NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, Kyu-Myong
2012-01-01
In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between Saharan dust layer and Atlantic ITCZ.
NASA Technical Reports Server (NTRS)
Schmid, Beat; Collins, D.; Gasso, S.; Ostrom, E.; Powell, D.; Welton, E.; Durkee, P.; Livingstron, J.; Russell, P.; Flagan, R.;
2000-01-01
We report on clear-sky column closure experiments performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present results obtained by combining airborne sunphotometer and in-situ aerosol measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and African mineral dust. During !he two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. We found that the presence of the elevated dust layer removes the good agreement between satellite and sunphotometer AOD usually found in the absence of the dust layer. Using size-resolved composition information we have computed optical properties of the ambient aerosol from the in-situ measurements and subsequently compared those to the sunphotometer results. In the dust, the agreement in layer aerosol optical depth (380-1060 nm) is 3-8%. In the MBL there is tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at 525 nm), but these differences are within the combined error bars of the measurements and computations.
NASA Astrophysics Data System (ADS)
Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Tanre, Didier; da Silva, Arlindo; Colarco, Peter; Castellanos, Patricia; Korenskiy, Mikhail; Hu, Qiaoyun; Whiteman, David N.; Pérez-Ramírez, Daniel; Augustin, Patrick; Fourmentin, Marc; Kolgotin, Alexei
2018-02-01
Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500-4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km-1 with SD of 0.042 km-1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements (55 ± 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.
Lidar network observation of dust layer evolution over the Gobi Desert in MAY 2013
NASA Astrophysics Data System (ADS)
Kawai, Kei; Kai, Kenji; Jin, Yoshitaka; Sugimoto, Nobuo; Batdorj, Dashdondog
2018-04-01
A lidar network captured the evolution of a dust layer in the Gobi Desert on 22-23 May 2013. The lidar network consists of a ceilometer and two AD-Net lidars in Mongolia. The dust layer was generated by a strong wind due to a cold front and elevated over the surface of the cold front by an updraft of the warm air in the cold-front system. It was evolving from the atmospheric boundary layer to the free troposphere while moving 600 km through the desert with the cold front.
Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.
2010-01-01
The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.
2009-01-01
The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0.95 or higher.
NASA Technical Reports Server (NTRS)
Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.;
2000-01-01
We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling community. The fact that the nephelometers and the absorption photometer sampled the aerosol through a cyclone make those measurements less useful for thee closure study carried out here. Large corrections (especially in the dust) had to be applied. Therefore, it is not surprising that closure with the sunphotometer was not always achieved. Agreement within 0.02 in AOD was achieved in the dust layer when the airorne sunphotometer extinction or AOD was compared to ground-based lidar measurements. We found that the presence of the elevated dust layers removes the good agreement between satellite and sunphotometer AOD usually found in the absence of the dust layer. We still compare the scattering phase functions used in the satellite retrieval with those obtained from the aerosol or the sunphotometer measurements.
NASA Astrophysics Data System (ADS)
Omar, A.; Tackett, J.; Kim, M.-H.; Vaughan, M.; Kar, J.; Trepte, C.; Winker, D.
2018-04-01
Several enhancements have been implemented for the version 4 aerosol subtyping and lidar ratio selection algorithms of Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP). Version 4 eliminates the confusion between smoke and clean marine aerosols seen in version 3 by modifications to the elevated layer flag definitions used to identify smoke aerosols over the ocean. To differentiate between mixtures of dust and smoke, and dust and marine aerosols, a new aerosol type will be added in the version 4 data products. In the marine boundary layer, moderately depolarizing aerosols are no longer modeled as mixtures of dust and smoke (polluted dust) but rather as mixtures of dust and seasalt (dusty marine). Some lidar ratios have been updated in the version 4 algorithms. In particular, the dust lidar ratios have been adjusted to reflect the latest measurements and model studies.
NASA Technical Reports Server (NTRS)
Cuesta, Juan; Eremenko, Maxim; Flamant, Cyrille; Dufour, Gaelle; Laurent, Benoît; Bergametti, Gilles; Hopfner, Michael; Orphal, Johannes; Zhou, Daniel
2015-01-01
We describe the daily evolution of the three-dimensional (3D) structure of a major dust outbreak initiated by an extratropical cyclone over East Asia in early March 2008, using new aerosol retrievals derived from satellite observations of IASI (Infrared Atmospheric Sounding Interferometer). A novel auto-adaptive Tikhonov-Phillips-type approach called AEROIASI is used to retrieve vertical profiles of dust extinction coefficient at 10 microns for most cloud-free IASI pixels, both over land and ocean. The dust vertical distribution derived from AEROIASI is shown to agree remarkably well with along-track transects of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) spaceborne lidar vertical profiles (mean biases less than 110 meters, correlation of 0.95, and precision of 260 meters for mean altitudes of the dust layers). AEROIASI allows the daily characterization of the 3D transport pathways across East Asia of two dust plumes originating from the Gobi and North Chinese deserts. From AEROIASI retrievals, we provide evidence that (i) both dust plumes are transported over the Beijing region and the Yellow Sea as elevated layers above a shallow boundary layer, (ii) as they progress eastward, the dust layers are lifted up by the ascending motions near the core of the extratropical cyclone, and (iii) when being transported over the warm waters of the Japan Sea, turbulent mixing in the deep marine boundary layer leads to high dust concentrations down to the surface. AEROIASI observations and model simulations also show that the progression of the dust plumes across East Asia is tightly related to the advancing cold front of the extratropical cyclone.
NASA Technical Reports Server (NTRS)
Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert
2012-01-01
Episodic events of both Saharan dust outbreaks and African Easterly Waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan Air Layer (SAL) on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting (WRF) model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximum tropical cyclone activity, in years 2003-2007. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, most AEWs intensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. We conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong
2012-12-19
Episodic events of both Saharan dust outbreaks and African easterly waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan air layer on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximumtropical cyclone activity, in years 2003–07. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, mostAEWsintensify inmore » the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. The authors conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.« less
Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation
NASA Astrophysics Data System (ADS)
Uno, Itsushi; Amano, Hiroyasu; Emori, Seita; Kinoshita, Kisei; Matsui, Ichiro; Sugimoto, Nobuo
2001-08-01
A yellow sand transport episode from the Asian continent to Japan and North America which occurred in April 1998 is simulated. A new on-line dust tracer model coupled with a regional-scale meteorological model is developed and applied to this dust storm episode. The results for two large dust events that started during April 14-15 and 19-20, 1998, have been analyzed and discussed. The first dust storm was trapped in a cutoff vortex developed over the China plain. A modeled 3-D structure of dust associated with this cutoff vortex agreed with an observed time-height cross section of dust concentration. Results show that the strong subsidence at the backside of the vortex restricted the dust layer below 3 km level. Model analysis revealed that the second dust event that started during April 19-20 over inland China was the origin of a dust episode reported over North America. The trans-Pacific dust transport simulation successfully showed the dust onset near the West Coast of North America. Elevation of the dust layer during the long-range transport was below 3 km. The model is extended to include the transport of an Asian origin anthropogenic tracer over the North Pacific Rim. Both the natural-origin mineral dust and the Asian-origin anthropogenic tracer are simultaneously transported even if their emission regions are different.
Efficiency of Tungsten Dust Collection of Different Types of Dust Particles by Electrostatic Probe
NASA Astrophysics Data System (ADS)
Begrambekov, L. B.; Voityuk, A. N.; Zakharov, A. M.; Bidlevich, O. A.; Vechshev, E. A.; Shigin, P. A.; Vayakis, J.; Walsh, M.
2017-12-01
Formation of dust particles and clusters is observed in almost every modern thermonuclear facility. Accumulation of dust in the next generation thermonuclear installations can dramatically affect the plasma parameters and lead to the accumulation of unacceptably large amounts of tritium. Experiments on collection of dust particles by a model of electrostatic probe developed for collection of metallic dust at ITER are described in the article. Experiments on the generation of tungsten dust consisting of flakes formed during the destruction of tungsten layers formed on the walls of the plasma chamber sputtered from the surface of the tungsten target by plasma ions were conducted. The nature of dust degassing at elevated temperatures and the behavior of dust in an electric field were studied. The results obtained are compared with the results of the experiments with dust consisting of crystal particles of simple geometric shapes. The effectiveness of collection of both types of dust using the model of an electrostatic probe is determined.
NASA Astrophysics Data System (ADS)
Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.
2004-10-01
The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.
NASA Technical Reports Server (NTRS)
Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Gasso, Santiago; Hegg, Dean A.;
2000-01-01
We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.
NASA Astrophysics Data System (ADS)
Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.
2016-11-01
A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.
Desert Dust Layers Over Polluted Marine Boundary Layers: ACE-2 Measurements and ACE-Asia Plans
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Schmid, B.; Livingston, J. M.; Redemann, J.; Bergstrom, R. W.; Condon, Estelle P. (Technical Monitor)
2000-01-01
Aerosols in ACE-Asia are expected to have some commonalties with those in ACE-2, along with important differences. Among the commonalities are occurrences of desert dust layers over polluted marine boundary layers. Differences include the nature of the dust (yellowish in the East Asia desert outflow, vs. reddish-brown in the Sahara Outflow measured in ACE-2) and the composition of boundary-layer aerosols (e.g., more absorbing, soot and organic aerosol in-the Asian plume, caused by coal and biomass burning, with limited controls). In this paper we present ACE-2 measurements and analyses as a guide to our plans for ACE-2 Asia. The measurements include: (1) Vertical profiles of aerosol optical depth and extinction (380-1558 nm), and of water vapor column and concentration, from the surface through the elevated desert dust, measured by the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14); (2) Comparisons of airborne and shipborne sunphotometer optical depths to satellite-retrieved values, with and without desert dust; (3) Comparisons between airborne Sunphotometer optical depth and extinction spectra and those derived from coincident airborne in situ measurements of aerosol size distribution, scattering and absorption; (4) Comparisons between size distributions measured in situ and retrieved from sunphotometer optical depth spectra; (5) Comparisons between aerosol single scattering albedo values obtained by several techniques, using various combinations of measurements of backscatter, extinction, size distribution, scattering, absorption, and radiative flux. We show how analyses of these data can be used to address questions important to ACE-Asia, such as: (1) How do dust and other absorbing aerosols affect the accuracy of satellite optical depth retrievals? How important are asphericity effects? (2) How important are supermicron dust and seasalt aerosols to overall aerosol optical depth and radiative forcing? How well are these aerosols sampled by aircraft inlets and instruments? (3) How consistent are suborbital in situ and remote measurements of aerosols, among themselves and with satellite retrievals? What are the main reasons for observed inconsistencies?
Impacts of Saharan Dust on the Atmospheric Radiative Balance in the Caribbean during SALTRACE 2013
NASA Astrophysics Data System (ADS)
Sauer, D. N.; Weinzierl, B.; Gross, S.; Minikin, A.; Freudenthaler, V.; Gasteiger, J.; Mayer, B. C.
2013-12-01
Direct and indirect aerosol radiative effects represent one of the largest uncertainties in the modeling of the climate system. To better quantify the effects of aerosols on the Earth's radiative balance and understand important physical effects on small scales such as the influence of aerosols on clouds, detailed measurements of aerosol properties are needed to build a globally representative data set. Mineral dust is among the most abundant aerosols and the Sahara Desert constitutes its largest source. During frequent dust outbreaks thick elevated aerosol layers are formed and transported over large distances -often across the Atlantic Ocean into the Caribbean. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in June/July 2013 continues the SAMUM field experiments conducted in 2006 and 2008. It aims to study the long-range transport of Saharan mineral dust, the properties of aged mineral dust aerosol, and its impact on radiative quantities and cloud processes. The experiment led to an extensive data set on dust layers from Senegal to the Caribbean using airborne in-situ and remote sensing measurements, complemented with ground-based remote sensing and in-situ measurements on sites in Barbados and Puerto Rico as well as satellite remote sensing data. The airborne data were obtained with an extensive aerosol payload aboard the DLR-operated Falcon 20E research aircraft. The measurements cover the entire size range of atmospheric aerosol with a combination of cabin-operated and wing-mounted instruments. In addition, particle properties such as absorption coefficients and volatility are measured. A nadir-looking 2-μm Doppler-lidar system aboard the aircraft was used for wind measurements and served as a path finder for the selection of representative aerosol in-situ levels. In the Caribbean the dust usually arrives in several layers with distinct properties: the mostly undisturbed pure dust layer in altitudes up to 4-5 km, a transition layer where mixing and cloud processing has occurred, and a lower layer with a significant contribution from marine boundary layer aerosol. Here we present a case study of the direct radiative effects of Saharan dust layers found over Barbados using airborne in-situ and ground-based lidar observations. Using the radiative transfer package libRadtran we estimate the direct radiative forcing and radiative heating rate profiles inside the tropospheric column over Barbados. To deduce aerosol optical properties for the radiative transfer model, particle size distributions, aerosol refractive indices, and shape distributions are obtained from in-situ data. Coinciding lidar observations are used to deduce the vertical extent and structure of the different aerosol layers. To study the effect of aerosol aging on the radiative balance we compare the model results from in-situ data obtained in Barbados with results based on data from Senegal and the Cape Verde region and from the SAMUM field experiments, which characterized the dust properties near the source.
NASA Astrophysics Data System (ADS)
Moores, John E.; Lemmon, Mark T.; Kahanpää, Henrik; Rafkin, Scot C. R.; Francis, Raymond; Pla-Garcia, Jorge; Bean, Keri; Haberle, Robert; Newman, Claire; Mischna, Michael; Vasavada, Ashwin R.; de la Torre Juárez, Manuel; Rennó, Nilton; Bell, Jim; Calef, Fred; Cantor, Bruce; Mcconnochie, Timothy H.; Harri, Ari-Matti; Genzer, Maria; Wong, Michael H.; Smith, Michael D.; Martín-Torres, F. Javier; Zorzano, María-Paz; Kemppinen, Osku; McCullough, Emily
2015-03-01
The Navigation Cameras (Navcam) of the Mars Science Laboratory rover, Curiosity, have been used to examine two aspects of the planetary boundary layer: vertical dust distribution and dust devil frequency. The vertical distribution of dust may be obtained by using observations of the distant crater rim to derive a line-of-sight optical depth within Gale Crater and comparing this optical depth to column optical depths obtained using Mastcam observations of the solar disc. The line of sight method consistently produces lower extinctions within the crater compared to the bulk atmosphere. This suggests a relatively stable atmosphere in which dust may settle out leaving the air within the crater clearer than air above and explains the correlation in observed column opacity between the floor of Gale Crater and the higher elevation Meridiani Planum. In the case of dust devils, despite an extensive campaign only one optically thick vortex (τ = 1.5 ± 0.5 × 10-3) was observed compared to 149 pressure events >0.5 Pa observed in REMS pressure data. Correcting for temporal coverage by REMS and geographic coverage by Navcam still suggests 104 vortices should have been viewable, suggesting that most vortices are dustless. Additionally, the most intense pressure excursions observed on other landing sites (pressure drop >2.5 Pa) are lacking from the observations by the REMS instrument. Taken together, these observations are consistent with pre-landing circulation modeling of the crater showing a suppressed, shallow boundary layer. They are further consistent with geological observations of dust that suggests the northern portion of the crater is a sink for dust in the current era.
Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study
NASA Astrophysics Data System (ADS)
Abdi Vishkaee, Farhad; Flamant, Cyrille; Cuesta, Juan; Oolman, Larry; Flamant, Pierre; Khalesifard, Hamid R.
2012-02-01
Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and spaceborne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for 1-2 days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (<1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of 23 February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom, and Tehran) is consistent with the downward mixing of dust in the planetary boundary layer just after sunset, as evidenced in Zanjan. This study sheds new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.
NASA Astrophysics Data System (ADS)
Goldstein, H. L.; Reynolds, R. L.; Landry, C.; Derry, J. E.; Kokaly, R. F.; Breit, G. N.
2016-12-01
Dust deposited on mountain snow cover (DOS) changes snow albedo, enhances absorption of solar radiation, and effectively increases rates of snow melt, leading to earlier-than-normal runoff and overall smaller late-season water supplies for tens of millions of people and industries in the American West. Visible-spectrum reflectance of DOS samples is on the order of 0.2 (80% absorption), in stark contrast to the high reflectivity of pure snow which approaches 1.0. Samples of DOS were collected from 12 high-elevation Colorado mountain sites near the end of spring from 2013 through 2016 prior to complete snow melt, when most dust layers had merged into one layer. These samples were analyzed to measure dust properties that affect snow albedo and to link DOS to dust-source areas. Dust mass loadings to snow during water year 2014 varied from 5 to 30 g/m2. Median particle sizes centered around 20 micrometers with more than 80% of the dust <63 micrometers. Dark minerals, carbonaceous matter, and iron oxides, including nano-sized hematite and goethite, together diminished reflectance according to their variable concentrations. Documenting variations in dust-particle masses, sizes, and compositions helps determine their influences on snow-melt and may be useful for modeling snow-melt effects from future dust. Furthermore, variations in dust components and particle sizes lead to new ways to recognize sources of dust by comparison with properties of fine-grained sediments in dust-source areas. Much of the DOS in the San Juan Mountains, Colorado can be linked to southern Colorado Plateau source areas by compositional similarities and satellite imagery. Understanding dust properties that affect snow albedo and recognizing the sources of dust deposited on snow cover may guide mitigation of dust emission that affects water resources of the Colorado River basin.
Casting Light and Shadows on a Saharan Dust Storm
NASA Technical Reports Server (NTRS)
2003-01-01
On March 2, 2003, near-surface winds carried a large amount of Saharan dust aloft and transported the material westward over the Atlantic Ocean. These observations from the Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite depict an area near the Cape Verde Islands (situated about 700 kilometers off of Africa's western coast) and provide images of the dust plume along with measurements of its height and motion. Tracking the three-dimensional extent and motion of air masses containing dust or other types of aerosols provides data that can be used to verify and improve computer simulations of particulate transport over large distances, with application to enhancing our understanding of the effects of such particles on meteorology, ocean biological productivity, and human health.MISR images the Earth by measuring the spatial patterns of reflected sunlight. In the upper panel of the still image pair, the observations are displayed as a natural-color snapshot from MISR's vertical-viewing (nadir) camera. High-altitude cirrus clouds cast shadows on the underlying ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated stereoscopic processing of MISR's multi-angle imagery show the cirrus clouds (yellow areas) to be situated about 12 kilometers above sea level. The distinctive spatial patterns of these clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. For most of the dust layer, which is spatially much more homogeneous, the stereoscopic approach was unable to retrieve elevation data. However, the edges of shadows cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of the dust layer's height, and indicate that the top of layer is only about 2.5 kilometers above sea level.Motion of the dust and clouds is directly observable with the assistance of the multi-angle 'fly-over' animation (Below). The frames of the animation consist of data acquired by the 70-degree, 60-degree, 46-degree and 26-degree forward-viewing cameras in sequence, followed by the images from the nadir camera and each of the four backward-viewing cameras, ending with 70-degree backward image. Much of the south-to-north shift in the position of the clouds is due to geometric parallax between the nine view angles (rather than true motion), whereas the west-to-east motion is due to actual motion of the clouds over the seven minutes during which all nine cameras observed the scene. MISR's automated data processing retrieved a primarily westerly (eastward) motion of these clouds with speeds of 30-40 meters per second. Note that there is much less geometric parallax for the cloud shadows owing to the relatively low altitude of the dust layer upon which the shadows are cast (the amount of parallax is proportional to elevation and a feature at the surface would have no geometric parallax at all); however, the westerly motion of the shadows matches the actual motion of the clouds. The automated processing was not able to resolve a velocity for the dust plume, but by manually tracking dust features within the plume images that comprise the animation sequence we can derive an easterly (westward) speed of about 16 meters per second. These analyses and visualizations of the MISR data demonstrate that not only are the cirrus clouds and dust separated significantly in elevation, but they exist in completely different wind regimes, with the clouds moving toward the east and the dust moving toward the west. [figure removed for brevity, see original site] (Click on image above for high resolution version)The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 17040. The panels cover an area of about 312 kilometers x 242 kilometers, and use data from blocks 74 to 77 within World Reference System-2 path 207.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.NASA Astrophysics Data System (ADS)
Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas
2018-04-01
The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Wilson, R. J.
2014-01-01
The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer
NASA Astrophysics Data System (ADS)
Crispo, S. M.; Peterson, T. D.; Lohan, M. C.; Crawford, D.; Orians, K. J.; Harrison, P. J.; Statham, P. J.
2004-12-01
In April 2001, a large dust storm originating in the Gobi and Takla Makan deserts resulted in large quantities of dust to be transported to the northeastern Pacific Ocean. Off the California coast, dissolved iron and aluminum concentrations determined before and after the dust traversed the North Pacific show increases of 0.5nM and 2nM respectively (Johnson, 2003). The most concentrated plume of dust traveled toward the eastern Gulf of Alaska. Every year anticyclonic mesoscale eddies, transporting coastal waters offshore, form off the coast of the Queen Charlotte Islands, British Columbia. These Haida eddies begin with high concentrations of trace metals which deplete over time. Evidence of 2001-dust deposition is seen in elevated dissolved aluminum concentrations (up to 7nM) in the eddy, which stay elevated months after the dust was deposited. By June 2001, dissolved zinc concentrations in the eddy surface mixed layer are low (below 0.3nM) and decrease slightly by September 2001. Dissolved cadmium concentrations dropped drastically (from 0.4nM to 0.09nM) from June to September 2001 in the Haida-2001 eddy coinciding with a large increase in coccolithophore production. This coccolithophore increase was five times greater than what was seen in the Haida-2000 eddy and twenty times that of the reference station. Based on our observations and by comparison with a shipboard Zn-Fe-enrichment study, we hypothesize that dust deposition into surface waters promotes growth first of diatoms and then of coccolithophores once zinc is depleted. The presence of dust remnants held within a quasi-isolated mesoscale eddy allows us to draw conclusions about succession following dust deposition events and yields further information regarding interactions between trace metal supply and primary production in the NE Subarctic Pacific.
Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.
1990-01-01
Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted on an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required much higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effect appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this.
NASA Astrophysics Data System (ADS)
Solomos, Stavros; Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Binietoglou, Ioannis; Patlakas, Platon; Marinou, Eleni; Amiridis, Vassilis
2017-03-01
The extreme dust storm that affected the Middle East and the eastern Mediterranean in September 2015 resulted in record-breaking dust loads over Cyprus with aerosol optical depth exceeding 5.0 at 550 nm. We analyse this event using profiles from the European Aerosol Research Lidar Network (EARLINET) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), geostationary observations from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and high-resolution simulations from the Regional Atmospheric Modeling System (RAMS). The analysis of modelling and remote sensing data reveals the main mechanisms that resulted in the generation and persistence of the dust cloud over the Middle East and Cyprus. A combination of meteorological and surface processes is found, including (a) the development of a thermal low in the area of Syria that results in unstable atmospheric conditions and dust mobilization in this area, (b) the convective activity over northern Iraq that triggers the formation of westward-moving haboobs that merge with the previously elevated dust layer, and (c) the changes in land use due to war in the areas of northern Iraq and Syria that enhance dust erodibility.
Dust Devil Track Occurrence in Argyre Planitia.
NASA Astrophysics Data System (ADS)
Whelley, P. L.; Balme, M. R.; Greeley, R.
2002-12-01
Martian dust devil tracks were first observed in Viking Orbiter images [Thomas et al., 1985]. While the interpretation of these features was at first controversial, it is now widely accepted that the tracks are formed by the passage of small convective vortices (dust devils). As the dust devils travel across the surface the atmosphere is loaded with fine particles creating a visible trail inferred to be removal or deposition of material [Greeley et al., 2001]. Mars Global Surveyor (MGS) Mars Orbital Camera (MOC) images of dust devil tracks in Argyre Planitia were used to asses dust devil track abundance as a function of Martian season as well as elevation using Mars Orbiter Laser Altimeter (MOLA) data. Argyre Planitia is a large impact basin in the southern hemisphere (55° to 33°W and 35° to 58°S), with topographic relief of 7 km with the median at -1km. We have studied the 564 Narrow Angle MOC images (taken as of summer 2002) covering the area. The images were divided into two categories: those with devil tracks and those without. The Ls (solar longitude degrees as a fraction of orbit) and elevation of all of the images with and without devil tracks were noted. The elevation was recorded at the center point of each MOC image using MOLA data. A polar plot of all of the images shows a statistically random distribution throughout the Martian year. A context map of the images shows a representative distribution over the area of the crater itself. A polar plot of dust devil track occurrence within the area observed shows a major concentration of tracks between Ls 200° and 360° (southern spring to late summer). A seasonal breakdown of devil track occurrence as a percentage of total area observed yields: fall 11.25%, winter 2.24%, spring 27.21%, and summer 46.49%. We therefore conclude that dust devils tracks are formed preferentially in summer and are destroyed, fade or are covered, over a period of a few months. The elevation of all 564 images was measured and 1km bins were used to calculate the percent of occurrence. We discovered that, at 3km 0% of the observed area contain dust devil tracks, 2km 7.69%, 1km 12.90%, at Datum 15.95%, -1km 8.97%, -2km 28.92%, -3km% 50.00%, -4km 50.00%. Independent of the season a majority of the devil tracks were observed below -3km. Therefore elevation is a key factor governing the formation of dust devils or their ability to produce tracks. Our interpretation of these results is that dust devils are much more likely to form during the summer and, as suggested by recent experiments [Balme et al., 2002], that they are more efficient at moving materials on the surface in areas where the atmospheric pressure is greatest (in the lowest elevations). The short timescale for disappearance of tracks suggests that the distinct albedo variations of the tracks result from only the removal or deposition of a very thin layer of material. Thomas. P. et al., 1985, Science v. 230 Greeley. R. et al., 2001, LPSC XXXII Balme. M. et al., 2002, LPSC XXXIII
A solar escalator on Mars: Self-lifting of dust layers by radiative heating
NASA Astrophysics Data System (ADS)
Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.
2015-09-01
Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.
Aerosol Radiative Forcing in Asian Continental Outflow
NASA Technical Reports Server (NTRS)
Pueschel, R.; Kinne, S.; Redemann, J.; Gore, Warren J. (Technical Monitor)
2000-01-01
Aerosols in elevated layers were sampled with FSSP-probes and wire impactors over the Pacific ocean aboard the NASA DC-8 aircraft. Analyses of particle size and morphology identifies two distinctly different aerosol types for cases when the mid-visible extinctions exceed 0.2/km. Smaller sizes (effective radii of 0.2 um) and moderate absorption (mid-visible single scattering albedo of.935) are typical for urban-industrial pollution. Larger sizes (effective radii of 0.7 um) and weak absorption (mid-visible single scattering albedo of 0.985) identify dust. This aerosol classification is in agreement with its origin as determined by airmass back trajectory analysis. Based on lidar vertical profiling, aerosol dominated by dust and urban-industrial pollution above 3km were assigned mid-visible optical depths of 0.50 and 0.27, respectively. Radiative transfer simulations, considering a 50% cloud-cover below the aerosol layers, suggest (on a daily tP C)C> basis) small reductions (-4W/m2) to the energy budget at the top of the atmosphere for both aerosol types. For c' 0 dust, more backscattering of sunlight (weaker solar absorption) is compensated by a stronger greenhouse effect due to larger sizes. Forced reductions to the energy budget at the surface are 12W/m2 for both aerosol types. In contrast, impacts on heating rates within the aerosol layers are quite different: While urban-industrial aerosol warms the layer (at +0.6K/day as solar heating dominates), dust cools (at -0.5K/day as infrared cooling dominates). Sensitivity tests show the dependence of the aerosol climatic impact on the optical depth, particle size, absorptivity, and altitude of the layers, as well as clouds and surface properties. Climatic cooling can be eliminated (1) for the urban-industrial aerosol if absorption is increased to yield a mid-visible single scattering albedo of 0.89, or if the ocean is replaced by a land surface; (2) for the dust aerosol if the effective radius is increased from 0.7 to 1.2 um. The removal of low-level clouds doubles the cooling at the top of the atmosphere to about -8W/m2.
NASA Astrophysics Data System (ADS)
Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.
2013-11-01
Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.
NASA Astrophysics Data System (ADS)
Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.
2013-06-01
Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.
NASA Astrophysics Data System (ADS)
Flamant, C.; Abdi Vishkaee, F.; Cuesta, J.; Khalesifard, H.; Oolman, L.; Flamant, P.
2012-04-01
Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and space-borne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for one to two days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (less than 1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom and Tehran) is consistent with the downward mixing of dust in the PBL just after sunset, as evidenced in Zanjan. This study shades new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Kostinski, Alexander B.; Varnai, Tamas
2013-01-01
Motivated by the physical picture of shape-dependent air resistance and, consequently, shape-induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust-scattered light depolarization ratio (delta). Specifically, we examined a large data set of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median delta is uniformly distributed between 2 and 5?km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle shapes with height; (2) vertical homogeneity of median delta breaks down during the westward transport: between 2 and 5?km delta increases with altitude and this increase becomes more pronounced with westward progress; (3) delta tends to increase at higher altitude (greater than 4?km) and decrease at lower altitude (less than 4?km) during the westward transport. All these features are captured qualitatively by a minimal model (two shapes only), suggesting that shape-induced differential settling and consequent sorting indeed contribute significantly to the observed temporal evolution and vertical stratification of dust properties. By implicating particle shape as a likely cause of gravitational sorting, these results will affect the estimates of radiative transfer through Saharan dust layers.
NASA Astrophysics Data System (ADS)
Lakshmi, N. B.; Nair, Vijayakumar S.; Suresh Babu, S.
2017-12-01
The vertical distribution of aerosol and dust extinction coefficient over the Bay of Bengal is examined using the satellite observations (Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS)) for the period from 2006 to 2017. Distinct seasonal pattern is observed in the vertical structure of both aerosol and dust over the Bay of Bengal with an enhancement of 24% in the aerosol extinction above 1 km from winter (December, January and February) to premonsoon (March, April, and May). Significant contribution of dust is observed over the northern Bay of Bengal during premonsoon season where 22% of the total aerosol extinction is contributed by dust aerosols transported from the nearby continental regions. During winter, dust transport is found to be less significant with fractional contribution of 10%-13% to the total aerosol optical depth over the Bay of Bengal. MODIS-derived dust fraction (fine mode based) shows an overestimation up to twofold compared to CALIOP dust fraction (depolarization based), whereas the Goddard Chemistry Aerosol Radiation and Transport-simulated dust fraction underestimates the satellite-derived dust fractions over the Bay of Bengal. Though the long-term variation in dust aerosol showed a decreasing trend over the Bay of Bengal, the confidence level is insufficient in establishing the robustness of the observed trend. However, significant dust-induced heating is observed above the boundary layer during premonsoon season. This dust-induced elevated heating can affect the convection over the Bay of Bengal which will have implication on the monsoon dynamics over the Indian region.
A new facility for studying shock-wave passage over dust layers
NASA Astrophysics Data System (ADS)
Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.
2016-03-01
Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second regime there is clear evidence of surface vertical structures at the dust-air interface.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Capability of the CALIPSO lidar observations to detect the dust source regions
NASA Astrophysics Data System (ADS)
Kaskaoutis, D. G.; Kharol, Shailesh Kumar; Kambezidis, H. D.; Nastos, P. T.; Rani Sharma, Anu; Kvs, Badarinath
Two dust events with high aerosol optical depth (AOD) values have been observed over Athens on 4 and 6-7 February 2009. These dust events were well captured by the satellite obser-vations and are investigated in the present study by means of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations, ceilometer vertical profiles and DREAM model predictions. The CALIPSO provides new insight to study the role of clouds and atmospheric aerosols in regulating Earth's weather, climate, and air quality. CALIPSO has a 98o-inclination orbit and flies at an altitude of 705 km providing daily global maps of the ver-tical distribution of aerosols and clouds. The CALIPSO satellite carries a polarization-sensitive lidar, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which provides profiles of backscatter coefficient at 532 and 1064 nm. The ceilometer used in the present study is a Vaisala CL31 model. It is equipped with an InGaAs MOCVD pulsed laser, emitting at 930 nm and having an energy per pulse of 1.2 J. The emission frequency is 10 kHz while the pulse duration is 100 ns. The vertical profiles of the aerosol backscatter coefficient were obtained from 5 m up to 7.5 km at 930 nm. The CL31 is installed at the Actinometric station of the National Observatory of Athens. The CALIPSO-derived total attenuated backscatter at 532 and 1064 nm is used to identify the position of dust along the overpass trajectory. A typical example of the vertical distribution of the dust plume over the study region during nighttime on 5 Febru-ary 2009 is provided. Limiting the analysis over Libya, eastern Mediterranean and Greece (24o -37o N, 15o-19o E), the dust aerosol layer exhibits a high total attenuated backscatter at 532 nm, reaching to 0.05-0.06 km-1sr-1. CALIPSO observations clearly show that the dust plume was generated over the Sahara desert at about 24oN, 15oE near the borders of Libya, Chad and Niger. After its exposure it was uplifted to about 3-km in depth and moved northwards. As the dust layer moved towards Greece its intensity seems to decrease while its vertical extent was limited to lower altitudes within the first 2 km. The ceilometer also detected an elevated aerosol layer due to dust transport within the first 3 km, while the vertical profiles of dust predicted by DREAM were in close agreement with those of the ceilometer. The main goal of this study is the investigation via satellite vertical-profiling instrumentation not only the vertical extent and the transport of dust, but also its source region. Keywords: Dust, CALIPSO, DREAM model and AOD
NASA Astrophysics Data System (ADS)
Makalkin, A. B.; Artyushkova, M. E.
2017-11-01
Radial contraction of the dust layer in the midplane of a gas-dust protoplanetary disk that consists of large dust aggregates is modeled. Sizes of aggregates vary from centimeters to meters assuming the monodispersion of the layer. The highly nonlinear continuity equation for the solid phase of the dust layer is solved numerically. The purpose of the study is to identify the conditions under which the solid matter is accumulated in the layer, which contributes to the formation of planetesimals as a result of gravitational instability of the dust phase of the layer. We consider the collective interaction of the layer with the surrounding gas of the protoplanetary disk: shear stresses act on the gas in the dust layer that has a higher orbital velocity than the gas outside the layer, this leads to a loss of angular momentum and a radial drift of the layer. The stress magnitude is determined by the turbulent viscosity, which is represented as the sum of the α-viscosity associated with global turbulence in the disk and the viscosity associated with turbulence that is localized in a thin equatorial region comprising the dust layer and is caused by the Kelvin-Helmholtz instability. The evaporation of water ice and the continuity of the mass flux of the nonvolatile component on the ice line is also taken into account. It is shown that the accumulation of solid matter on either side of the ice line and in other regions of the disk is determined primarily by the ratio of the radii of dust aggregates on either side of the ice line. If after the ice evaporation the sizes (or density) of dust aggregates decrease by an order of magnitude or more, the density of the solid phase of the layer's matter in the annular zone adjacent to the ice line from the inside increases sharply. If, however, the sizes of the aggregates on the inner side of the ice line are only a few times smaller than behind the ice line, then in the same zone there is a deficit of mass at the place of the modern asteroid belt. We have obtained constraints on the parameters at which the layer compaction is possible: the global turbulence viscosity parameter (α < 10-5), the initial radial distribution of the surface density of the dust layer, and the distribution of the gas surface density in the disk. Restrictions on the surface density depend on the size of dust aggregates. It is shown that the timescale of radial contraction of a dust layer consisting of meter-sized bodies is two orders of magnitude and that of decimeter ones, an order of magnitude greater than the timescale of the radial drift of individual particles if there is no dust layer.
Satellite Data Analysis of Impact of Anthropogenic Air Pollution on Ice Clouds
NASA Astrophysics Data System (ADS)
Gu, Y.; Liou, K. N.; Zhao, B.; Jiang, J. H.; Su, H.
2017-12-01
Despite numerous studies about the impact of aerosols on ice clouds, the role of anthropogenic aerosols in ice processes, especially over pollution regions, remains unclear and controversial, and has not been considered in a regional model. The objective of this study is to improve our understanding of the ice process associated with anthropogenic aerosols, and provide a comprehensive assessment of the contribution of anthropogenic aerosols to ice nucleation, ice cloud properties, and the consequent regional radiative forcing. As the first attempt, we evaluate the effects of different aerosol types (mineral dust, air pollution, polluted dust, and smoke) on ice cloud micro- and macro-physical properties using satellite data. We identify cases with collocated CloudSat, CALIPSO, and Aqua observations of vertically resolved aerosol and cloud properties, and process these observations into the same spatial resolution. The CALIPSO's aerosol classification algorithm determines aerosol layers as one of six defined aerosol types by taking into account the lidar depolarization ratio, integrated attenuated backscattering, surface type, and layer elevation. We categorize the cases identified above according to aerosol types, collect relevant aerosol and ice cloud variables, and determine the correlation between column/layer AOD and ice cloud properties for each aerosol type. Specifically, we investigate the correlation between aerosol loading (indicated by the column AOD and layer AOD) and ice cloud microphysical properties (ice water content, ice crystal number concentration, and ice crystal effective radius) and macro-physical properties (ice water path, ice cloud fraction, cloud top temperature, and cloud thickness). By comparing the responses of ice cloud properties to aerosol loadings for different aerosol types, we infer the role of different aerosol types in ice nucleation and the evolution of ice clouds. Our preliminary study shows that changes in the ice crystal effective radius with respect to AOD over Eastern Asia for the aerosol types of polluted continental and mineral dust look similar, implying that both air pollution and mineral dust could affect the microphysical properties of ice clouds.
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall
2017-07-01
AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.
Improvements to the OMI Near-uv Aerosol Algorithm Using A-train CALIOP and AIRS Observations
NASA Technical Reports Server (NTRS)
Torres, O.; Ahn, C.; Zhong, C.
2014-01-01
The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in assessing the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the direct use of these parameters as input to the OMI (Ozone Monitoring Instrument) near UV retrieval algorithm. A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) CO observations are used in an upgraded version of the OMI near UV aerosol algorithm. AIRS CO measurements are used as a reliable tracer of carbonaceous aerosols, which allows the identification of smoke layers in areas and times of the year where the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of elevated levels of boundary layer pollution undetectable by near UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show a significant improvement in OMI aerosol retrieval capabilities.
Daily temperature variations on Mars
NASA Technical Reports Server (NTRS)
Ditteon, R.
1982-01-01
It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.
IR spectral properties of dust and ice at the Mars south polar cap
NASA Astrophysics Data System (ADS)
Titus, T. N.; Kieffer, H. H.
2001-11-01
Removal of atmospheric dust effects is required to derive surface IR spectral emissivity. Commonly, the atmospheric-surface separation is based on radiative transfer (RT) spectral inversion methods using nadir-pointing observations. This methodology depends on a priori knowledge of the spectral shape of each atmospheric aerosol (e.g. dust or water ice) and a large thermal contrast between the surface and atmosphere. RT methods fail over the polar caps due to low thermal contrast between the atmosphere and the surface. We have used multi-angle Emission Phase Function (EPF) observations to estimate the opacity spectrum of dust over the springtime south polar cap and the underlying surface radiance, and thus, the surface emissivity. We include a few EPFs from Hellas Basin as a basis for comparisons between the spectral shape of polar and non-polar dust. Surface spectral emissivities over the seasonal cap are compared to CO2 models. Our results show that the spectral shape of the polar dust opacity is not constant, but is a two-parameter family that can be characterized by the 9 um and 20 um opacities. The 9 um opacity varies from 0.15 to 0.45 and characterizes the overall atmospheric conditions. The 9 um to 20 um opacity ratio varies from 2.0 to 5.1, suggesting changes in dust size distribution over the polar caps. Derived surface temperatures from the EPFs confirm that the slightly elevated temperatures (relative to CO2 frost temperature) observed in ``cryptic'' regions are a surface effect, not atmospheric. Comparison of broad-band reflectivity and surface emissivities to model spectra suggest the bright regions (e.g. perennial cap, Mountains of Mitchell) have higher albedos due to a thin surface layer of fine-grain CO2 (perhaps either frost or fractured ice) with an underlying layer of either coarse grain or slab CO2 ice.
Hyde, Peter; Mahalov, Alex; Li, Jialun
2018-03-01
Nine dust storms in south-central Arizona were simulated with the Weather Research and Forecasting with Chemistry model (WRF-Chem) at 2 km resolution. The windblown dust emission algorithm was the Air Force Weather Agency model. In comparison with ground-based PM 10 observations, the model unevenly reproduces the dust-storm events. The model adequately estimates the location and timing of the events, but it is unable to precisely replicate the magnitude and timing of the elevated hourly concentrations of particles 10 µm and smaller ([PM 10 ]).Furthermore, the model underestimated [PM 10 ] in highly agricultural Pinal County because it underestimated surface wind speeds and because the model's erodible fractions of the land surface data were too coarse to effectively resolve the active and abandoned agricultural lands. In contrast, the model overestimated [PM 10 ] in western Arizona along the Colorado River because it generated daytime sea breezes (from the nearby Gulf of California) for which the surface-layer speeds were too strong. In Phoenix, AZ, the model's performance depended on the event, with both under- and overestimations partly due to incorrect representation of urban features. Sensitivity tests indicate that [PM 10 ] highly relies on meteorological forcing. Increasing the fraction of erodible surfaces in the Pinal County agricultural areas improved the simulation of [PM 10 ] in that region. Both 24-hr and 1-hr measured [PM 10 ] were, for the most part, and especially in Pinal County, extremely elevated, with the former exceeding the health standard by as much as 10-fold and the latter exceeding health-based guidelines by as much as 70-fold. Monsoonal thunderstorms not only produce elevated [PM 10 ], but also cause urban flash floods and disrupt water resource deliveries. Given the severity and frequency of these dust storms, and conceding that the modeling system applied in this work did not produce the desired agreement between simulations and observations, additional research in both the windblown dust emissions model and the weather research/physicochemical model is called for. While many dust storms can be considered to be natural, in semi-arid climates such storms often have an anthropogenic component in their sources of dust. Applying the natural, exceptional events policy to these storms with strong signatures of anthropogenic sources would appear not only to be misguided but also to stifle genuine regulatory efforts at remediation. Those dust storms that have resulted, in part, from passage over abandoned farm land should no longer be considered "natural"; policymakers and lawmakers need to compel the owners of such land to reduce its potential for windblown dust.
Effects of Desert Dust on Nutrient Cycling in the San Juan Mountains, Colorado
NASA Astrophysics Data System (ADS)
Neff, J. C.; Farmer, L.; Painter, T. H.; Landry, C.; Reynolds, R.
2005-12-01
The San Juan Mountains of southwestern Colorado lie downwind from several major deserts and experience several dust-deposition events each year. These events appear related to storms that erode soils in the deserts of the western US and then deposit atmospheric dust from these soils during or after snowfall during large late winter and spring deposition events. To evaluate the biogeochemical implications of eolian deposition, we collected dust from distinct layers deposited into the seasonal snowpack. We also sampled soils and lake sediments in a high-elevation catchment in the San Juan Mountains. Atmospheric dust was characterized by measurements of chemical composition, Sr isotopic content and analysis of the organic and inorganic constituents of deposited eolian material. The origins of snowpack dust in the San Juans were analyzed using atmospheric tracer transport modeling. These analyses suggest that many dust events originate in southern Utah and northern Arizona, areas that have undergone substantial land use change through the 20th century and that experience severe wind erosion of soils during periodic severe droughts. Analyses of 87Sr/86Sr isotope ratios dust, soils, bedrock, and sediments suggest that eolian dust may compose as much as 90% of the near-surface soil (top 5 cm). In alpine lake sediments, Sr isotopes suggest a relatively recent (20th century) increase in the fraction of sediments derived from dust (relative to bedrock) and a similarly large contribution of dust to surface sediments. Sediment chemistry in two small alpine tarns show changes in Ca, Mg, Al, and Fe concentrations that imply increasing dust (vs. bedrock) contributions to lake sediments over the past 100-200 years. Increasing loading of Ca, Mg and P to alpine basins may have implications for alpine and sub-alpine biogeochemical cycling including water quality and plant nutrient use.
Dust Studies in DIII-D and TEXTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudakov, D L; Litnovsky, A; West, W P
2009-02-17
Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Direct heating of the dust particles by the neutralmore » beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust. Large flakes or debris falling into the plasma may result in a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micron-size dust in plasma discharges. In DIII-D, a sample holder filled with {approx}30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure ({approx}0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. At the given configuration of the launch, the dust did not penetrate the core plasma and only moderately perturbed the edge plasma, as evidenced by an increase of the edge carbon content.« less
The Vertical Dust Profile over Gale Crater
NASA Astrophysics Data System (ADS)
Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M.
2017-12-01
Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio in the vertical column of atmosphere over Gale Crater.
Dust studies in DIII-D and TEXTOR
NASA Astrophysics Data System (ADS)
Rudakov, D. L.; Litnovsky, A.; West, W. P.; Yu, J. H.; Boedo, J. A.; Bray, B. D.; Brezinsek, S.; Brooks, N. H.; Fenstermacher, M. E.; Groth, M.; Hollmann, E. M.; Huber, A.; Hyatt, A. W.; Krasheninnikov, S. I.; Lasnier, C. J.; McLean, A. G.; Moyer, R. A.; Pigarov, A. Yu.; Philipps, V.; Pospieszczyk, A.; Smirnov, R. D.; Sharpe, J. P.; Solomon, W. M.; Watkins, J. G.; Wong, C. P. C.
2009-08-01
Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicrometre sized dust is routinely observed using Mie scattering from a Nd : Yag laser. The source is strongly correlated with the presence of type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust; on the other hand, large flakes or debris falling into the plasma may induce a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micrometre-size particles into plasma discharges. In DIII-D, a sample holder filled with 30-40 mg of dust is inserted in the lower divertor and exposed, via sweeping of the strike points, to the diverted plasma flux of high-power ELMing H-mode discharges. After a brief dwell (~0.1 s) of the outer strike point on the sample holder, part of the dust penetrates into the core plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase in the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off-layer 0-2 cm radially outside of the last closed flux surface in discharges heated with 1.4 MW of NBI. Launched in this configuration, the dust perturbed the edge plasma, as evidenced by a moderate increase in the edge carbon content, but did not penetrate into the core plasma.
The radiative effects of Saharan dust layer on the marine atmospheric layer
NASA Astrophysics Data System (ADS)
Abed, Mohammed
2017-04-01
The North African Saharan desert is one of the main sources of atmospheric dust. Since dust can be transported by winds for thousands of miles, reaching the Americas and extending across vast expanses of the tropical Atlantic Ocean, it is important to understand the influence that dust has on the radiative properties and the thermodynamic structure of the atmosphere. For climate models it is important that this is represented since the structure of the atmosphere can have important influences downwind on the development of convection, clouds, storms, precipitation and consequently radiative properties. In this study, we aim to understand the dynamic and thermodynamic properties of Saharan dust on the atmospheric structure of marine environment and to investigate the causes of the observed regions of well-mixed potential temperatures of the marine atmosphere in the presence of Saharan dust layers. We compare the influence of dust to other potentially important influences such as wind shear and air mass. To investigate this, we simulated the marine atmosphere in the presence and absence of dust using the UK Met Office Large Eddy Model (LEM) based the BOMEX case-study that is provided with the LEM and updated with observation taken during the FENNEC experiments of June 2011 and 2012. We performed LEM simulations with and without dust heating rates for an eight-hour time period. Data for meteorological profiles were used from the FENNEC aircraft measurements taken over the Atlantic Ocean near the Canary Islands. Our LEM results show that using a stratified (typical of non-dusty) atmosphere and then apply a dust heating rate the profile of potential temperature tends towards a well-mixed layer where the heating rates were applied and consistent with the observational cases. While LEM simulations for wind shear showed very little difference in the potential temperature profile and it was clear the well-mixed layer would not result. LEM simulations using dust heating rates were shown to create and maintain well-mixed layers if we initialised runs with either the dusty or non-dusty profiles; whereas, without the heating rates the layers progressed to a stratified layer consistent with non-dusty day observations. This illustrated independence of the well-mixed layers to the air mass type (other than the dust presence). We conclude from these tests that the well-mixed layers are explained by the presence of the dust. Until now it was not known if the well-mixed regions were a result of the different air masses, as air masses picking up dust over land then advecting out over the ocean are potentially very different to air masses that have been in more pristine oceanic environments, or other influences such as shear. Evaluation of CAPE and CIN with and without the influences of dust heating rates indicated that the atmospheric structure downwind was significantly altered by the presence of the dust layer. It is important as a follow-on from this work to investigate whether the climate models can capture these dust layer influences and potential impacts downwind.
The Vertical Dust Profile Over Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.
2017-12-01
We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.
NASA Astrophysics Data System (ADS)
Tatsuuma, Misako; Michikoshi, Shugo; Kokubo, Eiichiro
2018-03-01
Planetesimal formation is one of the most important unsolved problems in planet formation theory. In particular, rocky planetesimal formation is difficult because silicate dust grains are easily broken when they collide. It has recently been proposed that they can grow as porous aggregates when their monomer radius is smaller than ∼10 nm, which can also avoid the radial drift toward the central star. However, the stability of a layer composed of such porous silicate dust aggregates has not been investigated. Therefore, we investigate the gravitational instability (GI) of this dust layer. To evaluate the disk stability, we calculate Toomre’s stability parameter Q, for which we need to evaluate the equilibrium random velocity of dust aggregates. We calculate the equilibrium random velocity considering gravitational scattering and collisions between dust aggregates, drag by mean flow of gas, stirring by gas turbulence, and gravitational scattering by gas density fluctuation due to turbulence. We derive the condition of the GI using the disk mass, dust-to-gas ratio, turbulent strength, orbital radius, and dust monomer radius. We find that, for the minimum mass solar nebula model at 1 au, the dust layer becomes gravitationally unstable when the turbulent strength α ≲ 10‑5. If the dust-to-gas ratio is increased twice, the GI occurs for α ≲ 10‑4. We also find that the dust layer is more unstable in disks with larger mass, higher dust-to-gas ratio, and weaker turbulent strength, at larger orbital radius, and with a larger monomer radius.
The effect of a non-volatile dust mantle on the energy balance of cometary surface layers
NASA Technical Reports Server (NTRS)
Koemle, Norbert I.; Steiner, Gerhard
1992-01-01
It is likely that large parts of a cometary surface layer consist of porous ices, which are covered by a thin layer of non-volatile debris, whose structure is also fluffy and porous. In this paper the results of model calculations are presented. The calculations show the effect of ice and dust pore sizes and of the dust mantle thickness upon the thermal behavior of such a dust-ice system, when it is irradiated by the sun. In particular, it is found that the average pore size of the ice and the dust material has a large influence both on the dust surface temperature and on the temperature at the dust-ice interface.
Part 1 of the work has shown that electrical breakdown in dust layers obeys Paschen's Law, but occurs at applied field values which appear too small to initiate the breakdown. In this paper the authors show how an effective dielectric constant characterizing the dust layer can be...
Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark
1990-01-01
Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural Aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used; an optical polishing powder, basaltic "trap rock", and iron (III) oxide crystals. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted with an angle of attack approaching 45 degrees show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effects appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this. Providing that the surface chemistry of Martian dusts is not drastically different from simulated dust and that gravity differences have only minor effects, the materials used for protective coatings for photovoltaic arrays may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.
Electron density modification in ionospheric E layer by inserting fine dust particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Shikha, E-mail: shikhamish@gmail.com; Mishra, S. K.
2015-02-15
In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at differentmore » altitude in E-layer has been critically examined and presented graphically.« less
Simulation of the Aerosol-Atmosphere Interaction in the Dead Sea Area with COSMO-ART
NASA Astrophysics Data System (ADS)
Vogel, Bernhard; Bangert, Max; Kottmeier, Christoph; Rieger, Daniel; Schad, Tobias; Vogel, Heike
2014-05-01
The Dead Sea is a unique environment located in the Dead Sea Rift Valley. The fault system of the Dead Sea Rift Valley marks the political borders between Israel, Jordan, and Palestine. The Dead Sea region and the ambient Eastern Mediterranean coastal zone provide a natural laboratory for studying atmospheric processes ranging from the smallest scale of cloud processes to regional weather and climate. The virtual institute DESERVE is designed as a cross-disciplinary and cooperative international project of the Helmholtz Centers KIT, GFZ, and UFZ with well-established partners in Israel, Jordan and Palestine. One main focus of one of the work packages is the role of aerosols in modifying clouds and precipitation and in developing the Dead Sea haze layer as one of the most intriguing questions. The haze influences visibility, solar radiation, and evaporation and may even affect economy and health. We applied the online coupled model system COSMO-ART, which is able to treat the feedback processes between aerosol, radiation, and cloud formation, for a case study above the Dead Sea and adjacent regions. Natural aerosol like mineral dust and sea salt as well as anthropogenic primary and secondary aerosol is taken into account. Some of the observed features like the vertical double structure of the haze layer are already covered by the simulation. We found that absorbing aerosol like mineral dust causes a temperature increase in parts of the model domain. In other areas a decrease in temperature due to cirrus clouds modified by elevated dust layers is simulated.
Martian Dust Devils: 2 Mars Years of MGS MOC Observations
NASA Astrophysics Data System (ADS)
Cantor, B. A.; Edgett, K. S.
2002-12-01
Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide and narrow angle images have captured more than 1000 active dust devils over 2 Mars years. In the most recent Mars year, we repeatedly imaged (and are continuing to image) several areas to monitor dust devil occurrence. Some Mars dust devils are as small as a few to 10s of meters across, others are 100s of meters across and over 6 km high. Each Martian hemisphere has a "dust devil season" that generally follows the subsolar latitude. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer (probably every afternoon; observations are acquired 2-3 times a week). The Amazonis and other MOC observations show no evidence that dust devils cause, lead to, or have a systematic relationship with dust storms. However, dust devils sometimes do occur near small, localized storms; and one specific relation occurred during the onset of the global dust events of 2001: slightly elevated levels of atmospheric dust (an optically thin cloud) triggered a very short period of dust devil activity in NW Amazonis in early northern autumn. The redistribution of dust by the 2001 global events may have also affected subsequent spring and summer dust devil activity in Hellas, where considerably fewer dust devils occurred in 2001-2002 than 1999-2000. In SW Syria, frequent, large dust devils occurred after the 2001 global events and persisted through southern summer. While dust devils have no specific relation to dust storms, they might play a role in the seasonal "wave of darkening" at middle and high latitudes by removing or disrupting thin veneers of dust. Dust devils have been observed to create thin, filamentary streaks. Some streaks are darker than their surroundings, while others are lighter. Some dust devils do not create streaks. At mid-latitudes, surfaces darken in spring as 100s of crisscrossing streaks form on widely-varied terrain. Some rare streaks exhibit cycloidal patterns similar to those created on Earth by tornadoes with multiple sub-vortices. The streaks occur at nearly all latitudes and elevations, from north polar dunes to the south polar layered terrain, from the summit of Olympus Mons to the floor of Hellas. During "dust devil season" at a given latitude, tremendous changes in streak patterns occur in periods as short as 1 month. These observations, along with repeated imaging in NW Amazonis and SW Syria, provide some idea of the frequency of dust devils. Uncertain is whether dust devils are responsible for all thin, filamentary streaks: while active vortices have been seen creating the plethora of streaks at southern mid-latitudes, none have been observed on the northern plains, despite observation of similar streak patterns. Perhaps northern plains dust devils occur at a different time of day relative to the MGS 1400 LT orbit, or perhaps dust devils did not form them. We monitored removal of dust from surfaces after the 2001 global dust events in several locations. Of particular interest was western Syrtis Major, which had brightened considerably after the 2001 storms. We observed this area for several months while very little change occurred. Finally, in January 2002, the surface was swept clean of most of its 2001 veneer of dust in a period of about 1 week. Dust devils played no role in this process; instead, regional surface winds were responsible.
Shotgun Pyrosequencing Metagenomic Analyses of Dusts from Swine Confinement and Grain Facilities
Boissy, Robert J.; Romberger, Debra J.; Roughead, William A.; Weissenburger-Moser, Lisa; Poole, Jill A.; LeVan, Tricia D.
2014-01-01
Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses used for such studies must be carefully designed to avoid the potential contribution of non-microbial DNA, e.g. from resident mammals. PMID:24748147
Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities.
Boissy, Robert J; Romberger, Debra J; Roughead, William A; Weissenburger-Moser, Lisa; Poole, Jill A; LeVan, Tricia D
2014-01-01
Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses used for such studies must be carefully designed to avoid the potential contribution of non-microbial DNA, e.g. from resident mammals.
Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars
NASA Astrophysics Data System (ADS)
Williams, B.; Nair, U. S.
2014-12-01
Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.
NASA Astrophysics Data System (ADS)
Yu, H.; Prospero, J. M.; Chin, M.; Randles, C. A.; da Silva, A.; Bian, H.
2015-12-01
Long-term surface measurements in several locations extending from northeastern coast of South America to Miami in Florida have shown that African dust arrives in the Greater Caribbean Basin throughout a year. This long-range transported dust frequently elevates the level of particulate matter (PM) above the WHO guideline for PM10, which raises a concern of possible adverse impact of African dust on human health in the region. There is also concern about how future climate change might affect dust transport and its influence on regional air quality. In this presentation we provide a comprehensive characterization of the influence of African dust on air quality in the Caribbean Basin via integrating the ground observations with satellite retrievals and model simulations. The ground observations are used to validate and evaluate satellite retrievals and model simulations of dust, while satellite measurements and model simulations are used to extend spatial coverage of the ground observations. An analysis of CALIPSO lidar measurements of three-dimensional distribution of aerosols over 2007-2014 yields altitude-resolved dust mass flux into the region. On a basis of 8-year average and integration over the latitude zone of 0°-30°N, a total of 76 Tg dust is imported to the air above the Greater Caribbean Basin, of which 34 Tg (or 45%) is within the lowest 1 km layer and most relevant to air quality concern. The seasonal and interannual variations of the dust import are well correlated with ground observations of dust in Cayenne, Barbados, Puerto Rico, and Miami. We will also show comparisons of the size-resolved dust amount from both NASA GEOS-5 aerosol simulation and MERRA-2 aerosol reanalysis (i.e., column aerosol loading being constrained by satellite measurements of radiance at the top of atmosphere) with the ground observations and satellite measurement.
Modeling Visible/Near-Infrared Photometric Properties of Dustfall on a Known Substrate
NASA Technical Reports Server (NTRS)
Sohl-Dickstein, J.; Johnson, J. R.; Grundy, W. M.; Guinness, E.; Graff, T.; Shepard, M. K.; Arvidson, R. E.; Bell, J. F., III; Christensen, P.; Morris, R.
2005-01-01
We present a comprehensive visible/near-infrared two-layer radiative transfer modeling study using laboratory spectra of variable dust thicknesses deposited on substrates with known photometric parameters. The masking effects of Martian airfall dust deposition on rocks, soils, and lander/rover components provides the incentive to improve two-layer models [1-3]. It is believed that the model presented will facilitate understanding of the spectral and compositional properties of both the dust layer and substrate material, and allow for better compensation for dust deposition.
Bruschweiler, Evin Danisman; Hopf, Nancy B; Wild, Pascal; Huynh, Cong Khanh; Fenech, Michael; Thomas, Philip; Hor, Maryam; Charriere, Nicole; Savova-Bianchi, Dessislava; Danuser, Brigitta
2014-05-01
Wood dust is recognised as a human carcinogen, based on the strong association of wood dust exposure and the elevated risk of malignant tumours of the nasal cavity and paranasal sinuses [sino-nasal cancer (SNC)]. The study aimed to assess genetic damage in workers exposed to wood dust using biomarkers in both buccal and nasal cells that reflect genome instability events, cellular proliferation and cell death frequencies. Nasal and buccal epithelial cells were collected from 31 parquet layers, installers, carpenters and furniture workers (exposed group) and 19 non-exposed workers located in Switzerland. Micronucleus (MN) frequencies were scored in nasal and buccal cells collected among woodworkers. Other nuclear anomalies in buccal cells were measured through the use of the buccal micronucleus cytome assay. MN frequencies in nasal and buccal cells were significantly higher in the exposed group compared to the non-exposed group; odds ratio for nasal cells 3.1 [95% confidence interval (CI) 1.8-5.1] and buccal cells 1.8 (95% CI 1.3-2.4). The exposed group had higher frequencies of cells with nuclear buds, karyorrhectic, pyknotic, karyolytic cells and a decrease in the frequency of basal, binucleated and condensed cells compared to the non-exposed group. Our study confirms that woodworkers have an elevated risk for chromosomal instability in cells of the aerodigestive tract. The MN assay in nasal cells may become a relevant biomonitoring tool in the future for early detection of SNC risk. Future studies should seek to standardise the protocol for MN frequency in nasal cells similar to that for MN in buccal cells.
Filter penetration and breathing resistance evaluation of respirators and dust masks.
Ramirez, Joel; O'Shaughnessy, Patrick
2017-02-01
The primary objective of this study was to compare the filter performance of a representative selection of uncertified dust masks relative to the filter performance of a set of NIOSH-approved N95 filtering face-piece respirators (FFRs). Five different models of commercially available dust masks were selected for this study. Filter penetration of new dust masks was evaluated against a sodium chloride aerosol. Breathing resistance (BR) of new dust masks and FFRs was then measured for 120 min while challenging the dust masks and FFRs with Arizona road dust (ARD) at 25°C and 30% relative humidity. Results demonstrated that a wide range of maximum filter penetration was observed among the dust masks tested in this study (3-75% at the most penetrating particle size (p < 0.001). The breathing resistances of the unused FFRs and dust masks did not vary greatly (8-13 mm H 2 O) but were significantly different (p < 0.001). After dust loading there was a significant difference between the BR caused by the ARD dust layer on each FFR and dust mask. Microscopic analysis of the external layer of each dust mask and FFR suggests that different collection media in the external layer influences the development of the dust layer and therefore affects the increase in BR differently between the tested models. Two of the dust masks had penetration values < 5% and quality factors (0.26 and 0.33) comparable to those obtained for the two FFRs (0.23 and 0.31). However, the remaining three dust masks, those with penetration > 15%, had quality factors ranging between 0.04-0.15 primarily because their initial BR remained relatively high. These results indicate that some dust masks analysed during this research did not have an expected very low BR to compensate for their high penetration.
MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Cuevas, Carlos A.; Frieß, Udo; Saiz-Lopez, Alfonso
2017-04-01
We present Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements performed in the urban environment of Madrid, Spain, from March to September 2015. The O4 absorption in the ultraviolet (UV) spectral region was used to retrieve the aerosol extinction profile using an inversion algorithm. The results show a good agreement between the hourly retrieved aerosol optical depth (AOD) and the correlative Aerosol Robotic Network (AERONET) product. Higher AODs are found in the summer season due to the more frequent occurrence of Saharan dust intrusions. The surface aerosol extinction coefficient as retrieved by the MAX-DOAS measurements was also compared to in situ PM2:5 concentrations. The level of agreement between both measurements indicates that the MAX-DOAS retrieval has the ability to characterize the extinction of aerosol particles near the surface. The retrieval algorithm was also used to study a case of severe dust intrusion on 12 May 2015. The capability of the MAX-DOAS retrieval to recognize the dust event including an elevated particle layer is investigated along with air mass back-trajectory analysis.
NASA Astrophysics Data System (ADS)
He, Q.; Matimin, A.; Yang, X.
2016-12-01
TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.
Park, Haejun; Rangwala, Ali S; Dembsey, Nicholas A
2009-08-30
A method to estimate thermal and kinetic parameters of Pittsburgh seam coal subject to thermal runaway is presented using the standard ASTM E 2021 hot surface ignition test apparatus. Parameters include thermal conductivity (k), activation energy (E), coupled term (QA) of heat of reaction (Q) and pre-exponential factor (A) which are required, but rarely known input values to determine the thermal runaway propensity of a dust material. Four different dust layer thicknesses: 6.4, 12.7, 19.1 and 25.4mm, are tested, and among them, a single steady state dust layer temperature profile of 12.7 mm thick dust layer is used to estimate k, E and QA. k is calculated by equating heat flux from the hot surface layer and heat loss rate on the boundary assuming negligible heat generation in the coal dust layer at a low hot surface temperature. E and QA are calculated by optimizing a numerically estimated steady state dust layer temperature distribution to the experimentally obtained temperature profile of a 12.7 mm thick dust layer. Two unknowns, E and QA, are reduced to one from the correlation of E and QA obtained at criticality of thermal runaway. The estimated k is 0.1 W/mK matching the previously reported value. E ranges from 61.7 to 83.1 kJ/mol, and the corresponding QA ranges from 1.7 x 10(9) to 4.8 x 10(11)J/kg s. The mean values of E (72.4 kJ/mol) and QA (2.8 x 10(10)J/kg s) are used to predict the critical hot surface temperatures for other thicknesses, and good agreement is observed between measured and experimental values. Also, the estimated E and QA ranges match the corresponding ranges calculated from the multiple tests method and values reported in previous research.
NASA Astrophysics Data System (ADS)
Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing
2018-04-01
Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.
NASA Astrophysics Data System (ADS)
Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Matsumura, Takatsugu
2004-03-01
The vertical distributions of particle extinction, backscattering, depolarization, and water vapor mixing ratio were measured using a Raman lidar over Tsukuba (36.1°N, 140.1°E), Japan, on 23-24 April 2001. Ice clouds associated with the Asian dust layer were observed at an altitude of ~6-9 km. The relative humidities in the cloud layer were close to the ice saturation values and the temperature at the top of the cloud layer was ~-35°C, suggesting that the Asian dust acted as ice nuclei at the high temperatures. The meteorological analysis suggested that the ice-saturated region was formed near the top of the dust layer where the moist air ascended in slantwise fashion above the cold-frontal zone associated with extratropical cyclone.
Behind the dust curtain: the spectacular case of GRB 160623A
NASA Astrophysics Data System (ADS)
Pintore, F.; Tiengo, A.; Mereghetti, S.; Vianello, G.; Salvaterra, R.; Esposito, P.; Costantini, E.; Giuliani, A.; Bosnjak, Z.
2017-12-01
We report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM-Newton observation carried out ∼2 d after the burst, we found evidence of at least six rings, with angular size expanding between ∼2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ± 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 1020-1.5 × 1022 cm-2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.
CALIOP near-real-time backscatter products compared to EARLINET data
NASA Astrophysics Data System (ADS)
Grigas, T.; Hervo, M.; Gimmestad, G.; Forrister, H.; Schneider, P.; Preißler, J.; Tarrason, L.; O'Dowd, C.
2015-11-01
The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 3 products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). The statistical framework and results of the three-year evaluation of 48 CALIOP overpasses with ground tracks within a 100 km distance from operating EARLINET stations are presented and include analysis for the following CALIOP classifications of aerosol type: dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning. For the complete data set comprising both the planetary boundary layer (PBL) and the free troposphere (FT) data, the correlation coefficient (R) was 0.86. When the analysis was conducted separately for the PBL and FT, the correlation coefficients were R = 0.6 and R = 0.85, respectively. From analysis of selected specific cases, it was initially thought that the presence of FT layers, with high attenuated backscatter, led to poor agreement of the PBL backscatter profiles between the CALIOP and EARLINET and prompted a further analysis to filter out such cases; however, removal of these layers did not improve the agreement as R reduced marginally from R = 0.86 to R = 0.84 for the combined PBL and FT analysis, increased marginally from R = 0.6 up to R = 0.65 for the PBL on its own, and decreased marginally from R = 0.85 to R = 0.79 for the FT analysis on its own. This suggests considerable variability, across the data set, in the spatial distribution of the aerosol over spatial scales of 100 km or less around some EARLINET stations rather than influence from elevated FT layers. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and the EARLINET data ranged from R = 0.37 for polluted continental aerosol in the PBL to R = 0.57 for dust in the FT.
NASA Astrophysics Data System (ADS)
Kaspari, S.; Painter, T. H.; Gysel, M.; Skiles, M.; Schwikowski, M.
2014-12-01
Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ice samples were collected from crevasse profiles and snowpits at elevations between 5400 and 6400 m asl from Mera glacier located in the Solu-Khumbu region of Nepal. The samples were measured for Fe concentrations (used as a dust proxy) via ICP-MS, total impurity content gravimetrically, and BC concentrations using a Single Particle Soot Photometer (SP2). BC and Fe concentrations are substantially higher at elevations < 6000 m due to post-depositional processes including melt and sublimation and greater loading in the lower troposphere. Because the largest areal extent of snow and ice resides at elevations < 6000 m, the higher BC and dust concentrations at these elevations can reduce the snow and glacier albedo over large areas, accelerating melt, affecting glacier mass-balance and water resources, and contributing to a positive climate forcing. Radiative transfer modeling constrained by measurements at 5400 m at Mera La indicates that BC concentrations in the winter-spring snow/ice horizons are sufficient to reduce albedo by 6-10% relative to clean snow, corresponding to localized instantaneous radiative forcings of 75-120 W m-2. The other bulk impurity concentrations, when treated separately as dust, reduce albedo by 40-42% relative to clean snow and give localized instantaneous radiative forcings of 488 to 525 W m-2. Adding the BC absorption to the other impurities results in additional radiative forcings of 3 W m-2. While these results suggest that the snow albedo and radiative forcing effect of dust is considerably greater than BC, there are several sources of uncertainty.
NASA Astrophysics Data System (ADS)
Maki, Teruya; Furumoto, Shogo; Asahi, Yuya; Lee, Kevin C.; Watanabe, Koichi; Aoki, Kazuma; Murakami, Masataka; Tajiri, Takuya; Hasegawa, Hiroshi; Mashio, Asami; Iwasaka, Yasunobu
2018-06-01
The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice-nucleation activities, thereby indirectly impacting climate change.
Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts
NASA Astrophysics Data System (ADS)
Shinn, Jong-Ho; Seon, Kwang-Il
2015-12-01
In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.
USDA-ARS?s Scientific Manuscript database
Dust from drylands are of major concern to human society. Dust deposition onto snowpacks can hasten melt rates, resulting in lowered inputs into major rivers. Blowing dust can result in traffic accidents, respiratory disease, and high economic costs. To abate dust emissions, it is necessary to exami...
NASA Astrophysics Data System (ADS)
Roberts, Alex; Knippertz, Peter
2013-04-01
This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and forced dust high into the atmosphere. As well as the expected behaviour of a gravity current there also seems to be a complex relationship between the cold pool and diurnal variation in boundary layer structure. These include: (1) the production of nocturnal low-level jet in the area previously covered by the cold pool allowing for further dust uplift the following morning, (2) the development of a bore on the nocturnal boundary layer travelling ahead of the cold pool and capable of deflating dust further into the desert and (3) the production of bores on the nocturnal boundary layer by the collision of fronts formed through the collapse of the well mixed daytime boundary layer and nocturnal frontogenesis. It is hoped that this work will add to the understanding of the production of large Saharan MCSs and the processes that can influence their formation. Also it shows the complex dynamical interactions that occur within the Saharan boundary layer and how these might impact our understanding of dust uplift processes associated with the passage of MCSs.
Should precipitation influence dust emission in global dust models?
NASA Astrophysics Data System (ADS)
Okin, Gregory
2016-04-01
Soil moisture modulates the threshold shear stress required to initiate aeolian transport and dust emission. Most of the theoretical and laboratory work that has confirmed the impact of soil moisture has appropriately acknowledged that it is the soil moisture of a surface layer a few grain diameters thick that truly controls threshold shear velocity. Global and regional models of dust emission include the effect of soil moisture on transport threshold, but most ignore the fact that only the moisture of the very topmost "active layer" matters. The soil moisture in the active layer can differ greatly from that integrated through the top 2, 5, 10, or 100 cm (surface layers used by various global models) because the top 2 mm of heavy texture soils dries within ~1/2 day while sandy soils dry within less than 2 hours. Thus, in drylands where dust emission occurs, it is likely that this top layer is drier than the underlying soil in the days and weeks after rain. This paper explores, globally, the time between rain events in relation to the time for the active layer to dry and the timing of high wind events. This analysis is carried out using the same coarse reanalyses used in global dust models and is intended to inform the soil moisture controls in these models. The results of this analysis indicate that the timing between events is, in almost all dust-producing areas, significantly longer than the drying time of the active layer, even when considering soil texture differences. Further, the analysis shows that the probability of a high wind event during the period after a rain where the surface is wet is small. Therefore, in coarse global models, there is little reason to include rain-derived soil moisture in the modeling scheme.
The Effect of Martian Dust on Radiator Performance
NASA Technical Reports Server (NTRS)
Hollingsworth, D. Keith; Witte, Larry C.; Hinke, Jaime; Hulbert, Kathryn
2004-01-01
Experiments were performed in which the effective emittance of three types of radiator Coatings was measured as Martian dust simulant was added to the radiator face. The apparatus consisted of multiple radiator coupons on which Carbondale Red Clay dust was deposited. The coupons were powered by electric heaters, using a guard-heating configuration to achieve the accuracy required for acceptable emittance calculations. The apparatus was containing in a vacuum chamber that featured a liquid-nitrogen cooled shroud that simulated the Martian sky temperature. Radiator temperatures ranged from 250 to 350 K with sky temperatures from 185 to 248 K. Results show that as dust was added to the radiator surfaces, the effective emittance of the high - emittance coatings decreased from near 0.9 to a value of about 0.5. A low-emittance control surface, polished aluminum, demonstrated a rise in effective emittance for thin dust layers, and then a decline as the dust layer thickened. This behavior is attributed to the conductive resistance caused by the dust layer.
NASA Astrophysics Data System (ADS)
Hacker, Joshua P.; McKendry, Ian G.; Stull, Roland B.
2001-09-01
An intense Gobi Desert dust storm in April 1998 loaded the midtroposphere with dust that was transported across the Pacific to western North America. The Mesoscale Compressible Community (MC2) model was used to investigate mechanisms causing downward transport of the midtropospheric dust and to explain the high concentrations of particulate matter of less than 10-m diameter measured in the coastal urban areas of Washington and southern British Columbia. The MC2 was initialized with a thin, horizontally homogeneous layer of passive tracer centered at 650 hPa for a simulation from 0000 UTC 26 April to 0000 UTC 30 April 1998. Model results were in qualitative agreement with observed spatial and temporal patterns of particulate matter, indicating that it captured the important meteorological processes responsible for the horizontal and vertical transport over the last few days of the dust event. A second simulation was performed without topography to isolate the effects of topography on downward transport.Results show that the dust was advected well east of the North American coast in southwesterly midtropospheric flow, with negligible dust concentration reaching the surface initially. Vertically propagating mountain waves formed during this stage, and differences between downward and upward velocities in these waves could account for a rapid descent of dust to terrain height, where the dust was entrained into the turbulent planetary boundary layer. A deepening outflow (easterly) layer near the surface transported the tracer westward and created a zonal-shear layer that further controlled the tracer advection. Later, the shear layer lifted, leading to a downward hydraulic acceleration along the western slopes, as waves generated in the easterly flow amplified below the shear layer that was just above mountain-crest height. Examination of 10 yr of National Centers for Environmental Prediction-National Center for Atmospheric Research reanalyses suggests that such events are rare.
Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America
Vanneste, Heleen; De Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël
2015-01-01
Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions. PMID:26126739
Stability of Water Ice Beneath Porous Dust Layers of the Martian South Polar Terrain
NASA Astrophysics Data System (ADS)
Keller, H. U.; Skorov, Yu. V.; Markiewicz, W. J.; Basilevsky, A. T.
2000-08-01
The analysis of the Viking Infrared Thermal Mapper (IRTM) data show that the surface layers of the Mars south polar layered deposits have very low thermal inertia between 75 and 125 J/(sq m)(s-1/2)(K-1). This is consistent with the assumption that the surface is covered by a porous layer of fine dust. Paige and Keegan determined a slightly higher value based on a thermal model similar to that of Kieffer et al. In this model the heat transfer equation is used to estimate the thickness of the layer that protects the ground ice from seasonal and diurnal temperature variations. The physical properties of the layer are unimportant as long as it has a low thermal inertia and conductivity and keeps the temperature at the ice boundary low enough to prevent sublimation. A thickness between 20 and 4 cm was estimated. This result can be considered to be an upper limit. We assume the surface to be covered by a porous dust layer and consider the gas diffusion through it, from the ground ice and from the atmosphere. Then the depth of the layer is determined by the mass flux balance of subliming and condensing water and not by the temperature condition. The dust particles in the atmosphere are of the order 1 gm. On the surface we can expect larger grains (up to sand size). Therefore assuming an average pore size of 10 gm, a volume porosity of 0.5, a heat capacity of 1300 J/(kg-1)(K-1) leads to a thermal inertia of approx. 80 J/(sq m)(s-1/2)(K-1). With these parameters a dust layer of only 5 mm thickness is found to establish the flux balance at the ice-dust interface during spring season in the southern hemisphere at high latitudes (where Mars Polar Lander arrived). The diurnal temperature variation at the ice-dust surface is shown. The maximum of 205 K well exceeds the sublimation temperature of water ice at 198 K under the atmospheric conditions. The corresponding vapour flux during the last day is shown together with the flux condensing from the atmosphere. The calculations show that the sub-surface ice on Mars can be thermodynamically and dynamically stable even if it is protected by a porous dust layer of only a few millimetres in thickness.
Behind the dust curtain: the spectacular case of GRB 160623A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pintore, F.; Tiengo, A.; Mereghetti, S.
Here, we report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM–Newton observation carried out ~2 d after the burst, we found evidence of at least six rings, with angular size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ±more » 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 10 20–1.5 × 10 22 cm –2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.« less
Behind the dust curtain: the spectacular case of GRB 160623A
Pintore, F.; Tiengo, A.; Mereghetti, S.; ...
2017-08-14
Here, we report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM–Newton observation carried out ~2 d after the burst, we found evidence of at least six rings, with angular size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ±more » 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 10 20–1.5 × 10 22 cm –2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.« less
Probing the Interstellar Dust towards the Galactic Centre using X-ray Dust Scattering Halos
NASA Astrophysics Data System (ADS)
Jin, C.; Ponti, G.; Haberl, F.; Smith, R.
2017-10-01
Dust scattering creates an X-ray halo that contains abundant information about the interstellar dust along the source's line-of-sight (LOS), and is most prominent when the LOS nH is high. In this talk, I will present results from our latest study of a bright dust scattering halo around an eclipsing X-ray binary at 1.45 arcmin away from Sgr A*, namely AX J1745.6-2901. This study is based on a large set of XMM-Newton and Chandra observations, and is so-far the best dust scattering halo study of a X-ray transient in the Galactic centre (GC). I will show that the foreground dust of AX J1745.6-2901 can be decomposed into two major thick dust layers. One layer contains (66-81)% of the total LOS dust and is several kpc away from the source, and so is most likely to reside in the Galactic disc. The other layer is local to the source. I will also show that the dust scattering halo can cause the source spectrum to severely depend on the source extraction region. Such spectral bias can be corrected by our new Xspec model, which is likely to be applicable to Sgr A* and other GC sources as well.
Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas-Dust Layer
NASA Astrophysics Data System (ADS)
Surov, V. S.
2018-05-01
Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.
Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas-Dust Layer
NASA Astrophysics Data System (ADS)
Surov, V. S.
2018-03-01
Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.
Niu, Dong; Qiu, Yanling; Li, Li; Zhou, Yihui; Du, Xinyu; Zhu, Zhiliang; Chen, Ling; Lin, Zhifen
2018-04-24
House dust is the main source of human exposure to flame retardants by ingestion. This study investigated the occurrence of polybrominated diphenyl ethers (PBDEs) in indoor dust from 22 houses in Shanghai, China. House dust was separately collected from the floor and elevated furnishings surface (mostly between 0.5 and 2 m height) for comparison. The concentrations of ∑ 22 PBDEs ranged from 19.4 to 3280 ng/g (with a geometric mean of 203 ng/g) and from 55.1 to 792 ng/g (with a geometric mean of 166 ng/g) in floor dust (FD) and elevated surface dust (ESD), respectively. BDE-209 was the predominant congener, accounting for about 73.1% of total PBDE burdens. In terms of congener profiles, the comparison of FD and ESD revealed no significant differences except for the ratio of BDE-47/BDE-99. ESD samples displayed a ratio of BDE-47/BDE-99 very similar to commercial penta-BDE products DE-71 while the ratio in FD was exceptionally higher. Significant correlation was found between concentrations of commercial penta-BDE compositions in FD and ESD (p < 0.05). Except for some occasional values, PBDE levels in house dust exhibited temporal stability. Human exposure to PBDEs via dust ingestion was estimated. The highest daily intake of PBDEs was for toddlers by using 95th percentile concentrations of PBDEs via high dust ingestion in FD (23.07 ng/kg bw/day). About 20-fold difference in exposure estimates between toddlers and adults supports that toddlers are facing greater risk from indoor floor dust. Expectedly, this study highlighted the point that residents in Shanghai were exposed to low doses of PBDEs in house dust.
Trans-Pacific Transport of Saharan Dust to Western North America: A Case Study
NASA Technical Reports Server (NTRS)
Kendry, Ian G. M.; Strawbridge, Kevin B.; O'Neill, Norman; Macdonald, Anne Marie; Liu, Peter S. K.; Leaitch, W. Richard; Anlauf, Kurt G.; Jaegle, Lyatt; Fairlie, T. Duncan; Westphal, Douglas L.
2007-01-01
The first documented case of long range transport of Saharan dust over a pathway spanning Asia and the Pacific to Western North America is described. Crustal material generated by North African dust storms during the period 28 February - 3 March 2005 reached western Canada on 13-14 March 2005 and was observed by lidar and sunphotometer in the Vancouver region and by high altitude aerosol instrumentation at Whistler Peak. Global chemical models (GEOS-CHEM and NRL NAAPS) confirm the transport pathway and suggest source attribution was simplified in this case by the distinct, and somewhat unusual, lack of dust activity over Eurasia (Gobi and Takla Makan deserts) at this time. Over western North America, the dust layer, although subsiding close to the boundary layer, did not appear to contribute to boundary layer particulate matter concentrations. Furthermore, sunphotometer observations (and associated inversion products) suggest that the dust layer had only subtle optical impact (Aerosol Optical Thickness (Tau(sub a500)) and Angstrom exponent (Alpha(sub 440-870) were 0.1 and 1.2 respectively) and was dominated by fine particulate matter (modes in aerodynamic diameter at 0.3 and 2.5microns). High Altitude observations at Whistler BC, confirm the crustal origin of the layer (rich in Ca(++) ions) and the bi-modal size distribution. Although a weak event compared to the Asian Trans-Pacific dust events of 1998 and 2001, this novel case highlights the possibility that Saharan sources may contribute episodically to the aerosol burden in western North America.
Dust Propagation and Radiation In the Presence of a Low-level Jet in Central China on March 17, 2010
NASA Astrophysics Data System (ADS)
McDowell, B. K.; Chen, S. H.
2014-12-01
Suspended dust in the air can directly change the energy budget in the atmosphere and at the surface through scattering and absorption of radiation. Thus, dust can potentially modify the development of weather systems. To explore the dust-radiation effects on weather systems, a dust model was developed based on the Weather Research and Forecasting (WRF) model. The calculations of dust processes in the WRF dust model include emission, advection, boundary layer mixing, cumulus mixing, dust-radiation interaction, wet scavenging, and sedimentation. Due to a high vertical spatial resolution near the surface a time splitting method was applied to the calculation of dust sedimentation to relax the numerical time step. The "Hexi Corridor" is the historical name given to a string of oases along the northern slope of the Tibetan Plateau that formed a relatively easy transportation route between eastern China and central Asia. As trade developed over the centuries, this route became known as the Silk Road. This corridor also marks the transition from the relatively flat Gobi desert area in northern China to the elevated mountains of the Tibetan Plateau. These mountains present a southern barrier to the paths of dust storms that develop during spring outbreaks of the Mongolian Cyclone. In March of 2010, a series of dust storms developed in the Gobi Desert north of the Hexi Corridor that transported massive amounts of dust eastward to central and northeastern China, Korea and Japan. On March 17 during this event, a low-level jet developed along the northern perimeter of the Plateau, in alignment with upper level winds and the Hexi Corridor. Over the course of the day, a well-defined short-duration dust plume was emitted in the southern Gobi desert area and was transported over 1300 km in a southeast direction, over the Loess Plateau and into the Gansu Province. In this study, the interactions of synoptic conditions with regional topography that led to the development of the low-level jet are evaluated. A dust model based on the Weather Research and Forecasting Model V3.2.1 is used to investigate the interaction of dust and radiation on air temperatures in and around the plume, dust emission and transport, and the resulting regional radiative forcing in the presence of the low-level jet.
A new method for fabrication of diamond-dust blocking filters
NASA Technical Reports Server (NTRS)
Collard, H. R.; Hogan, R. C.
1986-01-01
Thermal embedding of diamond dust onto a polyethylene-coated Al plate has been used to make a blocking filter for FIR applications. The Al plate is sandwiched between two Mylar 'blankets' and the air between the layers is removed by means of a small vacuum pump. After the polyethylene is heated and softened, the diamond dust is applied to the polyethylene coating using a brush. The optimum diamond dust grain sizes corresponding to polyethylene layer thicknesses of 9-12 microns are given in a table, and the application of the blocking filter to spectrometric measurements in the FIR is described. An exploded view diagram of the layered structure of the blocking filter is provided.
The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts
NASA Technical Reports Server (NTRS)
Khan-Mayberry, Noreen
2007-01-01
The moon's surface is covered with a thin layer of fine, charged, reactive dust capable of layer of fine, charged, reactive dust capable of capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to study the effects of exposure to Lunar Dust on human health. To date, no scientifically defensible toxicological studies have been performed on lunar dusts, specifically the determination of exposure limits and their affect on human health. The multi-center LADTAG (Lunar Airborne Dust Toxicology center LADTAG (Lunar Airborne Dust Toxicology Advisory Group) was formed in response to the Office of the Chief Health and Medical Office s (OCHMO) request to develop recommendations for defining risk (OCHMO) request to develop recommendations for defining risk defining risk criteria for human lunar dust exposure.
NASA Technical Reports Server (NTRS)
Omar, Ali H.; Liu, Z.; Tackett, J.; Vaughan, M.; Trepte, C.; Winker, D.; H. Yu,
2015-01-01
The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.
Straumfors, Anne; Heldal, Kari Kulvik; Wouters, Inge M; Eduard, Wijnand
2015-07-01
The grain and compound feed industry entails inevitable risks of exposure to grain dust and its microbial content. The objective of this study was therefore to investigate task-dependent exposure differences in order to create knowledge basis for awareness and exposure reducing measures in the Norwegian grain and compound feed industry. A total of 166 samples of airborne dust were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified and used as individual outcomes in mixed models with worker nested in company as random effect and different departments and tasks as fixed effects. The exposure levels were highest in grain elevator departments. Exposure to endotoxins was particularly high. Tasks that represented the highest and lowest exposures varied depending on the bioaerosol component. The most important determinants for elevated dust exposure were cleaning and process controlling. Cleaning increased the dust exposure level by a factor of 2.44 of the reference, from 0.65 to 1.58mg m(-3), whereas process controlling increased the dust exposure level by a factor of 2.97, from 0.65 to 1.93mg m(-3). Process controlling was associated with significantly less grain dust exposure in compound feed mills and the combined grain elevators and compound feed mills, than in grain elevators. The exposure was reduced by a factor of 0.18 and 0.22, from 1.93 to 0.34mg m(-3) and to 0.42mg m(-3), respectively, compared with the grain elevators. Inspection/maintenance, cleaning, and grain rotation and emptying were determinants of higher exposure to both endotoxin and β-1→3-glucans. Seed winnowing was in addition a strong determinant for endotoxin, whereas mixing of animal feed implied higher β-1→3-glucan exposure. Cleaning was the only task that contributed significantly to higher exposure to bacteria and fungal spores. Cleaning in all companies and process controlling in grain elevators were the strongest determinants for overall exposure, whereas seed winnowing was a particular strong determinant of endotoxin exposure. Exposure reduction by technical intervention or personal protective equipment should therefore be considered at work places with identified high exposure tasks. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir
2016-02-01
We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factormore » of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.« less
NASA Technical Reports Server (NTRS)
Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos
2009-01-01
The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.
Dust ablation in Pluto's atmosphere
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan
2016-04-01
Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, Jaime M.; Jimah, Tamara
Most households and workplaces all over the world possess furnishings and electronics, all of which contain potentially toxic flame retardant chemicals to prevent fire hazards. Indoor dust is a recognized repository of these types of chemicals including polybrominated diphenyl ethers (PBDEs) and non-polybrominated diphenyl ethers (non-PBDEs). However, no previous U.S. studies have differentiated concentrations from elevated surface dust (ESD) and floor dust (FD) within and across microenvironments. We address this information gap by measuring twenty-two flame-retardant chemicals in dust on elevated surfaces (ESD; n=10) and floors (FD; n=10) from rooms on a California campus that contain various concentrations of electronicmore » products. We hypothesized a difference in chemical concentrations in ESD and FD. Secondarily, we examined whether or not this difference persisted: (a) across the studied microenvironments and (b) in rooms with various concentrations of electronics. A Wilcoxon signed-rank test demonstrated that the ESD was statistically significantly higher than FD for BDE-47 (p=0.01), BDE-99 (p=0.01), BDE-100 (p=0.01), BDE-153 (p=0.02), BDE-154 (p=0.02), and 3 non-PBDEs including EH-TBB (p=0.02), BEH-TEBP (p=0.05), and TDCIPP (p=0.03). These results suggest different levels and kinds of exposures to flame-retardant chemicals for individuals spending time in the sampled locations depending on the position of accumulated dust. Therefore, further research is needed to estimate human exposure to flame retardant chemicals based on how much time and where in the room individuals spend their time. Such sub-location estimates will likely differ from assessments that assume continuous unidimensional exposure, with implications for improved understanding of potential health impacts of flame retardant chemicals. - Highlights: • Brominated flame retardants used in electronic products accumulate in room dust • Various chemical moieties of flame retardants leach differently into room dust • Flame retardant concentrations in dust differ in elevated surfaces compared to floors.« less
Method and apparatus for measuring surface density of explosive and inert dust in stratified layers
Sapko, Michael J.; Perlee, Henry E.
1988-01-01
A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.
Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation
NASA Technical Reports Server (NTRS)
Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence
2014-01-01
Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2 production. Conclusion: Lunar dust inhalation results in significant lung inflammation, and some systemic effects, that does not resolve through 13 weeks. Lunar dust may therefore represent a crew health risk during sortie or long-duration Lunar missions.
NASA Astrophysics Data System (ADS)
Takemi, T.; Yasui, M.
2005-12-01
Recent studies on dust emission and transport have been concerning the small-scale atmospheric processes in order to incorporate them as a subgrid-scale effect in large-scale numerical prediction models. In the present study, we investigated the dynamical processes and mechanisms of dust emission, mixing, and transport induced by boundary-layer and cumulus convection under a fair-weather condition over a Chinese desert. We performed a set of sensitivity experiments as well as a control simulation in order to examine the effects of vertical wind shear, upper-level wind speed, and moist convection by using a simplified and idealized modeling framework. The results of the control experiment showed that surface dust emission was at first caused before the noon time by intense convective motion which not only developed in the boundary layer but also penetrated into the free troposphere. In the afternoon hours, boundary-layer dry convection actively mixed and transported dust within the boundary layer. Some of the convective cells penetrated above the boundary layer, which led to the generation of cumulus clouds and hence gradually increased the dust content in the free troposphere. Coupled effects of the dry and moist convection played an important role in inducing surface dust emission and transporting dust vertically. This was clearly demonstrated through the comparison of the results between the control and the sensitivity experiments. The results of the control simulation were compared with lidar measurements. The simulation well captured the observed diurnal features of the upward transport of dust. We also examined the dependence of the simulated results on grid resolution: the grid size was changed from 250 m up to 4 km. It was found that there was a significant difference between the 2-km and 4-km grids. If a cumulus parameterization was added to the 4-km grid run, the column content was comparable to the other cases. This result suggests that subgrid parameterizations are required if the grid size is larger than the order of 1 km in a fair-weather condition.
NASA Technical Reports Server (NTRS)
Lau, William K.; Kim, Maeng-Ki; Kim, Kyu-Myong; Lee, Woo-Seop
2010-01-01
Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (approx.5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.
Dust aerosol radiative effect and influence on urban atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Zhang, L.; Chen, M.; Li, L.
2007-11-01
An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23-26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of -0.21 K/h and the wind speed lowers down at about -0.19 m/s at 02:00 LT near the ground.
NASA Astrophysics Data System (ADS)
Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh
2018-05-01
Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.
Influence of continuous mining arrangements on respirable dust exposures
Beck, T. W.; Organiscak, J. A.; Pollock, D. E.; Potts, J. D.; Reed, W. R.
2017-01-01
In underground continuous mining operations, ventilation, water sprays and machine-mounted flooded-bed scrubbers are the primary means of controlling respirable dust exposures at the working face. Changes in mining arrangements — such as face ventilation configuration, orientation of crosscuts mined in relation to the section ventilation and equipment operator positioning — can have impacts on the ability of dust controls to reduce occupational respirable dust exposures. This study reports and analyzes dust concentrations measured by the Pittsburgh Mining Research Division for remote-controlled continuous mining machine operators as well as haulage operators at 10 U.S. underground mines. The results of these respirable dust surveys show that continuous miner exposures varied little with depth of cut but are significantly higher with exhaust ventilation. Haulage operators experienced elevated concentrations with blowing face ventilation. Elevated dust concentrations were observed for both continuous miner operators and haulage operators when working in crosscuts driven into or counter to the section airflow. Individual cuts are highlighted to demonstrate instances of minimal and excessive dust exposures attributable to particular mining configurations. These findings form the basis for recommendations for lowering face worker respirable dust exposures. PMID:28529441
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
NASA Astrophysics Data System (ADS)
de Beule, Caroline; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Tempering increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Beule, Caroline; Landers, Joachim; Salamon, Soma
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Temperingmore » increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.« less
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Caccaini, Marco; Veselovskii, Igor; Kolgotin, Alexey
2009-03-01
The Raman lidar system BASIL was operational in Achern (Supersite R, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) in the frame of the Convective and Orographically-induced Precipitation Study. BASIL operated continuously over a period of approx. 36 hours from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, to cover IOPs 13 a-b. In this timeframe the signature of a severe Saharan dust outbreak episode was captured. An inversion algorithm was used to retrieve particle size distribution parameters, i.e., mean and effective radius, number, surface area, and volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution, from the multi-wavelength lidar data of particle backscattering and extinction. The inversion method employs Tikhonov's inversion with regularization. Size distribution parameters are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the dominance in the upper dust layer of a coarse mode with radii 3-4 μm. Number density and volume concentration are in the range 100-800 cm-3 and 5-40 μm3/cm3, respectively, while real and imaginary part of the complex refractive index are in the range 1.41-1.53 and 0.003-0.014, respectively.
Airborne lidar observations of Saharan dust during FENNEC
NASA Astrophysics Data System (ADS)
Marenco, Franco; Garcia-Carreras, Luis; Rosenberg, Phil; McQuaid, Jim
2013-04-01
In June 2011 and June 2012, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft took part in the Fennec campaign. The main purpose was to quantify and model boundary layer and aerosol processes over the Saharan "heat low" region, the greatest dust region during summer. Although the central Sahara is extremely remote, the meteorology of this region is vital in driving the West African monsoon, and the dry and dusty air layers are closely related to the formation of Atlantic tropical cyclones. In this presentation, we shall characterise these air layers using data collected with the on-board lidar together with dropsondes. The interpretation of lidar signals in this particular geometry represents a challenge (nadir observations of thick layers), but we shall show that a suitable data inversion framework is possible under certain assumptions. The quality of the lidar data will be assessed using in-situ data from the nephelometer and optical particle counters. Deep air layers containing dust have been observed up to altitude of 5-6 km above mean sea level. The analysis of temperature and dew point profiles are used to identify the boundary layer and residual layer tops, and in conjunction with lidar observations this serves to quantify the dust content of both layers. An aerosol-laden residual layer is usually found during the campaign at an altitude of 2-6 km in the morning hours, with little aerosol below. The aerosol in the boundary layer is seen to develop later when solar heating of the surface induces turbulence until in the late afternoon the top of the boundary layer reaches up to ~ 6 km. Clouds embedded in aerosol layers and aerosol-cloud interactions have also been revealed. Dust aerosol has been observed in most cases, but a thin polluted non-dusty layer has been observed during one flight.
Ice sublimation and rheology - Implications for the Martian polar layered deposits
NASA Astrophysics Data System (ADS)
Hofstadter, M. D.; Murray, B. C.
1990-04-01
If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.
Ice sublimation and rheology - Implications for the Martian polar layered deposits
NASA Technical Reports Server (NTRS)
Hofstadter, Mark D.; Murray, Bruce C.
1990-01-01
If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.
Comparison of dust-layer heights from active and passive satellite sensors
NASA Astrophysics Data System (ADS)
Kylling, Arve; Vandenbussche, Sophie; Capelle, Virginie; Cuesta, Juan; Klüser, Lars; Lelli, Luca; Popp, Thomas; Stebel, Kerstin; Veefkind, Pepijn
2018-05-01
Aerosol-layer height is essential for understanding the impact of aerosols on the climate system. As part of the European Space Agency Aerosol_cci project, aerosol-layer height as derived from passive thermal and solar satellite sensors measurements have been compared with aerosol-layer heights estimated from CALIOP measurements. The Aerosol_cci project targeted dust-type aerosol for this study. This ensures relatively unambiguous aerosol identification by the CALIOP processing chain. Dust-layer height was estimated from thermal IASI measurements using four different algorithms (from BIRA-IASB, DLR, LMD, LISA) and from solar GOME-2 (KNMI) and SCIAMACHY (IUP) measurements. Due to differences in overpass time of the various satellites, a trajectory model was used to move the CALIOP-derived dust heights in space and time to the IASI, GOME-2 and SCIAMACHY dust height pixels. It is not possible to construct a unique dust-layer height from the CALIOP data. Thus two CALIOP-derived layer heights were used: the cumulative extinction height defined as the height where the CALIOP extinction column is half of the total extinction column, and the geometric mean height, which is defined as the geometrical mean of the top and bottom heights of the dust layer. In statistical average over all IASI data there is a general tendency to a positive bias of 0.5-0.8 km against CALIOP extinction-weighted height for three of the four algorithms assessed, while the fourth algorithm has almost no bias. When comparing geometric mean height there is a shift of -0.5 km for all algorithms (getting close to zero for the three algorithms and turning negative for the fourth). The standard deviation of all algorithms is quite similar and ranges between 1.0 and 1.3 km. When looking at different conditions (day, night, land, ocean), there is more detail in variabilities (e.g. all algorithms overestimate more at night than during the day). For the solar sensors it is found that on average SCIAMACHY data are lower by -1.097 km (-0.961 km) compared to the CALIOP geometric mean (cumulative extinction) height, and GOME-2 data are lower by -1.393 km (-0.818 km).
NASA Technical Reports Server (NTRS)
Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.
2003-01-01
For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.
NASA Astrophysics Data System (ADS)
Onishi, Isamu K.; Sekiya, Minoru
2017-04-01
We investigate the effect of a radial pressure bump in a protoplanetary disk on planetesimal formation. We performed the two-dimensional numerical simulation of the dynamical interaction of solid particles and gas with an initially defined pressure bump under the assumption of axisymmetry. The aim of this work is to elucidate the effects of the stellar vertical gravity that were omitted in a previous study. Our results are very different from the previous study, which omitted the vertical gravity. Because dust particles settle toward the midplane because of the vertical gravity to form a thin dust layer, the regions outside of the dust layer are scarcely affected by the back-reaction of the dust. Hence, the gas column density keeps its initial profile with a bump, and dust particles migrate toward the bump. In addition, the turbulence due to the Kelvin-Helmholtz instability caused by the difference of the azimuthal velocities between the inside and outside of the dust layer is suppressed where the radial pressure gradient is reduced by the pressure bump. The dust settling proceeds further where the turbulence is weak, and a number of dust clumps are formed. The dust density in some clumps exceeds the Roche density. Planetesimals are considered to be formed from these clumps owing to the self-gravity.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Sekiya, Minoru; Onishi, Isamu K.
2018-06-01
The streaming instability and Kelvin–Helmholtz instability are considered the two major sources causing clumping of dust particles and turbulence in the dust layer of a protoplanetary disk as long as we consider the dead zone where the magnetorotational instability does not grow. Extensive numerical simulations have been carried out in order to elucidate the condition for the development of particle clumping caused by the streaming instability. In this paper, a set of two parameters suitable for classifying the numerical results is proposed. One is the Stokes number that has been employed in previous works and the other is the dust particle column density that is nondimensionalized using the gas density in the midplane, Keplerian angular velocity, and difference between the Keplerian and gaseous orbital velocities. The magnitude of dust clumping is a measure of the behavior of the dust layer. Using three-dimensional numerical simulations of dust particles and gas based on Athena code v. 4.2, it is confirmed that the magnitude of dust clumping for two disk models are similar if the corresponding sets of values of the two parameters are identical to each other, even if the values of the metallicity (i.e., the ratio of the columns density of the dust particles to that of the gas) are different.
Dust in brown dwarfs. III. Formation and structure of quasi-static cloud layers
NASA Astrophysics Data System (ADS)
Woitke, P.; Helling, Ch.
2004-01-01
In this paper, first solutions of the dust moment equations developed in (Woitke & Helling \\cite{wh2003a}) for the description of dust formation and precipitation in brown dwarf and giant gas planet atmospheres are presented. We consider the special case of a static brown dwarf atmosphere, where dust particles continuously nucleate from the gas phase, grow by the accretion of molecules, settle gravitationally and re-evaporate thermally. Mixing by convective overshoot is assumed to replenish the atmosphere with condensable elements, which is necessary to counterbalance the loss of condensable elements by dust formation and gravitational settling (no dust without mixing). Applying a kinetic description of the relevant microphysical and chemical processes for TiO2-grains, the model makes predictions about the large-scale stratification of dust in the atmosphere, the depletion of molecules from the gas phase, the supersaturation of the gas in the atmosphere as well as the mean size and the mass fraction of dust grains as function of depth. Our results suggest that the presence of relevant amounts of dust is restricted to a layer, where the upper boundary (cloud deck) is related to the requirement of a minimum mixing activity (mixing time-scale τmix ≈ 10 6 s) and the lower boundary (cloud base) is determined by the thermodynamical stability of the grains. The nucleation occurs around the cloud deck where the gas is cool, strongly depleted, but nevertheless highly supersaturated (S ≫ 1). These particles settle gravitationally and populate the warmer layers below, where the in situ formation (nucleation) is ineffective or even not possible. During their descent, the particles grow and reach mean radii of ≈30 \\mum ... 400 \\mum at the cloud base, but the majority of the particles in the cloud layer remains much smaller. Finally, the dust grains sink into layers which are sufficiently hot to cause their thermal evaporation. Hence, an effective transport mechanism for condensable elements exists in brown dwarfs, which depletes the gas above and enriches the gas below the cloud base of a considered solid/liquid material. The dust-to-gas mass fraction in the cloud layer results to be approximately given by the mass fraction of condensable elements in the gas being mixed up. Only for artificially reduced mixing we find a self-regulation mechanism that approximately installs phase equilibrium (S ≈ 1) in a limited region around the cloud base.
Surface acoustic wave dust deposition monitor
Fasching, G.E.; Smith, N.S. Jr.
1988-02-12
A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, William K-M
2011-01-01
Saharan dust outbreaks not only transport large amount of dust to the northern Atlantic Ocean, but also alter African easterly jet and wave activities along the jet by changing north-south temperature gradient. Recent modeling and observational studies show that during periods of enhance outbreaks, rainfall on the northern part of ITCZ increases in conjunction with a northward shift of ITCZ toward the dust layer. In this paper, we study the radiative forcing of Saharan dust and its interactions with the Atlantic Inter-tropical Convergence Zone (ITCZ), through African easterly waves (AEW), African easterly jet (AEJ), using the Terra/Aqua observations as well as MERRA data. Using band pass filtered EOF analysis, we find that African easterly waves propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are slower, with propagation speed of 9 ms-1, and highly correlated with major dust outbreak over North Africa. On the other hand, easterly waves along the southern track are faster with propagating speed of 10 ms-1, and are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between Saharan dust layer and Atlantic ITCZ. Possible linkage between two tracks of easterly waves, as well as the long-term change of easterly wave activities and dust outbreaks, are also discussed.
Weathering and erosion of the polar layered deposits on Mars
NASA Technical Reports Server (NTRS)
Herkenhoff, K. E.
1990-01-01
The Martial polar layered deposits are widely believed to be composed of water ice and silicates, but the relative amount of each component is unknown. The conventional wisdom among Mars researchers is that the deposits were formed by periodic variations in the deposition of dust and ice caused by climate changes over the last 10 to 100 million years. It is assumed here that water ice is an important constituent of the layered deposits, that the deposits were formed by eolian processes, and that the origin and evolution of the north and south polar deposits were similar. Weathering of the layered deposits by sublimation of water ice can account for the geologic relationships in the polar regions. The nonvolatile components of the layered deposits appears to consist mainly of bright red dust, with small amounts of dark dust or sand. Dark dust, perhaps similar to the magnetic material found at the Viking Lander sites, may perferentially form filamentary residue particles upon weathering of the deposits. Once eroded, these particles may saltate to form the dark dunes found in both polar regions.
On the evolution of Saturn's 'Spokes' - Theory
NASA Technical Reports Server (NTRS)
Morfill, G. E.; Gruen, E.; Goertz, C. K.; Johnson, T. V.
1983-01-01
Starting with the assumption that negatively charged micron-sized dust grains may be elevated above Saturn's ring plane by plasma interactions, the subsequent evolution of the system is discussed. The discharge of the fine dust by solar UV radiation produces a cloud of electrons which moves adiabatically in Saturn's dipolar magnetic field. The electron cloud is absorbed by the ring after one bounce, alters the local ring potential significantly, and reduces the local Debye length. As a result, more micron-sized dust particles may be elevated above the ring plane and the spoke grows. This process continues until the electron cloud has dissipated.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... subheading 1605.20.10.40); 7) certain dusted shrimp; and 8) certain battered shrimp. Dusted shrimp is a... after application of the dusting layer. Battered shrimp is a shrimp-based product that, when dusted in...
On the sizes and observable effects of dust particles in polar mesospheric winter echoes
NASA Astrophysics Data System (ADS)
Havnes, O.; Kassa, M.
2009-05-01
In the present paper, recent radar and heating experiments on the polar mesospheric winter echoes (PMWE) are analyzed with the radar overshoot model. The PMWE dust particles that influence the radar backscatter most likely have sizes around 3 nm. For dust to influence the electrons in the PMWE layers, it must be charged; therefore, we have discussed the charging of nanometer-sized particles and found that the photodetachment effect, where photons of energy less than the work function of the dust material can remove excess electrons, probably is dominant at sunlit conditions. For moderate and low electron densities, very few of the dust smaller than ˜3 nm will be charged. We suggest that the normal requirement that disturbed magnetospheric conditions with ionizing precipitation must be present to create observable PMWE is needed mainly to create sufficiently high electron densities to overcome the photodetachment effect and charge the PMWE dust particles. We have also suggested other possible effects of the photodetachment on the occurrence rate of the PMWE. We attribute the lack of PMWE-like radar scattering layers in the lower mesosphere during the summer not only to a lower level of turbulence than in winter but also to that dust particles are removed from these layers due to the upward wind draught in the summer mesospheric circulation system. It is likely that this last effect will completely shut off the PMWE-like radar layers in the lower parts of the mesosphere.
HiRISE Observations of the Polar Regions of Mars
NASA Astrophysics Data System (ADS)
Herkenhoff, K. E.; Byrne, S.; Fishbaugh, K.; Russell, P.; Fortezzo, C.; McEwen, A.
2008-12-01
Digital elevation models (DEMs) derived from MRO HiRISE stereo images allow meter-scale topographic measurements in the north polar layered deposits (NPLD) and distinction of slope vs. albedo effects on apparent brightness of individual layers. HiRISE images do not show thin layers at the limit of resolution. Rather, fine layering, if it exists, appears to have been obscured by a more dust-rich mantling deposit which shows signs of eolian erosion and slumping. Stratigraphic sequences within the NPLD appear to be repeated within exposures observed by HiRISE, indicative of a record of periodic climate changes. Granular flows sourced from within the dark, basal unit are suggestive of, but do not require, the presence of water during their formation. Active mass wasting of frost and dust has been observed on steep NPLD scarps in early spring, similar to dry, loose snow avalanches on terrestrial slopes. Bright and dark streaks are seen to evolve during the northern summer, evidence for active eolian redistribution of frost and perhaps dark (non- volatile) material. Relatively dark reddish patches observed within the north polar residual cap during the summer indicate that the cap is very thin (<1 m) or more transparent in places. HiRISE images of exposures of the south polar layered deposits (SPLD) show rectilinear fractures that are continuous across several layers and whose orientation is not affected by the topography of the exposure, suggesting that they were formed before erosion of the SPLD. They appear to extend laterally and vertically through the SPLD, like a joint set. While NPLD tectonism appears limited to isolated grabens, several faults have been observed by HiRISE in the SPLD, showing structural details including reverse fault splays that merge into bedding planes and possible evidence for thrust duplication. The faults may be the result of basal sliding (decollements) ramping into thrust faults near the margin of the SPLD.
NASA Astrophysics Data System (ADS)
Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.
2015-07-01
The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse-mode size distributions and AERONET (AERosol Robotic NETwork) sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region - a region of substantial global climatic importance.
Immune Alterations in Rats Exposed to Airborne Lunar Dust
NASA Technical Reports Server (NTRS)
Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence
2014-01-01
The lunar surface is covered by a layer of fine, reactive dust. Very little is known regarding the toxicity of lunar dust on human physiology. This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and systemic immune parameters.
2009-08-21
Persons employed in high-risk lead-related occupations can transport lead dust home from a worksite through clothing, shoes, tools, or vehicles. During 2008, the Maine Childhood Lead Poisoning Prevention Program (MCLPPP) identified 55 new cases of elevated (>or=15 microg/dL) venous blood lead levels (BLLs) among children aged <6 years through mandated routine screening. Although 90% of childhood lead poisoning cases in Maine during 2003-2007 had been linked to lead hazards in the child's home, no lead-based paint or dust or water with elevated lead levels were found inside the homes associated with six of the 2008 cases (i.e., five families, including one family with two affected siblings). An expanded environmental investigation determined that these six children were exposed to lead dust in the family vehicles and in child safety seats. The sources of the lead dust were likely household contacts who worked in high-risk lead exposure occupations. Current recommendations for identifying and reducing risk from take-home lead poisoning include 1) ensuring that children with elevated BLLs are identified through targeted blood lead testing, 2) directing prevention activities to at-risk workers and employers, and 3) improving employer safety protocols. State and federal prevention programs also should consider, when appropriate, expanded environmental lead dust testing to include vehicles and child safety seats.
Features of tropospheric and stratospheric dust.
Elterman, L; Wexler, R; Chang, D T
1969-05-01
A series of 119 profiles obtained over New Mexico comprise aerosol attenuation coefficients vs altitude to about 35 km. These profiles show the existence of several features. A surface convective dust layer extending up to about 5 km is seasonally dependent. Also, a turbidity maximum exists below the tropopause. The altitude of an aerosol maximum in the lower stratosphere is located just below that of the minimum temperature. The colder the minimum temperature, the greater is the aerosol content of the layer. This relationship suggests that the 20-km dust layer is due to convection in tropical air and advection to higher latitudes. Computed averages of optical thickness show that abatement of stratospheric dust from the Mt. Agung eruption became evident in April 1964. Results based on seventy-nine profiles characterizing volcanic dust abatement indicate that above 26 km, the aerosol scale height averages 3.75 km. Extrapolating with this scale height, tabulations are developed for uv, visible, and ir attenuation to 50 km. Optical mixing ratios are used to examine the aerosol concentrations at various altitudes, including a layer at 26 km having an optical thickness 10(-3) for 0.55-micro wavelength.
Interpreting Radar View near Mars' North Pole, Orbit 1512
NASA Technical Reports Server (NTRS)
2006-01-01
A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the north pole of Mars (with blowups shown in the upper-left panels). The sounding radar collected the data presented here during orbit 1512 of the mission, on Nov. 22, 2006. The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 83.5 degrees to 80.5 degrees north latitude, or about 180 kilometers (110 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse is from the high elevation of the plateau formed by the layers to the lowlands below. The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface in two places: about 600 meters (2,000 feet) to the lowest of an upper series of bright reflectors and about 2,000 meters (6,500 feet) to the base of the polar layered deposits. The color scale of the radargram varies from black for weak reflections to bright yellow for strong reflections. The lower-left panel is a image from the Mars Orbiter Camera on Mars Global Surveyor showing exposed polar layering in the walls of a canyon near the north pole. The layering is divided into a finely structured upper unit (labeled 'Upper PLD') and less-well-defined stratigraphy in the lower unit (labeled 'Lower PLD'). The radargram clearly reveals the complexity of the layering in the upper unit, additional reflections from the lower unit, and the base of the entire stack of layered deposits. The layering manifests the recent climate history of Mars, recorded by the deposition and removal of ice and dust. The Shallow Subsurface Radar was provided by the Italian Space Agency (ASI). Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington.DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au; Mould, Simon Anthony; Kristensen, Louise Jane
Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1–4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Brokenmore » Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m{sup 2}) with the highest lead in surface dust (59,900 μg/m{sup 2}) and post-play hand wipes (60,900 μg/m{sup 2}) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 207}Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. - Highlights: 1.Playground soils and surface dust in a mining town have high metal concentrations. 2.Elevated levels of As, Cd, Pb and Zn dust are found on playground users′ hands. 3.Pb isotope analysis shows that the source of playground dust is ore body Pb. 4.Surface mine operations must be contained to reduce childhood lead exposure risks. 5.Mine environmental licences need to set trigger values for As, Cd, Pb and Zn dust.« less
NASA Technical Reports Server (NTRS)
Moersch, J. E.; Lorenz, R. D.
1998-01-01
While primarily a technology demonstration mission, the New Millenium Mars Microprobes (also known as Deep Space 2, or simply DS2)will also provide the first in situ science measurements of the martian subsurface. The DS2 impact accelerometry experiment will provide both engineering data about the depth of probe emplacement and science data about the physical nature of the subsurface at the probes' landing sites. Little is known about the detailed physical properties or small-scale vertical structure of the subsurface at the DS2 landing site in the southern martian polar layered deposits. Imaging data from the Viking Orbiters and Mars Global Surveyor reveal alternating bands of light and dark material in this region with thicknesses at least as small as the limit of resolution, about 10 m. The overall composition of these layers is poorly constrained, but generally thought to be a mixture of dust and ice with the layers being caused by variations in the dust/ice ratio, or perhaps by dust deposits of different densities. Low thermal inertias in the region suggest that the top few centimeters of the surface are composed of a mantling of fine-grained dust. However, 3.5-cm radar returns indicate that the maximum depth of this dust is not greater than a few tens of centimeters. Thermal models generally agree that, while the layered deposits do provide a potential near-surface reservoir for ice, the uppermost few centimeters to meters in these regions are likely to be ice-free because of sublimation losses. Finally, while it is generally agreed that the layered deposits are the product of variations in the martian climate, no direct correlation has been made between band sequences and specific climate changes. Our intention is to shed light on some of these questions about the martian polar layered deposits by using the DS2 accelerometry experiment to determine the physical nature of the layered deposits, and to detect the presence of any subsurface layering of dust, ice, and/or rock. In the process, we will also determine the final resting depth of the two microprobes, an important parameter in the interpretation of other DS2 experiments.
Dust-on-snow and the timing of peak streamflow in the upper Rio Grande
USDA-ARS?s Scientific Manuscript database
Dust radiative forcing on high elevation snowpack is well-documented in the southern Rockies. Various field studies show that dust deposits decrease snow albedo and increase absorption of solar radiation, leading to earlier snowmelt and peak stream flows. These findings have implications for the use...
Reis, A P; Costa, S; Santos, I; Patinha, C; Noack, Y; Wragg, J; Cave, M; Sousa, A J
2015-08-01
This study reports on data obtained from a pilot survey focusing on house dust and toenail metal(loids) concentrations in residents living in the industrial city of Estarreja. The study design hereby described aims at investigating relationships between human toenails and both copper and manganese levels in settled house dusts. A total of 21 households and 30 individuals were recruited for the pilot study: 19 households corresponding to 27 residents living near the industrial complex, forming the exposed group, plus 2 households and 3 residents from residential areas with no anticipated environmental contaminants that were used for comparison. Factorial analysis was used for source identification purposes. Investigation on the potential influence of environmental factors over copper and manganese levels in the toenails was carried out via questionnaire data and multiple correspondence analysis. The results show that copper concentrations are more elevated in the indoor dusts, while manganese concentrations are more elevated in the outdoor dust samples. The geometrical relationships in the datasets suggest that the backyard soil is a probable source of manganese to the indoor dust. Copper and manganese contents in the toenail clippings are more elevated in children than in adults, but the difference between the two age groups is not statistically significant (p > 0.05). Investigation of environmental factors influencing the exposure-biomarker association indicates a probable relationship between manganese contents in indoor dust and manganese levels in toenail clippings, a result that is partially supported by the bioaccessibility estimates. However, for copper, no relationship was found between indoor dusts and the biomarkers of exposure.
Dust to planetesimals - Settling and coagulation in the solar nebula
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.
1980-01-01
The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is discussed. The gravitational instability in a dust layer and collisional accretion are examined as possible mechanisms of planetesimal formation. The shear between the gas and a dust layer is considered along with the differences in the planetesimal formation mechanisms between the inner and outer nebula. A numerical model for computing simultaneous coagulation and settling is described.
NASA Astrophysics Data System (ADS)
Paul, Jaydeep; Nag, Apratim; Devi, Karabi; Das, Himadri Sekhar
2018-03-01
The evolution and the characteristic features of double layers in a plasma under slow rotation and contaminated with dust grains with varying charges under the effect of an external magnetic field are studied. The Coriolis force resulting from the slow rotation is responsible for the generation of an equivalent magnetic field. A comparatively new pseudopotential approach has been used to derive the small amplitude double layers. The effect of the relative electron-ion concentration, as well as the temperature ratio, on the formation of the double layers has also been investigated. The study reveals that compressive, as well as rarefactive, double layers can be made to co-exist in plasma by controlling the dust charge fluctuation effect supplemented by variations of the plasma constituents. The effectiveness of slow rotation in causing double layers to exist has also emanated from the study. The results obtained could be of interest because of their possible applications in both laboratories and space.
Identification of mineral dust layers in high alpine snow packs
NASA Astrophysics Data System (ADS)
Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne
2017-04-01
Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers allow a retrospective evaluation of previous snow chemistry data of snow packs of previous years or different locations. Thus the unique time of almost 30 years of snow chemistry data from glaciers surrounding the Sonnblick observatory [5] can be evaluated, focusing on the intensity and frequency of the occurance of Saharan dust layers in high alpine snow packs. Literature: [1] Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y., 2013. Clouds and aerosols. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. [2] Prospero, J.M., 1996. Saharan Dust Transport Over the North Atlantic Ocean and Mediterranean: An Overview, in: Guerzoni, S., Chester, R. (Eds.), The Impact of Desert Dust Across the Mediterranean, Environmental Science and Technology Library. Springer Netherlands, pp. 133-151. [3] Avila, A., Rod_a, F., 1991. Red rains as major contributors of nutrients and alkalinity to terrestrial ecosystems at Montseny (NE Spain). Orsis Org. Sist. 6, 215e229. [4] Miles, L.J., Yost, K.J., 1982. Quality analysis of USGS precipitation chemistry data for New York. Atmos. Environ. 1967 (16), 2889e2898. http://dx.doi.org/10.1016/ 0004-6981(82)90039-7. [5] Greilinger, Marion, et al. "Temporal changes of inorganic ion deposition in the seasonal snow cover for the Austrian Alps (1983-2014)." Atmospheric Environment 132 (2016): 141-152.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... ``battered shrimp'' (see below). ``Battered shrimp'' is a shrimp-based product: (1) That is produced from... the dusting layer. When dusted in accordance with the definition of dusting above, the battered shrimp...
Craters formed in mineral dust by hypervelocity microparticles.
NASA Technical Reports Server (NTRS)
Vedder, J. F.
1972-01-01
As a simulation of erosion processes on the lunar surface, impact craters were formed in dust targets by 2- to 5-micron-diameter polystyrene spheres with velocities between 2.5 and 12 km/sec. For weakly cohesive, thick targets of basalt dust with a maximum grain size comparable to the projectile diameter, the craters had an average projectile-to-diameter diameter ratio of 25, and the displaced mass was 3 orders of magnitude greater than the projectile mass. In a simulation of the effect of a dust covering on lunar rocks, a layer of cohesive, fine-grained basalt dust with a thickness nearly twice the projectile diameter protected a glass substrate from damage, but an area about 50 times the cross-sectional area of the projectile was cleared of all but a few grains. Impact damage was produced in glass under a thinner dust layer.
Existence domains of dust-acoustic solitons and supersolitons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maharaj, S. K.; Bharuthram, R.; Singh, S. V.
2013-08-15
Using the Sagdeev potential method, the existence of large amplitude dust-acoustic solitons and supersolitons is investigated in a plasma comprising cold negative dust, adiabatic positive dust, Boltzmann electrons, and non-thermal ions. This model supports the existence of positive potential supersolitons in a certain region in parameter space in addition to regular solitons having negative and positive potentials. The lower Mach number limit for supersolitons coincides with the occurrence of double layers whereas the upper limit is imposed by the constraint that the adiabatic positive dust number density must remain real valued. The upper Mach number limits for negative potential (positivemore » potential) solitons coincide with limiting values of the negative (positive) potential for which the negative (positive) dust number density is real valued. Alternatively, the existence of positive potential solitons can terminate when positive potential double layers occur.« less
NASA Astrophysics Data System (ADS)
Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.
2016-08-01
Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model verification.
NASA Astrophysics Data System (ADS)
Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew
2016-11-01
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns.
Observational Constraints on Ephemeral Wind Gusts that MobilizeSoil Dust Aerosols
NASA Astrophysics Data System (ADS)
Miller, R. L.; Leung, M. F.
2017-12-01
Dust aerosol models resolve the planetary scale winds that disperse particles throughout the globe, but the winds raising dust are often organized on smaller scales that are below the resolution of the model. These winds, including ephemeral wind gusts associated with boundary layer mixing, are typically parameterized. For example, gusts by dry convective eddies are related to the sensible heat flux. What remains is to constrain the magnitude of the wind gusts using boundary layer measurements, so that dust emission has the correct sensitivity to these gusts, relative to the resolved wind. Here, we use a year of ARM measurements with high temporal resolution from Niamey, Niger in the Sahel to evaluate our parameterization. This evaluation is important for dust aerosol models that use 'nudging' to reproduce observed transport patterns.
Exposure to grain dust and microbial components in the Norwegian grain and compound feed industry.
Halstensen, Anne Straumfors; Heldal, Kari Kulvik; Wouters, Inge M; Skogstad, Marit; Ellingsen, Dag G; Eduard, Wijnand
2013-11-01
The aim of this study was to extensively characterize grain workers' personal exposure during work in Norwegian grain elevators and compound feed mills, to identify differences in exposures between the workplaces and seasons, and to study the correlations between different microbial components. Samples of airborne dust (n = 166) were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified. Correlations between dust and microbial components and differences between workplaces and seasons were investigated. Determinants of endotoxin and β-1→3-glucan exposure were evaluated by linear mixed-effect regression modeling. The workers were exposed to an overall geometric mean of 1.0mg m(-3) inhalable grain dust [geometric standard deviation (GSD) = 3.7], 628 endotoxin units m(-3) (GSD = 5.9), 7.4 µg m(-3) of β-1→3-glucan (GSD = 5.6), 21 × 10(4) bacteria m(-3) (GSD = 7.9) and 3.6 × 10(4) fungal spores m(-3) (GSD = 3.4). The grain dust exposure levels were similar across workplaces and seasons, but the microbial content of the grain dust varied substantially between workplaces. Exposure levels of all microbial components were significantly higher in grain elevators compared with all other workplaces. The grain dust exposure was significantly correlated (Pearson's r) with endotoxin (rp = 0.65), β-1→3-glucan (rp = 0.72), bacteria (rp = 0.44) and fungal spore (rp = 0.48) exposure, whereas the explained variances were strongly dependent on the workplace. Bacteria, grain dust, and workplace were important determinants for endotoxin exposure, whereas fungal spores, grain dust, and workplace were important determinants for β-1→3-glucan exposure. Although the workers were exposed to a relatively low mean dust level, the microbial exposure was high. Furthermore, the exposure levels of microbial components varied between workplaces although the dust levels were similar. We therefore recommend that exposure levels at different workplaces should be assessed separately and a task-based assessment should be done for detailed evaluation of efficient dust-reducing measures. The microbial content and knowledge of health effects of the microbial components should be considered in health risk evaluations of these workplaces.
Atmospheric Science Data Center
2013-04-15
article title: Casting Light and Shadows on a Saharan Dust Storm ... ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated ... cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of ...
NASA Astrophysics Data System (ADS)
Christian, S.; Holt, J. W.; Choudhary, P.; Fishbaugh, K. E.; Plaut, J. J.
2010-12-01
The Shallow Radar (SHARAD) onboard NASA’s Mars Reconnaissance Orbiter (MRO) has successfully detected many subsurface reflectors in the North Polar Layered Deposits (NPLD) of Mars. Confirming that these reflectors are caused by varying fractions of dust within the ice will be of primary importance in any attempt to model the composition of the NPLD, particularly if such a study incorporates optical data based on the assumption of a shared mechanism between layering and radar reflectance. As a first step towards examining this assumption, we have quantitatively studied the relationship between radar reflectors and adjacent visible layers exposed in an NPLD outcrop using statistical analyses and geometric comparisons. A clustering analysis of vertical separation distances between radar reflectors returned strong values at 11.8, 15.8, 20.3, 27.9, and 35.3 m, which strongly agree with published visible layer clusters [Fishbaugh et al., LPSC, 2009] and known frequency analysis results [Milkovich and Head, JGR, 2005]. Furthermore, in order to understand subsurface structures and reflector geometry we have gridded reflector surfaces in three dimensions, taking into account the influence of surface slopes to obtain accurate subsurface geometries. These geometries reveal average reflector dips of 0.4°, which are consistent with optical layer slopes on the order of 1.0°. Unexpected long wavelength topography resulting from subsurface structures visible to SHARAD complicated the attempt to compare radar reflector geometries with layer boundary elevation profiles obtained from the stratigraphic column produced using a digital elevation model (DEM) of High Resolution Imaging Science Experiment (HiRISE) stereo imagery [Fishbaugh et al., GRL, 2010]. The limitation imposed by the small extent of the DEM was resolved by increasing exposure coverage through the incorporation of images from Context Camera (CTX), also on MRO. In doing so, we were able to resolve the disparity between geometries and have now determined visible layers demonstrate similar subsurface topographic features as those revealed by SHARAD. Direct elevation comparisons between individual reflectors and discrete optical layers, while considered necessary for a correlation, are complicated by variations in subsurface structure that exist between the outcrop and the SHARAD tracks, as inferred from our mapping. While a direct correlation has not yet been accomplished, we have confirmed a genetic link between radar reflectors and visible layers; furthermore, we have generalized and improved the techniques for conducting such correlations so this can be undertaken at additional locations.
Secondary emission from dust grains: Comparison of experimental and model results
NASA Astrophysics Data System (ADS)
Richterova, I.; Pavlu, J.; Nemecek, Z.; Safrankova, J.; Zilavy, P.
The motion, coalescence, and other processes in dust clouds are determined by the dust charge. Since dust grains in the space are bombarded by energetic electrons, the secondary emission is an important process contributing to their charge. It is generally expected that the secondary emission yield is related to surface properties of the bombarded body. However, it is well known that secondary emission from small bodies is determined not only by their composition but an effect of dimension can be very important when the penetration depth of primary electrons is comparable with the grain size. It implies that the secondary emission yield can be influenced by the substrate material if the surface layer is thin enough. We have developed a simple Monte Carlo model of secondary emission that was successfully applied on the dust simulants from glass and melanine formaldehyd (MF) resin and matched very well experimental results. In order to check the influence of surface layers, we have modified the model for spheres covered by a layer with different material properties. The results of model simulations are compared with measurements on MF spheres covered by different metals.
Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae
2016-01-01
The Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height and single scattering albedo (SSA) for biomass burning smoke aerosols. By using multiple satellite sensors synergistically, ASHE can provide the height information over much broader areas than lidar observations alone. The complete ASHE algorithm uses aerosol data from MODIS or VIIRS, OMI or OMPS, and CALIOP. A simplified algorithm also exists that does not require CALIOP data as long as the SSA of the aerosol layer is provided by another source. Several updates have recently been made: inclusion of dust layers in the retrieval process, better determination of the input aerosol layer height from CALIOP, improvement in aerosol optical depth (AOD) for nonspherical dust, development of quality assurance (QA) procedure, etc.
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.
2018-01-01
The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.
Interpreting Radar View near Mars' South Pole, Orbit 1360
NASA Technical Reports Server (NTRS)
2006-01-01
A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the south pole of Mars. The sounding radar collected the data presented here during orbit 1360 of the mission, on Nov. 10, 2006. The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 74 degrees to 85 degrees south latitude, or about 650 kilometers (400 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse proceeds up onto a plateau formed by the layers. The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface at one place: about 800 meters (2,600 feet) to one of the strongest subsurface reflectors. This reflector marks the base of the polar layered deposits. The color scale varies from black for weak reflections to white for strong reflections. The middle panel shows mapping of the major subsurface reflectors, some of which can be traced for a distance of 100 kilometers (60 miles) or more. The layering manifests the recent climate history of Mars, recorded by the deposition and removal of ice and dust. The Shallow Subsurface Radar was provided by the Italian Space Agency (ASI). Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington.NASA Astrophysics Data System (ADS)
Gabrielli, P.; Barbante, C.; Carturan, L.; Davis, M. E.; Dalla Fontana, G.; Dreossi, G.; Dinale, R.; Draga, G.; Gabrieli, J.; Kehrwald, N. M.; Mair, V.; Mikhalenko, V.; Oeggl, K.; Schotterer, U.; Seppi, R.; Spolaor, A.; Stenni, B.; Thompson, L. G.; Tonidandel, D.
2013-12-01
Atmospheric temperatures in the Alps are increasing at twice the global rate and this change may be amplified at the highest elevations. There is a scarcity of paleo-climate information from high altitudes to place this current rapid climate change in a paleo-perspective. The 'Ortles Project' is an international scientific effort gathering institutes from six nations with the primary goal of obtaining a high altitude paleo-climate record in the Mediterranean area. In 2011 four ice cores were extracted from Alto dell'Ortles (3859 m, South Tyrol, Italy) the highest glacier in the eastern Alps. This site is located ~30 km away from where the famous ~5.2 kyr old Tyrolean Ice Man was discovered emerging from an ablating ice field (Hauslabjoch, 3210 m) in 1991. The good state of conservation of this mummy suggested that the current warming trend is unprecedented in South Tyrol during the late Holocene and that unique prehistoric ice was still present in this region. During the ice core drilling operations we found that the glacier Alto dell'Ortles shows a very unusual thermic behavior as it is transitioning from a cold to a temperate state. In fact, below a 30 meter thick temperate firn portion, we observed cold ice layers sitting on a frozen bedrock (-2.8 C). These represent remnants of the colder climate before ~1980 AD, when an instrumental record indicates a ~2 C lower temperature in this area during the period 1864-1980 AD. By analyzing one of the Ortles cores for stable isotopes, dust and major ions, we found an annually preserved climatic signal embedded in the deep cold ice of this glacier. Alto dell'Ortles is therefore the first low-accumulation (850 mm w.e. per year) alpine drilling site where both winter and summer layers can be identified. Preliminary annual layer counting and two absolute time markers suggest that the time period covered by the Ortles ice cores spans from several centuries to a few millennia. In particular, a Larix (larch) leaf discovered at 74 m depth suggests a 14C bottom ice age of 2664 ×166 years (early European Iron Age) supporting the idea that exceptional prehistoric ice is still present at the highest elevations of South Tyrol. Here we present the records of the first Ortles core analyzed in terms of δ18O (proxy of mid-tropospheric temperature), major ions and dust. We found that δ18O measured in the shallowest layers of this glacier exceeds the average deeper values indicating that the Ortles cores capture the recent increase in atmospheric temperatures at high elevation and that this is anomalous over a time scale that extends from hundreds to thousands of years.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Cacciani, Marco; Veselovskii, Igor; Dubovik, Oleg; Kolgotin, Alexey
2012-04-01
The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter). An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov's inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1-0.2 μm and a coarse mode with radii of 3-5 μm both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4-5 μm. Effective radius varies with altitude in the range 0.1-1.5 μm, while volume concentration is found to not exceed 92 μm3 cm-3. The real and imaginary part of the complex refractive index vary in the range 1.4-1.6 and 0.004-0.008, respectively.
Lunar Dust Characterization for Exploration Life Support Systems
NASA Technical Reports Server (NTRS)
Agui, Juan H.
2007-01-01
Lunar dust effects can have a significant impact on the performance and maintenance of future exploration life support systems. Filtration systems will be challenged by the additional loading from lunar dust, and mitigation technology and strategies have to be adapted to protect sensitive equipment. An initial characterization of lunar dust and simulants was undertaken. The data emphasize the irregular morphology of the dust particles and the frequency dependence of lunar dust layer detachment from shaken surfaces.
NASA Technical Reports Server (NTRS)
Braun, Scott A.
2010-01-01
Considerable attention has been given to the potential negative impacts of the Saharan air layer (SAL) in recent years. Researchers recently raised questions about the negative impacts of Dunion and Velden and other studies in terms of storms that reached at least tropical storm strength and suggested that the SAL was an intrinsic part of the tropical cyclone environment for both storms that weaken after formation and those that intensify. Braun also suggested that several incorrect assumptions underlie many of the studies on the negative impacts of the SAL, including assumptions that most low-to-midlevel dry tropical air is SAL air, that the SAL is dry throughout its depth, and that the proximity of the SAL to storms struggling to intensify implies some role in that struggle. The recent paper by Reale et al.(RL1) is an example of the problems inherent in some of these assumptions. In their paper, RL1 analyze a simulation from the Global Earth Observing System (GEOS-5) global model and describe an extensive tongue of warm, dry air that stretches southward from at least 30 deg N (the northern limit of their plots) and wraps into a low pressure system during the period 26-29 August 2006, suppressing convection and possibly development of the African easterly wave associated with that low pressure system. They attributed the warm, dry tongue to the SAL (i.e., heating of the air mass during passage over the Sahara and radiative warming of the dust layer). Whether it was their intention, the implication is that this entire feature is due solely to the SAL and not to other possible sources of dry air or warmth. In addition, they suggested that a cool tongue of air in the boundary layer located directly beneath the elevated warm, dry tongue (forming a thermal dipole) was possibly the result of reduced solar radiation caused by an overlying dust layer. They stated that "the cool anomaly in the lower levels does not have any plausible explanation relying only on transport." In this comment, evidence from satellite and global meteorological analyses is presented that casts considerable doubt upon RL1 s interpretation of the GEOS-5 forecasts and their conclusion that the results implied a negative role of the SAL. We show that the major portion of the warm, dry air aloft was located in a nearly dust-free slot between two Saharan dust outbreaks, had a significant source from the midlatitudes (>30 N), and was likely driven by strong subsidence warming and drying. In addition, when wind fields are examined in a reference frame moving with the wave, National Centers for Environmental Prediction (NCEP) global meteorological analyses suggest that the cool tongue in the boundary layer can be readily explained by transport of cooler air from higher latitudes. At the very least, it offers a plausible alternative explanation for the cool tongue that does not rely on radiative impacts of the dust.
Generalized Swiss-cheese cosmologies. II. Spherical dust
NASA Astrophysics Data System (ADS)
Grenon, Cédric; Lake, Kayll
2011-10-01
The generalized Swiss-cheese model, consisting of a Lemaître-Tolman (inhomogeneous dust) region matched, by way of a comoving boundary surface, onto a Robertson-Walker background of homogeneous dust, has become a standard construction in modern cosmology. Here, we ask if this construction can be made more realistic by introducing some evolution of the boundary surface. The answer we find is no. To maintain a boundary surface using the Darmois-Israel junction conditions, as opposed to the introduction of a surface layer, the boundary must remain exactly comoving. The options are to drop the assumption of dust or allow the development of surface layers. Either option fundamentally changes the original construction.
NASA Astrophysics Data System (ADS)
Helling, Ch.; Woitke, P.; Thi, W.-F.
2008-07-01
Aims: Brown dwarfs are covered by dust cloud layers which cause inhomogeneous surface features and move below the observable τ = 1 level during the object's evolution. The cloud layers have a strong influence on the structure and spectral appearance of brown dwarfs and extra-solar planets, e.g. by providing high local opacities and by removing condensable elements from the atmosphere causing a sub-solar metalicity in the atmosphere. We aim at understanding the formation of cloud layers in quasi-static substellar atmospheres that consist of dirty grains composed of numerous small islands of different solid condensates. Methods: The time-dependent description is a kinetic model describing nucleation, growth and evaporation. It is extended to treat gravitational settling and is applied to the static-stationary case of substellar model atmospheres. From the solution of the dust moments, we determine the grain size distribution function approximately which, together with the calculated material volume fractions, provides the basis for applying effective medium theory and Mie theory to calculate the opacities of the composite dust grains. Results: The cloud particles in brown dwarfs and hot giant-gas planets are found to be small in the high atmospheric layers (a ≈ 0.01 μm), and are composed of a rich mixture of all considered condensates, in particular MgSiO3[s], Mg2SiO4[s] and SiO2[s]. As the particles settle downward, they increase in size and reach several 100 μm in the deepest layers. The more volatile parts of the grains evaporate and the particles stepwise purify to form composite particles of high-temperature condensates in the deeper layers, mainly made of Fe[s] and Al2O3[s]. The gas phase abundances of the elements involved in the dust formation process vary by orders of magnitudes throughout the atmosphere. The grain size distribution is found to be relatively broad in the upper atmospheric layers but strongly peaked in the deeper layers. This reflects the cessation of the nucleation process at intermediate heights. The spectral appearance of the cloud layers in the mid IR (7-20 μm) is close to a grey body with only weak broad features of a few percent, mainly caused by MgSiO3[s], and Mg2SiO4[s]. These features are, nevertheless, a fingerprint of the dust in the higher atmospheric layers that can be probed by observations. Conclusions: Our models predict that the gas phase depletion is much weaker than phase-equilibrium calculations in the high atmospheric layers. Because of the low densities, the dust formation process is incomplete there, which results in considerable amounts of left-over elements that might produce stronger and broader neutral metallic lines.
Asian dust deposition rendered volcanic-ash-soils the ability to retain radiocesium in Japan
NASA Astrophysics Data System (ADS)
Nakao, A.; Uno, S.; Tanaka, R.; Yanai, J.; Kosaki, T.; Kubotera, H.
2017-12-01
Although mineral dusts are known to contribute greatly to marine and terrestrial biogeochemical cycles, their role in increasing the retention of radio-Cs in soil is less clear. Fine-mica, which is one of the main component of Asian dust, has a specific adsorption site for radio-Cs. Therefore, historical deposition of Asian dust may have rendered soils in Japan capable of retaining radio-Cs. This effect may be particularly important for volcanic-ash derived soils since they originally contain only small amounts of fine-mica. To test this hypothesis, we investigated 47 soils in volcanic ash-fall layers at four sites (Site 1, 2, 3, 4) with a different distance from volcanic crater of Mt. Aso, Japan, which is 10, 14, 16, and 32 km, respectively. Soils were collected from surface to the volcanic layer with 7.3 ka in Site 1 and 2, whereas from surface to the layer with 30 ka in Site 3 and 4. Ages of key layers were confirmed by tephrochronology and 14C dating method. Oxygen isotopic ratio (d18O) value of fine-quartz was used as a fingerprint of Asian dust in each volcanic layer. Average d18O value for fine-quartz from Site 3 and 4 was 16.0 ± 0.4‰, which was homogeneous and very close to those of fine-quartz in Gobi Desert, while clearly different from those of SiO2 in volcanic rocks. Fine-quartz and fine-mica contents were larger with increased distance from the volcanic crater and showed a linear relationship. Cumulative amount of fine-mica in the layers deposited during the last glacial period (i.e. 10 ka to 30 ka) was about five times larger than those deposited during the postglacial period (i.e. < 10 ka). These results clearly indicated that fine-mica in the volcanic ash-fall layers are mostly derived from Asian dust. Since radio-Cs adsorption experiment revealed that the ability to retain radio-Cs increased linearly as soils contained larger amount of fine-mica, we concluded that the inclusion rate of Asian dust to volcanic ash determine the ability to retain radio-Cs in volcanic-ash soils in Japan and probably any other soil influenced by these aeolian materials.
Allgood, Jaime M; Jimah, Tamara; McClaskey, Carolyn M; La Guardia, Mark J; Hammel, Stephanie C; Zeineddine, Maryam M; Tang, Ian W; Runnerstrom, Miryha G; Ogunseitan, Oladele A
2017-02-01
Most households and workplaces all over the world possess furnishings and electronics, all of which contain potentially toxic flame retardant chemicals to prevent fire hazards. Indoor dust is a recognized repository of these types of chemicals including polybrominated diphenyl ethers (PBDEs) and non-polybrominated diphenyl ethers (non-PBDEs). However, no previous U.S. studies have differentiated concentrations from elevated surface dust (ESD) and floor dust (FD) within and across microenvironments. We address this information gap by measuring twenty-two flame-retardant chemicals in dust on elevated surfaces (ESD; n=10) and floors (FD; n=10) from rooms on a California campus that contain various concentrations of electronic products. We hypothesized a difference in chemical concentrations in ESD and FD. Secondarily, we examined whether or not this difference persisted: (a) across the studied microenvironments and (b) in rooms with various concentrations of electronics. A Wilcoxon signed-rank test demonstrated that the ESD was statistically significantly higher than FD for BDE-47 (p=0.01), BDE-99 (p=0.01), BDE-100 (p=0.01), BDE-153 (p=0.02), BDE-154 (p=0.02), and 3 non-PBDEs including EH-TBB (p=0.02), BEH-TEBP (p=0.05), and TDCIPP (p=0.03). These results suggest different levels and kinds of exposures to flame-retardant chemicals for individuals spending time in the sampled locations depending on the position of accumulated dust. Therefore, further research is needed to estimate human exposure to flame retardant chemicals based on how much time and where in the room individuals spend their time. Such sub-location estimates will likely differ from assessments that assume continuous unidimensional exposure, with implications for improved understanding of potential health impacts of flame retardant chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.
Impact and monitoring of dust storms in Taklimakan desert
NASA Astrophysics Data System (ADS)
Feng, G. G.; Li, X.; Zheng, Z.
2012-12-01
The Taklimakan is China's largest, driest, and warmest desert in total area of 338000km^2 with perimeter of 436 km, it is also known as one of the world's largest shifting-sand deserts. Fully 85 percent of the total area consists of mobile, crescent-shaped sand dunes and are virtually devoid of vegetation. The abundant sand provides material for frequent intense dust storms. The Taklimakan desert fills the expansive Tarim Basin between the Kunlun Mountains and the Tibet Plateau to the south and the Tian Shan Mountains to the north. The Tarim River flows across the basin from west-to-east. In these places, the oases created by fresh surface water support agriculture. Studies outside Xinjiang indicated that 80% dust source of storms was from farmland. Dust storms in the Tarim Basin occur for 20 to 59 days, mainly in spring every year. However, little effort was taken to investigate soil wind erosion and dust emission around the desert. Quantitative understanding of individual dust events in the arid Taklimakan desert, for example, the dust emission rates and the long-range transport, are still incomplete. Therefore, the dust events were observed through routine satellite sensors, lidar instruments, airborne samplers, and surface-based aerosol monitors. Soil wind erosion and suspended particulates emission of four major dust storms from the desert and the typical oasis farmlands at the north rim of the desert were measured using creep sampler, BSNE and TSP at eight heights in 2012. In addition, Aqua satellite AOD data, the NAAPS Global Aeosol model, the CALIPSO satellite products, EPA's AirNow AQI of PM2.5 and HYSPLIT Back Trajectory model were applied to analyze dust transport across the Pacific. Four significant dust storms were observed at the north rim of Taklimakan desert in the spring, 2012. During those events, predominant wind direction ranged from 296 to 334°, wind speed over 7 m/s at 2 m lasted for 471-1074 min, gust wind speed ranged from 11-18m/s. It was determined that the horizontal dust flux was 0.6 to 4.3 kg/m. Dust clouds are formed when the friction from high surface wind speeds (>6 m/s) lifts loose dust particles into the atmospheric boundary layer or above. Analysis shows that a dust storm in the Taklimakan desert on April 23th produced a huge atmospheric dust cloud, it was transported across the Pacific Ocean to reach the West Coast of North America 12 days later, corresponding to 6 m/s average transport speed. The observations in the Pacific Coast indicated that aerosol concentrations were elevated which resulted in Air Quality Index (AQI) to the yellow moderate category.
Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania
NASA Astrophysics Data System (ADS)
Friese, Carmen A.; van Hateren, Johannes A.; Vogt, Christoph; Fischer, Gerhard; Stuut, Jan-Berend W.
2017-08-01
Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL). In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.
Global Surface Dust Distribution Changes on Mars (MY24-33)
NASA Astrophysics Data System (ADS)
Piqueux, S.; Hayne, P. O.; Kleinboehl, A.; Edwards, C. S.; Elder, C. M.; Heavens, N. G.; Kass, D. M.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.; Smith, M. D.
2016-12-01
Telescopic and spacecraft observations document inter-annual and inter-seasonal changes of the Martian albedo that are interpreted to result from the redistribution of surface dust in response to atmospheric events such as global or regional dust storms, dust devil activity, or seasonal winds. Based on these observations and general circulation modeling, several authors have hypothesized that a necessary condition for global dust storm initiation and growth is the presence of strategically located surface dust reservoirs replenished during inter-storm periods. If this hypothesis is valid, the cyclical accumulation and removal of thermally thick (>50 μm) layers of dust at specific locations ought to produce a distinct temperature signature, since Martian dust exhibits extremely low thermal conductivity and thermal inertia values compared to sand, gravel, rocks, and bedrock. Characterizing dust movement using temperature data presents a major advantage over mapping relying solely on albedo changes: it yields dust layer thicknesses, whose spatial and temporal integration enables the derivation of surface dust fluxes. In this work, we use global (1° per pixel resolution) seasonal (10° Ls resolution, from MY24 to 33) maps of the Martian surface albedo, atmospheric dust opacity, and ground temperature (derived from TES, THEMIS, and MCS observations) to derive apparent variations of the thermal inertia, and thereby characterize surface changes consistent with the deposition or removal of dust. We show that changes in thermal inertia for some regions are consistent with dust accumulation; whereas others seem to lose dust. We compare these maps with published GCM dust lifting predictions, and with observations of past dust storm occurrence, thereby constraining the role of surface dust availability.
Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets
Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.
2007-01-01
The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, E.; Pekour, M.; Flynn, C.
Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented bymore » quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.« less
Fungal and bacterial growth in floor dust at elevated relative humidity levels.
Dannemiller, K C; Weschler, C J; Peccia, J
2017-03-01
Under sustained, elevated building moisture conditions, bacterial and fungal growth occurs. The goal of this study was to characterize microbial growth in floor dust at variable equilibrium relative humidity (ERH) levels. Floor dust from one home was embedded in coupons cut from a worn medium-pile nylon carpet and incubated at 50%, 80%, 85%, 90%, 95%, and 100% ERH levels. Quantitative PCR and DNA sequencing of ribosomal DNA for bacteria and fungi were used to quantify growth and community shifts. Over a 1-wk period, fungal growth occurred above 80% ERH. Growth rates at 85% and 100% ERH were 1.1 × 10 4 and 1.5 × 10 5 spore equivalents d -1 mg dust -1 , respectively. Bacterial growth occurred only at 100% ERH after 1 wk (9.0 × 10 4 genomes d -1 mg dust -1 ). Growth resulted in significant changes in fungal (P<.00001) and bacterial community structure (P<.00001) at varying ERH levels. Comparisons between fungal taxa incubated at different ERH levels revealed more than 100 fungal and bacterial species that were attributable to elevated ERH. Resuspension modeling indicated that more than 50% of airborne microbes could originate from the resuspension of fungi grown at ERH levels of 85% and above. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
The polar layered deposits on Mars: Inference from thermal inertia modeling and geologic studies
NASA Technical Reports Server (NTRS)
Herkenhoff, K. E.
1992-01-01
It is widely believed that the Martian polar layered deposits record climate variations over at least the last 10 to 100 m.y., but the details of the processes involved and their relative roles in layer formation and evolution remain obscure. Weathering of the Martian layered deposits by sublimation of water ice can account for the thermal inertias, water vapor abundances, and geologic relationships observed in the Martian polar regions. The nonvolatile components of the layered deposits appears to consist mainly of bright red dust, with small amounts of dark dust. Dark dust, perhaps similar to the magnetic material found at the Viking Lander sites, may preferentially form filamentary residue particles upon weathering of the deposits. Once eroded, these particles may saltate to form the dark dunes found in both polar regions. This scenario for the origin and evolution of the dark material within the polar layered deposits is consistent with the available imaging and thermal data. Further experimental measurements of the thermophysical properties of magnetite and maghemite under Martian conditions are needed to better test this hypothesis.
Simulation of Martian surface conditions and dust transport
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Merrison, J. P.; Finster, K.; Folkmann, F.; Gunnlaugsson, H. P.; Hansen, A.; Jensen, J.; Kinch, K.; Lomstein, B. Aa.; Mugford, R.
2002-11-01
The suspended atmospheric dust which is also found deposited over most of the Martian globe plays an important (possibly vital) role in shaping the surface environment. It affects the weather (solar flux), water transport and possibly also the electrical properties at the surface. The simulation facilities at Aarhus provide excellent tools for studying the properties of this Martian environment. Much can be learned from such simulations, supporting and often inspiring new investigations of the planet. Electrical charging of a Mars analogue dust is being studied within a wind tunnel simulation aerosol. Here electric fields are used to extract dust from suspension. Although preliminary the results indicate that a large fraction of the dust is charged to a high degree, sufficient to dominate adhesion/cohesion processes. A Mars analogue dust layer has been shown to be an excellent trap for moisture, causing increased humidity in the soil below. This allows the possibility for liquid water to be stable close to the surface (less than 10 cm). This is being investigated in an environment simulator where heat and moisture transport can be studied through layers of Mars analogue dust.
NASA Astrophysics Data System (ADS)
Lauro, Sebastian E.; Mattei, Elisabetta; Soldovieri, Francesco; Pettinelli, Elena; Orosei, Roberto; Vannaroni, Giuliano
2012-05-01
An electromagnetic inversion model has been applied to echoes from the subsurface sounding Shallow Radar (SHARAD) to retrieve the dielectric properties of the uppermost Basal Unit (BU) beneath the North Polar Layered Deposits of Mars. SHARAD data have been carefully selected to satisfy the assumption of the inversion model which requires a stratigraphy consisting of mostly plane parallel layers. The resulting values of the dielectric constant have been interpreted in terms of a variable percentage of dust in an ice-dust mixture through the use of a mixing model for dielectric properties. The resulting dust content exceeds 65%, reaching perhaps 95%, depending on the permittivity values assumed for the dust. Such a concentration is higher than that obtained by Selvans et al. (Selvans, M.M., Plaut, J.J., Aharonson, O. [2010]. J. Geophys. Res, 115, E09003). This discrepancy could be justified considering that our observations refer to the uppermost BU layer, whereas Selvans et al. (Selvans, M.M., Plaut, J.J., Aharonson, O. [2010]. J. Geophys. Res, 115, E09003) probed the BU full thickness. Moreover, if the BU is considered spatially inhomogeneous, with very different dust content and thickness (Tanaka, K.L., Skinner, J.A., Fortezzo, C.M., Herkenhoff, K.E., Rodriguez, J.A.P., Bourke, M.C., Kolb, E.J., Okubo, C.H. [2008]. Icarus, 196, 318-358), the discrepancy could be furtherly reconciled.
Global Monitoring of Martian Surface Albedo Changes from Orbital Observations
NASA Astrophysics Data System (ADS)
Geissler, P.; Enga, M.; Mukherjee, P.
2013-12-01
Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place relentlessly in all seasons as bright dust and dark sand battle to dominate the landscape. Elsewhere, gradual processes steadily shift albedo boundaries between bright and dark terrain. Dark terrain near the Spirit rover landing site is gradually spreading to the north, driven by seasonal southerly winds. A bright fringe of newly deposited dust appears ahead of the moving boundary, populated by wind streaks and dust avalanches. Dark terrain at higher latitudes gradually creeps towards the equator by the dust cleaning action of dust devils, for example at Nilosytis (43°N, 85°E). Much less obvious is the deposition and erosion of dust on already bright, dust-covered terrain. Changes in the distribution of fresh dust take place frequently in the region surrounding the Tharsis Montes. Dust in this high altitude zone is constantly on the move as faint dark streaks mark the removal of recently deposited dust that is only slightly brighter than the dust already settled on the surface. Dramatic deposition of dust onto dusty terrain took place at much lower elevations in northwestern Amazonis between 2002 and 2005. Since then, the dust has been energetically eroded by towering dust devils that cluster here each summer.
[The epidemiological validation of the MPEL for grain dust in the atmosphere].
Pinigin, M A; Cherepov, E M; Safiulin, A A; Petrova, I V; Mukhambetova, L Kh; Osipova, E M; Veselov, A P
1998-01-01
The use of calculating and gravimetric methods for examining the grain dust pollution of the ambient air at the site of an elevator determined the maximum single, mean daily, and mean annual concentrations at different distances from the source of dust emission. The mean ratio of these concentrations was 12.1:4.3:1, respectively. The calculated concentration-effect and concentration-time relationships provided evidence for the maximum single, mean daily, and mean annual allowable concentrations for grain dust in the ambient air.
Maharachpong, Nipa; Geater, Alan; Chongsuvivatwong, Virasakdi
2006-07-01
High blood lead levels have recently been documented in schoolchildren living in communities adjacent to boat-repair yards in southern Thailand. In this study, the spatial pattern of lead contamination of soil and household dust in an area surrounding several boat-repair yards is described, and household factors associated with elevated dust lead are identified. A cross-sectional spatial study was conducted in a coastal residential area within a distance of 2 km from three major boat-repair yards situated on the east coast of peninsular Thailand. Household dust specimens were collected from an undisturbed position in the residences of children, aged 4-14 years, sampled randomly from all children living in the study area. Soil specimens were obtained from the interstices of a square grid, 70 x 70 m2, superimposed on the area. Geographic coordinates of residence and soil sampling positions were recorded and semivariograms and kriging used to contour the spatial distribution of lead in dust and soil. Environmental lead levels were also modeled in terms of direction and minimum distance from a boat-repair yard and, for household dust lead content, in terms of household variables, including occupation of household members in boat-repair work, type of house construction, and general cleanliness. Household dust and soil lead content ranged from 10 to 3025 mg/kg and from 1 to 7700 mg/kg, respectively. The distribution of soil lead peaked at the location of the boat-repair yards, but outside the yards the distribution was generally below 400 mg/kg and irregular. About 24% of household dust lead specimens were equal to or above 400 mg/kg, but showed significant decrease with increasing distance from the boat-repair yards, at rates of between 7% and 14% per 100 m. In houses where a family member was a worker in one of the major boatyards and in houses where occasional repair of small boats was undertaken, household dust lead levels were significantly elevated, by 65% (95% CI: 18-130%) and 31% (95% CI: 5-63%), respectively. Siting of boat-repair yards at a distance from residential areas and measures to reduce the spread of lead-containing dust are recommended to alleviate the problem of elevated household dust lead levels.
Effect of a Dusty Layer on Surface-Wave Produced Plasmas
NASA Astrophysics Data System (ADS)
Ostrikov, Kostyantyn; Yu, Ming; Xu, Shuyan
2000-10-01
The effect of near-sheath dusts on the RF power loss in a surface-wave sustained gas discharge is studied. The planar plasma is bounded by a dielectric and consists of an inhomogeneous near-wall transition layer (sheath), a dusty plasma layer, and the outer dust-free plasma. The discharge is maintained by high-frequency axially-symmetric surface waves. The surface-wave power loss from the most relevant dissipative mechanisms in typical discharge plasmas is analyzed. Our model allows one to consider the main effects of dust particles on surface-wave produced discharge plasmas. We demonstrate that the dusts released in the discharge can strongly modify the plasma conductivity and lead to a significant redistribution of the total charge. They affect the electron quasi-momenta, but do not absorb the energy transmitted to the plasma through elastic collisions, and therefore they remain cold at the room temperature. It is shown that the improvement of the efficiency of energy transfer from the wave source to the plasma can be achieved by selecting operation regimes when the efficiency of the power loss in the plasma through electron-neutral collisions is higher than that through electron-dust interactions.
NASA Astrophysics Data System (ADS)
Goodman, J. C.; Alvim Lage, C.
2014-12-01
The Snowball Earth hypothesis has inspired several variants which may help to explain some of the great mysteries of the Neoproterozoic glaciations. One of these, the "Mudball Earth", proposes that as the Earth remained completely frozen for millions of years, a layer of dust accumulated on the ice surface. This dust layer would darken the planet, making it easier for the Earth to escape from the highly stable snowball climate state. This hypothesis is testable: after the ice melted at the end of a glacial era, this dust would sink to the bottom of the ocean, possibly forming a distinct clay, mud, or silt layer on the top of the glacial till deposits: this "clay drape" would then be covered by the cap carbonates that mark a return to warm climate. Sublimation and ice flow during the glacial episode should make this layer thicker at the equator and thinner or absent in the poles. Is this clay layer actually present in the rock record? Is it more prevalent at the paleoequator, as predicted? A clay drape has been noticed anecdotally, but no global survey has been done to date. We conducted a thorough literature review of all sites where Neoproterozoic glacial diamictites have been observed, identifying the type of rock that lies between the diamictite and the postglacial cap carbonate, when present, during both Sturtian and Marinoan glacial periods. Only a few publications identify a distinct clay/silt/mud layer that might represent weathered dust. These sites are not grouped by paleolatitude in any obvious way. With access only to published reports, we cannot determine whether such a layer is absent, went unreported, or was misinterpreted by us. With this work we hope to attract the attention of Neoproterozoic field geologists, inviting them to comment on the presence or absence of strata which could confirm or reject the "Mudball" hypothesis.
NASA Technical Reports Server (NTRS)
Young, Stuart A.; Vaughan, Mark; Omar, Ali; Liu, Zhaoyan; Lee, Sunhee; Hu, Youngxiang; Cope, Martin
2008-01-01
Global measurements of the vertical distribution of clouds and aerosols have been recorded by the lidar on board the CALIPSO (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) satellite since June 2006. Such extensive, height-resolved measurements provide a rare and valuable opportunity for developing, testing and validating various atmospheric models, including global climate, numerical weather prediction, chemical transport and air quality models. Here we report on the initial results of an investigation into the performance of the Australian Air Quality Forecast System (AAQFS) model in forecasting the distribution of elevated dust over the Australian region. The model forecasts of PM60 dust distribution are compared with the CALIPSO lidar Vertical Feature Mask (VFM) data product. The VFM classifies contiguous atmospheric regions of enhanced backscatter as either cloud or aerosols. Aerosols are further classified into six subtypes. By comparing forecast PM60 concentration profiles to the spatial distribution of dust reported in the CALIPSO VFM, we can assess the model s ability to predict the occurrence and the vertical and horizontal extents of dust events within the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaroshenko, V. V.; Antonova, T.; Thomas, H. M.
2009-10-15
The screening length, the time-average electric field, and the particle charge as well as the local vertical gradients of these quantities are determined experimentally within a sheath of a capacitively coupled rf, 13.56 MHz, discharge at enhanced argon gas pressures of 30, 55, and 100 Pa. The parameters are derived directly from comparative measurements of levitation positions of the particles of different sizes and variations in the levitation heights caused by formation of new dust layers. The electrostatic effect of the horizontally extended dust layers on the sheath electric field is investigated.
Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Tolias, P.; Shalpegin, A.; Vignitchouk, L.; De Angeli, M.; Bykov, I.; Bystrov, K.; Bardin, S.; Brochard, F.; Ripamonti, D.; den Harder, N.; De Temmerman, G.
2015-08-01
Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.
Biochemical abnormalities in workers exposed to molybdenum dust.
Walravens, P A; Moure-Eraso, R; Solomons, C C; Chappell, W R; Bentley, G
1979-01-01
Exposure to molybdenum in dust was measured in a molybdenite roasting plant. This exposure was accompanied by large elevations of serum ceruloplasmin and smaller increases in mean serum uric acid levels in the workers. Absorption of molybdenum from the dust was demonstrated by increases in plasma and urinary molybdenum levels. It remains necessary to demonstrate whether such exposure results in long-term health effects.
Tanaka, K.L.; Skinner, J.A.; Hare, T.M.; Joyal, T.; Wenker, A.
2003-01-01
Geologic mapping of the northern plains of Mars, based on Mars Orbiter Laser Altimeter topography and Viking and Mars Orbiter Camera images, reveals new insights into geologic processes and events in this region during the Hesperian and Amazonian Periods. We propose four successive stages of lowland resurfacing likely related to the activity of near-surface volatiles commencing at the highland-lowland boundary (HLB) and progressing to lower topographic levels as follows (highest elevations indicated): Stage 1, upper boundary plains, Early Hesperian, <-2.0 to -2.9 km; Stage 2, lower boundary plains and outflow channel dissection, Late Hesperian, <-2.7 to -4.0 km; Stage 3, Vastitas Borealis Formation (VBF) surface, Late Hesperian to Early Amazonian, <-3.1 to -4.1 km; and Stage 4, local chaos zones, Early Amazonian, <-3.8 to -5.0 km. At Acidalia Mensa, Stage 2 and 3 levels may be lower (<-4.4 and -4.8 km, respectively). Contractional ridges form the dominant structure in the plains and developed from near the end of the Early Hesperian to the Early Amazonian. Geomorphic evidence for a northern-plains-filling ocean during Stage 2 is absent because one did not form or its evidence was destroyed by Stage 3 resurfacing. Remnants of possible Amazonian dust mantles occur on top of the VBF. The north polar layered deposits appear to be made up of an up to kilometer-thick lower sequence of sandy layers Early to Middle Amazonian in age overlain by Late Amazonian ice-rich dust layers; both units appear to have outliers, suggesting that they once were more extensive.
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne
2018-07-01
AX J1745.6-2901 is an eclipsing low-mass X-ray binary in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust-scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line of sight (LOS). The apparent dependence on the instruments is caused by different instrumental point spread functions. Our results can be used to assess the influence of dust-scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust-scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to the Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disc in-between.
The influence of an extensive dust event on snow chemistry in the southern Rocky Mountains
Charles Rhoades; Kelly Elder; E. Greene
2010-01-01
In mid-February 2006, windstorms in Arizona, Utah, and western Colorado generated a dust cloud that distributed a layer of dust across the surface of the snowpack throughout much of the Colorado Rockies; it remained visible throughout the winter. We compared the chemical composition of snowfall and snowpack collected during and after the dust deposition event with pre-...
A Coupled Ice-Atmosphere-Dust Model for a Neoproterozoic "Mudball Earth"
NASA Astrophysics Data System (ADS)
Goodman, J. C.; Strom, D.
2010-12-01
The Neoproterozoic "Snowball Earth" glaciations remain a subject of intense debate. While many have used field data to argue for either a totally or partially ice-covered Earth, fewer efforts have been made to establish the basic physical climate state and internal dynamics of these alternatives. Description of feedbacks is especially important: how does a globally ice-covered Earth reinforce itself as a stable climate system, and/or sow the seeds for its own destruction? In previous work, we investigated the flow properties of thick floating global ice sheets, and found that flow from pole to equator tends to eliminate regions of thin ice in the tropics. We briefly mentioned that ice flow and sublimation could lead to a "lag deposit" of dust on top of the tropical ice. The consequences of this were explored in detail by Dorian Abbott and others, who found that the accumulation of dust atop tropical ice causes a strong warming effect, which strongly promotes deglaciation of a Snowball climate. However, Abbott et al specified a dust layer ab initio in their GCM simulations, leaving aside the processes which produce it. Here, we present the results of our efforts to add dust processes to an earlier coupled atmosphere/ocean/ice model originally developed by David Pollard and Jim Kasting. Their model includes energy balance equations for the atmosphere and an ice mechanics model for glacial flow. To this we have added variables tracking the fraction of dust incorporated into snow and ice; the transport and accumulation of this dust through ice flow; the effects of dust on albedo and penetration of sunlight into the ice; restriction of evaporation from dust-covered surfaces; and density and buoyancy effects of dusty ice. Dust is added to the surface globally at a fixed rate, and is removed by meltwater runoff. We find that ice in tropical regions of net evaporation quickly develops a surface dust layer which drastically lowers its albedo. This dust layer develops rapidly (1000-10,000 years), and remains relatively thin (mm to cm). Its albedo effect is not strong enough to cause deglaciation on its own, but does warm the planet to near the melting point: modest amounts of CO2 are enough to cause total deglaciation. Our results show that the "mudball Earth" is a remarkably stable climate system. Drastic changes in forcing, such as varying the rate of dust accumulation by a factor of 100, have little effect on the climate, due to a strong feedback control. With summertime temperatures just below melting, adding more dust to lower the planetary albedo warms the Earth, causing summertime melting which washes away the additional dust, maintaining status quo. Dust layer thickness is controlled by a related hydrological feedback: if the dust becomes thick enough to prevent evaporation in the tropics, then less snow falls at midlatitudes. Thus, midlatitude snow cover becomes dustier and darker, warming the planet, which again melts some ice to eliminate excess dust. Future work with this model will consider the patchiness of thin dust cover on an ice surface, and will also look at the consequences of large instantaneous dust sources such as asteroid/comet impacts or large volcanic eruptions.
NASA Astrophysics Data System (ADS)
Kishcha, P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.; Kallos, G.; Katsafados, P.; Spyrou, C.; Gobbi, G. P.; Barnaba, F.; Nickovic, S.; PéRez, C.; Baldasano, J. M.
2007-08-01
In this study, forecast errors in dust vertical distributions were analyzed. This was carried out by using quantitative comparisons between dust vertical profiles retrieved from lidar measurements over Rome, Italy, performed from 2001 to 2003, and those predicted by models. Three models were used: the four-particle-size Dust Regional Atmospheric Model (DREAM), the older one-particle-size version of the SKIRON model from the University of Athens (UOA), and the pre-2006 one-particle-size Tel Aviv University (TAU) model. SKIRON and DREAM are initialized on a daily basis using the dust concentration from the previous forecast cycle, while the TAU model initialization is based on the Total Ozone Mapping Spectrometer aerosol index (TOMS AI). The quantitative comparison shows that (1) the use of four-particle-size bins in the dust modeling instead of only one-particle-size bins improves dust forecasts; (2) cloud presence could contribute to noticeable dust forecast errors in SKIRON and DREAM; and (3) as far as the TAU model is concerned, its forecast errors were mainly caused by technical problems with TOMS measurements from the Earth Probe satellite. As a result, dust forecast errors in the TAU model could be significant even under cloudless conditions. The DREAM versus lidar quantitative comparisons at different altitudes show that the model predictions are more accurate in the middle part of dust layers than in the top and bottom parts of dust layers.
NASA Astrophysics Data System (ADS)
Weinzierl, B.; Sauer, D. N.; Walser, A.; Dollner, M.; Reitebuch, O.; Gross, S.; Chouza, F.; Ansmann, A.; Toledano, C.; Freudenthaler, V.; Kandler, K.; Schäfler, A.; Baumann, R.; Tegen, I.; Heinold, B.
2014-12-01
Aerosol particles are regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. During transport, particle properties are modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. In June/July 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted to study the transport and transformation of Saharan mineral dust. Besides ground-based lidar and in-situ instruments deployed on Cape Verde, Barbados and Puerto Rico, the DLR research aircraft Falcon was equipped with an extended aerosol in-situ instrumentation, a nadir-looking 2-μm wind lidar and instruments for standard meteorological parameters. During SALTRACE, five large dust outbreaks were studied by ground-based, airborne and satellite measurements between Senegal, Cape Verde, the Caribbean, and Florida. Highlights included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. Between Cape Verde and Barbados, the aerosol optical thickness (500 nm) decreased from 0.54 to 0.26 and the stratification of the dust layers changed significantly from a rather homogenous structure near Africa to a 3-layer structure with embedded cumulus clouds in the Caribbean. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust properties was observed between 0.7 and 2.5 km altitude probably due to interaction of the mineral dust with clouds. In our presentation, we show vertical profiles of dust size distributions, CCN and dust optical properties. Based on the Lagrangian measurements, we discuss the effects of dust aging processes during long-range transport. Special attention will be given on changes in fine and coarse mode size distribution and aerosol mixing state.
NASA Astrophysics Data System (ADS)
Uzan, Leenes; Egert, Smadar; Alpert, Pinhas
2018-03-01
On 7 September 2015, an unprecedented and unexceptional extreme dust storm struck the eastern Mediterranean (EM) basin. Here, we provide an overview of the previous studies and describe the dust plume evolution over a relatively small area, i.e., Israel. This study presents vertical profiles provided by an array of eight ceilometers covering the Israeli shore, inland and mountain regions. We employ multiple tools including spectral radiometers (Aerosol Robotic Network - AERONET), ground particulate matter concentrations, satellite images, global/diffuse/direct solar radiation measurements and radiosonde profiles. The main findings reveal that the dust plume penetrated Israel on 7 September from the northeast in a downward motion to southwest. On 8 September, the lower level of the dust plume reached 200 m above ground level, generating aerosol optical depth (AOD) above 3 and extreme ground particulate matter concentrations up to ˜ 10 000 µm m-3. A most interesting feature on 8 September was the very high variability in the surface solar radiation in the range of 200-600 W m-2 (22 sites) over just a distance of several hundred kilometers in spite of the thick dust layer above. Furthermore, 8 September shows the lowest radiation levels for this event. On the following day, the surface solar radiation increased, thus enabling a late (between 11:00 and 12:00 UTC) sea breeze development mainly in the coastal zone associated with a creation of a narrow dust layer detached from the ground. On 10 September, the AOD values started to drop down to ˜ 1.5, and the surface concentrations of particulate matter decreased as well as the ceilometers' aerosol indications (signal counts) although Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) revealed an upper dust layer remained.
Longitudinal decline in lung function measurements among Saskatchewan grain workers.
Pahwa, Punam; Senthilselvan, Ambikaipakan; McDuffie, Helen H; Dosman, James A
2003-04-01
To evaluate the relationship between the long term effects of grain dust and decline in lung function among grain elevator workers in Saskatchewan, studied over a 15-year period. The Grain Dust Medical Surveillance Program was started by Labour Canada in 1978 and longitudinally studied the respiratory health of Canadian grain elevator workers over a 15-year period (1978 to 1993). Data on respiratory symptoms and pulmonary function tests (forced expiratory volume in 1 s [FEV1], forced vital capacity [FVC]) were collected once every three years; each three-year interval was called a 'cycle'. Data from Saskatchewan were analyzed for this report. A transitional model using the generalized estimating equations approach was fitted using a SAS macro to predict the annual decline in FEV1 and FVC. Previous lung function, as one of the covariates in the transitional model, played an important role. Significant predictors of FEV1 were previous FEV1, base height, weight, years in the grain industry, current smoking status, cycle II, cycle III and cycle V. Significant predictors of FVC were previous FVC, base height, weight, years in the grain industry, cycle II, cycle III and cycle IV. The estimated annual decline in FEV1 and FVC increased according to length of time in the grain industry among nonsmoking, ex-smoking and smoking grain elevator workers. Lung function values improved after dust control, and yearly declines in FEV1 and FVC after dust control were smaller compared with yearly losses before dust control.
2017-09-14
SCI2017_0003: The column of material at and just below the surface of dwarf planet Ceres (box) – the top layer contains anhydrous (dry) pyroxene dust accumulated from space mixed in with native hydrous (wet) dust, carbonates, and water ice. (Bottom) Cross section of Ceres showing the surface layers that are the subject of this study plus a watery mantle and a rocky-metallic core. Credit: Pierre Vernazza, LAM–CNRS/AMU
NASA Astrophysics Data System (ADS)
Kutuzov, Stanislav; Ginot, Patrick; Mikhaenko, Vladimir; Krupskaya, Victoria; Legrand, Michel; Preunkert, Suzanne; Polukhov, Alexey; Khairedinova, Alexandra
2017-04-01
The nature and extent of both radiative and geochemical impacts of mineral dust on snow pack and glaciers depend on physical and chemical properties of dust particles and its deposition rates. Ice cores can provide information about amount of dust particles in the atmosphere and its characteristic and also give insights on strengths of the dust sources and its changes in the past. A series of shallow ice cores have been obtained in Caucasus mountains, Russia in 2004 - 2015. A 182 meter ice core has been recovered at the Western Plateau of Mt. Elbrus (5115 m a.s.l.) in 2009. The ice cores have been dated using stable isotopes, NH4+ and succinic acid data with the seasonal resolution. Samples were analysed for chemistry, concentrations of dust and black carbon, and particle size distributions. Dust mineralogy was assessed by XRD. Individual dust particles were analysed using SEM. Dust particle number concentration was measured using the Markus Klotz GmbH (Abakus) implemented into the CFA system. Abakus data were calibrated with Coulter Counter multisizer 4. Back trajectory cluster analysis was used to assess main dust source areas. It was shown that Caucasus region experiencing influx of mineral dust from the Sahara and deserts of the Middle East. Mineralogy of dust particles of desert origin was significantly different from the local debris material and contained large proportion of calcite and clay minerals (kaolinite, illite, palygorskite) associated with material of desert origin. Annual dust flux in the Caucasus Mountains was estimated as 300 µg/cm2 a-1. Particle size distribution depends on individual characteristics of dust deposition event and also on the elevation of the drilling site. The contribution of desert dust deposition was estimated as 35-40 % of the total dust flux. Average annual Ca2+ concentration over the period from 1824 to 2013 was of 150 ppb while some of the strong dust deposition events led to the Ca2+ concentrations reaching 4400 ppb. An increase of dust and Ca2+ concentration was registered since the beginning of XX century. The ice core record depicts also a prominent increase of dust concentration in 1980's which may be related to the increase of dust sources strength in North Africa.
Studies of mobile dust in scrape-off layer plasmas using silica aerogel collectors
NASA Astrophysics Data System (ADS)
Bergsåker, H.; Ratynskaia, S.; Litnovsky, A.; Ogata, D.; Sahle, W.
2011-08-01
Dust capture with ultralow density silica aerogel collectors is a new method, which allows time resolved in situ capture of dust particles in the scrape-off layers of fusion devices, without substantially damaging the particles. Particle composition and morphology, particle flux densities and particle velocity distributions can be determined through appropriate analysis of the aerogel surfaces after exposure. The method has been applied in comparative studies of intrinsic dust in the TEXTOR tokamak and in the Extrap T2R reversed field pinch. The analysis methods have been mainly optical microscopy and SEM. The method is shown to be applicable in both devices and the results are tentatively compared between the two plasma devices, which are very different in terms of edge plasma conditions, time scale, geometry and wall materials.
NASA Astrophysics Data System (ADS)
Janicka, Lucja; Stachlewska, Iwona S.; Veselovskii, Igor; Baars, Holger
2017-11-01
In July 2013, favorable weather conditions caused a severe events of advection of biomass burning particles of Canadian forest fires to Europe. The smoke layers were widely observed, especially in Western Europe. An unusual atmospheric aerosol composition was measured at the EARLINET site in Warsaw, Central Poland, during a short event that occurred between 11 and 21 UTC on 10th July 2013. Additionally to the smoke layer, mineral dust was detected in a separate layer. The long-range dust transport pathway followed an uncommon way; originating in Western Sahara, passing above middle Atlantic, and circulating over British Islands, prior to its arrival to Poland. An effective radius of 560 nm was obtained for Saharan dust over Warsaw. This relatively small effective radius is likely due to the long time of the transport. The aerosol-polarization-Raman PollyXT-UW lidar was used for a successful daytime Raman retrieval of the aerosol optical properties at selected times during this short event. The aerosol vertical structure during the inflow over Warsaw in terms of optical properties and depolarization was analyzed, indicating clear distinction of the layers. The microphysical properties were inverted from the lidar derived optical data for selected ranges as representing the smoke and the mineral dust. For smoke, the effective radius was in the range of 0.29-0.36 μm and the complex refractive index 1.36 + 0.008i, on average. For dust, the values of 0.33-0.56 μm and 1.56 + 0.004i were obtained. An evolution of the aerosol composition over Warsaw during the day was analyzed.
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae
2015-01-01
Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and Ångström exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy.
Dust loading in Gusev crater, Mars: Results from two active dust devil seasons
NASA Astrophysics Data System (ADS)
Waller, D. A.; Greeley, R.; Neakrase, L. D.; Landis, G. A.; Whelley, P.; Thompson, S. D.
2009-12-01
Dust devils dominate the volcanic plains at the Mars Exploration Rover (MER) landing site within the Low Albedo Zone (LAZ) in Gusev Crater. Previous studies indicate that the inferred pressure drop within the dust devil core allows the vortex to lift large amounts of unconsolidated dust high into the atmosphere which contributes to the atmospheric haze. Previous laboratory results indicate that dust devils are efficient in lifting very fine-grained (<10 μm) material, even when boundary layer winds do not exceed previously predicted threshold wind speeds (~30-35 m/s at 1.5 m above the surface for Mars conditions). Since landing in Gusev crater in January 2004, MER Spirit has obtained data for two dust devil seasons (defined as the period of time when the first and last dust devils were imaged), with a third season currently being analyzed. These seasons typically correspond to southern spring and summer, when winds capable of lifting sediment are determined to be most frequent. All observations for Season One were taken as Spirit neared the summit of Husband Hill. During Season Two Spirit imaged dust devils in the plains as it traversed within the Inner Basin, a low-lying area in the Columbia Hills complex. All results were extrapolated so that they are representative of the entire LAZ. Season One lasted 270 sols (March 2005 to December 2005 corresponding to Ls 173.2 to 339.5 degrees), whereas Season Two lasted 153 sols (January 2007 to June 2007 corresponding to Ls 171.2 to 266.7 degrees) and ended suddenly on sol 1240 just after the dust devil frequency peaked for the season. This abrupt drop in dust devil activity corresponded to atmospheric opacity levels that exceeded 1.0 and the onset of a global dust storm that originated in the southern hemisphere that engulfed Gusev within weeks. Results show a large contrast in activity between the two seasons. An 81% decrease in dust devil frequency across the plains was found in Season Two. 533 dust devils were imaged during Season One and resulted in an average of ~50 active dust devils/km2/sol extrapolated out to the LAZ while 103 dust devils were imaged during Season Two resulting in an average of ~5 active dust devils/km2/sol within the LAZ. This drop in dust devil frequency from one season to the next was coupled with a 50% decrease in the amount of dust loaded into the atmosphere during Season Two (~19 kg/km2/sol in Season One and ~10 kg/km2/sol in Season Two). Previous models indicate that the increased amount of dust in the atmosphere during the storm decreased the amount of solar insolation to the surface therefore also decreasing the surface heat flux. The rapidly decreasing surficial heat flux prevents the temperature lapse rate (change in temperature gradient with elevation) from becoming super-adiabatic and therefore causes the low-altitude atmospheric temperature profile to become too homogeneous to sustain convective plumes.
NASA Astrophysics Data System (ADS)
Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; Dubovik, O.
2008-02-01
Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May-June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4-7 km asl and has layer top temperatures of -8°C to -18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1-20 cm-3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as -20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about -30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as -12°C to -15°C.
Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold
NASA Technical Reports Server (NTRS)
Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.
2005-01-01
Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Liu, Zhaoyan; Vaughan, Mark A.; Winker, Davd M.; Hostetler, Chris A.; Poole, Lamont R.; Hlavka, Dennis; Hart, William; McGill, Mathew
2004-01-01
In this paper we describe the algorithm hat will be used during the upcoming Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for discriminating between clouds and aerosols detected in two wavelength backscatter lidar profiles. We first analyze single-test and multiple-test classification approaches based on one-dimensional and multiple-dimensional probability density functions (PDFs) in the context of a two-class feature identification scheme. From these studies we derive an operational algorithm based on a set of 3-dimensional probability distribution functions characteristic of clouds and aerosols. A dataset acquired by the Cloud Physics Lidar (CPL) is used to test the algorithm. Comparisons are conducted between the CALIPSO algorithm results and the CPL data product. The results obtained show generally good agreement between the two methods. However, of a total of 228,264 layers analyzed, approximately 5.7% are classified as different types by the CALIPSO and CPL algorithm. This disparity is shown to be due largely to the misclassification of clouds as aerosols by the CPL algorithm. The use of 3-dimensional PDFs in the CALIPSO algorithm is found to significantly reduce this type of error. Dust presents a special case. Because the intrinsic scattering properties of dust layers can be very similar to those of clouds, additional algorithm testing was performed using an optically dense layer of Saharan dust measured during the Lidar In-space Technology Experiment (LITE). In general, the method is shown to distinguish reliably between dust layers and clouds. The relatively few erroneous classifications occurred most often in the LITE data, in those regions of the Saharan dust layer where the optical thickness was the highest.
NASA Astrophysics Data System (ADS)
Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.
2016-12-01
Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.
Serum angiotensin-converting enzyme is elevated in association with underground coal mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, A.B.; Cale, W.F.; Lapp, N.L.
1991-10-01
Serum angiotensin-converting enzyme activity (SACE) and lysozyme activity were measured in a group of 40 underground coal miners and two control groups, 20 subjects with sarcoidosis and 15 normal non-dust-exposed volunteers. The miners were grouped first according to whether they had recent exposure (still actively mining or retired three years or less prior to measurement) or temporally more distant exposure (retired more than three years prior to measurement). Secondly, they were grouped as to whether or not they had coal workers' pneumoconiosis (CWP). The subjects with sarcoidosis were grouped according to disease activity. As expected, the subjects with active sarcoidosismore » had elevated SACE activity compared with normal subjects. The coal miners as a group did not have elevation of their SACE activity. However, the coal miners with recent exposure had elevated SACE activity (57.1 {plus minus} 3.9 U/ml) compared with normal controls (43.8 {plus minus} 1.5 U/ml, p = 0.007). The SACE activity in miners without recent exposure was not elevated (39.8 {plus minus} 1.3 U/ml) compared with the normal controls. No increase in SACE activity was found when the miners were grouped according to the presence or absence of CWP. In contrast, the miners' serum lysozyme activity was not elevated. Since alveolar macrophages are a potential source of SACE, elevation of SACE activity in underground coal miners may reflect alveolar macrophage activation caused by increased pulmonary mixed coal mine dust burden. Furthermore, since both SACE and serum lysozyme are elevated in association with silicosis, these findings may confirm that the macrophage responses to inhaled silica and coal dust differ.« less
Layer Splitting in a Complex Plasma
NASA Astrophysics Data System (ADS)
Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy
2009-11-01
Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.
NASA Technical Reports Server (NTRS)
Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.;
2010-01-01
We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements-based estimate of the dust Sa for use in backscatter lidar inversion algorithms such as CALIOP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenon, Cedric; Lake, Kayll
The generalized Swiss-cheese model, consisting of a Lemaitre-Tolman (inhomogeneous dust) region matched, by way of a comoving boundary surface, onto a Robertson-Walker background of homogeneous dust, has become a standard construction in modern cosmology. Here, we ask if this construction can be made more realistic by introducing some evolution of the boundary surface. The answer we find is no. To maintain a boundary surface using the Darmois-Israel junction conditions, as opposed to the introduction of a surface layer, the boundary must remain exactly comoving. The options are to drop the assumption of dust or allow the development of surface layers.more » Either option fundamentally changes the original construction.« less
OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp
2015-02-01
We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less
Dust Ablation in Pluto's Atmosphere
NASA Astrophysics Data System (ADS)
Horanyi, M.; Poppe, A. R.; Sternovsky, Z.
2015-12-01
Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.
1996-01-01
During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.
NASA Technical Reports Server (NTRS)
Morris, R.; Graff, T. G.; Shelfer, T. D.; Bell, J. F., III
2001-01-01
Visible, near-IR, and Mossbauer measurements on dust coated rocks and minerals show that a 300 5m thick layer is required to obscure the substrate for VNIR measurements and that a greater than 2000-micron-thick layer is required to obscure the substrate for Mossbauer measurements. Additional information is contained in the original extended abstract.
Structure of protoplanetary discs with magnetically driven winds
NASA Astrophysics Data System (ADS)
Khajenabi, Fazeleh; Shadmehri, Mohsen; Pessah, Martin E.; Martin, Rebecca G.
2018-04-01
We present a new set of analytical solutions to model the steady-state structure of a protoplanetary disc with a magnetically driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local magnetohydrodynamical simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David
1999-01-01
We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.
NASA Technical Reports Server (NTRS)
Levrard, B.; Laskar, J.; Montmessin, F.; Forget, F.
2005-01-01
Polar layered deposits are exposed in the walls of the troughs cutting the north polar cap of Mars. They consist of alternating ice and dust layers or layers of an ice-dust mixture with varying proportions and are found throughout the cap. Layers thickness ranges from meters to several tens of meters with an approximately 30 meter dominant wavelength. Although their formation processes is not known, they are presumed to reflect changes in ice and dust stability over orbital and axial variations. Intensive 3-D LMD GCM simulations of the martian water cycle have been thus performed to determine the annual rates of exchange of surface ice between the northern cap and tropical areas for a wide range of obliquity and orbital parameters values.These rates have been employed to reconstruct an history of the northern cap and test simple models of dust-ice layers formation over the last 10 Ma orbital variations. We use the 3-D water cycle model simulated by the 3-D LMD GCM with an intermediate grid resolution (7.5 longitude x 5.625 latitude) and 25 vertical levels. The dust opacity is constant and set to 0,15. No exchange of ice with regolith is allowed. The evolution of the northern cap over obliquity and orbital changes (eccentricity, Longitude of perihelion) has been recently described with this model. High summer insolation favors transfer of ice from the northern pole to the Tharsis and Olympus Montes, while at low obliquity, unstable equatorial ice is redeposited in high-latitude and polar areas of both hemisphere. The disappearance of the equatorial ice reservoir leads to a poleward recession of icy high latitude reservoirs, providing an additional source for the cap accumulation during each obliquity or orbital cycle. Furthering the efforts, a quantitative evolution of ice reservoirs is here investigated for various astronomical conditions.
Turbulent dusty boundary layer in an ANFO surface-burst explosion
NASA Astrophysics Data System (ADS)
Kuhl, A. L.; Ferguson, R. E.; Chien, K. Y.; Collins, J. P.
1992-01-01
This paper describes the results of numerical simulations of the dusty, turbulent boundary layer created by a surface burst explosion. The blast wave was generated by the detonation of a 600-T hemisphere of ANFO, similar to those used in large-scale field tests. The surface was assumed to be ideally noncratering but contained an initial loose layer of dust. The dust-air mixture in this fluidized bed was modeled as a dense gas (i.e., an equilibrium model, valid for very small-diameter dust particles). The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws. Shock interactions with dense layer generated vorticity near the wall, a result that is similar to viscous, no-slip effects found in clean flows. The resulting wall shear layer was unstable, and rolled up into large-scale rotational structures. These structures entrained dense material from the wall layer and created a chaotically striated flow. The boundary layer grew due to merging of the large-scale structures and due to local entrainment of the dense material from the fluidized bed. The chaotic flow was averaged along similarity lines (i.e., lines of constant values of x = r/Rs and y = z/Rs where R(sub s) = ct(exp alpha)) to establish the mean-flow profiles and the r.m.s. fluctuating-flow profiles of the boundary layer.
NASA Technical Reports Server (NTRS)
Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)
2002-01-01
We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.
NASA Astrophysics Data System (ADS)
Rittmeister, Franziska; Ansmann, Albert; Engelmann, Ronny; Skupin, Annett; Baars, Holger; Kanitz, Thomas; Kinne, Stefan
2017-11-01
We present final and quality-assured results of multiwavelength polarization/Raman lidar observations of the Saharan air layer (SAL) over the tropical Atlantic. Observations were performed aboard the German research vessel R/V Meteor during the 1-month transatlantic cruise from Guadeloupe to Cabo Verde over 4500 km from 61.5 to 20° W at 14-15° N in April-May 2013. First results of the shipborne lidar measurements, conducted in the framework of SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment), were reported by Kanitz et al.(2014). Here, we present four observational cases representing key stages of the SAL evolution between Africa and the Caribbean in detail in terms of layering structures and optical properties of the mixture of predominantly dust and aged smoke in the SAL. We discuss to what extent the lidar results confirm the validity of the SAL conceptual model which describes the dust long-range transport and removal processes over the tropical Atlantic. Our observations of a clean marine aerosol layer (MAL, layer from the surface to the SAL base) confirm the conceptual model and suggest that the removal of dust from the MAL, below the SAL, is very efficient. However, the removal of dust from the SAL assumed in the conceptual model to be caused by gravitational settling in combination with large-scale subsidence is weaker than expected. To explain the observed homogenous (height-independent) dust optical properties from the SAL base to the SAL top, from the African coast to the Caribbean, we have to assume that the particle sedimentation strength is reduced and dust vertical mixing and upward transport mechanisms must be active in the SAL. Based on lidar observations on 20 nights at different longitudes in May 2013, we found, on average, MAL and SAL layer mean values (at 532 nm) of the extinction-to-backscatter ratio (lidar ratio) of 17±5 sr (MAL) and 43±8 sr (SAL), of the particle linear depolarization ratio of 0.025±0.015 (MAL) and 0.19±0.09 (SAL), and of the particle extinction coefficient of 67±45 Mm-1 (MAL) and 68±37 Mm-1 (SAL). The 532 nm optical depth of the lofted SAL was found to be, on average, 0.15±0.13 during the ship cruise. The comparably low values of the SAL mean lidar ratio and depolarization ratio (compared to typical pure dust values of 50-60 sr and 0.3, respectively) in combination with backward trajectories indicate a smoke contribution to light extinction of the order of 20 % during May 2013, at the end of the burning season in central-western Africa.
Colorful Polar Layered Deposits
2016-03-23
The North Polar layered deposits provide a record of recent climate changes on Mars as seen by NASA Mars Reconnaissance Orbiter spacecraft. Color variations between layers are due to differences in composition of the dust.
The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust
NASA Astrophysics Data System (ADS)
Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.
2016-04-01
A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.
NASA Astrophysics Data System (ADS)
Chiang, Chih-Wei; Chiang, Hong-Wei; Chou, Huann-Ming; Sun, Shu-Huang; Lee, Jiann-Shen
2017-06-01
The wind-blown dust emissions frequently occur in the open storage yards of steel-making companies. Tracking the dust source and monitoring their dispersion are rather difficult. This type of open-air storage yards poses many environmental hazards. The 3-D scanning lidar system is effective in environmental monitoring (e.g., dust) with high temporal and spatial resolution, which is lacking in traditional ground-based measurement. The objective of this paper is to make an attempt for the flux estimation of dust concentration by using lidar system. Further, we investigate the dynamical process of dust and their relationship with local air quality monitoring data. The results show that the material storage erosion by wind ( 3.6 m/s) could cause dust to elevate up to 20m height above the material storage, and produces the flux of dust around 674 mg/s. The flux of dust is proportional to the dust mass concentration (PM10) measured by commercial ambient particular monitors.
Effect of Wind Speed and Relative Humidity on Atmospheric Dust Concentrations in Semi-Arid Climates
Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y.; Sáez, A. Eduardo; Betterton, Eric A.
2014-01-01
Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (> 4 m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. PMID:24769193
Reading the climate record of the martian polar layered deposits
Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K. E.
2012-01-01
The martian polar regions have layered deposits of ice and dust. The stratigraphy of these deposits is exposed within scarps and trough walls and is thought to have formed due to climate variations in the past. Insolation has varied significantly over time and caused dramatic changes in climate, but it has remained unclear whether insolation variations could be linked to the stratigraphic record. We present a model of layer formation based on physical processes that expresses polar deposition rates of ice and dust in terms of insolation. In this model, layer formation is controlled by the insolation record, and dust-rich layers form by two mechanisms: (1) increased summer sublimation during high obliquity, and (2) variations in the polar deposition of dust modulated by obliquity variations. The model is simple, yet physically plausible, and allows for investigations of the climate control of the polar layered deposits (PLD). We compare the model to a stratigraphic column obtained from the north polar layered deposits (NPLD) (Fishbaugh, K.E., Hvidberg, C.S., Byrne, S., Russel, P.S., Herkenhoff, K.E., Winstrup, M., Kirk, R. [2010a]. Geophys. Res. Lett., 37, L07201) and show that the model can be tuned to reproduce complex layer sequences. The comparison with observations cannot uniquely constrain the PLD chronology, and it is limited by our interpretation of the observed stratigraphic column as a proxy for NPLD composition. We identified, however, a set of parameters that provides a chronology of the NPLD tied to the insolation record and consistently explains layer formation in accordance with observations of NPLD stratigraphy. This model dates the top 500 m of the NPLD back to ∼1 million years with an average net deposition rate of ice and dust of 0.55 mm a−1. The model stratigraphy contains a quasi-periodic ∼30 m cycle, similar to a previously suggested cycle in brightness profiles from the NPLD (Laskar, J., Levrard, B., Mustard, F. [2002]. Nature, 419, 375–377; Milkovich, S., Head, J.W. [2005]. J. Geophys. Res. 110), but here related to half of the obliquity cycles of 120 and 99 kyr and resulting from a combination of the two layer formation mechanisms. Further investigations of the non-linear insolation control of PLD formation should consider data from other geographical locations and include radar data and other stratigraphic datasets that can constrain the composition and stratigraphy of the NPLD layers.
Effect of ground control mesh on dust sampling and explosion mitigation.
Alexander, D W; Chasko, L L
2015-07-01
Researchers from the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries.
Effect of ground control mesh on dust sampling and explosion mitigation
Alexander, D.W.; Chasko, L.L.
2017-01-01
Researchers from the National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries. PMID:28936000
Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets
Fenton, L.K.; Bandfield, J.L.; Ward, A.W.
2003-01-01
Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation, rather than by the passage of dust devils. Spectral deconvolution indicates that the dark dunes have infrared spectra consistent with basalt-like materials. The average thermal inertia calculated from Thermal Emission Spectrometer bolometric temperatures is 277 ?? 17 J m-2 s-0.5 K-1, leading to an effective grain size of 740 ?? 170 ??m, which is consistent with coarse sand and within the range expected for Martian sand. The coarse sand that composes the large dune field may have originated from outside the crater, saltating in from the southwest. Most of the transport pathway that delivered this sand to the dune field has since been eroded away or buried. The sand was transported to the east center of the crater floor, where beneath the present-day dunes a 50 m high mound of sand has accumulated. Dune slip faces indicate a wind regime consisting of three opposing winds. Some of these wind directions are correlated with the orientations of dust devil tracks and bright bed forms. The combination of a tall mound of sand and three opposing winds is consistent with a convergent wind regime, which produces the large reversing transverse and star dunes that dominate the dune field. The dark dunes have both active slip faces and seemingly inactive slip faces, suggesting that the dunes vary spatially in their relative activity. Nevertheless, the aeolian activity that has dominated the history of Proctor Crater still continues today. Copyright 2003 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Wallio, H. A.
1973-01-01
The apparent diurnal Martian surface pressure variation, as deduced from radio occultation experiments, is discussed and explained as possibly arising from the effect of a low altitude electron layer. Possible source and loss mechanisms for the low altitude electron layer are presented and discussed. Time-dependent differential equations describing the electron layer are derived and then integrated to investigate the electron distribution resulting from the several processes that might occur in the atmosphere. It is concluded that the source mechanism is the sublimation of alkali atoms from a permanent dust layer (a dust layer of 0.2 micron particles of density 9/cu cm is sufficient), and that the dominant loss process must involve CO2 clustering to the alkali atoms. Using these processes, an electron layer is developed which would explain the apparent diurnal surface pressure.
New Martian climate constraints from radar reflectivity within the north polar layered deposits
NASA Astrophysics Data System (ADS)
Lalich, D. E.; Holt, J. W.
2017-01-01
The north polar layered deposits (NPLD) of Mars represent a global climate record reaching back millions of years, potentially recorded in visible layers and radar reflectors. However, little is known of the specific link between those layers, reflectors, and the global climate. To test the hypothesis that reflectors are caused by thick and indurated layers known as "marker beds," the reflectivity of three reflectors was measured, mapped, and compared to a reflectivity model. The measured reflectivities match the model and show a strong sensitivity to layer thickness, implying that radar reflectivity may be used as a proxy for short-term accumulation patterns and that regional climate plays a strong role in layer thickness variations. Comparisons to an orbitally forced NPLD accumulation model show a strong correlation with predicted marker bed formation, but dust content is higher than expected, implying a stronger role for dust in Mars polar climate than previously thought.
Origin of the outer layer of martian low-aspect ratio layered ejecta craters
NASA Astrophysics Data System (ADS)
Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.
2015-01-01
Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.
NASA Astrophysics Data System (ADS)
Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.
2005-03-01
Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect. Moreover, some model assumptions on dust sources and particle size and the accuracy of model-simulated meteorological parameters are also likely to affect the dust forecast quality.
NASA Astrophysics Data System (ADS)
Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.
2017-12-01
Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.
Properties of a Martian local dust storm in Atlantis Chaos from OMEGA/MEX data
NASA Astrophysics Data System (ADS)
Oliva, F.; Geminale, A.; D'Aversa, E.; Altieri, F.; Bellucci, G.; Carrozzo, F. G.; Sindoni, G.; Grassi, D.
2018-01-01
In this study we present the analysis of the dust properties of a local storm imaged in the Atlantis Chaos region on Mars by the OMEGA imaging spectrometer on March 2nd, 2005. We use the radiative transfer model MITRA to study the dust properties at solar wavelengths between 0.5 μm and 2.5 μm and infer the connection between the local storm dynamics and the topography. We retrieve maps of effective grain radius (reff), optical depth at 9.3 μm (τ9.3) and top altitude (ta) of the dust layer. Our results show that large particles (reff = 1.6 μm) are gathered in the centre of the storm (lat = 33.5° S; lon = 183.5° W), where the optical depth is maximum (τ9.3 > 7.0) and the top altitude exceeds 18 km. Outside the storm, we obtain τ9.3<0.2, in agreement with the estimates derived from global climate models (GCM). We speculate that a low thermal inertia region at the western border of Atlantis Chaos is a possible source of the dust storm. Moreover, we find evidence that topography plays a role in confining the local storm in Atlantis Chaos. The vertical wind component from the GCM does not provide any hint for the triggering of dust lifting. On the other hand, the combination of the horizontal and vertical wind profiles suggests that the dust, once lifted, is pushed eastward and then downward and gets confined within the north-east ridge of Atlantis Chaos. From our results, the thickness of the dust layer collapsed on the surface ranges from about 1 μm at the storm boundaries up to more than 100 μm at its centre. We verify that a layer of dust thicker than 1 μm, deposited on the surface, can prevent the detection of mafic absorption features. However, such features are still present in OMEGA data of Atlantis Chaos registered after the storm. Hence, we deduce that, once the storm is over, the dust deposited on an area larger than the one where it has been observed.
Saharan Air Layer Interaction with Hurricane Claudette (2003)
NASA Astrophysics Data System (ADS)
Rothman, G. S.; Gill, T. E.; Chang, C.
2004-12-01
It has long been observed that the Saharan Air Layer (SAL), a large and seasonally-persistent layer of West African aeolian dust suspended over the Atlantic Ocean, may influence the variability and intensity of easterly waves and tropical cyclones in the Atlantic basin. The radiative and conductive properties of the Saharan aerosols may contribute to warming within the dust layer, creating an anomalous baroclinic zone in the tropical North Atlantic. Environmental baroclinic instability is a mechanism for conversion of potential energy to eddy kinetic energy, facilitating wave growth. However, this same baroclinic mechanism, along with the dry properties of the SAL, could also promote asymmetry in a tropical cyclone, limiting its intensity. Detailed investigations of specific cases are necessary to better understand the radiative heating or cooling impact that the Saharan aerosols cause as well as potential influences on cyclone track and intensity stemming from the aeolian dust cloud. Here, we consider the case of Claudette in 2003. On June 29, 2003, an easterly wave embedded near the southern boundary of a broad Saharan dust layer emerged from the West African Coastal Bend region into the Atlantic Ocean. The wave propagated westward, reaching tropical storm intensity as Claudette in the Caribbean and developing into a hurricane just before making landfall on the southern Texas Gulf of Mexico coast on July 15. The SAL propagated in phase with this system throughout almost its entire evolution. Rapid intensification of Claudette into a hurricane in the last 15 hours prior to landfall was concurrent with a decoupling from the Saharan dust intrusion, with the two following separate tracks into North America at the end of the period. We performed an investigation to understand and diagnose the interaction between the Saharan Air Layer and Claudette. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) along-trajectory potential temperature plots as well as the MODIS-TERRA (Moderate Imaging Spectroradiometer) aerosol product suggested that the intensity of Saharan dust was well correlated to heating in the environment. NOGAPS (Navy Operational Global Atmospheric Prediction System) model analysis outputs revealed that the mid-level easterly jet along the southern SAL boundary was a source for potential combined barotropic-baroclinic instability, possibly contributing to the growth of the formative easterly wave. The Charney-Stern condition was satisfied for the formative tropical wave throughout most of its evolution, corresponding to the mostly progressive wave growth occurring almost consistently throughout its evolution. The current research suggests that there was a dual-celled set of circulations, forced by the SAL boundaries, but modified by the mid-level easterly jet. The presence of the dust layer appears to have been a factor playing an important role in the life cycle of this tropical cyclone. In this case, the dusty Saharan Air Layer apparently facilitated growth of the formative easterly wave, but later suppressed the intensity of Claudette until shortly before landfall.
The origin and evolution of dust clouds in Central Asia
Smirnov, V.V.; Gillette, Dale A.; Golitsyn, G.S.; MacKinnon, D.J.
1994-01-01
Data from a high resolution radiometer AVHRR (580-680 nm optical lengthwaves) installed on the "NOAA-11" satellite as well as TV (500-700 nm) and IR (8000-12000 nm) equipment of the Russia satellite "Meteor-2/16" were used to study the evolution of dust storms for 1-30 September 1989 in Tajikistan, Uzbekistan, Turkmenistan and Afghanistan. These data help to validate the hypothesis, that long-term dusted boundary layer (duration of the order of a day or more), but of comparatively not high optical density (4-10 km meteorological visibility range at the 20-50 km background), is formed after the northwest intrusions into a region of intensive cold fronts at the surface wind velocities of 7-15 m/s. Stability of dust clouds of vertical power to 3-3.5 km (up to an inversion level) is explained by an action of collective buoyancy factors at heating the dust particles of 2-4 ??m in mean diameter by solar radiation. The more intensive intrusions stimulate a formation of simultaneously dust and water clouds. The last partially reduce the solar radiation (by the calculations of the order of 30-50%) and decrease the role of buoyancy factors. Thus, initiated is the intensive but short-term dusted boundary layer at horizontal visibility of 50-200 m. ?? 1994.
To the theory of particle lifting by terrestrial and Martian dust devils
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2018-01-01
The combined Rankine vortex model is applied to describe the radial profile of azimuthal velocity in atmospheric dust devils, and a simplified model version is proposed of the turbulent surface boundary layer beneath the Rankine vortex periphery that corresponds to the potential vortex. Based on the results by Burggraf et al. (1971), it is accepted that the radial velocity near the ground in the potential vortex greatly exceeds the azimuthal velocity, which makes tractable the problem of the surface shear stress determination, including the case of the turbulent surface boundary layer. The constructed model explains exceeding the threshold shear velocity for aeolian transport in typical dust-devil vortices both on Earth and on Mars.
Effects of grain dust on lungs prior to and following dust remediation.
Pahwa, Punam; Dosman, James A; McDuffie, Helen H
2008-12-01
To determine longitudinal estimates of pulmonary function decline in Canadian grain elevator workers before and after dust control by analyzing data collected from five regions of Canada over 15 years. Declines in forced expired volume in one second and forced vital capacity before and after dust control were estimated by using a generalized estimating equations approach. For grain workers who were in the grain industry for 20 or more years both before and after dust control: the mean annual loss of forced expired volume in one second was greatest among current smoking grain workers followed by ex-smokers and nonsmokers, respectively. Similar results were obtained for forced vital capacity. Grain dust control was effective in reducing decline in the lung function measurements among grain workers in all smoking and exposure categories.
Wood chips for dust control on surface-mine haul roads
George P., Jr. Williams
1979-01-01
On a coal haul spur road where water sprinkling was the primary method of dust control, the duration of control was increased tenfold by covering the road surface with a layer of wood chips. The chip blanket prevented existing dust-size particles from being kicked up and swept into plumes by passing traffic, insulated the road surface against evaporation and protected...
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.
2018-03-01
The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulson, Brian, E-mail: brian.gulson@mq.edu.au; CSIRO Earth Science and Resource Engineering, North Ryde NSW 2113; Anderson, Phil
Background: As part of the only national survey of lead in Australian children, which was undertaken in 1996, lead isotopic and lead concentration measurements were obtained from children from 24 dwellings whose blood lead levels were ≥15 µg/dL in an attempt to determine the source(s) of their elevated blood lead. Comparisons were made with data for six children with lower blood lead levels (<10 µg/dL). Methods: Thermal ionisation and isotope dilution mass spectrometry were used to determine high precision lead isotopic ratios ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb and {sup 206}Pb/{sup 204}Pb) and lead concentrations in blood, dust from floormore » wipes, soil, drinking water and paint (where available). Evaluation of associations between blood and the environmental samples was based on the analysis of individual cases, and Pearson correlations and multiple regression analyses based on the whole dataset. Results and discussion: The correlations showed an association for isotopic ratios in blood and wipes (r=0.52, 95% CI 0.19–0.74), blood and soil (r=0.33, 95% CI −0.05–0.62), and blood and paint (r=0.56, 95% CI 0.09–0.83). The regression analyses indicated that the only statistically significant relationship for blood isotopic ratios was with dust wipes (B=0.65, 95% CI 0.35–0.95); there were no significant associations for lead concentrations in blood and environmental samples. There is a strong isotopic correlation of soils and house dust (r=0.53, 95% CI 0.20–0.75) indicative of a common source(s) for lead in soil and house dust. In contrast, as with the regression analyses, no such association is present for bulk lead concentrations (r=−0.003, 95% CI −0.37–0.36), the most common approach employed in source investigations. In evaluation of the isotopic results on a case by case basis, the strongest associations were for dust wipes and blood. -- Highlights: • Children with elevated blood lead ≥15 µg/dL compared with a group with <10 µg/dL. • High precision lead isotopic ratios in blood, house dust wipes, soil, water, paint. • Associations for isotopic measures of blood and dust, blood and soil, blood and paint. • Regressions gave significance for isotopic measures of blood/dust and dust/soil.« less
NASA Astrophysics Data System (ADS)
Kuciauskas, A. P.; Xian, P.; Hyer, E. J.; Oyola, M. I.; Campbell, J. R.
2016-12-01
The Naval Research Laboratory Marine Meteorology Division (NRL-MMD) predicts, monitors, and trains Caribbean agencies in preparing for and mitigating unhealthy episodes of Saharan-based dust. Of critical concern is the Saharan Air Layer (SAL), an elevated air mass of hot, dry, and often very dusty conditions that can be environmentally persistent and dangerous to the downstream Caribbean populace, resulting in respiratory illnesses; some of the world's highest asthma rates and associated premature deaths have been documented within the Caribbean islands. The SAL not only impacts the greater Caribbean, but also the Gulf of Mexico, northern South America, and southern and central US. One of the major responsibilities of the National Weather Service forecast office at San Juan, Puerto Rico (NWS-PR) is preparing the public within their area of responsibility for such events. The NRL-MMD has been at the forefront of implementing and demonstrating the positive impact of Suomi-VIIRS during SAL events. In preparation for SAL events, NRL-MMD is currently supporting the NWS-PR with near real time web-based products, primarily from VIIRS datasets. Preliminary studies have shown that VIIRS has demonstrated improvements in the assessment and prediction of dust intensities related to SAL passages. The upcoming launches of JPSS-1 and GOES-R are eagerly anticipated in possibly revolutionizing the R&D related toward further improvements in understanding Saharan dust dynamics and characteristics. Besides NWS-PR, NRL-MMD also collaborates with the Caribbean Institute for Meteorology and Hydrology (CIMH) in both providing and gathering in-situ measurements that stretch from the French Guyana northward through the West Indies island chain. Finally, NRL-MMD is involved with the Caribbean Aerosol Health Network (CAHN),an international network of health and environmental agencies whose mission is to improve the understanding of the impacts (e.g., air quality, health, climate, weather, ecosystems) that atmospheric particles have particularly over the greater Caribbean region. The goal of this talk is to acquaint the audience with the SAL phenomena, its impact on urban activities, and current and future research underway to provide improvements in African dust prediction capabilities.
Estimation of global anthropogenic dust aerosol using CALIOP satellite
NASA Astrophysics Data System (ADS)
Chen, B.; Huang, J.; Liu, J.
2014-12-01
Anthropogenic dust aerosols are those produced by human activity, which mainly come from cropland, pasture, and urban in this paper. Because understanding of the emissions of anthropogenic dust is still very limited, a new technique for separating anthropogenic dust from natural dustusing CALIPSO dust and planetary boundary layer height retrievalsalong with a land use dataset is introduced. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 22.3% of the global continentaldust load. Of these anthropogenic dust aerosols, more than 52.5% come from semi-arid and semi-wet regions. On the whole, anthropogenic dust emissions from East China and India are higher than other regions.
Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface
NASA Astrophysics Data System (ADS)
Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.
2016-10-01
As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.
Elevated heat pump effects of dust aerosol over Northwestern China during summer
NASA Astrophysics Data System (ADS)
Tang, Yaoguo; Han, Yongxiang; Ma, Xiaoyan; Liu, Zhaohuan
2018-05-01
The Elevated Heat Pump (EHP) effect demonstrates a significant interaction between the aerosol climatic effect and the monsoon, both are important for climate research. In Northwestern China, the influence of EHP mechanism is still lacking in research. In this study, the EHP effects in Northwestern China are investigated by three sensitivity tests using a WRF-Chem model coupled with the Shao dust emission scheme. Results show that: 1) the anomalous circulation caused by dust aerosols are proved to the existence of EHP effect in Northwestern China; 2) three updrafts over the desert are transported eastward at high altitude and subside in Northeastern China, forming a complete secondary circulation with low-level easterly flow from Badain Jaran and Tengger to Taklimakan; 3) a northeasternerly anomaly flow from Northeastern China can affect the intensity of East Asian summer monsoon (EASM), and increase precipitation in the middle and lower reaches of the Yangtze River and decrease precipitation in Northeastern China. 4) We present a conceptual model of EHP in Northwestern China to provide a better understanding of the climatic effects of dust aerosols.
Cratering Studies in Thin Plastic Films
NASA Astrophysics Data System (ADS)
Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J.; Horanyi, M.; Munsat, T. L.; Srama, R.
2013-12-01
Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can then be fed into electrostatic relaxation models to enhance the fidelity of interpretation of charge signals from a PVDF detector. Experimental results and preliminary simulation results and conclusions will be presented. Scanning Electron Microscope image of a microcrater caused by a dust impact into Polyvinylidene Fluoride (PVDF)
Thin film surface treatments for lowering dust adhesion on Mars Rover calibration targets
NASA Astrophysics Data System (ADS)
Sabri, F.; Werhner, T.; Hoskins, J.; Schuerger, A. C.; Hobbs, A. M.; Barreto, J. A.; Britt, D.; Duran, R. A.
The current generation of calibration targets on Mars Rover serve as a color and radiometric reference for the panoramic camera. They consist of a transparent silicon-based polymer tinted with either color or grey-scale pigments and cast with a microscopically rough Lambertian surface for a diffuse reflectance pattern. This material has successfully withstood the harsh conditions existent on Mars. However, the inherent roughness of the Lambertian surface (relative to the particle size of the Martian airborne dust) and the tackiness of the polymer in the calibration targets has led to a serious dust accumulation problem. In this work, non-invasive thin film technology was successfully implemented in the design of future generation calibration targets leading to significant reduction of dust adhesion and capture. The new design consists of a μm-thick interfacial layer capped with a nm-thick optically transparent layer of pure metal. The combination of these two additional layers is effective in burying the relatively rough Lambertian surface while maintaining diffuse properties of the samples which is central to the correct operation as calibration targets. A set of these targets are scheduled for flight on the Mars Phoenix mission.
Dust-wall and dust-plasma interaction in the MIGRAINe code
NASA Astrophysics Data System (ADS)
Vignitchouk, L.; Tolias, P.; Ratynskaia, S.
2014-09-01
The physical models implemented in the recently developed dust dynamics code MIGRAINe are described. A major update of the treatment of secondary electron emission, stemming from models adapted to typical scrape-off layer temperatures, is reported. Sputtering and plasma species backscattering are introduced from fits of available experimental data and their relative importance to dust charging and heating is assessed in fusion-relevant scenarios. Moreover, the description of collisions between dust particles and plasma-facing components, based on the approximation of elastic-perfectly plastic adhesive spheres, has been upgraded to take into account the effects of particle size and temperature.
Cratering Studies in Thin Plastic Films
NASA Astrophysics Data System (ADS)
Shu, Anthony; Bugiel, S.; Gruen, E.; Horanyi, M.; Munsat, T.; Srama, R.; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team
2013-10-01
Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. Two Smoothed Particle Hydrodynamics (SPH) codes are being evaluated for use as a simulator for hypervelocity impacts: Ansys Autodyn and LS-Dyna from the Livermore Software Technology Corp. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Experimental results and preliminary simulation results and conclusions will be presented.
Atmospheric bioaerosols transported via dust storms in the western United States
NASA Astrophysics Data System (ADS)
Hallar, A. Gannet; Chirokova, Galina; McCubbin, Ian; Painter, Thomas H.; Wiedinmyer, Christine; Dodson, Craig
2011-09-01
Measurements are presented showing the presence of biological material within frequent dust storms in the western United States. Previous work has indicated that biological particles were enhancing the impact of dust storms on the formation of clouds. This paper presents multiple case studies, between April and May 2010, showing the presence of and quantifying the amount of biological material via an Ultraviolet Aerodynamic Particle Sizer during dust events. All dust storms originated in the Four Corners region in the western Untied States and were measured at Storm Peak Laboratory, a high elevation facility in northwestern Colorado. From an Aerodynamic Particle Sizer, the mean dust particle size during these events was approximately 1 μm, with number concentrations between 6 cm-3 and 12 cm-3. Approximately 0.2% of these dust particles had fluorescence signatures, indicating the presence of biological material.
NASA Astrophysics Data System (ADS)
Engelstaedter, S.; Washington, R.; Allen, C.; Flamant, C.; Chaboureau, J.-P.; Kocha, C.; Lavaysse, C.
2012-04-01
The near-surface low pressure system that develops over western Africa in Boreal summer (know as the Saharan Heat Low) is thought to have a significant influence on regional and global climate due to its links with the Monsoon, the Northern Atlantic and the Mediterranean climate system. The SHL is associated with the deepest atmospheric boundary layer on the planet and is co-located with the highest dust loadings in the world. The processes that link the heat low and dust distribution are only poorly understood. Improving the representation of the heat low and the processes that control the emission and atmospheric distribution of dust in climate and NWP models is crucial if we are to reduce known systematic errors in climate predictions and weather forecasts. In collaboration with European partners, the UK-based consortium project "Fennec - The Saharan Climate System" aims at improving our understanding of this complex climate system by integrating for the first time coordinated ground and aircraft observations from the central Sahara, newly developed satellite products, and the application of regional and global models. On 22 June 2011, two research aircraft operating out of Fuerteventura (Spain) surveyed the Saharan Heat Low centred over Mauritania-Mali border. The aircraft flew simultaneously in the morning and in the afternoon on two different tracks thereby sampling each track four times on that day. Both aircraft were equipped with a downward looking LIDAR for aerosol detection. In total, 51 sondes were dropped during the flights making this the most comprehensive dataset to study the spatio-temporal diurnal evolution of the heat low including the interactions between the atmospheric boundary layer and dust distributions. Combining LIDAR observations, satellite imagery and back-trajectory modelling we show that an aged dust layer was present in the heat low region resulting from previous day's dust activity associated with a south-moving density current from the Atlas mountains and westward-moving Haboob fronts originating along the Algeria-Mali border. We show how the dust is distributed within the atmosphere and how it is modified during the course of the day by various processes including the development of the atmospheric boundary layer and associated dry convection as well as the inflow of moisture-rich monsoon air from the south.
Rauert, C; Harrad, S; Suzuki, G; Takigami, H; Uchida, N; Takata, K
2014-09-15
Brominated flame retardants (BFRs) have been detected in indoor dust in many studies, at concentrations spanning several orders of magnitude. Limited information is available on the pathways via which BFRs migrate from treated products into dust, yet the different mechanisms hypothesized to date may provide an explanation for the range of reported concentrations. In particular, transfer of BFRs to dust via abrasion of particles or fibers from treated products may explain elevated concentrations (up to 210 mg g(-1)) of low volatility BFRs like decabromodiphenyl ether (BDE-209). In this study, an indoor dust sample containing a low concentration of hexabromocyclododecane, or HBCD, (110 ng g(-1) ΣHBCDs) was placed on the floor of an in-house test chamber. A fabric curtain treated with HBCDs was placed on a mesh shelf 3 cm above the chamber floor and abrasion induced using a stirrer bar. This induced abrasion generated fibers of the curtain, which contaminated the dust, and ΣHBCD concentrations in the dust increased to between 4020 and 52 500 ng g(-1) for four different abrasion experiment times. The highly contaminated dust (ΣHBCD at 52 500 ng g(-1)) together with three archived dust samples from various UK microenvironments, were investigated with forensic microscopy techniques. These techniques included Micro X-ray fluorescent spectroscopy, scanning emission microscopy coupled with an energy dispersive X-ray spectrometer, Fourier transform infrared spectroscopy with further BFR analysis on LC-MS/MS. Using these techniques, fibers or particles abraded from a product treated with BFRs were identified in all dust samples, thereby accounting for the elevated concentrations detected in the original dust (3500 to 88 800 ng g(-1) ΣHBCD and 24 000 to 1,438 000 ng g(-1) for BDE-209). This study shows how test chamber experiments alongside forensic microscopy techniques, can provide valuable insights into the pathways via which BFRs contaminate indoor dust. Copyright © 2014 Elsevier B.V. All rights reserved.
Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source
NASA Astrophysics Data System (ADS)
Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.
2015-12-01
In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity conditions.
NASA Astrophysics Data System (ADS)
Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Groß, Silke; Sauer, Daniel; Althausen, Dietrich; Toledano, Carlos
2014-05-01
At present one of the largest uncertainties in our understanding of global climate concerns the interaction of aerosols with clouds and atmospheric dynamics. In the climate system, mineral dust aerosol is of key importance, because mineral dust contributes to about half of the global annual particle emissions by mass. Although our understanding of the effects of mineral dust on the atmosphere and the climate improved during the past decade, many questions such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds remain open. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013 to investigate the transport and transformation of Saharan mineral dust during long-range transport from the Sahara across the Atlantic Ocean into the Caribbean. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling which involved many national and international partners. During SALTRACE, the DLR Falcon research aircraft was based at Sal, Cape Verde, between 11 and 17 June 2013, and at Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties, with sampling devices for offline particle analysis, with a nadir-looking 2-µm wind lidar, with dropsondes and instruments for standard meteorological parameters. Ground-based lidar and in-situ instruments were deployed in Cape Verde, Barbados and Puerto Rico. During SALTRACE, mineral dust from five dust outbreaks was studied by the Falcon research aircraft between Senegal, the Caribbean and Florida under different atmospheric conditions. On the eastern side of the Atlantic, dust plumes were quite homogenous and extended up to 6-7 km altitude. In contrast, the dust layers in the Caribbean showed three layers with different dust characteristics and were mainly below 4.5 km altitude. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust microphysical and optical properties was observed between 0.7 and 2.5 km altitude. The aerosol optical thickness of the dust outbreaks studied in the Barabados area ranged from 0.2 to 0.6 at 500 nm. Highlights during SALTRACE included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm Chantal in the dusty environment. In our presentation, we give an overview of the SALTRACE study and investigate the impact of dust aging processes between the Cape Verde region and the Caribbean on dust microphysical and optical properties. We show vertical profiles of dust size distributions, CCN and dust optical properties and compare our results with the ground-based in-situ, sun photometer and lidar measurements. In particular, we show the results from the trans-Atlantic Lagrangian dust study and discuss similarities and differences of the dust plumes observed over Cape Verde and in the Caribbean.
Peelen, S J; Heederik, D; Dimich-Ward, H D; Chan-Yeung, M; Kennedy, S M
1996-01-01
OBJECTIVES: Four previously conducted epidemiological studies in more than 1200 grain workers were used to compare exposure-response relations between exposure to grain dust and respiratory health. METHODS: The studies included Dutch workers from an animal feed mill and a transfer grain elevator and Canadian workers from a terminal grain elevator and the docks. Relations between forced expiratory volume in one second (FEV1) and exposure were analysed with multiple regression analysis corrected for smoking, age, and height. Exposure variables examined included cumulative and current dust exposure and the numbers of years a subject was employed in the industry. Sampling efficiencies of the Dutch and Canadian measurement techniques were compared in a pilot study. Results of this study were used to correct slopes of exposure-response relations for differences in dust fractions sampled by Dutch and Canadian personal dust samplers. RESULTS: Negative exposure-response relations were shown for regressions of FEV1 on cumulative and current exposure and years employed. Slopes of the exposure-response relations differed by a factor of three to five between industries, apart from results for cumulative exposure. Here the variation in slopes differed by a factor of 100, from -1 to -0.009 ml/mg.y/m3. The variation in slopes between industries reduced to between twofold to fivefold when the Dutch transfer elevator workers were not considered. There was evidence that the small exposure-response slope found for this group is caused by misclassification of exposure and a strong healthy worker effect. Alternative, but less likely explanations for the variation in slopes were differences in exposure concentrations, composition of grain dust, exposure characteristics, and measurement techniques. CONCLUSION: In conclusion, this study showed moderately similar negative exposure-response relations for four different populations from different countries, despite differences in methods of exposure assessment and exposure estimation. PMID:8983468
Peelen, S J; Heederik, D; Dimich-Ward, H D; Chan-Yeung, M; Kennedy, S M
1996-08-01
Four previously conducted epidemiological studies in more than 1200 grain workers were used to compare exposure-response relations between exposure to grain dust and respiratory health. The studies included Dutch workers from an animal feed mill and a transfer grain elevator and Canadian workers from a terminal grain elevator and the docks. Relations between forced expiratory volume in one second (FEV1) and exposure were analysed with multiple regression analysis corrected for smoking, age, and height. Exposure variables examined included cumulative and current dust exposure and the numbers of years a subject was employed in the industry. Sampling efficiencies of the Dutch and Canadian measurement techniques were compared in a pilot study. Results of this study were used to correct slopes of exposure-response relations for differences in dust fractions sampled by Dutch and Canadian personal dust samplers. Negative exposure-response relations were shown for regressions of FEV1 on cumulative and current exposure and years employed. Slopes of the exposure-response relations differed by a factor of three to five between industries, apart from results for cumulative exposure. Here the variation in slopes differed by a factor of 100, from -1 to -0.009 ml/mg.y/m3. The variation in slopes between industries reduced to between twofold to fivefold when the Dutch transfer elevator workers were not considered. There was evidence that the small exposure-response slope found for this group is caused by misclassification of exposure and a strong healthy worker effect. Alternative, but less likely explanations for the variation in slopes were differences in exposure concentrations, composition of grain dust, exposure characteristics, and measurement techniques. In conclusion, this study showed moderately similar negative exposure-response relations for four different populations from different countries, despite differences in methods of exposure assessment and exposure estimation.
NASA Technical Reports Server (NTRS)
2005-01-01
Since landing on Mars a year ago, NASA's pair of six-wheeled geologists have been constantly exposed to martian winds and dust. As a result, the Spirit rover has gradually experienced a slight decline in power as a thin layer of dust has accumulated on the solar panels, blocking some of the sunlight that is converted to electricity. In this enlarged image of a postage-stamp-size (3-centimeter-square, 1.2-inch-square) portion of one of Spirit's solar panels, a fine layer of martian dust coats electrical connections and metal surfaces. Individual silt grains or clumps of dust are visible where sediment has accumulated in crevices between solar cells and circuits. The upper right half of the image shows the edge of one of the rover's solar cells. The lower left half shows electrical wires bonded with silicon adhesive to the underlying composite surface; the circular abrasions are the result of sanding by hand on Earth. The braided wire is connected to a thermocouple used to measure temperature based on electrical resistance. Spirit took this image with its microscopic imager on martian day, or sol, 350 (Dec. 26, 2004).Martian Dust Devils: Laboratory Simulations of Particle Threshold
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce
2003-01-01
An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.
NASA Astrophysics Data System (ADS)
Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Beranek, J.; Zelenyuk, A.; Zhao, C.; Leung, L. R.; Ma, P. L.; Riihimaki, L.; Fast, J. D.; Barnard, J.; Hallar, G. G.; McCubbin, I.; Eloranta, E. W.; McComiskey, A. C.; Rasch, P. J.
2017-12-01
Understanding the effects of dust on the regional and global climate requires detailed information on particle size distributions and their changes with distance from the source. Awareness is now growing about the tendency of the dust coarse mode with moderate ( 3.5 µm) volume median diameter (VMD) to be rather insensitive to complex removal processes associated with long-range transport of dust from the main sources. Our study, with a focus on the transpacific transport of dust, demonstrates that the impact of coarse mode aerosol (VMD 3µm) is well defined at the high-elevation mountain-top Storm Peak Laboratory (SPL, about 3.2 km MSL) and nearby Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) during March 2011. Significant amounts of coarse mode aerosol are also found at the nearest Aerosol Robotic Network (AERONET) site. Outputs from the high-resolution Weather Research and Forecasting (WRF) Model coupled with chemistry (WRF-Chem) show that the major dust event is likely associated with transpacific transport of Asian and African plumes. Satellite data, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) aerosol optical depth (AOD) and plume height from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar data provide the observational support of the WRF-Chem simulations. Our study complements previous findings by indicating that the quasi-static nature of the coarse mode appears to be a reasonable approximation for Asian and African dust despite expected frequent orographic precipitation over mountainous regions in the western United States.
Tapia, Joseline S; Valdés, Jorge; Orrego, Rodrigo; Tchernitchin, Andrei; Dorador, Cristina; Bolados, Aliro; Harrod, Chris
2018-01-01
Chile is the leading producer of copper worldwide and its richest mineral deposits are found in the Antofagasta Region of northern Chile. Mining activities have significantly increased income and employment in the region; however, there has been little assessment of the resulting environmental impacts to residents. The port of Antofagasta, located 1,430 km north of Santiago, the capital of Chile, functioned as mineral stockpile until 1998 and has served as a copper concentrate stockpile since 2014. Samples were collected in 2014 and 2016 that show elevated concentrations of As, Cu, Pb, and Zn in street dust and in residents' blood (Pb) and urine (As) samples. To interpret and analyze the spatial variability and likely sources of contamination, existent data of basement rocks and soil geochemistry in the city as well as public-domain airborne dust were studied. Additionally, a bioaccessibility assay of airborne dust was conducted and the chemical daily intake and hazard index were calculated to provide a preliminary health risk assessment in the vicinity of the port. The main conclusions indicate that the concentrations of Ba, Co, Cr, Mn, Ni, and V recorded from Antofagasta dust likely originate from intrusive, volcanic, metamorphic rocks, dikes, or soil within the city. However, the elevated concentrations of As, Cd, Cu, Mo, Pb, and Zn do not originate from these geologic outcrops, and are thus considered anthropogenic contaminants. The average concentrations of As, Cu, and Zn are possibly the highest in recorded street dust worldwide at 239, 10,821, and 11,869 mg kg -1 , respectively. Furthermore, the contaminants As, Pb, and Cu exhibit the highest bioaccessibilities and preliminary health risk indices show that As and Cu contribute to elevated health risks in exposed children and adults chronically exposed to dust in Antofagasta, whereas Pb is considered harmful at any concentration. Therefore, an increased environmental awareness and greater protective measures are necessary in Antofagasta and possibly other similar mining port cities in developing countries.
Valdés, Jorge; Orrego, Rodrigo; Tchernitchin, Andrei; Dorador, Cristina; Bolados, Aliro
2018-01-01
Chile is the leading producer of copper worldwide and its richest mineral deposits are found in the Antofagasta Region of northern Chile. Mining activities have significantly increased income and employment in the region; however, there has been little assessment of the resulting environmental impacts to residents. The port of Antofagasta, located 1,430 km north of Santiago, the capital of Chile, functioned as mineral stockpile until 1998 and has served as a copper concentrate stockpile since 2014. Samples were collected in 2014 and 2016 that show elevated concentrations of As, Cu, Pb, and Zn in street dust and in residents’ blood (Pb) and urine (As) samples. To interpret and analyze the spatial variability and likely sources of contamination, existent data of basement rocks and soil geochemistry in the city as well as public-domain airborne dust were studied. Additionally, a bioaccessibility assay of airborne dust was conducted and the chemical daily intake and hazard index were calculated to provide a preliminary health risk assessment in the vicinity of the port. The main conclusions indicate that the concentrations of Ba, Co, Cr, Mn, Ni, and V recorded from Antofagasta dust likely originate from intrusive, volcanic, metamorphic rocks, dikes, or soil within the city. However, the elevated concentrations of As, Cd, Cu, Mo, Pb, and Zn do not originate from these geologic outcrops, and are thus considered anthropogenic contaminants. The average concentrations of As, Cu, and Zn are possibly the highest in recorded street dust worldwide at 239, 10,821, and 11,869 mg kg−1, respectively. Furthermore, the contaminants As, Pb, and Cu exhibit the highest bioaccessibilities and preliminary health risk indices show that As and Cu contribute to elevated health risks in exposed children and adults chronically exposed to dust in Antofagasta, whereas Pb is considered harmful at any concentration. Therefore, an increased environmental awareness and greater protective measures are necessary in Antofagasta and possibly other similar mining port cities in developing countries. PMID:29707438
2013-10-30
The North Polar region of Mars is capped with layers of water ice and dust, called the polar layered deposits. This permanent polar cap is covered in the winter with a layer of seasonal carbon dioxide ice as seen by NASA Mars Reconnaissance Orbiter.
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; Egert, Smadar; Uzan, Leenes
2017-04-01
On 7 Sep 2015 an unprecedented huge dust plume approached the SE Mediterranean basin from the northeast- Syria region. According to the Israeli meteorological service it is the first time in 75 years of measurements, that a dust storm reaches Israel early September, lasts several days and dust concentrations reach values 100 times the normal (1700µg/m3). Dust storms are normally monitored in the east Mediterranean using satellites and surface PM data. Obviously, these cannot show the vertical evolution of the dust including penetration, sinking and cleaning since vertical profiles are not available. High-resolution, micro Lidar Ceilometer network is gradually established in Israel. A few instruments of this network were already operational during the dust storm. The most crucial vertical information, monitored by these Ceilometers with 10m resolution vertically, every 16s, is analyzed. The difference in the cloud-layers allow the investigation of the high altitude of 1000m dust penetration, its sinking into the complex structured 250-500m mixed layer and the gradual 3D cleaning. This finding contradicts the conventional understanding that cleaning is due to gradual descent and shows not only the vertical fluctuation during the entire event but also the vertical rise to 2000m at the end of the event. The vertical information showed that the actual event period duration was 7 days, compared to only 90 hours based on traditional detectors. Is it a new dust source in the E. Mediterranean-long and short term trends?
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
...; and (8) certain battered shrimp. Dusted shrimp is a shrimp-based product: (1) That is produced from...; and (5) that is subjected to IQF freezing immediately after application of the dusting layer. Battered...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... battered shrimp. Dusted shrimp is a shrimp-based product: (1) That is produced from fresh (or thawed-from... subjected to IQF freezing immediately after application of the dusting layer. Battered shrimp is a shrimp...
"Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?
NASA Technical Reports Server (NTRS)
Marshall, J.; Smith, P.; White, B.; Farrell, W.
1999-01-01
Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding at grain boundaries). If dust devils continually loft dust to kilometer heights, and the dust is sprayed into many cubic kilometers of atmosphere each time, could the devils produce a continual background of atmospheric dust that might be mistaken for the fallout of a distant large-scale dust storm? From a human exploration perspective, dust devils are unlikely to pose any, life- threatening situation for an astronaut unfortunate enough to encounter a momentary swirling cloud of loose soil. However, it is noted that pervasive dust is probably one of the greatest long-term hazards for a human encampment. The fineness and penetration capabilities of the dust, its electrostatic adhesive properties, and its complete ubiquity, render the material a persistent nuisance at best, but at worst, over a period of many months it is possible that space suits, machinery, habitat interiors, air filters, and so forth, could become jeopardized. Owing to dust penetration, the space suits used in the Apollo landings were rendered unusable after a few EVA activities. There will be a definite attempt to situate a human colony on Mars in an area that is far removed from the regions of the planet known for being the centers of major dust storms. At the heart of these storm systems, the dust lofting mechanics are unknown, but they are energetic and perhaps potentially life-threatening for an astronaut. Locating a colony in a region that appears from space to be meteorologically benign may lead to colony placement in a region prone to dust devils, but dust devils are not (or have not been) detectable from orbital observations: the region surveyed for placement will appear like the apparently inactive and area referred to earlier. The region may be spared from highly energetic weather systems, but it may not be necessarily immune from continual dust disturbance. Additional information is contained in the original.
"Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?
NASA Astrophysics Data System (ADS)
Marshall, J.; Smith, P.; White, B.; Farrell, W.
1999-09-01
Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding at grain boundaries). If dust devils continually loft dust to kilometer heights, and the dust is sprayed into many cubic kilometers of atmosphere each time, could the devils produce a continual background of atmospheric dust that might be mistaken for the fallout of a distant large-scale dust storm? From a human exploration perspective, dust devils are unlikely to pose any, life- threatening situation for an astronaut unfortunate enough to encounter a momentary swirling cloud of loose soil. However, it is noted that pervasive dust is probably one of the greatest long-term hazards for a human encampment. The fineness and penetration capabilities of the dust, its electrostatic adhesive properties, and its complete ubiquity, render the material a persistent nuisance at best, but at worst, over a period of many months it is possible that space suits, machinery, habitat interiors, air filters, and so forth, could become jeopardized. Owing to dust penetration, the space suits used in the Apollo landings were rendered unusable after a few EVA activities. There will be a definite attempt to situate a human colony on Mars in an area that is far removed from the regions of the planet known for being the centers of major dust storms. At the heart of these storm systems, the dust lofting mechanics are unknown, but they are energetic and perhaps potentially life-threatening for an astronaut. Locating a colony in a region that appears from space to be meteorologically benign may lead to colony placement in a region prone to dust devils, but dust devils are not (or have not been) detectable from orbital observations: the region surveyed for placement will appear like the apparently inactive and area referred to earlier. The region may be spared from highly energetic weather systems, but it may not be necessarily immune from continual dust disturbance. Additional information is contained in the original.
Impact-Mobilized Dust in the Martian Atmosphere
NASA Technical Reports Server (NTRS)
Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.
2002-01-01
We consider dust production and entrainment into the atmosphere of Mars by impacts. Numerical simulations based on the multidimensional multimaterial hydrocode were conducted for impactors 1 to 100 m in size and velocities 11 and 20 kilometers per second. The size distribution of particles was based on experimentrr wing TNT explosions. Dust can be mobilized even when the impactor does not reach the ground through the release of energy in the atmosphere, We found that the blast produced winds entrained dust by a mechanism similar to boundary layer winds as determined from the wind-tunnel tests. For a l-m radius stony asteroid releasing its energy in the atmosphere the lifted mass of dust is larger than that in a typical dust devil and could trigger local dust storms, For a 100-m-radius meteoroid the amount of injected dust is comparable with the tota! mass of a global dust storm.
Integrating Windblown Dust Forecasts with Public Safety and Health Systems
NASA Astrophysics Data System (ADS)
Sprigg, W. A.
2014-12-01
Experiments in real-time prediction of desert dust emissions and downstream plume concentrations (~ 3.5 km near-surface spatial resolution) succeed to the point of challenging public safety and public health services to beta test a dust storm warning and advisory system in lowering risks of highway and airline accidents and illnesses such as asthma and valley fever. Key beta test components are: high-resolution models of dust emission, entrainment and diffusion, integrated with synoptic weather observations and forecasts; satellite-based detection and monitoring of soil properties on the ground and elevated above; high space and time resolution for health surveillance and transportation advisories.
Why is there evidence for flowing ice at mid-latitudes on Mars but not at the poles?
NASA Astrophysics Data System (ADS)
Smith, I. B.
2017-12-01
Ice has been detected on Mars in many places, from the polar caps, to mid-latitudes. In many locations there exists evidence for glacial flow. This raises the possibility of flow for the polar layered deposits (PLD). Since the >2000 m thick ice deposits were first observed, speculation about their flow status have persisted. Several stratigraphic predictions regarding flow have been made (Figure 1), but these predictions are not supported with observational data (Smith and Holt 2015) The disagreement between model and observations has led to a general consensus that the polar ice flows more slowly than other processes acting on the PLD, but the reasoning is not understood. Here I posit that the polar layered deposits do not act as a single, generic ice sheet. Instead, they act as a stack of thin ice sheets, where each layer is separated by a boundary of dust, and all layers flow individually. The layers act as barriers to vertical flow, so the viscosity of the cold ice can only be expressed through lateral expansion. I plan to present a simple experiment demonstrating the multi-layer, stacked flow hypothesis. I will demonstrate that the layers themselves flow but do not deform the entire ice sheet, as previously predicted. This allows for the PLD to retain their steep slopes and prevents many of the predicted flow features to form. The major component of this hypothesis is that the dust layers hinder flow. Thus, constraining the friction coefficient, viscosity, tensile strength and compressibility of the dust layers becomes an important next step for testing the stacked, multi-layer flow scenario. Acknowledgements: Thanks to Eric Larour and David Goldsby for helpful comments.
Transverse ageostrophic circulations associated with elevated mixed layers
NASA Technical Reports Server (NTRS)
Keyser, D.; Carlson, T. N.
1984-01-01
The nature of the frontogenetically forced transverse ageostrophic circulations connected with elevated mixed layer structure is investigated as a first step toward diagnosing the complex vertical circulation patterns occurring in the vicinity of elevated mixed layers within a severe storm environment. The Sawyer-Eliassen ageostrophic circulation equation is reviewed and applied to the elevated mixed layer detected in the SESAME IV data set at 2100 GMT of May 9, 1979. The results of the ageostrophic circulation diagnosis are confirmed and refined by considering an analytic specification for the elevated mixed layer structure.
Assessment of Child Lead Exposure in a Philadelphia Community, 2014.
Dignam, Timothy; Pomales, Ana; Werner, Lora; Newbern, E Claire; Hodge, James; Nielsen, Jay; Grober, Aaron; Scruton, Karen; Young, Rand; Kelly, Jack; Brown, Mary Jean
2018-01-10
Several urban neighborhoods in Philadelphia, Pennsylvania, have a history of soil, household lead paint, and potential lead-emitting industry contamination. To (1) describe blood lead levels (BLLs) in target neighborhoods, (2) identify risk factors and sources of lead exposure, (3) describe household environmental lead levels, and (4) compare results with existing data. A simple, random, cross-sectional sampling strategy was used to enroll children 8 years or younger living in selected Philadelphia neighborhoods with a history of lead-emitting industry during July 2014. Geometric mean of child BLLs and prevalence of BLLs of 5 μg/dL or more were calculated. Linear and logistic regression analyses were used to ascertain risk factors for elevated BLLs. Among 104 children tested for blood lead, 13 (12.4%; 95% confidence interval [CI], 7.5-20.2) had BLLs of 5 μg/dL or more. The geometric mean BLL was 2.0 μg/dL (95% CI, 1.7-2.3 μg/dL). Higher geometric mean BLLs were significantly associated with front door entryway dust lead content, residence built prior to 1900, and a child currently or ever receiving Medicaid. Seventy-one percent of households exceeded the screening level for soil, 25% had an elevated front door floor dust lead level, 28% had an elevated child play area floor dust lead level, and 14% had an elevated interior window dust lead level. Children in households with 2 to 3 elevated environmental lead samples were more likely to have BLLs of 5 μg/dL or more. A spatial relationship between household proximity to historic lead-emitting facilities and child BLL was not identified. Entryway floor dust lead levels were strongly associated with blood lead levels in participants. Results underscore the importance to make housing lead safe by addressing all lead hazards in and around the home. Reduction of child lead exposure is crucial, and continued blood lead surveillance, testing, and inspection of homes of children with BLLs of 5 μg/dL or more to identify and control lead sources are recommended. Pediatric health care providers can be especially vigilant screening Medicaid-eligible/enrolled children and children living in very old housing.
Haas, Emily J.; Cecala, Andrew B.; Hoebbel, Cassandra L.
2016-01-01
Research continues to investigate barriers to managing occupational health and safety behaviors among the workforce. Recent literature argues that (1) there is a lack of consistent, multilevel communication and application of health and safety practices, and (2) social scientific methods are absent when determining how to manage injury prevention in the workplace. In response, the current study developed and tested a multilevel intervention case study at two industrial mineral mines to help managers and workers communicate about and reduce respirable silica dust exposures at their mine sites. A dust assessment technology, the Helmet-CAM, was used to identify and encourage communication about potential problem areas and tasks on site that contributed to elevated exposures. The intervention involved pre- and post-assessment field visits, four weeks apart that included multiple forms of data collection from workers and managers. Results revealed that mine management can utilize dust assessment technology as a risk communication tool to prompt and communicate about healthier behaviors with their workforce. Additionally, when workers were debriefed with the Helmet-CAM data through the device software, the dust exposure data can help improve the knowledge and awareness of workers, empowering them to change subtle behaviors that could reduce future elevated exposures to respirable silica dust. This case study demonstrates that incorporating social scientific methods into the application of health and safety management strategies, such as behavioral modification and technology integration, can leverage managers’ communication practices with workers, subsequently improving health and safety behaviors. PMID:26807445
NASA Technical Reports Server (NTRS)
Thomas, P. G.; Gierasch, P.
1985-01-01
Large columns of dust have been discovered rising above plains on Mars. The storms are probably analogous to terrestrial dust devils, but their size indicates that they are more similar to tornadoes in intensity. They occur at locations where the soil has been strongly warmed by the Sun, and there the surface is smooth and fine grained. These are the same conditions that favor dust devils on Earth. Warm gas from the lowest atmospheric layer converges and rises in a thin column, with intense swirl developing at the edge of the column. In one area a mosaic of Viking images shows 97 vortices in a three day period. This represents a density of vortices of about one in each 900 square kilometers. Thus, these dust devils may be important in moving dust or starting over dust storms.
NASA Astrophysics Data System (ADS)
Masuzaki, S.; Tokitani, M.; Otsuka, T.; Oya, Y.; Hatano, Y.; Miyamoto, M.; Sakamoto, R.; Ashikawa, N.; Sakurada, S.; Uemura, Y.; Azuma, K.; Yumizuru, K.; Oyaizu, M.; Suzuki, T.; Kurotaki, H.; Hamaguchi, D.; Isobe, K.; Asakura, N.; Widdowson, A.; Heinola, K.; Jachmich, S.; Rubel, M.; contributors, JET
2017-12-01
Results of the comprehensive surface analyses of divertor tiles and dusts retrieved from JET after the first ITER-like wall campaign (2011-2012) are presented. The samples cored from the divertor tiles were analyzed. Numerous nano-size bubble-like structures were observed in the deposition layer on the apron of the inner divertor tile, and a beryllium dust with the same structures were found in the matter collected from the inner divertor after the campaign. This suggests that the nano-size bubble-like structures can make the deposition layer to become brittle and may lead to cracking followed by dust generation. X-ray photoelectron spectroscopy analyses of chemical states of species in the deposition layers identified the formation of beryllium-tungsten intermetallic compounds on an inner vertical tile. Different tritium retention profiles along the divertor tiles were observed at the top surfaces and at deeper regions of the tiles by using the imaging plate technique.
History and Flight Devleopment of the Electrodynamic Dust Shield
NASA Technical Reports Server (NTRS)
Johansen, Michael R.; Mackey, Paul J.; Hogue, Michael D.; Cox, Rachel E.; Phillips, James R., III; Calle, Carlos I.
2015-01-01
The surfaces of the moon, Mars, and that of some asteroids are covered with a layer of dust that may hinder robotic and human exploration missions. During the Apollo missions, for example, lunar dust caused a number of issues including vision obscuration, false instrument readings, contamination, and elevated temperatures. In fact, some equipment neared failure after only 75 hours on the lunar surface due to effects of lunar dust. NASA's Kennedy Space Center has developed an active technology to remove dust from surfaces during exploration missions. The Electrodynamic Dust Shield (EDS), which consists of a series of embedded electrodes in a high dielectric strength substrate, uses a low power, low frequency signal that produces an electric field wave that travels across the surface. This non-uniform electric field generates dielectrophoretic and electrostatic forces capable of moving dust out of these surfaces. Implementations of the EDS have been developed for solar radiators, optical systems, camera lenses, visors, windows, thermal radiators, and fabrics The EDS implementation for transparent applications (solar panels, optical systems, windows, etc.) uses transparent indium tin oxide electrodes on glass or transparent lm. Extensive testing was performed in a roughly simulated lunar environment (one-sixth gravity at 1 mPa atmospheric pressure) with lunar simulant dust. EDS panels over solar radiators showed dust removal that restored solar panel output reaching values very close to their initial output. EDS implementations for thermal radiator protection (metallic spacecraft surfaces with white thermal paint and reflective films) were also extensively tested at similar high vacuum conditions. Reflectance spectra for these types of implementations showed dust removal efficiencies in the 96% to 99% range. These tests indicate that the EDS technology is now at a Technology Readiness Level of 4 to 5. As part of EDS development, a flight version is being prepared for several flight opportunities. The flight version of the EDS will incorporate significantly smaller electronics, with an expected mass and volume of 500 g and 350 cm(exp. 3) respectively. One of the opportunities is an International Space Station (ISS) experiment: Materials for International Space Station Experiment 10 (MISSE-10). This experiment aims to verify the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the moon. A second flight opportunity exists to provide an EDS to several companies as part of NASA's Lunar CATALYST program. The current mission concept would fly the EDS on the footpad of one of the Lunar CATALYST vehicles. Dust will likely deposit on the footpad through normal surface rover activities, but also upon landing where lunar dust is expected to be uplifted. To analyze the e effectiveness of the EDS system, photographs of the footpad with one of the spacecrafts onboard cameras are anticipated. If successful in these test flights, the EDS technology will be ready to be used in the protection of actual mission equipment for future NASA and commercial missions to the moon, asteroids, and Mars.
2005-07-15
In July of 2005, a continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean, captured by the Atmospheric Infrared Sounder onboard NASA Aqua satellite. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. http://photojournal.jpl.nasa.gov/catalog/PIA00448
Effect of different types of litter material for rearing broilers.
Swain, B K; Sundaram, R N
2000-07-01
1. Coir dust was evaluated as broiler litter in comparison with sawdust and rice husk using 135 commercial broilers. Forty-five broiler chicks were reared to 42 d on a 50 mm layer of each of these litters. 2. Birds reared on coir dust showed no difference in food consumption, body weight gain, food conversion efficiency production number and survivability in comparison to those reared on saw dust and rice husk. 3. It was concluded that coir dust is suitable as broiler litter when cheaply available.
Atmospheric results from the Phoenix Mars Mission
NASA Astrophysics Data System (ADS)
Smith, Peter
The Phoenix Mission operated in the northern plains of Mars for 5 months starting May 25, 2008 spanning solar longitudes from 78 to 143 (summer). Throughout this period a diverse set of atmospheric measurements were taken and analyzed. The data sets provide information on the diurnal temperatures at 2 m above the surface, diurnal pressure, wind vectors, cloud properties, dust devils, the boundary layer, and humidity. In addition, coordinated observations were obtained with orbital instruments from Mars Reconnaissance Orbiter, Odyssey, and Mars Express. The measurements have been compared with predictions from Global Climate Models and found to agree in most regards. Taken as a whole this represents a unique description of the summer weather in a heretofore unexplored region of Mars. The Canadian LIDAR experiment gives us the first direct measurement of the boundary layer height. The first 90 sols of the mission were conducted under dusty conditions and the height of the dust layer was determined as 4-5 km above the surface. After 90 sols, the dust dispersed and water ice clouds were seen at ever lower altitudes and the boundary layer dropped to as low as 3 km. Snowfall was observed and frost imaged on the surface. Winds swirled around the lander completing a full circle each sol; typical wind speeds were 5-10 m/s. From near surface humidity measurements, a diurnal cycle sublimates ice and adsorbed water from the surface soil as the Sun heats it forming water ice clouds at the boundary layer. As temperatures cool in the night the water is returned as snow and frost to the soil. Temperatures ranged from -30 C to -90 C, but never exceed the melting point; even though atmospheric pressures are always above the triple point, liquid water is not allowed at this time. The lack of dune forms and the presence of dust devils suggest that wind erosion is a strong force despite the constant dust fall observed on the spacecraft deck. Local dust storms are often seen by the MARCI instrument on Odyssey and the dust optical depth above Phoenix testifies to rapid variations. The microscopic examination of the soil by the MECA instrument reveals two size modes: larger particles rounded by saltation and a clay-sized mode likely transported by atmospheric winds. Even so, the crusted surface and cobbles perched on the surface make it likely that the soil particles have been emplaced for long periods. Atmospheric data sets are still being analyzed and the latest results will be presented at the conference.
Overview of ACE-Asia Spring 2001 Investigations On Aerosol-Radiation Interactions
NASA Technical Reports Server (NTRS)
Russell, P. B.; Flatau, P. J.; Valero, F. P. J.; Nakajima, T.; Holben, B.; Pilewskie, P.; Bergin, M.; Schmid, B.; Bergstrom, R. W.; Vogelmann, A.;
2002-01-01
ACE-Asia's extensive measurements from land, ocean, air and space quantified aerosol-radiation interactions. Results from each platform type, plus satellite-suborbital combinations, include: 1. Time series of multiwavelength aerosol optical depth (ADD), Angstrom exponent (alpha), single-scattering albedo (SSA), and size distribution from AERONET radiometry at 13 stations. In China and Korea AOD and alpha were strongly anticorrelated (reflecting transient dust events); dust volume-size modes peaked near 8 microns diameter; and SSA(dust) greater than SSA(pollution). 2. Calculations and measurements of photosynthetically active radiation and aerosols in China yield 24-h average downward surface radiative forcing per AOD(500 nm) of -27 W/sq m (400-700 nm). 3. The Hawaii-Japan cruise sampled a gradient with AOD(500 nm) extremes of 0.1 and 1.1. Shipboard measurements showed that adding dust to pollution increased SSA(550 nm, 55% RH), typically from -0.91 to approx. 0.97. Downwelling 8-12 micron radiances showed aerosol effects, especially in the major April dust event, with longwave forcing estimated at -5 to 15 W/sq m. 4. Extinction profiles from airborne sunphotometry and total-direct-diffuse radiometry show wavelength dependence often varying strongly with height, reflecting layering of dust-dominated over pollution-dominated aerosols. Comparing sunphotometric extinction profiles to those from in situ measurements (number and composition vs size, or scattering and absorption) shows layer heights agree, but extinction sometimes differs. 5. Airborne solar spectral flux radiometry yields absorption spectra for layers. Combining with AOD spectra yields best-fit aerosol single scattering albedo spectra. 6. Visible, NIR and total solar fluxes combined with AOD give radiative forcing efficiencies at surface and aloft.
Mars Dust: Characterization of Particle Size and Electrostatic Charge Distribution
NASA Technical Reports Server (NTRS)
Mazumder, M. K.; Saini, D.; Biris, A. S.; Sriama, P. K.; Calle, C.; Buhler, C.
2004-01-01
Some of the latest pictures of Mars surface sent by NASA's Spirit rover in early January, 2004, show very cohesive, "mud-like" dust layers. Significant amounts of dust clouds are present in the atmosphere of Mars [1-4]. NASA spacecraft missions to Mars confirmed hypotheses from telescopic work that changes observed in the planet's surface markings are caused by wind-driven redistribution of dust. In these dust storms, particles with a wide range of diameters (less than 1 micrometer to 50 micrometers) are a serious problem to solar cells, spacecraft, and spacesuits. Dust storms may cover the entire planet for an extended period of time [5]. It is highly probable that the particles are charged electrostatically by triboelectrification and by UV irradiation.
Typical tropospheric aerosol backscatter profiles for Southern Ireland: The Cork Raman lidar
NASA Astrophysics Data System (ADS)
McAuliffe, Michael A. P.; Ruth, Albert A.
2013-02-01
A Raman lidar instrument (UCLID) was established at the University College Cork as part of the European lidar network EARLINET. Raman backscatter coefficients, extinction coefficients and lidar ratios were measured within the period 28/08/2010 and 24/04/2011. Typical atmospheric scenarios over Southern Ireland in terms of the aerosol load in the planetary boundary layer are outlined. The lidar ratios found are typical for marine atmospheric condition (lidar ratio ca. 20-25 sr). The height of the planetary boundary layer is below 1000 m and therefore low in comparison to heights found at other lidar sites in Europe. On the 21st of April a large aerosol load was detected, which was assigned to a Saharan dust event based on HYSPLIT trajectories and DREAM forecasts along with the lidar ratio (70 sr) for the period concerned. The dust was found at two heights, pure dust at 2.5 km and dust mixing with pollution from 0.7 to 1.8 km with a lidar ratio of 40-50 sr.
Dust emission from comets at large heliocentric distances. I - The case of comet Bowell /1980b/
NASA Technical Reports Server (NTRS)
Houpis, H. L. F.; Mendis, D. A.
1981-01-01
Alternative processes of dust emission from comets at large heliocentric distances are considered, in order to explain the dust coma observed in comet Bowell (1980b) at a heliocentric distance as large as 7.17 AU. It is shown that the electrostatic blow-off of dust from a charged, H2O-dominated nucleus having a layer of loose, fine dust may be the formation process of the dust coma, with the coma size expected from the process being comparable to the observed value and the dust grain size being equal to or less than 0.4 microns in size. The upper limit for the total mass in the coma is 3.9 x 10 to the 8th g, and the spatial extension less than 10,000 km. The observed activity may alternatively be due to dust entrainment by the sublimating gas from a CO2-dominated nucleus.
Dust Mitigation for Martian Exploration
NASA Technical Reports Server (NTRS)
Williams, Blakeley Shay
2011-01-01
One of the efforts of the In-Situ Resource Utilization project is to extract oxygen, fuel, and water from the Martian air. However, the surface of Mars is covered in a layer of dust, which is uploaded into the atmosphere by dust devils and dust storms. This atmospheric dust would be collected along with the air during the conversion process. Thus, it is essential to extract the dust from the air prior to commencing the conversion. An electrostatic precipitator is a commonly used dust removal technology on earth. Using this technology, dust particles that pass through receive an electrostatic charge by means of a corona discharge. The particles are then driven to a collector in a region of high electric field at the center of the precipitator. Experiments were conducted to develop a precipitator that will function properly in the Martian atmosphere, which has a very low pressure and is made up . of primarily carbon dioxide.
NASA Astrophysics Data System (ADS)
Gautam, R.; Hsu, N. C.; Lau, W. K.
2013-12-01
The Himalaya-Tibetan Plateau (HTP) has a profound influence on the Asian climate. The HTP are also among the largest snow/ice-covered regions on the Earth and provide major freshwater resource to the downstream densely-populated regions of Asia. Recent studies indicate climate warming over the HTP amplified by atmospheric heating and deposition of absorbing aerosols (e.g. dust and soot) over the HTP snowpack and glaciers. Recently, greater attention has focused on the effects of soot deposition on accelerated snowmelt and glacier retreat in the HTP, associated with increasing anthropogenic emissions in Asia. On the other hand, the role of transported dust affecting snow albedo/melt is not well understood over the HTP, in spite of the large annual cycle of mineral dust loading, particularly over the northern parts of south Asia during pre-monsoon season. This study addresses the large-scale effects of dust deposition on snow albedo in the elevated HTP from a satellite observational perspective. Dust aerosol transport, from southwest Asian arid regions, is observed in satellite imagery as darkening of the Himalayan snowpack. Additionally, multi-year spaceborne lidar observations, from CALIPSO, also show dust advected to elevated altitudes (~5km) over the Himalayan foothills, and episodically reaching the top of the western Himalaya. Spectral surface reflectance analysis of dust-laden snow cover (from MODIS) indicates enhanced absorption in the shorter visible wavelengths, yielding a significant gradient in the visible-nearIR reflectance spectrum. While soot in snow is difficult to distinguish from remote sensing, our spectral reflectance analysis of dust detection in the snowpack is consistent with theoretical simulations of snow darkening due to dust impurity. We find that the western HTP, in general, is influenced by enhanced dust deposition due to its proximity to major dust sources (and prevailing dust transport pathways), compared to the eastern HTP. Coinciding with the snowmelt period, dust deposition appears to further cause snow reflectance reduction, i.e. snow darkening, from spring to summer months. Among the entire HTP, we show that the western Himalaya and the Hindu-Kush snowpack are subjected to greater dust deposition and snow albedo reduction. Thus, our satellite-based observational study addresses the spatial variability of large-scale dust deposition on snow cover in the extensive HTP. A climatological and inter-annual perspective of the spatial variability of dust-induced snow darkening over the HTP will be presented, using ~10 years of MODIS spectral reflectance data (at high spatial resolution of ~1km). Results from this study provide insight into the particular role of desert dust towards accelerated seasonal snowmelt in the HTP.
NASA Astrophysics Data System (ADS)
Nisantzi, A.; Mamouri, R. E.; Ansmann, A.; Hadjimitsis, D.
2014-06-01
Four-year observations (2010-2014) with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E), Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3 days old smoke plumes in terms of particle depolarization contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke-dust mixtures from the emission event to phases of long-range transport (>4 days after emission). We found significant differences in the particle depolarization ratio (PDR) with values from 9-18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3-13% when Turkish fires were absent. High Ångström exponents of 1.4-2.2 during all these events with lofted smoke layers, occuring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. the travel time (spatial distance between Limassol and last fire area), PDR decreased strongly from initial values around 16-18% (one day travel) to 4-8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with the literature. Computation of particle extinction coefficient and mass concentrations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions of the order of 10% (for PDR = 4%, travel times >4 days) and 50% (PDR = 15%, one day travel time) and mass-related dust fractions of 25% (PDR = 4%) to 80% (PDR = 15%). Biomass burning should be considered as another source of free tropospheric soil dust.
NASA Astrophysics Data System (ADS)
Liu, Dantong; Taylor, Jonathan W.; Crosier, Jonathan; Marsden, Nicholas; Bower, Keith N.; Lloyd, Gary; Ryder, Claire L.; Brooke, Jennifer K.; Cotton, Richard; Marenco, Franco; Blyth, Alan; Cui, Zhiqiang; Estelles, Victor; Gallagher, Martin; Coe, Hugh; Choularton, Tom W.
2018-03-01
During the summertime, dust from the Sahara can be efficiently transported westwards within the Saharan air layer (SAL). This can lead to high aerosol loadings being observed above a relatively clean marine boundary layer (MBL) in the tropical Atlantic Ocean. These dust layers can impart significant radiative effects through strong visible and IR light absorption and scattering, and can also have indirect impacts by altering cloud properties. The processing of the dust aerosol can result in changes in both direct and indirect radiative effects, leading to significant uncertainty in climate prediction in this region. During August 2015, measurements of aerosol and cloud properties were conducted off the coast of west Africa as part of the Ice in Cloud Experiment - Dust (ICE-D) and AERosol properties - Dust (AER-D) campaigns. Observations were obtained over a 4-week period using the UK Facility for Atmospheric Airborne Measurements (FAAM) BAe 146 aircraft based on Santiago Island, Cabo Verde. Ground-based observations were collected from Praia (14°57' N, 23°29' W; 100 m a.s.l.), also located on Santiago Island. The dust in the SAL was mostly sampled in situ at altitudes of 2-4 km, and the potential dust age was estimated by backward trajectory analysis. The particle mass concentration (at diameter d = 0.1-20 µm) decreased with transport time. Mean effective diameter (Deff) for supermicron SAL dust (d = 1-20 µm) was found to be 5-6 µm regardless of dust age, whereas submicron Deff (d = 0.1-1 µm) showed a decreasing trend with longer transport. For the first time, an airborne laser-induced incandescence instrument (the single particle soot photometer - SP2) was deployed to measure the hematite content of dust. For the Sahel-influenced dust in the SAL, the observed hematite mass fraction of dust (FHm) was found to be anti-correlated with the single scattering albedo (SSA, λ = 550 nm, for particles d < 2.5 µm); as potential dust age increased from 2 to 7 days, FHm increased from 2.5 to 4.5 %, SSA decreased from 0.97 to 0.93 and the derived imaginary part (k) of the refractive index at 550 nm increased from 0.0015 to 0.0035. However, the optical properties of Sahara-influenced plumes (not influenced by the Sahel) were independent of dust age and hematite content with SSA ˜ 0.95 and k ˜ 0.0028. This indicates that the absorbing component of dust may be source dependent, or that gravitational settling of larger particles may lead to a higher fraction of more absorbing clay-iron aggregates at smaller sizes. Mie calculation using the measured size distribution and size-resolved refractive indices of the absorbing components (black carbon and hematite) reproduces the measured SSA to within ±0.02 for SAL dust by assuming a goethite / hematite mass ratio of 2. Overall, hematite and goethite constituted 40-80 % of the absorption for particles d < 2.5 µm, and black carbon (BC) contributed 10-37 %. This highlights the importance of size-dependent composition in determining the optical properties of dust and also the contribution from BC within dust plumes.
Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments
NASA Technical Reports Server (NTRS)
Koeberl, Christian
1988-01-01
Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band samples, including Ir. Iridium determinations were made using INAA, with synthetical and natural (meteorite) standards. These findings are discussed.
Carbohydrate and protein contents of grain dusts in relation to dust morphology.
Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A
1986-01-01
Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476
A randomized trial of the effect of dust control on children's blood lead levels.
Lanphear, B P; Winter, N L; Apetz, L; Eberly, S; Weitzman, M
1996-07-01
Dust control is recommended as one of the cornerstones of controlling childhood lead exposure; however, the effectiveness of dust control has not been demonstrated for children who have low to mild elevations in blood lead (ie, less than 25 micrograms/dL). The objective of this study was to determine whether dust control, as performed by families, had an effect on children's blood lead levels and dust lead levels in children's homes. Randomized, controlled trial. Community-based trial in Rochester, NY. One hundred four children, 12 to 31 months of age at baseline. Families and children were randomized to one of two groups. Families of children in the intervention group received cleaning supplies, information about cleaning areas that are often contaminated with lead, and a cleaning demonstration. Families in the control group received only a brochure about lead poisoning prevention. Baseline measurements of lead in blood, house dust, soil, water, and paint were taken from both groups. Seven months after enrollment, a second blood lead assay was obtained, and lead levels in household dust were measured. The main outcome measures were change in blood lead levels and dust lead levels by treatment group. The median blood lead level of children enrolled in the study was 6.7 micrograms/dL (range, 1.7 to 30.6 micrograms/dL). There was no significant difference in the change of children's blood lead levels or dust lead levels by treatment group. The median change in blood lead levels among children in the intervention group was -0.05 micrograms/dL compared with -0.60 micrograms/dL among those in the control group. There also was no significant difference in the change of dust lead by group assignment, although there was a trend toward a significant difference in the percentage of change in dust lead levels on noncarpeted floors, which was greater among houses in the intervention group. These data suggest that an intervention that consists only of providing cleaning supplies and a brief description of dust control is not effective at reducing blood lead levels among urban children with low to mild elevations in blood lead levels at a 7-month follow-up.
NASA Astrophysics Data System (ADS)
Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Popov, G.
2013-12-01
We present a study of dust deposition events and its physical and chemical characteristics in Caucasus Mountains as documented by snow and firn pack at Mt Elbrus. Dust samples were collected from the shallow ice cores and snow pits in 2009-2013 at the western Elbrus plateau (5150 m a.s.l.). Particle size distribution and chemical analysis (major ions, trace elements) were completed for each sample using Coulter Counter Multisizer III, scanning electron microscopy (SEM), IC and ICPMS analysis. It was shown that desert dust deposition occurred in Caucasus 4-8 times a year and originates from the Northern Sahara and the deserts of the Middle East. Analysis of volumetric particle size distributions showed that the modal values ranged between 2 μm and 4 μm although most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm. These values are lower than those obtained from the ice cores in central and southern Asia following the deposition of long-travelled dust and are closer to those reported for the European Alps and the polar ice cores. All samples containing dust have a single mode which is usually interpreted as a single source region. They do not reveal any significant differences between the Saharan and the Middle Eastern sources. The annual average dust mass concentrations were 10-15 mg kg-1 which is higher than the average concentrations reported for other mountain regions and this was strongly affected by dust deposition events. The deposition of dust resulted in elevated concentrations of most ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from multiple sources in the Middle East including Mesopotamia or passing over the Middle East was characterised by the elevated concentrations of nitrates and ammonia which is related to a high atmospheric loads of ammonium emitted by agricultural sources and high concentrations of ammonium in dust originating from this region. By contrast, samples of the Saharan dust showed low concentrations consistent with the low ammonium loads in the source region. . The research leading to these results has received funding from the European Union Seventh Framework Programme FP7-PEOPLE-2010-IIF under grant agreement PIIF-GA-2010-275071 Russian Foundation for Basic Research (grants 11-05-00304 and 13-05-10069).
Degradation of radiator performance on Mars due to dust
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Forkapa, Mark
1992-01-01
An artificial mineral of the approximate elemental composition of Martian soil was manufactured, crushed, and sorted into four different size ranges. Dust particles from three of these size ranges were applied to arc-textured Nb-1 percent Zr and Cu radiator surfaces to assess their effect on radiator performance. Particles larger than 75 microns did not have sufficient adhesive forces to adhere to the samples at angles greater than about 27 deg. Pre-deposited dust layers were largely removed by clear wind velocities greater than 40 m/s, or by dust-laden wind velocities as low as 25 m/s. Smaller dust grains were more difficult to remove. Abrasion was found to be significant only in high velocity winds (89 m/s or greater). Dust-laden winds were found to be more abrasive than clear wind. Initially dusted samples abraded less than initially clear samples in dust laden wind. Smaller dust particles of the simulant proved to be more abrasive than large. This probably indicates that the larger particles were in fact agglomerates.
Cratering Studies in Thin Plastic Films
NASA Astrophysics Data System (ADS)
Shu, A. J.; Bugiel, S.; Gruen, E.; Horanyi, M.; Munsat, T. L.; Srama, R.
2014-12-01
Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can then be fed into electrostatic relaxation models to enhance the fidelity of interpretation of charge signals from a PVDF detector. An electrostatic relaxation code was also used to determine the theoretical charge produced by the PVDF detector given a crater of specific depth and diameter. Experimental results and preliminary simulation results and conclusions will be presented.
Dust Storm Feature Identification and Tracking from 4D Simulation Data
NASA Astrophysics Data System (ADS)
Yu, M.; Yang, C. P.
2016-12-01
Dust storms cause significant damage to health, property and the environment worldwide every year. To help mitigate the damage, dust forecasting models simulate and predict upcoming dust events, providing valuable information to scientists, decision makers, and the public. Normally, the model simulations are conducted in four-dimensions (i.e., latitude, longitude, elevation and time) and represent three-dimensional (3D), spatial heterogeneous features of the storm and its evolution over space and time. This research investigates and proposes an automatic multi-threshold, region-growing based identification algorithm to identify critical dust storm features, and track the evolution process of dust storm events through space and time. In addition, a spatiotemporal data model is proposed, which can support the characterization and representation of dust storm events and their dynamic patterns. Quantitative and qualitative evaluations for the algorithm are conducted to test the sensitivity, and capability of identify and track dust storm events. This study has the potential to assist a better early warning system for decision-makers and the public, thus making hazard mitigation plans more effective.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 6 May 2002) The Science Cerberus is a dark region on Mars that has shrunk down from a continuous length of about 1000 km to roughly three discontinuous spots a few 100 kms in length in less than 20 years. There are two competing processes at work in the Cerberus region that produce the bright and dark features seen in this THEMIS image. Bright dust settles out of the atmosphere, especially after global dust storms, depositing a layer just thick enough to brighten the dark surfaces. Deposition occurs preferentially in the low wind 'shadow zones' within craters and downwind of crater rims, producing the bright streaks. The direction of the streaks clearly indicates that the dominant winds come from the northeast. Dust deposition would completely blot out the dark areas if it were not for the action of wind-blown sand grains scouring the surface and lifting the dust back into the atmosphere. Again, the shadow zones are protected from the blowing sand, preserving the bright layer of dust. Also visible in this image are lava flow features extending from the flanks of the huge Elysium volcanoes to the northwest. Two shallow channels and a raised flow lobe are just barely discernable. The lava channel in the middle of the image crosses the boundary of the bright and dark surfaces without any obvious change in its morphology. This demonstrates that the bright dust layer is very thin in this location, perhaps as little as a few millimeters. The Story Mars is an ever-changing land of spectacular contrasts. This THEMIS image shows the Cerberus region of Mars, a dark area located near the Elysium volcanoes and fittingly named after the three-headed, dragon-tailed dog who guards the door of the underworld. Two opposing processes are at work here: a thin layer of dust falling from the atmosphere and/or dust storms creating brighter surface areas (e.g. the top left portion of this image) and dust being scoured away by the action of the Martian wind disturbing the sand grains and freeing the lighter dust to fly away once more (the darker portions of this image). There are, however, some darker areas that are somewhat shielded and protected from the wind that have yielded bright, dusty crater floors and wind streaks that trail out behind the craters. These wind streaks tell a story all their own as to the prevailing wind direction coming from the northeast. This, added to the fact that this dark region was once 1000 km in length and has dwindled to just a few isolated dark splotches of 100 kilometers in the past 20 years, help us to see that the Martian environment is still quite dynamic and capable of changing. Finally, this being a volcanic region, a lobe of a lava flow from the immense Elysium volcanoes to the northwest is visible stretching across the bottom one-quarter of the image.
African Dust Aerosols as Atmospheric Ice Nuclei
NASA Technical Reports Server (NTRS)
DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel
2003-01-01
Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.
Are annual layers preserved in NorthGRIP Eemian ice?
NASA Astrophysics Data System (ADS)
Kettner, E.; Bigler, M.; Nielsen, M. E.; Steffensen, J. P.; Svensson, A.
2009-04-01
A newly developed setup for continuous flow analysis (CFA) of ice cores in Copenhagen is optimized for high resolution analysis of four components: Soluble sodium (mainly deriving from sea salt), soluble ammonium (related to biological processes and biomass burning events), insoluble dust particles (basically transported from Asian deserts to Greenland), and the electrolytic melt water conductivity (which is a bulk signal for all ionic constituents). Furthermore, we are for the first time implementing a flow cytometer to obtain high quality dust concentration and size distribution profiles based on individual dust particle measurements. Preliminary measurements show that the setup is able to resolve annual layers of 1 cm thickness. Ice flow models predict that annual layers in the Eemian section of the Greenland NorthGRIP ice core (130-115 ka BP) have a thickness of around 1 cm. However, the visual stratigraphy of the ice core indicates that the annual layering in the Eemian section may be disturbed by micro folds and rapid crystal growth. In this case study we will measure the impurity content of an Eemian segment of the NorthGRIP ice core with the new CFA setup. This will allow for a comparison to well-known impurity levels of the Holocene in both Greenland and Antarctic ice and we will attempt to determine if annual layers are still present in the ice.
NASA Astrophysics Data System (ADS)
Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.
2012-11-01
Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.
51. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS BAKER COOLER ...
51. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS BAKER COOLER AT LOWER LEFT, AND FOUNDATIONS FOR ROD MILL BETWEEN COOLER AND STEPHENS-ADAMSON INCLINED BUCKET ELEVATOR. THE BELT CONVEYOR TO RIGHT OF ELEVATOR FED ELEVATOR FROM ROD MILL. 100-TON ORE BIN AND DUST COLLECTOR IS BEHIND FRAMING BENT. NOTE CONVEYOR EMERGING FROM BOTTOM OF ORE BIN, THIS AND THE INCLINED ELEVATOR FED THE SYMONS SCREEN (MISSING). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Relevance of wildfires on dust emissions via interaction with near-surface wind pattern
NASA Astrophysics Data System (ADS)
Wagner, Robert; Jähn, Michael; Schepanski, Kerstin
2017-04-01
Mineral dust is a key player in the Earth system and shows diverse impacts on the radiation budget, cloud microphysics, marine and terrestrial ecosystems. Eventually, it also affects our modern way of life. Not only dust emissions from barren or unvegetated soil surfaces like deserts or uncultivated croplands are important sources of airborne mineral dust. Also, during fire events dust is entrained into the atmosphere and appears to contribute noteworthy to the atmospheric dust burden. The underlying process, which drives dust entrainment during fires, is the so-called pyro-convection. The high temperatures in the center of a fire result in an upward motion of the heated air. Subsequently, air flows towards the fire replacing the raising air. The resulting accelerated winds are able to mobilize soil and dust particles up to a size of several millimeters, depending of both the size and the strength of the fire. Several measurements have shown that up to 80% of the mass fraction of the emitted particles during natural or prescribed fires is related to soil or dust particles. The particles are then mixed externally with the combustion aerosols into the convective updraft and were finally inject into altitudes above the planetary boundary layer where they can be distributed and transported over long distances by the atmospheric circulation. To investigate the impacts of such fires on the near-surface wind pattern and the potential for dust emissions via exceeding typical threshold velocities, high resolved Large-Eddy Simulations (LES) with the All Scale Atmospheric Model (ASAM) were executed. In the framework of this study, the influences of different fire properties (fire intensity, size, and shape) and different atmospheric conditions on the strength and extent of fire-related winds and finally their relevance for dust emissions were investigated using sensitivity studies. Prescribed fires are omnipresent during dry seasons and pyro-convection is a mechanism entraining dust particles into boundary layer. As the quantity of dust emitted during fire events is still unclear, the results presented here will support the development of a parameterization of fire-related dust entrainment for meso-scale models. This will allow an estimation of such fire-related dust emissions on a continental scale and can finally reduce the uncertainty in the aerosol-climate feedback.
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Squyres, S. W,; Anderson, R. C.; Bell, J. F., III; Blaney, D.; Brueckner, J.; Cabrol, N. A.; Calvin, W. M.; Carr, M. H.; Christensen, P. R.;
2005-01-01
Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.
The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis
Roberts, A J; Knippertz, P
2014-01-01
Haboobs are dust storms produced by the spreading of evaporatively cooled air from thunderstorms over dusty surfaces and are a major dust uplift process in the Sahara. In this study observations, reanalysis, and a high-resolution simulation using the Weather Research and Forecasting model are used to analyze the multiscale dynamics which produced a long-lived (over 2 days) Saharan mesoscale convective system (MCS) and an unusually large haboob in June 2010. An upper level trough and wave on the subtropical jet 5 days prior to MCS initiation produce a precipitating tropical cloud plume associated with a disruption of the Saharan heat low and moistening of the central Sahara. The restrengthening Saharan heat low and a Mediterranean cold surge produce a convergent region over the Hoggar and Aïr Mountains, where small convective systems help further increase boundary layer moisture. Emerging from this region the MCS has intermittent triggering of new cells, but later favorable deep layer shear produces a mesoscale convective complex. The unusually large size of the resulting dust plume (over 1000 km long) is linked to the longevity and vigor of the MCS, an enhanced pressure gradient due to lee cyclogenesis near the Atlas Mountains, and shallow precipitating clouds along the northern edge of the cold pool. Dust uplift processes identified are (1) strong winds near the cold pool front, (2) enhanced nocturnal low-level jet within the aged cold pool, and (3) a bore formed by the cold pool front on the nocturnal boundary layer. PMID:25844277
Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.
Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank
2008-01-25
The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.
Prevalence of IgE antibodies to grain and grain dust in grain elevator workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.
1986-04-01
IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allowmore » us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.« less
Prevalence of IgE antibodies to grain and grain dust in grain elevator workers.
Lewis, D M; Romeo, P A; Olenchock, S A
1986-01-01
IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies. PMID:3709478
NASA Astrophysics Data System (ADS)
Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Makhmudov, Abduvosit N.; Nazarov, Bakhron I.; Schettler, Georg; Engelmann, Ronny; Baars, Holger; Wadinga Fomba, K.; Müller, Konrad; Heinold, Bernd; Kandler, Konrad; Ansmann, Albert
2017-12-01
For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of -0.08. The observed lidar ratios (and particle linear depolarization ratios) in the presented dust cases range from 40.3 to 46.9 sr (and 0.18-0.29) at 355 nm and from 35.7 to 42.9 sr (0.31-0.35) at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50-60 sr) and comparable to Middle Eastern or west-Asian dust lidar ratios (35-45 sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8 sr (0.03) at 355 nm and 32.8 sr (0.08) at 532 nm wavelength.
NASA Technical Reports Server (NTRS)
Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.
2010-01-01
We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.
Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, S. I.; Zelenyi, L. M.; Golub', A. P.; Dubinskii, A. Yu.
2018-07-01
A renaissance is being observed currently in investigations of the Moon. The Luna-25 and Luna-27 missions are being prepared in Russia. At the same time, in connection with the future lunar missions, theory investigations of dust and dusty plasmas at the Moon are being carried out by scientists of the Space Research Institute of the Russian Academy of Sciences. Here, the corresponding results are reviewed briefly. We present the main theory results of these investigations concerning the lunar dusty plasmas. We show, in particular, the absence of the dead zone near a lunar latitude of 80° where, as was assumed earlier, dust particles cannot rise over the surface of the Moon. This indicates that there are no significant constraints on the Moon landing sites for future lunar missions that will study dust in the surface layer of the Moon. We demonstrate that the electrostatically ejected dust population can exist in the near-surface layer over the Moon while the dust appearing in the lunar exosphere owing to impacts of meteoroids present everywhere. The calculated values of number densities at high altitudes of the particles formed as a result of the impacts of meteoroids with the lunar surface are in accordance (up to an order of magnitude) with the data obtained by the recent NASA mission LADEE. Finally, we formulate new problems concerning the dusty plasma over the lunar surface.
Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model
NASA Astrophysics Data System (ADS)
Weitz, N.; Zanetti, M.; Osinski, G. R.; Fastook, J. L.
2018-07-01
Impact craters in the mid-latitudes of Mars are commonly filled to variable degrees with some combination of ice, dust, and rocky debris. Concentric surface features visible in these craters have been linked to debris transportation and glacial and periglacial processes. Concentric crater fill (CCF) observed today are interpreted to be the remains of repeated periods of accumulation and sublimation during the last tens to hundreds of million years. Previous work suggests that during phases of high obliquity, ice accumulates in crater interiors and begins to flow down steep crater slopes, slowly filling the crater. During times of low obliquity ice is protected from sublimation through a surface debris layer consisting of dust and rocky material. Here, we use an ice flow line model to understand the development of concentric crater fill. In a regional study of Utopia Planitia craters, we address questions about the influence of crater size on the CCF formation process, the time scales needed to fill an impact crater with ice, and explore commonly described flow features of CCF. We show that observed surface debris deposits as well as asymmetric flow features can be reproduced with the model. Using surface mass balance data from global climate models and a credible obliquity scenario, we find that craters less than 80 km in diameter can be entirely filled in less than 8 My, beginning as recently as 40 Ma ago. Uncertainties in input variables related to ice viscosity do not change the overall behavior of ice flow and the filling process. We model CCF for the Utopia Planitia region and find subtle trends for crater size versus fill level, crater size versus sublimation reduction by the surface debris layer, and crater floor elevation versus fill level.
NASA Astrophysics Data System (ADS)
Nield, J. M.; King, J.; Wiggs, G.
2012-12-01
The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks between surface roughness and moisture have implications for dust emissivity because crust expansion increases fluff production which is one of the main dust source materials. Further, increased roughness can locally increase wind erosivity and the potential evaporation of ridge areas. Crust thrusting also weakens the ridge peaks, developing cracked surfaces and exposing the sediment supply source below. These fast acting processes can have a major influence on wind erosion variability and dust emissivity from key dust source regions.; a-d) Elevation change overnight. e-f) Elevation change over 6 days.
Exposure to flame retardant chemicals on commercial airplanes
2013-01-01
Background Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure. Methods To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes. Results A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children’s pajamas in the 1970’s although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations. Conclusion This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many airplane components and all airplane types, as expected. Most flame retardants, including TDCPP, were detected in 100% of dust samples collected from the airplanes. The concentrations of BDE 209 were elevated by orders of magnitude relative to residential and office environments. PMID:23413926
Exposure to flame retardant chemicals on commercial airplanes.
Allen, Joseph G; Stapleton, Heather M; Vallarino, Jose; McNeely, Eileen; McClean, Michael D; Harrad, Stuart J; Rauert, Cassandra B; Spengler, John D
2013-02-16
Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure. To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes. A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children's pajamas in the 1970's although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations. This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many airplane components and all airplane types, as expected. Most flame retardants, including TDCPP, were detected in 100% of dust samples collected from the airplanes. The concentrations of BDE 209 were elevated by orders of magnitude relative to residential and office environments.
NASA Astrophysics Data System (ADS)
Chao, H. Jasmine; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Chuang, Ying-Chih; Chiu, Yueh-Hsiu; Hsu, Hsiao-Hsien; Wu, Yi-Hua
2012-03-01
This study was conducted to evaluate the effects of transported Asian dust and other environmental parameters on the levels and compositions of ambient fungi in the atmosphere of northern Taiwan. We monitored Asian dust events in Taipei County, Taiwan from January 2003 to June 2004. We used duplicate Burkard portable air samplers to collect ambient fungi before, during, and after dust events. Six transported Asian dust events were monitored during the study period. Elevated concentrations of Aspergillus ( A. niger, specifically), Coelomycetes, Rhinocladiella, Sporothrix and Verticillium were noted ( p < 0.05) during Asian dust periods. Botryosporium and Trichothecium were only recovered during dust event days. Multiple regression analysis showed that fungal levels were positively associated with temperature, wind speed, rainfall, non-methane hydrocarbons and particulates with aerodynamic diameters ≤10 μm (PM10), and negatively correlated with relative humidity and ozone. Our results demonstrated that Asian dust events affected ambient fungal concentrations and compositions in northern Taiwan. Ambient fungi also had complex dynamics with air pollutants and meteorological factors. Future studies should explore the health impacts of ambient fungi during Asian dust events, adjusting for the synergistic/antagonistic effects of weather and air pollutants.
NASA Astrophysics Data System (ADS)
Sharma, D.; Miller, R. L.
2017-12-01
Dust influences the Indian summer monsoon on seasonal timescales by perturbing atmospheric radiation. On weekly time scales, aerosol optical depth retrieved by satellite over the Arabian Sea is correlated with Indian monsoon precipitation. This has been interpreted to show the effect of dust radiative heating on Indian rainfall on synoptic (few-day) time scales. However, this correlation is reproduced by Earth System Model simulations, where dust is present but its radiative effect is omitted. Analysis of daily variability suggests that the correlation results from the effect of precipitation on dust through the associated cyclonic circulation. Boundary layer winds that deliver moisture to India are responsible for dust outbreaks in source regions far upwind, including the Arabian Peninsula. This suggests that synoptic variations in monsoon precipitation over India enhance dust emission and transport to the Arabian Sea. The effect of dust radiative heating upon synoptic monsoon variations remains to be determined.
NASA Astrophysics Data System (ADS)
Sharma, Disha; Miller, Ron L.
2017-10-01
Dust influences the Indian summer monsoon on seasonal time scales by perturbing atmospheric radiation. On weekly time scales, aerosol optical depth retrieved by satellite over the Arabian Sea is correlated with Indian monsoon precipitation. This has been interpreted to show the effect of dust radiative heating on Indian rainfall on synoptic (few-day) time scales. However, this correlation is reproduced by Earth System Model simulations, where dust is present but its radiative effect is omitted. Analysis of daily variability suggests that the correlation results from the effect of precipitation on dust through the associated cyclonic circulation. Boundary layer winds that deliver moisture to India are responsible for dust outbreaks in source regions far upwind, including the Arabian Peninsula. This suggests that synoptic variations in monsoon precipitation over India enhance dust emission and transport to the Arabian Sea. The effect of dust radiative heating upon synoptic monsoon variations remains to be determined.
Investigation of fugitive dust emissions from nepheline syenite mine tailings near Nephton, Ontario
NASA Astrophysics Data System (ADS)
Ogungbemide, Damilare Immanuel
A set of experiments was designed to investigate the factors--atmospheric and surficial--controlling fugitive dust emissions from the tailings ponds of UNIMIN Canada, a mining company that extracts and produces nepheline syenite (feldspar) at two adjacent sites (Nephton and Blue Mountain) located north of Havelock, Ontario. Using wind tunnel measurements, the combined influence of relative humidity and temperature (represented by the absolute matric potential, |psi|) on dust emission was quantified and modeled. About 300 experimental runs were conducted under various conditions of wind speed (4.5-6.25 ms -1), temperature (0-30°C) and relative humidity (10-70%). Generally, dust flux decreased as a logarithmic function of matric potential, with dust emission strongly suppressed for RH > 60% or |psi|<70 MPa. Field measurements also confirmed the role of relative humidity in suppressing dust emission. Irrigation, which is widely used by mines to control dust emissions, reduced ambient dust concentration at the study site only about 60% of the time, with the highest mitigation efficiencies (average of 90%) occurring when the total depth of water applied intermittently over a few hours was greater than 10 mm. In the absence of emergent vegetation, the terrestrial laser scanning (TLS) technique proved to be a promising method for detecting and estimating both spatial and temporal moisture content changes in the field environment, particularly for the very thin surface layer, which is the most important layer for dust emission. It is hoped that the results from this study will help mines to optimize their dust management programs for the range of climate and topographic conditions found at their sites, and also serve as a source of useful information and input data for atmospheric dispersion models, such as AERMOD and CALPUFF, whose accuracy depends on the quality of the input data such as the emission rate.
Sandford, S A; Bradley, J P
1989-01-01
The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a nongravitational force important in the orbital evolution of dust in the Solar System.
Origin, Emission, and Propagation of P-H Pulses
NASA Astrophysics Data System (ADS)
Kikuchi, H.
2007-05-01
Origin, Emission, and Propagation of P-H Pulses H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract According to Pulinets, characters of P-H pulses is following. The registered emission has not continuous but pulsed character and has very wide frequency spectrum from kHz to more than hundred MHz. These two facts imply that should be the electric discharge-like emission similar to thunderstorm flashes emission. The emission is connected in some way with seismic activity and the emission intensity increases 12-24 hour before the seismic shock. Another intriguing factor is that emission is registered at large distances up to 500 km (some witness claim up to 1500 km). Taking into account that emission is registered at VHF band also, the source of emission cannot be situated on the ground. This paper puts forwards a model of P-H pulses generation based on "dust dynamics". Rotating ions ascending, for instance erupped metalic ions in the earth's crust into the atmosphere incorporating aerosols might be captured by diffuse dust layers which may exist below or beyond the electric mirror point produced by quadrupole-like thunder- cloud configurations or even form a portion of dust layers and could be a source-origin of P-H pulses that might be emitted by local electric discharges within diffuse dust layers somewhat similar to thundercloud discharges, though emission frequencies and characters are quite different, namely P-H pulses are over a wide range of frequencies, say from kHz to more than hundred MHz with pulsed character in contrast to lightning emission with more continuous character whose frequencies are 1 to 10 kHz. Such diffuse dust layers could be formed over a wide range of height in the troposphere, stratosphere, mesosphere and the thermosphere. Propagation distance of P-H pulses are very large up to 500-1500 km.
Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples
Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.
2014-01-01
Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.
Miniregoliths. I - Dusty lunar rocks and lunar soil layers
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1978-01-01
A detailed Monte-Carlo model for rock surface evolution shows that erosion processes alone cannot account for the shapes of the solar flare particle track profiles generally observed at depths of about 100 microns and less in rocks. The observed profiles are easily explained by a steady accumulation of fine dust at a rate of 0.3 to 3 mm per m.y., depending on the micrometeoroid impact rate which controls the dust cover and results in maximum dust thicknesses on the order of 100 microns to 1 mm. The commonly used lunar soil track parameters are derived in terms of parameters characterizing the exposure of soil grains in the few-millimeter-thick surface mixing and maturation zone which is one form of miniregolith. Correlation plots permit determining the degree of mixing in soil samples and the amount of processing (maturation) in surface miniregoliths. It is shown that the sampling process often artificially mixes together finer distinct layers, and that ancient miniregolith layers on the order of a millimeter thick are probably common in the lunar soil.
Ice nucleating particles in the Saharan Air Layer
NASA Astrophysics Data System (ADS)
Boose, Yvonne; Sierau, Berko; García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés; Linke, Claudia; Schnaiter, Martin; Kupiszewski, Piotr; Kanji, Zamin A.; Lohmann, Ulrike
2016-07-01
This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L-1 in the deposition mode and up to 2500 std L-1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43-0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient aerosol. Overall, this suggests that atmospheric aging processes in the SAL can lead to an increase in ice nucleation ability of mineral dust from the Sahara. INP concentrations predicted with two common parameterization schemes, which were derived mostly from atmospheric measurements far away from the Sahara but influenced by Asian and Saharan dust, were found to be higher based on the aerosol load than we observed in the SAL, further suggesting aging effects of INPs in the SAL.
New Information on Lead in Dirt and Dust as Related to the Childhood Lead Problem
Haar, Gary Ter; Aronow, Regine
1974-01-01
It has been known for many years that the eating of leaded paint is the prime cause of lead poisoning and elevated blood leads of children living in deteriorated housing. Recently, there has been speculation that children may eat dirt and dust contaminated with lead exhausted from cars and that this amount of ingested lead is sufficient to contribute significantly to the childhood lead problem. This paper reports on a twopart study conducted to evaluate the validity of the dirt-and-dust hypotheses. The first part of the study was made to determine the source of lead in dirt to which children are normally exposed. Dirt samples were taken in old urban areas around 18 painted frame houses and 18 houses of brick construction. Samples also were taken around seven old frame farmhouses remote from traffic. Based on the fact that lead concentrations in the dirt were similar in city and rural yards at corresponding distances from the houses, it is clear that nearly all of the lead in dirt around these houses is due to paint from the houses. Lead antiknock additives are therefore not a significant contributor to the lead content of dirt around houses where children usually play. The second part of the study used a naturally occurring radioactive tracer 210Pb to determine the relative amounts of dust and other lead-containing materials (e.g., paint) eaten by young children. This tracer is present in very low concentrations in paint and in significantly higher concentrations in fallout dust. Stable lead and 210Pb were analyzed in fecal material from eight children suspected of having elevated body burdens of lead and ten children living in good housing where lead poisoning is not a problem. The normal children averaged 4 μg Pb/g dry feces, with a range of 2 to 7. Of the eight children suspected of having elevated lead body burdens, two had fecal lead values within the normal range. However, the remaining six were 4 to 400 times as high. Despite these differences in fecal lead between the two groups, the groups were essentially identified in the 210Pb content of their feces. The “elevated” children averaged 0.040 pCi of 210Pb dry feces, while the normal group averaged 0.044 pCi/g. The results provide sound evidence that these children suspected of elevated lead body burden were not ingesting dust or air-suspended particulate. PMID:4831152
Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment
NASA Technical Reports Server (NTRS)
Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)
2000-01-01
During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.
NASA Technical Reports Server (NTRS)
Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.
2012-01-01
The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.
Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.
Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang
2014-06-15
The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.
Hydrodynamic model of a self-gravitating optically thick gas and dust cloud
NASA Astrophysics Data System (ADS)
Zhukova, E. V.; Zankovich, A. M.; Kovalenko, I. G.; Firsov, K. M.
2015-10-01
We propose an original mechanism of sustained turbulence generation in gas and dust clouds, the essence of which is the consistent provision of conditions for the emergence and maintenance of convective instability in the cloud. We considered a quasi-stationary one-dimensional model of a selfgravitating flat cloud with stellar radiation sources in its center. The material of the cloud is considered a two-component two-speed continuous medium, the first component of which, gas, is transparent for stellar radiation and is supposed to rest being in hydrostatic equilibrium, and the second one, dust, is optically dense and is swept out by the pressure of stellar radiation to the periphery of the cloud. The dust is specified as a set of spherical grains of a similar size (we made calculations for dust particles with radii of 0.05, 0.1, and 0.15 μm). The processes of scattering and absorption of UV radiation by dust particles followed by IR reradiation, with respect to which the medium is considered to be transparent, are taken into account. Dust-driven stellar wind sweeps gas outwards from the center of the cloud, forming a cocoon-like structure in the gas and dust. For the radiation flux corresponding to a concentration of one star with a luminosity of about 5 ×104 L ⊙ per square parsec on the plane of sources, sizes of the gas cocoon are equal to 0.2-0.4 pc, and for the dust one they vary from tenths of a parsec to six parsecs. Gas and dust in the center of the cavity are heated to temperatures of about 50-60 K in the model with graphite particles and up to 40 K in the model with silicate dust, while the background equilibrium temperature outside the cavity is set equal to 10 K. The characteristic dust expansion velocity is about 1-7 kms-1. Three structural elements define the hierarchy of scales in the dust cocoon. The sizes of the central rarefied cavity, the dense shell surrounding the cavity, and the thin layer inside the shell in which dust is settling provide the proportions 1 : {1-30} : {10-7-10-6}. The density differentials in the dust cocoon (cavity-shell) are much steeper than in the gas one, dust forms multiple flows in the shell so that the dust caustics in the turning points and in the accumulation layer have infinite dust concentration. We give arguments in favor of unstable character of the inverse gas density distribution in the settled dust flow that can power turbulence constantly sustained in the cloud. If this hypothesis is true, the proposed mechanism can explain turbulence in gas and dust clouds on a scale of parsecs and subparsecs.
Magnetic and geochemical characterization of iron pollution in subway dusts in Shanghai, China
NASA Astrophysics Data System (ADS)
Zhang, Weiguo; Jiang, Huimin; Dong, Chenyin; Yan, Qun; Yu, Lizhong; Yu, Yang
2011-06-01
Dust samples collected from subway platforms in Shanghai, China, have been examined using magnetic measurements and geochemical analysis. Our results indicate that the Shanghai subway platform dusts have extremely strong magnetic signatures. These results, combined with X-ray diffraction analysis and scanning and transmission electron microscope examinations, indicate that the magnetic mineralogy of the dust is dominated by iron scraps due to wheel-rail mechanical abrasion and spherules rich in magnetite from fossil fuel combustion. Although the magnetic particles are primarily micrometer sized, fine submicron magnetic grains are also evident in the dust. The underground platform dusts have a much higher iron flake abundance and magnetic susceptibility than those from aboveground platforms because the latter ones are diluted by inputs of magnetically weaker ambient aerosols with a higher proportion of magnetite spherules. Geochemical analysis indicates that underground platform dusts have elevated Fe and Mn, but lower Al and Ti contents relative to aboveground subway dust. This is consistent with the closed nature of underground platforms, which therefore reduces exposure to soil-derived dust. Since the adverse environmental effects of subway particles may be linked to higher contents of iron and other metals, our results demonstrate that magnetic measurements provide a novel and effective approach for characterizing iron mineralogy and grain size in subway dusts.
Characteristics of mineral dust impacting the Persian Gulf
NASA Astrophysics Data System (ADS)
Ahmady-Birgani, Hesam; McQueen, Kenneth G.; Mirnejad, Hassan
2018-02-01
It is generally assumed that severe dust events in western Iran could be responsible for elevated levels of toxic and radioactive elements in the region. Over a period of 5 months, from January 2012 to May 2012, dust particles in the size range PM10 (i.e. <10 μm) were collected at Abadan, a site beside the Persian Gulf. The research aim was to compare chemical compositions of dust and aerosol samples collected during the non-dusty periods and during two severe dust events. Results of ICP-MS analysis of components indicate that during dust events the concentrations of major elements such as Ca, Mg, Al and K increase relative to ambient conditions when Fe and trace elements such as Cu, Cr, Ni, Pb and Zn are in higher proportions. Toxic trace elements that are generally ascribed to human activities, including industrial and urban pollution, are thus proportionately more abundant in the dust under calm conditions than during dust events, when their concentration is diluted by more abundant mineral particles of quartz, calcite and clay. The variability of chemical species during two dust events, noted by tracking the dust plumes in satellite images, was also assessed and the results relate to two different source areas, namely northern Iraq and northwestern Syria.
Cooling of the North Atlantic by Saharan Dust
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.
2007-01-01
Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).
Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps
NASA Astrophysics Data System (ADS)
Kaufmann, E.; Hagermann, A.
2017-01-01
Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.
NASA Technical Reports Server (NTRS)
Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas
2016-01-01
The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.
Roque, Katharine; Shin, Kyung-Min; Jo, Ji-Hoon; Kim, Hyoung-Ah
2015-01-01
Hazardous biochemical agents in animal husbandry indoor environments are known to promote the occurrence of various illnesses among workers and animals. The relationship between endotoxin levels in dust collected from chicken farms and various immunological markers was investigated. Peripheral blood was obtained from 20 broiler chickens and 20 laying hens from four different chicken farms in Korea. Concentrations of total or respirable dust in the inside the chicken farm buildings were measured using a polyvinyl chloride membrane filter and mini volume sampler. Endotoxin levels in the dust were determined by the Limulus Amebocyte Lysate Kinetic method. Interferon-γ production by peripheral blood mononuclear cells stimulated with concanavalin A was significantly lower in broilers or layers from the farms with higher endotoxin concentrations than the chickens from the farms with lower endotoxin levels. An opposite pattern was observed for plasma cortisol concentrations with higher cortisol levels found in chickens from the farms with higher endotoxin levels. When peripheral lymphocytes were examined, the percentage of CD3-Ia+ B cells was lower in layers from farms with higher endotoxin levels than those from locations with lower endotoxin levels. Overall, these results suggest a probable negative association between dust endotoxin levels and cell-mediated immunity in chickens. PMID:25549222
Wave processes in dusty plasma near the Moon’s surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozova, T. I.; Kopnin, S. I.; Popel, S. I., E-mail: popel@iki.rssi.ru
2015-10-15
A plasma—dust system in the near-surface layer on the illuminated side of the Moon is described. The system involves photoelectrons, solar-wind electrons and ions, neutrals, and charged dust grains. Linear and nonlinear waves in the plasma near the Moon’s surface are discussed. It is noticed that the velocity distribution of photoelectrons can be represented as a superposition of two distribution functions characterized by different electron temperatures: lower energy electrons are knocked out of lunar regolith by photons with energies close to the work function of regolith, whereas higher energy electrons are knocked out by photons corresponding to the peak atmore » 10.2 eV in the solar radiation spectrum. The anisotropy of the electron velocity distribution function is distorted due to the solar wind motion with respect to photoelectrons and dust grains, which leads to the development of instability and excitation of high-frequency oscillations with frequencies in the range of Langmuir and electromagnetic waves. In addition, dust acoustic waves can be excited, e.g., near the lunar terminator. Solutions in the form of dust acoustic solitons corresponding to the parameters of the dust—plasma system in the near-surface layer of the illuminated Moon’s surface are found. Ranges of possible Mach numbers and soliton amplitudes are determined.« less
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water vapor product as a region of depressed water vapor (brown in the images) migrating slowly Westward toward the Caribbean. The SAL phenomenon inhibits the formation of tropical cyclones and thus has given the West Indies and the East Coast of the US a respite from hurricanes. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan
2018-06-01
Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.
NASA Astrophysics Data System (ADS)
Tsai, S. F.; Lin, C. Y.
2014-12-01
With the characteristics of humidity in summer and drought in winter, there existing lots of bare lands due to the decline of water level cause large amounts of aeolian dust and environmental deterioration during the monsoon seasons in central Taiwan. How to adopt effective measures to inhibit the damage of dust is an essential issue. This study selected the serious dust-affected section of Zhuo-shui river (bridge Zi-qiang to Xi-bin) to delineate the areas of potential aeolian dust occurrence, explore the relationship between elevation and water level determined from return period analysis, submit the countermeasures for dust inhibition at the bare lands and/or cultivated areas, and address the responsibilities of related authority offices for dust prevention by means of literature review. The return period of inundation for the areas of potential aeolian dust occurrence is 1.1 years. Engineering of dust prevention with highly unit price are not recommended due to could be destroyed annually. The deposition sites of a river are usually located at the convex bank, which with silt texture and high salinity are not suitable for cultivation, are delineated as the areas of potential aeolian dust occurrence. Besides technology consideration in dust prevention, this study also examined the related articles of river management to integrate a comprehensive vision for better riverside environment and air quality.
NASA Astrophysics Data System (ADS)
Bory, Aloys; Wolff, Eric; Mulvaney, Robert; Jagoutz, Emil; Wegner, Anna; Ruth, Urs; Elderfield, Harry
2010-03-01
The Sr and Nd isotopic composition of dust extracted from recent snow layers at the top of Berkner Island ice sheet (located within the Filchner-Ronne Ice Shelf at the southern end of the Weddell Sea) enables us, for the first time, to document dust provenance in Antarctica outside the East Antarctic Plateau (EAP) where all previous studies based on isotopic fingerprinting were carried out. Berkner dust displays an overall crust-like isotopic signature, characterized by more radiogenic 87Sr/ 86Sr and much less radiogenic 143Nd/ 144Nd compared to dust deposited on the EAP during glacial periods. Differences with EAP interglacial dust are not as marked but still significant, indicating that present-day Berkner dust provenance is distinct, at least to some extent, from that of the dust reaching the EAP. The fourteen snow-pit sub-seasonal samples that were obtained span a two-year period (2002-2003) and their dust Sr and Nd isotopic composition reveals that multiple sources are at play over a yearly time period. Southern South America, Patagonia in particular, likely accounts for part of the observed spring/summer dust deposition maxima, when isotopic composition is shifted towards "younger" isotopic signatures. In the spring, possible additional inputs from Australian sources would also be supported by the data. Most of the year, however, the measured isotopic signatures would be best explained by a sustained background supply from putative local sources in East Antarctica, which carry old-crust-like isotopic fingerprints. Whether the restricted East Antarctic ice-free areas produce sufficient eolian material has yet to be substantiated however. The fact that large (> 5 μm) particles represent a significant fraction of the samples throughout the entire time-series supports scenarios that involve contributions from proximal sources, either in Patagonia and/or Antarctica (possibly including snow-free areas in the Antarctic Peninsula and other areas as well). This also indicates that additional dust transport, which does not reach the EAP, must occur at low-tropospheric levels to this coastal sector of Antarctica.
NASA Astrophysics Data System (ADS)
Diokhane, Aminata Mbow; Jenkins, Gregory S.; Manga, Noel; Drame, Mamadou S.; Mbodji, Boubacar
2016-04-01
The Sahara desert transports large quantities of dust over the Sahelian region during the Northern Hemisphere winter and spring seasons (December-April). In episodic events, high dust concentrations are found at the surface, negatively impacting respiratory health. Bacterial meningitis in particular is known to affect populations that live in the Sahelian zones, which is otherwise known as the meningitis belt. During the winter and spring of 2012, suspected meningitis cases (SMCs) were with three times higher than in 2013. We show higher surface particular matter concentrations at Dakar, Senegal and elevated atmospheric dust loading in Senegal for the period of 1 January-31 May during 2012 relative to 2013. We analyze simulated particulate matter over Senegal from the Weather Research and Forecasting (WRF) model during 2012 and 2013. The results show higher simulated dust concentrations during the winter season of 2012 for Senegal. The WRF model correctly captures the large dust events from 1 January-31 March but has shown less skill during April and May for simulated dust concentrations. The results also show that the boundary conditions are the key feature for correctly simulating large dust events and initial conditions are less important.
Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust
NASA Technical Reports Server (NTRS)
Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.
2009-01-01
A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.
Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder
NASA Technical Reports Server (NTRS)
Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin
2011-01-01
The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization
NASA Astrophysics Data System (ADS)
Todd, M. C.; Allen, C. J. T.; Bart, M.; Bechir, M.; Bentefouet, J.; Brooks, B. J.; Cavazos-Guerra, C.; Clovis, T.; Deyane, S.; Dieh, M.; Engelstaedter, S.; Flamant, C.; Garcia-Carreras, L.; Gandega, A.; Gascoyne, M.; Hobby, M.; Kocha, C.; Lavaysse, C.; Marsham, J. H.; Martins, J. V.; McQuaid, J. B.; Ngamini, J. B.; Parker, D. J.; Podvin, T.; Rocha-Lima, A.; Traore, S.; Wang, Y.; Washington, R.
2013-08-01
The climate of the Sahara is relatively poorly observed and understood, leading to errors in forecast model simulations. We describe observations from the Fennec Supersite-2 (SS2) at Zouerate, Mauritania during the June 2011 Fennec Intensive Observation Period. These provide an improved basis for understanding and evaluating processes, models, and remote sensing. Conditions during June 2011 show a marked distinction between: (i) a "Maritime phase" during the early part of the month when the western sector of the Sahara experienced cool northwesterly maritime flow throughout the lower troposphere with shallow daytime boundary layers, very little dust uplift/transport or cloud cover. (ii) A subsequent "heat low" phase which coincided with a marked and rapid westward shift in the Saharan heat low towards its mid-summer climatological position and advection of a deep hot, dusty air layer from the central Sahara (the "Saharan residual layer"). This transition affected the entire western-central Sahara. Dust advected over SS2 was primarily from episodic low-level jet (LLJ)-generated emission in the northeasterly flow around surface troughs. Unlike Fennec SS1, SS2 does not often experience cold pools from moist convection and associated dust emissions. The diurnal evolution at SS2 is strongly influenced by the Atlantic inflow (AI), a northwesterly flow of shallow, cool and moist air propagating overnight from coastal West Africa to reach SS2 in the early hours. The AI cools and moistens the western Saharan and weakens the nocturnal LLJ, limiting its dust-raising potential. We quantify the ventilation and moistening of the western flank of the Sahara by (i) the large-scale flow and (ii) the regular nocturnal AI and LLJ mesoscale processes.
NASA Astrophysics Data System (ADS)
Peyridieu, S.; Chédin, A.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R.
2009-04-01
Observation from space, being global and quasi-continuous, is a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. Infrared remote sensing provides a way to retrieve other aerosol characteristics, including their mean altitude. Moreover, observations are possible at night and day, over ocean and over land. In this context, six years (2003-2008) of the 2nd generation vertical sounder AIRS observations have been processed over the tropical belt (30°N-30°S). Our results of the dust optical depth at 10 µm have been compared to the 0.55 µm Aqua/MODIS optical depth product for this period. The detailed study of Atlantic regions shows a very good agreement between the two products, with a VIS/IR ratio around 0.3-0.5 during the Saharan dust season. Comparing these two AOD products should allow separating different aerosols signals, given that our retrieval algorithm is specifically designed for dust coarse mode whereas MODIS retrieves both accumulation and fine aerosol modes. Mean aerosol layer altitude has also been retrieved from AIRS data and we show global maps and time series of altitude retrieved from space. Altitude retrievals are compared to the CALIOP/Calipso Level-2 product starting June 2006. This comparison, for a region located downwind from the Sahara, again shows a good agreement demonstrating that our algorithm effectively allows retrieving reliable mean dust layer altitude. A global climatology of the dust optical depth at 10 µm and of the aerosol layer mean altitude has also been established. An interesting conclusion is the fact that if the AOD decreases from Africa to the Caribbean as a result of transport and dilution, altitude decreases less rapidly. This is in agreement with in situ measurements made during the Puerto Rico Dust Experiment (PRIDE) campaign and modelled forward trajectories.
NASA Astrophysics Data System (ADS)
Nisantzi, A.; Mamouri, R. E.; Ansmann, A.; Hadjimitsis, D.
2014-11-01
Four-year observations (2010-2014) with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E), Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3-day-old smoke plumes in terms of particle linear depolarization ratio (PDR), measured with lidar, contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke-dust mixtures from the emission event to phases of long-range transport (> 4 days after emission). We found significant PDR differences with values from 9 to 18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3-13 % when Turkish fires were absent. High Ångström exponents of 1.4-2.2 during all these events with lofted smoke layers, occurring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. travel time (spatial distance between Limassol and last fire area), PDR decreased strongly from initial values around 16-18% (1 day travel) to 4-8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with findings described in the literature. Computation of particle extinction coefficient and mass concentrations, derived from the lidar observations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions on the order of 10% (for PDR =4%, travel times > 4 days) and 50% (PDR =15%, 1 day travel time) and respective mass-related dust fractions of 25% (PDR =4%) to 80% (PDR =15%). Biomass burning should therefore be considered as another source of free tropospheric soil dust.
A topographically forced asymmetry in the martian circulation and climate.
Richardson, Mark I; Wilson, R John
2002-03-21
Large seasonal and hemispheric asymmetries in the martian climate system are generally ascribed to variations in solar heating associated with orbital eccentricity. As the orbital elements slowly change (over a period of >104 years), characteristics of the climate such as dustiness and the vigour of atmospheric circulation are thought to vary, as should asymmetries in the climate (for example, the deposition of water ice at the northern versus the southern pole). Such orbitally driven climate change might be responsible for the observed layering in Mars' polar deposits by modulating deposition of dust and water ice. Most current theories assume that climate asymmetries completely reverse as the angular distance between equinox and perihelion changes by 180 degrees. Here we describe a major climate mechanism that will not precess in this way. We show that Mars' global north-south elevation difference forces a dominant southern summer Hadley circulation that is independent of perihelion timing. The Hadley circulation, a tropical overturning cell responsible for trade winds, largely controls interhemispheric transport of water and the bulk dustiness of the atmosphere. The topography therefore imprints a strong handedness on climate, with water ice and the active formation of polar layered deposits more likely in the north.
Research Needs in Electrostatics for Lunar and Mars Space Missions
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2005-01-01
The new space exploratory vision announced by President Bush on January 14, 2004, initiated new activities at the National Science and Space Administration (NASA) for human space missions to further explore our solar system. NASA is undertaking Lunar exploration to support sustained human and robotic exploration of Mars and beyond. A series of robotic missions to the Moon by 2008 to prepare for human exploration as early as 2015 but no later than 2020 are anticipated. In a similar way, missions to the Moon and Mars are being planned in Europe, Japan and Russia. These space missions will require international participation to solve problems in a number of important technological areas where research is needed, including biomedical risk mitigation as well as life support and habitability on the surface of Mars. Mitigation of dust hazards is one of the most important problems to be resolved for both Lunar and Mars missions. Both Lunar and Martian regolith are unique materials and completely different from the terrestrial soils that we are exposed to on earth. The total absence of water and an atmosphere on the moon and the formation of soil and fine dust by micrometeorite impacts over billions of years resulted in a layer of soil with unique properties. The soil is primarily basaltic in composition with a high glass concentration. The depth of the soil layer varies from a few meters in the mare areas (dark areas on the Lunar near side) to tens of meters in the highland areas (the lighter mountainous areas) and the particle size distribution of this dust layer varies widely with a major mass fraction less than 10 micrometer in diameter. The hard soil from the moon which has been extensively studied by several researchers showed clearly unique properties of Lunar soil. Apollo astronauts became aware of the potentially serious threat to crew health and mission hardware that can be caused by the lunar dust. As reported by McKay and Carrier the mass fraction of the lunar dust with particle diameter smaller than 20p.m probably represents up to 30% of the total mass of regolith. Apollo astronaut Dr. Harrison Schmidt reported that these fine dust particles were clinging to the Extra Vehicular Activity (EVA) suits and to the visors and were limiting the activity on the surface of the moon. The dust particles that were transported with the EVA suits into the lunar module floated throughout the cabin. Crews inhaled the dust particles and noted that they smelled like gun smoke, caused a chocking sensation in the throat and eye irritation. In addition,, some of the mechanical systems were not functioning well because of the dust deposition. It appeared that the dust particles are highly charged electrostatically and Dr. Schmidt noted that future successful Lunar missions will require appropriate dust mitigation technology for protecting astronauts from inhaling toxic particles and mission's life supporting equipment from contamination with the dust particles.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.;
2000-01-01
A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution or aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18'N, 16 deg 30'W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and in analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO. and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 + 0.007 per sr. Comparisons of the MPL data with data from other co-located instruments showed good agreement during the dust episode.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.
2000-01-01
A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution of aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18 min N, 16 deg 30 min W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and an analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO, and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 +/- 0.007 sr(exp -1). Comparisons of the MPL data with data from other collocated instruments showed good agreement during the dust episode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michikoshi, Shugo; Kokubo, Eiichiro; Inutsuka, Shu-ichiro, E-mail: michikoshi@cfca.j, E-mail: kokubo@th.nao.ac.j, E-mail: inutsuka@tap.scphys.kyoto-u.ac.j
2009-10-01
The gravitational instability of a dust layer is one of the scenarios for planetesimal formation. If the density of a dust layer becomes sufficiently high as a result of the sedimentation of dust grains toward the midplane of a protoplanetary disk, the layer becomes gravitationally unstable and spontaneously fragments into planetesimals. Using a shearing box method, we performed local N-body simulations of gravitational instability of a dust layer and subsequent coagulation without gas and investigated the basic formation process of planetesimals. In this paper, we adopted the accretion model as a collision model. A gravitationally bound pair of particles ismore » replaced by a single particle with the total mass of the pair. This accretion model enables us to perform long-term and large-scale calculations. We confirmed that the formation process of planetesimals is the same as that in the previous paper with the rubble pile models. The formation process is divided into three stages: the formation of nonaxisymmetric structures; the creation of planetesimal seeds; and their collisional growth. We investigated the dependence of the planetesimal mass on the simulation domain size. We found that the mean mass of planetesimals formed in simulations is proportional to L {sup 3/2} {sub y}, where L{sub y} is the size of the computational domain in the direction of rotation. However, the mean mass of planetesimals is independent of L{sub x} , where L{sub x} is the size of the computational domain in the radial direction if L{sub x} is sufficiently large. We presented the estimation formula of the planetesimal mass taking into account the simulation domain size.« less
Radiative Effects of African Dust and Smoke Observed from CERES and CALIOP Data
NASA Technical Reports Server (NTRS)
Yorks, John E.; McGill, Matt; Rodier, Sharon; Vaughan, Mark; Xu, Yongxiang; Hlavka, Dennis
2009-01-01
Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the Tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the Tropical Atlantic Ocean were analyzed for the month of July for three years (2006-2008) using collocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth s Radiant Energy System (CERES) instruments on the CALIPSO and Aqua satellites. Aerosol layer height and type can be more accurately determined using CALIOP data, through parameters such as cloud and aerosol layer height, optical depth and depolarization ratio, than data from atmospheric imagers used in previous cloud-aerosol interaction studies. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of 270.2 +/- 16.9 W/sq m and thin cirrus clouds had a SW radiative flux of 208.0 +/- 12.7 W/sq m. When dust aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to 205.4 +/- 13.0 W/sq m. Similarly, smoke aerosols decreased the SW radiative flux of low clouds to a value of 240.0 +/- 16.6 W/sq m. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics. CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system.
NASA Technical Reports Server (NTRS)
1992-01-01
This cross section of the Earth's atmosphere at sunset and earth limb (24.5S, 43.5E) displays an unusual layering believed to be caused by temperature inversions which effectively concentrate smoke, dust and aerosols into narrow layers. the top of the stratosphere can be seen as the top of the white layer thought to contain volcanic debris. The purple layer is the troposphere containing smoke from landclearing biomass burning.
1992-11-01
This cross section of the Earth's atmosphere at sunset and earth limb (24.5S, 43.5E) displays an unusual layering believed to be caused by temperature inversions which effectively concentrate smoke, dust and aerosols into narrow layers. the top of the stratosphere can be seen as the top of the white layer thought to contain volcanic debris. The purple layer is the troposphere containing smoke from landclearing biomass burning.
Sordillo, Joanne E; Webb, Tara; Kwan, Doris; Kamel, Jimmy; Hoffman, Elaine; Milton, Donald K; Gold, Diane R
2011-01-01
Background Studies on airway inflammation, measured as fraction exhaled nitric oxide (FENO), have focused on its relation to control of asthma, but the contribution of allergen exposure to elevation of FENO is unknown. Objective We evaluated (1) whether FENO was elevated in children with allergic sensitization or asthma; (2) whether specific allergen exposure increased FENO levels in sensitized, but not in unsensitized children; and (3) whether sedentary behavior increased FENO, independent of allergen exposures. Methods At age 12, in a birth cohort of children with parental history of allergy or asthma, we measured bed dust allergen (dust mite, cat, cockroach) by ELISA; specific allergic sensitization primarily by specific IgE ; and respiratory disease (current asthma, rhinitis, and wheeze) and hours of TV viewing/video game playing by questionnaire. Children performed spirometry maneuvers before and after bronchodilator responses, and had FENO measured using electrochemical detection methods (NIOX MINO). Results FENO was elevated in children with current asthma (32.2 ppb), wheeze (27.0 ppb), or rhinitis (23.2ppb) as compared to individuals without these respective symptoms/diagnoses (16.4 ppb to 16.6 ppb, p< 0.005 for all comparisons). Allergic sensitization to indoor allergens (cat, dog, dust mite) predicted higher levels of FENO, and explained one third of the variability of FENO. FENO levels were highest in children both sensitized and exposed to dust mite. Greater than 10 hours of weekday TV viewing was associated with a 0.64 log increase in FENO, after controlling indoor allergen exposure, BMI and allergic sensitization. Conclusion Allergen exposures and sedentary behavior (TV viewing/ video game playing), may increase airway inflammation, measured as FENO. PMID:21463890
NASA Astrophysics Data System (ADS)
Peris-Ferrús, C.; Gómez-Amo, J. L.; Marcos, C.; Freile-Aranda, M. D.; Utrillas, M. P.; Martínez-Lozano, J. A.
2017-07-01
We analyze the vertically-resolved radiative impact due to a dust storm in the Western Mediterranean. The dust plume travels around 3-5 km altitude and the aerosol optical depth derived by MODIS at 550 nm ranges from 0.33 to 0.52 at the overpass time (13:05 UT). The aerosol radiative forcing (ARF), forcing efficiency (FE) and heating rate profile (AHR) are determined throughout the dust trajectory in shortwave (SW) and longwave (LW) ranges. To do this, we integrate different satellite observations (CALIPSO and MODIS) and detailed radiative transfer modeling. The combined (SW + LW) effect of the dust event induces a net cooling in the studied region. On average, the FE at 22.4° solar zenith angle is -190.3 W m-2 and -38.1 W m-2, at surface and TOA, respectively. The corresponding LW/SW offset is 14% and 38% at surface and TOA, respectively. Our results at TOA are sensitive to the surface albedo in the SW and surface temperature in the LW. The absolute value of FE decrease (increase) in the SW (LW) with the surface albedo, resulting in an increasing LW/SW offset, up to 76%. The AHR profiles show a net warming within the dust layer, with a maximum value of 3.3 Kd-1. The ARF, FE and AHR are also highly sensitive to the dust optical properties in SW and LW. We evaluate this sensitivity by comparing the results obtained using two set of dust properties as input in our simulations: a) the prescribed dust model by Optical Properties of Aerosols and Clouds (OPAC) and; b) the dust optical properties derived from measurements of the size distribution and refractive index. Experimentally derived dust properties present larger SSA and asymmetry parameter in the SW than OPAC dust. Conversely, OPAC dust presents higher AOD in the LW range. These parameters drive the FE and AHR sensitivities in the SW and LW ranges, respectively. Therefore, when measured dust properties are used in our simulations: the ARF in the LW substantially reduces at surface and TOA (up to 57%); the absolute value of SW ARF is reduced by 15% at surface and an enhancement of 31% is observed at TOA; the AHR present less warming in the entire profile with deviations up to 53% within the dust layer, with respect to the results obtained using OPAC.
Ventilation in homes infested by house-dust mites.
Sundell, J; Wickman, M; Pershagen, G; Nordvall, S L
1995-02-01
Thirty single-family homes with either high (> or = 2000 ng/g) or low (< or = 1000 ng/g) house-dust mite (HDM) allergen levels in mattress dust were examined for ventilation, thermal climate, and air quality (formaldehyde and total volatile organic compounds (TVOC). Elevated concentrations of HDM allergen in mattress and floor dust were associated with the difference in absolute humidity between indoor and outdoor air, as well as with low air-change rates of the home, particularly the bedroom. No correlation was found between concentration of TVOC or formaldehyde in bedroom air and HDM allergen concentration. In regions with a cold winter climate, the air-change rate of the home and the infiltration of outdoor air into the bedroom appear to be important for the infestation of HDM.
NASA Technical Reports Server (NTRS)
Graff, T. G.; Morris, R.; Christensen, P.
2001-01-01
Thermal emission measurements on dust-coated rocks and minerals show that a 300 5m thick layer is required to mask emission from the substrate and that non-linear effects are present. Additional information is contained in the original extended abstract.
Liu, Hongbo; Tang, Zhifeng; Yang, Yongli; Weng, Dong; Sun, Gao; Duan, Zhiwen; Chen, Jie
2009-01-01
Background Coal workers' pneumoconiosis (CWP) is a preventable, but not fully curable occupational lung disease. More and more coal miners are likely to be at risk of developing CWP owing to an increase in coal production and utilization, especially in developing countries. Coal miners with different occupational categories and durations of dust exposure may be at different levels of risk for CWP. It is necessary to identify and classify different levels of risk for CWP in coal miners with different work histories. In this way, we can recommend different intervals for medical examinations according to different levels of risk for CWP. Our findings may provide a basis for further emending the measures of CWP prevention and control. Methods The study was performed using longitudinal retrospective data in the Tiefa Colliery in China. A three-layer artificial neural network with 6 input variables, 15 neurons in the hidden layer, and 1 output neuron was developed in conjunction with coal miners' occupational exposure data. Sensitivity and ROC analyses were adapted to explain the importance of input variables and the performance of the neural network. The occupational characteristics and the probability values predicted were used to categorize coal miners for their levels of risk for CWP. Results The sensitivity analysis showed that influence of the duration of dust exposure and occupational category on CWP was 65% and 67%, respectively. The area under the ROC in 3 sets was 0.981, 0.969, and 0.992. There were 7959 coal miners with a probability value < 0.001. The average duration of dust exposure was 15.35 years. The average duration of ex-dust exposure was 0.69 years. Of the coal miners, 79.27% worked in helping and mining. Most of the coal miners were born after 1950 and were first exposed to dust after 1970. One hundred forty-four coal miners had a probability value ≥0.1. The average durations of dust exposure and ex-dust exposure were 25.70 and 16.30 years, respectively. Most of the coal miners were born before 1950 and began to be exposed to dust before 1980. Of the coal miners, 90.28% worked in tunneling. Conclusion The duration of dust exposure and occupational category were the two most important factors for CWP. Coal miners at different levels of risk for CWP could be classified by the three-layer neural network analysis based on occupational history. PMID:19785771
Respiratory health of two cohorts of terminal grain elevator workers studied 30 years apart.
Dimich-Ward, Helen; Beking, Kris J; Dybuncio, Anne; Bartlett, Karen H; Karlen, Barbara J; Chow, Yat; Chan-Yeung, Moira
2011-04-01
We evaluated the respiratory health of two cohorts of grain terminal elevator workers who participated in one of either respiratory health surveys undertaken in 1978 and 2008. Questionnaire and spirometry data from 584 workers from the 1978 survey and 215 workers from the 2008 survey were compared using logistic regression and general linear modeling. The geometric means of area samples of grain dust averaged 8.28 mg/m(3) in 1978 and 2.06 mg/m(3) in 2008. Workers in the 1978 survey had a significantly higher prevalence of respiratory symptoms (with the largest adjusted odds ratio of 3.78, 95% CI 2.07-7.25, for shortness of breath), a lower prevalence of atopic conditions and lower mean lung function. Current grain workers had a lower risk of respiratory health consequences and a greater prevalence of atopic conditions than workers surveyed 30 years prior, most likely associated with reduced exposure to grain dust in the terminal elevator environment. Copyright © 2010 Wiley-Liss, Inc.
Fast camera imaging of dust in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Yu, J. H.; Rudakov, D. L.; Pigarov, A. Yu.; Smirnov, R. D.; Brooks, N. H.; Muller, S. H.; West, W. P.
2009-06-01
Naturally occurring and injected dust particles are observed in the DIII-D tokamak in the outer midplane scrape-off-layer (SOL) using a visible fast-framing camera, and the size of dust particles is estimated using the observed particle lifetime and theoretical ablation rate of a carbon sphere. Using this method, the lower limit of detected dust radius is ˜3 μm and particles with inferred radius as large as ˜1 mm are observed. Dust particle 2D velocities range from approximately 10 to 300 m/s with velocities inversely correlated with dust size. Pre-characterized 2-4 μm diameter diamond dust particles are introduced at the lower divertor in an ELMing H-mode discharge using the divertor materials evaluation system (DiMES), and these particles are found to be at the lower size limit of detection using the camera with resolution of ˜0.2 cm 2 per pixel and exposure time of 330 μs.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Shimizu, Atsushi; Sano, Hiroyuki; Kato, Kazuhiro; Mikami, Masaaki; Ueda, Yasuto; Tatsukawa, Toshiyuki; Ohga, Hideki; Yamasaki, Akira; Igishi, Tadashi; Kitano, Hiroya; Shimizu, Eiji
2015-01-01
Light detection and ranging (LIDAR) can estimate daily volumes of sand dust particles from the East Asian desert to Japan. The objective of this study was to investigate the relationship between sand dust particles and pulmonary function, and respiratory symptoms in adult patients with asthma. One hundred thirty-seven patients were included in the study. From March 2013 to May 2013, the patients measured their morning peak expiratory flow (PEF) and kept daily lower respiratory symptom diaries. A linear mixed model was used to estimate the correlation of the median daily levels of sand dust particles, symptoms scores, and PEF. A heavy sand dust day was defined as an hourly concentration of sand dust particles of >0.1 km−1. By this criterion, there were 8 heavy sand dust days during the study period. Elevated sand dust particles levels were significantly associated with the symptom score (0.04; 95% confidence interval (CI); 0.03, 0.05), and this increase persisted for 5 days. There was no significant association between PEF and heavy dust exposure (0.01 L/min; 95% CI, −0.62, 0.11). The present study found that sand dust particles were significantly associated with worsened lower respiratory tract symptoms in adult patients with asthma, but not with pulmonary function. PMID:26501307
Detection of anthropogenic dust using CALIPSO lidar measurements
NASA Astrophysics Data System (ADS)
Huang, J. P.; Liu, J. J.; Chen, B.; Nasiri, S. L.
2015-10-01
Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pastureland, and urbanized regions, and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data. To understand the contribution of anthropogenic dust to the total global dust load, it is important to identify it apart from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use data set. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25 % of the global continental dust load. Of these anthropogenic dust aerosols, more than 53 % come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2, with a maximum in India, to 0.12 g m-2, with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be more able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change, and air quality in the future.
NASA Astrophysics Data System (ADS)
Centeno Delgado, Diana C.; Chiao, Sen
2015-02-01
The roles of the Saharan Air Layer (SAL) and lightning during genesis of Tropical Depression (TD) 8 (2006) and TD 12 (2010) were investigated in relation to the interaction of the dust outbreaks with each system and their surrounding environment. This study applied data collected from the 2006 NASA African Monsoon Multidisciplinary Analysis and 2010 Genesis and Rapid Intensification Processes projects. Satellite observations from METEOSAT and Moderate Resolution Imaging Spectroradiometer (MODIS)—Aerosol Optical Depth (AOD) were also employed for the study of the dust content. Lightning activity data from the Met Office Arrival Time Difference (ATD) system were used as another parameter to correlate moist convective overturning and a sign of cyclone formation. The AOD and lightning analysis for TD 8 demonstrated the time-lag connection through their positive contribution to TC-genesis. TD 12 developed without strong dust outbreak, but with lower wind shear (2 m s-1) and an organized Mesoscale Convective System (MCS). Overall, the results from the combination of various data analyses in this study support the fact that both systems developed under either strong or weak dust conditions. From these two cases, the location (i.e., the target area) of strong versus weak dust outbreaks, in association with lightning, were essential interactions that impacted TC-genesis. While our dust footprints hypothesis applied under strong dust conditions (i.e., TD 8), other factors (e.g., vertical wind shear, pre-existing vortex and trough location, thermodynamics) need to be evaluated as well. The results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones (i.e., TD 8 and TD 12).
Analysis of Dust Devils on Mars using CFD
NASA Astrophysics Data System (ADS)
Lange, C. F.; Chen, K.; Davis, J. A.; Gheynani, B. T.
2009-05-01
Recent Mars missions have reported evidence of the existence of dust devils. A detailed study of vortex dynamics will provide a better understanding of this swirling flow of the Martian atmosphere. Further, it is believed that there is a relationship between dust devils and water transport. Recently, the Phoenix Mars mission, designed to investigate ice water and natural events on Mars, has successfully finished. The Phoenix Surface Stereo Imager (SSI) camera captured images of the passage of dust devils over or close to the lander. Additionally, dustless devils, which have similar vortex characteristics but insufficient strength to raise dust from the surface, have been detected in the lander's pressure measurements. It was found that dust devils occur mainly in the early afternoon. Because of this, numerical models of a vortex generator are used to study the physics of this complex swirling flow and the effect of dust devils on the transport of water vapour from the regolith. Characteristic parameters such as core radius and swirl ratio are being explored for scaling factors. Scaling factors will be studied and tested, comparing the small and large scales of numerically generated vortices and laboratory generated vortices. Small scale of numerical models of atmospheric vortices are studied using a commercial software package, ANSYS/CFX11.0 with finite volume method (FVM). Large eddy simulations (LES) of planetary boundary layers are based on NCAR LES code to simulate convective vertical vortices that naturally form in quiescent convective boundary layers (CBL) over homogeneous flat surfaces. This will help to find the approximate location and physical characteristics of the vortices on the surface. The numerical models of atmospheric vortices and the experimental vortex generator validations will help to define the water vapour cycle on Mars.
Are opthalmic hydrophobic coatings useful for astronomical optics?
NASA Astrophysics Data System (ADS)
Schwab, Christian; Phillips, Andrew C.
2010-07-01
Astronomical optics are often exposed to moisture and dust in observatory environments, which frequently compromises their high-performance coatings. Suitable protective layers to resist dust and moisture accumulation would be extremely advantageous, but have received scant attention thus far. Hydrophobic and scratch-resistant coatings, developed primarily for opthalmic use, exhibit several attractive properties for astronomical optics. We examine the properties of one such coating and its applicability to astronomical mirrors and lenses. This includes efficiency of dust removal, abrasion resistance, moisture resistance, ease of stripping, and transmission across a wide wavelength range.
Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.
2013-01-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
NASA Astrophysics Data System (ADS)
Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.
2013-04-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzlieva, E. S., E-mail: plasmadust@yandex.ru; Karasev, V. Yu., E-mail: v.karasev@spbu.ru; Pavlov, S. I.
The geometry and dynamics of plasma−dust structures in a longitudinal magnetic field is studied experimentally. The structures are formed in a glow-discharge trap created in the double electric layer produced as a result of discharge narrowing by means of a dielectric insert introduced in the discharge tube. Studies of structures formed in the new type of glow-discharge trap are of interest from the standpoint of future experiments with complex plasmas in superstrong magnetic fields in which the dust component is magnetized. Different types of dielectric inserts were used: conical and plane ones with symmetric and asymmetric apertures. Conditions for themore » existence of stable dust structures are determined for dust grains of different density and different dispersity. According to the experimental results, the angular velocity of dust rotation is ≥10 s{sup –1}, which is the fastest type of dust motion for all types of discharges in a magnetic field. The rotation is interpreted by analyzing the dynamics of individual dust grains.« less
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Lau, K. M.; Kim, Kyu-Myong
2010-01-01
The influence on the summertime North Atlantic Ocean inter-tropical convergence zone (ITCZ) of Saharan dust outbreaks is explored using nine years of continuous satellite observations and atmospheric reanalysis products. During dust outbreak events rainfall along the ITCZ shifts northward by 1 to 4 degrees latitude. Dust outbreaks coincide with warmer lower-tropospheric temperatures compared to low dust conditions, which is attributable to advection of the warm Saharan Air Layer, enhanced subtropical subsidence, and radiative heating of dust. The enhanced positive meridional temperature gradient coincident with dust outbreaks is accompanied by an acceleration of the easterly winds on the n011h side of the African Easterly Jet (AEJ). The center of the positive vorticity region south of the AEJ moves north drawing the center of low-level convergence and ITCZ rainfall northward with it. The enhanced precipitation on the north side of the ITCZ occurs in spite of widespread sea surface temperature cooling north of the ITCZ owing to reduced surface solar insolation by dust scattering.
CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.
2012-01-01
CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios during the summer of 2007 are used to study transatlantic dust properties downwind of Saharan sources, and to examine the interaction of clouds and dust. We discuss the following findings: (1) while lidar backscatter doesn't change much with altitude in the Saharan Air Layer (SAL), depolarization and color ratios both increase with altitude in the SAL; (2) lidar backscatter and color ratio increase as dust is transported westward in the SAL; (3) the vertical lapse rate of dust depolarization ratio increases within SAL as plumes move westward; (4) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Finally, (5) the odds of CALIOP finding dust below SAL next to clouds are about 2/3 of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dusty volumes lose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.
The Electrostatic Environments of Mars and the Moon
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2011-01-01
The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.
NASA Astrophysics Data System (ADS)
Ju, Tingting; Li, Xiaolan; Zhang, Hongsheng; Cai, Xuhui; Song, Yu
2018-06-01
Using the observational data of dust concentrations and meteorological parameters from 2011 to 2015, the effects of soil moisture and air humidity on dust emission were studied at long (monthly) and short (several days or hours) time scales over the Horqin Sandy Land area, Inner Mongolia of China. The results show that the monthly mean dust concentrations and dust fluxes within the near-surface layer had no obvious relationship with the monthly mean soil moisture content but had a slightly negative correlation with monthly mean air relative humidity from 2011 to 2015. The daily mean soil moisture exhibited a significantly negative correlation with the daily mean dust concentrations and dust fluxes, as soil moisture changed obviously. However, such negative correlation between soil moisture and dust emission disappeared on dust blowing days. Additionally, the effect of soil moisture on an important parameter for dust emission, the threshold friction velocity (u∗t), was investigated during several saltation-bombardment and/or aggregation-disintegration dust emission (SADE) events. Under dry soil conditions, the values of u∗t were not influenced by soil moisture content; however, when the soil moisture content was high, the values of u∗t increased with increasing soil moisture content.
Bacterial Composition and Survival on Sahara Dust Particles Transported to the European Alps
Meola, Marco; Lazzaro, Anna; Zeyer, Josef
2015-01-01
Deposition of Sahara dust (SD) particles is a frequent phenomenon in Europe, but little is known about the viability and composition of the bacterial community transported with SD. The goal of this study was to characterize SD-associated bacteria transported to the European Alps, deposited and entrapped in snow. During two distinct events in February and May 2014, SD particles were deposited and promptly covered by falling snow, thus preserving them in distinct ochre layers within the snowpack. In June 2014, we collected samples at different depths from a snow profile at the Jungfraujoch (Swiss Alps; 3621 m a.s.l.). After filtration, we performed various microbiological and physicochemical analyses of the snow and dust particles therein that originated in Algeria. Our results show that bacteria survive and are metabolically active after the transport to the European Alps. Using high throughput sequencing, we observed distinct differences in bacterial community composition and structure in SD-layers as compared to clean snow layers. Sporulating bacteria were not enriched in the SD-layers; however, phyla with low abundance such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bio-indicators for SD. Since many members of these phyla are known to be adapted to arid oligotrophic environments and UV radiation, they are well suited to survive the harsh conditions of long-range airborne transport. PMID:26733988
Ocular Toxicity Testing of Lunar Dust
NASA Technical Reports Server (NTRS)
Meyers, Valerie E.
2010-01-01
This slide presentation reviews the use of ocular testing to determine the toxicity of lunar dust. The OECD recommendations are reviewed. With these recommendations in mind the test methodology was to use EpiOcular, tissues derived from normal human epidermal keratinocytes, the cells of which have been differentiated on cell culture inserts to form a multi-layered structure, which closely parallels the corneal epithelium and to dose the tissue with 100 mg dust from various sources. The in-vitro study provides evidence that lunar dust is not severely corrosive or irritating, however, in vitro tests have limitations, and in vivo tests provides a more complete scenario, and information, it is recommended that in vivo tests be performed.
Dust on Mars: An Aeolian Threat to Human Exploration?
NASA Technical Reports Server (NTRS)
Marshall, J.
1999-01-01
The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints and fabrics, change the thermal properties of the suit, and possibly affect electronic/electrical suit functions. It is paramount that future missions address the issue of interparticle forces, and in particular, the role played by ionizing radiation in affecting these forces on Mars.
Dust on Mars: An Aeolian Threat to Human Exploration?
NASA Technical Reports Server (NTRS)
Marshall, J.
1999-01-01
The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints and fabrics, change the thermal properties of the suit, and possibly affect electronic/electrical suit functions. It is paramount that future missions address the issue of interparticle forces, and in particular, the role played by ionizing radiation in affecting these forces on Mars.
NASA Astrophysics Data System (ADS)
Economou, T. E.; Tuzzolino, A. J.; Green, S. F.
On January 2nd, 2004, the Stardust spacecraft successfully encountered the Wild 2 comet. The Dust Flux Monitor Instrument (DFMI) provided quantitative measurements of dust particle fluxes and particle mass distribution throughout the entire flythrough. The DFMI consists of two different dust detector systems --- a polyvinylidene fluoride (PVDF) dust sensor unit (SU), which measures particles in the 10-11 to 10-4 mass, and a dual acoustic sensor system (DASS), which utilizes two piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux ofparticles with mass larger than 10-4 g. The DFMI on the stardust mission was designed, built and tested at the University of Chicago. The Open University provided the calibration and will perform the analysis of the data from the acoustic sensors. The DFMI instrument was turned on 15 minutes before the estimated closest approach. It started to detect the first dust particles just a few minutes before the closest approach with both types of the sensors in the instrument. As the S/C was departing the comet several more dust particle streams were encountered some 2-12 minutes after the closest approach. The time distribution of dust particles detected by DFMI is not uniform and they seem to come in closely spaced swarms of particles separated by many seconds with no events. The source of these particles is believed to be several of the jet streams that were observed in many of the images obtained by the navigation camera on the STARDUST spacecraft. Data flux rates and dust particle mass distribution are currently being evaluated and will be presented at the meeting. The instrument detected thousands of small particles and a few of them were large enough to even penetrate the first layer of the Whipple bumper shield. From the DFMI data it has been estimated that more than several thousands particles larger than 20 μ in diameter have been collected in the aerogel collector that will returned back to Earth in January 2006.
Dekov, V.M.; Kamenov, George D.; Savelli, C.; Stummeyer, Jens; Thiry, M.; Shanks, Wayne C.; Willingham, A.L.; Boycheva, T.B.; Rochette, P.; Kuzmann, E.; Fortin, D.; Vertes, A.
2009-01-01
A sediment core taken from the south-east slope of the Eolo Seamount is composed of alternating red-brown and light-brown to bluish-grey layers with signs of re-deposition in the middle-upper section. The red-brown layers are Fe-rich metalliferous sediments formed as a result of low-temperature (??? 77????C) hydrothermal discharge, whereas the bluish-grey layers most probably originated from background sedimentation of Al-rich detrital material. The metalliferous layers are composed mainly of Si-rich goethite containing some Al. Co-precipitation of hydrothermally released SiO44- and Fe2+ as amorphous or poorly crystalline Fe-Si-oxyhydroxides explains the high Si concentration in goethite. The elevated Al content of the goethite is fairly unusual, but reflects the extremely high background Al content of the Tyrrhenian seawater due to the high eolian terrigenous flux from the Sahara desert. The Sr and Nd isotope data suggest that the Eolo metalliferous sediments are the product of a 3-component mixture: hydrothermal fluid, seawater, and detrital material (Saharan dust and Aeolian Arc material). The enrichment in Fe, P, As, Mo, Cd, Be, Sb, W, Y, V, depletion in REE and transition elements (Cu, Co, Ni, Zn) and the REE distribution patterns support the low-temperature hydrothermal deposition of the metalliferous layers. The hydrothermal field is located in a seawater layer of relative O2 depletion, which led to a significant fractionation of the hydrothermally emitted Fe and Mn. Fe-oxyhydroxides precipitated immediately around the vents whereas Mn stayed in solution longer and the Mn-oxides precipitated higher up on the seamount slope in seawater with relatively higher O2 levels. High seismic activity led to sediment re-deposition and slumping of the Mn-rich layers down slope and mixing with the Fe-rich layers. ?? 2009 Elsevier B.V. All rights reserved.
Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne
2013-01-01
Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.
NASA Astrophysics Data System (ADS)
Kumar, Ashwini; Abouchami, W.; Galer, S. J. G.; Singh, Satinder Pal; Fomba, K. W.; Prospero, J. M.; Andreae, M. O.
2018-04-01
In order to assess the impact of mineral dust on climate and biogeochemistry, it is paramount to identify the sources of dust emission. In this regard, radiogenic isotopes have recently been used successfully for tracing North African dust provenance and its transport across the tropical Atlantic to the Caribbean. Here we present two time series of radiogenic isotopes (Pb, Sr and Nd) in dusts collected at the Cape Verde Islands and Barbados in order to determine the origin of the dust and examine the seasonality of westerly dust outflow from Northern Africa. Aerosol samples were collected daily during two campaigns - February 2012 (winter) and June-July 2013 (summer) - at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente (16.9°N, 24.9°W). A one-year-long time series of aerosols from Barbados (13.16°N, 59.43°W) - a receptor region in the Caribbean - was sampled at a lower, monthly resolution. Our results resolve a seasonal isotopic signal at Cape Verde shown by daily variations, with a larger radiogenic isotope variability in winter compared to that in summer. This summer signature is also observed over Barbados, indicating similar dust provenance at both locations, despite different sampling years. This constrains the isotope fingerprint of Saharan Air Layer (SAL) dust that is well-mixed during its transport. This result provides unequivocal evidence for a permanent, albeit of variable strength, long-range transport of African dust to the Caribbean and is in full agreement with atmospheric models of North African dust emission and transport across the tropical Atlantic in the SAL. The seasonal isotopic variability is related to changes in the dust source areas - mainly the Sahara and Sahel regions - that are active all-year-round, albeit with variable contributions in summer versus the winter months. Our results provide little support for much dust contributed from the Bodélé Depression in Chad - the "dustiest" place on Earth - reaching Cape Verde and Barbados during the summer, while contributions during the winter months are likely patchy and minor at most. Importantly, a short-term isotopic excursion is resolved in the Cape Verde winter record during a dust outbreak on 06-08 February 2012. This features a highly radiogenic Pb and Sr and unradiogenic Nd signature, marking a clear shift in dust provenance relative to that of normal days. As the dust storm waned, continuous gradual changes are observed, reflecting mixing and progressive dilution with dust typical of normal days. These inferences from radiogenic isotope tracers are corroborated by both satellite images (CALIPSO and MODIS) and back-trajectory analyses. The radiogenic isotope fingerprinting of these presently-active North African dust sources, and especially the Saharan Air Layer, will prove invaluable in studies of past dust emission from Northern Africa, where imagery and back trajectory analysis are unavailable.
NASA Astrophysics Data System (ADS)
Centeno Delgado, Diana C.
In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.
THEMIS VIS and IR observations of a high-altitude Martian dust devil
Cushing, G.E.; Titus, T.N.; Christensen, P.R.
2005-01-01
The Mars Odyssey Thermal Emission Imaging System (THEMIS) imaged a Martian dust devil in both visible and thermal-infrared wavelengths on January 30, 2004. We believe this is the first documented infrared observation of an extraterrestrial dust devil, and the highest to be directly observed at more than 16 kilometers above the equatorial geoid of Mars. This dust devil measured over 700 meters in height and 375 meters across, and the strongest infrared signature was given by atmospheric dust absorption in the 9-micron range (THEMIS IR band 5). In addition to having formed in the extremely low-pressure environment of about 1 millibar, this dust devil is of particular interest because it was observed at 16:06 local time. This is an unusually late time of day to find dust devils on Mars, during a period when rapid surface cooling typically reduces the boundary-layer turbulence necessary to form these convective vortices. Understanding the mechanisms for dust-devil formation under such extreme circumstances will help to constrain theories of atmospheric dynamics, and of dust lifting and transport mechanisms on Mars. Copyright 2005 by the American Geophysical Union.
CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.
2014-01-01
We use CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios, as well as particulate retrievals during the summer of 2007 to study transatlantic dust properties downwind of Saharan sources, and to examine the influence of nearby clouds on dust. Our analysis suggests that (1) under clear skies, while lidar backscatter and color ratio do not change much with altitude and longitude in the Saharan Air Layer (SAL), depolarization ratio increases with altitude and decreases westward in the SAL (2) the vertical lapse rate of dust depolarization ratio, introduced here, increases within SAL as plumes move westward (3) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Moreover, the presence of nearby clouds tends to decrease the depolarization of dust volumes within SAL. Finally, (4) the odds of CALIOP finding dust below SAL next to clouds are about of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dust volumes loose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.
Characteristics of extreme dust events observed over two urban areas in Iran
NASA Astrophysics Data System (ADS)
Bidokhti, Abbas-Ali A.; Gharaylou, Maryam; Pegahfar, Nafiseh; Sabetghadam, Samaneh; Rezazadeh, Maryam
2016-03-01
Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006 to 2009. To detect extreme dust outbreaks, various datasets including synoptic data, dust concentration, reanalysis data and numerical results of WRF and HYSPLIT models were used. The weather maps demonstrate that for these events dusts are mainly generated when wind velocity is high and humidity is low in the lower troposphere and the region is under the influence of a thermal low. The event lasts until the atmospheric stability prevails and the surface wind speed weakens. The thermal low nature of the synoptic conditions of these major events is also responsible for deep boundary layer development with its thermals affecting the vertical dust flux over the region. Trajectory studies show that the dust events originated from deserts in Iraq and Syria and transported towards Iran. The main distinction between the two types of mobilizations seems to affect the dust concentrations in the Tehran urban area.
Chen, Shuguo; Zhang, Tinglu; Chen, Wenzhong; Shi, Jinhui; Hu, Lianbo; Song, Qingjun
2016-12-12
Asian dust storms originating from arid or semi-arid regions of China or her adjacent regions have important impact on the atmosphere and water composition, and ecological environment of the Eastern China Seas. This research used data collected in the middle of the South Yellow Sea, China, during a dust storm event from 23 April to 24 April 2006 to analyze the instantaneous influence of dust storms on optical scattering properties, which are closely related to particle characteristics. The analysis results showed that the dust storm had a remarkable influence on the optical scattering property in the upper mixed layer of water, and dust particles drily deposited from the dust storm with an aerosol optical depth of nearly 2.5 into the water could induce a 0.14 m-1 change in the water optical scattering coefficient at 532 nm at the depth of 4 m. The duration of the instantaneous influence of the dust storm on the water optical scattering properties was short, and this influence disappeared rapidly within approximately 3 hours after the end of the dust storm.
Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask
NASA Technical Reports Server (NTRS)
Welton, Ellsworth
2010-01-01
A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected by CALIPSO. Here we present new results for a full year study using the new Version 3 CALIPSO data and most recent GEOS-5 model results.
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Yoshinori; Korenaga, Jun
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a largemore » temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.« less
Dust remobilization tests in DIII-D divertor
NASA Astrophysics Data System (ADS)
Bykov, I.; Rudakov, D.; Moyer, R.; Ratynskaia, S.; Tolias, P.; Deangeli, M.; McLean, A.; Bystrov, K.
2015-11-01
Accumulation of dust on hot surfaces is a safety concern for ITER operation. We studied the life cycle of pre-deposited dust under ITER-relevant conditions by exposing W samples with W, C and Al (surrogate for Be) dust at the outer strike point (OSP) in a few ELMy H-mode discharges using DiMES. The maxima in the dust ejection rate correspond to ELM crashes under both attached and detached OSP conditions, as confirmed by a fast camera monitoring DiMES. SEM mapping of dust before and after exposures shows that >95 % of C and <5 % of metal dust gets remobilized in a few shots. In discharges with detached OSP, remaining Al particles melt and fuse together, forming larger spherical grains. At elevated heat flux with attached OSP, they melt, destruct and fuse with W substrate, which is not thermally affected. In this mode W grains partly melt and adjacent particles can weld together, forming larger asymmetric agglomerates with increased adhesion to the surface. We show that these results are consistent with recent observations from Pilot-PSI. Work supported by the US DOE under DE-FC02-04ER54698, DE-FG02-07ER54917 and DE-AC52-07NA27344.
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Miyazaki, Yoshinori; Korenaga, Jun
2017-11-01
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a large temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.
Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi
2010-08-21
The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.
NASA Astrophysics Data System (ADS)
Zhai, Guangyu; Chai, Guorong; Zhang, Haifeng
2017-08-01
In this paper we aimed to collect water-soluble anion and cationic through rapid capturing system of atmospheric fine particles in order to analyze the source of water-soluble ions of atmospheric PM2.5 in Lanzhou city, and the characteristics of hourly concentration changes in different sand and dust weather processes. The author also applied Hysplit4.8 to conduct backward trajectory analysis. The results showed that the correlation between water-soluble ions is instrumental to infer the forms of water-soluble ions in Lanzhou, such as (NH4) 2 SO4, NH4NO3, CaSO4, and NH4Cl. Lanzhou has been severely polluted by sand and dust apart from the increasing amount of Ca2+ under different dust sources and transmission paths. Na+ was also elevated in March, resulted from the dust going through the Hexi Corridor from the Taklimakan. Furthermore, in April Cl- also increased due to the dust being derived from Outer Mongolia then passing Qaidam Basin. In addition, Na+ dramatically went up in the process of precipitation.
Fipronil and its degradates in indoor and outdoor dust
Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Musgrove, M.; Zaugg, S.D.; Burkhardt, M.R.
2009-01-01
Fipronil is a potent insecticide used for control of termites, fleas, roaches, ants, and other pests. We measured fipronil, fipronil sulfide, and desulfinyl fipronil concentrations in indoor and outdoor dust from 24 residences in Austin, Texas. At least one of these three fipronil compounds was detected in every sample. Fipronil accounted for most of the total fipronil (T-fipronil; fipronil+desulfinyl fipronil+fipronil sulfide), followed by desulfinyl fipronil and fipronil sulfide. Nineteen of 24 samples of indoor dust had T-fipronil concentrations less than 270 ??g/kg; the remaining five had concentrations from 1320 to 14,200 ??g/kg. All three of the residences with a dog on which a flea-control product containing fipronil was used were among the five residences with elevated fipronil concentrations. In outdoor dust, all concentrations of T-fipronil were less than 70??g/kg with one exception (430??g/kg). For every residence, the concentration of T-fipronil in indoor dust exceeded that in outdoor dust, and the median concentration of T-fipronil was 15 times higher indoors than outdoors.
Analysis of the Effect of Prevailing Weather Conditions on the Occurrence of Grain Dust Explosions.
Sanghi, Achint; Ambrose, R P Kingsly
2016-07-27
Grain dust explosions have been occurring in the U.S. for the past twenty years. In the past ten years, there have been an average of ten explosions a year, resulting in nine fatalities and 93 injuries. In more than half of these cases, the ignition source remains unidentified. The effect of ambient humidity on the likelihood of a dust explosion has been discussed for many years. However, no investigation into a possible link between the two has been carried out. In this study, we analyzed local weather data and grain dust explosions during the period 2006 to 2014 to measure potential relationships between the two events. The 84 analyzed explosions do not show any trend with regard to prevailing temperatures, or relative or absolute humidity. In addition, the ignition source could not be identified in 54 of the incidents. The majority of grain dust explosion incidents occurred at grain elevator facilities, where the dust generation potential was high compared with grain processing industries. Copyright© by the American Society of Agricultural Engineers.
Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan
2016-01-01
Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229
Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S.
Creamean, Jessie M; Suski, Kaitlyn J; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J; Sullivan, Ryan C; White, Allen B; Ralph, F Martin; Minnis, Patrick; Comstock, Jennifer M; Tomlinson, Jason M; Prather, Kimberly A
2013-03-29
Winter storms in California's Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.
Rauert, C; Harrad, S; Stranger, M; Lazarov, B
2015-08-01
Numerous studies have reported elevated concentrations of brominated flame retardants (BFRs) in dust from indoor micro-environments. Limited information is available, however, on the pathways via which BFRs in source materials transfer to indoor dust. The most likely hypothesized pathways are (a) volatilization from the source with subsequent partitioning to dust, (b) abrasion of the treated product, transferring microscopic fibers or particles to the dust (c) direct uptake to dust via contact between source and dust. This study reports the development and application of an in-house test chamber for investigating BFR volatilization from source materials and subsequent partitioning to dust. The performance of the chamber was evaluated against that of a commercially available chamber, and inherent issues with such chambers were investigated, such as loss due to sorption of BFRs to chamber surfaces (so-called sink effects). The partitioning of polybrominated diphenyl ethers to dust, post-volatilization from an artificial source was demonstrated, while analysis in the test chamber of a fabric curtain treated with the hexabromocyclododecane formulation, resulted in dust concentrations exceeding substantially those detected in the dust pre-experiment. These results provide the first experimental evidence of BFR volatilization followed by deposition to dust. Brominated flame retardants (BFRs) are ubiquitous in indoor air and dust, leading to human exposure and resultant concerns about their adverse impact on health. Indoor dust has been demonstrated to constitute an important vector of human exposure to BFRs, especially for toddlers. Despite the greater importance of dust contamination in the context of human exposure to BFRs, the mechanisms via which BFRs transfer from source materials to dust have hitherto been subject to only limited research. In this study, a test chamber is utilized to simulate the migration of BFRs to dust via volatilization from source materials and subsequent deposition to dust. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Periodic climate change on Mars: Review of evidence and effects on distribution of volatiles
Carr, M.H.
1982-01-01
The polar regions of Mars preserve, in both their layering and their topography, a record of recent climate changes. Because of the coincidence of the growth of the northern seasonal cap with global dust storms, dust may be currently accumulating on the northern cap, but conditions at the poles will alternate with the precessional cycle. Deposition is also modulated by changes in eccentricity and obliquity, which interact complexly, affecting initiation of global dust storms, the stability of volatiles at the surface, and global wind regimes. Formation of spiral valleys and low undulations on the surface of the layered deposits may result from prefential sublimation of volatiles on sunward-facing slopes and condensation on the adjacent flats, with the rates also modulated by astronomically caused insolation variations. Lack of impact craters on the surface and lack of interruption of the layers by impact scars suggest that the polar deposits are no more than a few million years old. Older deposits may have been periodically removed, as indicated by etch-pitted terrain at the south pole and by superposition relations around the periphery of the present layered deposits. Evidence of ancient periodic climate changes that occurred before formation of the present layered terrain is fragmentary but includes pedestal craters, parallel moraine-like ridges, and etched ground at high latitudes. Perturbation of the orbital motions also results in adsorption and desorption of volatiles in the regolith, which leads to variations in atmospheric pressure and partial dehydration of the equatorial near-surface materials. ?? 1982.
Dark material in the polar layered deposits and dunes on Mars
NASA Astrophysics Data System (ADS)
Herkenhoff, Ken E.; Vasavada, Ashwin R.
1999-07-01
Viking infrared thermal mapping and bistatic radar data suggest that the bulk density of the north polar erg material is much lower than that of the average Martian surface or of dark dunes at lower latitudes. We have derived a thermal inertia of 245-280Jm-2s-1/2K-1(5.9-6.7×10-3calcm-2s-1/2K-1) for the Proctor dune field and 25-150Jm-2s-1/2K-1(0.6-3.6×10-3calcm-2s-1/2K-1) for the north polar erg. The uniqueness of the thermophysical properties of the north polar erg material may be due to a unique polar process that has created them. The visible and near-infrared spectral reflectance of the erg suggests that the dark material may be composed of basalt or ferrous clays. These data are consistent with the dark material being composed of basaltic ash or filamentary sublimate residue (FSR) particles derived from erosion of the layered deposits. Dark dust may be preferentially concentrated at the surface of the layered deposits by the formation of FSR particles upon sublimation of water ice. Further weathering and erosion of these areas of exposed layered deposits may form the dark, saltating material that is found in both polar regions. Dark FSR particles may saltate for great distances before eventually breaking down into dust grains, re-mixing with the global dust reservoir, and being recycled into the polar layered deposits via atmospheric suspension.
Dark material in the polar layered deposits and dunes on Mars
Herkenhoff, K. E.; Vasavada, A.R.
1999-01-01
Viking infrared thermal mapping and bistatic radar data suggest that the bulk density of the north polar erg material is much lower than that of the average Martian surface or of dark dunes at lower latitudes. We have derived a thermal inertia of 245-280 J m-2 s-1/2 K-1 (5.9-6.7 ?? 10-3 cal cm-2 s-1/2 K-1) for the Proctor dune field and 25-150 J m-2 s-1/2 K-1 (0.6-3.6 ?? 10-3 cal cm-2 s-1/2 K-1) for the north polar erg. The uniqueness of the thermophysical properties of the north polar erg material may be due to a unique polar process that has created them. The visible and near-infrared spectral reflectance of the erg suggests that the dark material may be composed of basalt or ferrous clays. These data are consistent with the dark material being composed of basaltic ash or filamentary sublimate residue (FSR) particles derived from erosion of the layered deposits. Dark dust may be preferentially concentrated at the surface of the layered deposits by the formation of FSR particles upon sublimation of water ice. Further weathering and erosion of these areas of exposed layered deposits may form the dark, saltating material that is found in both polar regions. Dark FSR particles may saltate for great distances before eventually breaking down into dust grains, re-mixing with the global dust reservoir, and being recycled into the polar layered deposits via atmospheric suspension. Copyright 1999 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Joshi, Nitesh; Romanias, Manolis N.; Riffault, Veronique; Thevenet, Frederic
2017-08-01
The adsorption of water molecules on natural mineral dusts was investigated employing in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The natural dust samples originated from North and West Africa, Saudi Arabia and Gobi desert regions. Furthermore, the hygroscopicity of commercially available Arizona Test Dusts (ATDs) and Icelandic volcanic ash were examined. N2 sorption measurements, X-ray fluorescence and diffraction (XRF and XRD), as well as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses were performed to determine the physicochemical properties of the particles. The water adsorption experiments were conducted in an optical cell, at room temperature under the relative humidity (RH) range of 1.9-95%. Results were simulated using a modified three-parameter Brunauer-Emmett-Teller (BET) equation. Water monolayer (ML) was formed in the RH range of 15-25%, while additional water layers were formed at higher RH. Besides, the standard adsorption enthalpies of water onto natural mineral dust samples were determined. A thorough comparison of two commercially available ATD samples indicated that size distribution and/or porosity should play a key role in particle hygroscopicity. Regarding the natural mineral particles, Ca/Si ratios, and to a lesser extent Al/Si, Na/Si, Mg/Si ratios, were found to impact the minimum RH level required for water monolayer formation. These results suggest that the hygroscopic properties of investigated African dusts are quite similar over the whole investigated RH range. Furthermore, one of the major conclusions is that under most atmospheric relative humidity conditions, natural mineral samples are always covered with at least one layer of adsorbed water.
NASA Astrophysics Data System (ADS)
Merouane, Sihane; Stenzel, Oliver; Hilchenbach, Martin; Schulz, Rita; Altobelli, Nicolas; Fischer, Henning; Hornung, Klaus; Kissel, Jochen; Langevin, Yves; Mellado, Eva; Rynö, Jouni; Zaprudin, Boris
2017-07-01
The Cometary Secondary Ion Mass Analyzer (COSIMA) collects dust particles in the coma of 67P/Churyumov-Gerasimenko, images them with a resolution of 14 μm × 14 μm, and measures their composition via time-of-flight secondary ion mass spectrometry. The particles are collected on targets exposed to the cometary flux for periods ranging from several hours to a week. Images are acquired with the internal camera, the COSISCOPE, before and after each exposure period. This paper focuses on the evolution of the dust flux and of the size distribution of the particles derived from the COSISCOPE images during the two years of the mission. The dust flux reaches its maximum at perihelion. We suggest that the delay of 20 d between the activity measured by COSIMA and the gas activity measured by the other instruments on Rosetta is caused by the presence of a volatile-poor dust layer on the nucleus that is removed around perihelion, uncovering volatile-rich layers that then become active. The difference in morphology between the northern and southern hemispheres observed by OSIRIS, the south being more sintered, is also recorded in the COSIMA data by a change in the size distribution during the southern summer, as the large porous aggregates disappear from the COSIMA collection. The properties of the particles collected during an outburst in early September 2016 indicate that these particles were ejected by a violent event and might originate from regions of low tensile strength.
NASA Astrophysics Data System (ADS)
Higashi, Tomomi; Kambayashi, Yasuhiro; Ohkura, Noriyuki; Fujimura, Masaki; Nakanishi, Sayaka; Yoshizaki, Tomokazu; Saijoh, Kiyofumi; Hayakawa, Kazuichi; Kobayashi, Fumihisa; Michigami, Yoshimasa; Hitomi, Yoshiaki; Nakamura, Hiroyuki
2014-11-01
The health effects associated with Asian dust have attracted attention due to the rapid increase in the number of Asian dust events in East Asia in recent years. The aim of this study was to investigate the associations between Asian dust and daily cough, as well as allergic symptoms, in adult patients who suffer from chronic cough. We enrolled 86 adult patients from Kanazawa University Hospital, Japan, who were diagnosed with asthma, cough variant asthma, atopic cough or a combination of these conditions. From January to June 2011, subjects recorded their symptoms in a diary every day. Asian dust and non-Asian dust periods were defined according to the dust extinction coefficient, measured using the light detection and ranging (LIDAR). The daily levels of total suspended particulates, polycyclic aromatic hydrocarbons (PAHs) and coexisting factors related to allergies, such as the Japanese cedar pollen count, were measured. McNemar's test showed that there were significantly more cough-positive patients during Asian dust periods than during the non-Asian dust period (p = 0.022). In addition, during Asian dust periods when the daily levels of Japanese cedar pollen, Japanese cypress pollen and PAHs were elevated, there were significantly more patients who experienced itchy eyes than during the non-Asian dust period (p < 0.05). On the other hand, there were no significant differences in the allergic symptoms, including sneezing or a runny nose and nasal congestion. This is the first report to show that Asian dust triggers cough and allergic symptoms in adult patients with chronic cough.
Low latitude ice core evidence for dust deposition on high altitude glaciers
NASA Astrophysics Data System (ADS)
Gabrielli, P.; Thompson, L. G.
2017-12-01
Polar ice cores from Antarctica and Greenland have provided a wealth of information on dust emission, transport and deposition over glacial to interglacial timescales. These ice cores mainly entrap dust transported long distances from source areas such as Asia for Greenland and South America for Antarctica. Thus, these dust records provide paleo-information about the environmental conditions at the source and the strength/pathways of atmospheric circulation at continental scales. Ice cores have also been extracted from high altitude glaciers in the mid- and low-latitudes and provide dust records generally extending back several centuries and in a few cases back to the last glacial period. For these glaciers the potential sources of dust emission include areas that are close or adjacent to the drilling site which facilitates the potential for a strong imprinting of local dust in the records. In addition, only a few high altitude glaciers allow the reconstruction of past snow accumulation and hence the expression of the dust records in terms of fluxes. Due to their extreme elevation, a few of these high altitude ice cores offer dust histories with the potential to record environmental conditions at remote sources. Dust records (in terms of dust concentration/size, crustal trace elements and terrigenous cations) from Africa, the European Alps, South America and the Himalayas are examined over the last millennium. The interplay of the seasonal atmospheric circulation (e.g. westerlies, monsoons and vertical convection) is shown to play a major role in determining the intensity and origin of dust fallout to the high altitude glaciers around the world.
Swaddiwudhipong, Witaya; Tontiwattanasap, Worawit; Khunyotying, Wanlee; Sanreun, Cherd
2013-11-01
We evaluate blood lead levels among Thai children to determine if exposure to lead-acid batteries is associated with elevated blood lead levels (EBLL). We screened 254 children aged 1-14 years old from 2 rural Thai villages for blood lead levels. We also screened 18 of 92 houses in these 2 villages for the presence of environmental lead. The overall prevalence of EBLL (> or = 10 microg/dl) was 43.3% and the mean lead level among study subjects was 9.8 +/- 5.1 microg/dl. The blood lead levels significantly decreased with increasing age. Fifty point eight percent of children who lived in a house with vented lead-acid batteries had EBLL while 23.3% of children who lived in a house without vented lead-acid batteries had EBLL. Multiple logistic regression analysis revealed a significant positive association between the presence of vented lead-acid batteries and EBLL, after adjusting for other variables. Forty-two point nine percent of house floor dust samples collected near the batteries had elevated lead levels, 7.1% of house floor dust samples collected from other areas in the house had elevated lead levels and 0% of the house floor dust samples collected in houses without vented lead-acid batteries had elevated lead levels. In the sampled houses with vented lead-acid batteries, lead contamination was found in the drinking-water kept in household containers, but not in the tap water or other village sources of water. Improper care and placement of vented lead-acid batteries can result in lead contamination in the home environment causing EBLL in exposed children.
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-01-01
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-09-29
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.
Mars Dust and LETKF Data Assimilation of TES Observations
NASA Astrophysics Data System (ADS)
Greybush, S. J.; Hoffman, R. N.; Wilson, R.; Kang, J.; Zhao, Y.; Hoffman, M. J.; Kalnay, E.; Miyoshi, T.
2012-12-01
Simulation and prediction of dust storms remains one of the greatest challenges in Martian meteorology. Large-scale dust storms impact all Mars operations including spacecraft observations. What makes the difference between a regional event and a planet-encircling event? What are the predictability characteristics of these events and of the transition from regional to global? We examine the meteorology, including dustiness, in the Mars reanalysis created with the GFDL Mars Global Climate Model (MGCM) Local Ensemble Transform Kalman Filter (LETKF) data assimilation system (DAS). Characterizing the distribution and temporal evolution of dust in the Martian atmosphere is a considerable challenge. Spacecraft observations are sparse and have limitations in vertical coverage, dust physical properties are not well known, and model parameterizations of surface lifting have limited success in reproducing observed variability. Methods for generating a dust reanalysis begin with satellite inferred dust information in the form of column opacities, dust profile retrievals, or the original radiances. Opacities may be estimated from a formal retrieval of the satellite data or inferred through surface brightness temperatures. The opacities have been ingested via ad hoc adjustments to model tracer fields (Conrath vertical distributions, changes to the boundary layer dust only, etc.), but could also be assimilated by the LETKF or other advanced DAS. We will present dust distributions in the most recent version of the MGCM-LETKF Mars reanalysis. Current results are from two DASs, one assuming a fixed dust distribution and one using TES opacities and updating the boundary layer dust only. In these reanalyses, a full year of Thermal Emission Spectrometer (TES) temperature profiles have been assimilated. Since an accurate characterization of the sources and sinks of dust would greatly improve our understanding of the Martian dust cycle and its representation in numerical weather prediction models, we will examine two advanced DAS techniques that have been demonstrated in terrestrial DASs and could be applied to the problem -- surface dust flux estimation and estimating the surface parameters that control the source of dust (roughness, inventories). The surface dust flux method requires no a priori information about the fluxes, and uses only atmospheric observations. For the terrestrial CO2 problem, surface sources and sinks of CO2 have been estimated using only time-dependent measurements of atmospheric CO2, temperatures, and winds, and without a priori information on the surface fluxes. This scenario is very analogous to the case of Mars. On Mars we have only information on temperature and dust opacities at spacecraft overpass locations. Results for terrestrial CO2 and plans for Mars dust will be presented. However, to improve model parameterizations of dust lifting, we need to understand not only the planetary distribution of dust but also the evolution of its sources and sinks and their relation to meteorology. The surface parameters method assumes the physical properties have a persistence or damped persistence evolution equation. These are then treated as part of the model state vector in the LETKF. This approach is then analogous to the bias correction method used in LETKF to improve the atmospheric state estimation.
Detection of anthropogenic dust using CALIPSO lidar measurements
NASA Astrophysics Data System (ADS)
Huang, J.; Liu, J.; Chen, B.; Nasiri, S. L.
2015-04-01
Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use dataset. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25% of the global continental dust load. Of these anthropogenic dust aerosols, more than 53% come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2 with a maximum in India to 0.12 g m-2 with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be better able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change and air quality in the future.
NASA Astrophysics Data System (ADS)
Ansmann, Albert; Rittmeister, Franziska; Engelmann, Ronny; Basart, Sara; Jorba, Oriol; Spyrou, Christos; Remy, Samuel; Skupin, Annett; Baars, Holger; Seifert, Patric; Senf, Fabian; Kanitz, Thomas
2017-12-01
A unique 4-week ship cruise from Guadeloupe to Cabo Verde in April-May 2013 see part 1, Rittmeister et al. (2017) is used for an in-depth comparison of dust profiles observed with a polarization/Raman lidar aboard the German research vessel Meteor over the remote tropical Atlantic and respective dust forecasts of a regional (SKIRON) and two global atmospheric (dust) transport models (NMMB/BSC-Dust, MACC/CAMS). New options of model-observation comparisons are presented. We analyze how well the modeled fine dust (submicrometer particles) and coarse dust contributions to light extinction and mass concentration match respective lidar observations, and to what extent models, adjusted to aerosol optical thickness observations, are able to reproduce the observed layering and mixing of dust and non-dust (mostly marine) aerosol components over the remote tropical Atlantic. Based on the coherent set of dust profiles at well-defined distances from Africa (without any disturbance by anthropogenic aerosol sources over the ocean), we investigate how accurately the models handle dust removal at distances of 1500 km to more than 5000 km west of the Saharan dust source regions. It was found that (a) dust predictions are of acceptable quality for the first several days after dust emission up to 2000 km west of the African continent, (b) the removal of dust from the atmosphere is too strong for large transport paths in the global models, and (c) the simulated fine-to-coarse dust ratio (in terms of mass concentration and light extinction) is too high in the models compared to the observations. This deviation occurs initially close to the dust sources and then increases with distance from Africa and thus points to an overestimation of fine dust emission in the models.
NASA Technical Reports Server (NTRS)
Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Theriot, Corey; Zalesak, Selina; Yeshitla, Samrawit; Williams, Kyle; Wu, Honglu; James, John T.
2014-01-01
The Moon's surface is covered by a layer of reactive dust, containing 1-2% of respirable fine dust (< 3 microns). The habitable area of any lunar landing vehicle would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents through inhalation to assess the health risk of dust exposures to humans and to identify the mechanisms and potential pathways involved in lunar dust-induced toxicity. Ccl3, Ccl12, Cxcl2, Cxcl5, Itgb8, Tnf, Ldhc, Clec4e, Bmp7, and Smad6, showed persistently significant expression changes in the lung tissue. The expression of several of these genes were dose- and time- dependent, and were significantly correlated with other pathological. Our previous data showed that no pathological changes were detected in low dose groups. However, several genes, primarily produced by lung epithelial, were significantly altered persistently in response to low-dose dust exposure. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity, contributing not only the risk assessment for future space exploration, but also understandings of the dust-induced toxicity to humans on earth.
North Polar Cap Layers and Ledges
2016-08-24
At the edge of Mars' permanent North Polar cap, we see an exposure of the internal layers, each with a different mix of water ice, dust and dirt. These layers are believed to correspond to different climate conditions over the past tens of thousands of years. When we zoom in closer, we see that the distinct layers erode differently. Some are stronger and more resistant to erosion, others only weakly cemented. The strong layers form ledges. http://photojournal.jpl.nasa.gov/catalog/PIA21022
NASA Astrophysics Data System (ADS)
Debell, L. J.; Vozzella, M. E.; Talbot, R. W.; Dibb, J. E.
2002-12-01
The Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) program is operating 4 monitoring sites in New Hampshire, located at Fort Constitution (FC)(43.07oN, 70.71oW, 5m elevation), Thompson Farm (TF) (43.11oN, 70.95oW, 21m elevation), Castle Springs (CS) (43.75oN,71.35oW, 406m elevation) and Mount Washington (MW)(44.267oN, 71.30oW, 1909m elevation). Three chemically distinct, statistically extreme, regional scale dust aerosol events were observed at all four AIRMAP monitoring stations in NH between 4/18/01 and 5/13/01 (UTC). All three events, at all four sites, had days where the 24 hr bulk aerosol samples had Ca2+ concentrations that exceeded at least the 95th percentile of the site-specific, multi-year datasets. NO3- and SO42- were also enhanced above typical levels, ranging from above the 75th to above the 99th percentile. During all three events, mixing ratios of the gas phase pollutants O3 and CO were compared to mixing ratios on either side of the events. During event 1,enhancements above background levels were approximately 130 ppbv for CO and 30 ppbv for O3, very similar to the CO values in apparent Asian dust plumes sampled over Colorado at 6-7 km by aircraft measurements (http://www.cmdl.noaa.gov/info/asiandust.html); enhancements during events 2 and 3 were similar to event 1. The maximum elemental carbon value ever observed at TF, 0.97 μg/m3, occurred during the peak day of event 1. Elemental carbon was not substantially elevated during event 2 and no data were collected during event 3. Elemental ratios, determined by PIXE, on filters from events 1 and 3 were compared pairwise to each other and to published samples attributed to Asian dust storms. The AIRMAP samples collected on the same date at different sites showed good statistical agreement whereas samples collected at the same site on different dates show only moderate correlation. Of 17 published samples of Asian dust storm aerosol, collected well outside of the major desert and loess source regions, 15 showed good statistical agreement with at least 2 of our samples. In addition, at least 2 of our samples have good agreement with 1 published aerosol sample collected in the Gobi desert and for 1 published soil sample collected in the Takla Makan desert; indicating that the Asian dust storms are a possible source for our events. We also compared elemental ratios in our dust impacted samples to the IMPROVE dataset from Acadia, ME. Acadia was chosen for the longevity and completeness of its record and downwind location from the AIRMAP stations. Out of the over 1400 IMPROVE aerosol samples collected between 1988 and 2001, 476 have both Al, Fe and Ca above detection limit, and 120 show good agreement with at least 1 AIRMAP sample. The 120 samples selected above occurred primarily in spring: 52 samples from 3/1-5/15, 37 samples from 2/15-3/1 or 5/15-6/31. All three events are clearly discernible in the Acadia dataset both in timing and chemical similarity with the AIRMAP samples. A U.S. source cannot be ruled out chemically, but there are no reports in the National Climatic Data Centers Storm Publication that indicated large-scale dust storms in the period 4/10/01-5/10/01. TOMS images and the NRL-NAAPS model results also support an Asian source for the 3 events.
Anthropogenic- and natural sources of dust in peatland during the Anthropocene
NASA Astrophysics Data System (ADS)
Fiałkiewicz-Kozieł, B.; Smieja-Król, B.; Frontasyeva, M.; Słowiński, M.; Marcisz, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Jassey, V. E. J.; Kaliszan, K.; Laggoun-Défarge, F.; Kołaczek, P.; Lamentowicz, M.
2016-12-01
As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat.
Anthropogenic- and natural sources of dust in peatland during the Anthropocene
Fiałkiewicz-Kozieł, B.; Smieja-Król, B.; Frontasyeva, M.; Słowiński, M.; Marcisz, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Jassey, V. E. J.; Kaliszan, K.; Laggoun-Défarge, F.; Kołaczek, P.; Lamentowicz, M.
2016-01-01
As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat. PMID:27995953
[RESULTS OF DUST FACTOR IN COPPER PYROMETALLURGY].
Adrianovskiy, V I; Lipatov, G Ya; Zebzeeva, N V; Kuzmina, E A
2016-01-01
The dust entering the air of the working zone of metallurgical shops was shown to be presented by a disintegration aerosols originating in crushing and transporting ore materials and condensation occurring in the course of smelting, converting and fire-refining copper. The overwhelming majority of the grains have a size of 2.1-5.0 mm, which determines a fixed condition of the presence of given dust in the working area, its long presence in the deeper parts of the respiratory system. At the preparatory stages in the composition of the dust there are presented significant amounts of crystalline silicon dioxide possessing of the fibrogenic impact on the body. In the dust the presence of the crystalline silicon dioxide, arsenic, nickel, cadmium determines its carcinogenic hazard. The elevated dustiness of the air is noted with the reflective and especially mine melting, due to the imperfection of the technological equipment and sanitary technical devices. Autogenous smelting processes have demonstrated their hygienic advantage over outdated methods of producing blister copper mining and smelting reflectivity.
Anthropogenic- and natural sources of dust in peatland during the Anthropocene.
Fiałkiewicz-Kozieł, B; Smieja-Król, B; Frontasyeva, M; Słowiński, M; Marcisz, K; Lapshina, E; Gilbert, D; Buttler, A; Jassey, V E J; Kaliszan, K; Laggoun-Défarge, F; Kołaczek, P; Lamentowicz, M
2016-12-20
As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat.
Remote sensing of mesospheric dust layers using active modulation of PMWE by high-power radio-waves
NASA Astrophysics Data System (ADS)
Cohen, M.; Zhang, X.; Cohen, M.; Mahmoudian, A.; Scales, W.; Kosch, M. J.; M Farahani, M.; Mohebalhojeh, A.
2016-12-01
So-called polar mesospheric winter echoes (PMWE) are radar echoes observed during winter at altitudes around 50-80 km and are much weaker than their PMSE (Polar Mesospheric Summer Echoes) counterpart. Unlike PMSE, PMWE are less studied and understood. Breaking of gravity waves and the associated turbulence are proposed as the major source for PMWE echoes. The action of neutral turbulence alone does not appear to give a good explanation for PMWE. PMWE is also attributed to Bragg scatter from electron irregularities which result from charging of free electrons onto sub-visible particles. The temporal behavior of PMWE response to HF pump heating can be employed to diagnose the charged dust layer. Specifically, the rise and fall time of radar echo strength as well as relaxation and recovery time after heater turn-on and off are distinct parameters that are a function of radar frequency. This work presents the first study of the modulation of PMWE by artificial radiowave heating using computational modeling and experimental observation in different radar frequency bands. Variation of dust plasma parameters associated with PMWE such as dust radius, dust density, recombination rate, electron- and dust-neutral collision frequencies, photo-detachment current and electron temperature enhancement ratio are included. Computational results derived from different sets of parameters are considered and compared with recent observations at EISCAT using 224 MHz and 56 MHz radars. The agreement between the model results and the observations show the high potential of remote sensing of dust and plasma parameters associated with PMWE. Measurement of Te/Ti using ISR and simultaneous observations in two frequency bands may lead to a more accurate estimation of dust density and radius. The enhancement of backscattered signal in the HF band during PMWE heating is predicted for the first time. The required background dust-plasma parameters as well as heater power (Te/Ti) for the observation of turn-on overshoot are investigated. It has been shown that the similarity of the temporal evolution of radar echoes in HF band and average charge on the dust particles can be used to study the fundamental physics associated with the dust charging in the PMWE source region. The possibilities of perusing PMWE heating experiments at HAARP will be discussed.
Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions
NASA Astrophysics Data System (ADS)
Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly
The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in dusty plasmas over the lunar surface. This work was supported by the Presidium of the Russian Academy of Sciences (basic research program no. 22 “Fundamental Problems of Research and Exploration of the Solar System”) and by the Russian Foundation for Basic Research (project 12-02-00270-a).
Ceiling (attic) dust: a "museum" of contamination and potential hazard.
Davis, Jeffrey J; Gulson, Brian L
2005-10-01
Ceiling or attic dusts provide an indirect measure of air pollution integrated over varying time periods. We undertook an investigation into the particle-size distributions and sources and exposure pathways of metals in ceiling dusts from 38 houses in the city of Sydney, Australia. The houses ranged in age from 4 to 106 years and were grouped into three settings: industrial, semi-industrial, and non-industrial. The main roof types were terracotta tile (n=23), cement tile (n=8), and corrugated iron (n=4), with two slate and one asbestos. Soils and rocks from the Sydney area were also analyzed to provide "background" values and allow the estimation of enrichment factors. The bulk of the dusts contained particles derived from soil of crustal origin and organic plant material, with an anthropogenic component estimated at up to 25%. Particle sizes from selected dust samples showed a bimodal distribution, and the volumes of fine dusts were 50% <63 microm, 30%<38 microm, and 7%<10 microm; the highest metal concentrations were in the finest fractions. The geometric mean concentrations of important anthropogenic-derived metals from the industrial setting were 17294 microg/g Zn, 1660 microg/g Pb, 111 microg/g Cr, 261 microg/g Cu, and 26 microg/g As. The metals Cd, Cu, Pb, Sb, and Zn were consistently higher in the industrial settings than in the other settings. Median regression analyses showed that there were significant differences in the urban setting for the metals Cd, Co, Ni, Pb, and Zn. Enrichment factors for metals in the dust from the industrial site houses compared with background soils and rocks from the Sydney area were As, x 5; Cr, x2; Co, x3; Cu, x 12; Pb, x10; Sb, x 26; and Zn, 596. For the three roof types of terracotta tile, cement, and iron, median regression analyses showed that there were no significant effects with respect to age. Median regression analyses for terracotta tile, cement tile, and corrugated iron roofs showed a "roof" effect for Cu and V. Significant correlations (P0.03) were observed between most of the metals As-Cd-Cu-Pb-Sb-Zn, especially from the industrial settings. Pathways of dust exposure in this study are classified as being passive or active based upon the probable route of dust infiltration. Ceiling dusts pose a probable health hazard if the dust is disturbed and allowed to plume within the living areas of a dwelling, thereby exposing the occupants, especially children, to elevated levels of metals and fine particulates. Modeling shows that exposure to the elevated levels of Pb in dust could give rise to blood lead concentrations exceeding current guidelines for the industrial and semi-industrial areas.
Preservation of layered paleodeposits in high-latitude pedestal craters on Mars
NASA Astrophysics Data System (ADS)
Kadish, Seth J.; Head, James W.
2011-06-01
An outstanding question in Mars' climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that mid- to high-latitude pedestal craters represent the armored remnants of ice- and dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions.
Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin
Skiles, S. McKenzie; Painter, Thomas H.; Belnap, Jayne; Holland, Lacey; Reynolds, Richard L.; Goldstein, Harland L.; Lin, J.
2015-01-01
Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust-on-snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high-altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4-year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g−1 to 4.80 mg g−1, and daily mean spring dust radiative forcing ranged from 50–65 W m−2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g−1 less dust per season on average, spring radiative forcings of 32–50 W m−2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP.
NASA Astrophysics Data System (ADS)
Sheel, Varun; Haider, S. A.
2016-08-01
Dust optical depths (τ) for nine Martian years (MY24-MY32) in the subtropical region (25-35°S) have been used to classify distinct dust scenarios. These data are based on observations at 9.3 µm from the Mars Global Surveyor and Mars Odyssey missions and encompass the regional dust storms which occur every year around solar longitude (Ls) ~ 220° and the two major dust storms of MY25 and MY28. Constrained by these observations and the Mars Climate Sounder observations of detached dust layers, we estimate altitude profiles of dust concentrations. We discuss the characteristics of dust aerosol particles of different size between 0.2 and 3.0 µm by assuming a modified gamma distribution. We then use a comprehensive ion-dust model to calculate ion densities and conductivities in the lower ionosphere of Mars in the absence of dust storm at τ = 0.1 and Ls = 150° and for three dust storm periods viz., (1) major dust storm at τ = 1.7 and Ls = 210°, (2) major dust storm at τ = 1.2 and Ls = 280°, and (3) regional dust storm at τ = 0.5 and Ls = 220°. The model with 12 neutral species considers galactic cosmic rays as a source of ionization. Results show that the density of the dominant hydrated cluster ions and the electrical conductivity are reduced by an order of magnitude near the surface for a few months until the dust storm settles down to its normal condition.
Johnson, J. R.; Sohl-Dickstein, J.; Grundy, W.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Graff, T.; Guinness, E.A.; Kinch, K.; Morris, Robert; Shepard, M.K.
2006-01-01
Laboratory visible/near-infrared multispectral observations of Mars Exploration Rover Pancam calibration target materials coated with different thicknesses of Mars spectral analog dust were acquired under variable illumination geometries using the Bloomsburg University Goniometer. The data were fit with a two-layer radiative transfer model that combines a Hapke formulation for the dust with measured values of the substrate interpolated using a He-Torrance approach. We first determined the single-scattering albedo, phase function, opposition effect width, and amplitude for the dust using the entire data set (six coating thicknesses, three substrates, four wavelengths, and phase angles 3??-117??). The dust exhibited single-scattering albedo values similar to other Mars analog soils and to Mars Pathfinder dust and a dominantly forward scattering behavior whose scattering lobe became narrower at longer wavelengths. Opacity values for each dust thickness corresponded well to those predicted from the particles sizes of the Mars analog dust. We then restricted the number of substrates, dust thicknesses, and incidence angles input to the model. The results suggest that the dust properties are best characterized when using substrates whose reflectances are brighter and darker than those of the deposited dust and data that span a wide range of dust thicknesses. The model also determined the dust photometric properties relatively well despite limitations placed on the range of incidence angles. The model presented here will help determine the photometric properties of dust deposited on the MER rovers and to track the multiple episodes of dust deposition and erosion that have occurred at both landing sites. Copyright 2006 by the American Geophysical Union.
Ignition behavior of magnesium powder layers on a plate heated at constant temperature.
Chunmiao, Yuan; Dezheng, Huang; Chang, Li; Gang, Li
2013-02-15
The minimum temperature at which dust layers or deposits ignite is considered to be very important in industries where smoldering fires could occur. Experiments were conducted on the self-ignition behavior of magnesium powder layers. The estimated effective thermal conductivity k for modeling is 0.17 W m(-1)K(-1). The minimum ignition temperature (MIT) of magnesium powder layers for four different particle sizes: 6, 47, 104 and 173 μm, are also determined in these experiments. A model was developed describing temperature distribution and its change over time while considering the melting and boiling of magnesium powder. Parameter analysis shown that increasing particle size from 6 to 173 μm increased MIT from 710 to 760 K, and increased thickness of the dust layer led to a decreased MIT. The calculation termination time more than 5000 s didn't significantly impact MIT. Comparing predicted and experimental data showed satisfactory agreement for MIT of magnesium powder layers at various particle sizes. According to the ignition process of magnesium powder layer, a meaningful definition for the most sensitive ignition position (MSIP) was proposed and should be taken into consideration when preventing smoldering fires induced by hot plates. Copyright © 2012 Elsevier B.V. All rights reserved.
Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva
2008-06-06
Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations.
Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva
2008-01-01
Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations. PMID:27879911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuempel, E.D.; Wheeler, M.W.; Smith, R.J.
Previous studies have shown associations between dust exposure or lung burden and emphysema in coal miners, although the separate contributions of various predictors have not been clearly demonstrated. The objective was to quantitatively evaluate the relationship between cumulative exposure to respirable coal mine dust, cigarette smoking, and other factors on emphysema severity. The study group included 722 autopsied coal miners and nonminers in the United States. Data on work history, smoking, race, and age at death were obtained from medical records and questionnaire completed by next-of-kin. Emphysema was classified and graded using a standardized schema. Job-specific mean concentrations of respirablemore » coal mine dust were matched with work histories to estimate cumulative exposure. Relationships between various metrics of dust exposure (including cumulative exposure and lung dust burden) and emphysema severity were investigated in weighted least squares regression models. Emphysema severity was significantly elevated in coal miners compared with nonminers among ever- and never-smokers (P < 0.0001). Cumulative exposure to respirable coal mine dust or coal dust retained in the lungs were significant predictors of emphysema severity (P < 0.0001) after accounting for cigarette smoking, age at death, and race. The contributions of coal mine dust exposure and cigarette smoking were similar in predicting emphysema severity averaged over this cohort. Coal dust exposure, cigarette smoking, age, and race are significant and additive predictors of emphysema severity in this study.« less
Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces
NASA Astrophysics Data System (ADS)
Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino
2018-02-01
Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.
NASA Technical Reports Server (NTRS)
Lim, Hock-Bin; Roberts, Leonard
1991-01-01
An analysis is given for the entrainment of dust into a turbulent radial wall jet. Equations are solved based on incompressible flow of a radial wall jet into which dust is entrained from the wall and transported by turbulent diffusion and convection throughout the flow. It is shown that the resulting concentration of dust particles in the flow depends on the difference between the applied shear stress at the surface and the maximum level of shear stress that the surface can withstand (varies as rho(sub d)a(sub g)D) i.e., the pressure due to the weight of a single layer of dust. The analysis is expected to have application to the downflow that results from helicopter and VTOL aircraft.
Photophoretic Levitation and Trapping of Dust in the Inner Regions of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
McNally, Colin P.; McClure, Melissa K.
2017-01-01
In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.
Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.
2008-01-01
It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.
2017-01-02
Impact craters expose the subsurface materials on steep slopes. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image, representing different rock types. The bright reddish material at the top of the crater rim is from a coating of the Martian dust. The long streamers of material are from downslope movements. Also revealed in this slope are a variety of bedrock textures, with a mix of layered and jumbled deposits. This sample is typical of the Martian highlands, with lava flows and water-lain materials depositing layers, then broken up and jumbled by many impact events. http://photojournal.jpl.nasa.gov/catalog/PIA14454
NASA Astrophysics Data System (ADS)
Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.
2015-12-01
Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and transport pathways models for better estimation of emission of dust during dust storms, particulate air pollution, public health risk assessment tools and decision support systems.
Dust devil signatures in infrasound records of the International Monitoring System
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Christie, Douglas
2015-03-01
We explore whether dust devils have a recognizable signature in infrasound array records, since several Comprehensive Nuclear-Test-Ban Treaty verification stations conducting continuous measurements with microbarometers are in desert areas which see dust devils. The passage of dust devils (and other boundary layer vortices, whether dust laden or not) causes a local temporary drop in pressure: the high-pass time domain filtering in microbarometers results in a "heartbeat" signature, which we observe at the Warramunga station in Australia. We also observe a ~50 min pseudoperiodicity in the occurrence of these signatures and some higher-frequency infrasound. Dust devils do not significantly degrade the treaty verification capability. The pipe arrays for spatial averaging used in infrasound monitoring degrade the detection efficiency of small devils, but the long observation time may allow a useful census of large vortices, and thus, the high-sensitivity infrasonic array data from the monitoring network can be useful in studying columnar vortices in the lower atmosphere.
Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration
NASA Technical Reports Server (NTRS)
Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.;
2010-01-01
Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.
Determining Size Distribution at the Phoenix Landing Site
NASA Astrophysics Data System (ADS)
Mason, E. L.; Lemmon, M. T.
2016-12-01
Dust aerosols play a crucial role in determining atmospheric radiative heating on Mars through absorption and scattering of sunlight. How dust scatters and absorbs light is dependent on size, shape, composition, and quantity. Optical properties of the dust have been well constrained in the visible and near infrared wavelengths using various methods [Wolff et al. 2009, Lemmon et al. 2004]. In addition, the dust is nonspherical, and irregular shapes have shown to work well in determining effective particle size [Pollack et al. 1977]. Variance of the size distribution is less constrained but constitutes an important parameter in fully describing the dust. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to determine the size distribution and scattering properties of dust in the wavelength range of 400 to 1000 nm. In combination with a single-layer radiative transfer model, these surveys can be used to help constrain variance of the size distribution. We will present a discussion of seasonal size distribution as it pertains to the Phoenix landing site.
NASA Technical Reports Server (NTRS)
1997-01-01
Every several days, Mars Pathfinder will image the sunrise and sunset on Mars. Future images will show a larger area -- we have a higher data rate than we expected when we planned this image, so we can get more information. Images taken at sunset, like this, and up to two hours later, will be used to investigate the distribution of dust within the Martian atmosphere. Already, we can see some dust layers in the images. By seeing how the twilight fades with time -- it lasts for over two hours -- we can determine that the dust extends high into the atmosphere.
Monochromatic, Rosseland mean, and Planck mean opacity routine
NASA Astrophysics Data System (ADS)
Semenov, D.
2006-11-01
Several FORTRAN77 codes were developed to compute frequency-dependent, Rosseland and Planck mean opacities of gas and dust in protoplanetary disks. The opacities can be computed for an ensemble of dust grains having various compositions (ices, silicates, organics, etc), sizes, topologies (homogeneous/composite aggregates, homogeneous/layered/composite spheres, etc.), porosities, and dust-to-gas ratio. Several examples are available. In addition, a very fast opacity routine to be used in modeling of the radiative transfer in hydro simulations of disks is available upon request (10^8 routine calls require about 30s on Pentium 4 3.0GHz).
Summer Dust Aerosols Detected from CALIPSO Observations over the Tibetan Plateau
NASA Technical Reports Server (NTRS)
Huang, Jianping; Minnis, Patrick; Yi, Yuhong; Tang, Qiang; Wang, Xin; Hu, Yongxiang; Liu, Zhaoyan; Ayers, Kirk; Trepte, Charles; Winker, David
2007-01-01
Summertime Tibetan dust aerosol plumes are detected from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIPSO reveals that dust storms occur 4 times more frequently than previously found from Tibetan surface observations because few surface sites were available over remote northwestern Tibet. The Tibetan dust aerosol is characterized by column-averaged depolarization and color ratios around 21% and 0.83, respectively. The dust layers appear most frequently around 4-7 km above mean sea level. The depolarization ratio for about 90% of the dust particles is less than 10% at low altitudes (3-5 km), while only about 50% of the particles have a greater depolarization ratio at higher altitudes (7-10 km) suggesting a separation of larger irregular particles from smaller, near spherical ones during transport. The 4-day back trajectory analyses show that these plumes probably originate from the nearby Taklimakan desert surface and accumulate over the northern slopes of the Tibetan Plateau. These dust outbreaks can affect the radiation balance of the atmosphere of Tibet because they both absorb and reflect solar radiation.
Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles
NASA Technical Reports Server (NTRS)
Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.
2014-01-01
The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.
NASA Astrophysics Data System (ADS)
Liu, Yuqin; de Leeuw, Gerrit; Kerminen, Veli-Matti; Zhang, Jiahua; Zhou, Putian; Nie, Wei; Qi, Ximeng; Hong, Juan; Wang, Yonghong; Ding, Aijun; Guo, Huadong; Krüger, Olaf; Kulmala, Markku; Petäjä, Tuukka
2017-05-01
Aerosol effects on low warm clouds over the Yangtze River Delta (YRD, eastern China) are examined using co-located MODIS, CALIOP and CloudSat observations. By taking the vertical locations of aerosol and cloud layers into account, we use simultaneously observed aerosol and cloud data to investigate relationships between cloud properties and the amount of aerosol particles (using aerosol optical depth, AOD, as a proxy). Also, we investigate the impact of aerosol types on the variation of cloud properties with AOD. Finally, we explore how meteorological conditions affect these relationships using ERA-Interim reanalysis data. This study shows that the relation between cloud properties and AOD depends on the aerosol abundance, with a different behaviour for low and high AOD (i.e. AOD < 0.35 and AOD > 0.35). This applies to cloud droplet effective radius (CDR) and cloud fraction (CF), but not to cloud optical thickness (COT) and cloud top pressure (CTP). COT is found to decrease when AOD increases, which may be due to radiative effects and retrieval artefacts caused by absorbing aerosol. Conversely, CTP tends to increase with elevated AOD, indicating that the aerosol is not always prone to expand the vertical extension. It also shows that the COT-CDR and CWP (cloud liquid water path)-CDR relationships are not unique, but affected by atmospheric aerosol loading. Furthermore, separation of cases with either polluted dust or smoke aerosol shows that aerosol-cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust, which is ascribed to the higher absorption efficiency of smoke than dust. The variation of cloud properties with AOD is analysed for various relative humidity and boundary layer thermodynamic and dynamic conditions, showing that high relative humidity favours larger cloud droplet particles and increases cloud formation, irrespective of vertical or horizontal level. Stable atmospheric conditions enhance cloud cover horizontally. However, unstable atmospheric conditions favour thicker and higher clouds. Dynamically, upward motion of air parcels can also facilitate the formation of thicker and higher clouds. Overall, the present study provides an understanding of the impact of aerosols on cloud properties over the YRD. In addition to the amount of aerosol particles (or AOD), evidence is provided that aerosol types and ambient environmental conditions need to be considered to understand the observed relationships between cloud properties and AOD.
Byrne, Samuel; Seguinot-Medina, Samarys; Miller, Pamela; Waghiyi, Vi; von Hippel, Frank A; Buck, C Loren; Carpenter, David O
2017-12-01
Many Alaska Native communities rely on a traditional marine diet that contains persistent organic pollutants (POPs). The indoor environment is also a source of POPs. Polybrominated diphenyl ethers (PBDEs) and perfluoroalkyl substances (PFASs) are present both in the traditional diet and the home indoor environment. We assessed exposure to PBDEs and PFASs among residents of two remote Alaska Native villages on St. Lawrence Island. Ninespine stickleback (Pungitious pungitious) and Alaska blackfish (Dallia pectoralis) were used to detect accumulation of these compounds in the local environment. Concentrations of PBDEs and PFASs were measured in dust collected from 49 households on St. Lawrence Island, as well as in blood serum from 85 island residents. Resident ninespine stickleback and Alaska blackfish were used as sentinels to detect accumulation of PBDEs and PFASs in the food web. Serum concentrations of perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) were elevated, despite low concentrations of PFASs in dust samples. Concentrations of PBDEs in dust and serum were similar to those from the contiguous United States. Statistical associations between dust and serum concentrations are apparent for a small number of PBDEs, suggesting a possible route of exposure. Predominant compounds were similar between human sera and stickleback; however, blackfish accumulated PFASs not found in either stickleback or human sera. Household dust contributes to PBDE exposure, but not PFAS exposure. Elevated concentrations of long chain PFASs in serum are likely due to exposure from traditional foods. The presence of both PFASs and PBDEs in sentinel fish species suggests atmospheric deposition and bioaccumulation, as well as local environmental contamination. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Gasso, S.; Stein, A.; Marino, F.; Castellano, E.; Udisti, R.; Ceratto, J.
2010-01-01
The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS ,POLDER, OMI,), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (approx.54deg S) and from the shores of the Colihue Huapi lake in Central Patagonia (approx.46deg S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6-7 and 9-10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant de- position over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and approx.800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the presence of dust at approx.1500 km SW of South Africa five days after, the limited capabilities of existing satellite platforms to differentiate between aerosol types do not permit a definitive conclusion. In addition, the model simulations show dust lifting to the free troposphere as it travels south but it could not be confirmed by the satellite observations due to cloudiness. This work demonstrates that complementary information from existing transport models, satellite and surface data can yield a consistent picture of the dust transport from the Patagonia desert to Antarctica. It also illustrates the limitation of using any of these approaches individually to characterize the transport of dust in a heavily cloudy area.
Radar Detection of Layering in Ice: Experiments on a Constructed Layered Ice Sheet
NASA Astrophysics Data System (ADS)
Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.
2016-12-01
The polar caps and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar caps. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of ice sheets compared with core samples have revealed that ice density and composition differences account for the majority of the radar reflectors. The large cold rooms and ice laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental ice sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered ice sheet that is 3-m deep with a various snow and ice layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These ice sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and ice layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in ice on Earth and Mars.
NASA Astrophysics Data System (ADS)
Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.
2007-02-01
Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.
Junaid, Muhammad; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem
2016-09-01
The study aimed to monitor heavy metal (chromium, Cr; cadmium, Cd; nickel, Ni; copper, Cu; lead, Pb; iron, Fe; manganese, Mn; and zinc, Zn) footprints in biological matrices (urine, whole blood, saliva, and hair), as well as in indoor industrial dust samples, and their toxic effects on oxidative stress and health risks in exposed workers. Overall, blood, urine, and saliva samples exhibited significantly higher concentrations of toxic metals in exposed workers (Cr; blood 16.30 μg/L, urine 58.15 μg/L, saliva 5.28 μg/L) than the control samples (Cr; blood 5.48 μg/L, urine 4.47 μg/L, saliva 2.46 μg/L). Indoor industrial dust samples also reported to have elevated heavy metal concentrations, as an example, Cr quantified with concentration of 299 mg/kg of dust, i.e., more than twice the level of Cr in household dust (136 mg/kg). Superoxide dismutase (SOD) level presented significant positive correlation (p ≤ 0.01) with Cr, Zn, and Cd (Cr > Zn > Cd) which is an indication of heavy metal's associated raised oxidative stress in exposed workers. Elevated average daily intake (ADI) of heavy metals resulted in cumulative hazard quotient (HQ) range of 2.97-18.88 in workers of different surgical units; this is an alarming situation of health risk implications. Principal component analysis-multiple linear regression (PCA-MLR)-based pie charts represent that polishing and cutting sections exhibited highest metal inputs to the biological and environmental matrices than other sources. Heavy metal concentrations in biological matrices and dust samples showed a significant positive correlation between Cr in dust, urine, and saliva samples. Current study will help to generate comprehensive base line data of heavy metal status in biomatrices and dust from scientifically ignored industrial sector. Our findings can play vital role for health departments and industrial environmental management system (EMS) authorities in policy making and implementation.
NASA Technical Reports Server (NTRS)
Laicer, Castro; Rasimick, Brian; Green, Zachary
2012-01-01
Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of dust particles on the filter surface and to facilitate dust removal with pulse or back airflow.
A survey of spatially distributed exterior dust lead loadings in New York City
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caravanos, Jack; Weiss, Arlene L.; School of Medicine, New York University, NY 10016
This work documents ambient lead dust deposition values (lead loading) for the boroughs of New York City in 2003-2004. Currently, no regulatory standards exist for exterior concentrations of lead in settled dust. This is in contrast to the clearance and risk assessment standards that exist for interior residential dust. The reported potential for neurobehavioral toxicity and adverse cognitive development in children due to lead exposure prompts public health concerns about undocumented lead sources. Such sources may include settled dust of outdoor origin. Dust sampling throughout the five boroughs of NYC was done from the top horizontal portion of pedestrian trafficmore » control signals (PTCS) at selected street intersections along main thoroughfares. The data (n=214 samples) show that lead in dust varies within each borough with Brooklyn having the highest median concentration (730{mu}g/ft{sup 2}), followed in descending order by Staten Island (452{mu}g/ft{sup 2}), the Bronx (382{mu}g/ft{sup 2}), Queens (198{mu}g/ft{sup 2}) and finally, Manhattan (175{mu}g/ft{sup 2}). When compared to the HUD/EPA indoor lead in dust standard of 40{mu}g/ft{sup 2}, our data show that this value is exceeded in 86% of the samples taken. An effort was made to determine the source of the lead in the dust atop of the PTCS. The lead in the dust and the yellow signage paint (which contains lead) were compared using isotopic ratio analysis. Results showed that the lead-based paint chip samples from intact signage did not isotopically match the dust wipe samples taken from the same surface. We know that exterior dust containing lead contributes to interior dust lead loading. Therefore, settled leaded dust in the outdoor environment poses a risk for lead exposure to children living in urban areas, namely, areas with elevated childhood blood lead levels and background lead dust levels from a variety of unidentified sources.« less
NASA Astrophysics Data System (ADS)
Mazumder, Malay; Yellowhair, Julius; Stark, Jeremy; Heiling, Calvin; Hudelson, John; Hao, Fang; Gibson, Hannah; Horenstein, Mark
2014-10-01
Large-scale solar plants are mostly installed in semi-arid and desert areas. In those areas, dust layer buildup on solar collectors becomes a major cause for energy yield loss. Development of transparent electrodynamic screens (EDS) and their applications for self-cleaning operation of solar mirrors are presented with a primary focus on the removal dust particles smaller than 30 µm in diameter while maintaining specular reflection efficiency < 90%. An EDS consists of thin rectangular array of parallel transparent conducting electrodes deposited on a transparent dielectric surface. The electrodes are insulated from each other and are embedded within a thin transparent dielectric film. The electrodes are activated using three-phase high-voltage pulses at low current (< 1 mA/m2 ). The three-phase electric field charges the deposited particles, lifts them form the substrate by electrostatic forces and propels the dust layer off of the collector's surface by a traveling wave. The cleaning process takes less than 2 minutes; needs energy less than 1 Wh/m2 without requiring any water or manual labor. The reflection efficiency can be restored > 95% of the original clean-mirror efficiency. We briefly present (1) loss of specular reflection efficiency as a function of particle size distribution of deposited dust, and (2) the effects of the electrode design and materials used for minimizing initial loss of specular reflectivity in producing EDS-integrated solar mirrors. Optimization of EDS by using a figure of merit defined by the ratio of dust removal efficiency to the initial loss of specular reflection efficiency is discussed.
Folens, Karel; Van Acker, Thibaut; Bolea-Fernandez, Eduardo; Cornelis, Geert; Vanhaecke, Frank; Du Laing, Gijs; Rauch, Sebastien
2018-02-15
Elevated platinum (Pt) concentrations are found in road dust as a result of emissions from catalytic converters in vehicles. This study investigates the occurrence of Pt in road dust collected in Ghent (Belgium) and Gothenburg (Sweden). Total Pt contents, determined by tandem ICP-mass spectrometry (ICP-MS/MS), were in the range of 5 to 79ngg -1 , comparable to the Pt content in road dust of other medium-sized cities. Further sample characterization was performed by single particle (sp) ICP-MS following an ultrasonic extraction procedure using stormwater runoff for leaching. The method was found to be suitable for the characterization of Pt nanoparticles in road dust leachates. The extraction was optimized using road dust reference material BCR-723, for which an extraction efficiency of 2.7% was obtained by applying 144kJ of ultrasonic energy. Using this method, between 0.2% and 18% of the Pt present was extracted from road dust samples. spICP-MS analysis revealed that Pt in the leachate is entirely present as nanoparticles of sizes between 9 and 21nm. Although representing only a minor fraction of the total content in road dust, the nanoparticulate Pt leachate is most susceptible to biological uptake and hence most relevant in terms of bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.
Measurements of Martian dust devil winds with HiRISE
Choi, D.S.; Dundas, C.M.
2011-01-01
We report wind measurements within Martian dust devils observed in plan view from the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars. The central color swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils, appear in motion when observed by this region of the instrument. Our image animations reveal clear circulatory motion within dust devils that is separate from their translational motion across the Martian surface. Both manual and automated tracking of dust devil clouds reveal tangential winds that approach 20-30 m s -1 in some cases. These winds are sufficient to induce a ???1% decrease in atmospheric pressure within the dust devil core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our automated measurements test the Rankine vortex model for dust devil structure. Our profiles successfully reveal the solid body rotation component in the interior, but fail to conclusively illuminate the profile in the outer regions of the vortex. One profile provides evidence for a velocity decrease as a function of r -1/2, instead of r -1, suggestive of surface friction effects. However, other profiles do not support this observation, or do not contain enough measurements to produce meaningful insights. Copyright 2011 by the American Geophysical Union.
Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L
2016-09-20
Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.
Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin
2015-03-20
The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.
NASA Technical Reports Server (NTRS)
Zurek, R. W.
1981-01-01
The tidal heating components for the dusty Martian atmosphere are computed based on dust optical parameters estimated from Viking Lander imaging data, and used to compute the variation of the tidal surface pressure components at the Viking Lander sites as a function of season and the total vertical extinction optical depth of the atmosphere. An atmospheric tidal model is used which is based on the inviscid, hydrostatic primitive equations linearized about a motionless basic state the temperature of which varies only with height, and the profiles of the tidal forcing components are computed using a delta-Eddington approximation to the radiative transfer equations. Comparison of the model results with the observed variations of surface pressure and overhead dust opacity at the Viking Lander 1 site reveal that the dust opacities and optical parameters derived from imaging data are roughly representative of the global dust haze necessary to reproduce the observed surface pressure amplitudes, with the exception of the model-inferred asymmetry parameter, which is smaller during the onset of a great storm. The observed preferential enhancement of the semidiurnal tide with respect to the diurnal tide during dust storm onset is shown to be due primarily to the elevation of the tidal heating source in a very dusty atmosphere.
NASA Astrophysics Data System (ADS)
Péré, J.-C.; Rivellini, L.; Crumeyrolle, S.; Chiapello, I.; Minvielle, F.; Thieuleux, F.; Choël, M.; Popovici, I.
2018-01-01
The aim of this work is to estimate optical and radiative properties of dust aerosols and their potential feedbacks on atmospheric properties over Western Africa for the period 20 March-28 April 2015, by using numerical simulations and different sets of remote-sensing and in-situ measurements. Comparisons of simulations made by the on-line coupled meteorological-chemistry model WRF-CHEM with MODIS, AERONET and in-situ observations result in a general agreement for the spatio-temporal variations of aerosol extinction at both local and regional scales. Simulated SSA reached elevated values between 0.88 and 0.96 along the visible/near-infrared in close agreement with AERONET inversions, suggesting the predominance of dust over Western Africa during this specific period. This predominance of dust is confirmed by in-situ measurements of the aerosol size distribution, fitting well with the aerosols size distribution simulated by WRF-CHEM. The impact of this large dust load on the radiative fluxes leads to large modifications of the shortwave and longwave radiative budget both at the ground and at the top of the atmosphere. In return, the response of the atmosphere to these dust-induced radiative changes is the alteration of the surface air temperature and wind fields, with non-negligible impact on the dust emission and transport.
NASA Astrophysics Data System (ADS)
Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin
2015-03-01
The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.
Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin
2015-01-01
The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids. PMID:25791573
NASA Astrophysics Data System (ADS)
Sanderson, Robert Steven
The purpose of this thesis is to investigate the dynamics of PM 10 emission from a nickel slag stockpile that closely resembles a desert pavement in physical characteristics. In the field, it was observed that slag surfaces develop by natural processes into a well-armoured surface over some period of time. The surface then consists of two distinct layers; a surficial armour layer containing only non-erodible gravel and cobble-sized clasts, and an underlying dust-laden layer, which contains a wide size range of slag particles, from clay-sized to cobble-sized. This surficial armour layer protects the underlying fines from wind entrainment, at least under typical wind conditions; however, particle emissions still do occur under high wind speeds. The dynamics of particle entrainment from within these surfaces are investigated herein. It is shown that the dynamics of the boundary layer flow over these lag surfaces are influenced by the inherent roughness and permeability of the surficial armour layer, such that the flow resembles those observed over and within vegetation canopies, and those associated with permeable gravel-bed river channels. Restriction of air flow within the permeable surface produces a high-pressure zone within the pore spaces, resulting in a Kelvin-Helmholtz shear instability, which triggers coherent motions in the form of repeating burst-sweep cycles. Using Laser Doppler Anemometry (LDA), it is demonstrated that the lower boundary layer is characterized by both Q4 sweeping motions and Q2 bursting motions, while the upper boundary layer is dominated by Q2 bursts. Pore air motions within the slag material were measured using buried pressure ports. It is shown that the mean pressure gradient which forms within the slag material results in net upward displacement of air, or wind pumping. However, this net upward motion is a result of rapid oscillatory motions which are directly driven by coherent boundary layer motions. It is also demonstrated that these coherent motions are able to penetrate at least 4 cm through the surficial armour layer, thereby transporting turbulent kinetic energy (TKE) downward to the dust-laden sub-surface layer. This represents a mechanism of momentum transfer that is able to reach the erodible material, while the wind pumping effect represents a mechanism for particle exhaustion.
Pulmonary Toxicity Studies of Lunar Dusts in Rodents
NASA Technical Reports Server (NTRS)
Lam, C.-W.; James, J. T.; Taylor, L.; Zeidler-Erdely, P. C.; Castranova, V.
2009-01-01
NASA will build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of fine, reactive dust. Astronauts on the Moon will go in and out of the base for various activities, and will inevitably bring some dust into the living quarters. Depressurizing the airlock so that astronauts can exit for outdoor activities could also bring dust inside the airlock to the habitable area. Concerned about the potential health effects on astronauts exposed to airborne lunar dust, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust. The toxicity data also will be needed by toxicologists to establish safe exposure limits for astronauts residing in the lunar habitat and by environmental engineers to design an appropriate dust mitigation strategy. We conducted a study to examine biomarkers of toxicity (inflammation and cytotoxicity) in lung lavage fluids from mice intrapharyngeally instilled with lunar dust samples; we also collected lung tissue from the mice for histopathological examination 3 months after the dust instillation. Reference dusts (TiO2 and quartz) having known toxicities and industrial exposure limits were studied in parallel with lunar dust so that the relative toxicity of lunar dust can be determined. A 6-month histopathology study has been planned. These instillation experiments will be followed by inhalation studies, which are more labor intensive and technologically difficult. The animal inhalation studies will be conducted first with an appropriate lunar dust simulant to ensure that the exposure techniques to be used with actual lunar dust will be successful. The results of these studies collectively will reveal the toxicological risk of exposures and enable us to establish exposure limits on lunar dust for astronauts living in the lunar habitat.
Chen, Bin; Yamada, Maromu; Iwasaka, Yasunobu; Zhang, Daizhou; Wang, Hong; Wang, Zhenzhu; Lei, Hengchi; Shi, Guangyu
2015-10-01
Vertical structures of aerosols from the ground to about 1,000 m altitude in Beijing were measured with a balloon-borne optical particle counter. The results showed that, in hazy days, there were inversions at approximately 500-600 m, below which the particulate matters were well mixed vertically, while the concentration of particles decreased sharply above the mixing layer. Electron microscopic observation of the particles collected with the balloon-borne impactor indicates that the composition of particles is different according to weather conditions in the boundary mixing layer of Beijing city and suggests that dust particles are always dominant in coarse-mode particles. Interestingly, sea-salt particles are frequently identified, suggesting the importance of marine air inflow to the Beijing area even in summer. The Ca-rich spherical particles are also frequently identified, suggesting chemical modification of dust particle by NOx or emission of CaO and others from local emission. Additionally, those types of particles showed higher concentration above the mixing layer under the relatively calm weather condition of summer, suggesting the importance of local-scale convection found in summer which rapidly transported anthropogenic particles above the mixing layer. Lidar extinction profiles qualitatively have good consistency with the balloon-borne measurements. Attenuation effects of laser pulse intensity are frequently observed due to high concentration of particulate matter in the Beijing atmosphere, and therefore quantitative agreement of lidar return and aerosol concentration can be hardly observed during dusty condition. Comparing the depolarization ratio obtained from the lidar measurements with the balloon-borne measurements, the contribution of the dry sea-salt particles, in addition to the dust particles, is suggested as an important factor causing depolarization ratio in the Beijing atmosphere.
The quantitative studies on gas explosion suppression by an inert rock dust deposit.
Song, Yifan; Zhang, Qi
2018-07-05
The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.
Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity
NASA Technical Reports Server (NTRS)
Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.
2014-01-01
The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.
Turbulent transport of large particles in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Richter, D. H.; Chamecki, M.
2017-12-01
To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.
Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène
2016-01-29
Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Walker, D. A.; Buchhorn, M.; Raynolds, M. K.; Kanevskiy, M. Z.; Matyshak, G. V.; Shur, Y.; Peirce, J.
2015-12-01
The upper permafrost of the Prudhoe Bay Oilfield, the largest oil field in both the United States and in North America, contains significant amounts of excess ground ice, mainly in ice wedges. An increase in infrastructure development and road traffic since the initial development of the Prudhoe Bay Oilfield in 1968 has resulted in extensive flooding, accumulation of road dust, and roadside snowbanks, all of which affect the vegetation and alter the thermal properties of the ground surface. As part of the NSF's Arctic Science, Engineering, and Education for Sustainability (ArcSEES) project, we established four transects in 2014 and 2015 to document the effects of infrastructure and heavy road traffic on adjacent tundra. Two transects were established perpendicular to the Prudhoe Bay Spine Road north of Lake Colleen and two perpendicular to the Dalton Highway next to the Deadhorse airstrip. Prior to infrastructure development in 1949, rather homogeneous networks of low-centered polygons with less than 30 cm of trough-rim elevation contrast covered both locations. We present the detailed results of vegetation analysis, ice-core drilling, and extensive topographic surveys along the transects. A time series of aerial photographs from 1949 to 2014 (yearly since 1969) documents the changing landscapes in relationship to the record of air-temperature, active layer depths, and permafrost temperatures at Deadhorse. Flooding, road dust, and snow drifts have all contributed to creating warmer soil temperatures and deeper active layers near the road. These factors have all contributed in different ways to alteration of the plant canopy. The altered plant canopies in turn further altered the surface albedo and the ground temperatures. Historical photos indicate that between 1989 and 2012 a regional thawing of the ice-wedges occurred, increasing the extent of thermokarst. Our analysis demonstrates the cumulative effects of infrastructure-related and climate-related factors to these ice-rich permafrost landscapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Walker; H Jamieson; P Rasmussen
2011-12-31
Determination of the source and form of metals in house dust is important to those working to understand human and particularly childhood exposure to metals in residential environments. We report the development of a synchrotron microprobe technique for characterization of multiple metal hosts in house dust. We have applied X-ray fluorescence for chemical characterization and X-ray diffraction for crystal structure identification using microfocused synchrotron X-rays at a less than 10 {micro}m spot size. The technique has been evaluated by application to archived house dust samples containing elevated concentrations of Pb, Zn, and Ba in bedroom dust, and Pb and Asmore » in living room dust. The technique was also applied to a sample of soil from the corresponding garden to identify linkages between indoor and outdoor sources of metals. Paint pigments including white lead (hydrocerussite) and lithopone (wurtzite and barite) are the primary source of Pb, Zn, and Ba in bedroom dust, probably related to renovation activity in the home at the time of sampling. The much lower Pb content in the living room dust shows a relationship to the exterior soil and no specific evidence of Pb and Zn from the bedroom paint pigments. The technique was also successful at confirming the presence of chromated copper arsenate treated wood as a source of As in the living room dust. The results of the study have confirmed the utility of this approach in identifying specific metal forms within the dust.« less
NASA Technical Reports Server (NTRS)
Banks, J.R.; Brindley, H. E.; Flamant, C.; Garay, M. J.; Hsu, N. C.; Kalashnikova, O. V.; Klueser, L.; Sayer, A. M.
2013-01-01
Dust retrievals over the Sahara Desert during June 2011 from the IASI, MISR, MODIS, and SEVIRI satellite instruments are compared against each other in order to understand the strengths and weaknesses of each retrieval approach. Particular attention is paid to the effects of meteorological conditions, land surface properties, and the magnitude of the dust loading. The period of study corresponds to the time of the first Fennec intensive measurement campaign, which provides new ground-based and aircraft measurements of the dust characteristics and loading. Validation using ground-based AERONET sunphotometer data indicate that of the satellite instruments, SEVIRI is most able to retrieve dust during optically thick dust events, whereas IASI and MODIS perform better at low dust loadings. This may significantly affect observations of dust emission and the mean dust climatology. MISR and MODIS are least sensitive to variations in meteorological conditions, while SEVIRI tends to overestimate the aerosol optical depth (AOD) under moist conditions (with a bias against AERONET of 0.31), especially at low dust loadings where the AOD<1. Further comparisons are made with airborne LIDAR measurements taken during the Fennec campaign, which provide further evidence for the inferences made from the AERONET comparisons. The effect of surface properties on the retrievals is also investigated. Over elevated surfaces IASI retrieves AODs which are most consistent with AERONET observations, while the AODs retrieved by MODIS tend to be biased low. In contrast, over the least emissive surfaces IASI significantly underestimates the AOD (with a bias of -0.41), while MISR and SEVIRI show closest agreement.
NASA Astrophysics Data System (ADS)
Ancellet, Gerard; Pelon, Jacques; Totems, Julien; Chazette, Patrick; Bazureau, Ariane; Sicard, Michaël; Di Iorio, Tatiana; Dulac, Francois; Mallet, Marc
2016-04-01
Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow from Sahara.
NASA Astrophysics Data System (ADS)
Ancellet, G.; Pelon, J.; Totems, J.; Chazette, P.; Bazureau, A.; Sicard, M.; Di Iorio, T.; Dulac, F.; Mallet, M.
2015-11-01
Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.
NASA Technical Reports Server (NTRS)
Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff
2010-01-01
In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX?1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 minute tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, CA) with the pressure maintained at 20?2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars?1) off of the floor, and one of the authors (Lee) wearing the NDX?1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.
NASA Technical Reports Server (NTRS)
Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff
2010-01-01
In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX-1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 min tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, California) with the pressure maintained at 20 2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars-1) off of the floor, and one of the authors (Lee) wearing the NDX-1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.
Dust devils as aeolian transport mechanisms in southern Nevada and the Mars Pathfinder landing site
NASA Astrophysics Data System (ADS)
Metzger, Stephen M.
Discovery of dust devils vortices in Mars Pathfinder images by this study is direct evidence of a dust entrainment mechanism at work on Mars. Dust devils on Earth can entrain fine material from crusted as well as unconsolidated surfaces, even when forced-convection wind speeds are below threshold. Terrestrial dust devils are commonly ``squat'' V-shaped vortices lasting several minutes. Well developed vortices consist of an outer cylinder of high rotation (<25 m/s), an Intermediate cylinder of moderate vertical lift (<13 m/s), and a inner cylindrical core of low pressure (<1.5% below ambient pressure) and elevated temperature (up to 20°C above ambient air temperature). Directly sampled dust devils on Earth were found to carry from 30 to over 2000 kg of soil. On average, the Eldorado Valley, NV, experienced 42 observable dust devils per summer day, each lofting over 200 kg for a daily total of 9 metric tonnes from this desert basin. Spectral differencing techniques have enhanced five localized dust plumes against the general haze in Mars Pathfinder images acquired near midday, which are determined to be dust devils. Given interpreted geographic locations relative to the lander, the dust devils are 14 to 79 m wide, 46 to over 350 m tall, and travel over ground at 0.5 to 4.6 m/s. Their dust loading was approximately 7 × 10-5 kg/m3, relative to the general haze of 9 × 10-8 kg/m3. With an estimated vertical dust flux of 0.5 g m-2 s-1, total particulate transport of these Martian dust devils may have ranged from 2.2 kg for a small dust devil lasting 35 s to over 700 kg for a large plume of 400 s duration. Observed characteristics of these plumes are consistent with expectations based on theory and the lessons of terrestrial field studies. The increasingly apparent role of dust devils in the dust aeolian transport cycle may largely explain the continued concentration of the general Martian dust haze and perhaps the Initiation mechanism for global dust storms.
Dust environment of an airless object: A phase space study with kinetic models
NASA Astrophysics Data System (ADS)
Kallio, E.; Dyadechkin, S.; Fatemi, S.; Holmström, M.; Futaana, Y.; Wurz, P.; Fernandes, V. A.; Álvarez, F.; Heilimo, J.; Jarvinen, R.; Schmidt, W.; Harri, A.-M.; Barabash, S.; Mäkelä, J.; Porjo, N.; Alho, M.
2016-01-01
The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irregular shape, broken chemical bonds on the surface of each dust particle, together with the reduced lunar environment cause the dust particles to be chemically very reactive. One critical unknown factor is the electric field and the electric potential near the lunar surface. We have developed a modelling suite, Dusty Plasma Environments: near-surface characterisation and Modelling (DPEM), to study globally and locally dust environments of the Moon and other airless bodies. The DPEM model combines three independent kinetic models: (1) a 3D hybrid model, where ions are modelled as particles and electrons are modelled as a charged neutralising fluid, (2) a 2D electrostatic Particle-in-Cell (PIC) model where both ions and electrons are treated as particles, and (3) a 3D Monte Carlo (MC) model where dust particles are modelled as test particles. The three models are linked to each other unidirectionally; the hybrid model provides upstream plasma parameters to be used as boundary conditions for the PIC model which generates the surface potential for the MC model. We have used the DPEM model to study properties of dust particles injected from the surface of airless objects such as the Moon, the Martian moon Phobos and the asteroid RQ36. We have performed a (v0, m/q)-phase space study where the property of dust particles at different initial velocity (v0) and initial mass per charge (m/q) ratio were analysed. The study especially identifies regions in the phase space where the electric field within a non-quasineutral plasma region above the surface of the object, the Debye layer, becomes important compared with the gravitational force. Properties of the dust particles in the phase space region where the electric field plays an important role are studied by a 3D Monte Carlo model. The current DPEM modelling suite does not include models of how dust particles are initially injected from the surface. Therefore, the presented phase space study cannot give absolute 3D dust density distributions around the analysed airless objects. For that, an additional emission model is necessary, which determines how many dust particles are emitted at various places on the analysed (v0, m/q)-phase space. However, this study identifies phase space regions where the electric field within the Debye layer plays an important role for dust particles. Overall, the initial results indicate that when a realistic dust emission model is available, the unified lunar based DPEM modelling suite is a powerful tool to study globally and locally the dust environments of airless bodies such as planetary moons, Mercury, asteroids and non-active comets far from the Sun.
PHOTOPHORETIC LEVITATION AND TRAPPING OF DUST IN THE INNER REGIONS OF PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, Colin P.; McClure, Melissa K., E-mail: cmcnally@nbi.dk, E-mail: mmcclure@eso.org
In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk.more » In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.« less
2017-03-22
Hellas is an ancient impact structure and is the deepest and broadest enclosed basin on Mars. It measures about 2,300 kilometers across and the floor of the basin, Hellas Planitia, contains the lowest elevations on Mars. The Hellas region can often be difficult to view from orbit due to seasonal frost, water-ice clouds and dust storms, yet this region is intriguing because of its diverse, and oftentimes bizarre, landforms. This image from eastern Hellas Planitia shows some of the unusual features on the basin floor. These relatively flat-lying "cells" appear to have concentric layers or bands, similar to a honeycomb. This "honeycomb" terrain exists elsewhere in Hellas, but the geologic process responsible for creating these features remains unresolved. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 52.2 centimeters (20.6 inches) per pixel (with 2 x 2 binning); objects on the order of 157 centimeters (61.8 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21570
Nanostructure templating using low temperature atomic layer deposition
Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL
2011-12-20
Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.
Opportunity Takes a Last Look at Rock Exposure Before Heading to Victoria Crater
2006-08-24
This true-color image shows a circular indentation in a flat-topped rock surface. Around the edge of the hole is a fine layer of dust. The rock has a moderately cracked the surface. Around it is a layer of sand and pebbles. The view is reddish brown
NASA Astrophysics Data System (ADS)
Marschall, R.; Su, C. C.; Liao, Y.; Thomas, N.; Wu, J. S.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Rubin, M.; Skorov, Y.; Jorda, L.; Preusker, F.; Scholten, F.; Gicquel, A.; Gracia-Berná, A.; Naletto, G.
2015-10-01
The physics of the outflow above the surface of comets is somewhat complex. Ice sublimating into vacuum forms a non-equilibrium boundary layer, the "Knudsen layer" (Kn-layer), with a scale height of #20 mean free paths. If the production rate is low, the Kn-layer becomes infinitely thick and the velocity distribution function (VDF) remains strongly non-Maxwellian. Thus our preferred method for gas dynamics simulations of the coma is Direct Simulation Monte Carlo DSMC. Here we report on the first results of models of the outflow from the Rosetta target, comet67P/Churyumov-Gerasimenko (C-G). Our aims are to (1) determine the gas flow-field of H2O and CO2 in the innermost coma and compare the results to the in-situ measurements of the ROSINA/COPS instrument (2) produce artificial images of the dust brightnesses that can be compared to the OSIRIS cameras. The comparison with ROSINA/COPS and OSIRIS data help to constrain the initial conditions of the simulations and thus yield information on the surface processes.
Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio
NASA Technical Reports Server (NTRS)
Omar, Ali H.; Winker, David M.; Vaughan, Mark A.
2006-01-01
The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.
NASA Astrophysics Data System (ADS)
Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi
2018-01-01
The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs
). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the synoptic context over the region, processes driving variability involve both independent effects of water vapour and dust and compensating events in which dust and water vapour are co-varying. Forecast models typically have biases of up to 2 kg m-2 in column-integrated water vapour (equivalent to a change in 2.6 W m-2 TOA net flux) and typically lack variability in dust and thus are expected to poorly represent these couplings. An improved representation of dust and water vapour and quantification of associated radiative impact in models is thus imperative to further understand the SHL and related climate processes.
NASA Astrophysics Data System (ADS)
Verba, Circe A.; Geissler, Paul E.; Titus, Timothy N.; Waller, Devin
2010-09-01
Two areas targeted for repeated imaging by detailed High Resolution Imaging Science Experiment (HiRISE) observations allow us to examine morphological differences and monitor seasonal variations of Martian dust devil tracks at two quite different locations. Russell crater (53.3°S, 12.9°E) is regularly imaged to study seasonal processes including deposition and sublimation of CO2 frost. Gusev crater (14.6°S, 175.4°E) has been frequently imaged in support of the Mars Exploration Rover mission. Gusev crater provides the first opportunity to compare “ground truth” orbital observations of dust devil tracks to surface observations of active dust plumes. Orbital observations show that dust devil tracks are rare, forming at a rate <1/110 that of the occurrence of active dust plumes estimated from Spirit's surface observations. Furthermore, the tracks observed from orbit are wider than typical plume diameters observed by Spirit. We conclude that the tracks in Gusev are primarily formed by rare, large dust devils. Smaller dust devils fail to leave tracks that are visible from orbit, perhaps because of limited surface excavation depths. Russell crater displays more frequent, smaller sinuous tracks than Gusev. This may be due to the thin dust cover in Russell, allowing smaller dust devils to penetrate through the bright dust layer and leave conspicuous tracks. The start of the dust devil season and peak activity are delayed in Russell in comparison to Gusev, likely because of its more southerly location. Dust devils in both sites travel in directions consistent with general circulation model (GCM)-predicted winds, confirming a laboratory-derived approach to determining dust devil travel directions based on track morphology.
The thermal infrared radiance properties of dust aerosol over ocean
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Tu, Qianguang; Gong, Fang; Chen, Jianyu
2015-10-01
Asian dust storms, which can long-range transport to ocean, often occur on spring. The present of Asian dust aerosols over ocean makes some difficult for other studies, such as cloud detection, and also take some advantage for ocean, such as take nutrition into the ocean by dry or wet deposition. Therefore, it is important to study the dust aerosol and retrieve the properties of dust from satellite observations that is mainly from the thermal infrared radiance. In this paper, the thermal infrared radiance properties of dust aerosol over ocean are analyzed from MODIS and MTSAT2 observations and Streamer model simulations. By analyzing some line samples and a series of dust aerosol region, it shows that the dust aerosol brightness temperature at 12μm (BT12) is always greater than BT11 and BT8.5, and BT8.5 is general greater than BT11. The brightness temperature different between 11μm and 12μm (BTD11-12) increases with the dust intensity. And the BTD11-12 will become positive when the atmospheric relative humidity is greater than 70%. The BTD11-12 increases gradually with the surface temperature while the effect on BTD11-12 of dust layer temperature is not evident. Those are caused by the transmission of the dust aerosol is different at the two thermal infrared channels. During daytime, dust infrared brightness temperature at mid-infrared bands should reduce the visual radiance, which takes about 25K or less. In general, BT3.7 is greater than BT11 for dust aerosol. Those results are helpful to monitor or retrieve dust aerosol physical properties over ocean from satellite.
Kinch, Kjartan M; Bell, James F; Goetz, Walter; Johnson, Jeffrey R; Joseph, Jonathan; Madsen, Morten Bo; Sohl-Dickstein, Jascha
2015-05-01
The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two-layer scattering model, and we present a dust reflectance spectrum derived from long-term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance-calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.
Bell, James F.; Goetz, Walter; Johnson, Jeffrey R.; Joseph, Jonathan; Madsen, Morten Bo; Sohl‐Dickstein, Jascha
2015-01-01
Abstract The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two‐layer scattering model, and we present a dust reflectance spectrum derived from long‐term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance‐calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history. PMID:27981072
Guo, Jianping; Lou, Mengyun; Miao, Yucong; Wang, Yuan; Zeng, Zhaoliang; Liu, Huan; He, Jing; Xu, Hui; Wang, Fu; Min, Min; Zhai, Panmao
2017-11-01
East Asia is one of the world's largest sources of dust and anthropogenic pollution. Dust particles originating from East Asia have been recognized to travel across the Pacific to North America and beyond, thereby affecting the radiation incident on the surface as well as clouds aloft in the atmosphere. In this study, integrated analyses are performed focusing on one trans-Pacific dust episode during 12-22 March 2015, based on space-borne, ground-based observations, reanalysis data combined with Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). From the perspective of synoptic patterns, the location and strength of Aleutian low pressure system largely determined the eastward transport of dust plumes towards western North America. Multi-sensor satellite observations reveal that dust aerosols in this episode originated from the Taklimakan and Gobi Deserts. Moreover, the satellite observations suggest that the dust particles can be transformed to polluted particles over the East Asian regions after encountering high concentration of anthropogenic pollutants. In terms of the vertical distribution of polluted dust particles, at the very beginning, they were mainly located in the altitudes ranging from 1 km to 7 km over the source region, then ascended to 2 km-9 km over the Pacific Ocean. The simulations confirm that these elevated dust particles in the lower free troposphere were largely transported along the prevailing westerly jet stream. Overall, observations and modeling demonstrate how a typical springtime dust episode develops and how the dust particles travel over the North Pacific Ocean all the way to North America. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the visibility of airborne volcanic ash and mineral dust
NASA Astrophysics Data System (ADS)
Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.
2012-12-01
After the eruption of the Eyjafjalla volcano (Iceland) in April 2010 which caused the most extensive restrictions of the airspace over Europe since the end of World War II, the aviation safety concept of avoiding "visible ash", i.e. volcanic ash that can be seen by the human eye, was recommended. However so far, no clear definition of "visible ash" and no relation between the visibility of an aerosol layer and related aerosol mass concentrations are available. The goal of our study is to assess whether it is possible from the pilot's perspective in flight to detect the presence of volcanic ash and to distinguish between volcanic ash and other aerosol layers just by sight. In our presentation, we focus the comparison with other aerosols on aerosol types impacting aviation: Besides volcanic ash, dust storms are known to be avoided by aircraft. We use in-situ and lidar data as well photographs taken onboard the DLR research aircraft Falcon during the Saharan Mineral Dust Experiments (SAMUM) in 2006 and 2008 and during the Eyjafjalla volcanic eruption in April/May 2010. We complement this analysis with numerical modelling, using idealized radiative transfer simulations with the 3D Monte Carlo radiative transfer code MYSTIC for a variety of selected viewing geometries. Both aerosol types, Saharan mineral dust and volcanic ash, show an enhanced coarse mode (> 1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (< 150 nm). Volcanic ash is slightly more absorbing than mineral dust, and the spectral behaviour of the refractive index is slightly different. According to our simulations, these differences are not detectable just by human eye. Furthermore, our data show, that it is difficult to define a lower threshold for the visibility of an aerosol layer because the visual detectability depends on many parameters, including the thickness of the aerosol layer, the brightness and color contrast between the airborne aerosol layer and the background, the illumination, the particle size distribution and mass concentration, the wavelength-dependent light scattering and absorption by the aerosol layer, the human perception, etc. In addition, the optical depth along the line of sight through an aerosol layer is more important than just the (vertical) optical depth, which is measured, for example, by sun photometers or satellites. The results of our study are in particular interesting for the question on the visibility of volcanic ash. Our analyses of "visible ash" demonstrate that under clear sky conditions volcanic ash is visible already at concentrations far below what is currently considered as the upper limit for safe operation of an aircraft engine (2 mg m-3). The presence of a grayish-brown layer in the atmosphere does not unambiguously indicate the presence of volcanic ash. An uninformed observer is unlikely to identify an aged volcanic ash layer in his field of view without further information. The presence of clouds would make it even more complicated to visually detect volcanic ash. In regions with high background aerosol loading in the atmosphere from natural or anthropogenic influences, such as seen in large parts of Asia, the visual detection of volcanic ash as an additional contaminant will be substantially more difficult.
Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.
2012-01-01
The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation, thereby modifying the thermal structure of the atmosphere and its circulation. Results presented in other papers at this workshop show that including the radiative effects of water ice clouds greatly influence the water cycle and the vigor of weather systems in both the northern and southern hemispheres. Our goal is to investigate the effects of fully coupling the dust and water cycles on the dust cycle. We show that including water ice clouds and their radiative effects greatly affect the magnitude, spatial extent and seasonality of dust lifting and the season of maximum atmospheric dust loading.
NASA Astrophysics Data System (ADS)
Mattis, Ina; Müller, Gerhard; Wagner, Frank; Hervo, Maxime
2015-04-01
The German Meteorological Service (DWD) operates a network of about 60 CHM15K-Nimbus ceilometers for cloud base height observations. Those very powerful ceilometers allow for the detection and characterization of aerosol layers. Raw data of all network ceilometers are transferred online to DWD's data analysis center at the Hohenpeißenberg Meteorological Observatory. There, the occurrence of aerosol layers from long-range transport events in the free troposphere is systematically monitored on daily basis for each single station. If possible, the origin of the aerosol layers is determined manually from the analysis of the meteorological situation and model output. We use backward trajectories as well as the output of the MACC and DREAM models for the decision, whether the observed layer originated in the Sahara region, from forest fires in North America or from another, unknown source. Further, the magnitude of the observed layers is qualitatively estimated taking into account the geometrical layer depth, signal intensity, model output and nearby sun photometer or lidar observations (where available). All observed layers are attributed to one of the categories 'faint', 'weak', 'medium', 'strong', or 'extreme'. We started this kind of analysis in August 2013 and plan to continue this systematic documentation of long-range transport events of aerosol layers to Germany on long-term base in the framework of our GAW activities. Most of the observed aerosol layers have been advected from the Sahara region to Germany. In the 15 months between August 2013 and November 2014 we observed on average 46 days with Sahara dust layers per station, but only 16 days with aerosol layers from forest fires. The occurrence of Sahara dust layers vary with latitude. We observed only 28 dusty days in the north, close to the coasts of North Sea and Baltic Sea. In contrast, in southern Germany, in Bavarian Pre-Alps and in the Black Forest mountains, we observed up to 59 days with dust. At about 6 days per station, the optical depth of the dust particles was estimated to be larger than 0.4. Those events are classified as 'strong'. 'Faint', 'weak', and 'medium' events were detected at 13, 15, and 12 days per station, respectively. Almost all of the forest fire events have been classified as 'faint' and 'weak' with optical depths below 0.15. Beside this qualitative investigations on transport events, we started to obtain calibration constants for all individual ceilometers in our network within the framework of the European projects E-PROFILE and TOPROF. We are currently producing a data set of 1-hour-mean particle backscatter profiles at 1064 nm at all ceilometer stations in Germany for the period between summer 2013 and winter 2014. We will present an overview on the used methodologies of analysis of long-range transport events and of the calibration procedures. More detailed results of the event analysis, e.g. on seasonal behaviour will be presented as well. Further we will show results of a first statistical analysis of our 18-months data set of backscatter profiles over Germany.
High levels of antimony in dust from e-waste recycling in southeastern China.
Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin
2011-11-01
Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. Copyright © 2011 Elsevier B.V. All rights reserved.
Saeedi, Mohsen; Li, Loretta Y; Salmanzadeh, Mahdiyeh
2012-08-15
50 street dust samples from four major streets in eastern and southern Tehran, the capital of Iran, were analyzed for metal pollution (Cu, Cr, Pb, Ni, Cd, Zn, Fe, Mn and Li). Hakanson's method was used to determine the Risk Index (RI) and ecological risks. Amongst these samples, 21 were also analyzed for polycyclic aromatic hydrocarbons (PAHs). Correlation, cluster and principal component analyses identified probable natural and anthropogenic sources of contaminants. The dust had elevated concentrations of Pb, Cd, Cu, Cr, Ni, Zn, Fe and PAHs. Enrichment factors of Cu, Pb, Cd and Zn showed that the dust is extremely enriched in these metals. Multivariate statistical analyses revealed that Cu, Pb, Zn, Fe and PAHs and, to a lesser extent, Cr and Ni have common anthropogenic sources. While Mn and Li were identified to have natural sources, Cd may have different anthropogenic origins. All samples demonstrated high ecological risk. Traffic and related activities, petrogenic and pyrogenic sources are likely to be the main anthropogenic sources of heavy metals and PAHs in Tehran dust. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, H.; Xiaohong Yao, Jinhui Shi, Jianhua Qi
2010-12-01
Dust storm carries a large amount of aerosol particles, sweeps continents and exports to oceans. When these aerosol particles deposit in ocean, which provides abundant nutrients such as nitrogen and iron for ocean ecosystem, increases the primary production and induces algae bloom. Asian dust storm generates at a high latitude and a high elevation and is obvious a hemispheric scale phenomenon. Dust sources in East Asia are one of the major dust sources on the earth which contribute to 5%-40% of the global dust release. The regions affected by the Asian dust storm include not only China and Mongolia but also the downwind Korea, Japan, the Pacific Ocean, the west coast of America, even the subarctic region and Europe. The Asian dust storm is obviously a hemispheric scale phenomenon, which has more important impact on the ecosystem in the western Pacific. Asian dust is unique not only in morphology, soil texture, and dust storm activities, but also mixing and capturing anthropogenic air pollutants on the transport pathway. Deposition of Asian dust substantially affects surface biological productivity. To improve understandings of Asian dust and its effect on ocean ecosystem from the coastal sea to open ocean, ADOES (Asian Dust and Ocean EcoSystem) was proposed under the frame of international SOLAS (Surface Ocean-Lower Atmosphere Study). A series of studies were performed in high- nutrient low-chlorophyll (HNLC), low-nutrient low-chlorophyll (LNLC) and eutrophication coastal regions of the Pacific Ocean. These studies provided evidence of biotic response to natural iron fertilization caused by Asian dust particles in the subarctic North Pacific and showed that dust storm episodes were significant in the initiation of spring blooms in the East China Sea. On-board incubations on the cruise in a LNLC region of the western Pacific at the southeast of Japan showed different responses of ocean ecosystem to nitrogen and dust fertilization. Correlation of the Asian dust storms with chlorophyll, primary productivity and algae blooms in the coastal seas of China from 1998 to 2008 were also illustrated.
NASA Technical Reports Server (NTRS)
Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago
2010-01-01
Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.
NASA Technical Reports Server (NTRS)
Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.
2005-01-01
For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface, while it is of importance for estimating vertical profiles of radiative forcing and heating rates.
Planetesimal formation during protoplanetary disk buildup
NASA Astrophysics Data System (ADS)
Drążkowska, J.; Dullemond, C. P.
2018-06-01
Context. Models of dust coagulation and subsequent planetesimal formation are usually computed on the backdrop of an already fully formed protoplanetary disk model. At the same time, observational studies suggest that planetesimal formation should start early, possibly even before the protoplanetary disk is fully formed. Aims: In this paper we investigate under which conditions planetesimals already form during the disk buildup stage, in which gas and dust fall onto the disk from its parent molecular cloud. Methods: We couple our earlier planetesimal formation model at the water snow line to a simple model of disk formation and evolution. Results: We find that under most conditions planetesimals only form after the buildup stage, when the disk becomes less massive and less hot. However, there are parameters for which planetesimals already form during the disk buildup. This occurs when the viscosity driving the disk evolution is intermediate (αv 10-3-10-2) while the turbulent mixing of the dust is reduced compared to that (αt ≲ 10-4), and with the assumption that the water vapor is vertically well-mixed with the gas. Such a αt ≪ αv scenario could be expected for layered accretion, where the gas flow is mostly driven by the active surface layers, while the midplane layers, where most of the dust resides, are quiescent. Conclusions: In the standard picture where protoplanetary disk accretion is driven by global turbulence, we find that no planetesimals form during the disk buildup stage. Planetesimal formation during the buildup stage is only possible in scenarios in which pebbles reside in a quiescent midplane while the gas and water vapor are diffused at a higher rate.
A coagulation-fragmentation model for the turbulent growth and destruction of preplanetesimals
NASA Astrophysics Data System (ADS)
Johansen, A.; Brauer, F.; Dullemond, C.; Klahr, H.; Henning, T.
2008-08-01
To treat the problem of growing protoplanetary disc solids across the meter barrier, we consider a very simplified two-component coagulation-fragmentation model that consists of macroscopic boulders and smaller dust grains, the latter being the result of catastrophic collisions between the boulders. Boulders in turn increase their radii by sweeping up the dust fragments. An analytical solution of the dynamical equations predicts that growth by coagulation-fragmentation can be efficient and allow agglomeration of 10-m-sized objects within the time-scale of the radial drift. These results are supported by computer simulations of the motion of boulders and fragments in 3-D time-dependent magnetorotational turbulence. However allowing the fragments to diffuse freely out of the sedimentary layer of boulders drastically reduces the density of both boulders and fragments in the mid-plane, and thus also the growth of the boulder radius. The reason is that the turbulent diffusion time-scale is so much shorter than the collisional time-scale that dust fragments leak out of the mid-plane layer before they can be swept up by the boulders there. Our conclusion that coagulation-fragmentation is not an efficient way to grow across the meter barrier in fully turbulent protoplanetary discs confirms recent results by Brauer, Dullemond, & Henning who solved the coagulation equation in a parameterised turbulence model with collisional fragmentation, cratering, radial drift, and a range of particle sizes. We find that a relatively small population of boulders in a sedimentary mid-plane layer can populate the entire vertical extent of the disc with small grains and that these grains are not first generation dust, but have been through several agglomeration-destruction cycles during the simulations.
A Numerical Estimate of The Impact of The Saharan Dust On Medityerranean Trophic Web
NASA Astrophysics Data System (ADS)
Crise, A.; Crispi, G.
A first estimate of the importance of Saharan dust as input of macronutrients on the phytoplankton standing crop concentration and primary production at basin scale is here presented using a three-dimensional numerical model of the Mediterranean Sea. The numerical scheme adopted is a 1/4 degree resolution 31 levels MOM-based eco- hydrodynamical model with climatological ('perpetual year') forcings coupled on-line with a structure including multi-nutrient, size-fractionated phytoplankton functional groups, herbivores and a parametrized recycling detritus submodel, so to (explicitely or implicitely) include the major energy pathways of the upper layer mediterranean ecosystem. This model takes into account as potential limiting factors, among others, Nitrogen (in its oxidized and reduced forms) and Phosphorus. A gridded data setof (wet and dry) dust deposition over Mediterranean derived from SKIRON operational model is used to identify statistically the areas and the duration/intensity of the events. Starting from this averaging process, experiments are carried out to study the dust induced episodes of release of bioavailable phosphorus which is supposed to be the limiting factor in the oligotrophic waters of the surface layer in Med Sea. The metrics for the evaluation of the impact of deposition have been identified in phyto standing crop, primary and export production and switching in the food web functioning. These global parameters, even if cannot exaust the whealth of the informations provided by the model, can help discriminate the sensitivity of food web to the nutrient pulses induced by the deposition. First results of a scenario analysis of typical atmospheric input events, provide evidence of the response of the upper layer ecosystem to assess the sensitivity of the model predictions to the variability to integrated intensity of external input.
NGC 7538 IRS. 1. Interaction of a Polarized Dust Spiral and a Molecular Outflow
NASA Astrophysics Data System (ADS)
Wright, M. C. H.; Hull, Charles L. H.; Pillai, Thushara; Zhao, Jun-Hui; Sandell, Göran
2014-12-01
We present dust polarization and CO molecular line images of NGC 7538 IRS 1. We combined data from the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the James Clerk Maxwell Telescope to make images with ~2.''5 resolution at 230 and 345 GHz. The images show a remarkable spiral pattern in both the dust polarization and molecular outflow. These data dramatically illustrate the interplay between a high infall rate onto IRS 1 and a powerful outflow disrupting the dense, clumpy medium surrounding the star. The images of the dust polarization and the CO outflow presented here provide observational evidence for the exchange of energy and angular momentum between the infall and the outflow. The spiral dust pattern, which rotates through over 180° from IRS 1, may be a clumpy filament wound up by conservation of angular momentum in the infalling material. The redshifted CO emission ridge traces the dust spiral closely through the MM dust cores, several of which may contain protostars. We propose that the CO maps the boundary layer where the outflow is ablating gas from the dense gas in the spiral.
Aeolian removal of dust from radiator surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Hotes, Deborah
1990-01-01
Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples.
The Origin of Regional Dust Deposits on Mars
NASA Technical Reports Server (NTRS)
Christensen, P. R.
1985-01-01
Recently, additional evidence was derived from the Viking Infrared Thermal Mapper observations that allows a more complete model for the formation of Low Thermal inertia-high Albedo regions to be proposed. The first observation is that dust appears to be currently accumulating in the low thermal inertia regions. Following each global dust storm a thin layer of dust is deposited globally, as evidenced by an increase in surface albedo seen from orbit and from the Viking Lander sites. During the period following the storm, the bright dust fallout is subsequently removed from low albedo regions, as indicated by the post-storm darkening of these surfaces and by an increase in the atmospheric dust content over dark regions relative to the bright, low thermal inertia regions. Thus, the fine dust storm material is removed from dark regions but not from the bright regions, resulting in a net accumulation within the bright, low thermal inertia regions. Once deposition has begun, the covering of exposed rocks and sand and the accumulation of fine material on the surface make removal of material increasingly difficult, thereby enhancing the likelihood that material will accumulate within the low thermal inertia regions.
NASA Astrophysics Data System (ADS)
Yi, Bingqi; Yang, Ping; Baum, Bryan A.
2014-05-01
We investigate changes in the optical properties of a large dust plume originating from East Asian deserts during its transport over the northwestern Pacific Ocean in March 2013. The study makes use of observational products from two sensors in the NASA A-Train satellite constellation, the Moderate Resolution Imaging Spectroradiometer and the Cloud-Aerosol Lidar with Orthogonal Polarization. Forward trajectory clustering analysis and satellite observations show that dust initiating from the Taklimakan and Gobi deserts experienced thorough mixing with industrial pollution aerosols shortly after leaving the source region and were lofted by a strong midlatitude weather system to more than 4 km in height. The dust plume accompanied the weather system and reached the east coast of the North American continent within 7-10 days. The dust aerosols became spectrally absorptive during transport due to mixing with other aerosol types such as soot. Furthermore, a decrease in the depolarization ratio suggests that the complexities in aerosol particle morphologies were reduced during transport over the ocean. More than half of the dust aerosol layers surviving the trans-Pacific transport were polluted and exhibited different optical properties and radiative effects from those of pure dust.
Toxicity of Lunar Dust in Lungs Assessed by Examining Biomarkers in Exposed Mice
NASA Technical Reports Server (NTRS)
Lam, C.-W.; James, J. T.; Zeidler-Erdely, P. C.; Castranova, V.; Young, S. H.; Quan, C. L.; Khan-Mayberry, N.; Taylor, L. A.
2010-01-01
NASA is contemplating to build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of soil, of which the finest portion is highly reactive dust. Dust samples of respirable sizes were aerodynamically isolated from two lunar soil samples of different maturities (cosmic exposure ages) collected during the Apollo 16 mission. The lunar dust samples, TiO2, or quartz, suspended in normal saline were given to groups of 5 C57 male mice by intrapharyngeal aspiration at 0. 1, 0.3, or 1.0 mg/mouse. Because lunar dust aggregates rapidly in aqueous media, some tests were conducted with dusts suspended in Survanta/saline (1:1). The mice were euthanized 7 or 30 days later, and their lungs were lavaged to assess the presence of toxicity biomarkers in bronchioalveolar lavage fluids. The overall results showed that the two lunar dust samples were similar in toxicity, they were more toxic than T102 , but less toxic than quartz. This preliminary study is a part of the large study to obtain data for setting exposure limits for astronauts living on the Moon
NASA Astrophysics Data System (ADS)
Buxmann, Joelle; Adam, Mariana; Ordonez, Carlos; Tilbee, Marie; Smyth, Tim; Claxton, Bernard; Sugier, Jacqueline; Agnew, Paul
2015-04-01
Saharan desert dust lifted by convection over the hot desert surface can reach high altitudes and be transported over great distances. In the UK, Saharan dust episodes occur several times a year, usually during the spring. Dust lifted by cyclonic circulation is often blown into the Atlantic and transported to the UK. This can result in a rapid degradation of air quality due to the increase in the levels of particulate matter (PM). The ability to model the transport and deposition of dust remains an important challenge in order to characterize different pollution events. We present a comparison of observed Aerosol Optical Depth (AOD) with modelled AOD from the Met Office Air Quality Unified Model (AQUM), performed for two dust events in March 2014 (at 380nm, 440nm, 870nm and 1020nm). The observations are derived from five sun photometers located in the southern UK at Exeter, Cardington, Bayfordbury, Chilbolton, and Plymouth. Correlations are investigated between model column integrated PM2.5 and PM10, and observed fine and coarse mode AOD from AERONET. Vertical profiles of attenuated backscatter and extinction from the Jenoptik Nimbus ceilometers part of the Met Office Laser Cloud Base Recorder (LCBR) network are investigated as well (see also session AS3.17/GI2.2 Lidar and Applications). The Met Office air quality model AQUM is an on-line meteorology, chemistry and aerosol modelling system. It runs at a resolution of 12km over a domain covering the UK and north-western Europe. Atmospheric composition modelling employs two-way coupling between aerosol and chemistry evolution, with explicit modelling of sulphate, nitrate, black carbon, organic carbon, biomass burning and wind-blown mineral dust aerosol components. Both the model and observations show an increase in AOD during the first period from 12 -13 March 2014. For example AOD levels of up to 0.52 for the 380nm channel were recorded by the sun photometer in Exeter. This is relatively high compared to average February 2014 values of 0.07 for 380nm. These high AOD values are attributed to poor surface air quality and elevated Saharan dust levels over much of the UK and Europe. The presence of particles above the boundary layer were observed in the vertical profiles of the attenuated backscatter signal from the LCBR in Exeter. During the evening periods of both days, the Angstrom Exponent (AE) decreased. This effect can be attributed to larger particles, with larger optical depth, indicating dust particles - in agreement with the model predictions of dust. An increase in AOD from below 0.2 at 440nm up to ~0.8 was observed at all sun photometer sites for the second period analyzed starting on 29. March. The AQUM forecasts an AOD of up to 1 at 440nm across the UK, i.e. 20% higher than the observations. The correlations of modelled PM10 with total AOD, PM2.5 with fine mode AOD and PM10-PM2.5 with coarse mode AOD, show an over-estimation of the fine mode particles. The vertical profiles of the LCBR of backscatter and extinction coefficients, plus a comparison of the integrated extinction coefficient, give further insight into the model performance.
WRF-Chem Model Simulations of Arizona Dust Storms
NASA Astrophysics Data System (ADS)
Mohebbi, A.; Chang, H. I.; Hondula, D.
2017-12-01
The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.
Boundary Layer Dust Occurrence IV Atmospheric Dust Over Selected Geographical Areas
1977-06-01
Sariang, Thailand 4 Barcelona, Venezuela 4 Bari/Palese Macchie, Italy 4 75 Index (cont) Name and Country Table (s) Barranquilla/Soledad, Colombia 4...Denmark 4 Bogota/El Dorado, Colombia 4 Bolzano, Italy 4 Bonifati, Italy 4 Botosani, Rumania 4 Bougouni, Mali 4 Boutilimit, Mauritania 1, 22...West Germany 4 Friedrichshafen, West Germany 4 Galati, Rumania 4 Gao, Mali 1,8 Geneva/Cointrin, Switzerland 4 Girardot, Colombia 4 Gorlitz, East
The Martian Dust Cycle: Observations and Modeling
NASA Technical Reports Server (NTRS)
Kahre, Melinda A.
2013-01-01
The dust cycle is critically important for Mars' current climate system. Suspended atmospheric dust affects the radiative balance of the atmosphere, and thus greatly influences the thermal and dynamical state of the atmosphere. Evidence for the presence of dust in the Martian atmosphere can be traced back to yellow clouds telescopically observed as early as the early 19th century. The Mariner 9 orbiter arrived at Mars in November of 1971 to find a planet completely enshrouded in airborne dust. Since that time, the exchange of dust between the planet's surface and atmosphere and the role of airborne dust on Mars' weather and climate has been studied using observations and numerical models. The goal of this talk is to give an overview of the observations and to discuss the successes and challenges associated with modeling the dust cycle. Dust raising events on Mars range in size from meters to hundreds of kilometers. During some years, regional storms merge to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by tens of kelvin. The interannual variability of planet encircling dust storms is poorly understood. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. A low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading are generally observed: one peak occurs before northern winter solstice and one peak occurs after northern winter solstice. Numerical modeling studies attempting to interactively simulate the Martian dust cycle with general circulation models (GCMs) include the lifting, transport, and sedimentation of radiatively active dust. Two dust lifting processes are commonly represented in these models: wind-stress lifting (i.e., saltation) and dust devil lifting. Although the predicted patterns of dust lifting and atmospheric dust loading from these simulations capture some aspects of the observed dust cycle, there are many notable differences between the simulated and observed dust cycles. For example, it is common for models to predict one peak in global dust loading near northern winter solstice due to excessive dust lifting in the Hellas basin at this season. Additionally, it is difficult for models to realistically capture the observed interannual variability in global dust storms. New avenues of dust cycle modeling research include exploring the effects of finite surface dust reservoirs and the effects of coupling the dust and water cycles on the predicted dust cycle.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 21 June 2002) The Science This image covers a portion of Coprates Chasma, located near 15.5S, 57.8W, which is part of the Valles Marineris system of canyons that stretch for thousands of kilometers. This image displays clearly the contrast between bedrock, sand, and dust surfaces. The steepest slopes, such as on the canyon walls, appear to be free of the mantle of dust and sand that is nearly ubiquitous elsewhere in the image. Layering is clearly present in the bedrock unit, but it is not clear if that layering is due to sedimentary deposits or volcanic lava flows. Superimposed on the slopes is a mantle of dust in a manner that appears similar to snow covered mountains on Earth. This is because in both situations, fine-grained dry, particulate material is settling on a sloped surface. Collecting in the valleys and, in some cases, climbing up the slopes are several sand sheets. The amount of cover and the apparent thickness of these sands give some indication to the huge volume of material that is collected here. The orientation of the slip faces of the dunes in this image can be used to deduce the prevalent wind patterns in the region. In this case, the prevalent wind direction is towards the east but there are areas where the winds indicate a more complex system, perhaps indicating topographic control of the local winds. The Story The canyon walls of Coprates, the old name for the Persian River Ab-I-Diz, descend clearly at the top of this image, without being obscured by the dust that covers much of this region. Coprates Chasma is part of Valles Marineris, the largest canyon system in the solar system. In addition to the hard bedrock and dust, sand dunes also appear on the floor of the canyon. They almost look as though they've been raked by a Zen gardener, but the eastward-blowing wind is really responsible for their rows. Scientists can tell the direction of the wind by looking at the slip faces of the dunes -- that is, by identifying the steep, downward slope formed from loose, cascading sand. Some areas seem to have been formed by more complex wind patterns that may have emerged due to the topography of the area. This region is, in fact, pretty complex. The sand in this area looks like it is thick and abundant. Not only has it collected in the valleys, it has also built up enough to begin to 'climb up' the slopes. There is also layering in the bedrock, but who knows if this layering is made of deposits of 'dirt' and rock or from lava. Finally, at the bottom of this image, dust-covered slopes appear like snow-covered mountain s on Earth. This similar look occurs because both dust and snow are fine-grained particles and cover the slopes in comparable ways.
NASA Astrophysics Data System (ADS)
Wang, Longlong; Gregorič, Asta; Stanič, Samo; Mole, Maruška; Bergant, Klemen; Močnik, Griša; Drinovec, Luka; Vaupotič, Janja; Miler, Miloš; Gosar, Mateja
2017-04-01
Atmospheric aerosols influence Earth's radiation budget, visibility and air quality, as well as the cloud formation processes and precipitation. The structure of the vertical aerosol distribution, in particular that of black carbon, significantly influences the aerosol direct radiative effect, followed by feedbacks on cloud and planetary boundary layer dynamics. The knowledge on aerosol vertical distribution and properties therefore provides an important insight into many atmospheric processes. In order to retrieve the vertical distribution of aerosol properties in the Vipava valley (Slovenia) and the influence of planetary boundary layer height on the local air quality, in-situ and LIDAR measurements were performed. In-situ methods consisted of aerosol size distribution and number concentration and black carbon concentration measurements which were performed during a one-month extensive measurement campaign in spring 2016. Aerosol size distribution (10 nm to 30 µm) was measured at the valley floor using scanning mobility particle sizer (SMPS, Grimm Aerosol Technique, Germany) and optical particle counter (OPC, Grimm Aerosol Technique, Germany). Black carbon concentrations were measured by Aethalometer AE33 (Aerosol d.o.o., Slovenia) at the valley floor (125 m a.s.l.) and at the top of the adjacent mountain ridge (951 m a.s.l.), the later representing regional background conditions. The in-situ measurements were combined with LIDAR remote sensing, where the vertical profiles of aerosol backscattering coefficients were retrieved using the Klett method. In addition, aerosol samples were analyzed by SEM-EDX to obtain aerosol morphology and chemical composition. Two different cases with expected dominant presence of specific aerosol types were investigated in more detail. They show significantly different aerosol properties and distributions within the valley, which has an important implication for the direct radiative effect. In the first case, during a Saharan dust event on 5-6 April 2016 the prevailing aerosols were expected to be mineral dust, while in the second case, during traditional bonfires on 30 April 30 - 1 May 2016 carbonaceous aerosol from biomass burning prevailed. In the Saharan dust case, the height of the mineral dust layer decreased from 2 km to 1 km, causing the mixing of mineral dust within the planetary boundary layer, which resulted in its spreading within the valley. Increased fraction of relatively large mineral aerosols was observed (2.5-10 µm) and their identity was confirmed by SEM-EDX analysis of the collected samples. No significant increase of black carbon concentration was detected, indicating dry deposition of mineral dust and good mixing with the locally emitted black carbon. In the biomass burning case, the LIDAR backscattering coefficient gradually increased due to intensive local emissions within the valley. After 10PM the increasing wind caused the dispersion of aerosols and the total particle concentration of particles smaller than 1 µm indicates smaller sizes of black carbon aerosols in comparison to mineral dust particles.
Pulmonary Toxicity Studies of Lunar Dusts in Rodents
NASA Technical Reports Server (NTRS)
Lam, Chiu-wing; James, John T.
2009-01-01
NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. Because the toxicity of lunar dust is not known, NASA has tasked its toxicology laboratory to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal/intrapharyngeal instillation. This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies are in progress to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated (ground) lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The results from the instillation studies will be useful for choosing exposure concentrations for the animal inhalation study. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The experiment with the simulate will ensure that the study techniques used with actual lunar dust will be successful. The results of instillation and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.
Lunar dust, lunar observatories and other operations on the Moon
NASA Astrophysics Data System (ADS)
Johnson, Stewart W.; Chua, Koon Meng; Burns, Jack O.
1995-02-01
The pervasiveness of the lunar fine-grained particulates or dust was alluded to many times by the twelve Apollo astronauts who briefly lived and worked on the Moon. Neil Armstrong, on the first journey to the Moon, said of the lunar dust 'The surface is fine and powdery. I can - I can pick it up loosely with my toe. It does adhere in fine layers like powdered charcoal to the sole and sides of my boots.' For engineering, construction and operations on the Moon, the dust poses unresolved riddles. This paper discusses what some of the mechanisms are that may govern the behavior of the fine particles, suggests approaches to mitigating the dust hazard and notes that experiments in laboratories and on the Moon are needed to assist in establishing effective and suitable means of limiting the detrimental effects of dust on observatory operations. Te ideas presented have implications not only for observatories but also for a variety of mining and industrial operations on the surface of the Moon in the 21st Century.
Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria
2014-01-01
The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783
Rudel, Ruthann A; Seryak, Liesel M; Brody, Julia G
2008-01-01
Background Polychlorinated biphenyls (PCBs) are persistent pollutants identified worldwide as human blood and breast milk contaminants. Because they bioaccumulate, consumption of meat, fish, and dairy products predicts human blood concentrations. PCBs were also used widely in building materials, including caulks and paints, but few studies have evaluated the contribution of these exposures to body burden. Methods In an earlier study, we detected PCBs in indoor air in 31% of 120 homes on Cape Cod, MA. Two of the homes had much higher concentrations than the rest, so we retested to verify the initial finding, evaluate blood PCB concentrations of residents, and identify the PCB source. Results Air and dust concentrations remained elevated over 5 years between initial and follow-up sampling. Blood serum concentrations of PCBs in residents of the homes were generally elevated above the 95th percentile of a representative sample of the US population. Serum concentrations in residents and air and dust concentrations were especially high in a home where a resident reported use of PCB-containing floor finish in the past, and where the floor of one room was sanded and refinished just prior to sample collection. Conclusion This case-study suggests that PCB residues in homes may be more significant contributors to overall exposure than diet for some people, and that use of a commercially-available PCB-containing wood floor finish in residences during the 1950s and 1960s is an overlooked but potentially important source of current PCB exposure in the general population. PMID:18201376
CALIOP near-real-time backscatter products compared to EARLINET data
NASA Astrophysics Data System (ADS)
Grigas, T.; Hervo, M.; Gimmestad, G.; Forrister, H.; Schneider, P.; Preißler, J.; Tarrason, L.; O'Dowd, C.
2015-03-01
The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar (Light Detection and Ranging) with Orthogonal Polarization (CALIOP) products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). Over a period of three years, lidar data from 48 CALIOP overpasses with ground tracks within a 100 km distance from an operating EARLINET station were deemed suitable for analysis and they included a valid aerosol classification type (e.g. dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning). For the complete dataset comprising both PBL and FT data, the correlation coefficient was 0.86, and when separated into separate layers, the PBL and FT correlation coefficients were 0.6 and 0.85 respectively. The presence of FT layers with high attenuated backscatter led to poor agreement in PBL backscatter profiles between the CALIOP and EARLINET measurements and prompted a further analysis filtering out such cases. However, the correlation coefficient value for the complete dataset decreased marginally from 0.86 to 0.84 while the PBL coefficient increased from 0.6 up to 0.65 and the FT coefficient also decreased from 0.85 to 0.79. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and ground-based lidar data ranged from 0.37 for polluted continental aerosol in the planetary boundary layer (PBL) to 0.57 for dust in the free troposphere (FT). The results suggest different levels of agreement based on the location of the dominant aerosol layer and the aerosol type.
Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005
NASA Astrophysics Data System (ADS)
Todd, Martin C.; Washington, Richard; Martins, José Vanderlei; Dubovik, Oleg; Lizcano, Gil; M'bainayel, Samuel; Engelstaedter, Sebastian
2007-03-01
Mineral dust in the atmosphere is an important component of the climate system but is poorly quantified. The Bodélé Depression of northern Chad stands out as the world's greatest source region of mineral dust into the atmosphere. Frequent dust plumes are a distinguishing feature of the region's climate. There is a need for more detailed information on processes of dust emission/transport and dust optical properties to inform model simulations of this source. During the Bodélé Dust Experiment (BoDEx) in 2005, instrumentation was deployed to measure dust properties and boundary layer meteorology. Observations indicate that dust emission events are triggered when near-surface wind speeds exceed 10 ms-1, associated with synoptic-scale variability in the large-scale atmospheric circulation. Dust emission pulses in phase with the diurnal cycle of near-surface winds. Analysis of dust samples shows that the dust consists predominantly of fragments of diatomite sediment. The particle size distribution of this diatomite dust estimated from sun photometer data, using a modified Aeronet retrieval algorithm, indicates a dominant coarse mode (radius centered on 1-2 μm) similar to other Saharan dust observations. Single-scattering albedo values are high, broadly in line with other Saharan dust even though the diatomite composition of dust from the Bodélé is likely to be unusual. The radiative impact of high dust loadings results in a reduction in surface daytime maximum temperature of around 7°C in the Bodélé region. Using optical and physical properties of dust obtained in the field, we estimate the total dust flux emitted from the Bodélé to be 1.18 ± 0.45 Tg per day during a substantial dust event. We speculate that the Bodélé Depression (˜10,800 km2) may be responsible for between 6-18% of global dust emissions, although the uncertainty in both the Bodélé and global estimates remains high.
Wang, Liulin; Hou, Meiling; An, Jing; Zhong, Yufang; Wang, Xuetong; Wang, Yangjun; Wu, Minghong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo
2011-10-01
Electrical and electronic waste (E-waste) has now become the fastest growing solid waste around the world. Primitive recycling operations for E-waste have resulted in severe contamination of toxic metals and organic chemicals in the related areas. In this study, six dust and soil samples collected from E-waste recycling workshops and open-burning sites in Longtang were analyzed to investigate their cytotoxicity and genotoxicity on L02 cells. These six samples were: dust No. 1 collected at the gate of the workshop; dust No. 2 collected from air conditioning compressor dismantling site; dust No. 3 collected from where some motors, wires, and aluminium products since the 1980s were dismantled; soil No. 1 collected at the circuit board acid washing site; soil No. 2 collected from a wire open-burning site; soil No. 3 collected near a fiber open-burning site. At the same time, two control soil samples were collected from farmlands approximately 8 km away from the dismantling workshops. The results showed that all of these samples could inhibit cell proliferation and cause cell membrane lesion, among which dust No. 3 and soil No. 2 had the strongest toxicity. Moreover, the comet assay showed that the dust No. 3 had the most significant capability to cause DNA single-strand beaks (SSB), while the road dust (dust No. 1) collected at the gate of the workshop, a relatively farer site, showed the slightest capability to induce DNA SSB. The intracellular reactive oxygen species (ROS) detection showed that ROS level was elevated with the increase of dust and soil samples concentration. Dust No. 3 and soil No. 2 had the highest ROS level, followed by dust No. 2 and 1, soil No. 3 and 1. All of the above results indicated that polluted soil and dust from the E-waste area had cytotoxicity and genotoxicity on L02 cells, the mechanism might involve the increased ROS level and consequent DNA SSB.
NASA Astrophysics Data System (ADS)
Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun
2018-03-01
Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.
Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.
2005-01-01
Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.