due to the presence of pyrexia especially during the acute phase of infection. Despite technologic advances in other facets of swine production and health management, rectal thermometry continues to be the ‘gold standard’ for measuring core body temperature. However, for various reasons, collecting rectal temperatures can be difficult and unsafe depending on the housing modality. In addition, the delay between insertion of the rectal thermometer and obtaining a reading can affect measurement accuracy, especially when the pig requires physical restraint. Clearly safer, faster, and more accurate and precise temperature acquisition methods that necessitate minimal or no handling of swine are needed. We therefore compared rectal thermometers, subcutaneous microchips, and an inexpensive handheld infrared thermometer by measuring the core body temperature of 24 male castrated piglets at random intervals over a 5-wk period. The core body temperature (mean ± 1 SD) was 39.3 ± 0.5 °C by rectal thermometry, 39.0 ± 0.7 °C by microchip transponder, and 34.3 ± 1.0 °C by infrared thermometry; these 3 values differed significantly. Although the readings obtain by using infrared thermometry were numerically lower than those from the other methods, it is arguably the safest method for assessing the core temperature of swine and showed strong relative correlation with rectal temperature. PMID:27657715

  15. High-pressure metallization of FeO and implications for the earth's core

    NASA Technical Reports Server (NTRS)

    Knittle, Elise; Jeanloz, Raymond

    1986-01-01

    The phase diagram of FeO has been experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock-wave and diamond-cell techniques. A metallic phase of FeO is observed at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the earth's outer core, in accord with the geochemical predictions of Ringwood (1977 and 1979). The high pressures necessary for this metallization suggest that the core has acquired its composition well after the initial stages of the earth's accretion. Direct experimental observations at elevated pressures and temperatures indicate that core-forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  16. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  17. Relationship between inflammation, insulin resistance and type 2 diabetes: 'cause or effect'?

    PubMed

    Greenfield, Jerry R; Campbell, Lesley V

    2006-05-01

    Inflammation has been implicated as an important aetiological factor in the development of both insulin resistance and type 2 diabetes mellitus. This conclusion is predominantly drawn from studies demonstrating associations between elevated (but 'normal range') levels of circulating acute phase inflammatory markers, typified by C-reactive protein (CRP), and indices of insulin resistance and the development of type 2 diabetes. There is debate as to whether these associations are independent of body fatness or, rather, an epiphenomenon of obesity, particularly central obesity, a strong predictor of insulin resistance and type 2 diabetes and an important source of inflammatory cytokines, such as interleukin-6. Some of this controversy and the inability to draw definitive conclusions from these studies relate to the fact that most studies measure body fat and its distribution indirectly using anthropometric estimates, such as Body Mass Index and waist circumference, rather than directly by dual-energy X-ray absorptiometry, computed tomography or magnetic resonance imaging. Furthermore, use of the term inflammation may be inappropriate when describing mild elevations of CRP in the 'normal range' in the absence of the other changes that characterise classical inflammatory diseases, such as a reduction in levels (or evidence of consumption) of complement proteins. Debate as to whether obesity mediates the association between circulating levels of inflammatory markers and insulin resistance can be resolved by well-designed studies using body fat measured by gold-standard methods. In this review, we present evidence to support the suggestion that body fat is the primary determinant of circulating inflammatory marker levels in the basal state and that marginally elevated levels of circulating interleukin-6 and CRP in obesity are a consequence rather than a cause of insulin resistance. The importance of genetic influences in determining both body fatness and circulating CRP levels will also be discussed. The review will conclude with a discussion of possible mechanisms linking body fat and insulin resistance to elevated circulating levels of inflammatory markers, including the possible role of the toll-like family of immune receptors.

  18. Some Consequences of the Mechanical Forcing of Cores and Oceans (Invited)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2009-12-01

    All of the large terrestrial bodies (Mercury, Venus, Earth, Moon, Mars, probably Io) have liquid iron-alloy outer cores and partially solid adjacent silicate mantles, and most large icy bodies (Europa, Ganymede, Callisto, Titan, perhaps Triton and Pluto, maybe even some smaller bodies such as Enceladus) also have internal liquid-solid interfaces. I argue that the dynamics for these icy body interfaces can be very different from the terrestrial cases because they are phase transitions. Topography on a phase transition must be dynamically maintained and the redistribution of heat in a fluid region is so efficient that this topography can be rapidly destroyed on geologic timescales. The relatively low viscosity of ice compared to silicates (when both are near their melting points) also tends to counteract substantial topography. I will present scaling arguments for the expected behavior and consequences for the various kinds of coupling across liquid -solid interfaces and how this can affect dynamics and energy budgets. I will illustrate this through three examples: Venus, Moon and Titan. In the case of Venus, the rotational bulge is negligible and core-mantle coupling is expected to be the dominant dissipative process that defines the rate and nature of the True Polar Wander driven by variable mantle convection. It will also modify the length of day variations. Thus, study of Venus from Earth by radar can tell us about the dynamics of the deep interior. In the case of our Moon, I will argue that recent results for lunar paleomagnetism are best explained by a dynamo during an early epoch of large obliquity and possibly large eccentricity. In this case, the near sphericity of the core-mantle boundary allows the core to rotate about a substantially different axis than the mantle, leading to mechanically driven core flows sufficient to maintain a lunar dynamo. In the case of Titan, the evidence for an ocean is in question, but the theoretical arguments are strong, especially in light of what we know about the comparison bodies Ganymede and Callisto. New gravity and topography results are interpreted in the light of the likely presence of this ocean and estimates are offered for the consequent rotational dynamics. The common theme of these three examples is the role that external geodetic observations can have in illuminating internal structure of planets and satellites.

  19. Increased seedling establishment via enemy release at the upper elevational range limit of sugar maple.

    PubMed

    Urli, Morgane; Brown, Carissa D; Narváez Perez, Rosela; Chagnon, Pierre-Luc; Vellend, Mark

    2016-11-01

    The enemy release hypothesis is frequently invoked to explain invasion by nonnative species, but studies focusing on the influence of enemies on natural plant range expansion due to climate change remain scarce. We combined multiple approaches to study the influence of plant-enemy interactions on the upper elevational range limit of sugar maple (Acer saccharum) in southeastern Québec, Canada, where a previous study had demonstrated intense seed predation just beyond the range limit. Consistent with the hypothesis of release from natural enemies at the range limit, data from both natural patterns of regeneration and from seed and seedling transplant experiments showed higher seedling densities at the range edge than in the core of the species' distribution. A growth chamber experiment manipulating soil origin and temperature indicated that this so-called "happy edge" was not likely caused by temperature (i.e., the possibility that climate warming has made high elevation temperatures optimal for sugar maple) or by abiotic soil factors that vary along the elevational gradient. Finally, an insect-herbivore-exclusion experiment showed that insect herbivory was a major cause of seedling mortality in the core of sugar maple's distribution, whereas seedlings transplanted at or beyond the range edge experienced minimal herbivory (i.e., enemy release). Insect herbivory did not completely explain the high levels of seedling mortality in the core of the species' distribution, suggesting that seedlings at or beyond the range edge may also experience release from pathogens. In sum, while some effects of enemies are magnified beyond range edges (e.g., seed predation), others are dampened at and beyond the range edge (e.g., insect herbivory), such that understanding the net outcome of different biotic interactions within, at and beyond the edge of distribution is critical to predicting species' responses to global change. © 2016 by the Ecological Society of America.

  20. Hydrostratigraphy of Tree Island Cores from Water Conservation Area 3

    USGS Publications Warehouse

    McNeill, Donald F.; Cunningham, Kevin J.

    2003-01-01

    Cores and borehole-geophysical logs collected on and around two tree islands in Water Conservation Area 3 have been examined to develop a stratigraphic framework for these ecosystems. Especially important is the potential for the exchange of ground water and surface water within these features. The hydrostratigraphic results from this study document the lithologic nature of the foundation of the tree islands, the distribution of porous intervals, the potential for paleotopographic influence on their formation, and the importance of low-permeability, subaerial-exposure horizons on the vertical exchange of ground water and surface water. Figure 1. Location of Tree Islands 3AS3 and 3BS1. [larger image] Results from this hydrostratigraphic study indicate that subtle differences occur in lithofacies and topography between the on-island and off-island subsurface geologic records. Specifics are described herein. Firstly, at both tree-island sites, the top of the limestone bedrock is slightly elevated beneath the head of the tree islands relative to the off-island core sites and the tail of the tree islands, which suggests that bedrock 'highs' acted as 'seeds' for the development of the tree islands of this study and possibly many others. Secondly, examination of the recovered core and the caliper logs tentatively suggest that the elevated limestone beneath the tree islands may have a preferentially more porous framework relative to limestone beneath the adjacent areas, possibly providing a ground-water-to-surface-water connection that sustains the tree island system. Finally, because the elevation of the top of the limestone bedrock at the head of Tree Island 3AS3 is slightly higher than the surrounding upper surface of the peat, and because the wetland peats have a lower hydraulic conductivity than the limestone bedrock (Miami Limestone and Fort Thompson Formation), it is possible that there is a head difference between surface water of the wetlands and the ground water in underlying limestone bedrock.

  1. What is hypomania? Tetrachoric factor analysis and kernel estimation of DSM-IV hypomanic symptoms.

    PubMed

    Benazzi, Franco

    2009-11-01

    The DSM-IV definition of hypomania, which relies on clinical consensus and historical tradition, includes several "nonspecific" symptoms. The aim of this study was to identify the core symptoms of DSM-IV hypomania. In an outpatient private practice, 266 bipolar II disorder (BP-II) and 138 major depressive disorder (MDD) remitted patients were interviewed by a bipolar-trained psychiatrist, for different study goals. Patients were questioned, using the Structured Clinical Interview for DSM-IV, about the most common symptoms and duration of recent threshold and subthreshold hypomanic episodes. Data were recorded between 2002 and 2006. Four different samples, assessed with the same methodology, were pooled for the present analyses. Tetrachoric factor analysis was used to identify core hypomanic symptoms. Distribution of symptoms by kernel estimation was inspected for bimodality. Validity of core hypomania was tested by receiver operating characteristic (ROC) analysis. The distribution of subthreshold and threshold hypomanic episodes did not show bimodality. Tetrachoric factor analysis found 2 uncorrelated factors: factor 1 included the "classic" symptoms elevated mood, inflated self-esteem, decreased need for sleep, talkativeness, and increase in goal-directed activity (overactivity); factor 2 included the "nonspecific" symptoms irritable mood, racing/crowded thoughts, and distractibility. Factor 1 discriminatory accuracy for distinguishing BP-II versus MDD was high (ROC area = 0.94). The distribution of the 5-symptom episodes of factor 1 showed clear-cut bimodality. Similar results were found for episodes limited to 3 behavioral symptoms of factor 1 (decreased need for sleep, talkativeness, and overactivity) and 4 behavioral symptoms of factor 1 (adding elevated mood), with high discriminatory accuracy. A core, categorical DSM-IV hypomania was found that included 3 to 5 symptoms, ie, behavioral symptoms and elevated mood. Behavioral symptoms (overactivity domain) could be the basic phenotype of hypomania. This finding could help in probing for hypomania and reduce misdiagnosis. Biologic research could focus more on the underpinnings of the overactivity domain specifically. Copyright 2009 Physicians Postgraduate Press, Inc.

  2. Regulation of Carotid Body Oxygen Sensing by Hypoxia-Inducible Factors

    PubMed Central

    Prabhakar, Nanduri R.; Semenza, Gregg L.

    2015-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Carotid body responses to hypoxia are not uniform but instead exhibit remarkable inter-individual variations. The molecular mechanisms underlying variations in carotid body O2 sensing are not known. Hypoxia-inducible factor-1 (HIF-1) and HIF-2 mediate transcriptional responses to hypoxia. This article reviews the emerging evidence that proper expression of the HIF-α isoforms is a key molecular determinant for carotid body O2 sensing. HIF-1α deficiency leads to a blunted carotid body hypoxic response, which is due to increased abundance of HIF-2α, elevated anti-oxidant enzyme activity, and a reduced intracellular redox state. Conversely, HIF-2α deficiency results in augmented carotid body sensitivity to hypoxia, which is due to increased abundance of HIF-1α, elevated pro-oxidant enzyme activity, and an oxidized intracellular redox state. Double heterozygous mice with equally reduced HIF-1α and HIF-2α showed no abnormality in redox state or carotid body O2 sensing. Thus, mutual antagonism between HIF-α isoforms determines the redox state and thereby establishes the set point for hypoxic sensing by the carotid body. PMID:26265380

  3. Sweating is greater in NCAA football linemen independently of heat production.

    PubMed

    Deren, Tomasz M; Coris, Eric E; Bain, Anthony R; Walz, Steve M; Jay, Ollie

    2012-02-01

    The study's purpose was to investigate whether differences in local sweat rates on the upper body between American football linemen (L) and backs (B) exist independently of differences in metabolic heat production. Twelve NCAA Division I American football players (6 linemen (mass = 141.6 ± 6.5 kg, body surface area (BSA) = 2.67 ± 0.08 m2) and 6 backs (mass = 88.1 ± 13.4 kg, BSA = 2.11 ± 0.19 m2)) cycled at a fixed metabolic heat production per unit BSA of 350 W·m(-2) for 60 min in a climatic chamber (t(db) [dry bulb temperature] = 32.4°C ± 1.0°C, t(wb) [wet bulb temperature] = 26.3°C ± 0.6°C, v [air velocity] = 0.9 ± 0.1 m·s(-1)). Local sweat rates on the head, arm, shoulder, lower back, and chest were measured after 10, 30, and 50 min of exercise. Core temperature, mean skin temperature, and HR were measured throughout exercise. Because metabolic heat production per unit surface area was fixed between participants, the rate of evaporation required for heat balance was similar (L = 261 ± 35 W·m(-2), B = 294 ± 30 W·m(-2), P = 0.11). However, local sweat rates on the head, arm, shoulder, and chest were all significantly greater (P < 0.05) in linemen at all time points, and end-exercise core temperature was significantly greater (P = 0.033) in linemen (38.5°C ± 0.4°C) relative to backs (38.0°C ± 0.2°C) despite a ∼25% lower heat production per unit mass. The change in mean skin temperature from rest was greater in linemen (P < 0.001) after 15, 30, 45, and 60 min, and HR was greater in linemen for the last 30 min of exercise. Football linemen sweat significantly more on the torso and head than football backs independently of any differences in metabolic heat production per unit BSA and therefore the evaporative requirements for heat balance. Despite greater sweating, linemen demonstrated significantly greater elevations in core temperature suggesting that sweating efficiency (i.e., the proportion of sweat that evaporates) was much lower in linemen.

  4. Where is the Geophysical Evidence for the Giant Impact Origin of the Pluto System?

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Singer, K. N.; Nimmo, F.; Spencer, J. R.; Young, L. A.; Weaver, H. A., Jr.; Stern, S. A.

    2016-12-01

    Prior to the New Horizons flyby of the Pluto system, it was anticipated that both Pluto and Charon might show geological or geophysical evidence of the giant impact thought responsible for the formation of Charon and the smaller satellites. Although dynamical and compositional evidence still supports the giant impact model (McKinnon et al., submitted to Icarus), the question remains as to whether the geology of Pluto or Charon records evidence of this cataclysm. The collision speed and energy were most likely not large enough to melt all the ices in the precursor bodies, so surviving geological evidence is not out of the question. Specifically, Pluto post-impact should have been rapidly rotating (with a period as short as 5-6 hr) and highly distorted; Charon under most circumstances would have rapidly despun but have been a highly distorted triaxial body. The tidal evolution end state for both is close to spherical, but fossil figures were anticipated, which in addition to providing direct evidence for post-impact tidal evolution, would provide important clues to thermal and structural evolution. For Pluto, McKinnon and Singer (DPS 2014, abs. 419.07) predicted a flattening >1% (radii differences >10 km) for a strengthless icy lithosphere and an unrelaxed rock core. For a fully relaxed core, they predicted a >2-3 km fossil bulge supported by icy lithospheric strength (corresponding to a minimum past lithosphere thickness of 50 km). New Horizons image analyses have limited any oblateness for Pluto to 0.6% (Nimmo et al., Icarus, in press), which corresponds to <7 km flattening. So Pluto may yet possess a geophysically meaningful oblateness, only one not yet directly detectable (moreover, in order to be consistent with the observations, Pluto's rock core either completed its formation post-spindown, or was too weak to support much non-hydrostatic topography). Such an equator-to-pole surface elevation difference, even a subtle one, could express itself through control of Pluto's zonal albedo pattern (i.e., dark, reddish Cthulhu Regio, Krun and other Macula are all equatorial [names are informal]). Even for a completely relaxed shape, the tectonic effects on Pluto's surface should be manifest. There is a rich variety of tectonic expression, but no obvious match to classic predicted tectonic despinning patterns.

  5. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes.

    PubMed

    Kanikarla-Marie, Preeti; Jain, Sushil K

    2016-06-01

    Diets that boost ketone production are increasingly used for treating several neurological disorders. Elevation in ketones in most cases is considered favorable, as they provide energy and are efficient in fueling the body's energy needs. Despite all the benefits from ketones, the above normal elevation in the concentration of ketones in the circulation tend to illicit various pathological complications by activating injurious pathways leading to cellular damage. Recent literature demonstrates a plausible link between elevated levels of circulating ketones and oxidative stress, linking hyperketonemia to innumerable morbid conditions. Ketone bodies are produced by the oxidation of fatty acids in the liver as a source of alternative energy that generally occurs in glucose limiting conditions. Regulation of ketogenesis and ketolysis plays an important role in dictating ketone concentrations in the blood. Hyperketonemia is a condition with elevated blood levels of acetoacetate, 3-β-hydroxybutyrate, and acetone. Several physiological and pathological triggers, such as fasting, ketogenic diet, and diabetes cause an accumulation and elevation of circulating ketones. Complications of the brain, kidney, liver, and microvasculature were found to be elevated in diabetic patients who had elevated ketones compared to those diabetics with normal ketone levels. This review summarizes the mechanisms by which hyperketonemia and ketoacidosis cause an increase in redox imbalance and thereby increase the risk of morbidity and mortality in patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Probing the inner core's African hemisphere boundary with P'P'

    NASA Astrophysics Data System (ADS)

    Day, Elizabeth; Ward, James; Bastow, Ian; Irving, Jessica

    2017-04-01

    Geophysical observations of the inner core today improve our understanding not just of the processes occurring in the core at the present, but also those that occurred in the past. As the inner core freezes it may record clues as to the state of the Earth at the time of growth; the texture in the inner core may also be modified through post-solidification deformation. The seismic structure of the inner core is not simple; the dominant pattern is one of anisotropic and isotropic differences between the Eastern and Western 'hemispheres' of the inner core. Additionally, there is evidence for an innermost inner core, layering of the uppermost inner core, and possibly super-rotation of the inner core relative to the mantle. Most body wave studies of inner core structure use PKP-PKIKP differential travel times to constrain velocity variations within the inner core. However, body wave studies are inherently limited by the geometry of seismic sources and stations, and thus there are some areas of the inner core that are relatively under-sampled, even in today's data-rich world. Here, we examine the differential travel times of the different branches of P'P' (PKIKPPKIKP, or P'P'df, and PKPPKP), comparing the arrival time of inner core turning branch P'P'df with the arrival times of branches that turn in the outer core. By using P'P' we are able to exploit different ray geometries and sample different regions of the inner core to those areas accessible to studies which utilize PKIKP. We use both linear and non-linear stacking methods to make observations of the small amplitude P'P' phases. We identify the three P'P' branches, as well as pre- and post-cursors to the main arrivals, which can cause confusion. To facilitate identifying each P'P' branch we make AxiSEM synthetics, carry out beamforming, and use bootstrapping to access the robustness of our observations, which focus on the inner core's hemisphere boundary beneath Africa. Our measurements match the broad scale hemispherical pattern of anisotropy in the inner core, but also show some small scale variations.

  7. The Chesapeake Bay Impact Crater: An Educational Investigation for Students into the Planetary Impact Process and its Environmental Consequences

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    2008-01-01

    Planetary impact craters are a common surface feature of many planetary bodies, including the Earth, the Moon, Mars, Mercury, Venus, and Jupiter s moons, Ganymede and Callisto. The NASA Langley Research Center in Hampton, VA, is located about 5 km inside the outer rim of the Chesapeake Bay Impact Crater. The Chesapeake Bay Impact Crater, with a diameter of 85 km is the sixth largest impact crater on our planet. The U.S. Geological Survey (USGS), in collaboration with the NASA Langley Research Center, the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Planning District Commission (HRPDC), and the Department of Geology of the College of William and Mary (WM) drilled into and through the crater at the NASA Langley Research Center and obtained a continuous core to a depth of 2075.9 ft (632.73 meters) from the Chesapeake Bay Impact Crater. At the NASA Langley location, the granite basement depth was at 2046 ft (623.87 meters). This collaborative drilling activity provided a unique educational opportunity and ongoing educational partnership between USGS, NASA Langley and the other collaborators. NASA Langley has a decade-long, ongoing educational partnership with the Colonial Coast Council of the Girl Scouts. The core drilling and on site analysis and cataloguing of the core segments provided a unique opportunity for the Girl Scouts to learn how geologists work in the field, their tools for scientific investigation and evaluation, how they perform geological analyses of the cores in an on-site tent and learn about the formation of impact craters and the impact of impacting bodies on the sub-surface, the surface, the oceans and atmosphere of the target body. This was accomplished with a two-part activity. Girl Scout day camps and local Girl Scout troops were invited to Langley Research Center Conference Center, where more than 300 Girl Scouts, their leaders and adult personnel were given briefings by scientists and educators from the USGS, NASA, VDEQ, HRPDC and WM on the principles of geology, the formation of impact craters, the consequences of the impacting body on the atmosphere, ocean, surface and sub-surface, the geological, chemical and biological analyses of the core and the cataloguing and storage of the core segments, etc. After the briefings, the Girl Scouts visited the drilling site where they inspected the core drilling rig, examined the core samples and discussed the drilling procedures, cores and interpretation of the cores with scientists and educators from the organizations conducting the core drilling. Demonstrations at the drilling site included demonstrations of impacting objects hitting multi-colored layered mud targets at different angles of entry. The multi-colored layers of mud were instructive in mapping out the distribution of impact-ejected material around the impact crater. The presentation will include a series of photographs of the Girl Scout participating in activities at the Chesapeake Bay Impact Crater drill site, including retrieving cores from the drilling rig, inspecting the core samples and participating in the impact-crater formation demonstrations.

  8. Determinants of bovine thermal response to heat and solar radiation exposures in a field environment

    NASA Astrophysics Data System (ADS)

    Scharf, Brad; Leonard, Michael J.; Weaber, Robert L.; Mader, Terry L.; Hahn, G. Leroy; Spiers, Donald E.

    2011-07-01

    Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental ( Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature ( T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature ( T a), and black globe temperatures ( T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core ( R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.

  9. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Hattori, Kenji; Kunugita, Naoki; Wang, Jianqing; Ishii, Kazuyuki

    2016-01-01

    We investigated the thermal effects of radiofrequency electromagnetic fields (RF-EMFs) on the variation in core temperature and gene expression of some stress markers in rats. Sprague-Dawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum.

  10. A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.

    PubMed

    Kim, Seonghun

    2018-02-01

    Mucin-type O-glycans are involved in biological functions on the cell surface as well as the glycoproteins and can also be used as specific carbohydrate biomarkers of many diseases. In this study, I purified a novel core 1 O-linked glycan specific lectin, Hericium erinaceus lecin (HeL), from the fruiting body of the mushroom Hericium erinaceus, which is known as the natural source for a sialic acid-binding lectin. Upon optimization of the purification conditions, a sequence of ion exchange, affinity, ion exchange, and size-exclusion chromatography resulted in the highest yield and best quality of lectin without protease activity. The resulting purified HeL is an apparent hexameric protein with a subunit molecular weight of 15kDa, and a pI of 4.3. In hemagglutination inhibition assay, the purified lectin was only inhibited by glycoproteins containing mucin-type O-glycans and reacted weakly with Galβ(1,3)GalNAc. Glycan array analyses showed that HeL specifically interacts with core 1 O-linked glycans as well as extended O-glycan structures containing sialylation or fucosylation. The glycan binding specificity of HeL is comparable to that of peanut agglutinin for detection of a broader range of extended core 1 O-glycan structures. Taken together, these results provide an efficient and optimized procedure for the purification of HeL from the fruiting body of the mushroom Hericium erinaceus. Moreover, HeL represents a powerful tool for analyzing core 1 and extended core 1 O- glycan structures in diagnosis assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ultrastructural study on dynamics of lipid bodies and plastids during ripening of chili pepper fruits.

    PubMed

    Liu, Lin

    2013-03-01

    Dynamics of lipid bodies and plastids in chili pepper fruits during ripening were investigated by means of transmission electron microscopy. Mesocarp of chili pepper fruits consists of collenchyma, normal parenchyma, and huge celled parenchyma. In mature green fruits, plastids contain numerous thylakoids that are well organized into grana in collenchyma, a strikingly huge amount of starch and irregularly organized thylakoids in normal parenchyma, and simple tubes rather than thylakoids in huge celled parenchyma. These morphological features suggest that plastids are chloroplasts in collenchyma, chloroamyloplasts in normal parenchyma, proplastids in huge celled parenchyma. As fruits ripen to red, plastids in all cell types convert to chromoplasts and, concomitantly, lipid bodies accumulate in both cytoplasm and chromoplasts. Cytosolic lipid bodies are lined up in a regular layer adjacent to plasma membrane. The cytosolic lipid body consists of a core surrounded by a membrane. The core is comprised of a more electron-dense central part enclosed by a slightly less electron-dense peripheral layer. Plastidial lipid bodies in collenchyma, normal parenchyma, and endodermis initiate as plastoglobuli, which in turn convert to rod-like structures. Therefore, plastidial lipid bodies are more dynamic than cytosolic lipid bodies. Both cytosolic and plastidial lipid bodies contain rich unsaturated lipids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. New interpretation of data of the Earth's solid core

    NASA Astrophysics Data System (ADS)

    Guliyev, H. H.

    2017-06-01

    The commonly accepted scientific opinions on the inner core as the deformable solid globe are based on the solution of the problem on the distribution of elastic parameters in the inner structures of the Earth. The given solution is obtained within the necessary integral conditions on its self-weight, moment of inertia concerning the axes of rotation and periods of free oscillations of the Earth. It is shown that this solution does not satisfy the mechanics of the deformable solid body with sufficient local conditions following from basic principles concerning the strength, stability and actuality of velocities of propagation of elastic waves. The violation of local conditions shows that the inner core cannot exist in the form of the deformable solid body within the commonly accepted elastic parameters.

  13. Modelling accidental hypothermia effects on a human body under different pathophysiological conditions.

    PubMed

    Coccarelli, Alberto; Boileau, Etienne; Parthimos, Dimitris; Nithiarasu, Perumal

    2017-12-01

    Accidental exposure to cold water environment is one of the most challenging situations in which hypothermia occurs. In the present work, we aim to characterise the energy balance of a human body subjected to such extreme environmental conditions. This study is carried out using a recently developed computational model and by setting boundary conditions needed to simulate the effect of cold surrounding environment. A major finding is the capacity of the body core regions to maintain their temperature high for a substantial amount of time, even under the most extreme environmental conditions. We also considered two disease states that highlight the spectrum of possible pathologies implicated in thermal regulation of the human body. These states are (i) cardiomyopathy, which affects the operating capacity of the heart, and (ii) malnutrition, which directly impairs the body's ability to regulate heat exchange with the environment. We have found that cardiomyopathy has little influence on the thermal balance of the human body, whereas malnutrition has a profound negative effect on the thermal balance and leads to dramatic reduction in core temperature.

  14. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure

    PubMed Central

    Sumowski, James F.; Leavitt, Victoria M.

    2014-01-01

    Objective To investigate whether resting body temperature is elevated and linked to fatigue in patients with relapsing-remitting multiple sclerosis (RRMS). Design Cross-sectional study investigating (a) differences in resting body temperature across RRMS, SPMS, and healthy groups, and (b) the relationship between body temperature and fatigue in RRMS patients. Setting Climate-controlled laboratory (~22°C) within a non-profit medical rehabilitation research center. Participants Fifty patients with RRMS, 40 matched healthy controls, and 22 patients with secondary-progressive MS (SPMS). Intervention None. Main Outcome Measure(s) Body temperature was measured with an aural infrared thermometer (normal body temperature for this thermometer is 36.75°C), and differences were compared across RRMS, SPMS, and healthy persons. RRMS patients completed measures of general fatigue (Fatigue Severity Scale; FSS), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale; MFIS). Results There was a large effect of group (p<.001, ηp2=.132) whereby body temperature was higher in RRMS patients (37.04°C±0.27) relative to healthy controls (36.83 ± 0.33; p = .009) and SPMS patients (36.75°C±0.39; p=.001). Warmer body temperature in RRMS patients was associated with worse general fatigue (FSS; rp=.315, p=.028) and physical fatigue (pMFIS; rp=.318, p=.026), but not cognitive fatigue (cMIFS; rp=−.017, p=.909). Conclusions These are the first-ever demonstrations that body temperature is elevated endogenously in RRMS patients, and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. PMID:24561056

  15. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    PubMed

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  16. Leucine and Protein Metabolism in Obese Zucker Rats

    PubMed Central

    She, Pengxiang; Olson, Kristine C.; Kadota, Yoshihiro; Inukai, Ayami; Shimomura, Yoshiharu; Hoppel, Charles L.; Adams, Sean H.; Kawamata, Yasuko; Matsumoto, Hideki; Sakai, Ryosei; Lang, Charles H.; Lynch, Christopher J.

    2013-01-01

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA) dehydrogenase complex (BCKDC) activities. Male obese Zucker rats (11-weeks old) had increased body weight (BW, 53%), liver (107%) and fat (∼300%), but lower plantaris and gastrocnemius masses (−21–24%). Plasma BCAAs and BCKAs were elevated 45–69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%), leucine (Leu) turnover and proteolysis [35% per g fat free mass (FFM), urinary markers of proteolysis: 3-methylhistidine (183%) and 4-hydroxyproline (766%)] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (−47–66%). A process disposing of circulating BCAAs, protein synthesis, was increased 23–29% by obesity in whole-body (FFM corrected), gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193–418%) than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and protein turnover along with impaired BCKDC activity. Elevated BCAAs/BCKAs may contribute to observed elevations in protein synthesis and BCAA oxidation. PMID:23527196

  17. Anchoring Technology for In Situ Exploration of Small Bodie

    NASA Technical Reports Server (NTRS)

    Steltzner, A.; Nasif, A.

    2000-01-01

    Comets, asteroids and other small bodies found in the solar system do not possess enough gravity to ensure spacecraft contact forces sufficient to allow many types of in situ science, such as core or surface sampling.

  18. TNFα induces co-trafficking of TRPV1/TRPA1 in VAMP1-containing vesicles to the plasmalemma via Munc18–1/syntaxin1/SNAP-25 mediated fusion

    PubMed Central

    Meng, Jianghui; Wang, Jiafu; Steinhoff, Martin; Dolly, James Oliver

    2016-01-01

    Transient receptor potential (TRP) A1 and V1 channels relay sensory signals, yet little is known about their transport to the plasmalemma during inflammation. Herein, TRPA1 and TRPV1 were found on vesicles containing calcitonin gene-related peptide (CGRP), accumulated at sites of exo- and endo-cytosis, and co-localised on fibres and cell bodies of cultured sensory neurons expressing both. A proinflammatory cytokine, TNFα, elevated their surface content, and both resided in close proximity, indicating co-trafficking. Syntaxin 1–interacting protein, Munc18–1, proved necessary for the response to TNFα, and for TRPV1-triggered CGRP release. TNFα-induced surface trafficking of TRPV1 and TRPA1 required a synaptic vesicle membrane protein VAMP1 (but not 2/3), which is essential for CGRP exocytosis from large dense-core vesicles. Inactivation of two proteins on the presynaptic plasma membrane, syntaxin-1 or SNAP-25, by botulinum neurotoxin (BoNT)/C1 or /A inhibited the TNFα-elevated delivery. Accordingly, enhancement by TNFα of Ca2+ influx through the upregulated surface-expressed TRPV1 and TRPA1 channels was abolished by BoNT/A. Thus, in addition, the neurotoxins’ known inhibition of the release of pain transmitters, their therapeutic potential is augmented by lowering the exocytotic delivery of transducing channels and the resultant hyper-sensitisation in inflammation. PMID:26888187

  19. A 270-year Ice Core Record of Atmospheric Mercury Deposition to Western North America

    NASA Astrophysics Data System (ADS)

    Schuster, P. F.; Krabbenhoft, D. P.; Naftz, D. L.; Cecil, L. D.; Olson, M. L.; DeWild, J. F.; Susong, D. D.; Green, J. R.

    2001-05-01

    The Upper Fremont Glacier (UFG), a mid-latitude glacier in the Wind River Range, Wyoming, U.S.A., contains a record of atmospheric mercury deposition. Although some polar ice-core studies have provided a limited record of past mercury deposition, polar cores are, at best, proxy indicators of historic mercury deposition in the mid-latitudes. Two ice cores removed from the UFG in 1991 and 1998 (totaling 160 meters in length) provided a chronology and paleoenvironmental framework. This aids in the interpretation of the mercury deposition record. For the first time reported from a mid-latitude ice core, using low-level procedures, 97 ice core samples were analyzed to reconstruct a 270-year atmospheric mercury deposition record based in the western United States. Trends in mercury concentration from the UFG record major releases to the atmosphere of both natural and anthropogenic mercury from regional and global sources. We find that mercury concentrations are significantly, but for relatively short time intervals, elevated during periods corresponding to volcanic eruptions with global impact. This indicates that these natural events "punctuate" the record. Anthropogenic activities such as industrialization (global scale), gold mining and war-time manufacturing (regional scale), indicate that chronic levels of elevated mercury emissions have a greater influence on the historical atmospheric deposition record from the UFG. In terms of total mercury deposition recorded by the UFG during approximately the past 270 years: anthropogenic inputs contributed 52 percent; volcanic events contributed 6 percent; and pre-industrialization or background accounted for 42 percent of the total input. More significantly, during the last 100 years, anthropogenic sources contributed 70 percent of the total mercury input. A declining trend in mercury concentrations is obvious during the past 20 years. Declining mercury concentrations in the upper section of the ice core are corroborated by recent declining trends observed in sediment cores. This is also verified by similar concentrations in UFG snow samples collected in 1999. This decline may be in response to the United States Clean Air Act of 1970.

  20. A Nonmagnetic Differentiated Early Planetary Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Benjamin P.; Wang, Jun

    2017-06-15

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<∼1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. This supports a recent conclusion that the solar nebula had dissipated by ∼4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  1. Moderators of the Intervention Effects for a Dissonance-Based Eating Disorder Prevention Program; Results from an Amalgam of Three Randomized Trials

    PubMed Central

    Müller, Sina; Stice, Eric

    2013-01-01

    Objective To investigate factors hypothesized to moderate the effects of a dissonance-based eating disorder prevention program, including initial elevations in thin-ideal internalization, body dissatisfaction, eating disorder symptoms, and older participant age. Method Adolescent female high school and college students with body image concerns (N = 977; M age = 18.6) were randomized to a dissonance-based thin-ideal internalization reduction program or an assessment-only control condition in three prevention trials. Results The intervention produced (a) significantly stronger reductions in thin-ideal internalization for participants with initial elevations in thin-ideal internalization and a threshold/subthreshold DSM-5 eating disorder at baseline, (b) significantly greater reductions in eating disorder symptoms for participants with versus without a DSM-5 eating disorder at baseline, and (c) significantly stronger reductions in body dissatisfaction for late adolescence/young adulthood versus mid-adolescent participants. Baseline body dissatisfaction did not moderate the intervention effects. Conclusion Overall, intervention effects tended to be amplified for individuals with initial elevations in risk factors and a DSM-5 eating disorder at baseline. Results suggest that this prevention program is effective for a broad range of individuals, but is somewhat more beneficial for the subgroups identified in the moderation analyses. PMID:23337181

  2. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  3. Influence of core body temperature on Tryptophan metabolism, kynurenines, and estimated IDO activity in critically ill patients receiving target temperature management following cardiac arrest.

    PubMed

    Schefold, Joerg C; Fritschi, Nora; Fusch, Gerhard; Bahonjic, Aldin; Doehner, Wolfram; von Haehling, Stephan; Pschowski, Rene; Storm, Christian; Schroeder, Tim

    2016-10-01

    Temperature control improves neurological prognosis in comatose cardiac arrest (CA) survivors. Previous reports demonstrate that most affected patients show signs of significant systemic inflammation. In an effort to better characterize potential temperature-related effects on key inflammatory pathways, we investigate the course of Tryptophan (Trp) levels, Tryptophan catabolites (including kynurenines) and indoleamine-2,3-dioxygenase (IDO)-activity in post CA patients. In an observational blinded endpoint analysis, a total of n=270 serial samples from 20 post CA patients (63.1±16.6 yrs., 45% shockable rhythm, mean time to return of spontaneous circulation (ROSC) 26.6±16.0min) treated with target temperature management (TTM) were analyzed. Core body temperatures, course of Trp, Trp catabolites (incl. kynurenines), and estimated IDO-activity were followed up for a maximum of 7 days after ROSC. Patients were followed up until hospital discharge or death and functional outcome was recorded. Over the 7-day observational interval, marked changes in Trp serum levels and IDO-activity were noted. In general, Trp serum levels but not IDO-activity seemed to parallel with the course of core body temperature. In explorative analyses, a correlation of Trp (rho=0.271 (95%-CI: 0.16-0.38, p<0.0001) and IDO-activity (rho=-0.155, 95%-CI: -0.27 to -0.037, p=0.01) with core body temperature was observed. Linear mixed effect models revealed a positive significant association of core body temperature with Trp serum levels (Likelihood ratio test χ(2)=6.35, p=0.012). In patients with good (vs. unfavorable) outcome, a tendency toward higher Trp serum levels, lower IDO-activity, and lower Kynurenic acid levels was noted. We observed significant changes in Trp catabolism and IDO-activity that appeared temperature associated in post CA patients. Under hypothermia, decreased serum levels of Trp and increased IDO-activity were noted. We speculate from our data that IDO-induction during hypothermia contributes to the previously described increased susceptibility to infection or sepsis under reduced temperatures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Does oxygen exposure time control the extent of organic matter decomposition in peatlands?

    NASA Astrophysics Data System (ADS)

    Philben, Michael; Kaiser, Karl; Benner, Ronald

    2014-05-01

    The extent of peat decomposition was investigated in four cores collected along a latitudinal gradient from 56°N to 66°N in the West Siberian Lowland. The acid:aldehyde ratios of lignin phenols were significantly higher in the two northern cores compared with the two southern cores, indicating peats at the northern sites were more highly decomposed. Yields of hydroxyproline, an amino acid found in plant structural glycoproteins, were also significantly higher in northern cores compared with southern cores. Hydroxyproline-rich glycoproteins are not synthesized by microbes and are generally less reactive than bulk plant carbon, so elevated yields indicated that northern cores were more extensively decomposed than the southern cores. The southern cores experienced warmer temperatures, but were less decomposed, indicating that temperature was not the primary control of peat decomposition. The plant community oscillated between Sphagnum and vascular plant dominance in the southern cores, but vegetation type did not appear to affect the extent of decomposition. Oxygen exposure time appeared to be the strongest control of the extent of peat decomposition. The northern cores had lower accumulation rates and drier conditions, so these peats were exposed to oxic conditions for a longer time before burial in the catotelm, where anoxic conditions prevail and rates of decomposition are generally lower by an order of magnitude.

  5. A Composite Depth Scale for Sediments from Crevice Lake, Montana

    USGS Publications Warehouse

    Rosenbaum, J.G.; Skipp, G.; Honke, J.; Chapman, C.

    2010-01-01

    As part of a study to derive records of past environmental change from lake sediments in the western United States, a set of cores was collected from Crevice Lake, Montana, in late February and early March 2001. Crevice Lake (latitude 45.000N, longitude 110.578W, elevation 1,713 meters) lies adjacent to the Yellowstone River at the north edge of Yellowstone National Park. The lake is more than 31 meters deep and has a surface area of 7.76 hectares. The combination of small surface area and significant depth promote anoxic bottom-water conditions that preserve annual laminations (varves) in the sediment. Three types of cores were collected through the ice. The uppermost sediments were obtained in freeze cores that preserved the sediment water interface. Two sites were cored with a 5-centimeter diameter corer. Five cores were taken with a 2-meter-long percussion piston corer. The percussion core uses a plastic core liner with an inside diameter of 9 centimeters. Coring was done at two sites. Because of the relatively large diameter of the percussion cores, samples from these cores were used for a variety of analyses including pollen, charcoal, diatoms, stable isotopes, organic and inorganic carbon, elemental analyses, and magnetic properties.

  6. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  7. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  8. Experimental evidence of body centered cubic iron in Earth's core

    NASA Astrophysics Data System (ADS)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  9. Warming Up With an Ice Vest: Core Body Temperature Before and After Cross-Country Racing

    PubMed Central

    Hunter, Iain; Hopkins, J. Ty; Casa, Douglas J

    2006-01-01

    Context: Athletes running in a hot, humid environment may have an increased risk of heat illness. In the 2004 Olympic Games, American and Australian athletes were provided with ice vests designed to cool their bodies before performance. The vest appeared to be effective in keeping body temperatures down and improving the performance of the marathoners. However, body temperatures have not been reported when the vest was used before an actual competition. Objective: To determine if wearing the Nike Ice-Vest decreased core temperature (Tc) before and during athletic performance in warm (26°C to 27°C), humid (relative humidity = 50% to 75%) conditions. Design: A 2 × 3 mixed-model design was used to compare groups (ice vest, no ice vest) across changes in temperature from baseline (10 minutes and 1 minute before the race and immediately after the race). Setting: 2005 Big Wave Invitational 4-km race in Hawaii and 2005 Great American 5-km race in North Carolina. Patients or Other Participants: Eighteen women from a National Collegiate Athletic Association Division I cross-country team who participated in either the Big Wave Invitational or the Great American Race. Intervention(s): Four hours before the start of the race, the athletes ingested radiotelemetry temperature sensors. One hour before the start of the race, Tc was recorded, and half of the athletes donned a Nike Ice-Vest, which was removed immediately before the race. Main Outcome Measure(s): Additional Tc readings were taken at 10 minutes and 1 minute before the start of the race and immediately after the race. Results: Ten minutes before the start of the race, Tc was elevated by 0.84°C ± 0.37°C in the no-vest group, compared with 0.29°C ± 0.56°C in the ice-vest group ( P < .01). This difference in Tc persisted at 1 minute before the start. Immediately after the finish, the increase in Tc averaged 2.75°C ± 0.62°C in the no-vest group and 2.12°C ± 0.62°C in the ice-vest group ( P < .01). Conclusions: Wearing an ice vest before cross-country performance in warm, humid conditions allowed athletes to start and finish the competition with a lower Tc than did those who did not wear a vest. PMID:17273460

  10. Exercise activates compensatory thermoregulatory reaction in rats: a modeling study

    PubMed Central

    Yoo, Yeonjoo; LaPradd, Michelle; Kline, Hannah; Zaretskaia, Maria V.; Behrouzvaziri, Abolhassan; Rusyniak, Daniel E.; Molkov, Yaroslav I.

    2015-01-01

    The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats (Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures (Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this “ready-to-run” phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry. PMID:26472864

  11. Influence of body composition on physiological responses to post-exercise hydrotherapy.

    PubMed

    Stephens, Jessica M; Halson, Shona L; Miller, Joanna; Slater, Gary J; Askew, Christopher D

    2018-05-01

    This study examined the influence of body composition on temperature and blood flow responses to post-exercise cold water immersion (CWI), hot water immersion (HWI) and control (CON). Twenty-seven male participants were stratified into three groups: 1) low mass and low fat (LM-LF); 2) high mass and low fat (HM-LF); or 3) high mass and high fat (HM-HF). Experimental trials involved a standardised bout of cycling, maintained until core temperature reached 38.5°C. Participants subsequently completed one of three 15-min recovery interventions (CWI, HWI, or CON). Core, skin and muscle temperatures, and limb blood flow were recorded at baseline, post-exercise, and every 30 min following recovery for 240 min. During CON and HWI there were no differences in core or muscle temperature between body composition groups. The rate of fall in core temperature following CWI was greater in the LM-LF (0.03 ± 0.01°C/min) group compared to the HM-HF (0.01 ± 0.001°C/min) group (P = 0.002). Muscle temperature decreased to a greater extent during CWI in the LM-LF and HM-LF groups (8.6 ± 3.0°C) compared with HM-HF (5.1 ± 2.0°C, P < 0.05). Blood flow responses did not differ between groups. Differences in body composition alter the thermal response to post-exercise CWI, which may explain some of the variance in the responses to CWI recovery.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<~1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. Finally, this supports a recent conclusion that the solar nebula had dissipated by ~4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  13. On fast solid-body rotation of the solar core and differential (liquid-like) rotation of the solar surface

    NASA Astrophysics Data System (ADS)

    Pashitskii, E. A.

    2017-07-01

    On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r ( r) = -β r creates a convective, v r ∂ v φ/∂ r, and a local Coriolis, v r v φ/ r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in the tachocline layer, where the turbulent viscosity reaches its maximum value at the equator. There, the tachocline layer exerts the most efficient drag on the less dense outer layers of the solar plasma, which are slowed down due to the interaction with the ambient space plasma (solar wind).

  14. Evaluating pen-day interactions in body temperature bilogistic mixed model for handling of feedlot heifers during heat stress

    USDA-ARS?s Scientific Manuscript database

    Daily activities consume the energy of heifers, subsequently causing an elevation of body temperature, depending on the ambient conditions. A better understanding of the dynamics of body temperature (Tb) would be helpful when deciding how to process and handle heifers. It would also lead to specific...

  15. Selenium deficiency in cattle associated with Heinz bodies and anemia.

    PubMed

    Morris, J G; Cripe, W S; Chapman, H L; Walker, D F; Armstrong, J B; Alexander, J D; Miranda, R; Sanchez, A; Sanchez, B; Blair-West, J R

    1984-02-03

    Cattle grazing St. Augustine grass growing on peaty muck soils in the Florida Everglades developed anemia associated with the presence of Heinz bodies and suboptimal concentrations of selenium in blood. Selenium supplementation corrected the anemia, prevented Heinz body formation, increased the body weight of cows and calves, and elevated blood selenium. This may be the first recorded example of widespread anemia in a population due to selenium deficiency.

  16. Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.

    PubMed

    Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S

    2017-12-01

    Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The breeding season duration hypothesis: acute handling stress and total plasma concentrations of corticosterone and androgens in male and female striped plateau lizards (Sceloporus virgatus).

    PubMed

    Hews, D K; Abell Baniki, A J

    2013-10-01

    Acute glucocorticoid elevations can be adaptations to short-term stressors. The breeding season hypothesis predicts reduced glucocorticoid responsiveness to acute stressors in populations or species with short breeding seasons. The striped plateau lizard (Sceloporus virgatus) has a short breeding season in Arizona. We measured plasma corticosterone and total androgen levels (dihydrotestosterone and testosterone) following one of the four stress-handling treatments (0, 10, 60, or 180 min). In both sexes, longer handling stress yielded higher corticosterone; females had higher corticosterone than males at all time points. Androgens did not vary with handling duration, in either sex. Combining treatments, plasma androgens correlated positively with corticosterone (CORT) in females but not in males; plasma CORT and body mass residuals were negatively correlated in both sexes, suggesting lizards in poor body condition and/or not investing heavily in reproduction (follicle mass) have higher acute corticosterone. Total plasma androgens and body mass residuals were positively associated in males, but showed no association in females. The maximal CORT elevation after handling stress in this single-clutching species was of comparable magnitude to responses in related multi-clutching lizard species with longer breeding seasons. Using data from studies of multiple populations of three Sceloporus species, we found no relationship between the relative magnitude of the CORT increase and either latitude or elevation, two variables in the literature correlated with duration of the breeding season, and only weak relationships with geographic elevation and actual (not relative) stress-elevated CORT values in this multi-population comparison.

  18. Link between cutaneous infection, stress and depression.

    PubMed

    Jagmag, T; Tirant, M; Lotti, T

    2017-01-01

    Depression and mood disorders often develop after dermatological conditions which could be primary or secondary to dermatological pathology. The oxidative and psychological stress cause physiological changes in the body. Shift in the methylation pathway, elevated cortisol, lowered neurotransmitter levels and lowered immune system allow infection to penetrate the body and lead to anxiety and depression. Here, a case report of a 20 year old male patient is presented to show how infectious skin lesions, unresponsive to the usual treatment plan, were treated after using a multipronged approach of addressing systemic infection of Escherichia coli, elevated cortisol levels and nutritional imbalances.

  19. 10. DETAILED VIEW OF THE EAST ELEVATION. THE UPPER SET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAILED VIEW OF THE EAST ELEVATION. THE UPPER SET OF WINDOWS PROVIDE LIGHT FOR THE DELIVERY LEVEL. THE LOWER SETS OF WINDOWS PROVIDE LIGHT TO THREE STORY SPACE BENEATH THE DELIVERY LEVEL AND BEHIND THE ORE STORAGE BINS. NOTE THE ORE DELIVER TRESTLE AT THE TIME THE PHOTOGRAPH WAS TAKEN, THE MODERN CEMENT MIXER AND WHEELBARROWS WERE FOR THIS WORK. NOTE THE MORTAR BOXES ON THEIR SIDES. IT IS UNCLEAR IF THESE WERE FROM EARLIER STAMPS AT THIS MILL OR IF THEY WERE BROUGHT TO THE SITE FROM OTHER MILLS IN THE REGION. RISDON IRON WORKS IS CAST INTO THE MORTARS AND THEY ALSO BEAR A PLATE: WHITE, ROGERS AND CO. MILL WRIGHTS. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  20. Thermal Properties of A Solar Coronal Cavity Observed with the X-Ray Telescope on Hinode

    NASA Technical Reports Server (NTRS)

    Reeves, Katherine K.; Gibson, Sarah E.; Kucera, Theresa A.; Hudson, Hugh S.; Kano, Ryouhei

    2011-01-01

    Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during July 2008 that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity "cores" with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK and 2.0 MK (for July 19, July 21 and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

  1. Historical deposition of mercury and selected trace elements to high-elevation National Parks in the Western U.S. inferred from lake-sediment cores

    USGS Publications Warehouse

    Mast, M. Alisa; Manthorne, David J.; Roth, David A.

    2010-01-01

    Atmospheric deposition of Hg and selected trace elements was reconstructed over the past 150 years using sediment cores collected from nine remote, high-elevation lakes in Rocky Mountain National Park in Colorado and Glacier National Park in Montana. Cores were age dated by 210Pb, and sedimentation rates were determined using the constant rate of supply model. Hg concentrations in most of the cores began to increase around 1900, reaching a peak sometime after 1980. Other trace elements, particularly Pb and Cd, showed similar post-industrial increases in lake sediments, confirming that anthropogenic contaminants are reaching remote areas of the Rocky Mountains via atmospheric transport and deposition. Preindustrial (pre-1875) Hg fluxes in the sediment ranged from 5.7 to 42 μg m−2 yr−1 and modern (post-1985) fluxes ranged from 17.7 to 141 μg m−2 yr−1. The average ratio of modern to preindustrial fluxes was 3.2, which is similar to remote lakes elsewhere in North America. Estimates of net atmospheric deposition based on the cores were 3.1 μg m−2 yr−1 for preindustrial and 11.7 μg m−2 yr−1for modern times. Current-day measurements of wet deposition range from 5.0 to 8.6 μg m−2 yr−1, which are lower than the modern sediment-based estimate of 11.7 μg m−2 yr−1, perhaps owing to inputs of dry-deposited Hg to the lakes.

  2. A 60 Year Record of Atmospheric Aerosol Depositions Preserved in a High-Accumulation Dome Ice Core, Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Iizuka, Yoshinori; Uemura, Ryu; Fujita, Koji; Hattori, Shohei; Seki, Osamu; Miyamoto, Chihiro; Suzuki, Toshitaka; Yoshida, Naohiro; Motoyama, Hideaki; Matoba, Sumito

    2018-01-01

    The Southeastern Greenland Dome (SE-Dome) has both a high elevation and a high accumulation rate (1.01 m we yr-1), which are suitable properties for reconstructing past environmental changes with a high time resolution. For this study, we measured the major ion fluxes in a 90 m ice core drilled from the SE-Dome region in 2015 and present the records of annual ion fluxes from 1957 to 2014. From 1970 to 2010, the trend of nonsea-salt (nss) SO42- flux decreases, whereas that for NH4+ increases, tracking well with the anthropogenic SOx and NH3 emissions mainly from North America. The result suggests that these fluxes reflect histories of the anthropogenic SOx and NH3 emissions. In contrast, the decadal trend of NO3- flux differs from the decreasing trend of anthropogenic NOx emissions. Although the cause of this discrepancy remains unclear, it may be related to changes in particle formation processes and chemical scavenging rates caused by an increase in sea salt and dust and/or a decrease in nssSO42-. We also find a high average NO3- flux (1.13 mmol m-2 yr-1) in the ice core, which suggests a negligible effect from postdepositional NO3- loss. Thus, the SE-Dome region is an excellent location for reconstructing nitrate fluxes. Over a decadal time scale, our NO3- flux record is similar to those from other ice cores in Greenland high-elevation sites, suggesting that NO3- concentration records from these ice cores are reliable.

  3. Clostridium perfringens in Long Island Sound sediments: An urban sedimentary record

    USGS Publications Warehouse

    Buchholtz ten Brink, Marilyn R.; Mecray, E.L.; Galvin, E.L.

    2000-01-01

    Clostridium perfringens is a conservative tracer and an indicator of sewage-derived pollution in the marine environment. The distribution of Clostridium perfringens spores was measured in sediments from Long Island Sound, USA, as part of a regional study designed to: (1) map the distribution of contaminated sediments; (2) determine transport and dispersal paths; (3) identify the locations of sediment and contaminant focusing; and (4) constrain predictive models. In 1996, sediment cores were collected at 58 stations, and surface sediments were collected at 219 locations throughout the Sound. Elevated concentrations of Clostridium perfringens in the sediments indicate that sewage pollution is present throughout Long Island Sound and has persisted for more than a century. Concentrations range from undetectable amounts to 15,000 spores/g dry sediment and are above background levels in the upper 30 cm at nearly all core locations. Sediment focusing strongly impacts the accumulation of Clostridium perfringens spores. Inventories in the cores range from 28 to 70,000 spores/cm2, and elevated concentrations can extend to depths of 50 cm. The steep gradients in Clostridium perfringens profiles in muddier cores contrast with concentrations that are generally constant with depth in sandier cores. Clostridium perfringens concentrations rarely decrease in the uppermost sediment, unlike those reported for metal contaminants. Concentrations in surface sediments are highest in the western end of the Sound, very low in the eastern region, and intermediate in the central part. This pattern reflects winnowing and focusing of Clostridium perfringens spores and fine-grained sediment by the hydrodynamic regime; however, the proximity of sewage sources to the westernmost Sound locally enhances the Clostridium perfringens signals.

  4. Siblings of patients with Crohn's disease exhibit a biologically relevant dysbiosis in mucosal microbial metacommunities.

    PubMed

    Hedin, Charlotte; van der Gast, Christopher J; Rogers, Geraint B; Cuthbertson, Leah; McCartney, Sara; Stagg, Andrew J; Lindsay, James O; Whelan, Kevin

    2016-06-01

    To determine the existence of mucosal dysbiosis in siblings of patients with Crohn's disease (CD) using 454 pyrosequencing and to comprehensively characterise and determine the influence of genotypical and phenotypical factors, on that dysbiosis. Siblings of patients with CD have elevated risk of developing CD and display aspects of disease phenotype, including faecal dysbiosis. Whether the mucosal microbiota is disrupted in these at-risk individuals is unknown. Rectal biopsy DNA was extracted from 21 patients with quiescent CD, 17 of their healthy siblings and 19 unrelated healthy controls. Mucosal microbiota was analysed by 16S rRNA gene pyrosequencing and were classified into core and rare species. Genotypical risk was determined using Illumina Immuno BeadChip, faecal calprotectin by ELISA and blood T-cell phenotype by flow cytometry. Core microbiota of both patients with CD and healthy siblings was significantly less diverse than controls. Metacommunity profiling (Bray-Curtis (SBC) index) showed the sibling core microbial composition to be more similar to CD (SBC=0.70) than to healthy controls, whereas the sibling rare microbiota was more similar to healthy controls (SBC=0.42). Faecalibacterium prausnitzii contributed most to core metacommunity dissimilarity both between siblings and controls, and between patients and controls. Phenotype/genotype markers of CD risk significantly influenced microbiota variation between and within groups, of which genotype had the largest effect. Individuals with elevated CD-risk display mucosal dysbiosis characterised by reduced diversity of core microbiota and lower abundance of F. prausnitzii. This dysbiosis in healthy people at risk of CD implicates microbiological processes in CD pathogenesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Mississippi Curriculum Framework for Automotive Body Repair (Program CIP: 47.0603--Auto/Automotive Body Repairer). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for automotive body repair I and II. Presented first are a program…

  6. A Keplerian-based Hamiltonian splitting for gravitational N-body simulations

    NASA Astrophysics Data System (ADS)

    Gonçalves Ferrari, G.; Boekholt, T.; Portegies Zwart, S. F.

    2014-05-01

    We developed a Keplerian-based Hamiltonian splitting for solving the gravitational N-body problem. This splitting allows us to approximate the solution of a general N-body problem by a composition of multiple, independently evolved two-body problems. While the Hamiltonian splitting is exact, we show that the composition of independent two-body problems results in a non-symplectic non-time-symmetric first-order map. A time-symmetric second-order map is then constructed by composing this basic first-order map with its self-adjoint. The resulting method is precise for each individual two-body solution and produces quick and accurate results for near-Keplerian N-body systems, like planetary systems or a cluster of stars that orbit a supermassive black hole. The method is also suitable for integration of N-body systems with intrinsic hierarchies, like a star cluster with primordial binaries. The superposition of Kepler solutions for each pair of particles makes the method excellently suited for parallel computing; we achieve ≳64 per cent efficiency for only eight particles per core, but close to perfect scaling for 16 384 particles on a 128 core distributed-memory computer. We present several implementations in SAKURA, one of which is publicly available via the AMUSE framework.

  7. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  8. Evidence That in Uncontrolled Diabetes, Hyperglucagonemia Is Required for Ketosis but Not for Increased Hepatic Glucose Production or Hyperglycemia

    PubMed Central

    Meek, Thomas H.; Dorfman, Mauricio D.; Matsen, Miles E.; Fischer, Jonathan D.; Cubelo, Alexis; Kumar, Monica R.; Taborsky, Gerald J.

    2015-01-01

    Several lines of evidence implicate excess glucagon secretion in the elevated rates of hepatic glucose production (HGP), hyperglycemia, and ketosis characteristic of uncontrolled insulin-deficient diabetes (uDM), but whether hyperglucagonemia is required for hyperglycemia in this setting is unknown. To address this question, adult male Wistar rats received either streptozotocin (STZ) to induce uDM (STZ-DM) or vehicle and remained nondiabetic. Four days later, animals received daily subcutaneous injections of either the synthetic GLP-1 receptor agonist liraglutide in a dose-escalating regimen to reverse hyperglucagonemia or its vehicle for 10 days. As expected, plasma glucagon levels were elevated in STZ-DM rats, and although liraglutide treatment lowered glucagon levels to those of nondiabetic controls, it failed to attenuate diabetic hyperglycemia, elevated rates of glucose appearance (Ra), or increased hepatic gluconeogenic gene expression. In contrast, it markedly reduced levels of both plasma ketone bodies and hepatic expression of the rate-limiting enzyme involved in ketone body production. To independently confirm this finding, in a separate study, treatment of STZ-DM rats with a glucagon-neutralizing antibody was sufficient to potently lower plasma ketone bodies but failed to normalize elevated levels of either blood glucose or Ra. These data suggest that in rats with uDM, hyperglucagonemia is required for ketosis but not for increased HGP or hyperglycemia. PMID:25633417

  9. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made itmore » more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.« less

  10. A high altitude paleoclimate record from an ice core retrieved at the northern margin of the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gabrielli, P.; Barbante, C.; Carturan, L.; Davis, M. E.; Dalla Fontana, G.; Dreossi, G.; Dinale, R.; Draga, G.; Gabrieli, J.; Kehrwald, N. M.; Mair, V.; Mikhalenko, V.; Oeggl, K.; Schotterer, U.; Seppi, R.; Spolaor, A.; Stenni, B.; Thompson, L. G.; Tonidandel, D.

    2013-12-01

    Atmospheric temperatures in the Alps are increasing at twice the global rate and this change may be amplified at the highest elevations. There is a scarcity of paleo-climate information from high altitudes to place this current rapid climate change in a paleo-perspective. The 'Ortles Project' is an international scientific effort gathering institutes from six nations with the primary goal of obtaining a high altitude paleo-climate record in the Mediterranean area. In 2011 four ice cores were extracted from Alto dell'Ortles (3859 m, South Tyrol, Italy) the highest glacier in the eastern Alps. This site is located ~30 km away from where the famous ~5.2 kyr old Tyrolean Ice Man was discovered emerging from an ablating ice field (Hauslabjoch, 3210 m) in 1991. The good state of conservation of this mummy suggested that the current warming trend is unprecedented in South Tyrol during the late Holocene and that unique prehistoric ice was still present in this region. During the ice core drilling operations we found that the glacier Alto dell'Ortles shows a very unusual thermic behavior as it is transitioning from a cold to a temperate state. In fact, below a 30 meter thick temperate firn portion, we observed cold ice layers sitting on a frozen bedrock (-2.8 C). These represent remnants of the colder climate before ~1980 AD, when an instrumental record indicates a ~2 C lower temperature in this area during the period 1864-1980 AD. By analyzing one of the Ortles cores for stable isotopes, dust and major ions, we found an annually preserved climatic signal embedded in the deep cold ice of this glacier. Alto dell'Ortles is therefore the first low-accumulation (850 mm w.e. per year) alpine drilling site where both winter and summer layers can be identified. Preliminary annual layer counting and two absolute time markers suggest that the time period covered by the Ortles ice cores spans from several centuries to a few millennia. In particular, a Larix (larch) leaf discovered at 74 m depth suggests a 14C bottom ice age of 2664 ×166 years (early European Iron Age) supporting the idea that exceptional prehistoric ice is still present at the highest elevations of South Tyrol. Here we present the records of the first Ortles core analyzed in terms of δ18O (proxy of mid-tropospheric temperature), major ions and dust. We found that δ18O measured in the shallowest layers of this glacier exceeds the average deeper values indicating that the Ortles cores capture the recent increase in atmospheric temperatures at high elevation and that this is anomalous over a time scale that extends from hundreds to thousands of years.

  11. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  12. Hartree-Fock studies of hypernuclear properties

    NASA Astrophysics Data System (ADS)

    Lanskoy, D. E.

    1998-08-01

    The Skyrme-Hartree-Fock approach is approved as a powerful tool to reproduce general properties of Λ hypernuclear spectra [1-4] and to relate hypernuclear observables to effective interaction features. In this contribution, we consider briefly some less common hypernuclear systems, which appear to be quite sensitive to details of the relevant interactions. Particularly, we address possible manifestations of the polarization of a hypernuclear core (i.e. core distortion due to hyperon addition), which is driven in terms of the Skyrme force mainly by counterbalance between the two-body ΛN force and the three-body ΛNN (or density-dependent ΛN) one.

  13. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure.

    PubMed

    Sumowski, James F; Leavitt, Victoria M

    2014-07-01

    To investigate whether (1) resting body temperature is elevated in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy individuals and patients with secondary progressive multiple sclerosis (SPMS), and (2) warmer body temperature is linked to worse fatigue in patients with RRMS. Cross-sectional study. Climate-controlled laboratory (∼22°C) within a nonprofit medical rehabilitation research center. Patients with RRMS (n=50), matched healthy controls (n=40), and patients with SPMS (n=22). Not applicable. Body temperature was measured with an aural infrared thermometer (normative body temperature for this thermometer, 36.75°C), and differences were compared across patients with RRMS and SPMS and healthy persons. Patients with RRMS completed measures of general fatigue (Fatigue Severity Scale [FSS]), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale [MFIS]). There was a large effect of group (P<.001, ηp(2)=.132) whereby body temperature was higher in patients with RRMS (37.04°±.27°C) relative to healthy controls (36.83°±.33°C; P=.009) and patients with SPMS (36.75°±.39°C; P=.001). Warmer body temperature in patients with RRMS was associated with worse general fatigue (FSS; rp=.315, P=.028) and physical fatigue (physical fatigue subscale of the MFIS; rp=.318, P=.026), but not cognitive fatigue (cognitive fatigue subscale of the MIFS; rp=-.017, P=.909). These are the first-ever demonstrations that body temperature is elevated endogenously in patients with RRMS and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Spontaneous physical activity protects against fat mass gain

    PubMed Central

    Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.

    2011-01-01

    It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-bred Sprague-Dawley rats from 1-18 mo. Data from development throughout maturation were analyzed by longitudinal growth curve modeling to determine the rate and acceleration of body weight, fat mass (FM) and fat-free mass (FFM) gain. Results Obesity resistant rats had a lower rate of FM gain overall, a lower acceleration in body weight early in life, significantly greater SPA and lower cumulative caloric intake. Greater SPA in obesity resistant rats was significantly associated with a lower rate of FM gain overall and lower acceleration in body weight early in life. Obesity resistant rats lost less FFM compared to Sprague-Dawley rats despite that obesity resistant rats had a lower acceleration in FFM gain early in life. Obesity resistant rats gained less FM and more FFM per gram body weight and were less energy efficient than Sprague-Dawley rats. Caloric intake was significantly and positively related to body weight, FM and FFM gain in both groups. Circadian patterns of caloric intake were group and age-dependent. Our data demonstrate that elevated and sustained SPA during development and over the lifespan are related to the reduced the rate of FM gain and may preserve FFM. Conclusion These data support the idea that SPA level is a reproducible marker that reliably predicts propensity for obesity in rats, and that elevated levels of SPA maintained during the lifespan promote a lean phenotype. PMID:21610695

  15. Nibbling at the Core.

    ERIC Educational Resources Information Center

    D'Antonio, William V.

    1983-01-01

    Outlined is a body of knowledge, the core of sociology, that belongs in the introductory sociology course. How the course is taught is also important. Class sections should be small; students should be required to write a great deal; and an informal, but structured setting should stimulate student- teacher interaction. (Author/RM)

  16. HSE Abundances in Angrites and HEDs: Core-Mantle Equilibration or Late Accretion Addition of a Chondritic Component

    NASA Astrophysics Data System (ADS)

    Rai, N.; Downes, H.; Smith, C. L.

    2016-08-01

    Using metal-silicate partitioning of HSEs together with their mantle abundances in Vesta and the APB respectively, we test whether formation of a metallic core could have led to the observed abundances of the HSEs, in the mantles of these bodies.

  17. A Mid-Holocene Relative Sea-Level Stack, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Horton, B.; Walker, J. S.; Kemp, A.; Shaw, T. J.; Kopp, R. E.

    2017-12-01

    Most high resolution (decimeter- and decadal-scale) relative sea-level (RSL) records using salt-marsh microfossils as a proxy only extend through the Common Era, limiting our understanding of driving mechanisms of RSL change and how sea-level is influenced by changing climate. Records beyond the Common Era are limited by the depth of continuous sequences of salt-marsh peat suitable for high resolution reconstructions, as well as contamination by local processes such as sediment compaction. In contrast, sequences of basal peats have produced compaction-free RSL records through the Holocene, but at a low resolution (meter- and centennial-scale). We devise a new Multi-Proxy Presence/Absence Method (MP2AM) to develop a mid-Holocene RSL stack. We stack a series of 1 m basal peat cores that overlap along a uniform elevational gradient above an incompressible basal sand. We analyzed three sea-level indicators from 14 cores: foraminifera, testate amoebae, and stable carbon isotope geochemistry. To reconstruct RSL, this multi-proxy approach uses the timesaving presence/absence of forams and testates to determine the elevation of the highest occurrence of forams and the lowest occurrence of testates in each basal core. We use stable carbon isotope geochemistry to determine the C3/C4 vegetation boundary in each core. We develop age-depth models for each core using a series of radiocarbon dates. The RSL records from each 1 m basal core are combined to create a stack or, in effect, one long core of salt-marsh material. This method removes the issue of compaction to create a continuous RSL record to address temporal changes and periods of climate and sea-level variability. We reconstruct a southern NJ mid-Holocene RSL record from Edwin B. Forsythe National Wildlife Refuge, where Kemp et al. (2013) completed a 2500 yr RSL record using a foraminifera-based transfer function approach. Preliminary radiocarbon dates suggest the basal sequence is at least 4246-4408 cal yrs BP. Presence/absence of forams and testates and the transition of C3/C4 vegetation is identified in each core and constrained with radiocarbon dating. A short core with full counts of forams and testates is used to test the new method and compare with the traditional foraminifera-based transfer function approach and the local tide gauge record.

  18. Search for continuous paleoclimatic record in Holocene lacustrine sediments from Lake District, Chile (40°S)

    NASA Astrophysics Data System (ADS)

    Bertrand, S.; Fagel, N.

    2003-04-01

    Our aim is to reconstruct a continuous Holocene climatic evolution related to ENSO variability in southern Chile. We focus on the sedimentary infilling of two glacial lakes from the Lake District Area (38-40°S). The preliminar sedimentological analysis must allow to define the key-site and the best palaeoclimatic proxies. This area, at the foothill of the Cordillera de Los Andes, has been affected by an intense Quaternary volcanic activity and by several historical earthquakes (e.g., Valdivia 1960). After preliminary seismic investigation, four cores were recovered in two lakes selected at the two ends of a N-S transect. (1) Icalma lake (12 km2, 38°S) is located in the Cordillera de Los Andes at an elevation of 1150m and results of the infilling of a glacial umbilic. The two 8m sediment cores consist of an alternation of laminated silts and volcanic layers. The sedimentary record is strongly disturbed by numerous seismic or volcanic events. The cumulated volcanogenic-derived material represents up to 50 % of the core length. In particular, the cores record at -4.50m a pumice layer widespread in the watershed and dated at 2900 yr BP. One core contains pluricentrimetric layers of wood accumulation. They could be due to earthquake impact on the vegetational cover in the watershed. An ubiquitous 6cm-thick slump described at -40 cm may be related with the 1960 Valdivia earthquake. (2) On Puyehue lake (164 km2, 40°S, elevation 185 m), two cores (7 and 11m) have been collected in both underflow and interflow sites. The interflow site (PUII) shows a very well laminated sediment, with only small disturbances due to volcanic and seismic activities. This core will be the key-site for the paleoclimatic study. The second core (PUI) is very rich in organic matter. The sediment is strongly destratified by numerous gas bubbles (methane). These characteristics are due to the dense vegetational cover in the watershed and to the core location near the delta of the main river. This preliminary study emphasizes the influence of geodynamic conditions on sedimentology of lacustrine deposits in a geodynamically active region. The contribution of the punctual tectonic and volcanic-derived layers to sediment thickness must be taken into account before calculation of the age-depth model.

  19. SIRT3 mediates multi-tissue coupling for metabolic fuel switching.

    PubMed

    Dittenhafer-Reed, Kristin E; Richards, Alicia L; Fan, Jing; Smallegan, Michael J; Fotuhi Siahpirani, Alireza; Kemmerer, Zachary A; Prolla, Tomas A; Roy, Sushmita; Coon, Joshua J; Denu, John M

    2015-04-07

    SIRT3 is a member of the Sirtuin family of NAD(+)-dependent deacylases and plays a critical role in metabolic regulation. Organism-wide SIRT3 loss manifests in metabolic alterations; however, the coordinating role of SIRT3 among metabolically distinct tissues is unknown. Using multi-tissue quantitative proteomics comparing fasted wild-type mice to mice lacking SIRT3, innovative bioinformatic analysis, and biochemical validation, we provide a comprehensive view of mitochondrial acetylation and SIRT3 function. We find SIRT3 regulates the acetyl-proteome in core mitochondrial processes common to brain, heart, kidney, liver, and skeletal muscle, but differentially regulates metabolic pathways in fuel-producing and fuel-utilizing tissues. We propose an additional maintenance function for SIRT3 in liver and kidney where SIRT3 expression is elevated to reduce the acetate load on mitochondrial proteins. We provide evidence that SIRT3 impacts ketone body utilization in the brain and reveal a pivotal role for SIRT3 in the coordination between tissues required for metabolic homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Enhanced thermogenic program by non-viral delivery of combinatory browning genes to treat diet-induced obesity in mice.

    PubMed

    Park, Hongsuk; Cho, Sungpil; Janat-Amsbury, Margit M; Bae, You Han

    2015-12-01

    Thermogenic program (also known as browning) is a promising and attractive anti-obesity approach. Islet amyloid polypeptide (IAPP) and irisin have emerged as potential browning hormones that hold high potential to treat obesity. Here, we have constructed a dual browning gene system containing both IAPP and irisin (derived from fibronectin type III domain containing 5; FNDC5) combined with 2A and furin self-cleavage sites. Intraperitoneal administration of the construct complexed with a linear polyethylenimine into diet-induced obese mice demonstrated the elevation of anti-obesogenic effects characterized as the decreased body weight, adiposity, and levels of glucose and insulin. In addition, the construct delivery increased energy expenditure and the expression of core molecular determinants associated with browning. The additional advantages of the dual browning gene construct delivery compared to both single gene construct delivery and dual peptide delivery can be emphasized on efficacy and practicability. Hence, we have concluded that dual browning gene delivery makes it therapeutically attractive for diet-induced obesity treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top