NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.
Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan
2017-04-01
NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.
Yoo, Jae-Myung; Lee, Youn-Sun; Choi, Heon-Kyo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Oh, Seikwan; Yoo, Hwan-Soo
2005-03-01
Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC-PK1 cells were treated with H2O2 in the absence of serum to induce cell death. Subsequent to exposure to H2O2, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H2O2-treated control cells, it was observed that 0.5 microM of desipramine and 25 mM of NAC exhibited about 90 and 95% of cytoprotection, respectively, against H2O2-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and 3%, respectively, when compared to 71% in H2O2-exposed cells. Cellular glutathione level in 500 microM H2O2-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H2O2-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H2O2-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.
Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm.
Olszyk, D M; Johnson, M G; Phillips, D L; Seidler, R J; Tingey, D T; Watrud, L S
2001-01-01
To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.
The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World
Glas, Martin S.; Fabricius, Katharina E.; de Beer, Dirk; Uthicke, Sven
2012-01-01
Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA. PMID:23166810
Luo, Jianhao; Liu, Mingxi; Zhang, Chendong; Zhang, Peipei; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun
2017-01-01
Centipedegrass ( Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass ( CdSAMDC1 ) that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd) and spermin (Spm) concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT). Transgenic plants had higher levels of polyamine oxidase (PAO) activity and H 2 O 2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone) or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H 2 O 2 were a result of expression of CdSAMDC1 . In addition, transgenic plants had higher levels of nitrate reductase (NR) activity and nitric oxide (NO) concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA), scavenger of H 2 O 2 , while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H 2 O 2 , as a result of expression CdSAMDC1 . Elevated superoxide dismutase (SOD) and catalase (CAT) activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1 , H 2 O 2 , and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H 2 O 2 , which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.
Kim, Gi-Wook; Kang, Changsun; Oh, Young-Bin; Ko, Myoung-Hwan; Seo, Jeong-Hwan; Lee, Dongwon
2017-01-01
Ultrasonography is a reliable diagnostic modality for muscle and tendon injuries, but it has been challenging to find right diagnosis of minor musculoskeletal injuries by conventional ultrasonographic imaging. A large amount of hydrogen peroxide (H 2 O 2 ) are known to be generated during tissue damages such as mechanical injury and therefore H 2 O 2 holds great potential as a diagnostic and therapeutic marker for mechanical injuries in the musculoskeletal system. We previously developed poly(vanillyl alcohol- co -oxalate) (PVAX), which rapidly scavenges H 2 O 2 and exerts antioxidant and anti-inflammatory activity in H 2 O 2 -associated diseases. Based on the notion that PVAX nanoparticles generate CO 2 bubbles through H 2 O 2 -triggered hydrolysis, we postulated that PVAX nanoparticles could serve as ultrasonographic contrast agents and therapeutic agents for musculoskeletal injuries associated with overproduction of H 2 O 2 . In the agarose gel phantom study, PVAX nanoparticles continuously generated CO 2 bubbles to enhance ultrasonographic echogenicity significantly. Contusion injury significantly elevated the level of H 2 O 2 in skeletal muscles and Achilles tendons. Upon intramuscular injection, PVAX nanoparticles significantly elevated the ultrasound contrast and suppressed inflammation and apoptosis in the contusion injury of musculoskeletal systems. We anticipate that PVAX nanoparticles hold great translational potential as theranostic agents for musculoskeletal injuries.
Rindler, Paul M; Cacciola, Angela; Kinter, Michael; Szweda, Luke I
2016-11-01
We have recently demonstrated that catalase content in mouse cardiac mitochondria is selectively elevated in response to high dietary fat, a nutritional state associated with oxidative stress and loss in insulin signaling. Catalase and various isoforms of glutathione peroxidase and peroxiredoxin each catalyze the consumption of H 2 O 2 Catalase, located primarily within peroxisomes and to a lesser extent mitochondria, has a low binding affinity for H 2 O 2 relative to glutathione peroxidase and peroxiredoxin. As such, the contribution of catalase to mitochondrial H 2 O 2 consumption is not well understood. In the current study, using highly purified cardiac mitochondria challenged with micromolar concentrations of H 2 O 2 , we found that catalase contributes significantly to mitochondrial H 2 O 2 consumption. In addition, catalase is solely responsible for removal of H 2 O 2 in nonrespiring or structurally disrupted mitochondria. Finally, in mice fed a high-fat diet, mitochondrial-derived H 2 O 2 is responsible for diminished insulin signaling in the heart as evidenced by reduced insulin-stimulated Akt phosphorylation. While elevated mitochondrial catalase content (∼50%) enhanced the capacity of mitochondria to consume H 2 O 2 in response to high dietary fat, the selective increase in catalase did not prevent H 2 O 2 -induced loss in cardiac insulin signaling. Taken together, our results indicate that mitochondrial catalase likely functions to preclude the formation of high levels of H 2 O 2 without perturbing redox-dependent signaling. Copyright © 2016 the American Physiological Society.
Electronic and chemical structure of the H 2O/GaN(0001) interface under ambient conditions
Zhang, Xueqiang; Ptasinska, Sylwia
2016-04-25
We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H 2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H 2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H 2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H 2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorptionmore » of H 2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H 2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less
Nishimoto, Takuto; Watanabe, Takeru; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao
2016-01-01
The roles of catalase and trehalose in Saccharomyces cerevisiae subject to hydrogen peroxide (H2O2) treatment were examined by measuring the catalase activity and intracellular trehalose levels in mutants lacking catalase or trehalose synthetase. Intracellular trehalose was elevated but the survival rate after H2O2 treatment remained low in mutants with deletion of the Catalase T gene. On the other hand, deletion of the trehalose synthetase gene increased the catalase activity in mutated yeast to levels higher than those in the wild-type strain, and these mutants exhibited some degree of tolerance to H2O2 treatment. These results suggest that Catalase T is critical in the yeast response to oxidative damage caused by H2O2 treatment, but trehalose also plays a role in protection against H2O2 treatment.
Kim, Gi-Wook; Kang, Changsun; Oh, Young-Bin; Ko, Myoung-Hwan; Seo, Jeong-Hwan; Lee, Dongwon
2017-01-01
Ultrasonography is a reliable diagnostic modality for muscle and tendon injuries, but it has been challenging to find right diagnosis of minor musculoskeletal injuries by conventional ultrasonographic imaging. A large amount of hydrogen peroxide (H2O2) are known to be generated during tissue damages such as mechanical injury and therefore H2O2 holds great potential as a diagnostic and therapeutic marker for mechanical injuries in the musculoskeletal system. We previously developed poly(vanillyl alcohol-co-oxalate) (PVAX), which rapidly scavenges H2O2 and exerts antioxidant and anti-inflammatory activity in H2O2-associated diseases. Based on the notion that PVAX nanoparticles generate CO2 bubbles through H2O2-triggered hydrolysis, we postulated that PVAX nanoparticles could serve as ultrasonographic contrast agents and therapeutic agents for musculoskeletal injuries associated with overproduction of H2O2. In the agarose gel phantom study, PVAX nanoparticles continuously generated CO2 bubbles to enhance ultrasonographic echogenicity significantly. Contusion injury significantly elevated the level of H2O2 in skeletal muscles and Achilles tendons. Upon intramuscular injection, PVAX nanoparticles significantly elevated the ultrasound contrast and suppressed inflammation and apoptosis in the contusion injury of musculoskeletal systems. We anticipate that PVAX nanoparticles hold great translational potential as theranostic agents for musculoskeletal injuries. PMID:28744328
Spengler, Annette; Wanninger, Lena; Pflugmacher, Stephan
2017-09-01
The present study focused on oxidative stress effects in the aquatic macrophyte Hydrilla verticillata after exposure to titanium dioxide nanoparticles (TiO 2 -NPs). Experiments were conducted with different TiO 2 -NPs and concentrations (0.1 mg/L and 10 mg/L) in a time-dependent manner (0 h, 24 h, 48 h, 96 h, 168 h). To assess various levels of the oxidative stress response in H. verticillata, the level of hydrogen peroxide (H 2 O 2 ), the ratio of reduced to oxidized glutathione (GSH/GSSG), and activities of the antioxidative enzymes catalase (CAT) and glutathione reductase (GR) were evaluated. Study results imply oxidative stress effects after TiO 2 -NP exposure as adaptations in plant metabolism became apparent to counteract increased ROS formation. All TiO 2 -NPs caused elevated activities of the enzymes CAT and GR. Moreover, decreased ratios of GSH/GSSG indicated an activation of GSH-dependent pathways counteracting ROS formation. Plants exposed to a bulk-sized control revealed a size-dependent influence on the antioxidative stress response. As H 2 O 2 level increases were solely detected after exposure to 10 mg/L TiO 2 -NPs and nano-exposed plants showed normalization in its antioxidative stress response after 168h of exposure, it can be suggested that macrophytes are able to cope with currently predicted low-level exposures to TiO 2 -NPs. Copyright © 2017 Elsevier B.V. All rights reserved.
Elgetti Brodersen, Kasper; Koren, Klaus; Lichtenberg, Mads; Kühl, Michael
2016-07-01
Seagrasses can modulate the geochemical conditions in their immediate rhizosphere through the release of chemical compounds from their below-ground tissue. This is a vital chemical defence mechanism, whereby the plants detoxify the surrounding sediment. Using novel nanoparticle-based optical O2 and pH sensors incorporated in reduced and transparent artificial sediment, we investigated the spatio-temporal dynamics of pH and O2 within the entire rhizosphere of Zostera marina L. during experimental manipulations of light and temperature. We combined such measurements with O2 microsensor measurements of the photosynthetic productivity and respiration of seagrass leaves. We found pronounced pH and O2 microheterogeneity within the immediate rhizosphere of Z. marina, with higher below-ground tissue oxidation capability and rhizoplane pH levels during both light exposure of the leaf canopy and elevated temperature, where the temperature-mediated stimuli of biogeochemical processes seemed to predominate. Low rhizosphere pH microenvironments appeared to correlate with plant-derived oxic microzones stimulating local sulphide oxidation and thus driving local proton generation, although the rhizoplane pH levels generally where much higher than the bulk sediment pH. Our data show that Z. marina can actively alter its rhizosphere pH microenvironment alleviating the local H2 S toxicity and enhancing nutrient availability in the adjacent sediment via geochemical speciation shift. © 2016 John Wiley & Sons Ltd.
Cells with impaired mitochondrial H2O2 sensing generate less •OH radicals and live longer.
Martins, Dorival; Titorenko, Vladimir I; English, Ann M
2014-10-01
Mitochondria are major sites of reactive oxygen species (ROS) generation, and adaptive mitochondrial ROS signaling extends longevity. We aim at linking the genetic manipulation of mitochondrial H2O2 sensing in live cells to mechanisms driving aging in the model organism, Saccharomyces cerevisiae. To this end, we compare in vivo ROS (O2(•-), H2O2 and (•)OH) accumulation, antioxidant enzyme activities, labile iron levels, GSH depletion, and protein oxidative damage during the chronological aging of three yeast strains: ccp1Δ that does not produce the mitochondrial H2O2 sensor protein, cytochrome c peroxidase (Ccp1); ccp1(W191F) that produces a hyperactive variant of this sensor protein (Ccp1(W191F)); and the isogenic wild-type strain. Since they possess elevated manganese superoxide dismutase (Sod2) activity, young ccp1Δ cells accumulate low mitochondrial superoxide (O2(•-)) levels but high H2O2 levels. These cells exhibit stable aconitase activity and contain low amounts of labile iron and hydroxyl radicals ((•)OH). Furthermore, they undergo late glutathione (GSH) depletion, less mitochondrial protein oxidative damage and live longer than wild-type cells. In contrast, young ccp1(W191F) cells accumulate little H2O2, possess depressed Sod2 activity, enabling their O2(•-) level to spike and deactivate aconitase, which, ultimately, leads to greater mitochondrial oxidative damage, early GSH depletion, and a shorter lifespan than wild-type cells. Modulation of mitochondrial H2O2 sensing offers a novel interventional approach to alter mitochondrial H2O2 levels in live cells and probe the pro- versus anti-aging effects of ROS. The strength of mitochondrial H2O2 sensing modulates adaptive mitochondrial ROS signaling and, hence, lifespan.
Sheridan, Kevin J; Lechner, Beatrix Elisabeth; Keeffe, Grainne O'; Keller, Markus A; Werner, Ernst R; Lindner, Herbert; Jones, Gary W; Haas, Hubertus; Doyle, Sean
2016-10-17
Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H 2 O 2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H 2 O 2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H 2 O 2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis.
Oxidative stress induces transient O-GlcNAc elevation and tau dephosphorylation in SH-SY5Y cells.
Kátai, Emese; Pál, József; Poór, Viktor Soma; Purewal, Rupeena; Miseta, Attila; Nagy, Tamás
2016-12-01
O-linked β-N-acetlyglucosamine or O-GlcNAc modification is a dynamic post-translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O-GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O-GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH-SY5Y we investigated the dynamic nature of O-GlcNAc after treatment with 0.5 mM H 2 O 2 for 30 min. to induce oxidative stress. We found that overall O-GlcNAc quickly increased and reached peak level at around 2 hrs post-stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O-Glycosylation. In conclusion, our results show that temporary elevation in O-GlcNAc modification after H 2 O 2 -induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O-GlcNAc and phosphorylation on tau proteins. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Gunson, M. R.; Salawitch, R. J.; Newchurch, M. J.; Zander, R.; Abbas, M. M.; Abrams, M. C.; Manney, G. L.; Michelsen, H. A.; Chang, A. Y.;
1996-01-01
Simultaneous stratospheric volume mixing ratios (VMR's) measured inside and outside the Antarctic vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in November 1994 reveal previously unobserved features in the distributions of total reactive nitrogen (NO(y)) and total hydrogen (H2O + 2CH4). Maximum removal of NO(y) due to sedimentation of polar stratospheric clouds (PSC's) inside the vortex occurred at a potential temperature (Theta) of 500-525 K (approximately 20 km), where values were 5 times smaller than measurements outside. Maximum loss of H2O + 2CH4 due to PSC's occurred in the vortex at 425-450 K, approximately 3 km lower than the peak NO(y) loss. At that level, H2O + 2CH4 VMR's inside the vortex were approximately 70% of corresponding values outside. The Antarctic and April 1993 Arctic measurements by ATMOS show no significant differences in H2O + 2CH4 VMR's outside the vortices in the two hemispheres. Elevated NO(y) VMRs were measured inside the vortex near 700 K. Recent model calculations indicate that this feature results from downward transport of elevated NO(y) produced in the thermosphere and mesosphere.
Yuan, W; Sequeira, D J; Cawley, G F; Eyer, C S; Backes, W L
1997-03-01
The goal of the present study was to examine the time course for changes in P450 expression and hydrocarbon metabolism after acute treatment with the simple aromatic hydrocarbon ethylbenzene (EB) and to correlate these alterations with the changes observed in alkylbenzene metabolism. Male Holtzman rats were treated with a single intraperitoneal injection of EB, and the effects on specific P450-dependent activities, immunoreactive P450 isozyme levels, and RNA levels were measured at various times after injection. Toluene was used as the test alkylbenzene for examination of the EB-mediated changes on in vitro hydrocarbon metabolism. In untreated rats, toluene was metabolized almost entirely by aliphatic hydroxylation (to benzyl alcohol); however, in EB-treated rats, significant quantities of benzyl alcohol, o-cresol, and p-cresol were produced. Interestingly, 5-10 h after EB treatment, there was a 40% decrease in benzyl alcohol production. By 24 h, rates of benzyl alcohol formation returned to control levels, whereas there was a 7-fold increase in o-cresol and a greater that 50-fold increase in p-cresol production. The changes in the disposition of toluene were then correlated with changes in particular P450 isozymes. Several P450 isozymes were induced after EB administration. P450 2B1/2-dependent testosterone 16 beta-hydroxylation and P450 2B1/2-immunoreactive protein were elevated 30-fold after EB administration, reaching maxima by 24 h and remaining elevated 48 h after exposure. Changes in P450 2B1 and 2B2 RNA preceded those of the proteins. Similar results were observed with P450 1A1. P450 2E1 RNA levels were elevated after a single EB injection. However, the elevation in P450 2E1-dependent activities and immunoreactive protein levels preceded the changes in RNA, suggesting that multiple steps are affected by EB exposure. In contrast to the increases in some isozymes, P450 2C11 protein was rapidly suppressed (within the first 2-10 h) after hydrocarbon exposure, suggestive of a destabilization of the protein. When comparing the changes in P450 isozymes to alterations in toluene metabolism, the immediate suppression in aliphatic hydroxylation of toluene (in the first 5-10 h) was consistent with the decrease in P450 2C11. Subsequent to this effect, P450 2B1/2 and 2E1 were induced, which elevated production of this metabolite to control levels. The increase in the aromatic hydroxylation of toluene to both o, and p-cresol was consistent with the induction of P450s 2B1/2, 2E1, and 1A1.
Greyner, Henry; Dzialowski, Edward M
2015-10-01
The ductus arteriosus (DA) are O2-sensitive, embryonic blood vessels that serve as a right-to-left shunt in developing avian embryos. Prior to internal pipping, the chicken DA produces a weak O2-induced contraction. During hatching, the O2-sensitivity of the avian DA vessels increases significantly. To see if we could accelerate the maturation of chicken DA O2-sensitivity, we exposed the vessel in vitro to elevated O2 (25 kPa) for 3-h prior to internal pipping on day 19 of incubation. The DA initially responded to increasing O2 with a weak contraction (0.15±0.04 N/m) that significantly increased in strength (0.63±0.06 N/m) during 3-h 25 kPa O2 exposure. A tonic influence of nitric oxide, not present at low O2, appeared during the 3-h 25 kPa O2 exposure. The long-term O2-induced contraction was mediated by both L-type Ca(2+) channels and internal Ca(2+) stores. The Rho-kinase pathway inhibitors Y-27632 and fasudil produced significant relaxation, suggesting a role for Ca(2+) sensitization in the contractile response to the 3h of elevated O2. While the day 19 DA initially exhibited an immature contractile response to O2, maturation of the pathways regulating O2-induced contraction was accelerated by exposure to 25 kPa O2, producing contractions similar in magnitude to those found during the final stage of hatching. This suggests that maturation of O2-sensitivity may be accelerated in vivo by increasing arterial O2 levels. Copyright © 2015 Elsevier Inc. All rights reserved.
Sheridan, Kevin J.; Lechner, Beatrix Elisabeth; Keeffe, Grainne O’; Keller, Markus A.; Werner, Ernst R.; Lindner, Herbert; Jones, Gary W.; Haas, Hubertus; Doyle, Sean
2016-01-01
Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis. PMID:27748436
Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J
2003-12-01
Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.
Ihara, Yoshito; Urata, Yoshishige; Goto, Shinji; Kondo, Takahito
2006-01-01
Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells.
Fu, Yan-Lei; Zhang, Guo-Bin; Lv, Xin-Fang; Guan, Yuan; Yi, Hong-Ying; Gong, Ji-Ming
2013-01-01
Elevations in extracellular calcium ([Ca2+]o) are known to stimulate cytosolic calcium ([Ca2+]cyt) oscillations to close stomata. However, the underlying mechanisms regulating this process remain largely to be determined. Here, through the functional characterization of the calcium underaccumulation mutant cau1, we report that the epigenetic regulation of CAS, a putative Ca2+ binding protein proposed to be an external Ca2+ sensor, is involved in this process. cau1 mutant plants display increased drought tolerance and stomatal closure. A mutation in CAU1 significantly increased the expression level of the calcium signaling gene CAS, and functional disruption of CAS abolished the enhanced drought tolerance and stomatal [Ca2+]o signaling in cau1. Map-based cloning revealed that CAU1 encodes the H4R3sme2 (for histone H4 Arg 3 with symmetric dimethylation)-type histone methylase protein arginine methytransferase5/Shk1 binding protein1. Chromatin immunoprecipitation assays showed that CAU1 binds to the CAS promoter and modulates the H4R3sme2-type histone methylation of the CAS chromatin. When exposed to elevated [Ca2+]o, the protein levels of CAU1 decreased and less CAU1 bound to the CAS promoter. In addition, the methylation level of H4R3sme2 decreased in the CAS chromatin. Together, these data suggest that in response to increases in [Ca2+]o, fewer CAU1 protein molecules bind to the CAS promoter, leading to decreased H4R3sme2 methylation and consequent derepression of the expression of CAS to mediate stomatal closure and drought tolerance. PMID:23943859
Tiwari, Meenakshi; Tripathi, Anima; Chaube, Shail K
2017-01-01
Increased oxidative stress (OS) due to in vitro culture conditions can affect the quality of denuded eggs during various assisted reproductive technologies (ARTs). Presence of intact granulosa cells may protect eggs from OS damage under in vitro culture conditions. The present study was aimed to investigate whether encircling granulosa cells could protect against hydrogen peroxide (H 2 O 2 )-induced egg apoptosis in ovulated cumulus oocyte complexes (COCs) cultured in vitro. The OS was induced by exposing COCs as well as denuded eggs with various concentrations of H 2 O 2 for 3 h in vitro. The morphological changes, total reactive oxygen species (ROS) as well as catalase expression, Bax/Bcl-2, cytochrome c levels and DNA fragmentation were analysed in COCs as well as denuded eggs. Our results suggest that H 2 O 2 treatment induced morphological apoptotic features in a concentration-dependent manner in denuded eggs cultured in vitro. The 20 µM of H 2 O 2 treatment induced OS by elevating total ROS level, reduced catalase and Bcl-2 expression levels with overexpression of Bax and cytochrome c and induced DNA fragmentation in denuded eggs cultured in vitro. The presence of encircling granulosa cells protected H 2 O 2 -induced morphological apoptotic features by preventing the increase of Bax, cytochrome c expression levels and DNA fragmentation in associated egg. However, 20 µM of H 2 O 2 was sufficient to induce peripheral granulosa cell apoptosis in COCs and degeneration in few denuded eggs cultured in vitro. Taken together our data suggest that the presence of encircling granulosa cells could be beneficial to protect ovulated eggs from OS damage under in vitro culture conditions during various ART programs.
Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.
Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin
2017-02-08
We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.
NASA Astrophysics Data System (ADS)
Hu, Shunxin; Wang, You; Wang, Ying; Zhao, Yan; Zhang, Xinxin; Zhang, Yongsheng; Jiang, Ming; Tang, Xuexi
2018-03-01
The present study was conducted to determine the effects of elevated pCO2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga Dunaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO2 levels (390 μatm, pHNBS: 8.10), predicted year 2100 CO2 levels (1 000 μatm, pHNBS: 7.78) and predicted year 2300 CO2 levels (2 000 μatm, pHNBS: 7.49). Elevated pCO2 significantly enhanced photosynthesis (in terms of gross photosynthetic O2 evolution, effective quantum yield (Δ F/ F' m ), photosynthetic efficiency ( α), maximum relative electron transport rate (rETRmax) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity) and dark respiration of D. salina, but had insignificant effects on growth. The photosynthetic O2 evolution of D. salina was significantly inhibited by the inhibitors acetazolamide (AZ), ethoxyzolamide (EZ) and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), indicating that D. salina is capable of acquiring HCOˉ 3 via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be affected by the increased pCO2/low pH conditions predicted for the future, but that the responses of D. salina to high pCO2/low pH might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive effects of pCO2, temperature, light and nutrients on marine microalgae.
NASA Astrophysics Data System (ADS)
Hu, Shunxin; Wang, You; Wang, Ying; Zhao, Yan; Zhang, Xinxin; Zhang, Yongsheng; Jiang, Ming; Tang, Xuexi
2017-06-01
The present study was conducted to determine the effects of elevated pCO2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga Dunaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO2 levels (390 μatm, pHNBS: 8.10), predicted year 2100 CO2 levels (1 000 μatm, pHNBS: 7.78) and predicted year 2300 CO2 levels (2 000 μatm, pHNBS: 7.49). Elevated pCO2 significantly enhanced photosynthesis (in terms of gross photosynthetic O2 evolution, effective quantum yield (ΔF/F' m ), photosynthetic efficiency (α), maximum relative electron transport rate (rETRmax) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity) and dark respiration of D. salina, but had insignificant effects on growth. The photosynthetic O2 evolution of D. salina was significantly inhibited by the inhibitors acetazolamide (AZ), ethoxyzolamide (EZ) and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), indicating that D. salina is capable of acquiring HCO3 - via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be affected by the increased pCO2/low pH conditions predicted for the future, but that the responses of D. salina to high pCO2/low pH might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive effects of pCO2, temperature, light and nutrients on marine microalgae.
Okupnik, Annette; Pflugmacher, Stephan
2016-11-01
The present study investigated the effects of titanium dioxide nanoparticles (TiO 2 -NPs) on the oxidative stress response in Hydrilla verticillata. Macrophytes were exposed to different concentrations of TiO 2 -NPs (0 mg/L, 0.01 mg/L, 0.1 mg/L, 1 mg/L, and 10 mg/L) for 24 h, based on currently predicted levels of nano-TiO 2 in surface waters. In addition, TiO 2 -NPs with varying crystalline status were used to assess the potential influence of crystalline phases on oxidative stress responses. The level of hydrogen peroxide (H 2 O 2 ), reduced and oxidized glutathione (GSH and GSSG), and activities of the antioxidative enzymes peroxidase (POD), catalase (CAT), and glutathione reductase (GR) were measured and compared with a bulk counterpart. Although POD was not considered to be active, the results imply an activation of the enzymatic defense system, because increased CAT and GR activities were observed. Exposure to bulk TiO 2 revealed lower enzyme activities at all exposure concentrations, suggesting a nano-specific influence on the antioxidative defense mechanisms in H. verticillata. Moreover, all TiO 2 -NP concentrations resulted in a decreased GSH/GSSG ratio, indicating high GSH-dependent metabolic activity to protect against the destructive effects of reactive oxygen species (ROS) generated during nano-TiO 2 exposure. As the level of H 2 O 2 was solely elevated after exposure to 10 mg/L of P25, it appears plausible that the adaptive metabolic mechanisms of H. verticillata are able to cope with environmentally relevant concentrations of TiO 2 -NPs. Environ Toxicol Chem 2016;35:2859-2866. © 2016 SETAC. © 2016 SETAC.
Anderson, M. D.; Prasad, T. K.; Stewart, C. R.
1995-01-01
The response of antioxidants to acclimation and chilling in various tissues of dark-grown maize (Zea mays L.) seedlings was examined in relation to chilling tolerance and protection from chilling-induced oxidative stress. Chilling caused an accumulation of H2O2 in both the coleoptile + leaf and the mesocotyl (but not roots), and acclimation prevented this accumulation. None of the antioxidant enzymes were significantly affected by acclimation or chilling in the coleoptile + leaf or root. However, elevated levels of glutathione in acclimated seedlings may contribute to an enhanced ability to scavenge H2O2 in the coleoptile + leaf. In the mesocotyl (visibly most susceptible to chilling), catalase3 was elevated in acclimated seedlings and may represent the first line of defense from mitochondria-generated H2O2. Nine of the most prominent peroxidase isozymes were induced by acclimation, two of which were located in the cell wall, suggesting a role in lignification. Lignin content was elevated in mesocotyls of acclimated seedlings, likely improving the mechanical strength of the mesocotyl. One cytosolic glutathione reductase isozyme was greatly decreased in acclimated seedlings, whereas two others were elevated, possibly resulting in improved effectiveness of the enzyme at low temperature. When taken together, these responses to acclimation illustrate the potential ways in which chilling tolerance may be improved in preemergent maize seedlings. PMID:12228666
Harrison-Findik, Duygu Dee; Lu, Sizhao
2015-05-06
This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heart, Emma; Palo, Meridith; Womack, Trayce
Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cellmore » line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling is dependent on glycolysis.« less
Decoding mechanisms of loss of fertilization ability of cryopreserved mouse sperm
NASA Astrophysics Data System (ADS)
Gray, Jeffrey Earl
Cryopreservation of mouse sperm is an important technology for management of biomedical research resources. Dramatic progress has been made recently in the development of protocols that combat mouse-strain specific reduction of IVF after cryopreservation. Equal emphasis, however, has not been placed on investigating the biological mechanisms underlying these improvements to IVF. This dissertation broadly investigates the basic question of how mouse-strain specific reduction of IVF occurs after cryopreservation, and how recently developed protocols prevent this process. My research investigated the effects of antioxidants, the cholesterol-acceptor CD, reduced calcium media, and TYH capacitation media on sperm function and oxidative stress after cryopreservation in a variety of mouse strains. I found that reduced IVF was associated with loss of capacitation-dependent sperm function in three strains, B6/J, B6/N, and 129X1, and CD improved sperm function and IVF in all three strains. These findings suggest that cryopreservation inhibits cholesterol efflux resulting in reduced IVF of many mouse strains. I also found that cryopreservation induces uniquely high production of mitochondrial H2O2 by B6/J sperm. H2O2 present in other cellular compartments of B6/J sperm was not elevated compared to other strains. High levels of mitochondrial H2O2 were associated with lipid peroxidation of the sperm head and inability to acrosome react. Antioxidants reduced mitochondrial H2O2 production, decreased sperm head lipid peroxidation, and improved acrosome reaction. The cryopreservation-induced increase in mitochondrial H2O2 production of B6/J and B6129XF1 sperm was associated with elevation of intracellular calcium after cryopreservation and dependent on mitochondrial metabolic substrates. Reducing intracellular calcium levels or removing mitochondrial metabolic substrates decreased mitochondrial H2O2 production and increased IVF rates of cryopreserved B6/J sperm. Many of the strains I tested exhibited increased H2O2 production after cryopreservation, but cryopreservation-induced H2O2 only interfered with IVF of B6/J sperm. This dissertation describes two means to improve IVF of cryopreserved sperm, mitigation of oxidative stress in B6/J sperm and improvement of capacitation-dependent sperm function for several mouse strains.
Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E
2018-05-01
Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Radville, Laura; Chaves, Arielle; Preisser, Evan L
2011-06-01
Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.
Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J. S.; Gray, Joshua P.
2011-01-01
Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7 mM) to stimulatory (8-16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H2O2), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H2O2 inhibit insulin secretion. Menadione, which produces H2O2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H2O2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H2O2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H2O2 and menadione on insulin secretion. PMID:22115979
Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J S; Gray, Joshua P
2012-01-15
Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion. Published by Elsevier Inc.
Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.
Yang, Wendy H; Silver, Whendee L
2016-06-01
Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2) h(-1) , -2.2 ± 0.9 μg N m(-2) h(-1) , and 0.67 ± 0.57 μg N m(-2) h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.
Barrington, Dani J; Ghadouani, Anas
2008-12-01
Phytoplankton blooms containing elevated levels of cyanobacteria are common in wastewatertreatment plants. Microcystis aeruginosa, the most common freshwater cyanobacterial species, produces the hepatotoxin microcystin, which is a threat to human and environmental health. Blooms also affect the viability of treating and reusing water and cause problems when detritus accumulates in pipe and pumping delivery infrastructure. We proposed the application of hydrogen peroxide (H2O2) to induce cyanobacterial cell death. Spectral fingerprinting of phytoplankton into four groups (cyanobacteria, chlorophyta, diatoms, and cryptophyta) allowed for determination of equivalent chlorophyll-a (chl-a) concentrations contributed by photosynthetic pigments, an indicative measure of the photosynthetic activity of each phytoplankton group. This was used to establish the effect of H2O2 addition on phytoplankton in wastewater samples. The lowest H2O2 dose that caused statistically significant exponential decay of phytoplankton groups was approximately 3.0 x 10(-3) g H2O2/microg phytoplankton chl-a. At this dose, cyanobacteria and total phytoplankton exhibited a half-life of 2.3 and 4.5 h, respectively. Cyanobacteria decayed at a rate approximately twice that of chlorophyta and diatoms, and the combined chl-a of all phytoplankton groups decreased to negligible levels within 48 h of H202 application.
Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin
2009-04-01
In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (p<0.05) and September (p<0.05), while the total monoterpenes emission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.
Water content of delivered gases during non-invasive ventilation in healthy subjects.
Lellouche, François; Maggiore, Salvatore Maurizio; Lyazidi, Aissam; Deye, Nicolas; Taillé, Solenne; Brochard, Laurent
2009-06-01
No clear recommendation exists concerning humidification during non-invasive ventilation (NIV) and high flow CPAP, and few hygrometric data are available. We measured hygrometry during NIV delivered to healthy subjects with different humidification strategies: heated humidifier (HH), heat and moisture exchanger, (HME) or no humidification (NoH). For each strategy, a turbine and an ICU ventilator were used with different FiO(2) settings, with and without leaks. During CPAP, two different HH and NoH were tested. Inspired gases hygrometry was measured, and comfort was assessed. On a bench, we also assessed the impact of ambient air temperature, ventilator temperature and minute ventilation on HH performances (with NIV settings). During NIV, with NoH, gas humidity was very low when an ICU ventilator was used (5 mgH(2)O/l), but equivalent to ambient air hygrometry with a turbine ventilator at minimal FiO(2) (13 mgH(2)O/l). HME and HH had comparable performances (25-30 mgH(2)O/l), but HME's effectiveness was reduced with leaks (15 mgH(2)O/l). HH performances were reduced by elevated ambient air and ventilator output temperatures. During CPAP, dry gases (5 mgH(2)O/l) were less tolerated than humidified gases. Gases humidified at 15 or 30 mgH(2)O/l were equally tolerated. This study provides data on the level of humidity delivered with different humidification strategies during NIV and CPAP. HH and HME provide gas with the highest water content. Comfort data suggest that levels above 15 mgH(2)O/l are well tolerated. In favorable conditions, HH and HMEs are capable of providing such values, even in the presence of leaks.
Streit, Kathrin; Siegwolf, Rolf T W; Hagedorn, Frank; Schaub, Marcus; Buchmann, Nina
2014-02-01
Alpine treelines are temperature-limited vegetation boundaries. Understanding the effects of elevated [CO2 ] and warming on CO2 and H2 O gas exchange may help predict responses of treelines to global change. We measured needle gas exchange of Larix decidua Mill. and Pinus mugo ssp. uncinata DC trees after 9 years of free air CO2 enrichment (575 µmol mol(-1) ) and 4 years of soil warming (+4 °C) and analysed δ(13) C and δ(18) O values of needles and tree rings. Tree needles under elevated [CO2 ] showed neither nitrogen limitation nor end-product inhibition, and no down-regulation of maximal photosynthetic rate (Amax ) was found. Both tree species showed increased net photosynthetic rates (An ) under elevated [CO2 ] (L. decidua: +39%; P. mugo: +35%). Stomatal conductance (gH2O ) was insensitive to changes in [CO2 ], thus transpiration rates remained unchanged and intrinsic water-use efficiency (iWUE) increased due to higher An . Soil warming affected neither An nor gH2O . Unresponsiveness of gH2O to [CO2 ] and warming was confirmed by δ(18) O needle and tree ring values. Consequently, under sufficient water supply, elevated [CO2 ] induced sustained enhancement in An and lead to increased C inputs into this ecosystem, while soil warming hardly affected gas exchange of L. decidua and P. mugo at the alpine treeline. © 2013 John Wiley & Sons Ltd.
Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R
2013-10-01
The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ivanova, Mariya E.; Escolástico, Sonia; Balaguer, Maria; Palisaitis, Justinas; Sohn, Yoo Jung; Meulenberg, Wilhelm A.; Guillon, Olivier; Mayer, Joachim; Serra, Jose M.
2016-11-01
Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H2 separation membranes at elevated temperature (400-800 °C) for industrial separations and intensified catalytic reactors. As such, composite materials with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ revealed unprecedented H2 permeation levels of 0.4 to 0.61 mL·min-1·cm-2 at 700 °C measured on 500 μm-thick-specimen. A detailed structural and phase study revealed single phase perovskite and fluorite starting materials synthesized via the conventional ceramic route. Strong tendency of Eu to migrate from the perovskite to the fluorite phase was observed at sintering temperature, leading to significant Eu depletion of the proton conducing BaCe0.8Eu0.2O3-δ phase. Composite microstructure was examined prior and after a variety of functional tests, including electrical conductivity, H2-permeation and stability in CO2 containing atmospheres at elevated temperatures, revealing stable material without morphological and structural changes, with segregation-free interfaces and no further diffusive effects between the constituting phases. In this context, dual phase material based on BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ represents a very promising candidate for H2 separating membrane in energy- and environmentally-related applications.
Tretter, Laszlo; Adam-Vizi, Vera
2012-12-01
H(2)O(2) generation associated with α-glycerophosphate (α-GP) oxidation was addressed in guinea pig brain mitochondria challenged with high Ca(2+) load (10 μM). Exposure to 10 μM Ca(2+) induced an abrupt 2.5-fold increase in H(2)O(2) release compared to that measured in the presence of a physiological cytosolic Ca(2+) concentration (100 nM) from mitochondria respiring on 5 mM α-GP in the presence of ADP (2 mM). The Ca(2+)-induced stimulation of H(2)O(2) generation was reversible and unaltered by the uniporter blocker Ru 360, indicating that it did not require Ca(2+) uptake into mitochondria. Enhanced H(2)O(2) generation by Ca(2+) was also observed in the absence of ADP when mitochondria exhibited permeability transition pore opening with a decrease in the NAD(P)H level, dissipation of membrane potential, and mitochondrial swelling. Furthermore, mitochondria treated with the pore-forming peptide alamethicin also responded with an elevated H(2)O(2) generation to a challenge with 10 μM Ca(2+). Ca(2+)-induced promotion of H(2)O(2) formation was further enhanced by the complex III inhibitor myxothiazol. With 20 mM α-GP concentration, stimulation of H(2)O(2) formation by Ca(2+) was detected only in the presence, not in the absence, of ADP. It is concluded that α-glycerophosphate dehydrogenase, which is accessible to and could be activated by a rise in the level of cytosolic Ca(2+), makes a major contribution to Ca(2+)-stimulated H(2)O(2) generation. This work highlights a unique high-Ca(2+)-stimulated reactive oxygen species-forming mechanism in association with oxidation of α-GP, which is largely independent of the bioenergetic state and can proceed even in damaged, functionally incompetent mitochondria. Copyright © 2012 Elsevier Inc. All rights reserved.
Sudhakar, Chinta; Veeranagamallaiah, Gounipalli; Nareshkumar, Ambekar; Sudhakarbabu, Owku; Sivakumar, M; Pandurangaiah, Merum; Kiranmai, K; Lokesh, U
2015-01-01
Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.
Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging
Olson, Emilia S.; Orozco, Jahir; Wu, Zhe; Malone, Christopher D.; Yi, Boemha; Gao, Wei; Eghtedari, Mohammad; Wang, Joseph; Mattrey, Robert F.
2013-01-01
We present a new class of ultrasound molecular imaging agents that extend upon the design of micromotors that are designed to move through fluids by catalyzing hydrogen peroxide (H2O2) and propelling forward by escaping oxygen microbubbles. Micromotor converters require 62 mm of H2O2 to move – 1000-fold higher than is expected in vivo. Here, we aim to prove that ultrasound can detect the expelled microbubbles, to determine the minimum H2O2 concentration needed for microbubble detection, explore alternate designs to detect the H2O2 produced by activated neutrophils and perform preliminary in vivo testing. Oxygen microbubbles were detected by ultrasound at 2.5 mm H2O2. Best results were achieved with a 400–500 nm spherical design with alternating surface coatings of catalase and PSS over a silica core. The lowest detection limit of 10–100 µm was achieved when assays were done in plasma. Using this design, we detected the H2O2 produced by freshly isolated PMA-activated neutrophils allowing their distinction from naïve neutrophils. Finally, we were also able to show that direct injection of these nanospheres into an abscess in vivo enhanced ultrasound signal only when they contained catalase, and only when injected into an abscess, likely because of the elevated levels of H2O2 produced by inflammatory mediators. PMID:23958028
Ahlqvist, J; Harilainen, A; Aalto, K; Sarna, S; Lalla, M; Osterlund, K
1994-11-01
Three out of the four Starling pressures were determined at arthroscopy of traumatic effusions of the knee. The range of the joint fluid hydrostatic pressure Pjoint was 5-83 cmH2O (0.5-8.1 kPa, 4-61 mmHg), that of the colloid osmotic pressure difference COPplasma-COPjoint 0-21.7 cmH2O. In 11 of 15 cases the sum Pjoint+COP difference exceeded 32.6 cmH2O (3.19 kPa, 24 mmHg), a high estimate of average capillary pressure at the level of the heart. The number of 'exceeding' cases was 8/15 if only 80% of the COP difference was considered effective. Pjoint and the COP difference oppose filtration of fluid from plasma into joints, indicating that mean capillary pressure, the only Starling pressure not determined, was elevated unless the effusions were being resorbed back into the blood. The findings can be explained by tamponade compensated by arteriolar vasodilatation, suspected to be metabolically mediated.
Djehiche, Mokhtar; Le Tan, Ngoc Linh; Jain, Chaithanya D; Dayma, Guillaume; Dagaut, Philippe; Chauveau, Christian; Pillier, Laure; Tomas, Alexandre
2014-11-26
For the first time quantitative measurements of the hydroperoxyl radical (HO2) in a jet-stirred reactor were performed thanks to a new experimental setup involving fast sampling and near-infrared cavity ring-down spectroscopy at low pressure. The experiments were performed at atmospheric pressure and over a range of temperatures (550-900 K) with n-butane, the simplest hydrocarbon fuel exhibiting cool flame oxidation chemistry which represents a key process for the auto-ignition in internal combustion engines. The same technique was also used to measure H2O2, H2O, CH2O, and C2H4 under the same conditions. This new setup brings new scientific horizons for characterizing complex reactive systems at elevated temperatures. Measuring HO2 formation from hydrocarbon oxidation is extremely important in determining the propensity of a fuel to follow chain-termination pathways from R + O2 compared to chain branching (leading to OH), helping to constrain and better validate detailed chemical kinetics models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosin, T.R.
1986-03-01
Platelets function in a variety of physiological and pathological processes which may be altered by oxidant injury. One such process is the active transport 5-HT, which is an important mechanism in the control of circulating 5-HT levels. Exposure of mouse platelets (10/sup 8//ml) to H/sub 2/O/sub 2/ caused a time-dependent and dose-dependent increase in 5-HT (10/sup -7/M) uptake. The uptake 4 and 10 min following H/sub 2/O/sub 2/ (50 ..mu..M) was 228% and 145% of control values, respectively. Fluoxetine (10/sup -6/M) blocked all 5-HT uptake and catalase (1500 U/ml) blocked the H/sub 2/O/sub 2/-stimulated uptake. Enzymatically produced H/sub 2/O/sub 2/more » (glucose/glucose oxidase) and xanthine (X)/xanthine oxidase (XO) generated oxygen radicals produced quantitatively and qualitatively similar results. The stimulatory response of platelets to X/XO generated oxidants was unaffected by superoxide dismutase (250 U/ml) but, was inhibited using heat-denatured XO, allopurinol (0.5 mM) and catalase; fluoxetine inhibited all 5-HT uptake. Platelets exposed to X/XO in the presence of chelated (EDTA, 100 ..mu..M) or unchelated FeSO/sub 4/, FeNH/sub 4/(SO/sub 4/)/sub 2/ or CuCl (50 ..mu..M) did not have altered 5-HT uptake. These data indicate that brief exposure of platelets to physiological levels of H/sub 2/O/sub 2/ results in marked, reversible stimulation of active 5-HT uptake which may represent a homeostatic defense mechanism when H/sub 2/O/sub 2/ is elevated in the platelet microenvironment.« less
Armstrong, Jane A.; Cash, Nicole J.; Ouyang, Yulin; Morton, Jack C.; Chvanov, Michael; Latawiec, Diane; Awais, Muhammad; Tepikin, Alexei V.; Sutton, Robert; Criddle, David N.
2018-01-01
Mitochondrial dysfunction lies at the core of acute pancreatitis (AP). Diverse AP stimuli induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP), a solute channel modulated by cyclophilin D (CypD), the formation of which causes ATP depletion and necrosis. Oxidative stress reportedly triggers MPTP formation and is elevated in clinical AP, but how reactive oxygen species influence cell death is unclear. Here, we assessed potential MPTP involvement in oxidant-induced effects on pancreatic acinar cell bioenergetics and fate. H2O2 application promoted acinar cell apoptosis at low concentrations (1–10 μm), whereas higher levels (0.5–1 mm) elicited rapid necrosis. H2O2 also decreased the mitochondrial NADH/FAD+ redox ratio and ΔΨm in a concentration-dependent manner (10 μm to 1 mm H2O2), with maximal effects at 500 μm H2O2. H2O2 decreased the basal O2 consumption rate of acinar cells, with no alteration of ATP turnover at <50 μm H2O2. However, higher H2O2 levels (≥50 μm) diminished spare respiratory capacity and ATP turnover, and bioenergetic collapse, ATP depletion, and cell death ensued. Menadione exerted detrimental bioenergetic effects similar to those of H2O2, which were inhibited by the antioxidant N-acetylcysteine. Oxidant-induced bioenergetic changes, loss of ΔΨm, and cell death were not ameliorated by genetic deletion of CypD or by its acute inhibition with cyclosporine A. These results indicate that oxidative stress alters mitochondrial bioenergetics and modifies pancreatic acinar cell death. A shift from apoptosis to necrosis appears to be associated with decreased mitochondrial spare respiratory capacity and ATP production, effects that are independent of CypD-sensitive MPTP formation. PMID:29626097
NASA Astrophysics Data System (ADS)
Armoza-Zvuloni, R.; Shaked, Y.
2014-09-01
Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu, and can influence the H2O2 dynamics in the reef. Here, we present a laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed a methodology for resolving the actual H2O2 concentrations released by the corals. H2O2 and antioxidant activity steadily increased in the water surrounding the coral over short periods of 1-2 h. Over longer periods of 5-7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 1-3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2-4 h, and then to slow down and stop by 5-7 h. Stirring was shown to induce the release of H2O2, possibly since the flow reduces the thickness of the diffusive boundary layer of the coral, and thus increases H2O2 mass flux. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidants did not originate from the symbiotic algae. H2O2, however, was not released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae, and may possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.
NASA Technical Reports Server (NTRS)
McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.
2003-01-01
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.
Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal
2015-02-01
Major endogenous biochemical properties can make plants ideal agents for metal/metalloid-contaminated site cleanup. This study investigates the biochemistry of Juncus maritimus (Lam) roots for its high mercury (Hg) stabilization potential in the sediments of the Ria de Aveiro coastal lagoon (Portugal), which received Hg-rich effluents from a chlor-alkali industry between 1950 and 1994. J. maritimus plants were collected at a reference (R) site and three sites with the highest (L1), moderate (L2), and the lowest (L3) Hg contamination levels. The highest Hg-harboring/stabilizing J. maritimus roots at L1, exhibited significantly elevated damage endpoints (H2O2; lipid peroxidation, LPO; electrolyte leakage, EL; protein oxidation, PO; proline) which were accompanied by differential changes in H2O2-metabolizing defense system components (ascorbate peroxidase, catalase, glutathione peroxidase, glutathione S-transferase), glutathione reductase and the contents of both reduced and oxidized glutathione. Trends in measured endpoints reached maximum levels at L1 followed by L2 and L3. Cross-talks on root-Hg status and the studied biochemical traits revealed (a) high Hg-accrued elevations in oxidative stress as an obvious response; (b) Hg-stabilization potential of J. maritimus roots as a result of a successful mitigation of elevated high Hg-induced H2O2, and its anomalies such as LPO, EL, and PO; and (c) the induction of and a fine synchronization between non-glutathione and glutathione-based systems. Overall, the study unveiled biochemical mechanisms underlying root tolerance to Hg burden-accrued anomalies which, in turn, helped J. maritimus during Hg-stabilization.
Baraldi, D; Casali, K; Fernandes, R O; Campos, C; Sartório, C; Conzatti, A; Couto, G K; Schenkel, P C; Belló-Klein, A; Araujo, A R S
2013-10-01
The objective of this study was to explore the influence of the renin-angiotensin system on cardiac prooxidants and antioxidants levels and its association to autonomic imbalance induced by hyperthyroidism. Male Wistar rats were divided into four groups: control, losartan (10mg/kg/day by gavage, 28 day), thyroxine (T4) (12 mg/L in drinking water for 28 days), and T4+losartan. Spectral analysis (autonomic balance), angiotensin II receptor (AT1R), NADPH oxidase, Nrf2 and heme-oxygenase-1 (HO-1) myocardial protein expression, and hydrogen peroxide (H2O2) concentration were quantified. Autonomic imbalance induced by hyperthyroidism (~770%) was attenuated in the T4+losartan group (~32%) (P<0.05). AT1R, NADPH oxidase, H2O2, as well as concentration, Nrf2 and HO-1 protein expression were elevated (~172%, 43%, 40%, 133%, and 154%, respectively) in T4 group (P<0.05). H2O2 and HO-1 levels were returned to control values in the T4+losartan group (P<0.05). The overall results demonstrate a positive impact of RAS blockade in the autonomic control of heart rate, which was associated with an attenuation of H2O2 levels, as well as with a reduced counter-regulatory response of HO-1 in experimental hyperthyroidism. Copyright © 2013 Elsevier B.V. All rights reserved.
Pediatric Endotracheal Tube Cuff Pressures During Aeromedical Transport.
Orsborn, Jonathan; Graham, James; Moss, Michele; Melguizo, Maria; Nick, Todd; Stroud, Michael
2016-01-01
Cuffed endotracheal tubes (ETTs) are frequently used in children, allowing fewer air leaks and helping prevent ventilator-associated pneumonia. Tracheal mucosal perfusion is compromised at an ETT cuff pressure (ETTCP) of 30 cm H2O with blood flow completely absent above 50 cm H2O. Our objective was to compare multiple pediatric-sized ETTCPs at ground level and various altitudes during aeromedical transport. Simulating the transport environment, 4 pediatric-sized mannequin heads were intubated with appropriately sized cuffed ETTs (3.0, 4.0, 5.0, 6.0) and transported by helicopter or nonpressurized fixed-wing aircraft 20 times each. The ETTCP was set to 10 cm H2O before transport, and the pressure was measured with a standard manometer at 1000-ft intervals until reaching peak altitude or CP greater than 60 cm H2O. Ground elevation ranged from 400-650 ft mean sea level (MSL) and peak altitude from 3500 to 5000 ft MSL. Increased altitude caused a significant increase in ETTCP of all ETT sizes (P < 0.001). However, there is no statistical difference in pressures between ETT sizes (P = 0.28). On average, ETTCP in 3.0, 4.0, and 6.0 ETTs surpassed 30 cm H2O at approximately 1500 ft MSL and 50 cm H2O at approximately 2800 ft MSL. In the 5.0 ETT, the CP reached 30 cm H2O at 2000 ft MSL and 50 cm H2O at 3700 ft MSL. The ETTCP in pediatric-sized ETTs regularly exceed recommended pressure limits at relatively low altitudes. There is no additional pressure increase related to ETT size. This has the potential to decrease mucosal blood flow, possibly increasing risk of subsequent tracheal stenosis, rupture, and other complications.
Taylor, Juliet M; Crack, Peter J; Gould, Jodee A; Ali, Uğur; Hertzog, Paul J; Iannello, Rocco C
2004-11-01
This study was designed to elucidate the mechanisms involved in elevated cell death arising from an altered endogenous oxidant state. Increased levels of cell death were detected in cells lacking Gpx1 following the addition of exogenous H2O2. This increased apoptosis correlated with a down-regulation in the activation of the PI(3)K-Akt survival pathway. The importance of this pathway in protecting against H2O2-induced cell death was highlighted by the increased susceptibility of wild-type cells to apoptosis when treated with the PI(3)K inhibitor, LY294002. Activation of the oxidative stress sensitive transcription factor, NFkappaB, was elevated in the Gpx1-/- cells. Significantly, NFkappaB activation could be increased in wild-type cells through the addition of dominant-negative Akt. Therefore, our results suggest that the increased susceptibility of Gpx1-/- cells to H2O2-induced apoptosis can be attributed in part to diminished activation of Akt despite an up-regulation in the activation of the prosurvival NFkappaB. Thus, the PI(3)K-Akt and NFkappaB pathways can act independently of each other in an endogenous model of oxidative stress.
Hymus, G J; Baker, N R; Long, S P
2001-11-01
Biochemically based models of C(3) photosynthesis can be used to predict that when photosynthesis is limited by the amount of Rubisco, increasing atmospheric CO(2) partial pressure (pCO(2)) will increase light-saturated linear electron flow through photosystem II (J(t)). This is because the stimulation of electron flow to the photosynthetic carbon reduction cycle (J(c)) will be greater than the competitive suppression of electron flow to the photorespiratory carbon oxidation cycle (J(o)). Where elevated pCO(2) increases J(t), then the ratio of absorbed energy dissipated photochemically to that dissipated non-photochemically will rise. These predictions were tested on Dactylis glomerata grown in fully controlled environments, at either ambient (35 Pa) or elevated (65 Pa) pCO(2), and at two levels of nitrogen nutrition. As was predicted, for D. glomerata grown in high nitrogen, J(t) was significantly higher in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). This was due to a significant increase in J(c) exceeding any suppression of J(o). This increase in photochemistry at elevated pCO(2) protected against photoinhibition at high light. For plants grown at low nitrogen, J(t) was significantly lower in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). Elevated pCO(2) again suppressed J(o); however growth in elevated pCO(2) resulted in an acclimatory decrease in leaf Rubisco content that removed any stimulation of J(c). Consistent with decreased photochemistry, for leaves grown at low nitrogen, the recovery from a 3-h photoinhibitory treatment was slower at elevated pCO(2).
Harrison-Findik, Duygu Dee; Lu, Sizhao
2015-01-01
This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1−/−) and catalase (catalase−/−) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1−/− displayed significantly higher hepatic H2O2 levels than catalase−/− compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1−/− mice. Alcohol increased H2O2 production in catalase−/− and wild-type, but not gpx-1−/−, mice. Hepcidin expression was inhibited in alcohol-fed catalase−/− and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1−/− mice. Gpx-1−/− mice also displayed higher level of basal liver CHOP protein expression than catalase−/− mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1−/− mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1−/− mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH. PMID:25955433
Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.
2016-04-25
Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.
NASA Astrophysics Data System (ADS)
Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.
2014-03-01
Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of elevated pCO2 and variable O2 on the deep-sea urchin Strongylocentrotus fragilis, a species whose range of 200-1200 m depth includes the OMZ and spans a pCO2 range of approx. 600-1200 μatm (approx. pH 7.6 to 7.8). Individuals were evaluated during two exposure experiments (1-month and 4 month) at control and three levels of elevated pCO2 at in situ O2 levels of approx. 10% air saturation. A treatment of control pCO2 at 100% air saturation was also included in experiment two. During the first experiment, perivisceral coelomic fluid (PCF) acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by elevated pCO2, due in part to low non-bicarbonate PCF buffering capacity. During the second experiment, individuals were separated into fed and fasted experimental groups, and longer-term effects of elevated pCO2 and variable O2 on righting time, feeding, growth, and gonadosomatic index (GSI) were investigated for both groups. Results suggest that the acidosis found during experiment one does not directly correlate with adverse effects during exposure to realistic future pCO2 levels.
Regulation of 2-5A Dependent RNase at the Level of its Phosphorylation
1991-06-26
extract as follows: 25 ul wheat germ extract 10 ul H2O 1 ul RNasin ribonuclease inhibitor (40 u/ml) 7 ul ImM amino acid mixture 1 ul IM...diacylglycerol (DAG) 2. TPA 3. Indolactam Figure 6. Chemical structure of: 1. H-7 (A kinase inhibitor) 2. okadaic acid (A phosphatase inhibitor) Figure 7...elevating agents: Forskolin and Cholera toxin Figure 17. Down-regulation of 2-5A-depRNase by Okadaic 77 acid : A phosphatase inhibitor Figure 18
Li, Fangxiong; Shi, Ruizheng; Liao, Meichun; Li, Jianzhe; Li, Shixun; Pan, Wei; Yang, Tianlun; Zhang, Guogang
2010-08-01
To determine the effect of losartan on vascular remodeling and the underlying mechanism in spontaneously hypertensive rats(SHR). SHR of 12 weeks old were given losartan orally [0, 15, 30 mg/(kg.d), n=12]. The tail arterial pressure was measured every week. Eight weeks later, the pathological changes and p22(phox) expression in the thoracic aorta, the activity of catalase (CAT), the contents of H(2)O(2) and Ang II in the plasma were evaluated. Blood pressure was increased in the SHR accompanied by the thickened wall and increased p22(phox) expression in the thoracic aorta. The plasma levels of H(2)O(2) and Ang II were elevated while the CAT level was decreased in the SHR. Administration of losartan reversed the thickened wall and increased the CAT activity concomitantly with the decreased plasma levels of H(2)O(2) and p22(phox) expression in the SHR. The plasma level of Ang II increased after the losartan treatment. Oxidative stress induces the vascular remodeling of the aorta in the SHR. Losartan can reverse the vascular remodeling through down-regulating p22(phox) expression and inhibiting the oxidative stress.
Burger, M.; Jackson, L.E.; Lundquist, E.J.; Louie, D.T.; Miller, R.L.; Rolston, D.E.; Scow, K.M.
2005-01-01
The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil. Carbon dioxide (CO2) and nitrous oxide (N2O) efflux, with and without acetylene inhibition, inorganic N, and microbial biomass C were measured after irrigation or simulated rainfall in two agricultural fields under tomatoes (Lycopersicon esculentum). The two fields, located in the California Central Valley, had either a history of high organic matter (OM) inputs ("organic" management) or one of low OM and inorganic fertilizer inputs ("conventional" management). In microcosms, where short-term microbial responses to wetting and drying were studied, the highest CO2 efflux took place at about 60% water-filled pore space (WFPS). At this moisture level, phospholipid fatty acids (PLFA) indicative of microbial nutrient availability were elevated and a PLFA stress indicator was depressed, suggesting peak microbial activity. The highest N 2O efflux in the organically managed soil (0.94 mg N2O-N m-2 h-1) occurred after manure and legume cover crop incorporation, and in the conventionally managed soil (2.12 mg N2O-N m-2 h-1) after inorganic N fertilizer inputs. Elevated N2O emissions occurred at a WFPS >60% and lasted <2 days after wetting, probably because the top layer (0-150 mm) of this silt loam soil dried quickly. Therefore, in these cropping systems, irrigation management might control the duration of elevated N2O efflux, even when C and inorganic N availability are high, whereas inorganic N concentrations should be kept low during times when soil moisture cannot be controlled.
Pelle, Edward; Huang, Xi; Zhang, Qi; Pernodet, Nadine; Yarosh, Daniel B; Frenkel, Krystyna
2014-01-01
The endogenous oxidative state of normal human epidermal melanocytes was investigated and compared to normal human epidermal keratinocytes (NHEKs) in order to gain new insight into melanocyte biology. Previously, we showed that NHEKs contain higher levels of hydrogen peroxide (H2O2) than melanocytes and that it can migrate from NHEKs to melanocytes by passive permeation. Nevertheless, despite lower concentrations of H2O2, we now report higher levels of oxidative DNA in melanocytes as indicated by increased levels of 8-oxo-2'-deoxyguanosine (8-oxo-dG): 4.49 (±0.55 SEM) 8-oxo-dG/10(6) dG compared to 1.49 (±0.11 SEM) 8-oxo-dG/10(6) dG for NHEKs. An antioxidant biomarker, glutathione (GSH), was also lower in melanocytes (3.14 nmoles (±0.15 SEM)/cell) in comparison to NHEKs (5.98 nmoles (±0.33 SEM)/cell). Intriguingly, cellular bioavailable iron as measured in ferritin was found to be nearly fourfold higher in melanocytes than in NHEKs. Further, ferritin levels in melanocytes were also higher than in hepatocarcinoma cells, an iron-rich cell, and it indicates that higher relative iron levels may be characteristic of melanocytes. To account for the increased oxidative DNA and lower GSH and H2O2 levels that we observe, we propose that iron may contribute to higher levels of oxidation by reacting with H2O2 through a Fenton reaction leading to the generation of DNA-reactive hydroxyl radicals. In conclusion, our data support the concept of elevated oxidation and high iron levels as normal parameters of melanocytic activity. We present new evidence that may contribute to our understanding of the melanogenic process and lead to the development of new skin care products.
Zhou, Cheng; Huang, Shoucheng
2017-01-01
Selenium- (Se-) enriched polysaccharide SPMP-2a was extracted and purified from Pleurotus geesteranus. SPMP-2a is a white flocculent polysaccharide and soluble in water, with a molecular weight of 3.32 × 104 Da. Fourier transform infrared spectroscopy spectral analysis indicated that it belongs to an acid Se polysaccharide with α-D-glucopyranoside bond. The effects of Se polysaccharide SPMP-2a in P. geesteranus against hydrogen peroxide- (H2O2-) induced oxidative damage in human keratinocytes (HaCaT) cells were evaluated further. Reduced cell viability and elevated apoptotic rates in H2O2-treated HaCaT cells were proven by MTT and flow cytometry assays. Hoechst 33342 staining revealed chromatin condensations in the nuclei of HaCaT cells. However, with the addition of SPMP-2a, cell viability improved, nuclear condensation declined, and cell apoptotic rates dropped significantly. Ultrastructural observation consistently revealed that treatments with SPMP-2a reduced the number of swollen and vacuolar mitochondria in the H2O2-treated cells compared with the controls. Furthermore, SPMP-2a increased the superoxide dismutase (SOD) and catalase (CAT) activities and reduced reactive oxygen species (ROS) content. Western blot analysis showed that SPMP-2a treatment effectively increased B-cell lymphoma 2 (Bcl-2) protein expression. Therefore, SPMP-2a could improve cellular antioxidant enzyme activities, reduce ROS levels, and increase Bcl-2 protein expression levels, thereby reducing cell apoptosis and protecting HaCaT cells from H2O2-induced oxidative damage. PMID:28293636
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, K.M.; Rogers, A.; Ainsworth, E. A.
2011-01-31
Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO{sub 2}]) or chronic elevated ozone concentration ([O{sub 3}]; 90 ppb), and then exposed to an acute O{sub 3} stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O{sub 3} treatment. Growth at chronic elevated [O{sub 3}] increased the total antioxidant capacity of plants,more » while growth at elevated [CO{sub 2}] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O{sub 3} stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O{sub 3}]. Growth at elevated [CO{sub 2}] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO{sub 2}] and [O{sub 3}] will differentially affect the antioxidant system.« less
Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes
Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher
2017-01-01
Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546
Wall shear stress promotes intimal hyperplasia through the paracrine H2O2-mediated NOX-AKT-SVV axis.
Zhang, Haolong; Yang, Zhipeng; Wang, Jing; Wang, Xuehu; Zhao, Yu; Zhu, Fangyu
2018-05-27
Oscillatory wall shear stress (WSS)-linked oxidative stress promotes intimal hyperplasia (IH) development, but the underlying mechanisms are not completely understood. We used an in vivo rabbit carotid arterial stenosis model representing different levels of WSS and found that WSS was increased at 1 month with 50% stenosis and was accompanied by VSMCs proliferation and interstitial collagen accumulation. Increased WSS promoted the expression of NOX, AKT, and survivin (SVV) and the proliferation/migration of VSMCs and reduced apoptosis. Our in vitro study suggested that H 2 O 2 promoted proliferation and migration while suppressing apoptosis in cultured human umbilical vascular endothelial cells. We demonstrated that the elevation of WSS promotes VSMC proliferation and migration through the H 2 O 2 -mediated NOX-AKT-SVV axis, thereby accelerating IH development. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Assan, Sabina; Baudic, Alexia; Guemri, Ali; Ciais, Philippe; Gros, Valerie; Vogel, Felix R.
2017-06-01
Due to increased demand for an understanding of CH4 emissions from industrial sites, the subject of cross sensitivities caused by absorption from multiple gases on δ13CH4 and C2H6 measured in the near-infrared spectral domain using CRDS has become increasingly important. Extensive laboratory tests are presented here, which characterize these cross sensitivities and propose corrections for the biases they induce. We found methane isotopic measurements to be subject to interference from elevated C2H6 concentrations resulting in heavier δ13CH4 by +23.5 ‰ per ppm C2H6 / ppm CH4. Measured C2H6 is subject to absorption interference from a number of other trace gases, predominantly H2O (with an average linear sensitivity of 0.9 ppm C2H6 per % H2O in ambient conditions). Yet, this sensitivity was found to be discontinuous with a strong hysteresis effect and we suggest removing H2O from gas samples prior to analysis. The C2H6 calibration factor was calculated using a GC and measured as 0.5 (confirmed up to 5 ppm C2H6). Field tests at a natural gas compressor station demonstrated that the presence of C2H6 in gas emissions at an average level of 0.3 ppm shifted the isotopic signature by 2.5 ‰, whilst after calibration we find that the average C2H6 : CH4 ratio shifts by +0.06. These results indicate that, when using such a CRDS instrument in conditions of elevated C2H6 for CH4 source determination, it is imperative to account for the biases discussed within this study.
Briski, Karen P; Alenazi, Fahaad S H; Shakya, Manita; Sylvester, Paul W
2017-07-01
Estradiol (E) mitigates acute and postacute adverse effects of 12 hr-food deprivation (FD) on energy balance. Hindbrain 5'-monophosphate-activated protein kinase (AMPK) regulates hyperphagic and hypothalamic metabolic neuropeptide and norepinephrine responses to FD in an E-dependent manner. Energy-state information from AMPK-expressing hindbrain A2 noradrenergic neurons shapes neural responses to metabolic imbalance. Here we investigate the hypothesis that FD causes divergent changes in A2 AMPK activity in E- vs. oil (O)-implanted ovariectomized female rats, alongside dissimilar adjustments in circulating metabolic fuel (glucose, free fatty acids [FFA]) and energy deficit-sensitive hormone (corticosterone, glucagon, leptin) levels. FD decreased blood glucose in oil (O)- but not E-implanted ovariectomized female rats and elevated and reduced glucagon levels in O and E, respectively. FD decreased circulating leptin in O and E, but increased corticosterone and FFA concentrations in E only. Western blot analysis of laser-microdissected A2 neurons showed that glucocorticoid receptor type II and very-long-chain acyl-CoA synthetase 3 protein profiles were amplified in FD/E vs. FD/O. A2 total AMPK protein was elevated without change in activity in FD/O, whereas FD/E exhibited increased AMPK activation along with decreased upstream phosphatase expression. The catecholamine biosynthetic enzyme dopamine-β-hydroxylase (DβH) was increased in FD/O but not FD/E A2 cells. The data show discordance between A2 AMPK activation and glycemic responses to FD; sensor activity was refractory to glucose decrements in FD/O but augmented in FD/E despite stabilized glucose and elevated FFA levels. E-dependent amplification of AMPK activity may reflect adaptive conversion to fatty acid oxidation and/or glucocorticoid stimulation. FD augmentation of A2 DβH protein profiles in FD/O but not FD/E animals suggests that FD may correspondingly regulate NE synthesis vs. metabolism/release in the absence vs. presence of E. Mechanisms underlying translation of E-contingent A2 neuron responses to FD into regulatory signaling remain to be determined. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ruan, Ya Nan; Xu, Sheng; Guo, Long; Zhu, Ming Zhu; Wang, Cong; Li, Shu Yuan; Wang, Hong Yan
2017-11-01
By using the open top chambers (OTCs) fumigation method, this paper investigated the changes of foliar injury, level of reactive oxygen species (ROS), activities and gene expression of antioxidant enzymes in Ginkgo biloba leaves under different ozone (ambient ozone≈40, 80, 160, 200 nmol·mol -1 ) concentrations, in order to study the effects of elevated ozone (O 3 ) concentrations on reactive metabolism. The results showed that the obvious foliar injuries were observed in 160 and 200 nmol·mol -1 O 3 treatments, while no visible injury was observed in 80 nmol·mol -1 O 3 and ambient O 3 treatments. After 20 d, a significant increase in O 2 -· generation rate was observed in G. biloba leaves exposed to 160, 200 nmol·mol -1 O 3 , compared with ambient ozone and 80 nmol·mol -1 O 3 , and there were no significant differences between ambient O 3 and 80 nmol·mol -1 treatments. After 40 d, H 2 O 2 content of G. biloba leaves in 160 and 200 nmol·mol -1 O 3 was significantly higher than that in 80 nmol·mol -1 and ambient ozone, respectively. The activities of catalase (CAT) in 160 and 200 nmol·mol -1 treatments were also significantly higher than that in 80 nmol·mol -1 and ambient O 3 treatments. The ascorbate peroxidase (APX) activity of leaves for each elevated O 3 treatment was lower than that of ambient ozone. The level of CAT and APX expression increased progressively after 40 d O 3 treatment. The expression intensity of GbD was conspicuously strengthened along with the increase of ozone concentration and fumigation time. Le-vel of reactive oxygen increased, activities of antioxidant enzyme decreased, level of gene expression down-regulated, and foliar visible injury was observed in leaves of G. biloba in elevated ozone stress.
Increasing levels of atmospheric carbon dioxide are causing changes in seawater chemistry in the world’s oceans. In estuarine waters, atmospheric CO2 exacerbates already declining pH due to high productivity and respiration caused by cultural eutrophication. These two sources o...
Casteel, Clare L; O'Neill, Bridget F; Zavala, Jorge A; Bilgin, Damla D; Berenbaum, May R; Delucia, Evan H
2008-04-01
The accumulation of CO2 and O3 in the troposphere alters phytochemistry which in turn influences the interactions between plants and insects. Using microarray analysis of field-grown soybean (Glycine max), we found that the number of transcripts in the leaves affected by herbivory by Japanese beetles (Popillia japonica) was greater when plants were grown under elevated CO2, elevated O3 and the combination of elevated CO2 plus elevated O3 than when grown in ambient atmosphere. The effect of herbivory on transcription diminished strongly with time (<1% of genes were affected by herbivory after 3 weeks), and elevated CO2 interacted more strongly with herbivory than elevated O3. The majority of transcripts affected by elevated O3 were related to antioxidant metabolism. Constitutive levels and the induction by herbivory of key transcripts associated with defence and hormone signalling were down-regulated under elevated CO2; 1-aminocyclopropane-1-carboxylate (ACC) synthase, lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC), chalcone synthase (CHS), polyphenol oxidase (PPO) and cysteine protease inhibitor (CystPI) were lower in abundance compared with levels under ambient conditions. By suppressing the ability to mount an effective defence, elevated CO2 may decrease resistance of soybean to herbivory.
Couture, John J; Meehan, Timothy D; Rubert-Nason, Kennedy F; Lindroth, Richard L
2017-01-01
Anthropogenic activities are altering levels of atmospheric carbon dioxide (CO 2 ) and tropospheric ozone (O 3 ). These changes can alter phytochemistry, and in turn, influence ecosystem processes. We assessed the individual and combined effects of elevated CO 2 and O 3 on the phytochemical composition of two tree species common to early successional, northern temperate forests. Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) were grown at the Aspen FACE (Free-Air Carbon dioxide and ozone Enrichment) facility under four combinations of ambient and elevated CO 2 and O 3 . We measured, over three years (2006-08), the effects of CO 2 and O 3 on a suite of foliar traits known to influence forest functioning. Elevated CO 2 had minimal effect on foliar nitrogen and carbohydrate levels in either tree species, and increased synthesis of condensed tannins and fiber in aspen, but not birch. Elevated O 3 decreased nitrogen levels in both tree species and increased production of sugar, condensed tannins, fiber, and lignin in aspen, but not birch. The magnitude of responses to elevated CO 2 and O 3 varied seasonally for both tree species. When co-occurring, CO 2 offset most of the changes in foliar chemistry expressed under elevated O 3 alone. Our results suggest that levels of CO 2 and O 3 predicted for the mid-twenty-first century will alter the foliar chemistry of northern temperate forests with likely consequences for forest community and ecosystem dynamics.
The effect of closed system suction on airway pressures when using the Servo 300 ventilator.
Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M
2001-12-01
To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.
Garrison, P N; Mathis, S A; Barnes, L D
1989-01-01
Cellular levels of diadenosine tetraphosphate (Ap4A) were measured, by a specific high-pressure liquid chromatography method, in microplasmodia of Physarum polycephalum subjected to different degrees of hypoxia, hyperoxia, and treatment with H2O2. Ap4A levels increased three- to sevenfold under anaerobic conditions, and the microplasmodia remained viable after such treatment. Elevated levels of Ap4A returned to the basal level within 5 to 10 min upon reoxygenation of the microplasmodia. The increases in Ap4A levels were larger in stationary-phase or starved microplasmodia than in fed, log-phase microplasmodia. The maximal increase measured in log-phase microplasmodia was twofold. No significant changes in Ap4A levels occurred in microplasmodia subjected to mild hypoxia, hyperoxia, or treatment with 1 mM H2O2. These results indicate that in P. polycephalum, Ap4A may function in the metabolic response to anaerobic conditions rather than in the response to oxidative stress. PMID:2921243
Crofford, L J; Kalogeras, K T; Mastorakos, G; Magiakou, M A; Wells, J; Kanik, K S; Gold, P W; Chrousos, G P; Wilder, R L
1997-04-01
Systemic symptoms in rheumatoid arthritis (RA) are mediated, at least in part, by elevated levels of circulating interleukin (IL)-6, and this cytokine is also a potent stimulus of the hypothalamic-pituitary-adrenal axis. To evaluate the 24-h circadian secretory dynamics of ACTH, cortisol, and IL-6 and their interactions in patients with early untreated RA, we recruited and studied five newly diagnosed, untreated RA patients early in the course of their disease and five age-, gender-, and race-matched control subjects. We collected serial blood samples over 24 h and measured plasma ACTH and cortisol every 30 min and IL-6 every hour. The 24-h collection was followed by administration of ovine CRH (oCRH) and post-oCRH serial blood samples over 2 h. We analyzed the 24-h overall levels of these hormones and their circadian variations and performed time-lagged cross-correlation analyses among them. The untreated RA patients had 24 h time-integrated plasma ACTH, plasma cortisol levels, and urinary free cortisol excretion that were not significantly different from control subjects, in spite of their disease activity. However, an earlier morning surge of plasma ACTH and cortisol in the patients was suggested. Plasma ACTH and cortisol responses to oCRH were similar in RA patients and controls. IL-6 levels were significantly increased in the RA patients compared with control subjects during the early morning hours (P < 0.05). There was pronounced circadian variation of plasma Il-6 levels. In the RA patients, we detected a positive temporal correlation between plasma levels of IL-6 and ACTH/cortisol, with elevated levels of IL-6 before the elevations of ACTH and cortisol by 1 and 2 h, respectively. In the same patients, we detected a negative effect of cortisol upon IL-6 exerted with a delay of 5 h. The data presented here suggest that although endogenous IL-6 may stimulate secretion of ACTH and cortisol, overall activity of the hypothalamic-pituitary-adrenal axis remains normal and apparently is insufficient to inhibit ongoing inflammation in early untreated RA patients.
Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Pengtao; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049; Huang, Zhen
2013-04-19
Highlights: •Free fatty acids exposure induces elevated autophagy. •H{sub 2}O{sub 2} inhibits autophagic flux through impairing the fusion between autophagosomes and lysosomes. •Inhibition of autophagy potentiates H{sub 2}O{sub 2}-induced cell death. -- Abstract: Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, but the pathogenesis of NAFLD is not fully clear. The aim of this study was to determine whether autophagy plays a role in the pathogenesis of NAFLD. We found that the levels of autophagy were elevated in hepatoma cells upon exposure to free fatty acids, as confirmed by the increase in the numbermore » of autophagosomes. However, exposure of hepatoma cells to H{sub 2}O{sub 2} and TNF-α, two typical “second hit” factors, increased the initiation of autophagy but inhibited the autophagic flux. The inhibition of autophagy sensitized cells to pro-apoptotic stimuli. Taken together, our results suggest that autophagy acts as a protective mechanism in the pathogenesis of NAFLD and that impairment of autophagy might induce more severe lesions of the liver. These findings will be a benefit to the understanding of the pathogenesis of NAFLD and might suggest a strategy for the prevention and cure of NAFLD.« less
Kumari, Sumita; Agrawal, Madhoolika
2014-03-01
The present study was designed to study the growth and yield responses of a tropical potato variety (Solanum tuberosum L. cv. Kufri chandramukhi) to different levels of carbon dioxide (382 and 570ppm) and ozone (50 and 70ppb) in combinations using open top chambers (OTCs). Plants were exposed to three ozone levels in combination with ambient CO2 and two ozone levels at elevated CO2. Significant increments in leaf area and total biomass were observed under elevated CO2 in combination with ambient O3 (ECO2+AO3) and elevated O3 (ECO2+EO3), compared to the plants grown under ambient concentrations (ACO2+AO3). Yield measured as fresh weight of potato also increased significantly under ECO2+AO3 and ECO2+EO3. Yield, however, reduced under ambient (ACO2+AO3) and elevated ozone (ACO2+EO3) compared to ACO2 (filtered chamber). Number, fresh and dry weights of tubers of size 35-50mm and>50mm used for direct consumption and industrial purposes, respectively increased maximally under ECO2+AO3. Ambient as well as elevated levels of O3 negatively affected the growth parameters and yield mainly due to reductions in number and weight of tubers of sizes >35mm. The quality of potato tubers was also modified under different treatments. Starch content increased and K, Zn and Fe concentrations decreased under ECO2+AO3 and ECO2+EO3 compared to ACO2+AO3. Starch content reduced under ACO2+AO3 and ACO2+EO3 treatments compared to ACO2. These results clearly suggest that elevated CO2 has provided complete protection to ambient O3 as the potato yield was higher under ECO2+AO3 compared to ACO2. However, ambient CO2 is not enough to protect the plants under ambient O3 levels. Elevated CO2 also provided protection against elevated O3 by improving the yield. Quality of tubers is modified by both CO2 and O3, which have serious implications on human health at present and in future. Copyright © 2013 Elsevier Inc. All rights reserved.
A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.
Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J
2014-04-15
Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states for CO2 hydration/dehydration. Finally, RBC organophosphates (e.g. NTP) could be reduced during hypoxia to further increase Hb-O2 affinity without compromising tissue O2 delivery because high-affinity Hbs could still adequately deliver O2 to the tissues via Bohr/Root shifts. We suggest that the evolution of this unique mode of tissue O2 transfer evolved in the Triassic/Jurassic Period, when O2 levels were low, ultimately giving rise to the most extensive adaptive radiation of extant vertebrates, the teleost fishes.
Prasad, Preethy; Gordijo, Claudia R; Abbasi, Azhar Z; Maeda, Azusa; Ip, Angela; Rauth, Andrew Michael; DaCosta, Ralph S; Wu, Xiao Yu
2014-04-22
Insufficient oxygenation (hypoxia), acidic pH (acidosis), and elevated levels of reactive oxygen species (ROS), such as H2O2, are characteristic abnormalities of the tumor microenvironment (TME). These abnormalities promote tumor aggressiveness, metastasis, and resistance to therapies. To date, there is no treatment available for comprehensive modulation of the TME. Approaches so far have been limited to regulating hypoxia, acidosis, or ROS individually, without accounting for their interdependent effects on tumor progression and response to treatments. Hence we have engineered multifunctional and colloidally stable bioinorganic nanoparticles composed of polyelectrolyte-albumin complex and MnO2 nanoparticles (A-MnO2 NPs) and utilized the reactivity of MnO2 toward peroxides for regulation of the TME with simultaneous oxygen generation and pH increase. In vitro studies showed that these NPs can generate oxygen by reacting with H2O2 produced by cancer cells under hypoxic conditions. A-MnO2 NPs simultaneously increased tumor oxygenation by 45% while increasing tumor pH from pH 6.7 to pH 7.2 by reacting with endogenous H2O2 produced within the tumor in a murine breast tumor model. Intratumoral treatment with NPs also led to the downregulation of two major regulators in tumor progression and aggressiveness, that is, hypoxia-inducible factor-1 alpha and vascular endothelial growth factor in the tumor. Combination treatment of the tumors with NPs and ionizing radiation significantly inhibited breast tumor growth, increased DNA double strand breaks and cancer cell death as compared to radiation therapy alone. These results suggest great potential of A-MnO2 NPs for modulation of the TME and enhancement of radiation response in the treatment of cancer.
Degradation of antibiotic amoxicillin using 1 x 1 molecular sieve-structured manganese oxide.
Kuan, Wen-Hui; Hu, Ching-Yao; Liu, Bin-Sheng; Tzou, Yu-Min
2013-01-01
The kinetics and mechanism ofamoxicillin (AMO) degradation using a 1 x 1 molecular sieve-structured manganese oxide (MnO2) was studied. The presence of the buffer solution (i.e., NaHCO3, NaH2PO4 and KH2PO4) diminished AMO binding to MnO2, thus reducing AMO degradation in the pretest; therefore, all other experiments in this study were conducted without the addition of a buffer. Third-order rate constants, second-order on AMO and first-order on MnO2 increased with elevating pH level (2.81-7.23) from 0.54 to 9.17 M(-2) s(-1), and it decreased to 4.27 M(-2) s(-1) at pH 8.53 beyond the pk(a2) of AMO (7.3). The dissolution of the MnO2 suspension with and without AMO exhibited a similar trend; that is, Mn2+ concentration increased with decreasing pH. However, the dissolution of MnO2 with AMO was greater than that without AMO, except for the reaction occurring at pH 8.53, partially indicating that MnO2 acts as an oxidant in AMO degradation. The preliminary chromatogram data display different products with varying pH reaction s, implying that AMO elimination using this 1 x 1 molecular sieve-structured MnO2 is by adsorption as well as oxidative degradation. A complementary experiment indicates that the amount of oxidatively degraded AMO increases substantially from 65.5% at 4 h to 95% at 48 h, whereas the AMO adsorbed onto MnO2 decreases slightly from 4.5% at4 h to 2.4% at 48 h. The oxidative degradation accounted for more AMO removal than adsorption over the whole reaction course, indicating that the oxidative reaction of AMO on MnO2 dominated the AMO removal.
Ueno, Yuichiro; Johnson, Matthew S; Danielache, Sebastian O; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro
2009-09-01
Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Delta33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at lambda >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation.
Ueno, Yuichiro; Johnson, Matthew S.; Danielache, Sebastian O.; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro
2009-01-01
Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Δ33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at λ >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation. PMID:19706450
Jiang, G.M.
2013-01-01
The beneficial effects of elevated CO2 on plants are expected to be compromised by the negative effects posed by other global changes. However, little is known about ozone (O3)-induced modulation of elevated CO2 response in plants with differential sensitivity to O3. An old (Triticum aestivum cv. Beijing 6, O3 tolerant) and a modern (T. aestivum cv. Zhongmai 9, O3 sensitive) winter wheat cultivar were exposed to elevated CO2 (714 ppm) and/or O3 (72 ppb, for 7h d–1) in open-topped chambers for 21 d. Plant responses to treatments were assessed by visible leaf symptoms, simultaneous measurements of gas exchange and chlorophyll a fluorescence, in vivo biochemical properties, and growth. It was found that elevated CO2 resulted in higher growth stimulation in the modern cultivar attributed to a higher energy capture and electron transport rate compared with the old cultivar. Exposure to O3 caused a greater growth reduction in the modern cultivar due to higher O3 uptake and a greater loss of photosystem II efficiency (mature leaf) and mesophyll cell activity (young leaf) than in the old cultivar. Elevated CO2 completely protected both cultivars against the deleterious effects of O3 under elevated CO2 and O3. The modern cultivar showed a greater relative loss of elevated CO2-induced growth stimulation due to higher O3 uptake and greater O3-induced photoinhibition than the old cultivar at elevated CO2 and O3. Our findings suggest that the elevated CO2-induced growth stimulation in the modern cultivar attributed to higher energy capture and electron transport rate can be compromised by its higher O3 uptake and greater O3-induced photoinhibition under elevated CO2 and O3 exposure. PMID:23378379
Watanabe, Chihiro K.; Sato, Shigeru; Yanagisawa, Shuichi; Uesono, Yukifumi; Terashima, Ichiro; Noguchi, Ko
2014-01-01
Elevated CO2 affects plant growth and photosynthesis, which results in changes in plant respiration. However, the mechanisms underlying the responses of plant respiration to elevated CO2 are poorly understood. In this study, we measured diurnal changes in the transcript levels of genes encoding respiratory enzymes, the maximal activities of the enzymes and primary metabolite levels in shoots of Arabidopsis thaliana grown under moderate or elevated CO2 conditions (390 or 780 parts per million by volume CO2, respectively). We examined the relationships between these changes and respiratory rates. Under elevated CO2, the transcript levels of several genes encoding respiratory enzymes increased at the end of the light period, but these increases did not result in changes in the maximal activities of the corresponding enzymes. The levels of some primary metabolites such as starch and sugar phosphates increased under elevated CO2, particularly at the end of the light period. The O2 uptake rate at the end of the dark period was higher under elevated CO2 than under moderate CO2, but higher under moderate CO2 than under elevated CO2 at the end of the light period. These results indicate that the changes in O2 uptake rates are not directly related to changes in maximal enzyme activities and primary metabolite levels. Instead, elevated CO2 may affect anabolic processes that consume respiratory ATP, thereby affecting O2 uptake rates. PMID:24319073
Oreščanin-Dušić, Zorana; Tatalović, Nikola; Vidonja-Uzelac, Teodora; Nestorov, Jelena; Nikolić-Kokić, Aleksandra; Mijušković, Ana; Spasić, Mihajlo; Paškulin, Roman; Bresjanac, Mara; Blagojević, Duško
2018-01-01
Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga . It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H 2 O 2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H 2 O 2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis.
Paškulin, Roman
2018-01-01
Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga. It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H2O2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H2O2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis. PMID:29599898
Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y
2017-11-22
Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.
Laing, Chad R; Zhang, Yongxiang; Gilmour, Matthew W; Allen, Vanessa; Johnson, Roger; Thomas, James E; Gannon, Victor P J
2012-01-01
Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors.
Laing, Chad R.; Zhang, Yongxiang; Gilmour, Matthew W.; Allen, Vanessa; Johnson, Roger; Thomas, James E.; Gannon, Victor P. J.
2012-01-01
Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors. PMID:22649523
Li, Zhen; Zhang, Qingwen; Zhou, Xuguo
2016-06-07
The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease that has devastated pine forests in Asia. Parasitic nematodes are known to have evolved antioxidant stress responses that defend against host plant defenses. In this study, the infestation of whitebark pine, Pinus bungean, with B. xylophilus led to a significant increase in plant hydrogen peroxide (H2O2) and salicylic acid levels. Correspondingly, the expression of an antioxidative enzyme, 2-Cysteine peroxiredoxin (BxPrx), was elevated in B. xylophilus following the H2O2 treatments. Recombinant BxPrx, a thermal stabile and pH tolerant enzyme, exhibited high level of antioxidant activity against H2O2, suggesting that it is capable of protecting cells from free radical attacks. Immunohistochemical localization study showed that BxPrx was broadly expressed across different tissues and could be secreted outside the nematode. Finally, the number of BxPrx homologs in both dauer-like and fungi-feeding B. xylophilus were comparable based on bioinformatics analysis of existing EST libraries, indicating a potential role of BxPrx in both propagative and dispersal nematodes. These combined results suggest that BxPrx is a key genetic factor facilitating the infestation and distribution of B. xylophilus within pine hosts, and consequently the spread of pine wilt disease.
The contribution of molecular relaxation in nitrogen to the absorption of sound in the atmosphere
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Meredith, R. W.
1980-01-01
Results and statistical analysis are presented for sound absorption in N2-H2O binary mixtures at room temperature. Experimental procedure, temperature effects, and preliminary results are presented for sound absorption in N2-H2O binary mixtures at elevated temperatures.
Yang, Ming; Bhopale, Veena M; Thom, Stephen R
2015-08-01
An elevation in levels of circulating microparticles (MPs) due to high air pressure exposure and the associated inflammatory changes and vascular injury that occur with it may be due to oxidative stress. We hypothesized that these responses arise due to elevated partial pressures of N2 and not because of high-pressure O2. A comparison was made among high-pressure air, normoxic high-pressure N2, and high-pressure O2 in causing an elevation in circulating annexin V-positive MPs, neutrophil activation, and vascular injury by assessing the leakage of high-molecular-weight dextran in a murine model. After mice were exposed for 2 h to 790 kPa air, there were over 3-fold elevations in total circulating MPs as well as subgroups bearing Ly6G, CD41, Ter119, CD31, and CD142 surface proteins-evidence of neutrophil activation; platelet-neutrophil interaction; and vascular injury to brain, omentum, psoas, and skeletal muscles. Similar changes were found in mice exposed to high-pressure N2 using a gas mixture so that O2 partial pressure was the same as that of ambient air, whereas none of these changes occurred after exposures to 166 kPa O2, the same partial pressure that occurs during high-pressure air exposures. We conclude that N2 plays a central role in intra- and perivascular changes associated with exposure to high air pressure and that these responses appear to be a novel form of oxidative stress. Copyright © 2015 the American Physiological Society.
Cao, Qi; Mak, Ki M; Lieber, Charles S
2005-07-01
Kupffer cells become activated in response to elevated levels of LPS during ethanol feeding, but the role of ethanol in the molecular processes of activation remains unclear. Because cytochrome P4502E1 (CYP2E1) is upregulated in Kupffer cells after ethanol, we hypothesized that this effect primes Kupffer cells, sensitizing them to increase TNF-alpha production in response to LPS. However, cultured Kupffer cells rapidly lose their CYP2E1. This difficulty was overcome by transfecting CYP2E1 to RAW 264.7 macrophages. Macrophages with stable increased CYP2E1 expression (E2) displayed increased levels of CD14/Toll-like receptor 4, NADPH oxidase and H2O2, accompanied by activation of ERK1/2, p38, and NF-kappaB. These increases primed E2 cells, sensitizing them to LPS stimuli, with amplification of LPS signaling, resulting in increased TNF-alpha production. Diphenyleneiodonium, a NADPH oxidase inhibitor, and diallyl sulfide, a CYP2E1 inhibitor, decreased approximately equally H2O2 levels in E2 cells, suggesting that NADPH oxidase and CYP2E1 contribute equally to H2O2 generation. Because CYP2E1 expression also enhanced the levels of the membrane localized NADPH oxidase subunits p47phox and p67phox, thereby contributing to the oxidase activation, it may augment H2O2 generation via this mechanism. H2O2, derived in part from NADPH and CYP2E1, activated ERK1/2 and p38. ERK1/2 stimulated TNF-alpha production via activation of NF-kappaB, whereas p38 promoted TNF-alpha production by stabilizing TNF-alpha mRNA. Oxidant generation after CYP2E1 overexpression appears to be central to macrophage priming and their sensitization to LPS. Accordingly, CYP2E1 priming could explain the sensitization of Kupffer cells to LPS activation by ethanol, a critical early step in alcoholic liver disease.
Chung, Mi Ja; Lee, Sanghyun; Park, Yong Il; Lee, Jisun; Kwon, Ki Han
2016-03-01
We investigated the neuroprotective effects and action mechanism of three major compounds [daucosterol (Dau), pectolinarin (Pec), and astragalin (Ast)] isolated from edible plants against H2O2-induced cell death of human brain neuroblastoma SK-N-SH cells. Cytotoxicity was determined by MTT and lactate dehydrogenase (LDH) assays. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by TUNEL assay. The formation of reactive oxygen species (ROS), expression of antioxidant enzymes and phosphorylation of mitogen-activated protein kinase (MAPK) were determined by 2,7-dichlorofluorescein diacetate (DCF-DA) assay, RT-PCR, and western blotting, respectively. The ethyl acetate fractions from Cirsium setidens (CSEA) and Aster scaber (ASEA) showed neuroprotective effects in SK-N-SH cells. The phytochemicals were isolated from CSEA and ASEA and identified by spectral analyses, as β-sitosterol, Dau, Pec, Ast, or isoquercitrin. Pretreatment with Dau, Pec, or Ast showed protective effects against H2O2-induced cell death and inhibited ROS generation by oxidative stress. HO-1 mRNA and protein levels were increased by the presence of H2O2 and were further elevated by pretreatment with Dau and Ast. Dau pretreatment resulted in further increases of H2O2-induced enhancement in levels of CAT and SOD2. Pretreatment with Dau, Pec, and Ast inhibited phosphorylation of MAPK, such as extracellular protein regulated protein kinase, p38, and c-Jun N-terminal kinase by H2O2. Dau exerts its neuroprotective effects by down regulation of MAPK pathways and upregulation of the HO-1, CAT and SOD2 antioxidant genes and is associated with reduced oxidative stress in SK-N-SH cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Wei; Liu, Ji-Hong
2016-08-18
Polyamine oxidase (PAO) is a key enzyme catalyzing polyamine catabolism leading to H2O2 production. We previously demonstrated that Citrus sinensis contains six putative PAO genes, but their functions are not well understood. In this work, we reported functional elucidation of CsPAO4 in polyamine catabolism and salt stress response. CsPAO4 was localized to the apoplast and used both spermidine (Spd) and spermine (Spm) as substrates for terminal catabolism. Transgenic plants overexpressing CsPAO4 displayed prominent increase in PAO activity, concurrent with marked decrease of Spm and Spd and elevation of H2O2. Seeds of transgenic lines displayed better germination when compared with wild type (WT) under salt stress. However, both vegetative growth and root elongation of the transgenic lines were prominently inhibited under salt stress, accompanied by higher level of H2O2 and more conspicuous programmed cell death (PCD). Exogenous supply of catalase (CAT), a H2O2 scavenger, partially recovered the vegetative growth and root elongation. In addition, spermine inhibited root growth of transgenic plants. Taken together, these data demonstrated that CsPAO4 accounts for production of H2O2 causing oxidative damages under salt stress and that down-regulation of a PAO gene involved in polyamine terminal catabolism may be an alternative approach for improving salt stress tolerance.
Matsunami, Sayuri; Komasawa, Nobuyasu; Konishi, Yuki; Minami, Toshiaki
2017-11-01
We performed two prospective randomized crossover trials to evaluate the effect of head elevation or lateral head rotation to facemask ventilation volume. In the first trial, facemask ventilation was performed with a 12-cm high pillow (HP) and 4-cm low pillow (LP) in 20 female patients who were scheduled to undergo general anesthesia. In the second trial, facemask ventilation was performed with and without lateral head rotation in another 20 female patients. Ventilation volume was measured in a pressure-controlled ventilation (PCV) manner at 10, 15, and 20 cmH 2 O inspiratory pressures. In the first trial evaluating head elevation effect, facemask ventilation volume was significantly higher with a HP than with a LP at 15 and 20 cmH 2 O inspiratory pressure (15 cmH 2 O: HP median 540 [ IQR 480-605] mL, LP 460 [400-520] mL, P=0.006, 20 cmH 2 O: HP 705 [650-800] mL, LP 560 [520-677] mL, P<0.001). In the second trial, lateral head rotation did not significantly increase facemask ventilation volume at all inspiratory pressure. Head elevation increased facemask ventilation volume in normal airway patients, while lateral head rotation did not. Copyright © 2017 Elsevier Inc. All rights reserved.
Polymeric Binders which Reversibly Dissociate at Elevated Temperatures
1978-05-01
C0O(CH2)xOC-C- N . ~Nk \\ N . N + H0(CH2)x OH HC. , , tH \\\\ N - N -C. HC-N1-- H H H ~0 ~+ 0CNRNC0 Polymer 14 S. Kasina and J. Nematollahi . "A New and Simple...NUMIIA& i* GOVT ACC9Ir.Q~ N NO. I CIIIIINT’S CATZALOG NUMOIR NWC-TP-591951 OLYUC INDERS WHICH.REVERSIBLY ! Rasear pr.. Ř 7.: , CISS-CIATSEAT ELEV...342M7RA""" El7cadUgee /nary.i TC. Aiea N - 3 F5335431. P ERMFORMING ORGANIZATION NAM E A NlO A OR SS 1 . P O R M CLM l T T S , ~ ~~~Naval Weapons
Davis, Brittany E; Flynn, Erin E; Miller, Nathan A; Nelson, Frederick A; Fangue, Nann A; Todgham, Anne E
2018-02-01
Increases in atmospheric CO 2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade-offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO 2 treatments (~450, ~850, and ~1,200 μatm PCO 2 ) at two temperatures (-1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [f H ] and ventilation rate [f V ]), metabolic rate (M˙O2), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO 2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, f H , f V and M˙O2 significantly increased with warming, but not with elevated PCO 2 . Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade-offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as f V , M˙O2, and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO 2 . Sustained increases in f V and M˙O2 after 28 days exposure to elevated PCO 2 indicate additive (f V ) and synergistic (M˙O2) interactions occurred in combination with warming. Stressor-induced energetic trade-offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change. © 2017 John Wiley & Sons Ltd.
Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi.
Freire, Anna Cláudia Guimarães; Alves, Ceres Luciana; Goes, Grazielle Ribeiro; Resende, Bruno Carvalho; Moretti, Nilmar Silvio; Nunes, Vinícius Santana; Aguiar, Pedro Henrique Nascimento; Tahara, Erich Birelli; Franco, Glória Regina; Macedo, Andréa Mara; Pena, Sérgio Danilo Junho; Gadelha, Fernanda Ramos; Guarneri, Alessandra Aparecida; Schenkman, Sergio; Vieira, Leda Quercia; Machado, Carlos Renato
2017-09-01
Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.
Niu, Mengliang; Huang, Yuan; Sun, Shitao; Sun, Jingyu; Cao, Haishun; Shabala, Sergey
2018-01-01
Abstract Plant salt tolerance can be improved by grafting onto salt-tolerant rootstocks. However, the underlying signaling mechanisms behind this phenomenon remain largely unknown. To address this issue, we used a range of physiological and molecular techniques to study responses of self-grafted and pumpkin-grafted cucumber plants exposed to 75 mM NaCl stress. Pumpkin grafting significantly increased the salt tolerance of cucumber plants, as revealed by higher plant dry weight, chlorophyll content and photochemical efficiency (Fv/Fm), and lower leaf Na+ content. Salinity stress resulted in a sharp increase in H2O2 production, reaching a peak 3 h after salt treatment in the pumpkin-grafted cucumber. This enhancement was accompanied by elevated relative expression of respiratory burst oxidase homologue (RBOH) genes RbohD and RbohF and a higher NADPH oxidase activity. However, this increase was much delayed in the self-grafted plants, and the difference between the two grafting combinations disappeared after 24 h. The decreased leaf Na+ content of pumpkin-grafted plants was achieved by higher Na+ exclusion in roots, which was driven by the Na+/H+ antiporter energized by the plasma membrane H+-ATPase, as evidenced by the higher plasma membrane H+-ATPase activity and higher transcript levels for PMA and SOS1. In addition, early stomatal closure was also observed in the pumpkin-grafted cucumber plants, reducing water loss and maintaining the plant’s hydration status. When pumpkin-grafted plants were pretreated with an NADPH oxidase inhibitor, diphenylene iodonium (DPI), the H2O2 level decreased significantly, to the level found in self-grafted plants, resulting in the loss of the salt tolerance. Inhibition of the NADPH oxidase-mediated H2O2 signaling in the root also abolished a rapid stomatal closure in the pumpkin-grafted plants. We concluded that the pumpkin-grafted cucumber plants increase their salt tolerance via a mechanism involving the root-sourced respiratory burst oxidase homologue-dependent H2O2 production, which enhances Na+ exclusion from the root and promotes an early stomatal closure. PMID:29145593
Sharaf, Mahmoud S; Stevens, Don; Kamunde, Collins
2017-08-01
At excess levels, zinc (Zn) disrupts mitochondrial functional integrity and induces oxidative stress in aquatic organisms. Although much is known about the modulation of Zn toxicity by calcium (Ca) in fish, their interactions at the mitochondrial level have scarcely been investigated. Here we assessed the individual and combined effects of Zn and Ca on the relationship between mitochondrial respiration, ROS and membrane potential (ΔΨ mt ) in rainbow trout liver mitochondria. We tested if cation uptake through the mitochondrial calcium uniporter (MCU) is a prerequisite for Zn- and/or Ca-induced alteration of mitochondrial function. Furthermore, using our recently developed real-time multi-parametric method, we investigated the changes in respiration, ΔΨ mt , and reactive oxygen species (ROS, as hydrogen peroxide (H 2 O 2 )) release associated with Ca-induced mitochondrial depolarization imposed by transient and permanent openings of the mitochondrial permeability transition pore (mPTP). We found that independent of the MCU, Zn precipitated an immediate depolarization of the ΔΨ mt that was associated with relatively slow enhancement of H 2 O 2 release, inhibition of respiration and reversal of the positive correlation between ROS and ΔΨ mt . In contrast, an equitoxic dose of Ca caused transient depolarization, and stimulation of both respiration and H 2 O 2 release, effects that were completely abolished when the MCU was blocked. Contrary to our expectation that mitochondrial transition ROS Spike (mTRS) would be sensitive to both Zn and Ca, only Ca suppressed it. Moreover, Zn and Ca in combination immediately depolarized the ΔΨ mt , and caused transient and sustained stimulation of respiration and H 2 O 2 release, respectively. Lastly, we uncovered and characterized an mPTP-independent Ca-induced depolarization spike that was associated with exposure to moderately elevated levels of Ca. Importantly, we showed the stimulation of ROS release associated with highly elevated but not unrealistic Ca loads was not the cause but a result of mPTP opening in the high conductance mode. Copyright © 2017 Elsevier B.V. All rights reserved.
THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE.
Morawin, B; Turowski, D; Naczk, M; Siatkowski, I; Zembron-Lacny, A
2014-08-01
The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric exercise. Sixteen healthy young males participated in the randomised and placebo-controlled study. The exercise trial involved a 90-min run followed by a 15-min eccentric phase at 65% VO2max (-10% gradient). It significantly increased serum concentrations of nitric oxide (NO), hydrogen peroxide (H2O2) and pro-oxidative products such as 8-isoprostanes (8-iso), lipid peroxides (LPO) and protein carbonyls (PC). α-Lipoic acid intake (Thiogamma: 1200 mg daily for 10 days prior to exercise) resulted in a 2-fold elevation of serum H2O2 concentration before exercise, but it prevented the generation of NO, 8-iso, LPO and PC at 20 min, 24 h, and 48 h after exercise. α-Lipoic acid also elevated serum EPO level, which highly correlated with NO/H2O2 ratio (r = 0.718, P < 0.01). Serum total creatine kinase (CK) activity, as a marker of muscle damage, reached a peak at 24 h after exercise (placebo 732 ± 207 IU · L(-1), α-lipoic acid 481 ± 103 IU · L(-1)), and correlated with EPO (r = 0.478, P < 0.01) in the α-lipoic acid group. In conclusion, the intake of high α-lipoic acid modulates RN/OS generation, enhances EPO release and reduces muscle damage after running eccentric exercise.
THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE
Morawin, B.; Turowski, D.; Naczk, M.; Siatkowski, I.
2014-01-01
The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric exercise. Sixteen healthy young males participated in the randomised and placebo-controlled study. The exercise trial involved a 90-min run followed by a 15-min eccentric phase at 65% VO2max (-10% gradient). It significantly increased serum concentrations of nitric oxide (NO), hydrogen peroxide (H2O2) and pro-oxidative products such as 8-isoprostanes (8-iso), lipid peroxides (LPO) and protein carbonyls (PC). α-Lipoic acid intake (Thiogamma: 1200 mg daily for 10 days prior to exercise) resulted in a 2-fold elevation of serum H2O2 concentration before exercise, but it prevented the generation of NO, 8-iso, LPO and PC at 20 min, 24 h, and 48 h after exercise. α-Lipoic acid also elevated serum EPO level, which highly correlated with NO/H2O2 ratio (r = 0.718, P < 0.01). Serum total creatine kinase (CK) activity, as a marker of muscle damage, reached a peak at 24 h after exercise (placebo 732 ± 207 IU · L-1, α-lipoic acid 481 ± 103 IU · L-1), and correlated with EPO (r = 0.478, P < 0.01) in the α-lipoic acid group. In conclusion, the intake of high α-lipoic acid modulates RN/OS generation, enhances EPO release and reduces muscle damage after running eccentric exercise. PMID:25177095
NASA Astrophysics Data System (ADS)
Wang, Hsin-Yi; Chen, Jiazang; Hy, Sunny; Yu, Linghui; Xu, Zhichuan; Liu, Bin
2014-11-01
Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04729j
Xu, Xuehui; Huang, Honglin; Wen, Bei; Wang, Sen; Zhang, Shuzhen
2015-03-16
Polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs), and hydroxylated PBDEs (OH-PBDEs) are widely found in various environmental media, which is of concern given their biological toxicity. In this study, the phytotoxicities of BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 to maize (Zea mays L.) were investigated by an in vivo exposure experiment. Results showed that BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 inhibited seed germination and seedling development, and elevated malondialdehyde (MDA), carbonyl groups, and phosphorylated histone H2AX levels in maize roots, suggesting the inducement of lipid peroxidation, protein carbonylation, and DNA damage to maize. Exposure to BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 caused the overproduction of H2O2, O2(•-), and •OH, and elevated the activities of antioxidant enzymes in the roots. In addition, 6-OH-BDE-47 caused more severe damage and reactive oxygen species (ROS) generation in maize than did BDE-47 and 6-MeO-BDE-47. These results demonstrated the phytotoxicities of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 to maize, and clarified that overproduction of ROS was the key mechanism leading to toxicity. This study offers useful information for a more comprehensive understanding of the environmental behaviors and toxicities of PBDEs, MeO-PBDEs, and OH-PBDEs.
Nitrous Oxide Emissions From a Maize/Soybean Rotation Following a Precipitation Event
NASA Astrophysics Data System (ADS)
Zheng, J.; Doskey, P. V.
2011-12-01
Agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), which is one of the major greenhouse gases. Emissions of N2O from agricultural soils are highly episodic and primarily occur in pulses of emissions following fertilization, spring thaw, and precipitation events. Anaerobic denitrification is the major source of N2O emitted from agricultural soils. During denitrification, NO3- is converted to NO, N2O or N2 by a diverse group of microorganisms. Precipitation is an important environmental factor regulating N2O emissions as soil water filled pore space (WFPS) controls the diffusivity and solubility of O2 and N2O, and thus, enzyme affinity and activity of denitrifying microorganisms. The primary objective of the study is to investigate N2O emission patterns and possible mechanisms responsible for N2O emissions following precipitation events. We measured plot level N2O fluxes by the static chamber technique in- and between-the-row of young soybean at the AmeriFlux site in Bondville, Illinois following a precipitation event. Gas samples were taken 12 h before a heavy rainfall, and 6, 12 and 24 h after the rain. Two distinct pulses were observed following the rainfall. The first pulse occurred 6 h after the rain, with a 3-fold increase in the rate of N2O emissions (73.2 μg m-2 h-1) compared with emissions 12 h before the rain (24.0 μg m-2 h-1). The N2O emission rate decreased to 48.2 μg m-2 h-1 12 h after the rain. The second pulse was observed 24 h after the rain, with an emission rate of 63.1 μg m-2 h-1. Phospholipid fatty acids (PLFAs) were extracted from soil samples taken from corresponding plots to estimate the total living microbial biomass. There were no significant changes in total living microbial biomass (in ng PLFAs g-1 soil) between samples taken 12 h before the rain and 6 h after the rain, although microbial activity apparently increased. Increases in gram negative bacteria and fungi were observed 24 h after the rain. The first pulse 6 h following the rain might be explained by displacement of air-filled pore space and exhalation of soil gases containing elevated levels of N2O caused by water infiltration. Microbial activity might also contribute to this N2O pulse since denitrification enzymes nar, nir, and nor can persist in dry soils. The decrease in N2O emissions between the pulses (12 h following the rain) might indicate increases in nitrous oxide reductase (nos) activities and evolution of denitrification gases as N2. The second pulse in N2O emissions occurred 24 h after the rain, when N2O production exceeded N2O consumption. Our observation of N2O emissions before and after a precipitation event exhibit a pattern similar to the dynamics of denitrification enzymes observed in incubated soils. The first in situ observation of a two-pulse pattern in N2O emissions following a precipitation event has widespread significance for designing N2O emission measurement strategies and estimating annual budgets.
Shinde, Suhas; Behpouri, Ali; McElwain, Jennifer C.; Ng, Carl K.-Y.
2015-01-01
It is widely accepted that atmospheric O2 has played a key role in the development of life on Earth, as evident from the coincidence between the rise of atmospheric O2 concentrations in the Precambrian and biological evolution. Additionally, it has also been suggested that low atmospheric O2 is one of the major drivers for at least two of the five mass-extinction events in the Phanerozoic. At the molecular level, our understanding of the responses of plants to sub-ambient O2 concentrations is largely confined to studies of the responses of underground organs, e.g. roots to hypoxic conditions. Oxygen deprivation often results in elevated CO2 levels, particularly under waterlogged conditions, due to slower gas diffusion in water compared to air. In this study, changes in the transcriptome of gametophytes of the moss Physcomitrella patens arising from exposure to sub-ambient O2 of 13% (oxygen deprivation) and elevated CO2 (1500 ppmV) were examined to further our understanding of the responses of lower plants to changes in atmospheric gaseous composition. Microarray analyses revealed that the expression of a large number of genes was affected under elevated CO2 (814 genes) and sub-ambient O2 conditions (576 genes). Intriguingly, the expression of comparatively fewer numbers of genes (411 genes) was affected under a combination of both sub-ambient O2 and elevated CO2 condition (low O2–high CO2). Overall, the results point towards the effects of atmospheric changes in CO2 and O2 on transcriptional reprogramming, photosynthetic regulation, carbon metabolism, and stress responses. PMID:25948702
Shinde, Suhas; Behpouri, Ali; McElwain, Jennifer C; Ng, Carl K-Y
2015-07-01
It is widely accepted that atmospheric O2 has played a key role in the development of life on Earth, as evident from the coincidence between the rise of atmospheric O2 concentrations in the Precambrian and biological evolution. Additionally, it has also been suggested that low atmospheric O2 is one of the major drivers for at least two of the five mass-extinction events in the Phanerozoic. At the molecular level, our understanding of the responses of plants to sub-ambient O2 concentrations is largely confined to studies of the responses of underground organs, e.g. roots to hypoxic conditions. Oxygen deprivation often results in elevated CO2 levels, particularly under waterlogged conditions, due to slower gas diffusion in water compared to air. In this study, changes in the transcriptome of gametophytes of the moss Physcomitrella patens arising from exposure to sub-ambient O2 of 13% (oxygen deprivation) and elevated CO2 (1500 ppmV) were examined to further our understanding of the responses of lower plants to changes in atmospheric gaseous composition. Microarray analyses revealed that the expression of a large number of genes was affected under elevated CO2 (814 genes) and sub-ambient O2 conditions (576 genes). Intriguingly, the expression of comparatively fewer numbers of genes (411 genes) was affected under a combination of both sub-ambient O2 and elevated CO2 condition (low O2-high CO2). Overall, the results point towards the effects of atmospheric changes in CO2 and O2 on transcriptional reprogramming, photosynthetic regulation, carbon metabolism, and stress responses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie; Waters, Alicia H.C.; Golubeva, Anna V.
2015-01-01
Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP,more » produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.« less
Nano interfaced biosensor for detection of choline in triple negative breast cancer cells.
Thiagarajan, Vignesh; Madhurantakam, Sasya; Sethuraman, Swaminathan; Balaguru Rayappan, John Bosco; Maheswari Krishnan, Uma
2016-01-15
Choline, a type of Vitamin B, is an important nutrient in the human body and is involved in key metabolic pathways. Abnormal levels of choline leads to diseased conditions. The levels of choline and its associated compounds are found to be elevated in triple negative breast cancer (TNBC) patients. The choline level ranges from 0.4 to 4.9mmol/kg in TNBC. Thus the detection of choline levels in cells can aid in diagnosing breast cancer. The present work aims to develop a nano-interfaced electrochemical biosensor for the rapid detection of choline in cancer cells. For electrochemical detection, glassy carbon electrode coated with a zinc oxide nano-interface was used as the working electrode. Zinc oxide synthesized by hydrothermal method was characterized using SEM and XRD. The choline oxidase (ChOx) enzyme was immobilized on the nano-interface by drop-casting. Choline oxidase (ChOx) converts choline to betaine and H2O2 in the presence of oxygen. The H2O2 produced was determined amperometrically. The amount of H2O2 produced is directly proportional to concentration of choline present. The sensitivity, selectivity, stability and concentration studies were carried out and quantification of choline in TNBC was also carried out. The results demonstrate that this biosensor has the potential to be developed as a clinical tool for breast cancer detection. Copyright © 2015 Elsevier Inc. All rights reserved.
Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).
Migani, Annapaola; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje
2015-01-13
Knowledge of the frontier levels' alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O-TiO2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O-TiO2(110) interface.
Hydrogen peroxide photocycling in the Gulf of Aqaba, Red Sea.
Shaked, Yeala; Harris, Raviv; Klein-Kedem, Nir
2010-05-01
The dynamics of hydrogen peroxide (H(2)O(2)) was investigated from December 2007 to October 2008 in the Gulf of Aqaba, which in the absence of H(2)O(2) contribution from biological production, rain and runoff, turned out to be a unique natural photochemical laboratory. A distinct seasonal pattern emerged, with highest midday surface H(2)O(2) concentrations in spring-summer (30-90 nM) as compared to winter (10-30 nM). Similarly, irradiation normalized net H(2)O(2) formation rates obtained in concurrent ship-board experiments were faster in spring-summer than in winter. These seasonal patterns were attributed to changes in water characteristics, namely elevated spring-summer chromophoric dissolved organic matter (CDOM). The role of trace elements in H(2)O(2) photoformation was studied by simultaneously measuring superoxide (O(2)(-)), Fe(II), and H(2)O(2) formation and loss in ambient seawater and in the presence of superoxide dismutase, iron and copper. O(2)(-) was found to decay fast in the Gulf water, with a half-life of 15-28 s, primarily due to catalytic reactions with trace metals (predominantly copper). Hence, H(2)O(2) formation in the Gulf involves metal-catalyzed O(2)(-) disproptionation. Added iron moderately lowered net H(2)O(2) photoformation, probably due to its participation in Fe(II) oxidation, a process that may also modify H(2)O(2) formation in situ.
Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp; Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp; Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp
2014-08-08
Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogenmore » peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in the plasma-medium. These results showed that the medium irradiated with a non-lethal level of plasma flow altered various gene expressions of HeLa cells by giving not only common effects with H{sub 2}O{sub 2} but also some distinctive actions. This study suggests that in addition to H{sub 2}O{sub 2}, other chemical species able to affect the cellular responses exist in the plasma-irradiated medium and provide unique features for it, probably increasing the oxidative stress level.« less
Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule
2016-07-08
Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Park, Woo Hyun
2014-05-01
Oxidative stress-induced cytotoxicity in cervical cancer cells may be of toxicological interest. In the present study, the effects of exogenous H2O2 on cell growth and death in HeLa cervical cancer cells were investigated, and the anti-apoptotic effects of various caspase (pan-caspase, caspase-3, -8 or -9) inhibitors on H2O2-treated HeLa cells were also evaluated with regard to reactive oxygen species (ROS) and glutathione (GSH) levels. Based on MTT assays, H2O2 inhibited the growth of HeLa cells with an IC50 value of ~75 µM at 24 h. H2O2 increased the number of dead cells and Annexin V-FITC-positive cells in the HeLa cells, which was accompanied by the activation of caspase-3 and the loss of mitochondrial membrane potential (MMP; ΔΨm). However, relatively higher doses of H2O2 induced necrosis in HeLa cells. Caspase inhibitors significantly prevented H2O2-induced HeLa cell death. H2O2 increased ROS including O2•- at 24 h and increased the activity of catalase in HeLa cells. H2O2 also increased the ROS level at 1 h, and several caspase inhibitors attenuated the increased level at 1 h but not at 6, 12 and 24 h. H2O2 decreased the GSH level in HeLa cells at 1 h, and several caspase inhibitors attenuated the decreased level of GSH at this time. H2O2 induced GSH depletion at 24 h. In conclusion, H2O2 inhibited the growth of HeLa cells via apoptosis and/or necrosis, which was accompanied by intracellular increases in ROS levels and GSH depletion. Caspase inhibitors are suggested to suppress H2O2-induced oxidative stress to rescue HeLa cells at the early time point of 1 h.
He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao; Chen, Yanxia
2017-01-01
Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H 2 O 2 ). Shh alleviated the apoptosis rate of H 2 O 2 -induced neurons. Shh also increased neuritogenesis injuried by H 2 O 2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H 2 O 2 . In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H 2 O 2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Han, Guilin; Lv, Pin; Tang, Yang; Song, Zhaoliang
2018-05-01
Ratios of stable isotopes of hydrogen and oxygen ( 2 H/ 1 H and 18 O/ 16 O) in river waters were measured to investigate the hydrological pathway of the Xijiang River, Southwest China. The δ 2 H and δ 18 O values of river waters exhibit significant spatial and temporal variations and the isotopic compositions vary with elevation, temperature and precipitation of the recharge area. Spatially, δ 18 O values of river waters from high mountain areas are lower than those from the lower reaches of the Xijiang River due to lower temperature and higher elevation for the recharge area. However, both 2 H and 18 O are enriched differently in river waters from the middle reaches during the high flow season, depending on the season and degree of anthropogenic disturbances (e.g. water impoundments). In contrast, deuterium excess (d-excess) values of waters from the middle reaches are substantially lower than those from the upper and lower reaches, suggesting that river waters may be resided in the reservoir and evaporation increases in the middle reaches of the Xijiang River.
Quasiparticle Interfacial Level Alignment of Highly Hybridized Frontier Levels: H2O on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migani, Annapaola; Mowbray, Duncan J.; Zhao, Jin
Knowledge of the frontier levels’ alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O–TiO2(110) interface. Using the projected density of states (DOS)more » from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O–TiO2(110) interface.« less
Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang
2015-01-01
A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was helpful not only in recycling industrial wastes, but also in effectively mitigating the depressive effects of elevated UV-B radiation on photosynthesis and transpiration in rice production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Soohaeng; Apra, Edoardo; Zeng, Xiao Cheng
The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17 the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Soohaeng; Apra, Edoardo; Zeng, X.C.
The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at both the MP2 and CCSD(T) levels of theory, and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17, the CCSD(T) calculations confirm the previously found at the MP2 level of theory interior arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum
Rajamohan, Senthilkumar B.; Raghuraman, Gayatri; Prabhakar, Nanduri R.
2012-01-01
Abstract Background The Renin-Angiotensin-Aldosterone-System plays a pivotal role in hypertension. Angiotensin II (Ang II) is a major regulator of aldosterone synthesis and secretion, and it is known to facilitate reactive oxygen species (ROS) generation in many cell types. Aims: Here, we assessed the role of ROS signaling in Ang II-induced aldosterone synthesis by focusing on the regulation of aldosterone synthase (CYP11B2), a cytochrome P450 oxidase that catalyzes the final step in aldosterone biosynthetic pathway. Results: Ang II increased CYP11B2 activity, mRNA and protein with a concomitant elevation of 6-Carboxy- 2′,7′-dichlorodihydrofluorescein diacetate fluorescence, malondialdehyde and protein carbonyl levels (indices of ROS), NADPH oxidase (Nox) activity, and H2O2 levels in human and rat adrenal cortical cells. The expression of nuclear receptor related 1 protein, a transcription factor known to regulate CYP11B2 expression, was also augmented by Ang II. These Ang II-evoked effects were either abolished or attenuated by pretreatment of cells with either Ang II type I receptor (AT1R) antagonist, or antioxidants or Nox inhibitor or siRNA silencing of Nox1, 2 and 4, or inhibitors of phospholipase C and protein kinase C. Exogenous H2O2 mimicked the facilitatory effects of Ang II on CYP11B2 activity, mRNA, and protein expression, and these changes were significantly reduced by PEG-catalase. Innovation: ROS, particularly H2O2, is identified as a key regulator of aldosterone production. Conclusion: Our results suggest that Ang II facilitates CYP11B2 activity and the ensuing aldosterone production via activation of AT1R-Nox-H2O2 signaling pathway. Antioxid. Redox Signal. 17, 445–459. PMID:22214405
Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui
2006-06-01
The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.
USP7 Is a Suppressor of PCNA Ubiquitination and Oxidative-Stress-Induced Mutagenesis in Human Cells.
Kashiwaba, Shu-ichiro; Kanao, Rie; Masuda, Yuji; Kusumoto-Matsuo, Rika; Hanaoka, Fumio; Masutani, Chikahide
2015-12-15
Mono-ubiquitinated PCNA activates error-prone DNA polymerases; therefore, strict regulation of PCNA mono-ubiquitination is crucial in avoiding undesired mutagenesis. In this study, we used an in vitro assay system to identify USP7 as a deubiquitinating enzyme of mono-ubiquitinated PCNA. Suppression of USP1, a previously identified PCNA deubiquitinase, or USP7 increased UV- and H2O2-induced PCNA mono-ubiquitination in a distinct and additive manner, suggesting that USP1 and USP7 make different contributions to PCNA deubiquitination in human cells. Cell-cycle-synchronization analyses revealed that USP7 suppression increased H2O2-induced PCNA ubiquitination throughout interphase, whereas USP1 suppression specifically increased ubiquitination in S-phase cells. UV-induced mutagenesis was elevated in USP1-suppressed cells, whereas H2O2-induced mutagenesis was elevated in USP7-suppressed cells. These results suggest that USP1 suppresses UV-induced mutations produced in a manner involving DNA replication, whereas USP7 suppresses H2O2-induced mutagenesis involving cell-cycle-independent processes such as DNA repair. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Rajasekharan, Vishnu V; Clark, Brandi N; Boonsalee, Sansanee; Switzer, Jay A
2007-06-15
The commonly used disinfectants in drinking water are free chlorine (in the form of HOCl/OCl-) and monochloramine (NH2Cl). While free chlorine reacts with natural organic matter in water to produce chlorinated hydrocarbon byproducts, there is also concern that NH2Cl may react with Pbto produce soluble Pb(II) products--leading to elevated Pb levels in drinking water. In this study, electrochemical methods are used to compare the thermodynamics and kinetics of the reduction of these two disinfectants. The standard reduction potential for NH2Cl/Cl- was estimated to be +1.45 V in acidic media and +0.74 V in alkaline media versus NHE using thermodynamic cycles. The kinetics of electroreduction of the two disinfectants was studied using an Au rotating disk electrode. The exchange current densities estimated from Koutecky-Levich plots were 8.2 x 10(-5) and 4.1 x 10(-5) A/cm2, and by low overpotential experiments were 7.5 +/- 0.3 x 10(-5) and 3.7 +/- 0.4 x 10(-5) A/cm2 for free chlorine and NH2Cl, respectively. The rate constantforthe electrochemical reduction of free chlorine at equilibrium is approximately twice as large as that for the reduction of NH2Cl. Equilibrium potential measurements show that free chlorine will oxidize Pb to PbO2 above pH 1.7, whereas NH2Cl will oxidize Pb to PbO2 only above about pH 9.5, if the total dissolved inorganic carbon (DIC) is 18 ppm. Hence, NH2Cl is not capable of producing a passivating PbO2 layer on Pb, and could lead to elevated levels of dissolved Pb in drinking water.
Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system
NASA Astrophysics Data System (ADS)
Hegglin, M. I.; Brunner, D.; Wernli, H.; Schwierz, C.; Martius, O.; Hoor, P.; Fischer, H.; Spelten, N.; Schiller, C.; Krebsbach, M.; Parchatka, U.; Weers, U.; Staehelin, J.; Peter, Th.
2004-01-01
Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52° N) to Faro, Portugal (37° N) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the intrusion features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365 K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM model are seen only up to about tropopause height at 340 hPa and 270hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.
Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system
NASA Astrophysics Data System (ADS)
Hegglin, M. I.; Brunner, D.; Wernli, H.; Schwierz, C.; Martius, O.; Hoor, P.; Fischer, H.; Parchatka, U.; Spelten, N.; Schiller, C.; Krebsbach, M.; Weers, U.; Staehelin, J.; Peter, Th.
2004-05-01
Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52ºN) to Faro, Portugal (37ºN) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the intrusion features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365 K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM model are seen only up to about tropopause height at 340 hPa and 270hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.
Lin, Jian; Qie, Meiying; Zhang, Linjuan; Wang, Xiaomei; Lin, Yuejian; Liu, Wei; Bao, Hongliang; Wang, Jianqiang
2017-11-20
Systematic control of the molar ratio between thorium hydroxides and selenic acid and their reaction temperature under hydrothermal conditions results in four novel thorium-based selenate complexes, namely, [Th 8 O 4 (OH) 8 (SeO 4 ) 6 (H 2 O) 16 ]·(SeO 4 ) 2 ·13H 2 O (Th-1), [Th 8 O 4 (OH) 8 (SeO 4 ) 8 (H 2 O) 13 ]·7H 2 O (Th-2), Th(OH) 2 (SeO 4 )H 2 O (Th-3), and Th 3 (SeO 4 ) 6 (H 2 O) 6 ·2.5H 2 O (Th-4), as well as the thorium mixed selenite selenate compound Th(SeO 3 )(SeO 4 ) (Th-5). Smaller [H 2 SeO 4 ]/[Th(IV)] ratio or lower temperature give rise to the formation of octameric [Th 8 (μ 3 -O) 4 (μ 2 -OH) 8 ] 16+ cores in Th-1/Th-2 and infinite [Th(μ 2 -OH) 2 H 2 O] 2+ chains in Th-3, respectively. Increasing the [H 2 SeO 4 ]/[Th(IV)] ratio or elevating the temperature generates a microporous (11.3 Å voids) open-framework Th-4, a monomeric thorium species without oxo/hydroxyl ligands, and a three-dimensional thorium structure Th-5. Formation of these compounds suggests that variables including acidity and temperature play a critical role in the hydrolysis and oligomerization of Th IV ions. Increasing acidity limits the deprotonation of water molecules and formation of nucleophilic hydroxo/oxo-aquo Th species, and high temperature appears to suppress the olation/oxolation hydrolysis reactions, which in both ways limit the formation of the thorium oligomers.
NASA Astrophysics Data System (ADS)
Pauly, Tyler; Garrod, Robin T.
2018-02-01
Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.
Method for producing synthetic fuels from solid waste
Antal, Jr., Michael J.
1976-11-23
Organic solid wastes represented by the general chemical formula C.sub.X H.sub.Y O.sub.Z are reacted with steam at elevated temperatures to produce H.sub.2 and CO.sub.2. The overall process is represented by the reaction C.sub.X H.sub.Y O.sub.Z + 2(X-Z/2)H.sub.2 O.fwdarw..sup..delta.XCO.sub.2 + [(Y/2) + 2(X-Z/2)] H.sub.2 . (1) reaction (1) is endothermic and requires heat. This heat is supplied by a tower top solar furnace; alternatively, some of the solid wastes can be burned to supply heat for the reaction. The hydrogen produced by reaction (1) can be used as a fuel or a chemical feedstock. Alternatively, methanol can be produced by the commercial process CO.sub.2 + 3H.sub.2 .fwdarw. CH.sub.3 OH + H.sub.2 O . (2) since reaction (1) is endothermic, the system represents a method for storing heat energy from an external source in a chemical fuel produced from solid wastes.
Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan
2017-01-01
Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H 2 O 2 ) under chilling stress conditions using tomato seedlings [( Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H 2 O 2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase ( LeADC. LeADC1 ), ornithine decarboxylase ( LeODC ), and Spd synthase ( LeSPDS ) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S -adenosylmethionine decarboxylase ( LeSAMDC ) and Spm synthase ( LeSPMS ), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9- cis -epoxycarotenoid dioxygenase ( LeNCED1 ) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling stress, Spd and Spm enhanced the production of NO in tomato seedlings through an H 2 O 2 -dependent mechanism, via the NR and NOS-like pathways. ABA is involved in Put-induced tolerance to chilling stress, and NO could increase the content of Put and Spd under chilling stress.
Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan
2017-01-01
Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling stress, Spd and Spm enhanced the production of NO in tomato seedlings through an H2O2-dependent mechanism, via the NR and NOS-like pathways. ABA is involved in Put-induced tolerance to chilling stress, and NO could increase the content of Put and Spd under chilling stress. PMID:28261254
Peterson, Richard B; Schultes, Neil P; McHale, Neil A; Zelitch, Israel
2016-05-01
Prior studies with Nicotiana and Arabidopsis described failed assembly of the chloroplastic NDH [NAD(P)H dehydrogenase] supercomplex by serial mutation of several subunit genes. We examined the properties of Zea mays leaves containing Mu and Ds insertions into nuclear gene exons encoding the critical o- and n-subunits of NDH, respectively. In vivo reduction of plastoquinone in the dark was sharply diminished in maize homozygous mutant compared to normal leaves but not to the extreme degree observed for the corresponding lesions in Arabidopsis. The net carbon assimilation rate (A) at high irradiance and saturating CO2 levels was reduced by one-half due to NDH mutation in maize although no genotypic effect was evident at very low CO2 levels. Simultaneous assessment of chlorophyll fluorescence and A in maize at low (2% by volume) and high (21%) O2 levels indicated the presence of a small, yet detectable, O2-dependent component of total linear photosynthetic electron transport in 21% O2 This O2-dependent component decreased with increasing CO2 level indicative of photorespiration. Photorespiration was generally elevated in maize mutant compared to normal leaves. Quantification of the proportion of total electron transport supporting photorespiration enabled estimation of the bundle sheath cell CO2 concentration (Cb) using a simple kinetic model of ribulose bisphosphate carboxylase/oxygenase function. The A versus Cb relationships overlapped for normal and mutant lines consistent with occurrence of strictly CO2-limited photosynthesis in the mutant bundle sheath cell. The results are discussed in terms of a previously reported CO2 concentration model [Laisk A, Edwards GE (2000) Photosynth Res 66: 199-224]. © 2016 American Society of Plant Biologists. All Rights Reserved.
Influence of Quercetin in the Temporal Regulation of Redox Homeostasis in Drosophila melanogaster.
Subramanian, Perumal; Kaliyamoorthy, Kanimozhi; Jayapalan, Jaime Jacqueline; Abdul-Rahman, Puteri Shafinaz; Haji Hashim, Onn
2017-01-01
Numerous biological processes are governed by the biological clock. Studies using Drosophila melanogaster (L.) are valuable that could be of importance for their effective applications on rodent studies. In this study, the beneficial role of quercetin (a flavonoid) on H2O2 induced stress in D. melanogaster was investigated. D. melanogaster flies were divided into four groups (group I - control, group II - H2O2 (acute exposure), group III - quercetin, and group IV - quercetin + H2O2 treated). Negative geotaxis assay, oxidative stress indicators (protein carbonyls, thiobarbituric reactive substances [TBARS]), and antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione-S-transferase [GST], glutathione peroxidase, and reduced glutathione [GSH]) were measured at 4 h intervals over 24 h and temporal expression of heat shock protein-70 (Hsp70), Upd1 (homolog of IL-6 in Drosophila), and nitric oxide synthase (Nos) was analyzed by Western blotting. Groups II and IV showed altered biochemical rhythms (compared with controls). Decreased mesor values of negative geotaxis, SOD, CAT, GST, and GSH were noticed in H2O2, increased mesor of oxidative stress indicators (TBARS and protein carbonyl content) and a reversibility of the rhythmic characteristics were conspicuous after quercetin treatment. The expression levels of Hsp70, Upd1, and Nos were noticeably maximum at 04:00. Significant elevation of expression by H2O2 was nearly normalized by quercetin treatment. The possible mechanism by which quercetin modulates oxidant-antioxidant imbalance under oxidative stress could be ascribed to the modulation of the rhythmic properties. Our results will be helpful to understand the molecular interlink between circadian rhythm and oxidative stress mechanism. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.
NASA Astrophysics Data System (ADS)
Moser, Gerald; Brenzinger, Kristof; Gorenflo, Andre; Clough, Tim; Braker, Gesche; Müller, Christoph
2017-04-01
To reduce the emissions of greenhouse gases (CO2, CH4 & N2O) it is important to quantify main sources and identify the respective ecosystem processes. While the main sources of N2O emissions in agro-ecosystems under current conditions are well known, the influence of a projected higher level of CO2 on the main ecosystem processes responsible for N2O emissions has not been investigated in detail. A major result of the Giessen FACE in a managed temperate grassland was that a +20% CO2 level caused a positive feedback due to increased emissions of N2O to 221% related to control condition. To be able to trace the sources of additional N2O emissions a 15N tracing study was conducted. We measured the N2O emission and its 15N signature, together with the 15N signature of soil and plant samples. The results were analyzed using a 15N tracing model which quantified the main changes in N transformation rates under elevated CO2. Directly after 15N fertilizer application a much higher dynamic of N transformations was observed than in the long run. Absolute mineralisation and DNRA rates were lower under elevated CO2 in the short term but higher in the long term. During the one year study period beginning with the 15N labelling a 1.8-fold increase of N2O emissions occurred under elevated CO2. The source of increased N2O was associated with NO3- in the first weeks after 15N application. Elevated CO2 affected denitrification rates, which resulted in increased N2O emissions due to a change of gene transcription rates (nosZ/(nirK+nirS)) and resulting enzyme activity (see: Brenzinger et al.). Here we show that the reported enhanced N2O emissions for the first 8 FACE years do prevail even in the long-term (> 15 years). The effect of elevated CO2 on N2O production/emission can be explained by altered activity ratios within a stable microbial community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homayoon, Zahra; Conte, Riccardo; Qu, Chen
2015-08-28
New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are comparedmore » to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less
Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus
Fountain, Jake C.; Scully, Brian T.; Chen, Zhi-Yuan; Gold, Scott E.; Glenn, Anthony E.; Abbas, Hamed K.; Lee, R. Dewey; Kemerait, Robert C.; Guo, Baozhu
2015-01-01
Drought stress in the field has been shown to exacerbate aflatoxin contamination of maize and peanut. Drought and heat stress also produce reactive oxygen species (ROS) in plant tissues. Given the potential correlation between ROS and exacerbated aflatoxin production under drought and heat stress, the objectives of this study were to examine the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the growth of different toxigenic (+) and atoxigenic (−) isolates of Aspergillus flavus and to test whether aflatoxin production affects the H2O2 concentrations that the isolates could survive. Ten isolates were tested: NRRL3357 (+), A9 (+), AF13 (+), Tox4 (+), A1 (−), K49 (−), K54A (−), AF36 (−), and Aflaguard (−); and one A. parasiticus isolate, NRRL2999 (+). These isolates were cultured under a H2O2 gradient ranging from 0 to 50 mM in two different media, aflatoxin-conducive yeast extract-sucrose (YES) and non-conducive yeast extract-peptone (YEP). Fungal growth was inhibited at a high H2O2 concentration, but specific isolates grew well at different H2O2 concentrations. Generally the toxigenic isolates tolerated higher concentrations than did atoxigenic isolates. Increasing H2O2 concentrations in the media resulted in elevated aflatoxin production in toxigenic isolates. In YEP media, the higher concentration of peptone (15%) partially inactivated the H2O2 in the media. In the 1% peptone media, YEP did not affect the H2O2 concentrations that the isolates could survive in comparison with YES media, without aflatoxin production. It is interesting to note that the commercial biocontrol isolates, AF36 (−), and Aflaguard (−), survived at higher levels of stress than other atoxigenic isolates, suggesting that this testing method could potentially be of use in the selection of biocontrol isolates. Further studies will be needed to investigate the mechanisms behind the variability among isolates with regard to their degree of oxidative stress tolerance and the role of aflatoxin production. PMID:26251922
X-ray irradiation activates K+ channels via H2O2 signaling.
Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard
2015-09-09
Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.
X-ray irradiation activates K+ channels via H2O2 signaling
Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard
2015-01-01
Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345
Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages
NASA Astrophysics Data System (ADS)
Wang, Lin; Pal, Anoop K.; Isaacs, Jacqueline A.; Bello, Dhimiter; Carrier, Rebecca L.
2014-09-01
Oxidative stress in the lung epithelial A549 cells and macrophages J774A.1 due to contact with commercially important nanomaterials [i.e., nano-silver (nAg), nano-alumina (nAl2O3), single-wall carbon nanotubes (CNT), and nano-titanium oxide anatase (nTiO2)] was evaluated. Nanomaterial-induced intracellular oxidative stress was analyzed by both H2DCFDA fluorescein probe and GSH depletion, extracellular oxidative stress was assessed by H2HFF fluorescein probes, and the secretion of chemokine IL-8 by A549 cells due to elevation of cellular oxidative stress was also monitored, in order to provide a comprehensive in vitro study on nanomaterial-induced oxidative stress in lung. In addition, results from this study were also compared with an acellular "ferric reducing ability of serum" (FRAS) assay and a prokaryotic cell-based assay in evaluating oxidative damage caused by the same set of nanomaterials, for comparison purposes. In general, it was found that nanomaterial-induced oxidative stress is highly cell-type dependent. In A549 lung epithelial cells, nAg appeared to induce highest level of oxidative stress and cell death followed by CNT, nTiO2, and nAl2O3. Different biological oxidative damage (BOD) assays' (i.e., H2DCFA, GSH, and IL-8 release) results generally agreed with each other, and the same trends of nanomaterial-induced BOD were also observed in acellular FRAS and prokaryotic E. coli K12-based assay. In macrophage J774A.1 cells, nAl2O3 and nTiO2 appeared to induce highest levels of oxidative stress. These results suggest that epithelial and macrophage cell models may provide complimentary information when conducting cell-based assays to evaluate nanomaterial-induced oxidative damage in lung.
Gillespie, Kelly M; Xu, Fangxiu; Richter, Katherine T; McGrath, Justin M; Markelz, R J Cody; Ort, Donald R; Leakey, Andrew D B; Ainsworth, Elizabeth A
2012-01-01
Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration ([CO(2)]) is increasing at an unprecedented rate and will surpass 550 ppm by 2050. This study investigated the molecular, biochemical and physiological changes in soybean exposed to elevated [O(3) ] in a background of ambient [CO(2)] and elevated [CO(2)] in the field. Previously, it has been difficult to demonstrate any link between antioxidant defences and O(3) stress under field conditions. However, this study used principle components analysis to separate variability in [O(3)] from variability in other environmental conditions (temperature, light and relative humidity). Subsequent analysis of covariance determined that soybean antioxidant metabolism increased with increasing [O(3)], in both ambient and elevated [CO(2)]. The transcriptional response was dampened at elevated [CO(2)], consistent with lower stomatal conductance and lower O(3) flux into leaves. Energetically expensive increases in antioxidant metabolism and tetrapyrrole synthesis at elevated [O(3)] were associated with greater transcript levels of enzymes involved in respiratory metabolism. © 2011 Blackwell Publishing Ltd.
Vascular endothelium-specific overexpression of human catalase in cloned pigs
Samuel, M.; Mahan, E.; Padilla, J.; Simmons, G. H.; Arce-Esquivel, A. A.; Bender, S. B.; Whitworth, K. M.; Hao, Y. H.; Murphy, C. N.; Walters, E. M.; Prather, R. S.; Laughlin, M. H.
2012-01-01
The objective of this study was to develop transgenic Yucatan minipigs that overexpress human catalase (hCat) in an endothelial-specific manner. Catalase metabolizes hydrogen peroxide (H2O2), an important regulator of vascular tone that contributes to diseases such as atherosclerosis and preeclampsia. A large animal model to study reduced endothelium-derived H2O2 would therefore generate valuable translational data on vascular regulation in health and disease. Yucatan minipig fetal fibroblasts stably co-transfected with human catalase (Tie2-hCat) and eGFP expression constructs were isolated into single-cell populations. The presence of the Tie2-hCat transgene in individual colonies of fibroblasts was determined by PCR. Transgenic fibroblasts were used for nuclear transfer into enucleated oocytes by electrofusion. A minimum of 140 cloned embryos were transferred per surrogate sow (n = 4). All four surrogates maintained pregnancies and piglets were delivered by cesarean section. Nine male piglets from three of the four litters carried the Tie2-hCat transgene. Expression of human catalase mRNA and overall elevated catalase protein in isolated umbilical endothelial cells from transgenic piglets were verified by RT–PCR and western blot, respectively, and endothelial localization was confirmed by immunohistochemistry. Increased enzymatic activity of catalase in transgenic versus wild-type endothelial cells was inferred based on significantly reduced levels of H2O2 in culture. The similarities in swine and human cardiovascular anatomy and physiology will make this pig model a valuable source of information on the putative role of endothelium-derived H2O2 in vasodilation and in the mechanisms underlying vascular health and disease. PMID:21170678
Meng, Yan; Lou, Yun-sheng; Wu, Lei; Cui, He-yang; Wang, Wei-qing
2015-01-01
A pot experiment was conducted to investigate the effects of silicon supply on rice growth and methane (CH4) emission in paddy field under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B (ambient, A) and elevated UV-B radiation (elevated by 20%, E) ; with four silicon supply levels, i.e., Si0 (control, without silicon), Si2 (as sodium silicate, 100 kg SiO2 . hm-2), Si2 (as sodium silicate, 200 kg SiO2 hm-2) and Si3 (as slag fertilizer, 200 kg SiO2 . hm-2). The results indicated that, silicon supply obviously alleviated the depressive effect of elevated UV-B radiation on rice growth, and increased the tiller numbers, chlorophyll content, and shoot and root dry masses. Silicon supply promoted rice growth, which increased with the silicon supply level (sodium silicate). Slag fertilizer was better than*sodium silicate in promoting rice growth. CH4 flux and accumulated CH4emission were obviously increased by elevated UV-B radiation, but significantly decreased by silicon application. CH4 emission was reduced with increasing the silicon supply level. Under the same silicon supply level, slag fertilizer was better than sodium silicate in inhibiting CH4 flux and accumulated CH4 emission. This research suggested that fertilizing slag in rice production was helpful not only in utilizing industrial wastes, but also in significantly mitigating CH4 emissions in rice paddy under elevated UV-B radiation.
The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria.
Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P; Yi, Ling; Kaler, Stephen G; Lutsenko, Svetlana; Ralle, Martina
2016-08-05
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria,more » whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).« less
The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria*
Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P.; Yi, Ling; Kaler, Stephen G.; Lutsenko, Svetlana; Ralle, Martina
2016-01-01
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). PMID:27226607
Kirkendall, D T; Grogan, J W; Bowers, R G
1991-01-01
Body composition and appropriate playing weight are frequently requested by coaches. Numerous methods for estimating these figures are available, and each has its own limitation, be it technical or biological. A comparison of three common methods was made-underwater weighting (H2O, the criterion), skinfold thicknesses (SF), and commercial bioelectrical impedance analysis (BIA). Subjects were 29 professional football players measured by each of the three methods after an overnight fast. Data was collected 10 weeks preceding the players' formal training camp. There was no difference for percentage of weight as fat between SF (15.8%) and H2O (14.2%). Bioelectrical impedance analysis significantly (p < .05) overestimated percent fat (19.2%) compared to H20. Error rates when regressing SF on H2O were favorable, whether expressed for the whole sample (3.04%) or by race (1.78% or 3.56% for whites and blacks, respectively). Regression of BIA on H2O showed an elevated, overall error rate (14.12%) and elevated error rates for whites (11.57%) and blacks (13.81%). Of the two estimates of body composition on a racially mixed sample of males, SF provided the best estimate with the least amount of error. J Orthop Sports Phys Ther 1991;13(5):235-239.
Riikonen, Johanna; Holopainen, Toini; Oksanen, Elina; Vapaavuori, Elina
2005-05-01
Effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on photosynthesis and related biochemistry of two European silver birch (Betula pendula Roth) clones were studied under field conditions during 1999-2001. Seven-year-old trees of Clones 4 and 80 were exposed for 3 years to the following treatments in an open-top chamber experiment: outside control (OC), chamber control (CC), 2x ambient [CO2] (EC), 2x ambient [O3] (EO) and 2x ambient [CO2] + 2x ambient [O3] (EC+EO). During the experiment, gas exchange, chlorophyll fluorescence, amount and activity of Rubisco, concentrations of chlorophyll, soluble protein, soluble sugars, starch, nitrogen (N) and carbon:nitrogen (C:N) ratio were determined in short- and long-shoot leaves. Elevated [CO2] increased photosynthetic rate by around 30% when measurements were made at the growth [CO2]. When measured at ambient [CO2], photosynthesis was around 15% lower in EC trees than in CC trees. This was related to a approximately 10% decrease in total leaf N, to 26 and 20% decreases in the amount and activity of Rubisco, respectively, and to a 49% increase in starch concentration in elevated [CO2]. Elevated [O3] had no significant effect on gas exchange parameters and its effect on biochemistry was small in both clones. However, elevated [O3] decreased the proportion of Rubisco in total soluble proteins and the apparent quantum yield of photosystem II (PSII) photochemistry in light and increased non-photochemical quenching in 2000. The interactive effect of CO2 and O3 was variable. Elevated [O3] decreased chlorophyll concentration only in EO trees, and the EC+EO treatment decreased the total activity of Rubisco and increased the C:N ratio more than the EO treatment alone. The small effect of elevated [O3] on photosynthesis indicates that these young silver birches were fairly tolerant to annual [O3] exposures that were 2-3 times higher than the AOT40 value of 10 ppm.h. set as a critical dose for forest trees.
The Indirect Effect of UV: Some Good News for Microbes?
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Purcell, Diane; Rogoff, Dana; Wilson, Cindy; Brass, James A. (Technical Monitor)
2002-01-01
Ultraviolet (UV) radiation is of great concern because its biological effects are predominantly harmful. UV damage may be direct or indirect, the latter mediated through the photochemical production of reactive oxygen species such as hydrogen peroxide. We measured the effect of H2O2 on various microbes both in the lab and in nature. At our study site in Yellowstone National Park, there is a UV-induced diurnal fluctuation of H2O2 extending up to one micron. Levels of DNA synthesis resulting from exposure to H2O2 were measured in several algal mats. Within naturally-occurring concentrations of H2O2, DNA synthesis increased. Laboratory studies showed that similar concentrations of H2O2 induce mitosis. We hypothesize that the low levels of H2O2 encountered in nature are inducing mitotic division. At higher levels of H2O2 a second peak in DNA synthesis was found which we interpret to represent DNA damage repair. These experiments suggest that in nature, the low levels of H2O2 produced may have a mitogenic rather than damaging effect. Assuming early levels of UV radiation were substantially higher at the time protists evolved, differential mitogenic effects could have influenced protistan evolution. With H2O2 likely to be present on such bodies as Mars and Europa, the response of organisms will be concentration-dependent and not linear.
Shalimu, Dilinuer; Sun, Jia; Baskin, Carol C; Baskin, Jerry M; Sun, Liwei; Liu, Yujun
2016-01-01
The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1-42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1-84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and scavenging enzymes. Published by Oxford University Press on behalf of the Annals of Botany Company.
Shalimu, Dilinuer; Sun, Jia; Baskin, Carol C.; Baskin, Jerry M.; Sun, Liwei; Liu, Yujun
2016-01-01
The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1–42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1–84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and scavenging enzymes. PMID:27154624
Hydrogen peroxide and methylhydroperoxide variations in Houston urban air during May 2009
NASA Astrophysics Data System (ADS)
Golovko, J.; Rappenglueck, B.; Jobson, B. T.
2010-12-01
Formation and destruction of peroxides along with OH and ozone cycles plays a significant role in the oxidizing capacity of the troposphere. Measurements of hydrogen peroxide and methylhydroperoxide (MHP) were carried out as a part of the Study of Houston Atmospheric Radical Precursors (SHARP) campaign during late spring 2009. The purpose of this study was to investigate peroxides variations in Houston urban atmosphere and factors controlling their distribution. Diurnal variation of hydrogen peroxide show typical pattern with the broad maximum in the afternoon for the whole period of time, with an exception on May 19th when the second maximum was determined after the sunrise. Less abundant in the atmosphere and possibly originating from different sources methylhydroperoxide demonstrated similar diurnal pattern of elevated mixing ratios in the afternoon. Elevated values of hydrogen peroxide in Houston area are associated with warm, moderately humid air, while southerly winds from the Gulf of Mexico result in H2O2 mixing ratio decrease. Some selected VOCs were analyzed in order to evaluate possible sources for both peroxides. Meteorological conditions significantly control H2O2 mixing ratios, showing elevated values primarily related to easterly and to a lesser extent to southeasterly winds. Similar pattern with the significant role of the easterly winds was observed for VOCs and was more pronounced during nighttime, pointing into industrial sector (Houston Ship Channel) influence. Increased values of H2O2/MHP ratio are mostly associated with drier northerly and northeasterly air masses, pointing out different solubility and origin of H2O2 and MHP.
Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer
2007-09-01
Davidson NE, & Casero RA Jr. Spermine oxidase SMO(PAOh1), not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Elevated levels of all three naturally occurring polyamines, spermine , spermidine and...protein in multiple human breast cancer cell lines. This suppression is both time and dose dependent. A relationship between oligoamine structure , growth
Donnelly, Alison; Craigon, Jim; Black, Colin R.; Colls, Jeremy J.; Landon, Geoff
2001-04-01
This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 µmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 µmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.
Activation of cyclic electron flow by hydrogen peroxide in vivo
Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio; ...
2015-04-13
Cyclic electron flow (CEF) around photosystem I is thought to balance the ATP/NADPH energy budget of photosynthesis, requiring that its rate be finely regulated. The mechanisms of this regulation are not well understood. We observed that mutants that exhibited constitutively high rates of CEF also showed elevated production of H 2O 2. We thus tested the hypothesis that CEF can be activated by H 2O 2 in vivo. CEF was strongly increased by H 2O 2 both by infiltration or in situ production by chloroplast-localized glycolate oxidase, implying that H 2O 2 can activate CEF either directly by redox modulationmore » of key enzymes, or indirectly by affecting other photosynthetic processes. CEF appeared with a half time of about 20 min after exposure to H 2O 2, suggesting activation of previously expressed CEF-related machinery. H 2O 2-dependent CEF was not sensitive to antimycin A or loss of PGR5, indicating that increased CEF probably does not involve the PGR5-PGRL1 associated pathway. In contrast, the rise in CEF was not observed in a mutant deficient in the chloroplast NADPH:PQ reductase (NDH), supporting the involvement of this complex in CEF activated by H 2O 2. In conclusion, we propose that H 2O 2 is a missing link between environmental stress, metabolism, and redox regulation of CEF in higher plants.« less
2011-01-01
pressure (PEEP) of 5 cm H2O was initiated. Ventilator mode was changed to APRV with incremental elevations of CPAP -high from 10 to 35 cm H2O. After a...Results. Increasing CPAP caused increased PCWP and LAPmeasurements above their baseline values. Mean PCWP and LAP were linearly related (LAP = 0.66...PCWP + 4.5 cmH2O, R2 = 0.674, and P < .001) over a wide range of high and low CPAP values during APRV. With return to conventional ventilation, PCWP
Lim, Chang Su; Cho, Myoung Ki; Park, Mi Yeon
2017-01-01
Abstract Hydrogen peroxide (H2O2) is important in the regulation of a variety of biological processes and is involved in various diseases. Quantitative measurement of H2O2 levels at the subcellular level is important for understanding its positive and negative effects on biological processes. Herein, a two‐photon ratiometric fluorescent probe (SHP‐Cyto) with a boronate‐based carbamate leaving group as the H2O2 reactive trigger and 6‐(benzo[d]thiazol‐2′‐yl)‐2‐(N,N‐dimethylamino) naphthalene (BTDAN) as the fluorophore was synthesized and examined for its ability to detect cytosolic H2O2 in situ. This probe, based on the specific reaction between boronate and H2O2, displayed a fluorescent color change (455 to 528 nm) in response to H2O2 in the presence of diverse reactive oxygen species in a physiological medium. In addition, ratiometric two‐photon microscopy (TPM) images with SHP‐Cyto revealed that H2O2 levels gradually increased from brain to kidney, skin, heart, lung, and then liver tissues. SHP‐Cyto was successfully applied to the imaging of endogenously produced cytosolic H2O2 levels in live cells and various rat organs by using TPM. PMID:29318096
Asselbergh, Bob; Curvers, Katrien; França, Soraya C.; Audenaert, Kris; Vuylsteke, Marnik; Van Breusegem, Frank; Höfte, Monica
2007-01-01
Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H2O2) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H2O2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H2O2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H2O2-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea. PMID:17573540
Sofo, Adriano; Scopa, Antonio; Nuzzaci, Maria; Vitti, Antonella
2015-06-12
Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants.
Sofo, Adriano; Scopa, Antonio; Nuzzaci, Maria; Vitti, Antonella
2015-01-01
Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants. PMID:26075872
Negi, Sanjana; Tak, Himanshu; Ganapathi, T R
2018-03-01
MusaSNAC1 function in H 2 O 2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO 2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H 2 O 2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H 2 O 2 generation in guard cells, regulated by a NAC-protein in banana.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fang; Liu, Xiansheng; Song, Wenbo
2014-10-15
Al{sub 2−2x}(ZrMg){sub x}W{sub 3}O{sub 12} for 0≤x≤1.0 are synthesized to reduce the phase transition temperature of Al{sub 2}W{sub 3}O{sub 12}. It is found that the incorporation of (ZrMg){sup 6+} into the lattice of Al{sub 2}W{sub 3}O{sub 12} not only reduces its orthorhombic-to-monoclinic phase transition temperature but also elevates its softening temperature, broadening its applicable temperature range considerably. Al{sub 2−2x}(ZrMg){sub x}W{sub 3}O{sub 12} with x<0.5 exhibit low coefficients of thermal expansion (CTEs) and non-hygroscopicity, while those for x≥0.7 are obviously hygroscopic and the CETs decrease with increasing the content of (ZrMg){sup 6+} so that Al{sub 0.2}(ZrMg){sub 0.9}W{sub 3}O{sub 12} and ZrMgW{submore » 3}O{sub 12} exhibit negative thermal expansion. Temperature-dependent Raman spectroscopic study shows the hardening of W–O bonds above 373 K which is attributed to the release of crystal water. The effect of crystal water on the thermal expansion property is discussed based on the hydrogen bond between H in crystal water and electronegative O in Al(ZrMg)–O–W linkages. - Graphical abstract: (a and b) Temperature dependent Raman spectra of Al{sub 2−x}(ZrMg){sub x}W{sub 3}O{sub 12} (x=0.1, 0.2), (c and d) Building block of a unit cell of Al{sub 2−x}(ZrMg){sub x}W{sub 3}O{sub 12}·n(H{sub 2}O) and schematic showing the effect of crystal water on Al(Zr, Mg)–O–W linkages. - Highlights: • (ZrMg){sup 6+} reduces orthorhombic-to-monoclinic phase transition of Al{sub 2}W{sub 3}O{sub 12}. • The incorporation of (ZrMg){sup 6+} elevates the softening temperature of Al{sub 2}W{sub 3}O{sub 12}. • Al{sub 2−2x}(ZrMg){sub x}W{sub 3}O{sub 12} (x<0.5) exhibit low CTEs and non-hygroscopicity. • Al{sub 0.2}(ZrMg){sub 0.9}W{sub 3}O{sub 12}·0.8H{sub 2}O and ZrMgW{sub 3}O{sub 12}·2H{sub 2}O present NTE. • Hydrogen bond between H in H{sub 2}O and O in Al(ZrMg)–O–W affects thermal expansion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormond, Thomas K.; Scheer, Adam M.; Nimlos, Mark R.
2015-07-16
The thermal decomposition of cyclopentadienone (C5H4-O) has been studied in a flash pyrolysis continuous flow microreactor. Passing dilute samples of o-phenylene sulfite (C6H4O2SO) in He through the microreactor at elevated temperatures yields a relatively clean source of C5H4-O. The pyrolysis of C5H4-O was investigated over the temperature range 1000-2000 K.
Hui, Ada; Lam, Xanthe M; Kuehl, Christopher; Grauschopf, Ulla; Wang, Y John
2015-01-01
When isolator technology is applied to biotechnology drug product fill-finish process, hydrogen peroxide (H2O2) spiking studies for the determination of the sensitivity of protein to residual peroxide in the isolator can be useful for assessing a maximum vapor phase hydrogen peroxide (VPHP) level. When monoclonal antibody (mAb) drug products were spiked with H2O2, an increase in methionine (Met 252 and Met 428) oxidation in the Fc region of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Fc-Met and H2O2 was stoichiometric (i.e., 1:1 molar ratio), and the reaction rate was dependent on the concentrations of mAb and H2O2. The consumption of H2O2 by Fc-Met oxidation in the mAb followed pseudo first-order kinetics, and the rate was proportional to mAb concentration. The extent of Met 428 oxidation was half of that of Met 252, supporting that Met 252 is twice as reactive as Met 428. Similar results were observed for free L-methionine when spiked with H2O2. However, mAb formulation excipients may affect the rate of H2O2 consumption. mAb formulations containing trehalose or sucrose had faster H2O2 consumption rates than formulations without the sugars, which could be the result of impurities (e.g., metal ions) present in the excipients that may act as catalysts. Based on the H2O2 spiking study results, we can predict the amount Fc-Met oxidation for a given protein concentration and H2O2 level. Our kinetic modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study to support the use of VPHP isolator for antibody drug product manufacture. Isolator technology is increasing used in drug product manufacturing of biotherapeutics. In order to understand the impact of residual vapor phase hydrogen peroxide (VPHP) levels on protein product quality, hydrogen peroxide (H2O2) spiking studies may be performed to determine the sensitivity of monoclonal antibody (mAb) drug products to residual peroxide in the isolator. In this study, mAbs were spiked with H2O2; an increase in methionine (Met) oxidation of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Met and H2O2 was 1:1, and its rate was dependent on mAb and H2O2 concentrations. Consumption of H2O2 by Met followed pseudo first-order kinetics; the rate was proportional to mAb concentration. Formulations containing trehalose or sucrose had faster consumption rates than formulations without the sugars, which could be due to excipient impurities. Based on H2O2 spiking study results, we can predict the amount of Met oxidation for a given mAb concentration and H2O2 level. Our modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study that supports using VPHP isolators during manufacture of mAb products. © PDA, Inc. 2015.
Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.;
2008-01-01
The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.
Nikdel, K; Aminafshar, M; Mohammadi-Sangcheshmeh, A; EmamJomeh-Kashan, N; Seyedjafari, E
2017-05-20
In this study, in vitro maturation was performed in presence of various concentrations (0, 10, 100, or 1000 µM) of H2O2. The intracellular glutathione (GSH) level, fertilization, cleavage, and blastocyst rates, total cell number, and apoptotic cell number and expression of Bax, Bcl-2, and p53 genes in blastocyst-stage embryos were studied. At 10 μM H2O2 concentration, a higher GSH level was detected in comparison to the other groups while oocytes exposed to 1000 μM H2O2 had the lowest GSH level. Treatment of oocytes with 1000 μM H2O2 decreased the rate of two pronuclei formation as compared with other groups. A higher rate of blastocyst formation was seen in 100 μM H2O2 group as compared with the control group. However, exogenous H2O2 in maturation medium did not affect total cell numbers and apoptotic cell ratio at the blastocyst stage. Moreover, mRNA transcript abundance of Bax, Bcl-2, and p53 genes was similar between blastocysts derived from H2O2-induced oocytes and control blastocysts. Treatment of oocytes with H2O2 at mild level during in vitro maturation had a positive effect on GSH level and this, in turn, may lead to improvement in preimplantation embryonic development.
NASA Astrophysics Data System (ADS)
Balance, Connor
Some of the strongest emission lines observed from a variety of astronomical sources originate from transitions between fine-structure levels in the ground term of neutral atoms and lowly-charged ions. These fine-structure levels are populated due to collisions with -, H+, H, He, and/or H2 depending on the temperature and ionization fraction of e the environment. As fine-structure excitation measurements are rare, modeling applications depend on theoretically determined rate coefficients. However, for many ions electron collision studies have not been performed for a decade or more, while over that time period the theoretical/computational methodology has significantly advanced. For heavy-particle collisions, very few systems have been studied. As a result, most models rely on estimates or on low-quality collisional data for fine-structure excitation. To significantly advance the state of fine-structure data for astrophysical models, we propose a collaborative effort in electron collisions, heavy-particle collisions, and quantum chemistry. Using the R-matrix method, fine-structure excitation due to electron collisions will be investigated for C, O, Ne^+, Ne^2+, Ar^+, Ar^2+, Fe, Fe^+, and Fe^2+. Fine-structure excitation due to heavy-particle collisions will be studied with a fully quantum molecular-orbital approach using potential energy surfaces computed with a multireference configuration-interaction method. The systems to be studied include: C/H^+, C/H2, O/H^+, O/H2, Ne^+/H, Ne^+/H2, Ne^2+/H, Ne^2+/H2, Fe/H^+, Fe^+/H, and Fe^2+/H. 2D rigid-rotor surfaces will be constructed for H2 collisions, internuclear distance dependent spin-orbit coupling will be computed in some cases, and all rate coefficients will be obtained for the temperature range 10-2000 K. The availability the proposed fine-structure excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, including young stellar objects, protoplanetary disks, planetary nebulae, photodissociation regions, active galactic nuclei, and x-ray dominated regions, hence elevating the scientific return from current (SOFIA, Spitzer, Herschel, HST) and upcoming (JWST) NASA IR/Submm astrophysics missions, as well as from ground-based telescopes.
Shu, Zengquan; Singh, Arvinder; Klamerth, Nikolaus; McPhedran, Kerry; Bolton, James R; Belosevic, Miodrag; Gamal El-Din, Mohamed
2016-09-15
Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because of the possible formation of various oxidation by-products. However, prolonged exposure of goldfish (60 days) in UV/H2O2 treated effluent showed a restoration trend of ER gene expressions, especially in the summer. Collectively, our findings provide valuable indications regarding the long-term in vivo assessment of the MP UV/H2O2 process for removing/degrading endocrine disrupting compounds detected in the municipal wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.
Wang, Xiao-Gang; Carrington, Tucker
2015-07-14
In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.
The vibration-rotation-tunneling levels of N2-H2O and N2-D2O
NASA Astrophysics Data System (ADS)
Wang, Xiao-Gang; Carrington, Tucker
2015-07-01
In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.
NASA Astrophysics Data System (ADS)
Pentjuss, E.; Lusis, A.; Gabrusenoks, J.; Bajars, G.
2015-03-01
Na-Al-Si glass fabrics fibres contain Na+ ions that diffuse to its surface and along with CO2 and H2O from atmosphere create here the shell of carbonate hydrates. The heating of fabric leads to weight loss by evolving these substances. In this work the results of weight recovery study at room relative humidity (20% - 50%) and elevated humidity (near 70%) of fabrics after its heating at different temperatures (70°C - 150°C) are compared. The experiments shoved the different weight recovery kinetics. The initial exponential stages up to 0.3 h - 0.5 h of the both recoveries are associated with water absorption and differ by its levels. In a case of lower environment humidity the later weight increase are restricted by its value, but at an elevated humidity has a maximum and followed weight increase. The reasons of observed differences are discussed.
MAO, JINGJIE; LI, ZUANFANG; LIN, RUHUI; ZHU, XIAOQIN; LIN, JIUMAO; PENG, JUN; CHEN, LIDIAN
2015-01-01
Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be associated with the upregulation of Nrf2 and HO-1 mRNA and protein expression levels in PC12 cells. PMID:26622408
Bhattacharyya, Sudeepa; Pence, Lisa; Beger, Richard; Chaudhuri, Shubhra; McCullough, Sandra; Yan, Ke; Simpson, Pippa; Hennings, Leah; Hinson, Jack; James, Laura
2013-01-01
High doses of acetaminophen (APAP) result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP) or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT) levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA) expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS) model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines. PMID:24958141
Urban Emissions of Water Vapor in Winter.
Salmon, Olivia E; Shepson, Paul B; Ren, Xinrong; Marquardt Collow, Allison B; Miller, Mark A; Carlton, Annmarie G; Cambaliza, Maria O L; Heimburger, Alexie; Morgan, Kristan L; Fuentes, Jose D; Stirm, Brian H; Grundman, Robert; Dickerson, Russell R
2017-09-16
Elevated water vapor (H 2 O v ) mole fractions were occassionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H 2 O v excess signal was observed, H 2 O v emissions estimates range between 1.6 × 10 4 and 1.7 × 10 5 kg s -1 , and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H 2 O v from the urban study sites. Estimates of H 2 O v emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H 2 O v emission rates estimated from observations. Instances of urban H 2 O v enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H 2 O v excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H 2 O v and other greenhouse gas mole fractions contribute only 0.1°C day -1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H 2 O v at the top of the boundary layer. While the radiative impacts of urban H 2 O v emissions do not meaningfully influence urban heat island intensity, urban H 2 O v emissions may have the potential to alter downwind aerosol and cloud properties.
Wheat grain quality under enhanced tropospheric CO{sub 2} and O{sub 3} concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudorff, B.F.T.; Mulchi, C.L.; Fenny, P.
It is expected that the progressive increase of tropospheric trace gases such as CO{sub 2} and O{sub 3} will have a significant impact on agricultural production. The single and combined effects of CO{sub 2} enrichment and tropospheric O{sub 3} on grain quality characteristics in soft red winter wheat (Triticum aestivum L.) were examined in field studies using 3 m in diam. open-top chambers. Wheat cultivars {open_quotes}Massey{close_quotes} (1991) and {open_quotes}Saluda{close_quotes} (1992) were exposed to two CO{sub 2} concentrations (350 vs. 500 {mu}mol CO{sub 2} mol{sup {minus}1}; 12 h d{sup {minus}1}) in combination with two O{sub 3} regimes (charcoal-filtered air vs. ambientmore » air + 40 {plus_minus} 20 nmol O{sub 3} mol{sup {minus}1}, 7 h d{sup {minus}1}; Monday to Friday) from late March until maturity in June. Grain quality characteristics investigated included: test weight, milling and baking quality, flour yield, protein content, softness equivalent, alkaline water retention capacity, and cookie diameter. In general, exposure of plants to either elevated CO{sub 2} or weekly chronic O{sub 3} episodes caused only small changes in grain quality. Milling and baking quality score were not significantly changed in response to treatments in both years. Flour yield was increased by elevated CO{sub 2} but this increase was counteracted when elevated CO{sub 2} was combined with chronic O{sub 3} exposure. Flour protein contents were increased by enhanced O{sub 3} under elevated CO{sub 2}. Although the single effect of either CO{sub 2} enrichment or chronic O{sub 3} exposure had some impact o grain quality characteristics, it was noted that the combined effect of these gases was minor. It is likely that the concomitant increase of CO{sub 2} and O{sub 3} in the troposphere will have no significant impact on wheat grain quality. 25 refs., 1 fig., 2 tabs.« less
Gene expression in Pseudomonas aeruginosa exposed to hydroxyl-radicals.
Aharoni, Noa; Mamane, Hadas; Biran, Dvora; Lakretz, Anat; Ron, Eliora Z
2018-05-01
Recent studies have shown the efficiency of hydroxyl radicals generated via ultraviolet (UV)-based advanced oxidation processes (AOPs) combined with hydrogen peroxide (UV/H 2 O 2 ) as a treatment process in water. The effects of AOP treatments on bacterial gene expression was examined using Pseudomonas aeruginosa strain PAO1 as a model-organism bacterium. Many bacterial genes are not expressed all the time, but their expression is regulated. The regulation is at the beginning of the gene, in a genetic region called "promoter" and affects the level of transcription (synthesis of messenger RNA) and translation (synthesis of protein). The level of expression of the regulated genes can change as a function of environmental conditions, and they can be expressed more (induced, upregulated) or less (downregulated). Exposure of strain PAO1 to UV/H 2 O 2 treatment resulted in a major change in gene expression, including elevated expression of several genes. One interesting gene is PA3237, which was significantly upregulated under UV/H 2 O 2 as compared to UV or H 2 O 2 treatments alone. The induction of this gene is probably due to formation of radicals, as it is abolished in the presence of the radical scavenger tert-butanol (TBA) and is seen even when the bacteria are added after the treatment (post-treatment exposure). Upregulation of the PA3237 promoter could also be detected using a reporter gene, suggesting the use of such genetic constructs to develop biosensors for monitoring AOPs in water-treatment plants. Currently biosensors for AOPs do not exist, consequently impairing the ability to monitor these processes on-line according to radical exposure in natural waters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Carroll, Chad C; O'Connor, Devin T; Steinmeyer, Robert; Del Mundo, Jonathon D; McMullan, David R; Whitt, Jamie A; Ramos, Jahir E; Gonzales, Rayna J
2013-07-01
This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P < 0.05) compared with preexercise, but returned to baseline at 24 h (PRE: 60 ± 10, 4 h: 106 ± 22, 24 h: 72 ± 8 nmol PGH2·g total protein(-1)·min(-1)). COX-2 activity was elevated at 4 and 24 h after RE (P < 0.05, PRE: 51 ± 7, 4 h: 100 ± 19, 24 h: 98 ± 14 nmol PGH2·g total protein(-1)·min(-1)). The protein level of COX-1 was not altered (P > 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.
Is the foot elevation the optimal position for wound healing of a diabetic foot?
Park, D J; Han, S K; Kim, W K
2010-03-01
In managing diabetic foot ulcers, foot elevation has generally been recommended to reduce oedema and prevent other sequential problems. However, foot elevation may decrease tissue oxygenation of the foot more than the dependent position since the dependent position is known to increase blood flow within the arterial system. In addition, diabetic foot ulcers, which have peripheral vascular insufficiency, generally have less oedema than other wounds. Therefore, we argue that foot elevation may not be helpful for healing of vascularly compromised diabetic foot ulcers since adequate tissue oxygenation is an essential factor in diabetic wound healing. The purpose of this study was to evaluate the influence of foot height on tissue oxygenation and to determine the optimal foot position to accelerate wound healing of diabetic foot ulcers. This study included 122 cases (73 males and 47 females; two males had bilateral disease) of diabetic foot ulcer patients aged 40-93 years. Trans-cutaneous partial oxygen tension (TcpO(2)) values of diabetic feet were measured before and after foot elevation (n=21). Elevation was achieved by placing a foot over four cushions. We also measured foot TcpO(2) values before and after lowering the feet (n=122). Feet were lowered to the patient's tibial height, approximately 30-35 cm, beside a bed handrail. Due to the large number of lowering measurements, we divided them into five sub-groups according to initial TcpO(2.) Tissue oxygenation values were compared. Foot-elevation-lowered TcpO(2) values before and after elevation were 32.5+/-22.2 and 23.8+/-23.1 mmHg (p<0.01), respectively. Foot-lowering-augmented TcpO(2) values before and after lowering were 44.6+/-23.8 and 58.0+/-25.9 mmHg (p<0.01), respectively. The lower the initial TcpO(2) level, the more the TcpO(2) level increased. The foot lowering, rather than elevation, significantly augments TcpO(2) and may stimulate healing of diabetic foot ulcers. (c) 2008 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Cai, Tingdong; Gao, Guangzhen; Liu, Ying
2012-10-01
A multiplexed diode-laser sensor system based on second harmonic detection of wavelength modulation spectroscopy (WMS) is developed for application at elevated temperatures with two near-infrared diode lasers multiplexed using a frequency-division multiplexing scheme. One laser is tuned over a H(2)O line pair near 7079.176 and 7079.855 cm(-1), and another laser is tuned over a pair of CO(2) and CO lines near 6361.250 and 6361.344 cm(-1). Temperature and concentrations of H(2)O, CO(2), and CO could be measured simultaneously by this system. In order to remove the need for calibration and correct for transmission variation due to beam steering, mechanical misalignments, soot, and windows fouling, the WMS-1f normalized 2f method is used. Demonstration experiments are conducted in a heated static cell. The precision of temperature and the concentrations for H(2)O, CO(2), and CO are found to be 1.57%, 3.87%, 3.01%, and 3.58%, respectively. These results illustrate the potential of this sensor for applications at high temperatures.
Towanda, Trisha; Thuesen, Erik V
2012-07-15
Some photosynthetic organisms benefit from elevated levels of carbon dioxide, but studies on the effects of elevated PCO(2) on the algal symbionts of animals are very few. This study investigated the impact of hypercapnia on a photosynthetic symbiosis between the anemone Anthopleura elegantissima and its zooxanthella Symbiodinium muscatinei. Anemones were maintained in the laboratory for 1 week at 37 Pa PCO(2) and pH 8.1. Clonal pairs were then divided into two groups and maintained for 6 weeks under conditions naturally experienced in their intertidal environment, 45 Pa PCO(2), pH 8.1 and 231 Pa PCO(2), pH 7.3. Respiration and photosynthesis were measured after the 1-week acclimation period and after 6 weeks in experimental conditions. Density of zooxanthellal cells, zooxanthellal cell size, mitotic index and chlorophyll content were compared between non-clonemate anemones after the 1-week acclimation period and clonal anemones at the end of the experiment. Anemones thrived in hypercapnia. After 6 weeks, A. elegantissima exhibited higher rates of photosynthesis at 45 Pa (4.2 µmol O(2) g(-1) h(-1)) and 231 Pa (3.30 µmol O(2) g(-1) h(-1)) than at the initial 37 Pa (1.53 µmol O(2) g(-1) h(-1)). Likewise, anemones at 231 Pa received more of their respiratory carbon from zooxanthellae (CZAR = 78.2%) than those at 37 Pa (CZAR = 66.6%) but less than anemones at 45 Pa (CZAR = 137.3%). The mitotic index of zooxanthellae was significantly greater in the hypercapnic anemones than in anemones at lower PCO(2). Excess zooxanthellae were expelled by their hosts, and cell densities, cell diameters and chlorophyll contents were not significantly different between the groups. The response of A. elegantissima to hypercapnic acidification reveals the potential adaptation of an intertidal, photosynthetic symbiosis for high PCO(2).
Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid.
Muhammad, Noor; Nadeem, Sohail; Mustafa, M T
2018-01-01
Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4-C2H6O2 (manganese zinc ferrite-ethylene glycol), NiZnFe2O4-C2H6O2 (Nickel zinc ferrite-ethylene glycol), Fe2O4-C2H6O2 (magnetite ferrite-ethylene glycol), NiZnFe2O4-H2O (Nickel zinc ferrite-water), MnZnFe2O4-H2O (manganese zinc ferrite-water), and Fe2O4-H2O (magnetite ferrite-water) nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier's law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto-thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement.
H2O2 levels in rainwater collected in south Florida and the Bahama Islands
NASA Technical Reports Server (NTRS)
Zika, R.; Saltzman, E.; Chameides, W. L.; Davis, D. D.
1982-01-01
Measurements of H2O2 in rainwater collected in Miami, Florida, and the Bahama Islands area indicate the presence of H2O2 concentration levels ranging from 100,000 to 700,000 M. No systematic trends in H2O2 concentration were observed during an individual storm, in marked contrast to the behavior of other anions for example, NO3(-), SO4(-2), and Cl(-). The data suggest that a substantial fraction of the H2O2 found in precipitation is generated by aqueous-phase reactions within the cloudwater rather than via rainout and washout of gaseous H2O2.
Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y
2001-09-01
Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.
Miyayama, Takamitsu; Arai, Yuta; Suzuki, Noriyuki; Hirano, Seishiro
2013-03-08
Silver (Ag) possesses antibacterial activity and has been used in wound dressings and deodorant powders worldwide. However, the metabolic behavior and biological roles of Ag in mammals have not been well characterized. In the present study, we exposed human bronchial epithelial cells (BEAS-2B) to AgNO3 and investigated uptake and intracellular distribution of Ag, expression of metallothionein (MT), generation of reactive oxygen species (ROS), and changes in mitochondrial respiration. The culture medium concentration of Ag decreased with time and stabilized at 12h. The concentration of both Ag and MT in the soluble cellular fraction increased up to 3h and then decreased, indicating that cytosolic Ag relocated to the insoluble fraction of the cells. The levels of mRNAs for the major human MT isoforms MT-I and MT-II paralleled with the protein levels of Ag-MT. The intensity of fluorescence derived from ROS was elevated in the mitochondrial region at 24h. Ag decreased mitochondrial oxygen consumption in a dose-dependent manner and the activity of mitochondrial complex I-IV enzymes was significantly inhibited following exposure to Ag. In a separate experiment, we found that hydrogen peroxide (H2O2) at concentrations as low as 0.001% (equivalent to the concentration of H2O2 in Ag-exposed cells) removed Ag from MT. These results suggest MT was decomposed by cytosolic H2O2, and then Ag released from MT relocated to insoluble cellular fractions and inhibited electron chain transfer of mitochondrial complexes, which eventually led to cell damage. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress.
Chan, Jeremy Soon Kiat; Tan, Ming Jie; Sng, Ming Keat; Teo, Ziqiang; Phua, Terri; Choo, Chee Chong; Li, Liang; Zhu, Pengcheng; Tan, Nguan Soon
2017-01-19
Histological inspection of visually normal tissue adjacent to neoplastic lesions often reveals multiple foci of cellular abnormalities. This suggests the presence of a regional carcinogenic signal that spreads oncogenic transformation and field cancerization. We observed an abundance of mutagenic reactive oxygen species in the stroma of cryosectioned patient tumor biopsies, indicative of extratumoral oxidative stress. Diffusible hydrogen peroxide (H 2 O 2 ) was elevated in the conditioned medium of cultured skin epithelia at various stages of oncogenic transformation, and H 2 O 2 production increased with greater tumor-forming and metastatic capacity of the studied cell lines. Explanted cancer-associated fibroblasts (CAFs) also had higher levels of H 2 O 2 secretion compared with normal fibroblasts (FIBs). These results suggest that extracellular H 2 O 2 acts as a field effect carcinogen. Indeed, H 2 O 2 -treated keratinocytes displayed decreased phosphatase and tensin homolog (PTEN) and increased Src activities because of oxidative modification. Furthermore, treating FIBs with CAF-conditioned medium or exogenous H 2 O 2 resulted in the acquisition of an oxidative, CAF-like state. In vivo, the proliferative potential and invasiveness of composite tumor xenografts comprising cancerous or non-tumor-forming epithelia with CAFs and FIBs could be attenuated by the presence of catalase. Importantly, we showed that oxidatively transformed FIBs isolated from composite tumor xenografts retained their ability to promote tumor growth and aggressiveness when adoptively transferred into new xenografts. Higher H 2 O 2 production by CAFs was contingent on impaired TGFβ signaling leading to the suppression of the antioxidant enzyme glutathione peroxidase 1 (GPX1). Finally, we detected a reduction in Smad3, TAK1 and TGFβRII expression in a cohort of 197 clinical squamous cell carcinoma (SCC) CAFs, suggesting that impaired stromal TGFβ signaling may be a clinical feature of SCC. Our study indicated that CAFs and cancer cells engage redox signaling circuitries and mitogenic signaling to reinforce their reciprocal relationship, suggesting that future anticancer approaches should simultaneously target ligand receptor and redox-mediated pathways.
Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress
Chan, Jeremy Soon Kiat; Tan, Ming Jie; Sng, Ming Keat; Teo, Ziqiang; Phua, Terri; Choo, Chee Chong; LI, Liang; Zhu, Pengcheng; Tan, Nguan Soon
2017-01-01
Histological inspection of visually normal tissue adjacent to neoplastic lesions often reveals multiple foci of cellular abnormalities. This suggests the presence of a regional carcinogenic signal that spreads oncogenic transformation and field cancerization. We observed an abundance of mutagenic reactive oxygen species in the stroma of cryosectioned patient tumor biopsies, indicative of extratumoral oxidative stress. Diffusible hydrogen peroxide (H2O2) was elevated in the conditioned medium of cultured skin epithelia at various stages of oncogenic transformation, and H2O2 production increased with greater tumor-forming and metastatic capacity of the studied cell lines. Explanted cancer-associated fibroblasts (CAFs) also had higher levels of H2O2 secretion compared with normal fibroblasts (FIBs). These results suggest that extracellular H2O2 acts as a field effect carcinogen. Indeed, H2O2-treated keratinocytes displayed decreased phosphatase and tensin homolog (PTEN) and increased Src activities because of oxidative modification. Furthermore, treating FIBs with CAF-conditioned medium or exogenous H2O2 resulted in the acquisition of an oxidative, CAF-like state. In vivo, the proliferative potential and invasiveness of composite tumor xenografts comprising cancerous or non-tumor-forming epithelia with CAFs and FIBs could be attenuated by the presence of catalase. Importantly, we showed that oxidatively transformed FIBs isolated from composite tumor xenografts retained their ability to promote tumor growth and aggressiveness when adoptively transferred into new xenografts. Higher H2O2 production by CAFs was contingent on impaired TGFβ signaling leading to the suppression of the antioxidant enzyme glutathione peroxidase 1 (GPX1). Finally, we detected a reduction in Smad3, TAK1 and TGFβRII expression in a cohort of 197 clinical squamous cell carcinoma (SCC) CAFs, suggesting that impaired stromal TGFβ signaling may be a clinical feature of SCC. Our study indicated that CAFs and cancer cells engage redox signaling circuitries and mitogenic signaling to reinforce their reciprocal relationship, suggesting that future anticancer approaches should simultaneously target ligand receptor and redox-mediated pathways. PMID:28102840
Mechanism of thirst attenuation during head-out water immersion in men
NASA Technical Reports Server (NTRS)
Wada, F.; Sagawa, S.; Miki, K.; Nagaya, K.; Nakamitsu, S.; Shiraki, K.; Greenleaf, J. E.
1995-01-01
The purpose was to determine whether extracellular volume or osmolality was the major contributing factor for reduction of thirst in air and head-out water immersion in hypohydrated subjects. Eight males (19-25 yr) were subjected to thermoneutral immersion and thermoneutral air under two hydration conditions without further drinking: euhydration in water (Eu-H2O) and euhydration in air, and hypohydration in water (Hypo-H2O) and hypohydration in air (3.7% wt loss after exercise in heat). The increased thirst sensation with Hypo-H2O decreased (P < 0.05) within 10 min of immersion and continued thereafter. Mean plasma osmolality (288 +/- 1 mosmol/kgH2O) and sodium (140 +/- 1 meq/l) remained elevated, and plasma volume increased by 4.2 +/- 1.0% (P < 0.05) throughout Hypo-H2O. A sustained increase (P < 0.05) in stroke volume accompanied the prompt and sustained decrease in plasma renin activity and sustained increase (P < 0.05) in plasma atrial natriuretic peptide during Eu-H2O and Hypo-H2O. Plasma vasopressin decreased from 5.3 +/- 0.7 to 2.9 +/- 0.5 pg/ml (P < 0.05) during Hypo-H2O but was unchanged in Eu-H2O. These findings suggest a sustained stimulation of the atrial baroreceptors and reduction of a dipsogenic stimulus without major alterations of extracellular osmolality in Hypo-H2O. Thus it appears that vascular volume-induced stimuli of cardiopulmonary baroreceptors play a more important role than extracellular osmolality in reducing thirst sensations during immersion in hypohydrated subjects.
A similar local immune and oxidative stress phenotype in vitiligo and halo nevus.
Yang, Yuqi; Li, Shuli; Zhu, Guannan; Zhang, Qian; Wang, Gang; Gao, Tianwen; Li, Chunying; Wang, Lin; Jian, Zhe
2017-07-01
Vitiligo and halo nevus are two common T-cell-mediated skin disorders. Although autoimmunity has been suggested to be involved in both diseases, the relationship between vitiligo and halo nevus is not fully understood. The aim of the current study was to investigate whether vitiligo and halo nevus share the same immunological and oxidative stress response. Infiltrations of T cells, and expressions of chemokine receptors (CXCR3, CCR4, CCR5) and cytotoxic markers (Granzyme B, Perforin) in the lesions of vitiligo and halo nevus were examined by immunohistochemistry. Enzyme-linked immunosorbent assay was performed to analyze the expressions of chemokines in the serum samples and cytotoxic markers secreted by CD8 + T cells which were sorted from the peripheral blood mononuclear cells in healthy donors, vitiligo and halo nevus patients. Tissue levels of chemokine receptors and CXCR3 ligands in healthy controls, vitiligo patients and halo nevus patients were determined by qRT-PCR analysis. The percentages of CXCR3 + CD4 + T and CXCR3 + CD8 + T cells from the peripheral blood samples were examined by flow cytometry. Tissue and serum hydrogen peroxide (H 2 O 2 ) concentrations were measured using H 2 O 2 assay kit. Immunohistochemistry revealed a significant T-cell response, with pronounced dermal infiltrates of CD8 + T cells in vitiligo and halo nevus. The inflammatory cytotoxic markers such as Granzyme B and Perforin were also elevated in vitiligo and halo nevus, suggesting inflammatory responses in situ. By qRT-PCR and ELISA assay, we found significantly increased expressions of the chemokine receptor CXCR3 and its ligands, especially the accumulated CXCL10 in the skin lesions of vitiligo and halo nevus. Moreover, the level of H 2 O 2 , a key player involved in regulation of the immune response was significantly upregulated in the skin lesions of vitiligo and halo nevus. In addition, the increased H 2 O 2 concentration correlated positively with CXCL10 level in skin lesions of vitiligo and halo nevus. These results demonstrate a H 2 O 2 -involved autoimmune phenotype in vitiligo and halo nevus, characterized by increased level of IFN-γ-inducible chemokine pair CXCL10-CXCR3, as well as a dense CD8 + T infiltration in the skin lesions, thus suggesting a similar pathogenesis of the two diseases. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Rooks, E. E.; Gibson, S. A.; Leat, P. T.; Petrone, C. M.
2015-12-01
H2O and F contents affect many physical and chemical properties of the upper mantle, including melting temperature and viscosity. These elements are hosted by hydrous and F-rich phases, and by modally abundant, nominally-anhydrous/halogen-free mantle minerals, which can potentially accommodate the entire volatile budget of the upper mantle. We present high-precision SIMS analyses of H2O, and F in mantle xenoliths hosted by recently-erupted (5-10 Ka) alkali basalts from south Patagonia (Pali Aike) and older (c. 25 Ma) alkali basalts from localities along the Antarctic Peninsula. Samples are well characterised peridotites and pyroxenites, from a range of depths in the off-craton lithospheric mantle. Minerals are relatively dry: H2O contents of olivine span 0-49 ppm, orthopyroxene 150-235 ppm and clinopyroxene 100-395 ppm, with highest concentrations found in spinel-garnet lherzolites from Pali Aike. These H2O concentrations fall within the global measured range for off-craton mantle minerals. H2O and F are correlated, and the relative compatibility of F in mantle phases is clinopyroxene>orthopyroxene>olivine. However, elevated F concentrations of 100-210 ppm are found in pyroxenites from two Antarctic localities. This elevated F content is not correlated with high H2O, suggesting that these rocks interacted with a F-rich melt. In clinopyroxenes, F concentration is correlated with Ti, and the ratio of M1Ti to M1Al + M1Cr, suggesting a charge balanced substitution. Consistency between samples (excepting high-F pyroxenites) suggests a constant F-budget, and that concentrations in clinopyroxenes are controlled by mineral chemistry. In orthopyroxene, F correlates with CaO, but no other major or minor elements. Large variability of H2O concentrations within samples is attributed to diffusive loss during ascent. Cl is negligible in all samples, indicating little or no influence of slab fluids from this long-lived subduction zone.
Lee, E Henry; Tingey, David T; Waschmann, Ronald S; Phillips, Donald L; Olszyk, David M; Johnson, Mark G; Hogsett, William E
2009-11-01
Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment mesocosm containing ponderosa pine seedlings growing in a reconstructed soil-litter system. The study used a 2 x 2 factorial design with two concentrations of CO2 (ambient and elevated), two levels of O3 (low and high) and three replicates of each treatment. The objective of this study was to assess the effects of chronic exposure to elevated CO2 and O3, alone and in combination, on daily ET. This study evaluated three hypotheses: (i) because elevated CO2 stimulates stomatal closure, O3 effects on ET will be less under elevated CO2 than under ambient CO2; (ii) elevated CO2 will ameliorate the long-term effects of O3 on ET; and (iii) because conductance (g) decreases with decreasing SM, the impacts of elevated CO2 and O3, alone and in combination, on water loss via g will be greater in early summer when SM is not limiting than to other times of the year. A mixed-model covariance analysis was used to adjust the daily ET for seasonality and the effects of SM and photosynthetically active radiation when testing for the effects of CO2 and O3 on ET via the vapor pressure deficit gradient. The empirical results indicated that the interactive stresses of elevated CO2 and O3 resulted in a lesser reduction in ET via reduced canopy conductance than the sum of the individual effects of each gas. CO2-induced reductions in ET were more pronounced when trees were physiologically most active. O3-induced reductions in ET under ambient CO2 were likely transpirational changes via reduced conductance because needle area and root biomass were not affected by exposures to elevated O3 in this study.
Li, Jian; Tang, Lu-Yan; Fu, Wen-Wen; Yuan, Jin; Sheng, You-Yu; Yang, Qin-Ping
2016-12-01
Hydrogen peroxide (H 2 O 2 ) may have a biphasic effect on melanin synthesis and melanosome transfer. High H 2 O 2 concentrations are involved in impaired melanosome transfer in vitiligo. However, low H 2 O 2 concentration promotes the beneficial proliferation and migration of melanocytes. The aim of this study was to explore low H 2 O 2 and its mechanism in melanosome transfer, protease-activated receptor-2 (PAR-2) expression and calcium balance. Melanosomes were fluorescein-labeled for clear visualization of their transfer. The expression of protease-activated receptor-2 (PAR-2) in keratinocytes was determined by western blot analysis. Flow cytometry was employed to evaluate the effects of H 2 O 2 on calcium levels in keratinocytes. Fluorescence microscopy showed the upregulation of melanosome transfer into keratinocytes following 0.3 mM H 2 O 2 treatment in the co-cultures rather than in the untreated control groups, which was associated with higher expression of PAR-2 protein and increased calcium concentration. The addition of a PAR-2 antagonist inhibited the positive activity of H 2 O 2 and calcium flow in keratinocytes. When calcium flow was blocked by a calcium chelator, the addition of H 2 O 2 did not increase the PAR-2 expression level in keratinocytes, therefore, inhibiting dendrite formation and melanosome transfer. Low H 2 O 2 concentration promotes melanosome transfer with increased PAR-2 expression level and calcium concentration in keratinocytes. In addition, the interaction between melanocytes and keratinocytes is more beneficial to enhance calcium levels in keratinocytes which mediate melanin transfer. Moreover, low H 2 O 2 concentration promotes dendrite formation, in which extracellular calcium and Par-2 were involved.
Metabolic and cardiac signaling effects of inhaled hydrogen sulfide and low oxygen in male rats
Stein, Asaf; Mao, Zhengkuan; Morrison, Joanna P.; Fanucchi, Michelle V.; Postlethwait, Edward M.; Patel, Rakesh P.; Kraus, David W.; Doeller, Jeannette E.
2012-01-01
Low concentrations of inhaled hydrogen sulfide (H2S) induce hypometabolism in mice. Biological effects of H2S in in vitro systems are augmented by lowering O2 tension. Based on this, we hypothesized that reduced O2 tension would increase H2S-mediated hypometabolism in vivo. To test this, male Sprague-Dawley rats were exposed to 80 ppm H2S at 21% O2 or 10.5% O2 for 6 h followed by 1 h recovery at room air. Rats exposed to H2S in 10.5% O2 had significantly decreased body temperature and respiration compared with preexposure levels. Heart rate was decreased by H2S administered under both O2 levels and did not return to preexposure levels after 1 h recovery. Inhaled H2S caused epithelial exfoliation in the lungs and increased plasma creatine kinase-MB activity. The effect of inhaled H2S on prosurvival signaling was also measured in heart and liver. H2S in 21% O2 increased Akt-PSer473 and GSK-3β-PSer9 in the heart whereas phosphorylation was decreased by H2S in 10.5% O2, indicating O2 dependence in regulating cardiac signaling pathways. Inhaled H2S and low O2 had no effect on liver Akt. In summary, we found that lower O2 was needed for H2S-dependent hypometabolism in rats compared with previous findings in mice. This highlights the possibility of species differences in physiological responses to H2S. Inhaled H2S exposure also caused tissue injury to the lung and heart, which raises concerns about the therapeutic safety of inhaled H2S. In conclusion, these findings demonstrate the importance of O2 in influencing physiological and signaling effects of H2S in mammalian systems. PMID:22403348
Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing
2016-08-01
Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid.
Jin, Xin; Sun, Xiaomei; Gao, Tianxiang; Chen, Xiaomei; She, Yimin; Jiang, Tingbo; Chen, Sixue; Dai, Shaojun
2017-01-01
Hydrogen peroxide (H2O2) is one of the most abundant reactive oxygen species (ROS), which plays dual roles as a toxic byproduct of cell metabolism and a regulatory signal molecule in plant development and stress response. Populus simonii × Populus nigra is an important cultivated forest species with resistance to cold, drought, insect and disease, and also a key model plant for forest genetic engineering. In this study, H2O2 response in P. simonii × P. nigra leaves was investigated using physiological and proteomics approaches. The seedlings of 50-day-old P. simonii × P. nigra under H2O2 stress exhibited stressful phenotypes, such as increase of in vivo H2O2 content, decrease of photosynthetic rate, elevated osmolytes, antioxidant accumulation, as well as increased activities of several ROS scavenging enzymes. Besides, 81 H2O2-responsive proteins were identified in the poplar leaves. The diverse abundant patterns of these proteins highlight the H2O2-responsive pathways in leaves, including 14-3-3 protein and nucleoside diphosphate kinase (NDPK)-mediated signaling, modulation of thylakoid membrane structure, enhancement of various ROS scavenging pathways, decrease of photosynthesis, dynamics of proteins conformation, and changes in carbohydrate and other metabolisms. This study provides valuable information for understanding H2O2-responsive mechanisms in leaves of P. simonii × P. nigra. PMID:28974034
NASA Astrophysics Data System (ADS)
Borda, Michael J.; Elsetinow, Alicia R.; Schoonen, Martin A.; Strongin, Daniel R.
2001-09-01
The remarkable discovery of pyrite-induced hydrogen peroxide (H2O2) provides a key step in the evolution of oxygenic photosynthesis. Here we show that H2O2 can be generated rapidly via a reaction between pyrite and H2O in the absence of dissolved oxygen. The reaction proceeds in the dark, and H2O2 levels increase upon illumination with visible light. Since pyrite was stable in most photic environments prior to the rise of O2 levels, this finding represents an important mechanism for the formation of H2O2 on early Earth.
Kajimoto, Kazuaki; Minami, Yoshitaka; Harashima, Hideyoshi
2014-01-01
The fatty acid binding protein 4 (FABP4), one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS) and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA) against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH), superoxide dismutase (SOD) and glutathione S-transferase A4 (GSTA4) were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2). FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1), the signal sequence receptor α (Ssr1), the ORM1-like 3 (Ormdl3), and the spliced X-box binding protein 1 (Xbp1s), were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes. PMID:25161868
Sugawara, M; Yamaguchi, D T; Lee, H Y; Yanagisawa, K; Murakami, S; Summer, C N; Johnson, D G; Levin, S R
1990-05-01
This study describes the effects of hydrogen peroxide on the two iodide transport systems, I influx and I efflux, in the cultured FRTL-5 rat thyroid cells. I influx was measured by the amount of I taken up by the cells during incubation with Na125I and NaI for 7 min, and I efflux was measured by calculating the rate of 125I release from the 125I-loaded cells in the presence and absence of 5 mmol/l H2O2. Exposure to greater than 100 mumol/l H2O2 for 40 min caused a significant inhibition of I influx; the inhibition was reversible and non-competitive with iodide. Thyroid Na+K+ ATPase activity, a major mechanism to drive I influx, decreased by 40% after the cells were exposed to 5 mmol/l H2O2 for 10 min. H2O2 enhanced I efflux only when Ca2+ was present in the medium. The mechanism of an enhanced I efflux by H2O2 appears to be mediated through the elevation of free cytosolic Ca2+ concentration. Our data indicate that H2O2 can affect I transport by inhibiting I influx and enhancing I efflux.
Tan, P Seow Koon; Genc, F; Delgado, E; Kellum, J A; Pinsky, M R
2002-08-01
We tested the hypothesis that NO contamination of hospital compressed air also improves PaO(2) in patients with acute lung injury (ALI) and following lung transplant (LTx). Prospective clinical study. Cardiothoracic intensive care unit. Subjects following cardiac surgery (CABG, n=7); with ALI (n=7), and following LTx (n=5). Four sequential 15-min steps at a constant FiO(2) were used: hospital compressed air-O(2) (H1), N(2)-O(2) (A1), repeat compressed air-O(2) (H2), and repeat N(2)-O(2) (A2). NO levels were measured from the endotracheal tube. Cardiorespiratory values included PaO(2) were measured at the end of each step. FiO(2) was 0.46+/-0.05, 0.53+/-0.15, and 0.47+/-0.06 (mean+/-SD) for three groups, respectively. Inhaled NO levels during H1 varied among subjects (30-550 ppb, 27-300 ppb, and 5-220 ppb, respectively). Exhaled NO levels were not detected in 4/7 of CABG (0-300 ppb), 3/6 of ALI (0-140 ppb), and 3/5 of LTx (0-59 ppb) patients during H1, whereas during A1 all but one patient in ALI and three CABG patients had measurable exhaled NO levels (P<0.05). Small but significant decreases in PaO(2) occurred for all groups from H1 to A1 and H2 to A2 (132-99 Torr and 128-120 Torr, P <0.01, respectively). There was no correlation between inhaled NO during H1 and exhaled NO during A1 or the change in PaO(2) from H1 to A1. Low-level NO contamination improves PaO(2) in patients with ALI and following LTx.
Liu, Xue-Ru; Cao, Lu; Li, Tao; Chen, Lin-Lin; Yu, Yi-Yan; Huang, Wen-Jun; Liu, Li; Tan, Xiao-Qiu
2017-05-01
Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H 2 O 2 at 500 μM (H 2 O 2 group), propofol at 50 μM (propofol group), and H 2 O 2 plus propofol (H 2 O 2 + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H 2 O 2 -induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H 2 O 2 -induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H 2 O 2 -induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H 2 O 2 -induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.
Berenbrink, M; Völkel, S; Heisler, N; Nikinmaa, M
2000-07-01
The effects of pH and O(2) tension on the isotonic ouabain-resistant K(+) (Rb+) flux pathway and on haemoglobin O2 binding were studied in trout red blood cells (RBCs) in order to test for a direct effect of haemoglobin O(2) saturation on K(+) transport across the RBC membrane. At pH values corresponding to in vivo control arterial plasma pH and higher, elevation of the O(2) partial pressure (PO(2)) from 7.8 to 157 mmHg increased unidirectional K(+) influx across the RBC membrane several-fold. At lower extracellular pH values, stimulation of K(+) influx by O(2) was depressed, exhibiting an apparent pK(a) (pK'(a)) for the process of 8.0. Under similar conditions the pK'(a) for acid-induced deoxygenation of haemoglobin (Hb) was 7.3. When trout RBCs were exposed to PO(2) values between 0 and 747 mmHg, O(2) equilibrium curves typical of Hb O(2) saturation were also obtained for K(+) influx and efflux. However, at pH 7.9, the PO(2) for half-maximal K(+) efflux and K(+) influx (P50) was about 8- to 12-fold higher than the P(50) for Hb-O(2) binding. While K(+) influx and efflux stimulation by O(2) was essentially non-cooperative, Hb-O(2) equilibrium curves were distinctly sigmoidal (Hill parameters close to 1 and 3, respectively). O(2)-stimulated K(+) influx and efflux were strongly pH dependent. When the definition of the Bohr factor for respiratory pigments (Phi = delta logP50 x delta pH(-1)) was extended to the effect of pH on O(2)-dependent K(+) influx and efflux, extracellular Bohr factors (Phi(o) of -2.00 and -2.06 were obtained, values much higher than that for Hb (Phi(o) = -0.49). The results of this study are consistent with an O(2) sensing mechanism differing markedly in affinity and cooperativity of O(2) binding, as well as in pH sensitivity, from bulk Hb.
Implications of SWAS Observations for Interstellar Chemistry and Star Formation
NASA Technical Reports Server (NTRS)
Bergin, Edwin A.; Melnick, Gary J.; Stauffer, John R.; Ashby, Matthew L. N.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, John E.; Kleiner, Steven C.
2000-01-01
A long standing prediction of steady state gas-phase chemical theory is that H2O and O2 are important reservoirs of elemental oxygen and major coolants of the interstellar medium. Analysis of SWAS observations has set sensitive upper limits on the abundance Of O2 and has provided H2O abundances toward a variety of star forming regions. Based on these results, we show that gaseous H2O and O2 are not dominant carriers of elemental oxygen in molecular clouds. Instead the available oxygen is presumably frozen on dust grains in the form of molecular ices, with a significant portion potentially remaining in atomic form, along with CO, in the gas phase. H2O and O2 are also not significant coolants for quiescent molecular gas. In the case of H2O, a number of known chemical processes can locally elevate its abundance in regions with enhanced temperatures, such as warm regions surrounding young stars or in hot shocked gas. Thus, water can be a locally important coolant. The new information provided by SWAS, when combined with recent results from the Infrared Space Observatory, also provide several hard observational constraints for theoretical models of the chemistry in molecular clouds and we discuss various models that satisfy these conditions.
Effects of biofilter media depth and moisture content on removal of gases from a swine barn.
Liu, Tongshuai; Dong, Hongmin; Zhu, Zhiping; Shang, Bin; Yin, Fubin; Zhang, Wanqin; Zhou, Tanlong
2017-12-01
Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH 3 ), hydrogen sulfide (H 2 S), and nitrous oxide (N 2 O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH 3 removal efficiency, but increase outlet N 2 O concentration. When MC was 67%, the average NH 3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H 2 S removal efficiency dropped from 68.1-90.0% (1-34 days of the test period) to 36.8-63.7% (35-58 days of the test period); and the average outlet N 2 O concentration increased by 25.5-60.1%. When MC was 55%, the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and -18.9 ± 8.1%, respectively; and the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and -24.5 ±12.1%, respectively. When MC was 45%, the highest average NH 3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N 2 O removal efficiency for three MDs ranged from -18.8% to -12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD (p < 0.05). To obtain high mitigation of NH 3 and H 2 S and avoid elevated emission of N 2 O and large pressure drop, 0.33 m MD at 55% MC is recommended. The performances of biofilters with three different media depths (0.17, 0.33, and 0.50 m) and three different media moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH 3 and H 2 S, and to simultaneously prevent elevated emission of N 2 O and large pressure drop across the media.
Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.
Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J
2009-07-01
Atmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO(2), O(3), diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO(2) treatment than in ambient CO(2). Elevated CO(2), increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O(3), and increased O(3) did not reduce the effect of elevated CO(2). Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO(2) to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.
Feldman, Lisa A.; Fabre, Marie-Sophie; Grasso, Carole; Reid, Dana; Broaddus, William C.; Lanza, Gregory M.; Spiess, Bruce D.; Garbow, Joel R.; McConnell, Melanie J.
2017-01-01
Background Tumour hypoxia limits the effectiveness of radiation therapy. Delivering normobaric or hyperbaric oxygen therapy elevates pO2 in both tumour and normal brain tissue. However, pO2 levels return to baseline within 15 minutes of stopping therapy. Aim To investigate the effect of perfluorocarbon (PFC) emulsions on hypoxia in subcutaneous and intracranial mouse gliomas and their radiosensitising effect in orthotopic gliomas in mice breathing carbogen (95%O2 and 5%CO2). Results PFC emulsions completely abrogated hypoxia in both subcutaneous and intracranial GL261 models and conferred a significant survival advantage orthotopically (Mantel Cox: p = 0.048) in carbogen breathing mice injected intravenously (IV) with PFC emulsions before radiation versus mice receiving radiation alone. Carbogen alone decreased hypoxia levels substantially and conferred a smaller but not statistically significant survival advantage over and above radiation alone. Conclusion IV injections of PFC emulsions followed by 1h carbogen breathing, radiosensitises GL261 intracranial tumors. PMID:28873460
Mullick, Madhubanti; Venkatesh, Katari; Sen, Dwaipayan
2017-07-01
Human mesenchymal stem cells (hMSCs) although being potent in repairing injured or ischemic tissues, their success regarding tissue-regenerative approaches are hindered by the paucity in their viability. The elevated levels of reactive oxygen species (ROS) in damaged sites provoke the pernicious effects of donor MSC survival. In the present study, the effect of delta-opioid receptor (DOR) activation on human umbilical cord-blood borne fibroblasts (hUCB-BFs) survival under oxidative stress (H 2 O 2 ) was evaluated. Oxidative stress which is known to trigger pathological conditions of the unfolded protein response (UPR) leads to endoplasmic reticulum stress. Upon its activation by D-Alanine 2, Leucine 5 Enkephaline (DADLE, selective DOR agonist) in hUCB-BFs under oxidative stress, a significant down regulation (~2 folds) of key UPR genes was observed as determined by qPCR, Thioflavin-T protein aggregation assay and western blot analysis. Concomitantly, the oxidative stress-mediated cell-death was ameliorated and the viable-cells' percentage was enhanced following DOR activation. The intracellular ROS production upon H 2 O 2 treatment as determined by CM-H 2 DCFDA staining was repressed, the anti-apoptotic marker Bcl-2 was upregulated along with a significant suppression in the expression levels of pro-apoptotic proteins Bax and Bad upon DOR activation. Upon subsequent treatment with naltrindole, the effects of DADLE-induced cytoprotection were reverted significantly. These results propound the role of DADLE-mediated DOR-activation on improvement of the viability, which might succour successful hUCB-BFs transplants and greatly absolve the inefficacy of tissue-specific engineered transplants. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Yu, Bang-wei; Li, Jin-long; Guo, Bin-bin; Fan, Hui-min; Zhao, Wei-min; Wang, He-yao
2016-01-01
Aim: Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1–9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. Methods: H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Results: Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56–100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. Conclusion: Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2 cardiomyoblasts against H2O2-induced apoptosis, possibly by inhibiting intrinsic apoptosis and the ERK/JNK pathway. PMID:27593219
Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid
Nadeem, Sohail; Mustafa, M. T.
2018-01-01
Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4—C2H6O2 (manganese zinc ferrite-ethylene glycol), NiZnFe2O4—C2H6O2 (Nickel zinc ferrite-ethylene glycol), Fe2O4—C2H6O2 (magnetite ferrite-ethylene glycol), NiZnFe2O4—H2O (Nickel zinc ferrite-water), MnZnFe2O4—H2O (manganese zinc ferrite-water), and Fe2O4—H2O (magnetite ferrite-water) nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier’s law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto—thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement. PMID:29320488
Mechanism of Thirst Attenuation During Head-Out Water Immersion in Men
NASA Technical Reports Server (NTRS)
Wada, F.; Sagawa, S.; Miki, K.; Nagaya, K.; Nakamitsu, S.; Shiraki, K.; Greenleaf, J. E.
1994-01-01
The purpose was to determine whether extracellular volume or osmolality was the major contributing factor for reduction of thirst in air and head-out water immersion in hypohydrated subjects. Eight males (19 - 25 yr) were subjected to thermoneutral immersion and thermoneutral air under two hydration conditions without further drinking: euhydration in water (Eu-H2O) and euhydration in air, and hypohydration in water (Hypo-H2O) and hypohydration in air (3.7% wt loss after exercise in heat). The increased thirst sensation with Hypo-H2O decreased (P less than 0.05) within 10 min of immersion and continued thereafter. Mean plasma osmolality (288 +/- 1 mosmol/kg H2O) and sodium (140 +/- 1 meq/1) remained elevated, and plasma volume increased by 4.2 +/- 1.0% (P less than 0.05) throughout Hypo-H2O. A sustained increase (P less than 0.05) in stroke volume accompanied the prompt and sustained decrease in plasma renin activity and sustained increase (P less than 0.05) in plasma atrial natriuretic peptide during Eu-H2O and Hypo-H2O. Plasma vasopressin decreased from 5.3 +/- 0.7 to 2.9 +/- 0.5 pg/ml (P less than 0.05) during Hypo-H2O but was unchanged in Eu-H2O. These findings suggest a sustained stimulation of the atrial baroreceptors and reduction of a dipsogenic stimulus without major alterations of extracellular osmolality in Hypo-H2O. Thus it appears that vascular volume induced stimuli of cardiopulmonary baroreceptors play a more important role than extracellular osmolality in reducing thirst sensations during immersion in hypohydrated subjects. Thus the purpose for this study was to determine the relative importance of volume and osmotic stimuli, and associated hormonal interaction, for attenuation of thirst during immersion.
Tian, Xing; Guo, Li-Ping; Hu, Xiao-Long; Huang, Jin; Fan, Yan-Hua; Ren, Tian-Shu; Zhao, Qing-Chun
2015-04-01
Accumulated evidence has shown that excessive reactive oxygen species (ROS) have been implicated in neuronal cell death related with various chronic neurodegenerative disorders. This study was designed to explore neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) on hydrogen peroxide (H2O2)-induced cell injury in human SH-SY5Y neuroblastoma cells. The cell viability was significantly decreased after exposure to 200 μM H2O2, whereas pretreatment with different concentrations of EAL attenuated the H2O2-induced cytotoxicity. Hoechst 33342 staining indicated that EAL reversed nuclear condensation in H2O2-treated cells. Meanwhile, TUNEL assay with DAPI staining showed that EAL attenuated apoptosis was induced by H2O2. Pretreatment with EAL also markedly elevated activities of antioxidant enzyme (GSH-Px and SOD), reduced lipid peroxidation (MDA) production, prevented ROS formation, and the decrease of mitochondrial membrane potential. In addition, EAL showed strong radical scavenging ability in 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays. Furthermore, EAL inhibited H2O2-induced apoptosis by increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, and attenuation of caspase-3, caspase-9 activities, and expressions. These findings suggest that EAL may be regarded as a potential antioxidant agent and possess potent neuroprotective activity against H2O2-induced injury.
Kashio, Makiko; Tominaga, Makoto
2015-05-08
Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Müller, Rolf; Grooß, Jens-Uwe; Mannan Zafar, Abdul; Robrecht, Sabine; Lehmann, Ralph
2018-03-01
The Antarctic ozone hole arises from ozone destruction driven by elevated levels of ozone destroying (active
) chlorine in Antarctic spring. These elevated levels of active chlorine have to be formed first and then maintained throughout the period of ozone destruction. It is a matter of debate how this maintenance of active chlorine is brought about in Antarctic spring, when the rate of formation of HCl (considered to be the main chlorine deactivation mechanism in Antarctica) is extremely high. Here we show that in the heart of the ozone hole (16-18 km or 85-55 hPa, in the core of the vortex), high levels of active chlorine are maintained by effective chemical cycles (referred to as HCl null cycles hereafter). In these cycles, the formation of HCl is balanced by immediate reactivation, i.e. by immediate reformation of active chlorine. Under these conditions, polar stratospheric clouds sequester HNO3 and thereby cause NO2 concentrations to be low. These HCl null cycles allow active chlorine levels to be maintained in the Antarctic lower stratosphere and thus rapid ozone destruction to occur. For the observed almost complete activation of stratospheric chlorine in the lower stratosphere, the heterogeneous reaction HCl + HOCl is essential; the production of HOCl occurs via HO2 + ClO, with the HO2 resulting from CH2O photolysis. These results are important for assessing the impact of changes of the future stratospheric composition on the recovery of the ozone hole. Our simulations indicate that, in the lower stratosphere, future increased methane concentrations will not lead to enhanced chlorine deactivation (through the reaction CH4 + Cl → HCl + CH3) and that extreme ozone destruction to levels below ≈ 0.1 ppm will occur until mid-century.
Development of Mixed Ion-Electron Conducting Metal Oxides for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Kan, Wang Hay
A solid oxide fuel cell (SOFC) is an energy conversion device, which directly converts chemical fuels (e.g., H2, C xHy) into electricity and heat with high efficiency up to 90%. The by-product of CO2 can be safely sequestrated or subsequently chemically transformed back into fuels (e.g., CO, CH 4) by electrolysis using renewable energy sources such as solar and wind. The state-of-the-art Ni-YSZ anode is de-activated in the presence of ppm level of H2S and forming coke in hydrocarbons. Currently, mixed ion and electron conductors (MIECs) are considered as alternatives for Ni-YSZ in SOFCs. The key goal of the research was to develop mixed ion-electron conducting metal oxides based on B-site disordered perovskite-type Ba(Ca,Nb)1-x MxO3-delta (M = Mn, Fe, Co), the B-site 1:1 ordered perovskite-type (M = Mn, Fe, Co) and the Sr2PbO4-type Sr2Ce1-xPrxO4 for SOFCs. Ba2(Ca,Nb)2-xMxO6-delta was chemically stable in 30 ppm levels of H2S at 600 °C for 24 h and in pure CO2 at 800 °C for 24 h. The thermal expansion coefficients (TEC) of the as-prepared ordered perovskites was found to be comparable to Zr0.84Y0.16O1.92 (YSZ). The near-surface concentration of Fe2+ in Ba2Ca 0.67Fe0.33NbO6-delta was found to be about 3 times higher than that in the bulk sample. The electrochemical performance of Ba2Ca0.67M0.33NbO6-delta was assessed by ac impedance spectroscopy using a YSZ supported half-cell. The area specific polarization resistance (ASR) of all samples was found to decrease with increasing temperature. The ASR for H2 gas oxidation can be correlated to the higher concentration of low valence Fe2+ species near-surface (nano-scale). BaCa0.335M0.165Nb0.5O3-delta crystallizes in the B-site disordered primitive perovskite (space group Pm-3m) at 900 °C in air, which can be converted into the B-site 1:2 ordered perovskite (space group P-3m1) at 1200 °C and the B-site 1:1 ordered double perovskite phase (space group Fm-3m ) at 1300 °C. The chemical stability of the perovskites in CO 2 and H2 highly depends on the B-site cations ordering. The B-site disordered primitive perovskite phase is more readily reduced in dry and 3% H2O in 10% H2 balanced with 90% N2, and is less stable in CO2 at elevated temperatures, compared to the B-site 1:1 ordered double perovskite phase. The thermal decomposition is highly suppressed in Sr2Ce1--xPrxO 4 compounds for Pr > 0, suggesting that Pr improves the thermal stability of the compounds. Rietveld analysis of PXRD and SAED supported that both Pr and Ce ions are located on the 2a site in Pbam. Conductivity increases with Pr content in Sr2Ce1-xPrxO4. The highest total conductivity of 1.24 x 10--1 S cm--1 was observed for Sr2Ce0.2Pr0.8O 4 at 663 °C in air.
Gallagher, Lorna; Owens, Rebecca A.; Dolan, Stephen K.; O'Keeffe, Grainne; Schrettl, Markus; Kavanagh, Kevin; Jones, Gary W.
2012-01-01
The function of a number of genes in the gliotoxin biosynthetic cluster (gli) in Aspergillus fumigatus remains unknown. Here, we demonstrate that gliK deletion from two strains of A. fumigatus completely abolished gliotoxin biosynthesis. Furthermore, exogenous H2O2 (1 mM), but not gliotoxin, significantly induced A. fumigatus gliK expression (P = 0.0101). While both mutants exhibited significant sensitivity to both exogenous gliotoxin (P < 0.001) and H2O2 (P < 0.01), unexpectedly, exogenous gliotoxin relieved H2O2-induced growth inhibition in a dose-dependent manner (0 to 10 μg/ml). Gliotoxin-containing organic extracts derived from A. fumigatus ATCC 26933 significantly inhibited (P < 0.05) the growth of the ΔgliK26933 deletion mutant. The A. fumigatus ΔgliK26933 mutant secreted metabolites, devoid of disulfide linkages or free thiols, that were detectable by reverse-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry with m/z 394 to 396. These metabolites (m/z 394 to 396) were present at significantly higher levels in the culture supernatants of the A. fumigatus ΔgliK26933 mutant than in those of the wild type (P = 0.0024 [fold difference, 24] and P = 0.0003 [fold difference, 9.6], respectively) and were absent from A. fumigatus ΔgliG. Significantly elevated levels of ergothioneine were present in aqueous mycelial extracts of the A. fumigatus ΔgliK26933 mutant compared to the wild type (P < 0.001). Determination of the gliotoxin uptake rate revealed a significant difference (P = 0.0045) between that of A. fumigatus ATCC 46645 (9.3 pg/mg mycelium/min) and the ΔgliK46645 mutant (31.4 pg/mg mycelium/min), strongly suggesting that gliK absence and the presence of elevated ergothioneine levels impede exogenously added gliotoxin efflux. Our results confirm a role for gliK in gliotoxin biosynthesis and reveal new insights into gliotoxin functionality in A. fumigatus. PMID:22903976
La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.
2016-01-01
Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769
Irradiation effects and hydrogen behavior in H2+ and He+ implanted γ-LiAlO2 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Zhang, Jiandong; Kovarik, Libor
2017-02-01
Gamma-phase lithium aluminate (gamma-LiAlO2) is a breeder material for tritium, a necessary substance for strategic stockpile and fusion power systems. A fundamental study of structural evolution and tritium diffusion in gamma-LiAlO2 under displacive irradiation is needed to fully assess the material performance. This study utilizes ion implantation of protium (surrogate for tritium) and helium in gamma-LiAlO2 single crystals at elevated temperatures to emulate the irradiation effects. The results show that at 573 K there are two distinct disorder saturation stages to 1 dpa without full amorphization; overlapping implantation of H2+ and He+ ions suggests possible formation of gas bubbles. Formore » irradiation to 1E21 H+/m2 (0.36 dpa at peak) at 773 K, amorphization occurs at surface with H diffusion and dramatic Li loss; the microstructure contains bubbles and cubic LiAl5O8 precipitates with sizes up to 200 nm or larger. In addition, significant H diffusion and release are observed during thermal annealing.« less
Fluctuations in oxygen influence facultative endothermy in bumblebees.
Dzialowski, Edward M; Tattersall, Glenn J; Nicol, Stewart C; Frappell, Peter B
2014-11-01
Bumblebees are facultative endotherms, having the ability to elevate thorax temperature above ambient temperature by elevating metabolism. Here, we investigated the influence of hypoxia on metabolic demands and thermoregulatory capabilities of the bumblebee Bombus terrestris. We measured thorax temperature, rates of oxygen consumption and carbon dioxide production, and abdominal pumping rates of bees randomly exposed to oxygen levels of 20, 15, 10 and 5 kPa at 26°C. Under normoxia, bumblebees maintained an elevated mean thorax temperature of 35.5°C. There was no significant change in thorax temperature at 15 kPa O2 (33.4°C). Mean thorax temperature decreased significantly at 10 kPa O2 (31.6°C) and 5 kPa O2 (27.3°C). Bees were able to maintain an elevated metabolic rate at 15 and 10 kPa O2. In normoxia, endothermic bees exhibited periods of rapid abdominal pumping (327 min(-1)) interspaced by periods of no abdominal pumping. At 10 kPa O2, abdominal pumping rate decreased (255 min(-1)) but became more continuous. Upon exposure to 5 kPa, metabolic rate and abdominal pumping rate (152 min(-1)) decreased, although the animals continued abdominal pumping at the reduced rate throughout the exposure period. Bumblebees are able to meet the energetic demands of endothermy at 15 kPa O2, but become compromised at levels of 10 kPa O2 and below. © 2014. Published by The Company of Biologists Ltd.
The effects of hyperthermia and hypoxia on ventilation during low-intensity steady-state exercise.
Chu, Aaron L; Jay, Ollie; White, Matthew D
2007-01-01
This study assessed whether the elevated sensitivity of ventilation to hypoxia during exercise is accounted for by an elevation of esophageal temperature (T(es)). Eleven males volunteered for two exercise sessions on an underwater, head-out cycle ergometer at a steady-state rate of oxygen consumption (V(.)(O(2))) of approximately 0.87 l/min (SD 0.07). In one exercise session, 31.5 degrees C (SD 1.4) water held T(es) at a normothermic level of approximately 37.1 degrees C, and in the other exercise session, water at 38.2 degrees C (SD 0.1) maintained a hyperthermic T(es) of approximately 38.5 degrees C. After a 30-min rest and 20-min warm-up, exercising participants inhaled air for 10 min [Euoxia 1 (E1)], an isocapnic hypoxic gas mixture with 12% O(2) in N(2) (H1) for the next 10 min and air again [Euoxia 2 (E2)] for the last 10 min. A significant increase in V(.)(E) during all hyperthermia conditions (0.01< P < 0.048) was evident; however, during hyperthermic hypoxia, there was a disproportionate and significant (P = 0.017) increase in V(.)(E) relative to normothermic hypoxia. This was the main explanation for a significant esophageal temperature and gas type interaction (P = 0.012) for V(.)(E). Significant effects of hyperthermia, isocapnic hypoxia, and their positive interaction remained evident after removing the influence of (V(.)(O(2))) on V(.)(E). Serum lactate and potassium concentrations, as well as hemoglobin oxygen saturation, were each not significantly different between normothermic and hyperthermic-hypoxic conditions. In conclusion, the elevated sensitivity of exercise ventilation to hypoxia during exertion appears to be modulated by elevations in esophageal temperature, potentially because of a temperature-mediated stimulation of the peripheral chemoreceptors.
Yu, Ran; Fang, Xiaohua; Somasundaran, Ponisseril; Chandran, Kartik
2015-06-01
Nanosized TiO2 (n-TiO2), CeO2 (n-CeO2), and ZnO (n-ZnO) and bulk ZnO were chosen for a 4-h exposure study on a model ammonia oxidizing bacterium, Nitrosomonas europaea. n-ZnO displayed the most serious cytotoxicity while n-TiO2 was the least toxic one. The change of cell morphologies, the retardance of specific oxygen uptake rates and ammonia oxidation rates, and the depression of amoA gene expressions under NP stresses were generally observed when the cell densities and membrane integrities were not significantly impaired yet. The TEM imaging and the synchrotron X-ray fluorescence microscopy of the NPs impacted cells revealed the increase of the corresponding intracellular Ti, Ce or Zn contents and suggested the intracellular NP accumulation. The elevation of intracellular S contents accompanied with higher K contents implied the possible activation of thiol-containing glutathione and thioredoxin production for NP stress alleviation. The NP cytotoxicity was not always a function of NP concentration. The 200 mg L(-1) n-TiO2 or n-CeO2 impacted cells displayed the similar ammonia oxidation activities but higher amoA gene expression levels than the 20 mg L(-1) NPs impacted ones. Such phenomenon further indicated the possible establishment of an anti-toxicity mechanism in N. europaea at the genetic level to redeem the weakened AMO activities along with the NP aggregation effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ren, Jun; Li, Qun; Wu, Shan; Li, Shi-Yan; Babcock, Sara A.
2007-01-01
Catalase, an enzyme which detoxifies H2O2, may interfere with cardiac aging. To test this hypothesis, contractile and intracellular Ca2+ properties were evaluated in cardiomyocytes from young (3–4 mo) and old (26–28 mo) FVB and transgenic mice with cardiac overexpression of catalase. Contractile indices analyzed included peak shortening (PS), time-to-90% PS (TPS90), time-to-90% relengthening (TR90), half-width duration (HWD), maximal velocity of shortening/relengthening (± dL/dt) and intracellular Ca2+ levels or decay rate. Levels of advanced glycation endproduct (AGE), Na+/Ca2+ exchanger (NCX), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), phospholamban (PLB), myosin heavy chain (MHC), membrane Ca2+ and K+ channels were measured by western blot. Catalase transgene prolonged survival while did not alter myocyte function by itself. Aging depressed ± dL/dt, prolonged HWD, TR90 and intracellular Ca2+ decay without affecting other indices in FVB myocytes. Aged FVB myocytes exhibited a stepper decline in PS in response to elevated stimulus or a dampened rise in PS in response to elevated extracellular Ca2+ levels. Interestingly, aging-induced defects were nullified or significantly attenuated by catalase. AGE level was elevated by 5-fold in aged FVB compared with young FVB mice, which was reduced by catalase. Expression of SERCA2a, NCX and Kv1.2 K+ channel was significantly reduced although levels of PLB, L-type Ca2+ channel dihydropyridine receptor and β-MHC isozyme remained unchanged in aged FVB hearts. Catalase restored NCX and Kv1.2 K+ channel but not SERCA2a level in aged mice. In summary, our data suggested that catalase protects cardiomyocytes from aging-induced contractile defect possibly via improved intracellular Ca2+ handling. PMID:17250874
Relative impact of H 2 O and O 2 in the oxidation of UO 2 powders from 50 to 300 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald, Scott B.; Davisson, M. Lee; Dai, Zurong
Here, we studied the reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO 2) powder at elevated temperature by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). We observed and quatified oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.
Relative impact of H2O and O2 in the oxidation of UO2 powders from 50 to 300 °C
NASA Astrophysics Data System (ADS)
Donald, Scott B.; Davisson, M. Lee; Dai, Zurong; Roberts, Sarah K.; Nelson, Art J.
2017-12-01
The reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO2) powder at elevated temperature was studied by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). Oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice was observed and quantified. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.
Relative impact of H 2 O and O 2 in the oxidation of UO 2 powders from 50 to 300 °C
Donald, Scott B.; Davisson, M. Lee; Dai, Zurong; ...
2017-10-04
Here, we studied the reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO 2) powder at elevated temperature by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). We observed and quatified oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.
Barba-Espín, Gregorio; Diaz-Vivancos, Pedro; Job, Dominique; Belghazi, Maya; Job, Claudette; Hernández, José Antonio
2011-11-01
In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels. © 2011 Blackwell Publishing Ltd.
Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL
NASA Astrophysics Data System (ADS)
Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.
2016-02-01
A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.
Arruda, Jose A. L.; Nascimento, Luiz; Mehta, Pradeep K.; Rademacher, Donald R.; Sehy, John T.; Westenfelder, Christof; Kurtzman, Neil A.
1977-01-01
Measurement of urine to blood (U-B) carbon dioxide tension (PCO2) gradient during alkalinization of the urine has been suggested to assess distal H+ secretion. A fact that has not been considered in previous studies dealing with urinary PCO2 is that dissolution of HCO3 in water results in elevation of PCO2 which is directly proportional to the HCO3 concentration. To investigate the interrelationship of urinary HCO3 and urinary acidification, we measured U-B PCO2 in (a) the presence of enhanced H+ secretion and decreased concentrating ability i.e., chronic renal failure (CRF), (b) animals with normal H+ secretion and decreased concentrating ability, Brattleboro (BB) rats, and (c) the presence of both impaired H+ secretion and concentrating ability (LiCl treatment and after release of unilateral ureteral obstruction). At moderately elevated plasma HCO3 levels (30-40 meq/liter), normal rats achieved a highly alkaline urine (urine pH > 7.8) and raised urine HCO3 concentration and U-B PCO2. At similar plasma HCO3 levels, BB rats had a much higher fractional water excretion and failed to raise urine pH, urine HCO3 concentration, and U-B PCO2 normally. At a very high plasma HCO3 (>50 meq/liter), BB rats raised urine pH, urine HCO3 concentration, and U-B PCO2 to the same levels seen in normals. CRF rats failed to raise urine pH, urine HCO3, and U-B PCO2 normally at moderately elevated plasma HCO3 levels; at very high plasma HCO3 levels, CRF rats achieved a highly alkaline urine but failed to raise U-B PCO2. Dogs and patients with CRF were also unable to raise urine pH, urine HCO3 concentration, and U-B PCO2 normally at moderately elevated plasma HCO3 levels. In rats, dogs, and man, U-B PCO2 was directly related to urine HCO3 concentration and inversely related to fractional water excretion. At moderately elevated plasma HCO3 levels, animals with a distal acidification defect failed to raise U-B PCO2; increasing the plasma HCO3 to very high levels resulted in a significant increase in urine HCO3 concentration and U-B PCO2. The observed urinary PCO2 was very close to the PCO2 which would be expected by simple dissolution of a comparable amount of HCO3 in water. These data demonstrate that, in highly alkaline urine, urinary PCO2 is largely determined by concentration of urinary HCO3 and cannot be used as solely indicating distal H+ secretion. PMID:893680
The effect of H2O on the adsorption of NO2 on γ-Al2O3: an in situ FTIR/MS study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szanyi, Janos; Kwak, Ja Hun; Chimentao, Ricardo J.
2007-02-15
The effect of water on the adsorption of NO2 onto a γ-Al2O3 catalyst support surface was investigated using Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). Upon room temperature exposure of the alumina surface to small amounts of NO2, nitrites and nitrates are formed, and at higher NO2 doses only nitrates are observed. The surface nitrates formed were of bridging monodentate, bridging bidentate, and monodentate configuration. At elevated NO2 pressures, the surface hydroxyls were consumed in their reaction with NO2 giving primarily bridge-bound nitrates. A significant amount of weakly adsorbed N2O3 was seen as well. Exposure of the NO2-saturatedmore » γ-Al2O3 surface to H2O resulted in the desorption of some NO2 + NO as H2O interacted with the weakly-held N2O3, while the bridging monodentate surface nitrates converted into monodentate nitrates. The conversion of these oxide-bound nitrates to water-solvated nitrates was observed at high water doses when the presence of liquid-like water is expected on the surface. The addition of H2O to the NO2-saturated γ-Al2O3 did not affect the amount of NOx strongly adsorbed on the support surface. In particular, no NOx desorption was observed when the NO2-saturated sample was heated to 573K prior to room temperature H2O exposure. The effect of water is completely reversible; i.e., during TPD experiments following NO2 and H2O coadsorption, the same IR spectra were observed at temperatures above that required for H2O desorption as seen for NO2 adsorption only experiments.« less
Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme.
Gibson, Gary E; Zhang, Hui; Xu, Hui; Park, Larry C H; Jeitner, Thomas M
2002-03-16
Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.
Polyamine catabolism is enhanced after traumatic brain injury.
Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A; Strauss, Kenneth I
2010-03-01
Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N(1)-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6-24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6-24 h), then increased by approximately 50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6-72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24-72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies.
Lane, Michelle; McPherson, Nicole O.; Fullston, Tod; Spillane, Marni; Sandeman, Lauren; Kang, Wan Xian; Zander-Fox, Deirdre L.
2014-01-01
Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS) are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2), which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM) in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity. PMID:25006800
Qiao, Peng-Fei; Yao, Lei; Zhang, Xin-Chen; Li, Guo-Dong; Wu, De-Quan
2015-01-01
AIM: To investigate whether heat shock pretreatment (HSP) improves mesenchymal stem cell (MSC) repair via autophagy following hepatic ischemia-reperfusion injury (HIRI). METHODS: Apoptosis of MSCs was induced by 250 mM hydrogen peroxide (H2O2) for 6 h. HSP was carried out using a 42 °C water bath for 1, 2 or 3 h. Apoptosis of MSCs was analyzed by flow cytometry, and Western blot was used to detect Bcl-2, Bax and cytochrome C expression. Autophagy of MSCs was analyzed by flow cytometry and transmission electron microscopy, and the expression of beclin I and LC3-II was detected by Western blot. MSCs were labeled in vivo with the fluorescent dye, CM-Dil, and subsequently transplanted into the portal veins of rats that had undergone HIRI. Liver levels of proliferating cell nuclear antigen (PCNA) were quantified by fluorescent microscopy. Serum aminotransferase activity and the extent of HIRI were also assessed at each time point. RESULTS: HSP for 2 h reduced apoptosis of MSCs induced by H2O2 as seen by a decrease in apoptotic rate, a decrease in Bax and cytochrome C expression and an increase in Bcl-2 expression (P < 0.001). In addition, HSP for 2 h induced autophagy of MSCs exposed to H2O2 as shown by an increase in acidic vesicular organelle-positive cells, beclin 1 and LC3-II expression, and autophagosome formation (P < 0.05). Treatment with 3-methyladenine attenuated HSP-induced autophagy and abolished the protective effects of HSP on the apoptosis of MSCs. Rapamycin failed to have additional effects on either autophagy or apoptosis compared with HSP alone. The phosphorylation of p38MAPK was significantly elevated and the phosphorylation of mTOR was downregulated in heat shock pretreated MSCs. Treatment with the p38MAPK inhibitor, SB203580, reduced HSP-induced autophagy in MSCs. In vivo studies showed that the transplantation of HSP-MSCs resulted in lower serum aminotransferase levels, lower Suzuki scores, improved histopathology and an increase in PCNA-positive cells (P < 0.05). CONCLUSION: HSP effectively induces autophagy following exposure to H2O2 via the p38MAPK/mTOR pathway, which leads to enhanced MSC survival and improved MSC repair following HIRI in rats. PMID:26668506
H2O2 sensors of lungs and blood vessels and their role in the antioxidant defense of the body.
Skulachev, V P
2001-10-01
This paper considers the composition and function of sensory systems monitoring H2O2 level by the lung neuroepithelial cells and carotid bodies. These systems are localized in the plasma membrane of the corresponding cells and are composed of (O2*-)-generating NADPH-oxidase and an H2O2-activated K+ channel. This complex structure of the H2O2 sensors is probably due to their function in antioxidant defense. By means of these sensors, an increase in the H2O2 level in lung or blood results in a decrease in lung ventilation and constriction of blood vessels. This action lowers the O2 flux to the tissues and, hence, intracellular [O2]. The [O2] decrease, in turn, inhibits intracellular generation of reactive oxygen species. The possible roles of such systems under normal conditions (e.g., the effect of O2*- in air) and in some pathologies (e.g., pneumonia) is discussed.
Different effects of H2O2 treatment on cervical squamous carcinoma cells and adenocarcinoma cells
Zhang, Peihai; Yin, Haiqin; Wang, Sie; Wei, Yuping; Peng, Nan
2015-01-01
Introduction This study aims to compare the antioxidant abilities of cervical squamous carcinoma cells and cervical adenocarcinoma cells and to study the related mechanisms. Material and methods Cervical squamous carcinoma and adenocarcinoma cells were treated with H2O2. Cell proliferation was determined with the MTT assay. The reactive oxygen species (ROS) level was detected by the 2’,7’-dichlorofluorescein-diacetate (DCFH-DA) method. The 5,5’-dithiobis-2-nitrobenzoic acid (DTNB) method was performed to measure intracellular concentrations of reduced glutathione (GSH) and oxidized glutathione (GSSG). The nitrite formation method, the molybdate colorimetric method, and the DTNB colorimetric method were used to determine activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), respectively. Results Compared with untreated control cells, cell proliferation of cervical squamous carcinoma cells and cervical adenocarcinoma cells was significantly inhibited by H2O2 treatment (p < 0.05). Reactive oxygen species levels and GSSG levels were significantly increased (p < 0.01), whereas GSH levels were significantly decreased (p < 0.05 or 0.01) in both cells after H2O2 treatment. Thus the ratio of GSH/GSSG was significantly decreased by H2O2 treatment in both cells (p < 0.01). In addition, H2O2 treatment significantly increased activities of SOD, CAT, and GPx in both cells (p < 0.05 or 0.01). Furthermore, the above-mentioned changes induced by H2O2 treatment were more dramatic in cervical squamous carcinoma cells. Conclusions The antioxidant ability of cervical squamous carcinoma cells is lower than that of cervical adenocarcinoma cells, which may be related to the increased ROS levels in cervical squamous carcinoma cells induced by H2O2 treatments. PMID:26788095
Interacting effects of ozone and CO2 on growth and physiological processes in northern forest trees
J. G. Isebrands; D. F. Karnosky
1996-01-01
Globally, surface-level concentrations of both CO2 and ozone (O3) are increasing annually. Because many studies have shown beneficial effects of increasing CO2, predictions have been made that elevated levels of CO2 would compensate for growth decreases caused by O3...
Kusakisako, Kodai; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Yoshii, Kentaro; Umemiya-Shirafuji, Rika; Fujisaki, Kozo; Tanaka, Tetsuya
2018-03-17
Ticks are obligate hematophagous ectoparasites, as they need to feed blood from vertebrate hosts for development. Host blood contains high levels of iron. Host-derived iron may lead to high levels of reactive oxygen species (ROS), including hydrogen peroxide (H 2 O 2 ). Since a high concentration of H 2 O 2 causes serious damage to organisms, this molecule is known to be a harmful chemical compound for aerobic organisms. On the other hand, the transparent method is compatible with chemical fluorescent probes. Therefore, we tried to establish the visualizing method for H 2 O 2 in unfed tick tissues. The combination method of a chemical fluorescent probe (BES-H 2 O 2 -Ac) with the transparent method, Scale, demonstrated in unfed tick tissues that H 2 O 2 and paraquat could induce oxidative stress in the tissues, such as the midgut and ovary. In addition, an H 2 O 2 detection method using BES-H 2 O 2 -Ac was established in Ixodes scapularis embryo-derived cell line (ISE6) in vitro to evaluate the antioxidant activity of peroxiredoxins (PRXs), H 2 O 2 scavenging enzymes, against H 2 O 2 in the cells. The effects of paraquat in ISE6 cells were also observed in the PRXs gene-silenced ISE6 cells. A high intensity of H 2 O 2 fluorescence induced by paraquat was observed in the PRX gene-knockdowned cells. These results suggest that H 2 O 2 and paraquat act as an H 2 O 2 inducer, and PRX genes are important for the regulation of the H 2 O 2 concentration in unfed ticks and ISE6 cells. Therefore, this study contributes to the search for H 2 O 2 visualization in ticks and tick cell line and furthers understanding of the tick's oxidative stress induced by H 2 O 2 . Copyright © 2018 Elsevier GmbH. All rights reserved.
Ledger, Araminta E W; Moreno, Aitor; Ellul, Charles E; Mahon, Mary F; Pregosin, Paul S; Whittlesey, Michael K; Williams, Jonathan M J
2010-08-16
Treatment of Ru(PPh(3))(3)HCl with the pincer phosphines 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (xantphos), bis(2-diphenylphosphinophenyl)ether (DPEphos), or (Ph(2)PCH(2)CH(2))(2)O affords Ru(P-O-P)(PPh(3))HCl (xantphos, 1a; DPEphos, 1b; (Ph(2)PCH(2)CH(2))(2)O, 1c). The X-ray crystal structures of 1a-c show that all three P-O-P ligands coordinate in a tridentate manner through phosphorus and oxygen. Abstraction of the chloride ligand from 1a-c by NaBAr(4)(F) (BAr(4)(F) = B(3,5-C(6)H(3)(CF(3))(2))(4)) gives the cationic aqua complexes [Ru(P-O-P)(PPh(3))(H(2)O)H]BAr(4)(F) (3a-c). Removal of chloride from 1a by AgOTf yields Ru(xantphos)(PPh(3))H(OTf) (2a), which reacts with water to form [Ru(xantphos)(PPh(3))(H(2)O)H](OTf). The aqua complexes 3a-b react with O(2) to generate [Ru(xantphos)(PPh(3))(eta(2)-O(2))H]BAr(4)(F) (5a) and [Ru(DPEphos)(PPh(3))(eta(2)-O(2))H]BAr(4)(F) (5b). Addition of H(2) or N(2) to 3a-c yields the thermally unstable dihydrogen and dinitrogen species [Ru(P-O-P)(PPh(3))(eta(2)-H(2))H]BAr(4)(F) (6a-c) and [Ru(P-O-P)(PPh(3))(N(2))H]BAr(4)(F) (7a-c), which have been characterized by multinuclear NMR spectroscopy at low temperature. Ru(PPh(3))(3)HCl reacts with 1,1'-bis(diphenylphosphino)ferrocene (dppf) to give the 16-electron complex Ru(dppf)(PPh(3))HCl (1d), which upon treatment with NaBAr(4)(F), affords [Ru(dppf){(eta(6)-C(6)H(5))PPh(2)}H]BAr(4)(F) (8), in which the PPh(3) ligand binds eta(6) through one of the PPh(3) phenyl rings. Reaction of 8 with CO or PMe(3) at elevated temperatures yields the 18-electron products [Ru(dppf)(PPh(3))(CO)(2)H]BAr(F)(4) (9) and [Ru(PMe(3))(5)H]BAr(4)(F) (10).
NASA Technical Reports Server (NTRS)
Tribe, S.; Clifford, S. M.
1993-01-01
Observational evidence of outflow channel activity on Mars suggests that water was abundant in the planet's early crust. However, with the decline in the planet's internal heat flow, a freezing front developed within the regolith that propagated downward with time and acted as a thermodynamic sink for crustal H2O. One result of this thermal evolution is that, if the initial inventory of water on Mars was small, the cryosphere may have grown to the point where all the available water was taken up as ground ice. Alternatively, if the inventory of H2O exceeds the current pore volume of the cryosphere, then Mars has always possessed extensive bodies of subpermafrost groundwater. We have investigated the relative age, geographic distribution, elevation, and geologic setting of the outflow channels in an effort to accomplish the following: (1) identify possible modes of origin and evolutionary trends in their formation; (2) gain evidence regarding the duration and spatial distribution of groundwater in the crust; and (3) better constraint estimates of the planetary inventory of H2O.
Kwon, Seung-Hwan; Hong, Sa-Ik; Ma, Shi-Xun; Lee, Seok-Yong; Jang, Choon-Gon
2015-06-01
In this study, we investigated the mechanisms of 3',4',7-trihydroxyflavone (THF) protection of neuronal cells from neuronal cell death induced by the oxidative stress-related neurotoxin hydrogen peroxide (H2O2). Pretreatment with THF significantly elevated cell viability, reduced H2O2-induced lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, glutathione (GSH) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, and mitochondria membrane potential (MMP) loss. Western blot data demonstrated that THF inhibited the H2O2-induced up- or down-regulation of cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), Bax, Bcl-2, and Bcl-xL, and attenuated the H2O2-induced release of cytochrome c from the mitochondria to the cytosol. In addition, pretreatment with THF attenuated H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinases (PI3K)/Akt. THF also inhibited nuclear factor-κB (NF-κB) translocation to the nucleus induced by H2O2, down-stream of H2O2-induced phosphorylation of MAPKs and PI3K/Akt. These data provide the first evidence that THF protects neuronal cells against H2O2-induced oxidative stress, possibly through ROS reduction, mitochondria protection, and NF-κB modulation via MAPKs and PI3K/Akt pathways. The neuroprotective effects of THF make it a promising candidate as a therapeutic agent for neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem
Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin
2011-01-01
Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722
Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings.
Xu, Yonggang; Yu, Wantai; Ma, Qiang; Zhou, Hua; Jiang, Chunming
2017-08-01
A pot experiment was carried out to investigate the single and combined effect of different concentrations of sulfadiazine (SDZ) (1 and 10mgkg -1 ) and copper (Cu) (20 and 200mgkg -1 ) stresses on growth, hydrogen peroxide (H 2 O 2 ), malondialdehyde (MDA), antioxidant enzyme activities of wheat seedlings and their accumulation. High SDZ or Cu level significantly inhibited the growth of wheat seedlings, but the emergence rate was only inhibited by high SDZ level. The presence of Cu reduced the accumulation of SDZ, whereas the effect of SDZ on the accumulation of Cu depended on their concentrations. Low Cu level significantly increased the chlorophyll content, while high Cu level or both SDZ concentrations resulted in a significant decrease in the chlorophyll content as compared to the control. Additionally, H 2 O 2 and MDA contents increased with the elevated SDZ or Cu level. The activities of superoxide dismutase, peroxidase and catalase were also stimulated by SDZ or Cu except for the aerial part treated by low Cu level and root treated by high SDZ level. The joint toxicity data showed that the toxicity of SDZ to wheat seedlings was generally alleviated by the presence of Cu, whereas the combined toxicity of SDZ and Cu was larger than equivalent Cu alone. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Nalabotu, Siva Krishna
The field of nanotechnology is rapidly progressing with potential applications in the automobile, healthcare, electronics, cosmetics, textiles, information technology, and environmental sectors. Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. With increased applications of nanotechnology, there are increased chances of exposure to manufactured nanomaterials. Recent reports on the toxicity of engineered nanomaterials have given scientific and regulatory agencies concerns over the safety of nanomaterials. Specifically, the Organization for Economic Co-operation and Development (OECD) has identified fourteen high priority nanomaterials for study. Cerium oxide (CeO2) nanoparticles are one among the high priority group. Recent data suggest that CeO2 nanoparticles may be toxic to lung cell lines in vitro and lung tissues in vivo. Other work has proposed that oxidative stress may play an important role in the toxicity; however, the exact mechanism of the toxicity, has to our knowledge, not been investigated. Similarly, it is not clear whether CeO2 nanoparticles exhibit systemic toxicity. Here, we investigate whether pulmonary exposure to CeO2 nanoparticles is associated with oxidative stress, inflammation and apoptosis in the lungs and liver of adult male Sprague-Dawley rats. Our data suggest that the intratracheal instillation of CeO2 nanoparticles can cause an increased lung weight to body weight ratio. Changes in lung weights were associated with the accumulation of cerium in the lungs, elevations in serum inflammatory markers, an increased Bax to Bcl-2 ratio, elevated caspase-3 protein levels, increased phosphorylation of p38-MAPK and diminished phosphorylation of ERK1/2-MAPK. Our findings from the study evaluating the possible translocation of CeO2 nanoparticles from the lungs to the liver suggest that CeO 2 nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase levels, reduced albumin levels, a diminished sodium-potassium ratio and decreased serum triglyceride levels. Consistent with these data, rats exposed to CeO2 nanoparticles also exhibited reductions in liver weight and dose dependent hydropic degeneration, hepatocyte enlargement, sinusoidal dilatation and the accumulation of granular material in the hepatocytes. In a follow-up study, we next examined if CeO2 deposition in the liver is characterized by increased oxidative stress and apoptosis. Our data demonstrate that increased cerium in the liver is associated with increased oxidative stress and apoptosis as assessed from hydroethidium staining, the analysis of lipid peroxidation, and TUNEL staining. In addition, increased cerium concentration in the liver was associated with an increased Bax to Bcl-2 ratio, elevated caspase-9 and elevated caspase-3 protein levels. Taken together, these data suggest that exposure to CeO 2 nanoparticles is associated with increased oxidative stress and cellular apoptosis in the lungs. It is also evident that CeO2 nanoparticles can translocate to liver and induce hepatic damage. The hepatic damage induced by CeO2 nanoparticles is associated with increased oxidative stress and apoptosis in the liver.
Lin, Qingquan; Qiao, Botao; Huang, Yanqiang; Li, Lin; Lin, Jian; Liu, Xiao Yan; Wang, Aiqin; Li, Wen-Cui; Zhang, Tao
2014-03-14
La-doped γ-Al2O3 supported Au catalysts show high activity and selectivity for the PROX reaction under PEMFC operation conditions. The superior performance is attributed to the formation of LaAlO3, which suppresses H2 oxidation and strengthens CO adsorption on Au sites, thereby improving competitive oxidation of CO at elevated temperature.
NASA Technical Reports Server (NTRS)
Gelfand, R.; Lambertsen, C. J.; Clark, J. M.; Hopkin, E.
1998-01-01
Potential adverse effects on the O2-sensing function of the carotid body when its cells are exposed to toxic O2 pressures were assessed during investigations of human organ tolerance to prolonged continuous and intermittent hyperoxia (Predictive Studies V and VI). Isocapnic hypoxic ventilatory responses (HVR) were determined at 1.0 ATA before and after severe hyperoxic exposures: 1) continuous O2 breathing at 1.5, 2.0, and 2.5 ATA for 17.7, 9.0, and 5.7 h and 2) intermittent O2 breathing at 2.0 ATA (30 min O2-30 min normoxia) for 14.3 O2 h within 30-h total time. Postexposure curvature of HVR hyperbolas was not reduced compared with preexposure controls. The hyperbolas were temporarily elevated to higher ventilations than controls due to increments in respiratory frequency that were proportional to O2 exposure time, not O2 pressure. In humans, prolonged hyperoxia does not attenuate the hypoxia-sensing function of the peripheral chemoreceptors, even after exposures that approach limits of human pulmonary and central nervous system O2 tolerance. Current applications of hyperoxia in hyperbaric O2 therapy and in subsea- and aerospace-related operations are guided by and are well within these exposure limits.
NASA Astrophysics Data System (ADS)
Grootveld, Martin C.; Herz, Herman; Haywood, Rachel; Hawkes, Geoffrey E.; Naughton, Declan; Perera, Anusha; Knappitt, Jacky; Blake, David R.; Claxson, Andrew W. D.
1994-05-01
High field proton Hahn spin-echo nuclear magnetic resonance (NMR) spectroscopy has been employed to investigate radiolytic damage to biomolecules present in intact human body fluids. γ-Radiolysis of healthy or rheumatoid human serum (5.00 kGy) in the presence of atmospheric O 2 gave rise to reproducible elevations in the concentration of NMR-detectable acetate which are predominantly ascribable to the prior oxidation of lactate to pyruvate by hydroxyl radical (·OH) followed by oxidative decarboxylation of pyruvate by radiolytically-generated hydrogen peroxide (H 2O 2) and/or further ·OH radical. Increases in the serum levels of non-protein-bound, low-molecular-mass components such as citrate and glutamine were also observed subsequent to γ-radiolysis, an observation which may reflect their mobilisation from protein binding-sites by ·OH radical, superoxide anion and/or H 2O 2. Moreover, substantial radiolytically-mediated elevations in the concentration of serum formate were also detectable. In addition to the above modifications, γ-radiolysis of inflammatory knee-joint synovial fluid (SF) generated a low-molecular-mass oligosaccharide species derived from the radiolytic fragmentation of hyaluronate. The radiolytically-mediated production of acetate in SF samples was markedly greater than that observed in serum samples, a consequence of the much higher levels of ·OH radical-scavenging lactate present. Indeed, increases in SF acetate concentration were detectable at doses as low as 48 Gy. We conclude that high field proton NMR analysis provides much useful information regarding the relative radioprotectant abilities of endogenous components and the nature, status and levels of radiolytic products generated in intact biofluids. We also suggest that NMR-detectable radiolytic products with associated toxicological properties (e.g. formate) may play a role in contributing to the deleterious effects observed following exposure of living organisms to sources of ionising radiation.
Ivanchenko, Maria G.; den Os, Désirée; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednářová, Andrea; Krishnan, Natraj
2013-01-01
Background and Aims The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Methods Wild-type and auxin-resistant mutant, diageotropica (dgt), of tomato (S. lycopersicum ‘Ailsa Craig’) were characterized in terms of root apical meristem and elongation zone histology, expression of the cell-cycle marker gene Sl-CycB1;1, accumulation of ROS, response to auxin and hydrogen peroxide (H2O2), and expression of ROS-related mRNAs. Key Results The dgt mutant exhibited histological defects in the root apical meristem and elongation zone and displayed a constitutively increased level of hydrogen peroxide (H2O2) in the root tip, part of which was detected in the apoplast. Treatments of wild-type with auxin increased the H2O2 concentration in the root tip in a dose-dependent manner. Auxin and H2O2 elicited similar inhibition of cell elongation while bringing forth differential responses in terms of meristem length and number of cells in the elongation zone. Auxin treatments affected the expression of mRNAs of ROS-scavenging enzymes and less significantly mRNAs related to antioxidant level. The dgt mutation resulted in resistance to both auxin and H2O2 and affected profoundly the expression of mRNAs related to antioxidant level. Conclusions The results indicate that auxin regulates the level of H2O2 in the root tip, so increasing the auxin level triggers accumulation of H2O2 leading to inhibition of root cell elongation and root growth. The dgt mutation affects this pathway by reducing the auxin responsiveness of tissues and by disrupting the H2O2 homeostasis in the root tip. PMID:23965615
Anharmonic Vibrational Spectroscopy of the F-(H20)n, complexes, n=1,2
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Xantheas, Sotiris; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2003-01-01
We report anharmonic vibrational spectra (fundamentals, first overtones) for the F-(H(sub 2)O) and F-(H(sub 2)O)2 clusters computed at the MP2 and CCSD(T) levels of theory with basis sets of triple zeta quality. Anharmonic corrections were estimated via the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The CC-VSCF anharmonic spectra obtained on the potential energy surfaces evaluated at the CCSD(T) level of theory are the first ones reported at a correlated level beyond MP2. We have found that the average basis set effect (TZP vs. aug-cc-pVTZ) is on the order of 30-40 cm(exp -1), whereas the effects of different levels of electron correlation [MP2 vs. CCSD(T)] are smaller, 20-30 cm(exp -1). However, the basis set effect is much larger in the case of the H-bonded O-H stretch of the F-(H(sub 2)O) cluster amounting to 100 cm(exp -1) for the fundamentals and 200 cm (exp -1) for the first overtones. Our calculations are in agreement with the limited available set of experimental data for the F-(H(sub 2)O) and F-(H(sub 2)O)2 systems and provide additional information that can guide further experimental studies.
Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping
2018-01-01
Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H2O2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H2O2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H2O2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H2O2. Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H2O2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H2O2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H2O2 level was inhibited, the effect of exogenous H2O2 on the induction of HO-1 was enhanced. Furthermore, exogenous H2O2-activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3′,5′-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H2O2-delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H2O2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H2O2 promoted cell death. PMID:29449858
Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping
2018-01-01
Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.
Dietary resveratrol confers apoptotic resistance to oxidative stress in myoblasts.
Haramizu, Satoshi; Asano, Shinichi; Butler, David C; Stanton, David A; Hajira, Ameena; Mohamed, Junaith S; Alway, Stephen E
2017-12-01
High levels of reactive oxygen species (ROS) contribute to muscle cell death in aging and disuse. We have previously found that resveratrol can reduce oxidative stress in response to aging and hindlimb unloading in rodents in vivo, but it was not known if resveratrol would protect muscle stem cells during repair or regeneration when oxidative stress is high. To test the protective role of resveratrol on muscle stem cells directly, we treated the C2C12 mouse myoblast cell line with moderate (100 μM) or very high (1 mM) levels of H 2 O 2 in the presence or absence of resveratrol. The p21 promoter activity declined in myoblasts in response to high ROS, and this was accompanied a greater nuclear to cytoplasmic translocation of p21 in a dose-dependent matter in myoblasts as compared to myotubes. Apoptosis, as indicated by TdT-mediated dUTP nick-end labeling, was greater in C2C12 myoblasts as compared to myotubes (P<.05) after treatment with H 2 O 2 . Caspase-9, -8 and -3 activities were elevated significantly (P<.05) in myoblasts treated with H 2 O 2 . Myoblasts were more susceptible to ROS-induced oxidative stress than myotubes. We treated C2C12 myoblasts with 50 μM of resveratrol for periods up to 48 h to determine if myoblasts could be rescued from high-ROS-induced apoptosis by resveratrol. Resveratrol reduced the apoptotic index and significantly reduced the ROS-induced caspase-9, -8 and -3 activity in myoblasts. Furthermore, Bcl-2 and the Bax/Bcl-2 ratio were partially rescued in myoblasts by resveratrol treatment. Similarly, muscle stem cells isolated from mouse skeletal muscles showed reduced Sirt1 protein abundance with H 2 O 2 treatment, but this could be reversed by resveratrol. Reduced apoptotic susceptibility in myoblasts as compared to myotubes to ROS is regulated, at least in part, by enhanced p21 promoter activity and nuclear p21 location in myotubes. Resveratrol confers further protection against ROS by improving Sirt1 levels and increasing antioxidant production, which reduces mitochondrial associated apoptotic signaling, and cell death in myoblasts. Copyright © 2017 Elsevier Inc. All rights reserved.
Rimpler, M M; Rauen, U; Schmidt, T; Möröy, T; de Groot, H
1999-01-01
The oncoprotein Bcl-2 protects cells against apoptosis, but the exact molecular mechanism that underlies this function has not yet been identified. Studying H2O2-induced cell injury in Rat-1 fibroblast cells, we observed that Bcl-2 had a protective effect against the increase in cytosolic calcium concentration and subsequent cell death. Furthermore, overexpression of Bcl-2 resulted in an alteration of cellular glutathione status: the total amount of cellular glutathione was increased by about 60% and the redox potential of the cellular glutathione pool was maintained in a more reduced state during H2O2 exposure compared with non-Bcl-2-expressing controls. In our cytotoxicity model, disruption of cellular glutathione homoeostasis closely correlated with the pathological elevation of cytosolic calcium concentration. Stabilization of the glutathione pool by Bcl-2, N-acetylcysteine or glucose delayed the cytosolic calcium increase and subsequent cell death, whereas depletion of glutathione by dl-buthionine-(S, R)-sulphoximine, sensitized Bcl-2-transfected cells towards cytosolic calcium increase and cell death. We therefore suggest that the protection exerted by Bcl-2 against H2O2-induced cytosolic calcium elevation and subsequent cell death is secondary to its effect on the cellular glutathione metabolism. PMID:10229685
Postprandial metabolism of Pacific bluefin tuna (Thunnus orientalis).
Clark, T D; Brandt, W T; Nogueira, J; Rodriguez, L E; Price, M; Farwell, C J; Block, B A
2010-07-15
Specific dynamic action (SDA) is defined as the energy expended during ingestion, digestion, absorption and assimilation of a meal. This study presents the first data on the SDA response of individual tunas of any species. Juvenile Pacific bluefin tunas (Thunnus orientalis; body mass 9.7-11.0 kg; N=7) were individually fed known quantities of food consisting primarily of squid and sardine (meal energy range 1680-8749 kJ, approximately 4-13% of tuna body mass). Oxygen consumption rates (M(O2)) were measured in a swim tunnel respirometer during the postprandial period at a swimming speed of 1 body length (BL) s(-1) and a water temperature of 20 degrees C. was markedly elevated above routine levels in all fish following meal consumption [routine metabolic rate (RMR)=174+/-9 mg kg(-1) h(-1)]. The peak M(O2) during the SDA process ranged from 250 to 440 mg kg(-1) h(-1) (1.5-2.3 times RMR) and was linearly related to meal energy content. The duration of the postprandial increment in M(O2) ranged from 21 h to 33 h depending upon meal energy content. Consequently, the total energy used in SDA increased linearly with meal energy and ranged from 170 kJ to 688 kJ, such that the SDA process accounted for 9.2+/-0.7% of ingested energy across all experiments. These values suggest rapid and efficient food conversion in T. orientalis in comparison with most other fishes. Implanted archival temperature tags recorded the increment in visceral temperature (T(V)) in association with SDA. M(O2) returned to routine levels at the end of the digestive period 2-3 h earlier than T(V). The qualitative patterns in M(O2) and T(V) during digestion were similar, strengthening the possibility that archival measurements of T(V) can provide new insight into the energetics and habitat utilization of free-swimming bluefin in the natural environment. Despite efficient food conversion, SDA is likely to represent a significant component of the daily energy budget of wild bluefin tunas due to a regular and high ingestion of forage.
Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.
2017-01-01
p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative stress and functions, in part, by modulating ATG10 expression. NFκB p65 activity may be a critical upstream initiator of p62 expression in RPE cells under oxidative stress. PMID:28222108
Jiang, Fuping; Shen, Yunze; Ma, Chuanxin; Zhang, Xiaowen; Cao, Weidong; Rui, Yukui
2017-01-01
Concerns over the potential risks of nanomaterials to ecosystem have been raised, as it is highly possible that nanomaterials could be released to the environment and result in adverse effects on living organisms. Carbon dioxide (CO2) is one of the main greenhouse gases. The level of CO2 keeps increasing and subsequently causes a series of environmental problems, especially for agricultural crops. In the present study, we investigated the effects of TiO2 NPs on wheat seedlings cultivated under super-elevated CO2 conditions (5000 mg/L CO2) and under normal CO2 conditions (400 mg/L CO2). Compared to the normal CO2 condition, wheat grown under the elevated CO2 condition showed increases of root biomass and large numbers of lateral roots. Under both CO2 cultivation conditions, the abscisic acid (ABA) content in wheat seedlings increased with increasing concentrations of TiO2 NPs. The indolepropioponic acid (IPA) and jasmonic acid (JA) content notably decreased in plants grown under super-elevated CO2 conditions, while the JA content increased with increasing concentrations of TiO2 NPs. Ti accumulation showed a dose-response manner in both wheat shoots and roots as TiO2 NPs concentrations increased. Additionally, the presence of elevated CO2 significantly promoted Ti accumulation and translocation in wheat treated with certain concentrations of TiO2 NPs. This study will be of benefit to the understanding of the joint effects and physiological mechanism of high-CO2 and nanoparticle to terrestrial plants.
Mohamed, Hanan Ramadan Hamad
2015-09-01
Titanium dioxide (TiO2) nanoparticles are widely used as a food additive and coloring agent in many consumer products however limited data is available on the nano-TiO2 induced genotoxicity persistence. Thus, this study investigated the persistence of nano-TiO2 induced genotoxicity and possible induction of chronic gastritis in mice. The mice were orally administered 5, 50 or 500 mg/kg body weight nano-TiO2 for five consecutive days, and then mice from each dosage group were sacrificed 24 h or one or two weeks after the last treatment. The administration of nano-TiO2 resulted in persistent apoptotic DNA fragmentation and mutations in p53 exons (5-8) as well as significant persistent elevations in malondialdehyde and nitric oxide levels and decreases in the reduced glutathione level and catalase activity compared with the control mice in a dose- and time-dependent manner. Necrosis and inflammation were evident upon histological examination. These findings could be attributed to the persistent accumulation of nano-TiO2 at the tested doses at all three time points. Based on these findings, we conclude that the administration of nano-TiO2, even at low doses, leads to persistent accumulation of nano-TiO2 in mice, resulting in persistent inflammation, apoptosis and oxidative stress, ultimately leading to the induction of chronic gastritis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of Sustained Elevated Gastric pH Levels on Gefitinib Exposure.
Tang, Weifeng; Tomkinson, Helen; Masson, Eric
2017-09-01
This open-label, randomized, phase 1 crossover study investigated the effect of elevated gastric pH level (>5) on the relative bioavailability and pharmacokinetic profile of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib. Healthy male volunteers (n = 26) were randomized to gefitinib 250 mg (fasted), either alone on day 1 (unmodified gastric pH) or 1 hour following the second of 2 oral doses of the H 2 -receptor antagonist ranitidine 450 mg (elevated gastric pH). After a 3-week washout period, volunteers crossed to the other treatment. The geometric least-squares (GLS) mean AUC 0-∞ and C max for gefitinib were reduced by 47% and 71%, respectively, under conditions of sustained elevated gastric pH; for both parameters, the 90%CI for the ratio of the GLS means lay below the prespecified lower limit. Median t max was delayed from 5 to 6 hours. Mean t 1/2 was similar under both gastric pH conditions. No serious adverse events were reported. The bioavailability of a single oral gefitinib 250-mg dose was reduced by approximately 50% when gefitinib was administered under conditions of sustained elevated gastric pH. © 2017, The American College of Clinical Pharmacology.
Hardt, Daniel J; James, R Arden; Gut, Chester P; McInturf, Shawn M; Sweeney, Lisa M; Erickson, Richard P; Gargas, Michael L
2015-02-01
The inhalation toxicity of submarine contaminants is of concern to ensure the health of men and women aboard submarines during operational deployments. Due to a lack of adequate prior studies, potential general, neurobehavioral, reproductive and developmental toxicity was evaluated in male and female rats exposed to mixtures of three critical submarine atmospheric components: carbon monoxide (CO) and carbon dioxide (CO2; levels elevated above ambient), and oxygen (O2; levels decreased below ambient). In a 14-day, 23 h/day, whole-body inhalation study of exposure to clean air (0.4 ppm CO, 0.1% CO2 and 20.6% O2), low-dose, mid-dose and high-dose gas mixtures (high dose of 88.4 ppm CO, 2.5% CO2 and 15.0% O2), no adverse effects on survival, body weight or histopathology were observed. Reproductive, developmental and neurobehavioral performance were evaluated after a 28-day exposure in similar atmospheres. No adverse effects on estrus phase, mating, gestation or parturition were observed. No developmental or functional deficits were observed in either exposed parents or offspring related to motor activity, exploratory behavior or higher-level cognitive functions (learning and memory). Only minimal effects were discovered in parent-offspring emotionality tests. While statistically significant increases in hematological parameters were observed in the offspring of exposed parents compared to controls, these parameters remained within normal clinical ranges for blood cells and components and were not considered adverse. In summary, subacute exposures to elevated concentrations of the submarine atmosphere gases did not affect the ability of rats to reproduce and did not appear to have any significant adverse health effects.
Li, Bing; Yu, Xiaohong; Gui, Suxin; Xie, Yi; Hong, Jie; Zhao, Xiaoyang; Sheng, Lei; Sang, Xuezi; Sun, Qingqing; Wang, Ling; Shen, Weide; Hong, Fashui
2013-12-18
Organophosphate pesticides are applied widely in the world for agricultural purposes, and their exposures often resulted in non-cocooning of Bombyx mori in China. TiO2 nanoparticles have been demonstrated to increase pesticide resistance of Bombyx mori. While the toxicity of phoxim is well-documented, very limited information exists on the mechanisms of TiO2 nanoparticles improving the cocooning function of Bombyx mori following exposure to phoxim. The present study was, therefore, undertaken to determine whether TiO2 nanoparticles attenuate silk gland injury and elevate cocooning of B. mori following exposure to phoxim. The findings suggested that phoxim exposure resulted in severe damages of the silk gland structure and significantly decreased the cocooning in the silk gland of Bombyx mori. Furthermore, phoxim exposure significantly resulted in reductions of total protein concentrations and suppressed expressions of silk protein synthesis-related genes, including Fib-L, Fib-H, P25, Ser-2, and Ser-3, in the silk gland. TiO2 nanoparticle pretreatment, however, could significantly relieve silk gland injury of Bombyx mori. Importantly, TiO2 nanoparticles could remarkably elevate cocooning and total protein contents and promote expressions of Fib-L, Fib-H, P25, Ser-2, and Ser-3 in the silk gland following exposure to phoxim.
Outwardly Propagating Flames at Elevated Pressures
NASA Technical Reports Server (NTRS)
Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.
2001-01-01
Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.
Dissociative photoionization of ethyl acrylate: Theoretical and experimental insights
NASA Astrophysics Data System (ADS)
Song, Yanlin; Chen, Jun; Ding, Mengmeng; Wei, Bin; Cao, Maoqi; Shan, Xiaobin; Zhao, Yujie; Huang, Chaoqun; Sheng, Liusi; Liu, Fuyi
2015-08-01
The photoionization and dissociation of ethyl acrylate have been investigated by time-of-flight mass spectrometer with tunable vacuum ultraviolet (VUV) source in the range of 9.0-20.0 eV. The photoionization mass spectrum (PIMS) for ethyl acrylate and photoionization efficiency (PIE) curves for its major fragment ions: C5H7O2+, C4H5O2+, C3H5O2+, C3H4O+, C3H3O+, C2H5O+, C2H3O+, C2H5+ and C2H4+ have been obtained. The formation channels of main fragments are predicted by Gaussian 09 program at G3B3 level and examined via their dissociation energies from experimental results. Based on our analysis, nine main dissociative photoionization channels are proposed: C5H7O2+ + H, C4H5O2+ + CH3, C3H5O2+ + C2H3, C3H4O+ + C2H4O, C3H3O+ + C2H5O, C2H5O+ + C3H3O, C2H3O+ + C3H5O, C2H5+ + C3H3O2, C2H4+ + C3H4O2, respectively. The results of this work lead to a better understanding of photochemistry in the environment.
Chlorogenic acid attenuates hydrogen peroxide-induced oxidative stress in lens epithelial cells
Song, Jike; Guo, Dadong; Bi, Hongsheng
2018-01-01
Oxidative stress has an important role in the degradation, oxidation, cross-linking and aggregation of lens proteins, and can trigger lens epithelial cell apoptosis. To investigate the protective effect of chlorogenic acid (CGA) against hydrogen peroxide (H2O2)-induced oxidative stress, human lens epithelial cells (hLECs) were exposed to various concentrations of H2O2 in the presence and absence of CGA. Using MTT assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA techniques, cell viability, and protein/mRNA levels of BCL2 apoptosis regulator (Bcl-2) and BCL2 associated X apoptosis regulator (Bax) were investigated. Additionally, the levels of intracellular reactive oxygen species (ROS) and apoptosis within cells were measured using flow cytometry to determine the protective effect of CGA on H2O2-induced oxidative stress. Furthermore, the protective effect of CGA on H2O2-induced apoptosis was also examined using rabbit lenses ex vivo. The results indicated that CGA reduced H2O2-induced cytotoxicity in a dose-dependent manner. Flow cytometry analysis demonstrated that simultaneous exposure of hLECs to H2O2 and CGA significantly decreased apoptosis and the levels of ROS. RT-qPCR analysis revealed a decrease in Bcl-2 and an increase in Bax in hLECs following exposure to H2O2 for 24 h, regardless of CGA presence. Furthermore, ELISA results indicate that CGA increased Bcl-2 expression and decreased Bax expression following treatment with H2O2 for 24 h and the Bax/Bcl-2 ratio was significantly decreased by CGA treatment. Lens organ culture experiments indicated a dose-dependent decrease in H2O2-induced lens opacity following CGA treatment. These results suggest that CGA suppresses hLECs apoptosis and prevents lens opacity induced by H2O2 via Bax/Bcl-2 signaling pathway. CGA may provide effective defenses against oxidative stress and, thus, haσ potential as treatment for a variety of diseases in clinical practice. PMID:29207051
Ledesma, Juan Carlos; Baliño, Pablo; Aragon, Carlos M G
2014-01-01
Hydrogen peroxide (H2 O2 ) is the cosubstrate used by the enzyme catalase to form Compound I (the catalase-H2 O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This centrally formed acetaldehyde has been shown to be involved in some of the psychopharmacological effects induced by EtOH in rodents, including voluntary alcohol intake. It has been observed that different levels of this enzyme in the central nervous system (CNS) result in variations in the amount of EtOH consumed. This has been interpreted to mean that the brain catalase-H2 O2 system, by determining EtOH metabolism, mediates alcohol self-administration. To date, however, the role of H2 O2 in voluntary EtOH drinking has not been investigated. In the present study, we explored the consequence of a reduction in cerebral H2 O2 levels in volitional EtOH ingestion. With this end in mind, we injected mice of the C57BL/6J strain intraperitoneally with the H2 O2 scavengers alpha-lipoic acid (LA; 0 to 50 mg/kg) or ebselen (Ebs; 0 to 25 mg/kg) 15 or 60 minutes, respectively, prior to offering them an EtOH (10%) solution following a drinking-in-the-dark procedure. The same procedure was followed to assess the selectivity of these compounds in altering EtOH intake by presenting mice with a (0.1%) solution of saccharin. In addition, we indirectly tested the ability of LA and Ebs to reduce brain H2 O2 availability. The results showed that both LA and Ebs dose-dependently reduced voluntary EtOH intake, without altering saccharin consumption. Moreover, we demonstrated that these treatments decreased the central H2 O2 levels available to catalase. Therefore, we propose that the amount of H2 O2 present in the CNS, by determining brain acetaldehyde formation by the catalase-H2 O2 system, could be a factor that determines an animal's propensity to consume EtOH. Copyright © 2013 by the Research Society on Alcoholism.
Relationship between fabrication method and chemical stability of Ni-BaZr0.8Y0.2O3-δ membrane
NASA Astrophysics Data System (ADS)
Fang, Shumin; Wang, Siwei; Brinkman, Kyle S.; Su, Qing; Wang, Haiyan; Chen, Fanglin
2015-03-01
NiO effectively promotes the sintering of highly refractory Y-doped BaZrO3 (BZY) through the formation of BaY2NiO5, providing a simple and cost-effective method for the fabrication of dense BZY electrolyte and Ni-BZY hydrogen separation membrane at ∼1400 °C. Unfortunately, insulating BaCO3 and Y2O3 phases formed on the surface of BZY and Ni-BZY prepared by solid state reaction method with NiO after annealing in wet CO2. Ni-BZY membranes prepared from different methods suffered different degree of performance loss in wet H2 at 900 °C. The chemical instability of Ni-BZY is attributed to the formation of a secondary phase (BaY2O4) generated from the reduction of BaY2NiO5 in H2 during the sintering process. Both BaY2O4 and BaY2NiO5 react with H2O, and CO2 at elevated temperatures, generating insulating Ba(OH)2 and BaCO3 phases, respectively. The less BaY2O4 is formed in the fabrication process, the better chemical stability the Ni-BZY membranes possess. Therefore, a new Ni-BZY membrane is prepared through a judicial combination of BZY powders prepared from combined EDTA-citric and solid state reaction methods, and demonstrates exceptional chemical stability in H2O and CO2, enabling stable and even improved hydrogen flux in wet 50% CO2 at 900 °C.
Glucose Acutely Reduces Cytosolic and Mitochondrial H2O2 in Rat Pancreatic Beta Cells.
Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe
2018-06-14
Whether H 2 O 2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic β cells is highly controversial. We used two H 2 O 2 -sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on β cell cytosolic and mitochondrial H 2 O 2 concentrations. We then tested the effects of low H 2 O 2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H 2 O 2 (response at 2-5 vs. 10 μM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 μM exogenous H 2 O 2 . The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H 2 O 2 (1-15 μM) did not affect insulin secretion. By contrast, menadione (1-5 μM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Subcellular changes in β cell H 2 O 2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H 2 O 2 levels in β cells and promote degradation of exogenously supplied H 2 O 2 in both cytosolic and mitochondrial compartments. The GSIS occurs independently of a detectable increase in β cell cytosolic or mitochondrial H 2 O 2 levels. Antioxid. Redox Signal. 00, 000-000.
Chen, Cuilan; Campbell, Leona T; Blair, Shona E; Carter, Dee A
2012-01-01
There is increasing interest in the antimicrobial properties of honey. In most honey types, antimicrobial activity is due to the generation of hydrogen peroxide (H(2)O(2)), but this can vary greatly among samples. Honey is a complex product and other components may modulate activity, which can be further affected by commercial processing procedures. In this study we examined honey derived from three native Australian floral sources that had previously been associated with H(2)O(2)-dependent activity. Antibacterial activity was seen in four red stringybark samples only, and ranged from 12 to 21.1% phenol equivalence against Staphylococcus aureus. Antifungal activity ranged from MIC values of 19-38.3% (w/v) against Candida albicans, and all samples were significantly more active than an osmotically equivalent sugar solution. All honey samples were provided unprocessed and following commercial processing. Processing was usually detrimental to antimicrobial activity, but occasionally the reverse was seen and activity increased. H(2)O(2) levels varied from 0 to 1017 μM, and although samples with no H(2)O(2) had little or no antimicrobial activity, some samples had relatively high H(2)O(2) levels yet no antimicrobial activity. In samples where H(2)O(2) was detected, the correlation with antibacterial activity was greater in the processed than in the unprocessed samples, suggesting other factors present in the honey influence this activity and are sensitive to heat treatment. Antifungal activity did not correlate with the level of H(2)O(2) in honey samples, and overall it appeared that H(2)O(2) alone was not sufficient to inhibit C. albicans. We conclude that floral source and H(2)O(2) levels are not reliable predictors of the antimicrobial activity of honey, which currently can only be assessed by standardized antimicrobial testing. Heat processing should be reduced where possible, and honey destined for medicinal use should be retested post-processing to ensure that activity levels have not changed.
Chen, Cuilan; Campbell, Leona T.; Blair, Shona E.; Carter, Dee A.
2012-01-01
There is increasing interest in the antimicrobial properties of honey. In most honey types, antimicrobial activity is due to the generation of hydrogen peroxide (H2O2), but this can vary greatly among samples. Honey is a complex product and other components may modulate activity, which can be further affected by commercial processing procedures. In this study we examined honey derived from three native Australian floral sources that had previously been associated with H2O2-dependent activity. Antibacterial activity was seen in four red stringybark samples only, and ranged from 12 to 21.1% phenol equivalence against Staphylococcus aureus. Antifungal activity ranged from MIC values of 19–38.3% (w/v) against Candida albicans, and all samples were significantly more active than an osmotically equivalent sugar solution. All honey samples were provided unprocessed and following commercial processing. Processing was usually detrimental to antimicrobial activity, but occasionally the reverse was seen and activity increased. H2O2 levels varied from 0 to 1017 μM, and although samples with no H2O2 had little or no antimicrobial activity, some samples had relatively high H2O2 levels yet no antimicrobial activity. In samples where H2O2 was detected, the correlation with antibacterial activity was greater in the processed than in the unprocessed samples, suggesting other factors present in the honey influence this activity and are sensitive to heat treatment. Antifungal activity did not correlate with the level of H2O2 in honey samples, and overall it appeared that H2O2 alone was not sufficient to inhibit C. albicans. We conclude that floral source and H2O2 levels are not reliable predictors of the antimicrobial activity of honey, which currently can only be assessed by standardized antimicrobial testing. Heat processing should be reduced where possible, and honey destined for medicinal use should be retested post-processing to ensure that activity levels have not changed. PMID:22866051
Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun
2018-05-07
Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H + (H 2 O) n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H 2 O molecule to form a H 3 O + ion in all H + (H 2 O) 10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H + (H 2 O) 10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H 3 O + ion since the Wiberg bond order of the O-H bond in the H 3 O + ion is smaller than that in H 2 O molecules, which causes a red shift of the O-H stretching mode in the H 3 O + ion.
NASA Astrophysics Data System (ADS)
Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun
2018-05-01
Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.
Young, Adrian; Gardiner, Danielle; Brosnan, Margaret E; Brosnan, John T; Mailloux, Ryan J
2017-08-01
Here, we found that formate, an essential one-carbon metabolite, activates superoxide (O2·-)/hydrogen peroxide (H 2 O 2 ) release from mitochondria. Sodium formate (30 μm) induces a significant increase in O2·-/H 2 O 2 production in liver mitochondria metabolizing pyruvate (50 μm). At concentrations deemed to be toxic, formate does not increase O2·-/H 2 O 2 production further. It was observed that the formate-mediated increase in O2·-/H 2 O 2 production is not associated with cytochrome c oxidase (COX) inhibition or changes in membrane potential and NAD(P)H levels. Sodium formate supplementation increases phosphorylating respiration without altering proton leaks. Finally, it was observed that the 2-oxoglutarate dehydrogenase (OGDH) inhibitors 3-methyl-2-oxovaleric acid (KMV) and CPI-613 inhibit the formate-induced increase in pyruvate-driven ROS production. The importance of these findings in one-carbon metabolism and physiology are discussed herein. © 2017 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Fujihara, Junko; Hashimoto, Hideki; Nishimoto, Naoki; Tongu, Miki; Fujita, Yasuhisa
The use of NPs in the health care field is increasing. Before their biological application, investigating the toxicities of both n-type ZnO nanoparticles (NPs) and nitrogen-doped (“p-type”) NPs is important. Using L929 cells, the cell viability, oxidative stress, apoptosis induction, inflammatory responses, and cellular uptake were assayed 24h after the addition of n-type ZnO NPs and nitrogen-doped NPs (which act as p-type) (25μg/mL). The ZnO NPs were fabricated using a gas evaporation method. Increased H2O2 generation and decreased levels of glutathione were more evident in with n-type than in those treated with nitrogen-doped (“p-type”) ZnO NPs. Caspase-3/-7 activity was higher in cells treated with n-type ZnO NPs than in those treated with nitrogen-doped (“p-type”) NPs. Elevated levels of TNF-α and IL-1β were observed in cell culture supernatants: IL-1β levels were higher in n-type ZnO NPs than nitrogen-doped (“p-type”) NPs. The cellular Zn uptake of n-type ZnO NPs was higher than nitrogen-doped (“p-type”) NPs. These findings show that n-type ZnO NPs have higher cytotoxicity than nitrogen-doped (“p-type”) ZnO NPs. This may be due to a reductive effect of n-type ZnO NPs that induces higher free radical production, reactive oxygen species (ROS) generation, and cellular uptake of this type of ZnO NPs.
NASA Astrophysics Data System (ADS)
Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.
2018-04-01
In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.
Chang, Ya-Hui; Chen, Chiao-Yun; Singh, Gyan; Chen, Hsing-Yin; Liu, Gin-Chung; Goan, Yih-Gang; Aime, Silvio; Wang, Yun-Ming
2011-02-21
The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K(A)) for [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are 1.1 × 10(2) and 1.5 × 10(3), respectively. Although the K(A) value for [Gd(Bz-CB-TTDA)(H(2)O)](2-) is lower than that of MS-325 (K(A) = 3.0 × 10(4)), the r(1)(b) value, r(1)(b) = 66.7 mM(-1) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-), is significantly higher than that of MS-325 (r(1)(b) = 47.0 mM(-1) s(-1)). As measured by the Zn(II) transmetalation process, the kinetic stabilities of [Gd(CB-TTDA)(H(2)O)](2-), [Gd(Bz-CB-TTDA)(H(2)O)](2-), and [Gd(DTPA)(H(2)O)](2-) are similar and are significantly higher than that of [Gd(DTPA-BMA)(H(2)O)](2-). High thermodynamic and kinetic stability and optimized lipophilicity of [Gd(CB-TTDA)(H(2)O)](2-) make it a favorable blood pool contrast agent for MRI.
NASA Technical Reports Server (NTRS)
Davis, D. D.; Rodgers, M. O.; Fischer, S. D.; Heaps, W. S.
1981-01-01
Theoretical calculations are presented which estimate the possible magnitude of the O3/H2O derived OH interference signal resulting from the use of the laser-induced fluorescence technique in measuring natural levels of tropospheric OH. Critical to this new assessment has been the measurement of the nascent OH quantum state distribution resulting from the reaction O(1D) + H2O yields 2OH, and an assessment of the subsequent rotational relaxation of the OH species when formed in high k levels.
Critical assessment of the formation of hydrogen peroxide in dough by fermenting yeast cells.
Rezaei, Mohammad N; Dornez, Emmie; Verstrepen, Kevin J; Courtin, Christophe M
2015-02-01
Fermentation of bread dough leads to strengthening of the dough matrix. This effect has previously been ascribed to the action of hydrogen peroxide (H2O2) produced by yeast in dough. In this study, we re-evaluate the production of H2O2 by yeast in dough and aqueous fermentation broth. Results show that the previously reported high levels of H2O2 in fermenting dough were most probably due to the lack of specificity of the potassium dichromate/acetic acid-based method used. Using the chemiluminescent HyPerBlu assay, no yeast H2O2 production could be detected in fermented dough or broth. Even though the formation of low levels of H2O2 cannot be ruled out due to the presence of catalase in flour and the fast reaction of H2O2 with gluten proteins, our results suggest that the changes in dough matrix rheological properties upon fermentation are not due to production of H2O2 by yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.
TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OLS)
Atmospheric Science Data Center
2018-03-01
TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News: TES News ... Level: L2 Platform: TES/Aura L2 Water Vapor Spatial Coverage: 27 x 23 km Limb ... Access: OPeNDAP Parameters: H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...
TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OL)
Atmospheric Science Data Center
2018-03-01
TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News: TES News ... Level: L2 Platform: TES/Aura L2 Water Vapor Spatial Coverage: 27 x 23 km Limb ... Access: OPeNDAP Parameters: H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...
Zhu, Ying; Zhao, Ke-Ke; Tong, Yao; Zhou, Ya-Li; Wang, Yi-Xiao; Zhao, Pei-Quan; Wang, Zhao-Yang
2016-05-31
Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD(+)) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD(+) administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD(+) administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD(+) administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD(+) against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD(+) administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD(+) administration might be potential value for the treatment of AMD.
O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R
2010-01-01
Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.
Infrared and Microwave Spectra of Ne-WATER Complex
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Thomas, Javix; Xu, Yunjie; Hou, Dan; Li, Hui
2016-06-01
The binary complex of rare gas atom and water is an ideal model to study the anisotropic potential energy surface of van der Waals interaction and the large amplitude motion. Although Xe-H_2O, Kr-H_2O, Ar-H_2O, Ar-D_2O and even Ne-D_2O complexes were studied by microwave or high resolution infrared spectroscopy, the lighter Ne-H_2O complex has remained unidentified. In this talk, we will present the theoretical and experimental investigation of the Ne-H_2O complex. A four-dimension PES for H_2O-Ne which only depended on the intramolecular (Q2) normal-mode coordinate of H2O monomer was calculated in this work to determine the rovibrational energy levels and mid-infrared transitions. Aided with the calculated transitions, we were able to assigned the high resolution mid-infrared spectra of both 20Ne-H_2O and 22Ne-H_2O complexes that are generated with a pulsed supersonic molecular beam in a multipass direct absorption spectrometer equiped with an external cavity quantum cascade laser at 6 μm. Several bands of both para and ortho Ne-H2O were assigned and fitted using the Hamiltonian with strong Coriolis and angular-radical coupling terms. The predicted groud state energy levels are then confirmed by the J=1-0 and J=2-1 transitions measurement using a cavity based Fourier transform microwave spectrometer.
Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1
Kanwal, Rajnee; Pandey, Mitali; Bhaskaran, Natarajan; MacLennan, Gregory T; Fu, Pingfu; Ponsky, Lee E; Gupta, Sanjay
2014-01-01
The pi-class glutathione S-transferase (GSTP1) actively protect cells from carcinogens and electrophilic compounds. Loss of GSTP1 expression via promoter hypermethylation is the most common epigenetic alteration observed in human prostate cancer. Silencing of GSTP1 can increase generation of reactive oxygen species (ROS) and DNA damage in cells. In this study we investigated whether loss of GSTP1 contributes to increased DNA damage that may predispose men to a higher risk of prostate cancer. We found significantly elevated (103%; P<0.0001) levels of 8-oxo-2′-deoxogunosine (8-OHdG), an oxidative DNA damage marker, in adenocarcinomas, compared to benign counterparts, which positively correlated (r=0.2) with loss of GSTP1 activity (34%; P<0.0001). Silencing of GSTP1 using siRNA approach in normal human prostate epithelial RWPE1 cells caused increased intracellular production of ROS and higher susceptibility of cells to H2O2-mediated oxidative stress. Additionally, human prostate carcinoma LNCaP cells, which contain a silenced GSTP1 gene, were genetically modified to constitutively express high levels of GSTP1. Induction of GSTP1 activity lowered endogenous ROS levels in LNCaP-pLPCX-GSTP1 cells, and when exposed to H2O2, these cells exhibited significantly reduced production of ROS and 8-OHdG levels, compared to vector control LNCaP-pLPCX cells. Furthermore, exposure of LNCaP cells to green tea polyphenols caused re-expression of GSTP1, which protected the cells from H2O2-mediated DNA damage through decreased ROS production compared to non-exposed cells. These results suggest that loss of GSTP1 expression in human prostate cells, a process that increases their susceptibility to oxidative stress-induced DNA damage, may be an important target for primary prevention of prostate cancer. PMID:22833520
Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2
NASA Technical Reports Server (NTRS)
Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.
2013-01-01
We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.
Long-term product consistency test of simulated 90-19/Nd HLW glass
NASA Astrophysics Data System (ADS)
Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.
2011-01-01
Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.
Shao, Dengkui; Zhang, Ling; Sun, Songmei; Wang, Wenzhong
2018-02-09
Oxygen reduction reaction (ORR) for generating H 2 O 2 through green pathways have gained much attention in recent years. Herein, we introduce a piezo-catalytic approach to obtain H 2 O 2 over bismuth oxychloride (BiOCl) through an ORR pathway. The piezoelectric response of BiOCl was directly characterized by piezoresponse force microscopy (PFM). The BiOCl exhibits efficient catalytic performance for generating H 2 O 2 (28 μmol h -1 ) only from O 2 and H 2 O, which is above the average level of H 2 O 2 produced by solar-to-chemical processes. A piezo-catalytic mechanism was proposed: with ultrasonic waves, an alternating electric field will be generated over BiOCl, which can drive charge carriers (electrons) to interact with O 2 and H 2 O, then to form H 2 O 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito
2015-04-24
Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1) S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chip-to-chip SnO2 nanowire network sensors for room temperature H2 detection
NASA Astrophysics Data System (ADS)
Köck, A.; Brunet, E.; Mutinati, G. C.; Maier, T.; Steinhauer, S.
2012-06-01
The employment of nanowires is a very powerful strategy to improve gas sensor performance. We demonstrate a gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected SnO2 nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device is able to detect a H2 concentration of only 20 ppm in synthetic air with ~ 60% relative humidity at room temperature. At an operating temperature of 300°C a concentration of 50 ppm H2 results in a sensitivity of 5%. At this elevated temperature the sensor shows a linear response in a concentration range between 10 ppm and 100 ppm H2. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.
2011-01-01
Inelastic neutron scattering (INS) data for SnO2 nanoparticles of three different sizes and varying hydration levels are presented. Data were recorded on five nanoparticle samples that had the following compositions: 2 nm SnO2*0.82H2O, 6 nm SnO2*0.055H2O, 6 nm SnO2*0.095H2O, 20 nm SnO2*0.072H2O, and 20 nm SnO2*0.092H2O. The isochoric heat capacity and vibrational entropy values at 298 K for the water confined on the surface of these nanoparticles were calculated from the vibrational density of states that were extracted from the INS data. This study has shown that the hydration level of the SnO2 nanoparticles influences the thermodynamic properties of themore » water layers and, most importantly, that there appears to be a critical size limit for SnO2 between 2 and 6 nm below which the particle size also affects these properties and above which it does not. These results have been compared with those for isostructural rutile-TiO2 nanoparticles [TiO2*0.22H2O and TiO2*0.37H2O], which indicated that water on the surface of TiO2 nanoparticles is more tightly bound and experiences a greater degree of restricted motion with respect to water on the surface of SnO2 nanoparticles. This is believed to be a consequence of the difference in chemical composition, and hence surface properties, of these metal oxide nanoparticles.« less
Tian, Jiangang; Gu, Liufang; Adams, Andrew; Wang, Xueliang; Huang, Ruizhe
2018-06-02
To determine the protective effects of Pellino-1 against H 2 O 2 -induced apoptosis in periodontal ligament stem cells (PDLSC). We demonstrated that H 2 O 2 decreases PDLSC viability by 40 and 50% with the concentrations of 400 and 500 μM, respectively, with an observed downregulation of Pellino-1 mRNA and protein; we further concluded that overexpression of Pellino-1 significantly lowers 8-hydroxy-2'-deoxyguanosine levels by 10% and upregulates superoxide dismutase 1, glutathione peroxidase levels, and catalase mRNA levels by 200, 40, and 250%, respectively. More importantly, we found that overexpression of Pellino-1 inhibited H 2 O 2 -induced cellular apoptosis through the activation of the NF-κB signaling pathway. Pellino-1 may be critically important for cell survival in the presence of oxidative elements; activation of the NF-κB signaling cascade was required for the overexpression of Pellino-1 to protect the cells from H 2 O 2 -induced apoptosis.
Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong
2011-08-15
Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.
NASA Astrophysics Data System (ADS)
Alghamdi, H.; Idriss, H.
2018-03-01
While photocatalytic water splitting over many materials is favourable thermodynamically the kinetic of the reaction is very slow. One of the proposed reasons linked to the slow oxidation reaction rate is H2O2 formation as a reaction intermediate. Using Density Functional Theory (DFT) H2O2 is investigated on TiO2 rutile (110) surface to determine its most stable adsorption modes: molecular, (H)O(H)O - (a), partially dissociated, (H)OO - (a), and fully dissociated (a) - OO - (a). We then compare H2O2 interaction to that of a fast hole scavenger molecule, ethanol. Geometry, electronic structure, charge density difference and work function determination of both adsorbates are presented and compared using DFT with different functionals (PBE, PBE-D, PBE-U, and HSE + D). H2O2 is found to be strongly adsorbed on TiO2 rutile (110) surface with adsorption energies reaching 0.95 eV, comparable to that of ethanol (0.89 eV); using GGA PBE. The negative changes in the work function upon adsorption were found to be highest for molecular adsorption ( - 1.23 eV) and lowest for the fully dissociated mode ( - 0.54 eV) of H2O2. This may indicate that electrons flow from the surface to the adsorbate in order to make O(s)-H partially offset the overall magnitude of the oxygen lone pair interaction (of H2O2) with Ti4+ cations. Examination of the electronic structure through density of states (DOS) at the PBE level of computation, indicates that the H2O2 highest occupied molecular orbital (HOMO) level is not overlapping with oxygen atoms of TiO2 surface at any of its adsorption modes and at any of the computation methods. Some overlap is seen using the HSE + D computational method. On the other hand the dissociated mode of ethanol (ethoxides) does overlap with all computational methods used. The high adsorption energy and the absence of overlapping of the HOMO level of H2O2 with TiO2 rutile (110) surface may explain why water splitting is slow.
Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin
2015-03-15
To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed between AsA level and APX activity in the ongoing senescence of rice leaves. The GSH supply in rice leaves was not the limiting factor for the efficient maintenance of AsA-GSH cycle, despite the senescence-related change in GR activity between the two rice genotypes. Copyright © 2014 Elsevier GmbH. All rights reserved.
Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon
2014-01-01
The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. PMID:24105709
Wang, N; Kang, H S; Ahmmed, G; Khan, S A; Makarenko, V V; Prabhakar, N R; Nanduri, J
2016-03-01
Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K(+) current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on SH-SY5Y neuroblastoma cells, which express hERG protein. Cells were exposed to IH consisting of alternating cycles of 30 s of hypoxia (1.5% O2) and 5 min of 20% O2. IH decreased hERG protein expression in a stimulus-dependent manner. A similar reduction in hERG protein was also seen in adrenal medullary chromaffin cells from IH-exposed neonatal rats. The decreased hERG protein was associated with attenuated hERG K(+) current. IH-evoked hERG protein degradation was not due to reduced transcription or increased proteosome/lysomal degradation. Rather it was mediated by calcium-activated calpain proteases. Both COOH- and NH2-terminal sequences of the hERG protein were the targets of calpain-dependent degradation. IH increased reactive oxygen species (ROS) levels, intracellular Ca(2+) concentration ([Ca(2+)]i), calpain enzyme activity, and hERG protein degradation, and all these effects were prevented by manganese-(111)-tetrakis-(1-methyl-4-pyridyl)-porphyrin pentachloride, a membrane-permeable ROS scavenger. These results demonstrate that activation of calpains by ROS-dependent elevation of [Ca(2+)]i mediates hERG protein degradation by IH. Copyright © 2016 the American Physiological Society.
Shi, Qingli; Xu, Hui; Kleinman, Wayne A.; Gibson, Gary E.
2011-01-01
Measures in autopsied brains from Alzheimer’s Disease (AD) patients reveal a decrease in the activity of α-ketoglutarate dehydrogenase complex (KGDHC) and an increase in malate dehydrogenase (MDH) activity. The present experiments tested whether both changes could be caused by the common oxidant H2O2 and to probe the mechanism underlying these changes. Since the response to H2O2 is modified by the level of the E2k subunit of KGDHC, the interaction of MDH and KGDHC was studied in cells with varying levels of E2k. In cells with only 23% of normal E2k protein levels, one hour treatment with H2O2 decreased KGDHC and increased MDH activity as well as the mRNA level for both cytosolic and mitochondrial MDH. The increase in MDH did not occur in cells with 100% or 46% of normal E2k. Longer treatments with H2O2 inhibited the activity of both enzymes. Glutathione is a major regulator of cellular redox state and can modify enzyme activities. H2O2 converts reduced glutathione (GSH) to oxidized glutathione (GSSG), which reacts with protein thiols. Treatment of purified KGDHC with GSSG leads to glutathionylation of all three KGDHC subunits. Thus, cellular glutathione level was manipulated by two means to determine the effect on KGDHC and MDH activities. Both buthionine sulfoximine (BSO), which inhibits glutathione synthesis without altering redox state, and H2O2 diminished glutathione to a similar level after 24 hrs. However, H2O2, but not BSO, reduced KGDHC and MDH activities, and the reduction was greater in the E2k-23 line. These findings suggest that the E2k may mediate diverse responses of KGDHC and MDH to oxidants. In addition, the differential response of activities to BSO and H2O2 together with the in vitro interaction of KGDHC with GSSG suggests that glutathionylation is one possible mechanism underlying oxidative stress-induced inhibition of the TCA cycle enzymes. PMID:18206986
Sensitivity of wheat and rice to low levels of atmospheric ethylene
NASA Technical Reports Server (NTRS)
Klassen, Stephen P.; Bugbee, Bruce
2002-01-01
Ethylene (C2H4) gas is produced throughout the life cycle of plants and can accumulate in closed growth chambers to levels 100 times higher than in outside environments. Elevated atmospheric C2H4 can cause a variety of abnormal responses, but the sensitivity to elevated C2H4 is not well characterized. We evaluated the C2H4 sensitivity of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) in five studies. The first three studies compared the effects of continuous C2H4 levels ranging from 0 to 1000 nmol mol-1 (ppb) in a growth chamber throughout the life cycle of the plants. A short-term 1000 nmol mol-1 treatment was included in which exposure was stopped at anthesis. Yield was reduced by 36% in wheat and 63% in rice at 50 nmol mol-1 and both species were virtually sterile when continuously exposed to 1000 nmol mol-1. However, the yield reductions were much less with exposure that stopped at anthesis, suggesting the detrimental effect of C2H4 on yield was greatest around the time of seed set. Two additional studies evaluated the differential sensitivity of two wheat cultivars (Super Dwarf and USU-Apogee) to 50 nmol mol-1 C2H4 at three CO2 levels [350, 1200, 5000 micromoles mol-1 (ppm)] in a greenhouse. Yield of USU-Apogee was not significantly reduced by C2H4 but the yield of Super Dwarf was reduced by 60%. Elevated CO2 did not influence the sensitivity to C2H4. A difference in the C2H4 sensitivity of USU-Apogee between greenhouse and growth chamber trials suggests that C2H4 sensitivity is dependent on the environment. Collectively, the data suggest that relatively low levels of C2H4 could induce anomalous plant responses by accumulation in greenhouses and growth chambers with inadequate ventilation. The data also suggest that C2H4 sensitivity can be reduced by both genetic and environmental manipulations. 2002 Crop Science Society of America.
Huang, Xiao-San; Wang, Wei; Zhang, Qian; Liu, Ji-Hong
2013-01-01
The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal. PMID:23624854
Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu
2016-01-01
The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.
Theoretical kinetics of O + C 2H 4
Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; ...
2016-06-01
The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C 2H 4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C 2Hmore » 4 reaction has been extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C 2H 4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH 2CHO+H and CH 2+CH 2O as the major products, which differs from the room temperature preference for CH 3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less
Wearing, Oliver H; Eme, John; Rhen, Turk; Crossley, Dane A
2016-01-15
Studies of embryonic and hatchling reptiles have revealed marked plasticity in morphology, metabolism, and cardiovascular function following chronic hypoxic incubation. However, the long-term effects of chronic hypoxia have not yet been investigated in these animals. The aim of this study was to determine growth and postprandial O2 consumption (V̇o2), heart rate (fH), and mean arterial pressure (Pm, in kPa) of common snapping turtles (Chelydra serpentina) that were incubated as embryos in chronic hypoxia (10% O2, H10) or normoxia (21% O2, N21). We hypothesized that hypoxic development would modify posthatching body mass, metabolic rate, and cardiovascular physiology in juvenile snapping turtles. Yearling H10 turtles were significantly smaller than yearling N21 turtles, both of which were raised posthatching in normoxic, common garden conditions. Measurement of postprandial cardiovascular parameters and O2 consumption were conducted in size-matched three-year-old H10 and N21 turtles. Both before and 12 h after feeding, H10 turtles had a significantly lower fH compared with N21 turtles. In addition, V̇o2 was significantly elevated in H10 animals compared with N21 animals 12 h after feeding, and peak postprandial V̇o2 occurred earlier in H10 animals. Pm of three-year-old turtles was not affected by feeding or hypoxic embryonic incubation. Our findings demonstrate that physiological impacts of developmental hypoxia on embryonic reptiles continue into juvenile life. Copyright © 2016 the American Physiological Society.
Sousa, T; Oliveira, S; Afonso, J; Morato, M; Patinha, D; Fraga, S; Carvalho, F; Albino-Teixeira, A
2012-01-01
BACKGROUND AND PURPOSE Activation of the intrarenal renin-angiotensin system (RAS) and increased renal medullary hydrogen peroxide (H2O2) contribute to hypertension. We examined whether H2O2 mediated hypertension and intrarenal RAS activation induced by angiotensin II (Ang II). EXPERIMENTAL APPROACH Ang II (200 ng·kg−1·min−1) or saline were infused in Sprague Dawley rats from day 0 to day 14. Polyethylene glycol (PEG)-catalase (10 000 U·kg−1·day−1) was given to Ang II-treated rats, from day 7 to day 14. Systolic blood pressure was measured throughout the study. H2O2, angiotensin AT1 receptor and Nox4 expression and nuclear factor-κB (NF-κB) activation were evaluated in the kidney. Plasma and urinary H2O2 and angiotensinogen were also measured. KEY RESULTS Ang II increased H2O2, AT1 receptor and Nox4 expression and NF-κB activation in the renal medulla, but not in the cortex. Ang II raised plasma and urinary H2O2 levels, increased urinary angiotensinogen but reduced plasma angiotensinogen. PEG-catalase had a short-term antihypertensive effect and transiently suppressed urinary angiotensinogen. PEG-catalase decreased renal medullary expression of AT1 receptors and Nox4 in Ang II-infused rats. Renal medullary NF-κB activation was correlated with local H2O2 levels and urinary angiotensinogen excretion. Loss of antihypertensive efficacy was associated with an eightfold increase of plasma angiotensinogen. CONCLUSIONS AND IMPLICATIONS The renal medulla is a major target for Ang II-induced redox dysfunction. H2O2 appears to be the key mediator enhancing intrarenal RAS activation and decreasing systemic RAS activity. The specific control of renal medullary H2O2 levels may provide future grounds for the treatment of hypertension. PMID:22452317
Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide
NASA Astrophysics Data System (ADS)
Yang, Changyuan; Li, Huichu; Chen, Renjie; Xu, Wenxi; Wang, Cuicui; Tse, Lap Ah; Zhao, Zhuohui; Kan, Haidong
2016-07-01
Nitrogen dioxide and ozone are two interrelated oxidative pollutants in the atmosphere. Few studies have evaluated the health effects of combined oxidant capacity (O x ). We investigated the short-term effects of O x on fractional exhaled nitric oxide (FeNO), a well-established biomarker for airway inflammation, in a group of chronic obstructive pulmonary disease patients. Real-time concentrations of O x were obtained by calculating directly the sum of nitrogen dioxide and ozone. Linear mixed-effect models were applied to explore the acute effects of O x on FeNO levels. Short-term exposure to Ox was significantly associated with elevated FeNO. This effect was strongest in the first 24 h after exposure, and was robust to the adjustment of PM2.5. A 10 μg m-3 increase in 24 h average concentrations of O x was associated with 4.28% (95% confidence interval: 1.19%, 7.37%) increase in FeNO. The effect estimates were statistically significant only among males, elders, and those with body mass index ≥24 kg m-2, a comorbidity, higher educational attainment, or moderate airflow limitation. This analysis demonstrated an independent effect of O x on respiratory inflammation, and suggested that a single metric O x might serve as a preferable indicator of atmospheric oxidative capacity in further air pollution epidemiological studies.
NASA Astrophysics Data System (ADS)
Singhania, Shalabh; Wang, Qiankun; Filippou, Dimitrios; Demopoulos, George P.
2005-06-01
Arsenic is a major contaminant in the nonferrous extractive metallurgy. In the past 20 years, many studies have shown that it can be precipitated as relatively stable crystalline scorodite (FeAsO4·2H2O) by precipitation under ambient or elevated pressures. In the present study, an extensive program of scorodite precipitation tests under ambient pressure has shown that the rate of scorodite formation increases dramatically by a small increase in temperature from 85 °C to 100 °C. The beneficial effects of temperature are attributed to the higher thermodynamic stability of scorodite at elevated temperatures, but also to higher rates of secondary nuclei formation and crystal growth. In any case, irrespective of the precipitation temperature, the leachability of all scorodite precipitates observed in toxicity characterization leaching procedure (TCLP) tests is below 5 mg/L As. Another parameter examined in this study was seeding. It was observed that the higher the initial concentration of seed, the faster the precipitation. Precipitation of well-crystallized scorodite can be effected equally well on heterogeneous seed such as hematite (Fe2O3) or gypsum (CaSO4·2H2O) added externally or formed in situ.
Modern climate challenges and the geological record
Cronin, Thomas M.
2010-01-01
Today's changing climate poses challenges about the influence of human activity, such as greenhouse gas emissions and land use changes, the natural variability of Earth's climate, and complex feedback processes. Ice core and instrumental records show that over the last century, atmospheric carbon dioxide (CO2) concentrations have risen to 390 parts per million volume (ppmv), about 40% above pre-Industrial Age concentrations of 280 ppmv and nearly twice those of the last glacial maximum about 22,000 years ago. Similar historical increases are recorded in atmospheric methane (CH4) and nitrous oxide (N2O). There is general agreement that human activity is largely responsible for these trends. Substantial evidence also suggests that elevated greenhouse gas concentrations are responsible for much of the recent atmospheric and oceanic warming, rising sea level, declining Arctic sea-ice cover, retreating glaciers and small ice caps, decreased mass balance of the Greenland and parts of the Antarctic ice sheets, and decreasing ocean pH (ocean "acidification"). Elevated CO2 concentrations raise concern not only from observations of the climate system, but because feedbacks associated with reduced reflectivity from in land and sea ice, sea level, and land vegetation relatively slowly (centuries or longer) to elevated 2 levels. This means that additional human-induced climate change is expected even if the rate of CO2 emissions is reduced or concentrations immediately stabilized.
Xu, Yuefeng; Li, Yonghua; Li, Hairong; Wang, Li; Liao, Xiaoyong; Wang, Jing; Kong, Chang
2018-08-15
Selenium (Se) is an essential trace element for humans. In order to investigate how soil Se is influenced by topography and soil properties, we selected Yongjia County, an area with mountainous topography, as a study area. This study used cultivated soil data to comprehensively analyze the effects of topography and soil properties on Se mobility and bioavailability and to identify the key factors influencing Se distribution in the environment. Factors considered in this study were elevation, slope, topographic wetness index, the coefficient of weathering and eluviation, pH, organic matter, and Fe 2 O 3 . The concentration of total soil Se (0.382±0.123mgkg -1 ) was far higher than the background value of soil in China, and 98% of the soil samples were classified as having moderate Se levels (>0.175mgkg -1 ), indicating Yongjia County is a Se-rich region in China. Phosphate extracted Se accounted for an average of 9% of the total Se and was significantly associated with soil total Se, Fe 2 O 3 , pH, and the coefficient of weathering and eluviation. Fe 2 O 3 primarily controlled Se adsorption, fixation, and availability in soil. Under the geo-environmental conditions in the study area, the total Se in the soil increased first and then decreased with increases in elevation, slope, and the topographic wetness index, and the phosphate extracted Se showed similar patterns except for the elevation. The findings showed that topographical attributes and soil physicochemical properties synthetically influenced the distribution and bioavailability of Se in soil. Copyright © 2018 Elsevier B.V. All rights reserved.
ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp.
Saita, Makiko; Kobayashi, Kyo; Kobatashi, Kyou; Yoshino, Fumihiko; Hase, Hiriko; Nonami, Toru; Kimoto, Katsuhiko; Lee, Masaichi-Chang-il
2012-01-01
It is well known that clinical bleaching can be achieved with a solution of 30% hydrogen peroxide (H2O2) or H2O2/titanium dioxide (TiO2) combination. This study examined the hypothesis that TiO2 coated with hydroxyapatite (HAp-TiO2) can generate reactive oxygen species (ROS). ROS are generated via photocatalysis using electron spin resonance (ESR). The bleaching properties of HAp-TiO2 in the presence of H2O2 can be measured using hematoporphyrin litmus paper and extracted teeth. We demonstrate that superoxides (O2(•-)) and hydroxyl radicals (HO(•)) can be generated through excitation of anatase TiO2, rutile TiO2, anatase HAp-TiO2, and rutile HAp-TiO2 in the presence of H2O2. The combination of R HAp-TiO2 with H2O2 produced the highest level of HO(•) generation and the most marked bleaching effects of all the samples. The superior bleaching effects exhibited by R HAp-TiO2 with H2O2 suggest that this combination may lead to novel methods for the clinical application of bleaching treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felker, Peter M., E-mail: felker@chem.ucla.edu; Bačić, Zlatko, E-mail: zlatko.bacic@nyu.edu; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062
2016-05-28
We report rigorous quantum calculations of the translation-rotation (TR) eigenstates of para- and ortho-H{sub 2}O@C{sub 60}. They provide a comprehensive description of the dynamical behavior of H{sub 2}O inside the fullerene having icosahedral (I{sub h}) symmetry. The TR eigenstates are assigned in terms of the irreducible representations of the proper symmetry group of H{sub 2}O@C{sub 60}, as well as the appropriate translational and rotational quantum numbers. The coupling between the orbital and the rotational angular momenta of the caged H{sub 2}O gives rise to the total angular momentum λ, which additionally labels each TR level. The calculated TR levels allowmore » tentative assignments of a number of transitions in the recent experimental INS spectra of H{sub 2}O@C{sub 60} that have not been assigned previously.« less
The inhibition of N2O production by ocean acidification in cold temperate and polar waters
NASA Astrophysics Data System (ADS)
Rees, Andrew P.; Brown, Ian J.; Jayakumar, Amal; Ward, Bess B.
2016-05-01
The effects of ocean acidification (OA) on nitrous oxide (N2O) production and on the community composition of ammonium oxidizing archaea (AOA) were examined in the northern and southern sub-polar and polar Atlantic Ocean. Two research cruises were performed during June 2012 between the North Sea and Arctic Greenland and Barent Seas, and in January-February 2013 to the Antarctic Scotia Sea. Seven stations were occupied in all during which shipboard experimental manipulations of the carbonate chemistry were performed through additions of NaHCO3-+HCl in order to examine the impact of short-term (48 h for N2O and between 96 and 168 h for AOA) exposure to control and elevated conditions of OA. During each experiment, triplicate incubations were performed at ambient conditions and at 3 lowered levels of pH which varied between 0.06 and 0.4 units according to the total scale and which were targeted at CO2 partial pressures of 500, 750 and 1000 μatm. The AOA assemblage in both Arctic and Antarctic regions was dominated by two major archetypes that represent the marine AOA clades most often detected in seawater. There were no significant changes in AOA assemblage composition between the beginning and end of the incubation experiments. N2O production was sensitive to decreasing pHT at all stations and decreased by between 2.4% and 44% with reduced pHT values of between 0.06 and 0.4. The reduction in N2O yield from nitrification was directly related to a decrease of between 28% and 67% in available NH3 as a result of the pH driven shift in the NH3:NH4+ equilibrium. The maximum reduction in N2O production at conditions projected for the end of the 21st century was estimated to be 0.82 Tg N y-1.
Imudia, A N; Kilburn, B A; Petkova, A; Edwin, S S; Romero, R; Armant, D R
2008-09-01
Heparin-binding EGF-like growth factor (HBEGF) induces trophoblast extravillous differentiation and prevents apoptosis. These functions are compromised in preeclampsia. Because HBEGF is downregulated in placentas delivered by women with preeclampsia, we have examined its expression and cytoprotective activity in term villous explants. Chorionic villous explants prepared from non-pathological placentas collected by cesarean section at term were cultured at either 20% or 2% O2 and treated with the HBEGF antagonist CRM197 or recombinant HBEGF. Paraffin sections were assayed for trophoblast death, proliferation and HBEGF expression using the TUNEL method, immunohistochemistry for nuclear Ki67 expression and semi-quantitative immunohistochemistry with image analysis, respectively. Trophoblast cell death was increased significantly after 8h of culture with CRM197 or by culture for 2h at 2% O2. Exogenous HBEGF prevented cell death due to hypoxia. Proliferative capacity was not affected by culture at either 20% or 2% O2. Contrary to first trimester placenta, term trophoblasts do not elevate HBEGF expression in response to hypoxia. However, low endogenous levels of HBEGF are required to maintain survival. Therefore, HBEGF-mediated signaling significantly reduces trophoblast cell death at term and its deficiency in preeclampsia could negatively impact trophoblast survival.
Imudia, Anthony N.; Kilburn, Brian A.; Petkova, Anelia; Edwin, Samuel S.; Romero, Roberto; Armant, D. Randall
2008-01-01
Heparin-binding EGF-like growth factor (HBEGF) induces trophoblast extravillous differentiation and prevents apoptosis. These functions are compromised in preeclampsia. Because HBEGF is downregulated in placentas delivered by women with preeclampsia, we have examined its expression and cytoprotective activity in term villous explants. Chorionic villous explants prepared from non-pathological placentas collected by cesarean section at term were cultured at either 20% or 2% O2 and treated with the HBEGF antagonist CRM197 or recombinant HBEGF. Paraffin sections were assayed for trophoblast death, proliferation and HBEGF expression using the TUNEL method, immunohistochemistry for nuclear Ki67 expression and semi-quantitative immunohistochemistry with image analysis, respectively. Trophoblast cell death was increased significantly after 8 h of culture with CRM197 or by culture for 2 h at 2% O2. Exogenous HBEGF prevented cell death due to hypoxia. Proliferative capacity was not affected by culture at either 20% or 2% O2. Contrary to first trimester placenta, term trophoblasts do not elevate HBEGF expression in response to hypoxia. However, low endogenous levels of HBEGF are required to maintain survival. Therefore, HBEGF-mediated signaling significantly reduces trophoblast cell death at term and its deficiency in preeclampsia could negatively impact trophoblast survival. PMID:18691754
Zhu, Ying; Zhao, Ke-ke; Tong, Yao; Zhou, Ya-li; Wang, Yi-xiao; Zhao, Pei-quan; Wang, Zhao-yang
2016-01-01
Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD+) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD+ administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD+ administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD+ administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD+ against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD+ administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD+ administration might be potential value for the treatment of AMD. PMID:27240523
Sgherri, Cristina; Pérez-López, Usue; Micaelli, Francesco; Miranda-Apodaca, Jon; Mena-Petite, Amaia; Muñoz-Rueda, Alberto; Quartacci, Mike Frank
2017-06-01
Both salt stress and high CO 2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO 2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO 2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO 2 , alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO 2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO 2 , reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
On the Relative Stability of Cumulenone and Aldehyde Isomers: when we HEAT345(Q) Things UP
NASA Astrophysics Data System (ADS)
Lee, Kelvin; McCarthy, Michael C.; Stanton, John F.
2017-06-01
Isomers of H_2C_{2n+1}O are examples of complex organic molecules that are either known or proposed to exist in the interstellar medium. For the smallest of these chains (H_2C_3O) only two of three isomers are observed in space: propynal (HC(O)CCH) and cyclopropenone (c-C_3H_2O), while evidence for the remaining isomer propadienone (H_2C_3O) is currently lacking. Potentially, this behaviour may be rationalised by a thermodynamic argument: several studies have provided quantum chemical calculations in an effort to determine the relative thermodynamic stability between these three isomers. An early study by Radom, at the SCF/6-31G** level ranked HC(O)CCH as the thermodynamic minimum, followed by H_2C_3O, and c-C_3H_2O. The most recent determination by Karton and Talbi, using W2-F12 theory, places H_2C_3O as the lowest energy isomer; 2.5 kJ mol^{-1} lower than the HC(O)CCH form. In an attempt to resolve this long-standing ambiguity, we were motivated to provide high level calculations based on the HEAT protocol. In this talk, we will discuss the relative stability of H_2C_3O and H_2C_5O isomers, along with their sulfur analogues, as revealed by HEAT345(Q) theory.
Carrie Andrew; Erik A. Lilleskov
2014-01-01
Despite the critical role of EMF in nutrient and carbon (C) dynamics, combined effects of global atmospheric pollutants on ectomycorrhizal fungi (EMF) are unclear. Here, we present research on EMF root-level community responses to elevated CO2 and O3. We discovered that belowground EMF community richness and similarity were...
Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin
NASA Technical Reports Server (NTRS)
Yang, T.; Poovaiah, B. W.
2002-01-01
Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.
Li, Si-Wen; He, Ying; Zhao, Hong-Jing; Wang, Yu; Liu, Juan-Juan; Shao, Yi-Zhi; Li, Jing-Lun; Sun, Xiao; Zhang, Li-Na; Xing, Ming-Wei
2017-10-01
The contents of 28 trace elements, 17 amino acid were evaluated in muscular tissues (wings, crureus and pectoralis) of chickens in response to arsenic trioxide (As 2 O 3 ). A total of 200 one-day-old male Hy-line chickens were fed either a commercial diet (C-group) or an As 2 O 3 supplement diet containing 7.5mg/kg (L-group), 15mg/kg (M-group) or 30mg/kg (H-group) As 2 O 3 for 90 days. The elements content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Under As 2 O 3 exposure, the concentration of As were elevated 8.87-15.76 fold, 7.93-15.63 fold and 5.94-12.45 fold in wings, crureus and pectoralis compared to the corresponding C-group, respectively. 19 element levels (lithium (Li), magnesium (Mg), aluminum (Al), silicon (Si), kalium (K), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), selenium (Se), strontium (Sr), molybdenum (Mo), cadmium (Cd), tin (Sn), antimony (Sb), barium (Ba), mercury (Hg) and lead (Pb), 9 element levels (K, Co, Ni, Cu, As, Se, Sr, Sn, Ba and Hg) and 4 element levels (Mn, cobalt (Co), As, Sr and Ba) were significantly increased (P < 0.05) in wing, crureus and pectoralis, respectively. 2 element levels (sodium (Na) and zinc (Zn)), 5 element levels (Li, Na, Si, titanium (Ti and Cr), 13 element levels (Li, Na, Mg, K, V, Cr, iron (Fe), Cu, Zn, Mo, Sn, Hg and Pb) were significantly decreased (P < 0.05) in wing muscle, crureus and pectoralis, respectively. Additionally, in crureus and pectoralis, the content of total amino acids (TAA) was no significant alterations in L and M-group and then increased approximately 10.2% and 7.6% in H-group, respectively (P < 0.05). In wings, the level of total amino acids increased approximately 10% in L-group, whereas it showed unchanged in M and H-group compared to the corresponding C-group. We also observed that significantly increased levels of proline, cysteine, aspartic acid, methionine along with decrease in the tyrosine levels in muscular tissues compared to the corresponding C-group. In conclusion, the residual of As in the muscular tissues of chickens were dose-dependent and disrupts trace element homeostasis, amino acids level in muscular tissues of chickens under As 2 O 3 exposure. Additionally, the response (trace elements and amino acids) were different in wing, thigh and pectoral of chick under As 2 O 3 exposure. This study provided references for further study of heavy metal poisoning and may be helpful to understanding the toxicological mechanism of As 2 O 3 exposure in muscular tissues of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.
Bellion, Phillip; Olk, Melanie; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine
2009-10-01
Beneficial health effects of diets containing fruits have partly been attributed to polyphenols which display a spectrum of bioactive effects, including antioxidant activity. However, polyphenols can also exert prooxidative effects in vitro. In this study, polyphenol-mediated hydrogen peroxide (H(2)O(2)) formation was determined after incubation of apple juice extracts (AEs) and polyphenols in cell culture media. Effects of extracellular H(2)O(2 )on total glutathione (tGSH; =GSH + GSSG) and cellular reactive oxygen species (ROS) level of HT-29 cells were studied by coincubation +/- catalase (CAT). AEs ( > or =30 microg/mL) significantly generated H(2)O(2) in DMEM, depending on their composition. Similarly, H(2)O(2) was measured for individual apple polyphenols/degradation products (phenolic acids > epicatechin, flavonols > dihydrochalcones). Highest concentrations were generated by compounds bearing the o-catechol moiety. H(2)O(2) formation was found to be pH dependent; addition of CAT caused a complete decomposition of H(2)O(2) whereas superoxide dismutase was less/not effective. At incubation of HT-29 cells with quercetin (1-100 microM), generated H(2)O(2) slightly contributed to antioxidant cell protection by modulation of tGSH- and ROS-level. In conclusion, H(2)O(2) generation in vitro by polyphenols has to be taken into consideration when interpreting results of such cell culture experiments. Unphysiologically high polyphenol concentrations, favoring substantial H(2)O(2 )formation, are not expected to be met in vivo, even under conditions of high end nutritional uptake.
NASA Astrophysics Data System (ADS)
Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio
1994-05-01
Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.
Zhang, Shouren; Dang, Qing-Lai
2013-01-01
White birch (Betula paperifera Mash) seedlings were exposed to progressively warming in greenhouses under ambient and elevated CO 2 concentrations for 5 months to explore boreal tree species' potential capacity to acclimate to global climate warming and CO 2 elevation. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured at temperatures of 26 (o)C and 37 (o)C. Elevated CO 2 significantly increased net photosynthetic rate (Pn) at both measurement temperatures, and Pn at 37 (o)C was higher than that at 26 (o)C under elevated CO 2. Stomatal conductance (gs) was lower at 37 (o)C than at 26 (o)C, while transpiration rate (E) was higher at 37 (o)C than that at 26 (o)C. Elevated CO 2 significantly increased instantaneous water-use efficiency (WUE) at both 26 (o)C and 37 (o)C, but WUE was markedly enhanced at 37 (o)C under elevated CO 2. The effect of temperature on maximal carboxylation rate (Vcmax), PAR-saturated electron transport rate (Jmax) and triose phosphate utilization (TPU) varied with CO 2, and the Vcmax and Jmax were significantly higher at 37 (o)C than at 26 (o)C under elevated CO 2. However, there were no significant interactive effects of CO 2 and temperature on TPU. The actual photochemical efficiency of PSII (DF/ Fm'), total photosynthetic linear electron transport rate through PSII (JT) and the partitioning of JT to carboxylation (Jc) were higher at 37 (o)C than at 26 (o)C under elevated CO 2. Elevated CO 2 significantly suppressed the partitioning of JT to oxygenation (Jo/JT). The data suggest that the CO 2 elevation and progressive warming greatly enhanced photosynthesis in white birch seedlings in an interactive fashion.
Hasanuzzaman, Mirza; Nahar, Kamrun; Gill, Sarvajeet S.; Alharby, Hesham F.; Razafindrabe, Bam H. N.; Fujita, Masayuki
2017-01-01
Cadmium (Cd) is considered as one of the most toxic metals for plant growth and development. In the present study, we investigated the role of externally applied hydrogen peroxide (H2O2) in regulating the antioxidant defense and glyoxalase systems in conferring Cd-induced oxidative stress tolerance in rapeseed (Brassica napus L.). Seedlings were pretreated with 50 μM H2O2 for 24 h. These pretreated seedlings as well as non-pretreated seedlings were grown for another 48 h at two concentrations of CdCl2 (0.5 and 1.0 mM). Both the levels of Cd increased MDA and H2O2 levels and lipoxygenase activity while ascorbate (AsA) declined significantly. However, reduced glutathione (GSH) content showed an increase at 0.5 mM CdCl2, but glutathione disulfide (GSSG) increased at any level of Cd with a decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) upregulated due to Cd treatment in dose-dependent manners, while glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at 0.5 mM CdCl2 and decreased at higher dose. The activity of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) decreased under Cd stress. On the other hand, H2O2 pretreated seedlings, when exposed to Cd, AsA and GSH contents and GSH/GSSG ratio increased noticeably. H2O2 pretreatment increased the activities of APX, MDHAR, DHAR, GR, GST, GPX, and CAT of Cd affected seedlings. Thus enhancement of both the non-enzymatic and enzymatic antioxidants helped to decrease the oxidative damage as indicated by decreased levels of H2O2 and MDA. The seedlings which were pretreated with H2O2 also showed enhanced glyoxalase system. The activities of Gly I, and Gly II and the content of GSH increased significantly due to H2O2 pretreatment in Cd affected seedlings, compared to the Cd-stressed plants without H2O2 pretreatment which were vital for methylglyoxal detoxification. So, the major roles of H2O2 were improvement of antioxidant defense system and glyoxalase system which protected plants from the damage effects of ROS and MG. The mechanism of H2O2 to induce antioxidant defense and glyoxalase system and improving physiology under stress condition is not known clearly which should be elucidated. The signaling roles of H2O2 and its interaction with other signaling molecules, phytohormones or other biomolecules and their roles in stress protection should be explored. PMID:28239385
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Andrew J.; Zak, Donald R.; Kubiske, Mark E.
Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and inmore » combination, on the structure and functioning of northern hardwood forest ecosystems?” From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch photosynthesis increased with elevated CO2 and tended to decrease with elevated O3, compared to the control. In contrast to aspen and birch, maple photosynthesis was not enhanced by elevated CO2. Elevated O3 did not cause significant reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone sensitive clones was affected to a much greater degree than that in ozone tolerant aspen clones. Treatment effects on photosynthesis contributed to CO2 stimulation of aboveground and belowground growth that was species and genotype dependent, with birch and aspen being most responsive and maple being least responsive. The positive effects of elevated CO2 on net primary productivity NPP were sustained through the end of the experiment, but negative effects of elevated O3 on NPP had dissipated during the final three years of treatments. The declining response to O3 over time resulted from the compensatory growth of O3-tolerant genotypes and species as the growth of O3-sensitive individuals declined over time. Cumulative NPP over the entire experiment was 39% greater under elevated CO2 and 10% lower under elevated O3. Enhanced NPP under elevated CO2 was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Results from Aspen FACE clearly indicate that plants growing under elevated carbon dioxide, regardless of community type or ozone level, obtained significantly greater amounts of soil N. These results indicate that greater plant growth under elevated carbon dioxide has not led to “progressive N limitation”. If similar forests growing throughout northeastern North America respond in the same manner, then enhanced forest NPP under elevated CO2 may be sustained for a longer duration than previously thought, and the negative effect of elevated O3 may be diminished by compensatory growth of O3-tolerant plants as they begin to dominate forest communities. By the end of the experiment, elevated CO2 increased ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. Total ecosystem C content in the interaction treatment (elevated CO2 and O3) did not significantly differ from that of the control. Total ecosystem C content responded similarly to the treatments across the three forest communities. The treatment effects on ecosystem C content resulted from differences in tree biomass, particularly woody tissues (branches, stem, and coarse roots), and lower C content in the near-surface mineral soil. During its duration, the Aspen FACE project involved collaboration between scientists from 9 countries, and over the course of the experiment there were over 120 Aspen FACE scientific users. These scientists helped produce 75 publications during the most recent funding period (2008-2014) and 207 peer-reviewed publications (169 in refereed journals) since the beginning of the project.« less
Yuan, Shunda; Chou, I-Ming; Burruss, Robert A.
2013-01-01
Elemental sulfur, as a transient intermediate compound, by-product, or catalyst, plays significant roles in thermochemical sulfate reduction (TSR) reactions. However, the mechanisms of the reactions in S-H2O-hydrocarbons systems are not clear. To improve our understanding of reaction mechanisms, we conducted a series of experiments between 200 and 340 °C for S-H2O-CH4, S-D2O-CH4, and S-CH4-1m ZnBr2 systems in fused silica capillary capsules (FSCC). After a heating period ranging from 24 to 2160 hours (hrs), the quenched samples were analyzed by Raman spectroscopy. Combined with the in situ Raman spectra collected at high temperatures and pressures in the S-H2O and S-H2O-CH4 systems, our results showed that (1) the disproportionation of sulfur in the S-H2O-CH4 system occurred at temperatures above 200 °C and produced H2S, SO42-, and possibly trace amount of HSO4-; (2) sulfate (and bisulfate), in the presence of sulfur, can be reduced by methane between 250 and 340 °C to produce CO2 and H2S, and these TSR temperatures are much closer to those of the natural system (2O-CH4 system may take place simultaneously, with TSR being favored at higher temperatures; and (4) in the system S-D2O-CH4, both TSR and the competitive disproportionation reactions occurred simultaneously at temperatures above 300 °C, but these reactions were very slow at lower temperatures. Our observation of methane reaction at 250 °C in a laboratory time scale suggests that, in a geologic time scale, methane may be destroyed by TSR reactions at temperatures > 200 °C that can be reached by deep drilling for hydrocarbon resources.
Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.
In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pelletsmore » during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.« less
MnO2 Motor: A Prospective Cancer-Starving Therapy Promoter.
Zhang, Yao-Hui; Qiu, Wen-Xiu; Zhang, Mingkang; Zhang, Lu; Zhang, Xian-Zheng
2018-05-02
Here, a tumor-targeted MnO 2 motor nanosystem (designed as MG/HA) was constructed by the assembly of glucose oxidase (GOD), manganese dioxide (MnO 2 ), and glycoprotein CD44-targeting polymer hyaluronic acid (HA) to elevate cancer-starving therapy efficacy in solid tumor. Upon the specific uptake of MG/HA by CD44 overexpressed cancer cells, GOD catalyzed the oxidation of glucose into gluconic acid and hydrogen peroxide (H 2 O 2 ) accompanying the consumption of oxygen (O 2 ). Meanwhile, MnO 2 would react with H 2 O 2 and acid to generate O 2 , which is in turn supplied to the glucose-depletion process, running like a loop. As a result, MnO 2 is displayed as a motor to promote the rate of glucose depletion that contributed to the starving therapy. In contrast to G/HA, MG/HA could not only achieve effective glucose consumption to depress cancer progression, but also alleviate hypoxia and reduce the expression of Glut1 to inhibit the metabolism for further restraining the tumor aggressiveness and metastasis. The concept of MnO 2 motor shows a promising prospect to overcome the restriction of the starving therapy.
Che, Xuanyi; Zhao, Qingxia; Li, Di
2018-03-28
To explore whether thioredoin-2 (Trx-2) is involved in the development of cataract and to study the effect of Trx-2 on hydrogen peroxide (H2O2)-induced injury in human lens epithelial cells. Methods: A total of 10 volunteers (removing the lens due totraumatism) and 30 patients received phacoemulsification (age more than 60 years) were selected. The expression of Trx-2 protein in lens epithelial cells from cataract patients and volunteers were detected by the immunohistochemical streptavidin-peroxidase (SP) method. SRA01/04 cells were cultured and were divided into six groups according to different treatment: a control group, H2O2-treated groups at 20, 50 or 100 μmol/L, a negative control group (transfected with pCMV6 plasmid plus 100 μmol/L H2O2), and a Trx-2 overexpression group (transfected with pCMV6-Trx-2 plasmid plus 100 μmol/L H2O2). Methyl thiazolyltetrazolium (MTT) assay and flow cytometry was performed to measure the cell viability and apoptosis for SRA01/04 cells, respectively. The activities of superoxide dismutase (SOD) and catalase (CAT), the content of glutathione (GSH) and malondialdehyde (MDA) in human lens epithelial cells were measured via chemical chromatometry. Western blot was used to measure the protein levels of Trx-2, B-cell lymphoma 2 protein (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3. Results: Compared with the volunteers, the expression of Trx-2 was significantly decreased in lens epithelial cells in patients with cataract (P<0.05). Compared with the control group, the expression of Trx-2 protein in the 20, 50 or 100 μmol/L H2O2 groups was decreased (all P<0.05). Compared with the control group, the cell survival rates were decreased in the 100 μmol/L H2O2 group and the negative control group (both P<0.05), along with enhanced apoptotic rates, inhibited cellular SOD activities and CAT activities, reduced GSH contents, augmented MDA contents, down-regulated Trx-2 and Bcl-2 expression and up-regulated Bax and caspase-3 expression (all P<0.05). Compared with the negative control group, the cell survival rate was increased in the Trx-2 overexpression group (P<0.05), along with suppressed apoptosis, increased SOD activities and CAT activities, elevated GSH contents, decreased MDA content, up-regulated Trx-2 and Bcl-2 expression and down-regulated Bax and caspase-3 expression (P<0.05). Conclusion: Trx-2 might be involved in the apoptosis of lens epithelial cells in patients with cataract. The overexpression of Trx-2 obviously attenuated H2O2-induced injury of human lens epithelial cells, which might be associated with the inhibition of H2O2-mediated oxidative stress.
Tao, Dong-Liang; Zhang, Kun; Zhang, Hong; Cui, Yu-Min; Xu, Yi-Zhuang; Liu, Yu-Hai
2014-04-01
Tb(2-FBA)3 x 2H2O and Tb(2-FBA)3 phen were synthesized using o-fluoro-benzoic acid (2-FBA) as the first ligand, and 1,10-phenanthroline (phen) as the second ligand. Elemental analysis and IR spectra were employed to characterize the molecular composition of the two kinds of lanthanide complexes. The UV absorption spectra with same concentration show that the second ligand phen of Tb(2-FBA)3 phen absorbs the portion of the UV light instead of the first ligand 2-FBA. Liquid fluorescence spectra with same concentration show that the fluorescence intensity of Tb(2-FBA)3 x 2H2O is higher than that of Tb (2-FBA)3 phen. The analytical results show that the energy level of 2-FBA matches the lowest excited state energy level of Tb3+ (5D4) better than that of phen. The O-H oscillation of the crystal water in Tb(2-FBA)3 x 2H2O will greatly consume the absorbed energy by ligands, and cause the fluorescence intensity of Tb(2-FBA)3 x 2H2O significantly decline. The energy level of triplet state of the first ligand 2-FBA corresponding to the absorption peak 273 nm has poor matching degree with the 5D4 energy level of Tb3+. In this case, the emission intensity of Tb(2-FBA)3 x 2H2O is still stronger than that of Tb(2-FBA)3 phen. It illustrates that the energy level of the triplet state of the first ligand 2-FBA corresponding to 252 nm has much better matching degree with the lowest excited state of 5D4 energy level of Tb3+ than that of phen. It is the only way to compensate for energy loss by thermal vibration of water molecules and low energy transfer efficiency for poor matching degree between the energy level of corresponding to 273 nm of the first ligand 2-FBA and 5D4 energy level of Tb3+. By combining UV absorption spectra with fluorescence spectra of lanthanide complexes to qualitatively analyze energy level of ligands, the contribution of different types of ligands to the fluorescence properties can be preliminarily understood.
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2009-01-01
X-ray absorption spectroscopy (XAS) measurements were made at the Nd L3-edge on neodymium(III) aqua and chloroaqua complexes in low pH aqueous solutions from 25 to 500????C and up to 520??MPa. Analysis of the extended X-ray absorption fine structure of the XAS spectra measured from a 0.07??m Nd/0.16??m HNO3 aqueous solution reveals a contraction of the Nd-O distance of the Nd3+ aqua ion at a uniform rate of ~ 0.013????/100????C and a uniform reduction of the number of coordinated H2O molecules from 10.0 ?? 0.9 to 7.4 ?? 0.9 over the range from 25 to 500????C and up to 370??MPa. The rate of reduction of the first-shell water molecules with temperature for Nd3+ (26%) is intermediate between the rate for the Gd3+ aqua ion (22% from 25 to 500????C) and the rates for the Eu3+ (29% from 25 to 400????C) and the Yb3+ aqua ions (42% from 25 to 500????C) indicating an intermediate stability of the Nd3+ aqua ion consistent with the tetrad effect. Nd L3-edge XAS measurements of 0.05??m NdCl3 aqueous solution at 25 to 500????C and up to 520??MPa show that stepwise inner-sphere complexes most likely of the type Nd(H2O)?? - nCln+3 - n occur in the solution at elevated temperatures, where ?? ??? 9 at 150????C decreasing to ~ 6 at 500????C and the number of chloride ions (n) of the chloroaqua complexes increases uniformly with temperature from 1.2 ?? 0.2 to 2.0 ?? 0.2 in the solution upon increase of temperature from 150 to 500????C. Conversely, the number of H2O ligands of Nd(H2O)?? - nCln+3 - n complexes is uniformly reduced with temperature from 7.5 ?? 0.8 to 3.7 ?? 0.3 in the aqueous solution, in the same temperature range. These data show greater stability of neodymium(III) than gadolinium(III) and ytterbium(III) chloride complexes in low pH aqueous solutions at elevated temperatures. Our data suggest a greater stability of aqueous light REE than that of heavy REE chloride complexes in low pH fluids at elevated temperatures consistent with REE analysis of fluids from deep-sea hydrothermal vents. ?? 2008 Elsevier B.V.
Visscher, Anne M.; Paul, Anna-Lisa; Kirst, Matias; Guy, Charles L.; Schuerger, Andrew C.; Ferl, Robert J.
2010-01-01
Background Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. Methodology and Principal Findings Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO4·7H2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO4·7H2O (magnesium sulfate) stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO4·7H2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. Conclusions/Significance The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster the development of Mars soil-compatible plants by showing that cax1 mutants exhibit partial tolerance to magnesium sulfate, and by elucidating a small subset (500 vs. >10,000) of candidate genes for mutation or metabolic engineering that will enhance tolerance to magnesium sulfate soils. PMID:20808807
Experimental studies of magnetite formation in the solar nebula
NASA Astrophysics Data System (ADS)
Hong, Y.; Fegley, B., Jr.
1998-09-01
Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91-442oC in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4-41. The magnetite produced was identified by X-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: cm2 hour-1 Eact = 92=B15(2s) kJ mol-1 cm2 hour-1 Eact = 95=B112(2s) kJ mol-1 These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10,000 ppmv H2S (Lauretta et al. 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1-1 micron radius metal grains are generally within estimated lifetimes of the solar nebula (0.1-10 million years). However, the calculated reaction times are probably lower limits and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.
Jin, Xiaoyan; Yan, Yu; Shi, Wenjing; Bi, Shuping
2011-12-01
The structures and water-exchange reactions of aqueous aluminum-oxalate complexes are investigated using density functional theory. The present work includes (1) The structures of Al(C(2)O(4))(H(2)O)(4)(+) and Al(C(2)O(4))(2)(H(2)O)(2)(-) were optimized at the level of B3LYP/6-311+G(d,p). The geometries obtained suggest that the Al-OH(2) bond lengths trans to C(2)O(4)(2-) ligand in Al(C(2)O(4))(H(2)O)(4)(+) are much longer than the Al-OH(2) bond lengths cis to C(2)O(4)(2-). For Al(C(2)O(4))(2)(H(2)O)(2)(-), the close energies between cis and trans isomers imply the coexistence in aqueous solution. The (27)Al NMR and (13)C NMR chemical shifts computed with the consideration of sufficient solvent effect using HF GIAO method and 6-311+G(d,p) basis set are in agreement with the experimental values available, indicating the appropriateness of the applied models; (2) The water-exchange reactions of Al(III)-oxalate complexes were simulated at the same computational level. The results show that water exchange proceeds via dissociative pathway and the activation energy barriers are sensitive to the solvent effect. The energy barriers obtained indicate that the coordinated H(2)O cis to C(2)O(4)(2-) in Al(C(2)O(4))(H(2)O)(4)(+) is more labile than trans H(2)O. The water-exchange rate constants (k(ex)) of trans- and cis-Al(C(2)O(4))(2)(H(2)O)(2)(-) were estimated by four methods and their respective characteristics were explored; (3) The significance of the study on the aqueous aluminum-oxalate complexes to environmental chemistry is discussed. The influences of ubiquitous organic ligands in environment on aluminum chemistry behavior can be elucidated by extending this study to a series of Al(III)-organic system.
Cravotta,, Charles A.
1991-01-01
Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous solubility of O2 is not limiting, and oxidation of pyrite by O2 and Fe3+ accounts for most SO42- and Fe2+ observed in acidic ground water. However, in a system closed to O2, such as in the saturated zone, O2 solubility is limiting; hence, ferric oxidation of pyrite is a reasonable explanation for the observed elevated SO42- with increasing depth below the water table.
Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E
2007-08-17
This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.
NASA Astrophysics Data System (ADS)
Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei
2010-01-01
The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.
Vuille-Dit-Bille, Raphael N; Ha-Huy, Riem; Stover, John F
2012-09-01
Changes in plasma aromatic amino acids (AAA = phenylalanine, tryptophan, tyrosine) and branched chain amino acids (BCAA = isoleucine, leucine, valine) levels possibly influencing intracranial pressure (ICP) and cerebral oxygen consumption (SjvO(2)) were investigated in 19 sedated patients up to 14 days following severe traumatic brain injury (TBI). Compared to 44 healthy volunteers, jugular venous plasma BCAA were significantly decreased by 35% (p < 0.001) while AAA were markedly increased in TBI patients by 19% (p < 0.001). The BCAA to AAA ratio was significantly decreased by 55% (p < 0.001) which persisted during the entire study period. Elevated plasma phenylalanine was associated with decreased ICP and increased SjvO(2), while higher plasma isoleucine and leucine levels were associated with increased ICP and higher plasma leucine and valine were linked to decreased SjvO(2). The amount of enterally administered amino acids was associated with significantly increased plasma levels with the exception of phenylalanine. Contrary to the initial assumption that elevated AAA and decreased BCAA levels are detrimental, increased plasma phenylalanine levels were associated with beneficial signs in terms of decreased ICP and reduced cerebral oxygen consumption reflected by increased SjvO(2); concomitantly, elevated plasma isoleucine and leucine levels were associated with increased ICP while leucine and valine were associated with decreased SjvO(2) following severe TBI, respectively. The impact of enteral nutrition on this observed pattern must be examined prospectively to determine if higher amounts of phenylalanine should be administered to promote beneficial effects on brain metabolism and if normalization of plasma BCAA levels is without cerebral side effects.
Awad, Jasmin; Stotz, Henrik U; Fekete, Agnes; Krischke, Markus; Engert, Cornelia; Havaux, Michel; Berger, Susanne; Mueller, Martin J
2015-04-01
Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX. © 2015 American Society of Plant Biologists. All Rights Reserved.
Li, Yu; Zhou, Xingzhen; Bai, Ying; Chen, Guanghai; Wang, Zhaohua; Li, Hui; Wu, Feng; Wu, Chuan
2017-06-14
As a typical multielectron cathode material for lithium-ion batteries, iron fluoride (FeF 3 ) and its analogues suffer from poor electronic conductivity and low actual specific capacity. Herein, we introduce Ag nanoparticles by silver mirror reaction into the FeF 3 ·0.33H 2 O cathode to build the electronic bridge between the solid (active materials) and liquid (electrolyte) interface. The crystal structures of as-prepared samples are characterized by X-ray diffraction and Rietveld refinement. Moreover, the density of states of FeF 3 ·0.33H 2 O and FeF 3 ·0.33H 2 O/Ag (Ag-decorated FeF 3 ·0.33H 2 O) samples are calculated using the first principle density functional theory. The FeF 3 ·0.33H 2 O/Ag cathodes exhibit significant enhancements on the electrochemical performance in terms of the cycle performance and rate capability, especially for the Ag-decorated amount of 5%. It achieves an initial capacity of 168.2 mA h g -1 and retains a discharge capacity of 128.4 mA h g -1 after 50 cycles in the voltage range of 2.0-4.5 V. It demonstrates that Ag decoration can reduce the band gap, improve electronic conductivity, and elevate intercalation/deintercalation kinetics.
Cytoplasmic localization and ubiquitination of p21{sup Cip1} by reactive oxygen species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Chae Young; Kim, Ick Young; Kwon, Ki-Sun
2007-06-22
Reactive oxygen species were previously shown to trigger p21{sup Cip1} protein degradation through a proteasome-dependent pathway, however the detailed mechanism of degradation remains to be elucidated. In this report, we showed that p21{sup Cip1} was degraded at an early phase after low dose H{sub 2}O{sub 2} treatment of a variety of cell types and that preincubation of cells with the antioxidant, N-acetylcysteine, prolonged p21{sup Cip1} half-life. A mutant p21{sup Cip1} in which all six lysines were changed to arginines was protected against H{sub 2}O{sub 2} treatment. Direct interaction between p21{sup Cip1} and Skp2 was elevated in the H{sub 2}O{sub 2}-treatedmore » cells. Disruption of the two nuclear export signal (NES) sequences in p21{sup Cip1}, or treatment with leptomycin B blocked H{sub 2}O{sub 2}-induced p21{sup Cip1} degradation. Altogether, these results demonstrate that reactive oxygen species induce p21{sup Cip1} degradation through an NES-, Skp2-, and ubiquitin-dependent pathway.« less
Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun
2018-05-01
In situ monitoring of hydrogen peroxide (H 2 O 2 ) secreted from live cells plays a critical role in elucidating many cellular signaling pathways, and it is a significant challenge to selectively detect these low levels of endogenous H 2 O 2 . To address this challenge, we report the establishment of a trimetallic hybrid nanoflower-decorated MoS 2 nanosheet-modified sensor for in situ monitoring of H 2 O 2 secreted from live MCF-7 cancer cells. The Au-Pd-Pt nanoflower-dispersed MoS 2 nanosheets are synthesized by a simple wet-chemistry method, and the resulting nanosheet composites exhibit significantly enhanced catalytic activity toward electrochemical reduction of H 2 O 2 , due to the synergistic effect of the highly dispersed trimetallic hybrid nanoflowers and the MoS 2 nanosheets, thereby resulting in ultrasensitive detection of H 2 O 2 with a subnanomolar level detection limit in vitro. Also the immobilization of the laminin glycoproteins on the surface of the nanocomposites increases its biocompatibility for cell adhesion and growth, which enables in situ electrochemical monitoring of H 2 O 2 directly secreted from live cells for potential application of such sensor in cellular biology, clinical diagnosis, and pathophysiology.
Segmental microvascular permeability in ischemia-reperfusion injury in rat lung.
Khimenko, P L; Taylor, A E
1999-06-01
Segmental microvascular permeabilities were measured using pre- and postalveolar vessel capillary filtration coefficient (Kfc) values (ml. min-1. cmH2O-1. 100 g-1) in isolated rat lungs subjected to ischemia-reperfusion (I/R). Total Kfc values measured in flowing and nonflowing lungs were highly correlated (r = 0.98, P < 0.0001). Kfc values were then measured in another group of lungs under no-flow conditions when airway pressure was increased to 20 cmH2O and either the arterial or venous pressure was elevated to 7-8 cmH2O to measure the prealveolar and postalveolar Kfc values. Control total and postalveolar Kfc values were 0.0225 +/- 0.001 and 0.0219 +/- 0.001 ml. min-1. cmH2O-1. 100 g-1, respectively, and the prealveolar permeability was extremely small (0.00003 +/- 0.00005 ml. min-1. cmH2O-1. 100 g-1). Kfc values were again made in nonflowing lungs that had been subjected to 45 min of ischemia followed by 30 min of reperfusion. After I/R, the total membrane Kfc increased 10-fold to 0.2597 +/- 0.006 ml. min-1. cmH2O-1. 100 g-1, the prealveolar Kfc increased to 0.0677 +/- 0.003 ml. min-1. cmH2O-1. 100 g-1, and the postalveolar Kfc increased to 0.1354 +/- 0.008 ml. min-1. cmH2O-1. 100 g-1 (P < 0.05 for all I/R values). These data indicate that normal solvent microvascular permeability was predominantly postalveolar, and after I/R damage, the postalveolar (venular) permeability comprised 52% of the total, whereas the prealveolar and alveolar vessels comprised only 27 and 23%, respectively, of the total Kfc.
Garren, D M; Harrison, M A; Russell, S M
1998-02-01
The survival of Escherichia coli O157:H7 and non-O157:H7 due to an enhanced acid tolerance response (ATR), and enhanced acid shock response (ASR), or the stationary phase protective system when exposed to lactic acid and the resulting cross protection against increased concentration of sodium chloride and sodium lactate was studied. Escherichia coli O157:H7 isolates (1932 and 009) and a non-O157:H7 strain (ATCC 23716) were grown to stationary phase at 32 degrees C and O157:H7 to one of two treatments in an attempt to either acid shock or acid adapt the survivors. Acid shocked cells were exposed to lactic acid at pH 4.0. Acid-adapted cells were first exposed to a pH of 5.5 and then an acid challenge of pH 4.0. Sodium lactate (10%, 20%, or 30%) or sodium chloride (5%, 10%, or 15%) were added to a minimal glucose medium after the acidification treatment. When acid shocked and acid adapted isolate 932 and strain ATCC 23716 tolerated the elevated levels of sodium lactate, and the strain ATCC 23716 tolerated the elevated levels of sodium chloride. Acid adaption allowed isolate 932 to tolerate higher levels of sodium chloride; however, the acid shocking did not provide the same protection. Neither of the acid treatment provided increased tolerance to sodium chloride for isolate E009. Evidence of cross protection against acid and sodium chloride or acid and sodium lactate in E. coli O157:H7 could point to a need for further evaluation of whether these combinations of preservation means are sufficient to control this pathogen.
Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover.
Leshin, L A; Mahaffy, P R; Webster, C R; Cabane, M; Coll, P; Conrad, P G; Archer, P D; Atreya, S K; Brunner, A E; Buch, A; Eigenbrode, J L; Flesch, G J; Franz, H B; Freissinet, C; Glavin, D P; McAdam, A C; Miller, K E; Ming, D W; Morris, R V; Navarro-González, R; Niles, P B; Owen, T; Pepin, R O; Squyres, S; Steele, A; Stern, J C; Summons, R E; Sumner, D Y; Sutter, B; Szopa, C; Teinturier, S; Trainer, M G; Wray, J J; Grotzinger, J P
2013-09-27
Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.
Zhang, Chen; Li, Juan; Hu, Chunlong; Wang, Jing; Zhang, Jianjun; Ren, Zhenzhen; Song, Xinling; Jia, Le
2017-09-07
The present work was designed to investigate the antihyperglycaemic and protective effects of two Hericium erinaceus intracellular polysaccharide (HIPS) purified fractions (HIPS1 and HIPS2) from mycelia of H. erinaceus SG-02 on pancreas, liver and kidney in streptozotocin (STZ)-induced diabetic mice. The supplementation of HIPS1 and HIPS2 significantly decreased the blood glucose (GLU) levels; suppressed the abnormal elevations of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea nitrogen (BUN) and creatinine (CRE) levels in serum; improved the antioxidant enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)) activities; and attenuated the pathological damage to these organs. The HIPS1 showed superior effects in antihyperglycaemia and organic protection than HIPS2 possible owing to the abundant functional groups (-NH 2 , -COOH and S=O) in HIPS1, indicating that H. erinaceus SG-02 could be used as a functional food and natural drug for the prevention of diabetes and its complications.
Wan, Ran; Hou, Xiaoqing; Wang, Xianhang; Qu, Jingwu; Singer, Stacy D.; Wang, Yuejin; Wang, Xiping
2015-01-01
The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, “Pingli-5” (V. sp. [Qinling grape]) and a very susceptible V. vinifera cultivar, “Red Globe” were selected for further study. Microscopic analysis demonstrated that B. cinerea growth was limited during early infection on “Pingli-5” before 24 h post-inoculation (hpi) but not on Red Globe. It was found that reactive oxygen species (ROS) and antioxidative system were associated with fungal growth. O2- accumulated similarly in B. cinerea 4 hpi on both Vitis genotypes. Lower levels of O2- (not H2O2) were detected 4 hpi and ROS (H2O2 and O2-) accumulation from 8 hpi onwards was also lower in “Pingli-5” leaves than in “Red Globe” leaves. B. cinerea triggered sustained ROS production in “Red Globe” but not in “Pingli-5” with subsequent infection progresses. Red Globe displayed little change in antioxidative activities in response to B. cinerea infection, instead, antioxidative activities were highly and timely elevated in resistant “Pingli-5” which correlated with its minimal ROS increases and its high resistance. These findings not only enhance our understanding of the resistance of Chinese wild Vitis species to B. cinerea, but also lay the foundation for breeding B. cinerea resistant grapes in the future. PMID:26579134
NASA Astrophysics Data System (ADS)
Yu, Feng
2018-01-01
Microsolvated bimolecular nucleophilic substitution (SN2) reaction of monohydrated hydrogen peroxide anion [HOO-(H2O)] with methyl chloride (CH3Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl-:Cl-(H2O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, 15508 (2013)]. Compared with the HOO- + CH3Cl SN2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO-(H2O) + CH3Cl SN2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the SN2 reactions of HOO- + CH3Cl and HOO-(H2O) + CH3Cl.
Yu, Feng
2018-01-07
Microsolvated bimolecular nucleophilic substitution (S N 2) reaction of monohydrated hydrogen peroxide anion [HOO - (H 2 O)] with methyl chloride (CH 3 Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl - :Cl - (H 2 O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, 15508 (2013)]. Compared with the HOO - + CH 3 Cl S N 2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO - (H 2 O) + CH 3 Cl S N 2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the S N 2 reactions of HOO - + CH 3 Cl and HOO - (H 2 O) + CH 3 Cl.
The role of mitochondrial reactive oxygen species in pH regulation in articular chondrocytes.
Milner, P I; Wilkins, R J; Gibson, J S
2007-07-01
To examine the effect of O(2) and the role, and source, of reactive oxygen species (ROS) on pH regulation in articular chondrocytes. Cartilage from equine metacarpo/tarsophalangeal joints was digested (collagenase) to isolate chondrocytes and loaded with 2',7'-bis-2-(carboxyethyl)-5(6)-carboxylfluorescein, a pH-sensitive fluorophore. O(2) tension was maintained using Eschweiler tonometers and a Wosthoff gas mixer. Cells were exposed to agents which alter ROS levels, mitochondrial inhibitors and/or inhibitors of protein phosphorylation. ROS levels were determined by dichlorofluorescein and mitochondrial membrane potential measured using JC-1. pH homeostasis was dependent on ROS. Na(+)/H(+) exchanger (NHE) activity was inhibited at low O(2) tension (acid efflux reducing from 2.30+/-0.05 to 1.27+/-0.11mMmin(-1) at 1%). NHE activity correlated with ROS levels (r(2)=0.65). ROS levels were increased by antimycin A (with levels at 1% O(2) tension increasing from 59+/-9% of the value at 20% to 87+/-7%), but reduced by rotenone, myxothiazol and diphenyleneiodonium. Hypoxia induced depolarisation of the mitochondrial membrane potential (with JC-1 red-green fluorescence ratio at 1% O(2) tension decreasing to 40+/-10% of the value at 20%). The response to changes in O(2) and to antimycin A was inhibited by staurosporine, wortmanin and calyculin A. The fall in ROS levels in hypoxia reduces the ability of articular chondrocytes to regulate pH, inhibiting NHE activity via changes in protein phosphorylation. The site of ROS generation is likely to be mitochondrial electron transport chain complex III. These effects are important to understanding normal chondrocyte function and response to altered O(2) tension.
Polyamine Catabolism Is Enhanced after Traumatic Brain Injury
Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A.
2010-01-01
Abstract Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N1-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6–24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6–24 h), then increased by ∼50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6–72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24–72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies. PMID:19968558
Lopert, Pamela; Patel, Manisha
2014-05-30
Mitochondrial reactive oxygen species are implicated in the etiology of multiple neurodegenerative diseases, including Parkinson disease. Mitochondria are known to be net producers of ROS, but recently we have shown that brain mitochondria can consume mitochondrial hydrogen peroxide (H2O2) in a respiration-dependent manner predominantly by the thioredoxin/peroxiredoxin system. Here, we sought to determine the mechanism linking mitochondrial respiration with H2O2 catabolism in brain mitochondria and dopaminergic cells. We hypothesized that nicotinamide nucleotide transhydrogenase (Nnt), which utilizes the proton gradient to generate NADPH from NADH and NADP(+), provides the link between mitochondrial respiration and H2O2 detoxification through the thioredoxin/peroxiredoxin system. Pharmacological inhibition of Nnt in isolated brain mitochondria significantly decreased their ability to consume H2O2 in the presence, but not absence, of respiration substrates. Nnt inhibition in liver mitochondria, which do not require substrates to detoxify H2O2, had no effect. Pharmacological inhibition or lentiviral knockdown of Nnt in N27 dopaminergic cells (a) decreased H2O2 catabolism, (b) decreased NADPH and increased NADP(+) levels, and (c) decreased basal, spare, and maximal mitochondrial oxygen consumption rates. Nnt-deficient cells possessed higher levels of oxidized mitochondrial Prx, which rendered them more susceptible to steady-state increases in H2O2 and cell death following exposure to subtoxic levels of paraquat. These data implicate Nnt as the critical link between the metabolic and H2O2 antioxidant function in brain mitochondria and suggests Nnt as a potential therapeutic target to improve the redox balance in conditions of oxidative stress associated with neurodegenerative diseases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Furukawa, Ayako; Tada-Oikawa, Saeko; Kawanishi, Shosuke; Oikawa, Shinji
2007-01-01
It has been reported that p53 acetylation, which promotes cellular senescence, can be regulated by the NAD(+)-dependent deacetylase SIRT1, the human homolog of yeast Sir2, a protein that modulates lifespan. To clarify the role of SIRT1 in cellular senescence induced by oxidative stress, we treated normal human diploid fibroblast TIG-3 cells with H(2)O(2) and examined DNA cleavage, depletion of intracellular NAD(+), expression of p21, SIRT1, and acetylated p53, cell cycle arrest, and senescence-associated beta-galactosidase (SA-beta-gal) activity. DNA cleavage was observed immediately in TIG-3 cells treated with H(2)O(2), though no cell death was observed. NAD(+) levels in TIG-3 cells treated with H(2)O(2) were also decreased significantly. Pre-incubation with the poly (ADP-ribose) polymerase (PARP) inhibitor resulted in preservation of intracellular NAD(+) levels. The amount of acetylated p53 was increased in TIG-3 cells at 4h after H(2)O(2) treatment, while there was little to no decrease in SIRT1 protein expression. The expression level of p21 was increased at 12h and continued to increase for up to 24h. Additionally, exposure of TIG-3 cells to H(2)O(2) induced cell cycle arrest at 24h and increased SA-beta-gal activity at 48h. This pathway likely plays an important role in the acceleration of cellular senescence by oxidative stress.
Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)
NASA Astrophysics Data System (ADS)
Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.
1983-12-01
Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.
Li, Chunli; Liu, Dingbin; Yuan, Ying; Huang, Shifeng; Shi, Meng; Tao, Kun; Feng, Wenli
2010-04-01
Apg-2, a mammalian heat-shock protein belonging to the heat-shock protein 110 (Hsp110) family, was previously found to be overexpressed in BaF3-BCR/ABL cells that were treated with hydrogen peroxide (H2O2) through our comparative proteomics study. The expression of Apg-2 in chronic myelogenous leukemia (CML) cells and its role have not been investigated, forming the basis for this study. BaF3-MIGR1 and BaF3-BCR/ABL cell lines stably overexpressing Apg-2 were established and exposed to 50 microM H2O2 for 10 min. Western blot analysis of Apg-2 expression confirmed that H2O2 treatment significantly up-regulated Apg-2 expression. Apg-2 overexpression elevated BaF3-BCR/ABL cell proportions in S and G2/M phase, increased cell proliferation and colony formation in vitro. Moreover, BaF3-MIGR1 and BaF3-BCR/ABL cells were exposed to 50 microM H2O2 in the absence or presence of Apg-2 overexpression and induction of H2AX phosphorylation, the reporters of DNA damage were assessed by Western blot and immunofluorescence. Results showed that exposure to H2O2 induced H2AX phosphorylation in BaF3-MIGR1 cells, but no increase was observed in BaF3-BCR/ABL cells. Together, the data indicate that Apg-2 is overexpressed and overexpression of Apg-2 in BaF3-BCR/ABL cells increases cell proliferation and protects cells from oxidative damage, which may play an important role in CML carcinogenesis and progression.
EFFECTS OF ELEVATED CO2 AND OTHER ENVIRONMENTAL STRESSES ON WESTERN CONIFER SEEDLINGS
The future productivity of forests will be affected by increased levels of atmospheric CO2 which will likely be associated with climate change and regional air pollutants such as O3. We have conducted two long-term experiments to determine the effects of elevated CO2 and other s...
NASA Astrophysics Data System (ADS)
Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen
2012-04-01
Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.
Study on O2-supplying characteristics of Azolla in Controlled Ecological Life Support System
NASA Astrophysics Data System (ADS)
Chen, Min; Deng, Sufang; Yang, Youquang; Huang, Yibing; Liu, Zhongzhu
Azolla has high growth and propagation rate, strong photosynthetic O2-releasing ability and rich nutrient value. It is able to be used as salad-type vegetable, and can also be cultured on wet bed in multi-layer condition. Hence, it possesses a potential functioning as providing O2, fresh vegetable and absorbing CO2 for Controlled Ecological Life Support System in space. In this study, we try to make clear the O2-providing characteristics of Azolla in controlled close chamber under manned condition in order to lay a foundation for Azolla as a biological component in the next ground simulated experiment and space application. A closed test cham-ber of Controlled Ecological Life Support System and Azolla wet-culturing devices were built to measure the changes of atmospheric O2-CO2 concentration inside chamber under "Azolla-fish -men" coexisting condition. The results showed that, the amount of O2 consumption is 80.49 83.07 ml/h per kilogram fish, the amount of CO2 emissions is 70.49 73.56 ml/(kg • h); O2 consumption of trial volunteers is 19.71 L/h, the volume of respiration release CO2 18.90 L/h .Artificial light intensity of Azolla wet culture under 70009000 Lx, people respiration and Azolla photosynthesis complemented each other, the atmospheric O2-CO2 concentration inside chamber maintained equilibration. Elevated atmospheric CO2 concentrations in close chamber have obvious effects on enhancing Azolla net photosynthesis efficiency. This shows that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2-CO2 concentration inside chamber in favor of human survival, and then verifies the prospect of Azolla in space application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szanyi, Janos; Yi, Cheol-Woo W.; Mudiyanselage, Kumudu K.
2013-11-01
The structure-reactivity relationships of model BaO-based NOx storage/reduction catalysts were investigated under well controlled experimental conditions using surface science analysis techniques. The reactivity of BaO toward NO2, CO2, and H2O was studied as a function of BaO layer thickness [0\\hBaO\\30 monolayer (ML)], sample temperature, reactant partial pressure, and the nature of the substrate the NOx storage material was deposited onto. Most of the efforts focused on understanding the mechanism of NO2 storage either on pure BaO, or on BaO exposed to CO2 or H2O prior to NO2 exposure. The interaction of NO2 with a pure BaO film results in themore » initial formation of nitrite/nitrate ion pairs by a cooperative adsorption mechanism predicted by prior theoretical calculations. The nitrites are then further oxidized to nitrates to produce a fully nitrated surface. The mechanism of NO2 uptake on thin BaO films (\\4 ML), BaO clusters (\\1 ML) and mixed BaO/Al2O3 layers are fundamentally different: in these systems initially nitrites are formed only, and then converted to nitrates at longer NO2 exposure times. These results clarify the contradicting mechanisms presented in prior studies in the literature. After the formation of a nitrate layer the further conversion of the underlying BaO is slow, and strongly depends on both the sample temperature and the NO2 partial pressure. At 300 K sample temperature amorphous Ba(NO3)2 forms that then can be converted to crystalline nitrates at elevated temperatures. The reaction between BaO and H2O is facile, a series of Ba(OH)2 phases form under the temperature and H2O partial pressure regimes studied. Both amorphous and crystalline Ba(OH)2 phases react with NO2, and initially form nitrites only that can be converted to nitrates. The NO2 adsorption capacities of BaO and Ba(OH)2 are identical, i.e., both of these phases can completely be converted to Ba(NO3)2. In contrast, the interaction of CO2 with pure BaO results in the formation of a BaCO3 layer that prevents to complete carbonation of the entire BaO film under the experimental conditions applied in these studies. However, these ‘‘carbonated’’ BaO layers readily react with NO2, and at elevated sample temperature even the carbonate layer is converted to nitrates. The importance of the metal oxide/metal interface in the chemistry on NOx storage-reduction catalysts was studied on BaO(\\1 ML)/Pt(111) reverse model catalysts. In comparison to the clean Pt(111), new oxygen adsorption phases were identified on the BaO/Pt(111) surface that can be associated with oxygen atoms strongly adsorbed on Pt atoms at the peripheries of BaO particles. A simple kinetic model developed helped explain the observed thermal desorption results. The role of the oxide/metal interface in the reduction of Ba(NO3)2 was also substantiated in experiments where Ba(NO3)2/O/Pt(111) samples were exposed to CO at elevated sample temperature. The catalytic decomposition of the nitrate phase occurred as soon as metal sites opened up by the removal of interfacial oxygen via CO oxidation from the O/Pt(111) surface. The temperature for catalytic nitrate reduction was found to be significantly lower than the onset temperature of thermal nitrate decomposition. We gratefully acknowledge the US Department of Energy (DOE), Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national user facility sponsored by the DOE Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle under contract number DE-AC05-76RL01830.« less
Gaseous emissions from Canadian boreal forest fires
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.
1990-01-01
CO2-normalized emission ratios for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were determined from smoke samples collected during low-altitude helicopter flights over two prescribed fires in northern Ontario, Canada. The emission ratios determined from these prescribed boreal forest fires are compared to emission ratios determined over two graminoid (grass) wetlands fires in central Florida and are found to be substantially higher (elevated levels of reduced gas production relative to CO2) during all stages of combustion. These results argue strongly for the need to characterize biomass burning emissions from the major global vegetation/ecosystems in order to couple combustion emissions to their vegetation/ecosystem type.
Effect of hydrogen peroxide on antibacterial activities of Canadian honeys.
Brudzynski, Katrina
2006-12-01
Honey is recognized as an efficacious topical antimicrobial agent in the treatment of burns and wounds. The antimicrobial activity in some honeys depends on the endogenous hydrogen peroxide content. This study was aimed to determine whether honey's hydrogen peroxide level could serve as a honey-specific, activity-associated biomarker that would allow predicting and assessing the therapeutic effects of honey. Using a broth microdilution assay, I analyzed antibacterial activities of 42 Canadian honeys against two bacterial strains: Escherichia coli (ATCC 14948) and Bacillus subtilis (ATCC 6633). The MIC90 and MIC50 were established from the dose-response relationship between antibacterial activities and honey concentrations. The impact of H2O2 on antibacterial activity was determined (i) by measuring the levels of H2O2 before and after its removal by catalase and (ii) by correlating the results with levels of antibacterial activities. Canadian honeys demonstrated moderate to high antibacterial activity against both bacterial species. Both MIC90 and MIC50 revealed that the honeys exhibited a selective growth inhibitory activity against E. coli, and this activity was strongly influenced by endogenous H2O2 concentrations. Bacillus subtilis activity was marginally significantly correlated with H2O2 content. The removal of H2O2 by catalase reduced the honeys' antibacterial activity, but the enzyme was unable to completely decompose endogenous H2O2. The 25%-30% H2O2 "leftover" was significantly correlated with the honeys' residual antibacterial activity against E. coli. These data indicate that all Canadian honeys exhibited antibacterial activity, with higher selectivity against E. coli than B. subtilis, and that these antibacterial activities were correlated with hydrogen peroxide production in honeys. Hydrogen peroxide levels in honey, therefore, is a strong predictor of the honey's antibacterial activity.
Cui, Hongying; Wei, Jianing; Su, Jianwei; Li, Chuanyou; Ge, Feng
2016-12-01
The elevated atmospheric O 3 level may change the interactions of plants and insects, which potentially affects direct and indirect plant defences. However, the underlying mechanism of the impact of elevated O 3 on indirect plant defence, namely the efficacy of natural enemies, is unclear. Here we tested a hypothesis that linked the effects of elevated O 3 and whitefly herbivory on tomato volatile releases mediated by the jasmonic acid (JA) pathway with the preferences of parasitoid Encarsia formosa for two different tomato genotypes (wild-type (Wt) and JA-deficient genotype (spr2)). The O 3 and whitefly herbivory significantly increased the production of volatile organic compounds (VOCs), including monoterpenes and green leaf volatiles (GLVs). The Wt plants released higher volatile levels, particularly monoterpenes, than did the spr2 plants. In Y-tube tests, limonene and Z-3-hexanol played key roles in the attraction of E. formosa. Moreover, regardless of plant genotype, the two plant genotypes were preferred by adult E. formosa under the O 3 and O 3 + herbivory treatments. Our results suggest that under elevated O 3 , the activation of the JA pathway significantly up-regulates the emission rates of volatiles, through which the efficacy of natural enemy might be promoted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; ...
2016-10-11
The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal
The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less
Sartori, Elena; Ruzzi, Marco; Lawler, Ronald G; Turro, Nicholas J
2008-09-24
The kinetics of para-ortho conversion and nuclear spin relaxation of H 2 in chloroform- d 1 were investigated in the presence of nitroxides as paramagnetic catalysts. The back conversion from para-hydrogen ( p-H 2) to ortho-hydrogen ( o-H 2) was followed by NMR by recording the increase in the intensity of the signal of o-H 2 at regular intervals of time. The nitroxides proved to be hundreds of times more effective at inducing relaxation among the spin levels of o-H 2 than they are in bringing about transitions between p-H 2 and the levels of o-H 2. The value of the encounter distance d between H 2 and the paramagnetic molecule, calculated from the experimental bimolecular conversion rate constant k 0, using the Wigner theory of para-ortho conversion, agrees perfectly with that calculated from the experimental relaxivity R 1 using the force free diffusion theory of spin-lattice relaxation.
Arsenite oxidation by H 2O 2 in aqueous solutions
NASA Astrophysics Data System (ADS)
Pettine, Maurizio; Campanella, Luigi; Millero, Frank J.
1999-09-01
The rates of the oxidation of As( III) with H 2O 2 were measured in NaCl solutions as a function of pH (7.5-10.3), temperature (10-50C) and ionic strength ( I = 0.01-4). The rate of the oxidation of As( III) with H 2O 2 can be described by the general expression: d[As( III)]/ dt = k[As( III)] [H 2O 2] where k (mol/L -1 min -1) can be determined from (σ = ±0.12) log k=5.29+1.41 pH-0.57 I+1.40 I0.5-4898/ T. The effect of pH on the rates indicates that the reaction is due to AsO( OH) 2-+ H2O2k 1→productsAsO2( OH) 2-+ H2O2k 2→products, AsO33-+ H2O2k 3→products where k = k1 α AsO(OH) 2- + k2 α AsO 2(OH) 2- + k3 α AsO 3 3- and α i are the molar fraction of species i. The values of k1 = 42 ± 20, k2 = (8 ± 1) × 10 4, and k3 = (72 ± 18) × 10 6 mol/L -1 min -1 were found at 25C and I = 0.01 mol/L. The undissociated As(OH) 3 does not react with H 2O 2. The effect of ionic strength on the rate constants has been attributed to the effect of ionic strength on the speciation of As( III). The rate expression has been shown to be valid for NaClO 4 solutions, northern Adriatic sea waters, and Tiber River waters. The cations Fe 2+ and Cu 2+ were found to exert a catalytic effect on the rates. Cu 2+ plays a role at concentration levels (>0.1 μmol/L) which are typical of polluted aquatic systems, while Fe 2+ is important at levels which may be found in lacustrine environments (>5-10 μmol/L). The reaction of As( III) with H 2O 2 may play a role in marine and lacustrine surface waters limiting the accumulation of As( III) resulting from biologically mediated reduction processes of As( V).
Retinal flavoprotein autofluorescence as a measure of retinal health.
Elner, Susan G; Elner, Victor M; Field, Matthew G; Park, Seung; Heckenlively, John R; Petty, Howard R
2008-01-01
To establish that increased autofluorescence of mitochondrial flavoproteins, an indicator of mitochondrial oxidative stress, correlates with retinal cell dysfunction. Retinal flavoprotein autofluorescence (FA) was imaged in humans with a fundus camera modified with 467DF8-nm excitation and 535-nm emission filters and a back-illuminated, electron-multiplying, charge-coupled device camera interfaced with a computer equipped with customized image capture software. Multiple digital images, centered on the fovea, were obtained from each eye. Histograms of pixel intensities in grayscale units were analyzed for average intensity and average curve width. Adults with diabetes mellitus, age-related macular degeneration (ARMD), central serous retinopathy, and retinal dystrophies, as well as healthy control volunteers, were imaged. Monolayers of cultured human retinal pigment epithelial (HRPE) cells, HRPE cells exposed to sublethal doses of H2O2, and HRPE cells exposed to H2O2 in the presence of antioxidants were imaged for FA using fluorescent photomicroscopy. Control patients demonstrated low levels of retinal FA, which increased progressively with age. Diabetics without visible retinopathy demonstrated increased FA levels compared to control volunteers (P < .001). Diabetics with retinopathy demonstrated significantly higher FA values than those without retinopathy (P < .04). Patients with ARMD, central serous retinopathy, or retinal dystrophies also demonstrated significantly increased FA. Compared to control RPE cells, cells oxidatively stressed with H2O2 had significantly elevated FA (P < .05), which was prevented by antioxidants (P < .05). Retinal FA is significantly increased with age and diseases known to be mediated by oxidative stress. Retinal FA imaging may provide a novel, noninvasive method of assessing retinal health and retinal dysfunction prior to retinal cell death.
Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones.
Fleshner, Monika; Campisi, Jay; Amiri, Leila; Diamond, David M
2004-10-01
Heat-shock proteins (Hsp) play an important role in stress physiology. Exposure to a variety of stressors will induce intracellular Hsp72, and this induction is believed to be beneficial for cell survival. In contrast, Hsp72 released during stress (extracellular Hsp72; eHsp72) activates pro-inflammatory responses. Clearly, physical stressors such as heat, cold, H(2)O(2), intense exercise and tail shock will induce both intra- and extracellular Hsp72. The current study tested whether a psychological stressor, cat exposure, would also trigger this response. In addition, the potential role of adrenal hormones in the Hsp72 response was examined. Adult, male Sprague Dawley rats were either adrenalectomized (ADX) or sham operated. Ten days post-recovery, rats were exposed to either a cat with no physical contact or control procedures (n = 5-6/group) for 2 h. Levels of intracellular Hsp72 were measured in the brain (frontal cortex, hippocampus, hypothalamus, dorsal vagal complex) and pituitary (ELISA). Levels of eHsp72 (ELISA) and corticosterone (RIA) were measured from serum obtained at the end of the 2-h stress period. Rats that were exposed to a cat had elevated intracellular Hsp72 in hypothalamus and dorsal vagal complex, and elevated eHsp72 and corticosterone in serum. Both the intra- and extracellular Hsp72 responses were blocked or attenuated by ADX. This study demonstrates that cat exposure can stimulate the Hsp72 response and that adrenal hormones contribute to this response.
Christensen, Dirk L; Espino, Diana; Infante-Ramírez, Rocío; Brage, Soren; Terzic, Dijana; Goetze, Jens P; Kjaergaard, Jesper
2014-01-01
The aim of this study was to examine to what extent extreme endurance exercise results in changes of plasma markers associated with cardiac and renal damage, as well as hemolysis in male, Mexican Tarahumara runners. Ten Tarahumara runners (mean (sd) age of 38 (12) years) participated in a 78 km race in Chihuahua, Mexico at 2,400 m above sea level. Cardiac, kidney, and hematology plasma markers were measured pre-race and <5 min, 1 h, 3 h, 6 h, 24 h, and 48 h post-race. Anthropometry, blood pressure, pulse rate, electrocardiography, HbA1c, hemoglobin and VO2max (estimated from heart rate following step test) were assessed pre-race, while physical activity energy expenditure and intensity were estimated during the race, and oxygen partial pressure saturation (SpO2 ) <30 min post-race. Estimated mean VO2max was 48 (9) mLO2 min(-1) kg(-1) and relative intensity during the race was 68 (11)%VO2 max. Mean SpO2 was 92 (3)% <30 min post-race. Plasma concentrations of especially total creatine kinase, creatine kinase-MB isoform, and haptoglobin changed significantly from pre-race values (P < 0.001) up to 24 h post-race, but had returned to pre-race values after 48 h. The plasma concentrations of mid-regional proatrial natiuretic peptide and copeptin returned to pre-race concentrations after 1 and 6 h, respectively. Altered cardiac, renal, and hemolysis plasma markers were normalized after 48 h following 78 km of running, suggesting that the impact of exercise-induced cardiac and kidney damage as well as hemolysis in the Mexican Tarahumara is low. © 2014 Wiley Periodicals, Inc.
Kinetics of Al + H2O reaction: theoretical study.
Sharipov, Alexander; Titova, Nataliya; Starik, Alexander
2011-05-05
Quantum chemical calculations were carried out to study the reaction of Al atom in the ground electronic state with H(2)O molecule. Examination of the potential energy surface revealed that the Al + H(2)O → AlO + H(2) reaction must be treated as a complex process involving two steps: Al + H(2)O → AlOH + H and AlOH + H → AlO + H(2). Activation barriers for these elementary reaction channels were calculated at B3LYP/6-311+G(3df,2p), CBS-QB3, and G3 levels of theory, and appropriate rate constants were estimated by using a canonical variational theory. Theoretical analysis exhibited that the rate constant for the Al + H(2)O → products reaction measured by McClean et al. must be associated with the Al + H(2)O → AlOH + H reaction path only. The process of direct HAlOH formation was found to be negligible at a pressure smaller than 100 atm.
Rubinstein, D; Warrendorf, E
1975-06-01
The levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate in freshly drawn human erythrocytes can be tripled by a 2 h incubation at 37 degrees C in a medium containing 21 mM glucose, 1.8 mM adenine, 5 mM pyruvate, 10 mM inosine, and 96 mM phosphate. Similar incubation conditions will restore the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood levels preserved for 12 and 15 weeks, respectively, to those of fresh cells. Omission of pyruvate from the incubation medium further increases the level of ATP slightly, but there is little elevation of 2,3-diphosphoglycerate. Under these conditions labelled pyruvate and lactate production from [14-C]glucose or [14-C]inosine is not diminished, but labelled fructose 1,6-diphosphate, rather than 2,3-diphosphoglycerate, accumulates. In addition, omission of pyruvate from the incubation medium, with a concomitant decrease in accumulation of 2,3-diphosphoglycerate, diminishes the concentration of inorganic phosphate required for optimal ATP elevation. A 5 h incubation in the glucose-adenine-pyruvate-inosine-phosphate medium elevates the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood preserved in the cold for 15 weeks to twice that of fresh cells, indicating that the cells retain their metabolic potential even after prolonged storage at 2 degrees C. The medium may provide a method of rejuvenating 10-12 week cold-preserved erythrocytes for transfusion purposes, by a 1 h incubation at 37 degrees C.
Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.
1992-01-01
The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.
Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya
2013-01-16
A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.
Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+
NASA Astrophysics Data System (ADS)
Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena
2018-04-01
Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.
Cal, M.P.; Strickler, B.W.; Lizzio, A.A.
2000-01-01
Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.
Karuri, A R; Agarwal, R K; Engelking, L R; Kumar, M S
1998-03-15
Effects of acute exposure (2 hr) to either 1.5% halothane or 0.5% methoxyflurane were investigated in the Sprague Dawley rat. Pituitary (PIT) and central nervous system (CNS) substance P (SP)-like and beta-endorphin (beta-end)-like immunoreactivities were evaluated immediately after anesthetic exposure (2 h), after righting reflex (4 h) or 24 hr postexposure (24 h). Only halothane significantly reduced SP-like immunoreactivity in olfactory bulbs in both the 2-h and 4-h groups. Halothane elevated SP-like immunoreactivity of hippocampus at all three time periods, and in the hypothalamus at 2 h. Both anesthetics significantly depleted thalamic concentrations of SP-like immunoreactivity. Methoxyflurane anesthesia resulted in a drastic decrease in SP-like immunoreactivity in PIT at all three time periods periods, while halothane elevated PIT concentrations of this peptide at 4 h. Both anesthetics significantly decreased beta-end-like immunoreactivity in the olfactory bulbs and thalami at 2, 4, and 24 h. However, halothane alone significantly elevated beta-end-like immunoreactivity in the spinal cord at 24 h. Halothane significantly elevated PIT beta-end-like immunoreactivity at 2 and 24 h, while methoxyflurane significantly lowered it in the 4-h group, but elevated the levels of the same in the 24-h group. Brain stem beta-end immunoreactivity were significantly reduced at 2 h by both anesthetics, and at 4 h by methoxyflurane. Results indicate that halothane and methoxyflurane may differ significantly in their actions on SP and beta-end secreting neurons in the CNS.
Low levels of iron enhance UV/H2O2 efficiency at neutral pH.
Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G
2018-03-01
While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254 + H 2 O 2 + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.
Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia
2018-06-06
The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.
Phase Constitution in Sr and Mg doped LaGaO3 System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, F; Bordia, Rajendra K.; Pederson, Larry R.
Sr and Mg doped lanthanum gallate perovskites (La1-xSrxGa1-yMgyO3-delta, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X = Y = 0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, and 1.05)more » were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 degreesC for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La2O3-SrO-Ga2O3-MgO quaternary system at elevated temperature (1500 degreesC). (C) 2003 Elsevier Ltd. All rights reserved« less
Phase constitution in Sr and Mg doped LaGaO{sub 3} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Feng; Bordia, Rajendra K.; Pederson, Larry R
2004-01-03
Sr and Mg doped lanthanum gallate perovskites (La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}}, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X=Y=0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, andmore » 1.05) were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 deg. C for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La{sub 2}O{sub 3}-SrO-Ga{sub 2}O{sub 3}-MgO quaternary system at elevated temperature (1500 deg. C)« less
NASA Astrophysics Data System (ADS)
Zhang, Tianlei; Lan, Xinguang; Wang, Rui; Roy, Soumendra; Qiao, Zhangyu; Lu, Yousong; Wang, Zhuqing
2018-07-01
The addition reaction of CH2OO + H2O → CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO...H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0-30 km altitude of the Earth's atmosphere. The results calculated within 0-5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%-77.26% and 0.04%-1.76%. Within 5-30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%-98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO...H2O + HCOOH is much slower.
Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms.
Peeken, Jan C; Jutzi, Jonas S; Wehrle, Julius; Koellerer, Christoph; Staehle, Hans F; Becker, Heiko; Schoenwandt, Elias; Seeger, Thalia S; Schanne, Daniel H; Gothwal, Monika; Ott, Christopher J; Gründer, Albert; Pahl, Heike L
2018-05-03
The transcription factor "nuclear factor erythroid 2" (NFE2) is overexpressed in the majority of patients with myeloproliferative neoplasms (MPNs). In murine models, elevated NFE2 levels cause an MPN phenotype with spontaneous leukemic transformation. However, both the molecular mechanisms leading to NFE2 overexpression and its downstream targets remain incompletely understood. Here, we show that the histone demethylase JMJD1C constitutes a novel NFE2 target gene. JMJD1C levels are significantly elevated in polycythemia vera (PV) and primary myelofibrosis patients; concomitantly, global H3K9me1 and H3K9me2 levels are significantly decreased. JMJD1C binding to the NFE2 promoter is increased in PV patients, decreasing both H3K9me2 levels and binding of the repressive heterochromatin protein-1α (HP1α). Hence, JMJD1C and NFE2 participate in a novel autoregulatory loop. Depleting JMJD1C expression significantly reduced cytokine-independent growth of an MPN cell line. Independently, NFE2 is regulated through the epigenetic JAK2 pathway by phosphorylation of H3Y41. This likewise inhibits HP1α binding. Treatment with decitabine lowered H3Y41ph and augmented H3K9me2 levels at the NFE2 locus in HEL cells, thereby increasing HP1α binding, which normalized NFE2 expression selectively in JAK2 V617F -positive cell lines. © 2018 by The American Society of Hematology.
Li, Shi-Weng; Leng, Yan; Shi, Rui-Fang
2017-02-17
Hydrogen peroxide (H 2 O 2 ) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H 2 O 2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H 2 O 2 -induced adventitious rooting. RNA-Seq data revealed that H 2 O 2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H 2 O 2 treatment and that H 2 O 2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H 2 O 2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H 2 O 2 treatments, the expression levels of ARFs, IAAs, AUXs, NACs, RD22, AHKs, MYBs, PIN1, AUX15A, LBD29, LBD41, ADH1b, and QORL were significantly up-regulated at the 6- and/or 24-h time points. In contrast, PER1 and PER2 were significantly down-regulated by H 2 O 2 treatment. These qRT-PCR results strongly correlated with the RNA-Seq data. Using RNA-Seq and qRT-PCR techniques, we analysed the global changes in gene expression and functional profiling during H 2 O 2 -induced adventitious rooting in mung bean seedlings. These results strengthen the current understanding of H 2 O 2 -induced adventitious rooting and the molecular traits of H 2 O 2 priming in plants.
Ocean acidification affects prey detection by a predatory reef fish.
Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I
2011-01-01
Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.
Luke, Trevor; Shimoda, Larissa A.
2016-01-01
Abstract In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca2+ concentration ([Ca2+]i). In this study, we explored the interaction between pHi and [Ca2+]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca2+]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca2+]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca2+]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca2+ or blockade of Ca2+ entry with NiCl2 or SKF 96365 decreased [Ca2+]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca2+]i. We also examined the roles of Na+/Ca2+ exchange (NCX) and Na+/H+ exchange (NHE) in mediating the elevated basal [Ca2+]i and Ca2+-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca2+]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca2+]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca2+]i. Our findings indicate that, during CH, the elevation in basal [Ca2+]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE. PMID:27076907
Ji, Chang-Jun; Yang, Yoon-Mo; Kim, Jung-Hoon; Ryu, Su-Hyun; Youn, Hwan; Lee, Jin-Won
2018-05-10
PerR is a metal-dependent peroxide sensing transcription factor which controls the expression of genes involved in peroxide resistance. The function of Bacillus subtilis PerR is mainly dictated by the regulatory metal ion (Fe 2+ or Mn 2+ ) coordinated by three N-donor ligands (His37, His91, and His93) and two O-donor ligands (Asp85 and Asp104). While H 2 O 2 sensing by PerR is mediated by Fe 2+ -dependent oxidation of N-donor ligand (either His37 or His91), one of the O-donor ligands (Asp104), but not Asp85, has been proposed as the key residue that regulates the sensitivity of PerR to H 2 O 2 . Here we systematically investigated the relative roles of two O-donor ligands of PerR in metal-binding affinity and H 2 O 2 sensitivity in vivo and in vitro. Consistent with the previous report, in vitro the D104E-PerR could not sense low levels of H 2 O 2 in the presence of excess Fe 2+ sufficient for the formation of the Fe 2+ -bound D104E-PerR. However, the expression of PerR-regulated reporter fusion was not repressed by D104E-PerR in the presence of Fe 2+ , suggesting that Fe 2+ is not an effective corepressor for this mutant protein in vivo. Furthermore, in vitro metal titration assays indicate that D104E-PerR has a significantly reduced affinity for Fe 2+ , but not for Mn 2+ , when compared to wild type PerR. These data indicate that the type of O-donor ligand (Asp vs. Glu) at position 104 is an important determinant in providing high Fe 2+ -binding affinity required for the sensing of the physiologically relevant Fe 2+ -levels, in addition to its role in rendering PerR highly sensitive to physiological levels of H 2 O 2 . In comparison, the D85E-PerR did not show a perturbed change in Fe 2+ -binding affinity, however, it displayed a slightly decreased sensitivity to H 2 O 2 both in vivo and in vitro, suggesting that the type of O-donor ligand (Asp vs. Glu) at position 85 may be important for the fine-tuning of H 2 O 2 sensitivity. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra
2016-01-01
Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.
Rabinovitz, B C; Larzábal, M; Vilte, D A; Cataldi, A; Mercado, E C
2016-05-27
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for intestinal disease and hemolytic uremic syndrome (HUS), a serious systemic complication which particularly affects children. In this study, we evaluated whether passive immunization protects from EHEC O157:H7 colonization and renal damage, by using a weaned BALB/c mouse model of infection. Recombinant proteins EspB and the carboxyl-terminal fragment of 280 amino acids of γ-intimin (γ-IntC280) were used in combination with a macrophage-activating lipopeptide-2 (MALP) adjuvant to immunize pregnant mice by the intranasal route. Neonatal mice were allowed to suckle vaccinated or sham-vaccinated dams until weaning when they were challenged by the oral route with a suspension of an E. coli O157:H7 Stx2+ strain. The excretion of the inoculated strain was followed for 72h. All vaccinated dams exhibited elevated serum IgG response against both γ-Int C280 and EspB. Passive immunization of newborn mice resulted in a significant increase in serum IgG titers against γ-Int C280 and a slight increase in EspB-specific antibodies. The neonates from vaccinated dams showed a significant reduction in EHEC O157:H7 colonization 48h post challenge. In addition, the level of plasma urea concentration, a marker of renal failure, was significantly higher in offsprings of sham-vaccinated mice. In conclusion, vaccination of pregnant dams with γ-Int C280 and EspB could reduce colonization and systemic toxicity of EHEC O157:H7 in their suckling offsprings. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tada, Hiroyuki; Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp; Kanaya, Sousuke
Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stabilitymore » of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.« less
NASA Astrophysics Data System (ADS)
Larochelle, Kevin J.
This study focused on moisture and intermediate temperature effects on the embrittlement phenomenon and stress rupture life of the ceramic matrix composite (CMC) made of Sylramic(TM) fibers with an in-situ layer of boron nitride (Syl-iBN), boron nitride interphase (BN), and SiC matrix (Syl-iBN/BN/SiC). Stress rupture tests were performed at 550°C or 750°C with moisture contents of 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH 2O. The CMC stress rupture strengths at 100 hrs at 550°C with 0.0, 0.2, or 0.6 atm pH2O were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the corresponding strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy (FESEM) analysis showed that the amount of pesting by glass formations increased with time, temperature, and pH2O leading to embrittlement. Total embrittlement times for 550°C were estimated to be greater than 63 hrs for 0.0 atm pH2O greater than 38 hrs for 0.2 atm pH 2O and between 8 and 71 hrs for 0.6 atm pH2O. Corresponding estimated embrittlement times for the 750°C were greater than 83 hrs, between 13 and 71 hrs, and between 1 and 6 hrs. A time-dependent, phenomenological, Monte Carlo-type simulation of composite failure was developed. The simulated total embrittlement times for the 550°C cases were 300 hrs, 100 hrs, and 25 hrs for 0.0, 0.2, and 0.6 atm pH 2O, respectively. The corresponding embrittlement times for the 750°C cases were 300 hrs, 20 hrs, and 3 hrs. A detailed sensitivity analysis on the variables used in the model was conducted. The model was most sensitive to variation in the ultimate strength of the CMC at room temperature, the ultimate strength of the CMC at elevated temperature, and the reference strength of a fiber and it was least sensitive to variation in the modulus of elasticity of the matrix and fiber. The sensitivity analysis showed that the stress ruptures curves generated by variation in the total embrittlement time simulate the trends in the experimental data. This research showed that the degree of stress rupture strength degradation increases with temperature, moisture content level, and exposure time.
Zou, Xiaoxin; Liu, Jikai; Su, Juan; Zuo, Fan; Chen, Jiesheng; Feng, Pingyun
2013-02-18
A novel dopant-free TiO(2) photocatalyst (V(o)(.)-TiO(2)), which is self-modified by a large number of paramagnetic (single-electron-trapped) oxygen vacancies, was prepared by calcining a mixture of a porous amorphous TiO(2) precursor, imidazole, and hydrochloric acid at elevated temperature (450 °C) in air. Control experiments demonstrate that the porous TiO(2) precursor, imidazole, and hydrochloric acid are all necessary for the formation of V(o)(.)-TiO(2). Although the synthesis of V(o)(.)-TiO(2) originates from such a multicomponent system, this synthetic approach is facile, controllable, and reproducible. X-ray diffraction, XPS, and EPR spectroscopy reveal that the V(o)(.)-TiO(2) material with a high crystallinity embodies a mass of paramagnetic oxygen vacancies, and is free of other dopant species such as nitrogen and carbon. UV/Vis diffuse-reflectance spectroscopy and photoelectrochemical measurement demonstrate that V(o)(.)-TiO(2) is a stable visible-light-responsive material with photogenerated charge separation efficiency higher than N-TiO(2) and P25 under visible-light irradiation. The V(o)(.)-TiO(2) material exhibits not only satisfactory thermal- and photostability, but also superior photocatalytic activity for H(2) evolution (115 μmol h(-1) g(-1)) from water with methanol as sacrificial reagent under visible light (λ>400 nm) irradiation. Furthermore, the effects of reaction temperature, ratio of starting materials (imidazole:TiO(2) precursor) and calcination time on the photocatalytic activity and the microstructure of V(o)(.)-TiO(2) were elucidated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants
NASA Astrophysics Data System (ADS)
Sun, Shichen; Awadallah, Osama; Cheng, Zhe
2018-02-01
It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.
Storage of red blood cells with improved maintenance of 2,3-bisphosphoglycerate.
Högman, Claes F; Löf, Helena; Meryman, Harold T
2006-09-01
During storage, red blood cells (RBCs) rapidly lose 2,3-bisphosphoglycerate (2,3-DPG) leading to an increase in the affinity for O(2) and a temporary impairment of O(2) transport. Recent clinical evaluations indicate that the quality of transfused RBCs may be more important for patient survival than previously recognized. Glucose-free additive solutions (ASs) were prepared with sodium citrate, sodium gluconate, adenine, mannitol, and phosphates at high pH, a solution that can be heat-sterilized. CP2D was used as an anticoagulant. Additional CP2D was added to the AS to supply glucose. RBCs were stored at 4 degrees C and assayed periodically for intracellular pH (pHi), extracellular pH, glucose, lactate, phosphate, ATP, 2,3-DPG, hemolysis, and morphology. Storage in 175 mL of the chloride-free, hypotonic medium at a hematocrit (Hct) level of 59 to 60 percent resulted in an elevated pHi and the maintenance of 2,3-DPG at or above the initial value for 2 weeks without loss of ATP. The addition of 400 mL of storage solution followed by centrifugation and removal of 300 mL of excess solution to a Hct level of 60 to 66 percent further reduced the chloride concentration, resulting in the maintenance of 2,3-DPG for 4 weeks. Hemolysis was at 0.1 percent at 6 weeks. Improvements in the maintenance of 2,3-DPG were achieved with 175 mL of a chloride-free storage solution with familiar additives at nontoxic concentrations to increase pHi. Adding, instead, 400 mL of storage solution followed by the removal of 300 mL reduced the chloride concentration, increasing the pHi and extending the maintenance of 2,3-DPG to 4 weeks.
Zhao, Bin-Bin; Meng, Jun; Zhang, Qiu-Xiang; Kang, Ting-Ting; Lu, Rong-Rong
2017-09-01
The objective of this study was to explore the antioxidant effect of the surface layer proteins (SLPs) and their mechanism. We investigated four SLPs which were extracted from L. casei zhang, L. rhamnosus, L. gasseri and L. acidophilus NCFM respectively using LiCl. The protective effect of SLPs on H 2 O 2 -induced HT-29 cells oxidative injury was investigated. As results, SLPs (100μg/mL) could significantly mitigate HT-29 cells cytotoxicity, improve the activities of total antioxidant capacity (T-AOC), catalase (CAT) and superoxide dismutase (SOD), decrease the contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), compared with H 2 O 2 -induced group (P<0.05). Furthermore, SLPs were also shown to attenuate the apoptosis rate (10.94-24.03%, P<0.01), suppress the elevation of intracellular reactive oxygen species (ROS) and calcium levels, restore mitochondrial membrane potential (MMP) and block the activation of apoptosis-related proteins of caspase-3 and caspase-9 (P<0.05). Considering all the parameters analyzed, we concluded that Lactobacillus SLPs play an essential role in the antioxidant capacity of HT-29 cells induced by H 2 O 2 , and the mechanism could be attributed to SLPs' ability to enhance the activity of the intracellular antioxidant enzyme system, reduce ROS accumulation and to inhibit apoptosis by regulating mitochondrial pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Quinlan, Casey L.; Goncalves, Renata L. S.; Hey-Mogensen, Martin; Yadava, Nagendra; Bunik, Victoria I.; Brand, Martin D.
2014-01-01
Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD+ or NADH at about the same operating redox potential as the NADH/NAD+ pool and comprise the NADH/NAD+ isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)+ ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I. PMID:24515115
Beutler, E; Forman, L; West, C; Gelbart, T
1988-03-15
The effect of the xanthone derivative 2-(2-hydroxyethoxy)-6-(1-H-tetrazole-5-yl)xanthen-9-one (BW A440C) on red cells was studied. When added to stored red cells at a concentration of 6 mM, greatly improved preservation of 2,3-diphosphoglycerate (2,3-DPG) was observed. There was no effect on internal pH of the erythrocyte. At a concentration 0.500 mM, many red cell enzyme activities were inhibited completely. At a 0.500 mM concentration, however, inhibition of pyruvate kinase and diphosphoglycerate phosphatase was most striking. Inhibition of either of these enzymes could result in elevation of 2,3-DPG levels. BW A440C in concentrations which elevated 2,3-DPG levels in humans caused a decrease in 2,3-DPG levels in rabbits and markedly impaired the viability of 21-day stored rabbit erythrocytes.
Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats.
Yan, Weiming; Chen, Tao; Long, Pan; Zhang, Zhe; Liu, Qian; Wang, Xiaocheng; An, Jing; Zhang, Zuoming
2018-06-07
BACKGROUND Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. MATERIAL AND METHODS Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. RESULTS No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P<0.05). The number of the infiltrating cells in the ICB of rats from the H-O group was not significantly different from that of the model or N-O group (P>0.05), while the activation of microglia cells in the H-O group was somewhat reduced (P<0.05). CONCLUSIONS Post-treatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.
Satellite Moisture Retrieval Techniques. Volume 1. Technique Development and Evaluation
1983-01-01
M3H 5T4 ONTARIO, CANADA BIBLIOTECA INSTITUTE ANARTICO CHILENO LUIS THAYER OJEDA 814 SANTIAGO , CHILE METEORO. OFFICE LIBRARY LONDON ROAD...levels (which could in practice be determined from CO2 sounding channels). The water vapor amounts at the different tropospheric levels are the...parameters for the gases H2O, CO2 , O3, N2O, CO, CH4 and O2. Water vapor was the largest contributor to absorption for all SSH/2 channels with smaller
ATP and microfilaments in cellular oxidant injury.
Hinshaw, D. B.; Armstrong, B. C.; Burger, J. M.; Beals, T. F.; Hyslop, P. A.
1988-01-01
Oxidant injury produces dramatic changes in cytoskeletal organization and cell shape. ATP synthetic pathways are major targets of oxidant injury resulting in rapid depletion of cellular ATP following oxidant exposure. The relation of ATP depletion to the changes in microfilament organization seen following H2O2 exposure were examined in the P388D1 cell line. Three hours of glucose depletion alone resulted in a decline in cellular ATP levels to less than 10% of controls, which was comparable to ATP levels in cells 30 to 60 minutes after exposure to 5 mM H2O2 in the presence of glucose. Adherent cells stained with rhodamine phalloidin, a probe specific for polymerized (F) actin, revealed a progressive shortening of microfilaments into globular aggregates within cells depleted of glucose over 3 hours, a pattern similar to earlier observations of H2O2-injured cells after 1 hour. The changes in cellular ATP associated with glucose depletion or H2O2 exposure were then correlated with G actin content measured by the DNAse 1 inhibition assay. No real differences in G actin content as a percentage of total actin were seen in P388D1 cells following 3 hours of glucose depletion or 30 to 60 minutes after exposure to 5 mM H2O2. But 2 to 3 hours after exposure to H2O2 there was a progressive decrease in G actin as a percentage of total actin within the cells. Transmission electron microscopy of cells depleted of glucose for 3 h or 1 hour after exposure to H2O2 revealed the presence of side-to-side aggregates or bundles of microfilaments within the cells. These observations suggest that declining levels of ATP either from metabolic inhibition or H2O2 injury are correlated with the fragmentation and shortening of microfilaments into aggregates. No net change in monomeric or polymeric actin was necessary for this to occur. However, at later time points after H2O2 exposure some actin assembly did occur. Images p[484]-a p481-a p482-a Figure 2 Figure 3 PMID:3414780
Climatic role of terrestrial ecosystem under elevated CO2 : a bottom-up greenhouse gases budget.
Liu, Shuwei; Ji, Cheng; Wang, Cong; Chen, Jie; Jin, Yaguo; Zou, Ziheng; Li, Shuqing; Niu, Shuli; Zou, Jianwen
2018-05-07
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO 2 ) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO 2 . We show that elevated CO 2 significantly stimulates plant C pool (NPP) by 20%, soil CO 2 fluxes by 24%, and methane (CH 4 ) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH 4 uptake of upland soils by 3.8%. Elevated CO 2 causes insignificant increases in soil nitrous oxide (N 2 O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO 2 -induced increase in GHG emissions may decline with CO 2 enrichment levels. An elevated CO 2 -induced rise in soil CH 4 and N 2 O emissions (2.76 Pg CO 2 -equivalent year -1 ) could negate soil C enrichment (2.42 Pg CO 2 year -1 ) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO 2 year -1 ) under elevated CO 2 . Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO 2 might have been largely offset by its induced increases in soil GHGs source strength. © 2018 John Wiley & Sons Ltd/CNRS.
Shen, Rui; Liu, Peipei; Zhang, Yiqiu; Yu, Zhao; Chen, Xuyue; Zhou, Lu; Nie, Baoqing; Żaczek, Anna; Chen, Jian; Liu, Jian
2018-04-03
As an important signaling molecule, hydrogen peroxide (H 2 O 2 ) secreted externally by the cells influences cell migration, immunity generation, and cellular communications. Herein, we have developed a microfluidic approach with droplets in combination with Au nanoclusters for the sensitive detection of H 2 O 2 secreted by a single cell. Isolated in the ultrasmall volume (4.2 nL) of a microdroplet, single-cell secreted H 2 O 2 can initiate dramatic fluorescence changes of horseradish peroxidase-Au nanoclusters. We have demonstrated an ultrahigh sensitivity (200-400 attomole H 2 O 2 directly measured from a single cell) with good specificity. It offers a useful research tool to study the cell-to-cell differences of H 2 O 2 secretion at the single-cell level.
Lee, Seul-Gi; Karadeniz, Fatih; Oh, Jung Hwan; Yu, Ga Hyun; Kong, Chang-Suk
2017-01-01
Matrix metalloproteinases (MMPs) are endopeptidases that take significant roles in extracellular matrix degradation and therefore linked to several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Hizikia fusiformis, a brown algae, was reported to possess bioactivities, including but not limited to, antiviral, antimicrobial, and anti-inflammatory partly due to bioactive polysaccharide contents. In this study, the potential of H. fusiformis against cancer cell invasion was evaluated through the MMP inhibitory effect in HT1080 fibrosarcoma cells in vitro. H. fusiformis crude extract was fractionated with organic solvents, H2O, n-BuOH, 85% aqueous MeOH, and n-hexane (n-Hex). The non-toxicity of the fractions was confirmed by MTT assay. All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to the gelatin zymography assay. Cell migration was also significantly inhibited by the n-Hex fraction. In addition, both gene and protein expressions of MMP-2 and -9, and tissue inhibitor of MMPs (TIMPs) were evaluated by reverse transcription-polymerase chain reaction and Western blotting, respectively. The fractions suppressed the mRNA and protein levels of MMP-2, MMP-9 while elevating the TIMP-1 and TIMP-2, with the H2O fraction being the least effective while n-Hex fraction the most. Collectively, the n-Hex fraction from brown algae H. fusiformis could be a potential inhibitor of MMPs, suggesting the presence of various derivatives of polysaccharides in high amounts. PMID:29043215
The formation of low-ionization emission in the halo of NGC 891
NASA Technical Reports Server (NTRS)
Sokolowski, James; Bland-Hawthorn, Jonathan
1993-01-01
Imaging and Spectroscopic study first revealed the presence of a diffuse ionized medium (DIM), having unusual excitation, pervading the lower halo of the edge-on spiral galaxy NGC 891. Emission from this DIM is strongest northeast of the nucleus, at radii between 2 and 8 kpc (hereafter region 1). The (N2)(lambda)6583/H(alpha) and (S2)(lambda) (lambda)6716,6731/H(alpha) ratios increase dramatically with z in region 1, from 0.6 and 0.5 respectively at z is approximately equal to 500 pc to 1.1 and 1.0 at z is approximately equal to 1 kpc, while nondetections of (O1)(lambda)6300 and (O3)(lambda)5007 emission yield upper limits of (O1)(lambda)6300/H(alpha) less than or equal to 0.05 and (O3)(lambda)5007/H(alpha) less than or equal to 0.15 for z less than 1 kpc. Previous photoionization models, using the radiation field from disk O and B stars, have been successful in reproducing the elevated (N2)(lambda)6583/H(alpha) and (S2)(lambda)(lambda)6716.6731/H(alpha) ratios observed. However, these radiation bounded models also produce significant (O3)(lambda)5007 emission, in conflict with the observed upper limit. Here, we report the results of new, matter bounded models for the photoionization of the DIM in region 1 of NGC 891.
Ren, Mingguang; Deng, Beibei; Kong, Xiuqi; Tang, Yonghe; Lin, Weiying
2017-01-01
Hydrogen peroxide (H 2 O 2 ) plays important roles in many physiological and pathological processes. At the cellular organelle level, the abnormal concentrations of H 2 O 2 in the lysosomes may cause redox imbalance and the loss of the critical functions of the lysosomes. Herein, we describe the preparation of a potent lysosome-targeted two-photon fluorescent probe (Lyso-HP) for the detection of H 2 O 2 in the lysosomes in the living cells. This unique fluorescent probe can also be employed to effectively detect H 2 O 2 in the living tissues using two-photon fluorescence microscopy.
Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors.
Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel
2011-07-15
Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H(2)S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H(2)S production in landfills results from biological activity, the concept of inhibiting H(2)S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na(2)MoO(4)), ferric chloride (FeCl(3)), and hydrated lime (Ca(OH)(2)) - were evaluated using flask and column experiments. All three agents inhibited H(2)S generation, with Na(2)MoO(4) reducing H(2)S generation by interrupting the biological sulfate reduction process and Ca(OH)(2) providing an unfavorable pH for biological growth. Although FeCl(3) was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H(2)S production in the column experiment was a reduction in pH. Application of both Na(2)MoO(4) and FeCl(3) inhibited H(2)S generation over a long period (over 180 days), but the impact of Ca(OH)(2) decreased with time as the alkalinity it contributed was neutralized by the generated H(2)S. Practical application and potential environmental implications need additional exploration. Copyright © 2011 Elsevier B.V. All rights reserved.
Yadav, Geeta; Srivastava, Prabhat Kumar; Parihar, Parul; Tiwari, Sanjesh; Prasad, Sheo Mohan
2016-12-01
In order to know the impact of elevated level of UV-B on arsenic stressed Helianthus annuus L. var. DRSF-113 plants, certain physiological (growth - root and shoot lengths, their fresh masses and leaf area; photosynthetic competence and respiration) and biochemical parameters (pigments - Chl a and b, Car, anthocyanin and flavonoids; reactive oxygen species - superoxide radicals, H 2 O 2 ; reactive carbonyl group, electrolyte leakage; antioxidants - superoxide dismutase, peroxidise, catalase, glutathione-S-transferase, proline) of their seedlings were analysed under the simultaneous exposures of two arsenic doses (6mgkg -1 soil, As 1 ; and 12mgkg -1 soil, As 2 ) and two UV-B doses (1.2kJm -2 d -1 , UV-B 1 ; and 3.6kJm -2 d -1 , UV-B 2 ). As 1 and As 2 alone declined all the studied growth parameters - along with photosynthetic pigments which were further aggravated after the simultaneous exposures of predefined levels of UV-B. Each As exposure was accompanied by significant accumulation of As in root, shoot and leaves and was substantiated by simultaneous exposures of UV-B doses which manifested into suppressed growth, decreased chlorophyll contents and photosynthesis. In similar conditions, other photo-shielding pigments, viz. carotenoids, anthocyanin and flavonoids along with respiration and oxidative stress markers such as O 2 • ¯, H 2 O 2 ; and indicators of cell membrane damage like MDA (malondialdehyde), RCG (reactive carbonyl group), electrolyte leakage were enhanced by As, and became more pronounced after the simultaneous exposures of UV-B doses. As doses stimulated the activities of SOD, POD, CAT, GST and Pro which got further accelerated after the simultaneous exposures of UV-B doses. Copyright © 2016 Elsevier B.V. All rights reserved.
Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria.
Luo, Ting; Ye, Li; Ding, Cheng; Yan, Jinlong; Jing, Chuanyong
2017-11-15
Reduction of surface-bound arsenate [As(V)] and subsequent release into the aqueous phase contribute to elevated As in groundwater. However, this natural process is not fully understood, especially in the presence of sulfate-reducing bacteria (SRB). Gaining mechanistic insights into solid-As(V)-SRB interactions motivated our molecular level study on the fate of nano-TiO 2 bound As(V) in the presence of Desulfovibrio vulgaris DP4, a strain of SRB, using incubation and in situ ATR-FTIR experiments. The incubation results clearly revealed the reduction of As(V), either adsorbed on nano-TiO 2 or dissolved, in the presence of SRB. In contrast, this As(V) reduction was not observed in abiotic control experiments where sulfide was used as the reductant. Moreover, the reduction was faster for surface-bound As(V) than for dissolved As(V), as evidenced by the appearance of As(III) at 45h and 75h, respectively. ATR-FTIR results provided direct evidence that the surface-bound As(V) was reduced to As(III) on TiO 2 surfaces in the presence of SRB. In addition, the As(V) desorption from nano-TiO 2 was promoted by SRB relative to abiotic sulfide, due to the competition between As(V) and bacterial phosphate groups for TiO 2 surface sites. This competition was corroborated by the ATR-FTIR analysis, which showed inner-sphere surface complex formation by bacterial phosphate groups on TiO 2 surfaces. The results from this study highlight the importance of indirect bacteria-mediated As(V) reduction and release in geochemical systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Network dimensionality and ligand flexibility in lanthanide terephthalate hydrates
NASA Astrophysics Data System (ADS)
Zehnder, Ralph A.; Renn, Robert A.; Pippin, Ethan; Zeller, Matthias; Wheeler, Kraig A.; Carr, Jason A.; Fontaine, Nick; McMullen, Nathan C.
2011-01-01
Various lanthanide open framework materials incorporating the terephthalate (TP) entity were prepared using hydrothermal synthesis methods at a moderate temperature of 170 °C. The compounds Nd 2(TP) 3(H 2O) 4( 1), Er 2(TP) 3(H 2O) 4( 2), Yb 2(TP) 3(H 2O) 2( 3), Yb 2(TP) 3(H 2O) 6( 4), and Yb 2(TP) 3(H 2O) 8·2H 2O ( 5), were characterized by single crystal structural analysis and FT-IR spectroscopy. While compounds 1 and 2 have been reported before on the basis of powder X-ray diffraction, the structural characterization of any ytterbium terephthalate species is unprecedented. Compounds 1- 5 crystallize in triclinic settings with space group P-1. The compounds are compared with their previously reported Er and Tb-counterparts and the reduction of the dimensionality of the resulting networks from 3D over 2D to 1D with increasing level of hydration is discussed. Compounds 1, 2, and 3 with the lowest water content assemble in three-dimensional network lattices. Compounds 4 and 5, however, form 2D layered systems and 1D rod like chains, respectively, which are held together by hydrogen bonds originating from coordinating H 2O. The crystal lattices of the 3D networks experience higher levels of tension as can be seen by increasing out-of-plane torsion with regard to the terephthalate carboxylate groups. Moreover, there seems to be a correlation between the level of strain on the aromatic ligands and the reduction of the number of carboxylate oxygen atoms that are part of the coordination polyhedra.
Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.
Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi
2014-12-01
Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.
Gillissen, A; Jaworska, M; Orth, M; Coffiner, M; Maes, P; App, E M; Cantin, A M; Schultze-Werninghaus, G
1997-03-01
Nacystelyn (NAL), a recently-developed lysine salt of N-acetylcysteine (NAC), and NAG, both known to have excellent mucolytic capabilities, were tested for their ability to enhance cellular antioxidant defence mechanisms. To accomplish this, both drugs were tested in vitro for their capacity: (1) to inhibit O2- and H2O2 in cell-free assay systems; (2) to reduce O2- and H2O2 released by polymorphonuclear leukocytes (PMN); and (3) for their cellular glutathione (GSH) precursor effect. In comparison with GSH, NAL and NAC inhibited H2O2, but not O2-, in cell-free, in vitro test systems in a similar manner. The anti-H2O2 effect of these drugs was as potent as that of GSH, an important antioxidant in mammalian cells. To enhance cellular GSH levels, increasing concentrations (0-2 x 10(-4) mol l-1) of both substances were added to a transformed alveolar cell line (A549 cells). After NAC administration (2 x 10(-4) mol l-1), total intracellular GSH (GSH + 2GSSG) levels reached 4.5 +/- 1.1 x 10(-6) mol per 10(6) cells, whereas NAL increased GSH to 8.3 +/- 1.6 x 10(-6) mol per 10(6) cells. NAC and NAL administration also induced extracellular GSH secretion; about two-fold (NAC), and 1.5-fold (NAL), respectively. The GSH precursor potency of cystine was about two-fold higher than that of NAL and NAC, indicating that the deacetylation process of NAL and NAC slows the ability of both drugs to induce cellular glut production and secretion. Buthionine-sulphoximine, which is an inhibitor of GSH synthetase, blocked the cellular GSH precursor effect of all substances. In addition, these data demonstrate that NAC and NAL reduce H2O2 released by freshly-isolated cultured blood PMN from smokers with chronic obstructive pulmonary disease (COPD) (n = 10) in a similar manner (about 45% reduction of H2O2 activity by NAC or NAL at 4 x 10(-6) mol l-1). In accordance with the results obtained from cell-free, in vitro assays, O2- released by PMN was not affected. Ambroxol (concentrations: 10(-9)-10(-3) mol l-1) did not reduce activity levels of H2O2 and O2- in vitro. Due to the basic effect of dissolved lysine, which separates easily in solution from NAL, the acidic function of the remaining NAC molecule is almost completely neutralized [at concentration 2 x 10(-4) M: pH 3.6 (NAC), pH 6.4 (NAL)]. Due to their function as H2O2 scavengers, and due to their ability to enhance cellular glutathione levels, NAL and NAC both have potent antioxidant capabilities in vitro. The advantage of NAL over NAC is two-fold; it enhances intracellular GSH levels twice as effectively, and it forms neutral pH solutions whereas NAC is acidic. Concluding from these in vitro results, NAL could be an interesting alternative to enhance the antioxidant capacity at the epithelial surface of the lung by aerosol administration.
Coagulation Changes to Systemic Acidosis and Bicarbonate Correction in Swine
2011-11-01
carbonate. Total experiment time and time between Base - line, Acidosis, and Acidosis-Corrected varied from pig to pig. y axis describes the pH of the swine...Infusion of HCl reduced arterial pH from 7.4 to 7.1 and also reduced HCO3 , base excess (BE), and PaCO2 (Acidosis, Table 1). In this group, bicarbonate...a decrease in respiration successfully lowered arterial pH to 7.1 ( Acido - sis, Table 2) and significantly elevated PaCO2 and HCO3 and lowered PaO2
Tang, Luyan; Li, Jian; Lin, Xiao; Wu, Wenyu; Kang, Kefei; Fu, Wenwen
2012-01-01
UVB light can generate potentially harmful hydrogen peroxide (H(2)O(2)) in vivo, but it can also promote the beneficial proliferation and migration of melanocytes. The successful use of UVB monotherapy for treatment of vitiligo suggests that H(2)O(2) may have a biphasic effect on melanin synthesis and melanosome transfer. To study the beneficial role of H(2)O(2) on melanogenesis and melanosome transport in living melanocytes and keratinocytes. A co-culture system model was constructed using the primary human melanocytes and keratinocytes. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine cell proliferation, NaOH was used to determine the melanin content, and real-time PCR was used to determine tyrosinase expression. Western blot was used to determine Rab-27A and protease-activated receptor 2 (PAR-2) expression. This study demonstrated that tyrosinase was activated by low concentrations of H(2)O(2) (≤0.3 mM); however, this activity was downregulated by high concentrations of H(2)O(2) (>0.3 mM). Activation of high levels of melanin synthesis was induced when cells were treated with low concentrations of H(2)O(2) (0.3 mM). Further observation using an in vitro co-culture system of fluorescein (carboxyfluorescein diacetate succinimidyl ester, CFDA-SE)-labeled melanocytes and keratinocytes indicated that melanosome transfer occurred in normal human epidermal melanocytes. Fluorescence microscopy revealed increased melanosome transfer into keratinocytes treated with 0.3 mM H(2)O(2) in the co-culture compared to the control. Examination of melanosomes in the keratinocytes by flow cytometry confirmed these results. Furthermore, treatment with H(2)O(2) (0.3 mM) upregulated the expression of Rab-27A and PAR-2, significant proteins involved in melanosome transfer, according to Western blot. These results confirmed that low concentration levels of H(2)O(2) play a major role in the regulation of human pigmentation by increasing melanin synthesis and melanosome transfer. Copyright © 2012 S. Karger AG, Basel.
Hydrogen Peroxide Modifies Human Sperm Peroxiredoxins in a Dose-Dependent Manner1
O'Flaherty, Cristian; Rico de Souza, Angela
2010-01-01
Low levels of reactive oxygen species (ROS) modulate signaling pathways required for human sperm activation, but high levels impair sperm function, leading to infertility. Peroxiredoxins (PRDXs) are enzymes with a dual role as ROS scavengers and modulators of ROS-dependent signaling. The present study aimed to characterize PRDXs in human spermatozoa and possible modifications resulting from hydrogen peroxide (H2O2). We found PRDX1, PRDX4, PRDX5, and PRDX6 in both seminal plasma and spermatozoa. Using immunocytochemistry, we demonstrated that these PRDXs are differentially localized in the head, acrosome, mitochondrial sheath, and flagellum. These observations were confirmed by immunoblotting using cytosolic, Triton-soluble and -insoluble, and head and flagella sperm fractions. PRDXs are dose-dependently modified by H2O2, as seen by the formation of disulfide bridges and high-molecular-mass complexes. This first study, to our knowledge, on PRDXs in human spermatozoa indicates that PRDX1, PRDX4, PRDX5, and PRDX6 are modified when spermatozoa are challenged with H2O2. This suggests that PRDXs may protect these cells at high levels of H2O2 but could also control H2O2 levels within different cell compartments so that normal sperm activation can occur. PMID:20864641
Hantoushzadeh, Sedigheh; Sheikh, Mahdi; Javadian, Pouya; Shariat, Mamak; Amini, Elaheh; Abdollahi, Alireza; Kashanian, Maryam
2014-04-01
To assess the association of vaginal pH ≥ 5 in the absence of vaginal infection with systemic inflammation and adverse pregnancy outcome. Four-hundred sixty pregnant women completed the study, upon enrollment Vaginal pH was measured for all women, maternal and umbilical sera were obtained for determining C-reactive protein (CRP) and uric acid levels. Umbilical blood was tested for gas parameters, 1 and 5 min Apgar scores, the need for neonatal resuscitation and neonatal intensive care unit (NICU) admission were recorded. Elevated vaginal pH was significantly associated with preterm birth (odds ratio (OR), 2.23; 95% confidence interval (CI), 1.04-4.76), emergency cesarean section (OR 2.57; 95% CI 1.32-5), neonatal resuscitation in the delivery room (OR 2.85; 95% CI 1.1-7.38), elevated cord base deficit (OR 8.01; 95% CI 1.61-39.81), low cord bicarbonate (OR 4.16, 95% CI 1.33-12.92) and NICU admission (OR 2.02; 95% CI 1.12-3.66). Increased vaginal pH was also significantly associated with maternal leukocytosis, hyperuricemia and elevated CRP levels in maternal and umbilical sera. Elevated vaginal pH in the absence of current vaginal infection still constitutes a risk for adverse pregnancy outcome which is mediated by systemic inflammatory response.
Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma)
NASA Astrophysics Data System (ADS)
Mu, J.; Jin, F.; Wang, J.; Zheng, N.; Cong, Y.
2015-01-01
The potential effects of elevated CO2 level and reduced carbonate saturation state in marine environment on fishes and other non-calcified organisms are still poorly known. In present study, we investigated the effects of ocean acidification on embryogenesis and organogenesis of newly hatched larvae of marine medaka (Oryzias melastigma) after 21 d exposure of eggs to different artificially acidified seawater (pH 7.6 and 7.2, respectively), and compared with those in control group (pH 8.2). Results showed that CO2-driven seawater acidification (pH 7.6 and 7.2) had no detectable effect on hatching time, hatching rate, and heart rate of embryos. However, the deformity rate of larvae in pH 7.2 treatment was significantly higher than that in control treatment. The left and right sagitta areas did not differ significantly from each other in each treatment. However, the mean sagitta area of larvae in pH 7.6 treatment was significantly smaller than that in the control (p = 0.024). These results suggest that although marine medaka might be more tolerant of elevated CO2 than some other fishes, the effect of elevated CO2 level on the calcification of otolith is likely to be the most susceptibly physiological process of pH regulation in early life stage of marine medaka.
del Cotillo Fuente, M; Valls Matarín, J
2014-01-01
To quantify the hours of mechanical ventilation in patients with head of bed elevation≥30°. Determining compliance of cuff measurement every 6h. Descriptive longitudinal study. Measured: time head of bed elevation≥30°, <30° and reasons for non compliance, as well as cuff control every 6h. One hundred and seventy-two records of head of bed elevation and 584 of cuff pressure. Daily average head<30° for care or procedures: 2h (1h19'). The theoretical average number of hours that patients should remain at≥30° was 21h15' (3h) and actual 14h (5h) (P<.001). Registration of cuff was 76,7%. Cuffs between 20-30cmH2O were 75.9%. The 20% of cuff pressure were measured every 6h<20cmH2O and 33.7% when the interval was higher (P=.04). A third of the day patients are<30° without justification. Cuff pressure registration and percentage of therapeutic range are high. Control every 6h decreases the cuff with pressure<20cmH2O. Copyright © 2013 Elsevier España, S.L.U. y SEEIUC. All rights reserved.
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Dutta, H.
2005-05-01
High-energy ball milling of monoclinic ZrO 2-30 mol% anatase TiO 2 mixture at different durations results in the formation of m-ZrO 2-a-TiO 2 solid solution from which the nucleation of nanocrystalline cubic (c) ZrO 2 polymorphic phase sets in. Post-annealing of 12 h ball-milled sample at different elevated temperatures for 1 h results in almost complete formation of c-ZrO 2 phase. Microstructure of the unmilled, all the ball milled and annealed samples has been characterized by Rietveld's X-ray powder structure refinement method. Particle size, rms lattice strain, change in lattice parameters and phase content of individual phases have been estimated from Rietveld analysis, and are utilized to interpret the results. In course of milling, (1 1 1) of cubic lattice became parallel to ( 1bar 1 1) plane of monoclinic lattice due to the orientation effect and cubic phase may have been formed on the (0 0 1) of the m-ZrO 2-a-TiO 2 solid solution lattice. A comparative study of microstructure and phase transformation kinetics of ZrO 2-10, 20 and 30 mol% a-TiO 2 ball-milled and post-annealed samples reveals that rate of phase transformation m→c-ZrO 2 increases with increasing a-TiO 2 concentration and ∼30 mol% of nanocrystalline c-ZrO 2 phase can be obtained within 4 h of milling time in the presence of 30 mol% of a-TiO 2. The post-annealing treatment at 773, 873 and 973 K for 1 h duration each reveals that rate of c-ZrO 2 formation with increasing temperature is retarded with increasing a-TiO 2 concentration but the amount of c-ZrO 2 becomes almost equal (∼95 mol%) at 973 K. It suggests that almost fully stabilized nanocrystalline c-ZrO 2 can be formed by adding a tetravalent solute to m-ZrO 2.
Infrared spectrum of NH4+(H2O): Evidence for mode specific fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankewitz, Tobias; Lagutschenkov, Anita; Niedner-schatteburg, Gereon
2007-02-21
The gas phase infrared spectrum (3250 to 3810 cm1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by consequence spectroscopy of mass selected and isolated ions. The obtained four bands are assigned to N-H stretching modes and O-H stretching modes, respectively. The observed N-H stretching modes are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The observed O-H stretching modes are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicularmore » transitions. The K-type equidistant rotational spacings of 11.1(2) cm1 (NH4+) and 29(3) cm1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The recorded relative band intensities compare favorably with predictions of high level ab initio calculations except for the 3(H2O) band for which the observed value is about 20 times weaker than the calculated one. This long standing puzzle motivated us to examine the a 3(H2O)/1(H2O) intensity ratios from other published action spectra in other cationic complexes. These suggest that the 3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggested that the coupling of the 3(H2O) and 1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings altogether render the picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high-level electronic structure calculations at the coupled-cluster single and double with perturbative treatment of triple excitations [CCSD(T)] level of theory with large basis sets allow for the determination of an accurate binding energy and enthalpy of the NH4+(H2O) cluster. Our extrapolated values at the CCSD(T) complete basis set (CBS) limit are H(0 K) (NH4+(H2O)) = 85.40(± 0.24) kJ/mol and H(298 K) (NH4+H2O)) = 78.1(± 0.3) kJ/mol, in which double standard deviations are indicated in parenthesis. This work was supported by the Office of Basic Energy Sciences of the US Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle for the US Departmetn of Energy.« less
Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets).
Holm, N G; Oze, C; Mousis, O; Waite, J H; Guilbert-Lepoutre, A
2015-07-01
Serpentinization involves the hydrolysis and transformation of primary ferromagnesian minerals such as olivine ((Mg,Fe)2SiO4) and pyroxenes ((Mg,Fe)SiO3) to produce H2-rich fluids and a variety of secondary minerals over a wide range of environmental conditions. The continual and elevated production of H2 is capable of reducing carbon, thus initiating an inorganic pathway to produce organic compounds. The production of H2 and H2-dependent CH4 in serpentinization systems has received significant interdisciplinary interest, especially with regard to the abiotic synthesis of organic compounds and the origins and maintenance of life in Earth's lithosphere and elsewhere in the Universe. Here, serpentinization with an emphasis on the formation of H2 and CH4 are reviewed within the context of the mineralogy, temperature/pressure, and fluid/gas chemistry present in planetary environments. Whether deep in Earth's interior or in Kuiper Belt Objects in space, serpentinization is a feasible process to invoke as a means of producing astrobiologically indispensable H2 capable of reducing carbon to organic compounds.
Martins, Dorival; English, Ann M.
2014-01-01
Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848
Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms.
Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S
2006-12-21
The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H(+)(H(2)O)(7). For H(+)(H(2)O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H(+)(H(2)O)(7) [though nearly isoenergetic to the 3D structure for D(+)(D(2)O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.
Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms
NASA Astrophysics Data System (ADS)
Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S.
2006-12-01
The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)7. For H+(H2O)7 the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Møller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)7 [though nearly isoenergetic to the 3D structure for D+(D2O)7]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.
Raya, Raul R.; Varey, Peter; Oot, Rebecca A.; Dyen, Michael R.; Callaway, Todd R.; Edrington, Tom S.; Kutter, Elizabeth M.; Brabban, Andrew D.
2006-01-01
Bacteriophage CEV1 was isolated from sheep resistant to Escherichia coli O157:H7 colonization. In vitro, CEV1 efficiently infected E. coli O157:H7 grown both aerobically and anaerobically. In vivo, sheep receiving a single oral dose of CEV1 showed a 2-log-unit reduction in intestinal E. coli O157:H7 levels within 2 days compared to levels in the controls. PMID:16957272
NASA Astrophysics Data System (ADS)
Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean
2016-03-01
The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.
Schoenfeld, Joshua D; Sibenaller, Zita A; Mapuskar, Kranti A; Wagner, Brett A; Cramer-Morales, Kimberly L; Furqan, Muhammad; Sandhu, Sonia; Carlisle, Thomas L; Smith, Mark C; Abu Hejleh, Taher; Berg, Daniel J; Zhang, Jun; Keech, John; Parekh, Kalpaj R; Bhatia, Sudershan; Monga, Varun; Bodeker, Kellie L; Ahmann, Logan; Vollstedt, Sandy; Brown, Heather; Shanahan Kauffman, Erin P; Schall, Mary E; Hohl, Ray J; Clamon, Gerald H; Greenlee, Jeremy D; Howard, Matthew A; Schultz, Michael K; Smith, Brian J; Riley, Dennis P; Domann, Frederick E; Cullen, Joseph J; Buettner, Garry R; Buatti, John M; Spitz, Douglas R; Allen, Bryan G
2017-04-10
Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H 2 O 2 ; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O 2 ⋅- and H 2 O 2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H 2 O 2 . In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhu, Hong; Jia, Zhenquan; Trush, Michael A; Li, Y Robert
2016-05-01
Hydrogen peroxide (H 2 O 2 ) is a major reactive oxygen species (ROS) produced by various cellular sources, especially mitochondria. At high levels, H 2 O 2 causes oxidative stress, leading to cell injury, whereas at low concentrations, this ROS acts as an important second messenger to participate in cellular redox signaling. Detection and measurement of the levels or rates of production of cellular H 2 O 2 are instrumental in studying the biological effects of this major ROS. While a number of assays have been developed over the past decades for detecting and/or quantifying biological H 2 O 2 formation, none has been shown to be perfect. Perhaps there is no perfect assay for sensitively and accurately quantifying H 2 O 2 as well as other ROS in cells, wherein numerous potential reactants are present to interfere with the reliable measurement of the specific ROS. In this context, each assay has its own advantages and intrinsic limitations. This article describes a highly sensitive assay for real-time detection of H 2 O 2 formation in cultured cells and isolated mitochondria. This assay is based on the luminol/horseradish peroxidase-dependent chemiluminescence that is inhibitable by catalase. The article discusses the usefulness and shortcomings of this chemiluminometric assay in detecting biological H 2 O 2 formation induced by beta-lapachone redox cycling with both cells and isolated mitochondria.
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Goldman, I.; Hubickyj, O.
1986-01-01
Recent work on the evolution of the solar nebula and the subsequent formation of planets is reviewed, and the stages of star formation thought to lead to a protosun and an accompanying solar nebula are considered. Photochemical results suggest that concentrations of O2, O3, and H2CO, and the ratio of CO/CO2 in the prebiological paleoatmosphere are very sensitive to atmospheric levels of H2O and CO2 and to the flux of incident solar ultraviolet. For enhanced levels of CO2 and solar UV, surface levels of O2 may have approached the parts per billion level in the prebiological paleoatmosphere. It is suggested that 10 percent or more of the enhanced H2CO production could have been rained out of the atmosphere into the early oceans where synthesis into more complex organic molecules could have taken place. CO/CO2 values of greater than unity could have been possible for enhanced levels of solar UV flux.
Oxygen enhances phosphine toxicity for postharvest pest control.
Liu, Yong-Biao
2011-10-01
Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated phosphine fumigation are discussed.
Hydrogen peroxide measurements in recreational marine bathing waters in Southern California, USA.
Clark, Catherine D; De Bruyn, Warren J; Hirsch, Charlotte M; Jakubowski, Scott D
2010-04-01
Hydrogen peroxide (H(2)O(2)) was measured in the surf zone at 13 bathing beaches in Southern California, USA. Summer dry season concentrations averaged 122 +/- 38 nM with beaches with tide pools having lower levels (50-90 nM). No significant differences were observed for ebb waters at a salt marsh outlet vs. a beach (179 +/- 20 vs. 163 +/- 26 nM), and between ebb and flood tides at one site (171 +/- 24 vs. 146 +/- 42 nM). H(2)O(2) levels showed little annual variation. Diel cycling was followed over short (30 min; 24 h study) and long (d) time scales, with maximum afternoon concentration = 370 nM and estimated photochemical production rate of 44 nM h(-1). There was no correlation between the absorbance coefficient at 300 nm (used as a measure of chromophoric dissolved organic matter (CDOM) levels) and H(2)O(2). H(2)O(2) concentrations measured in this study are likely sufficient to inhibit fecal indicator bacteria in marine recreational waters through indirect photoinactivation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Mailloux, Ryan J.
2015-01-01
Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2−•/H2O2 production. Both ATP and O2−•/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2−• is generated by singlet electron reduction of di-oxygen (O2). O2−• is then rapidly dismutated by superoxide dismutase (SOD) producing H2O2. O2−•/H2O2 were once viewed as unfortunately by-products of aerobic respiration. This characterization is fitting considering over production of O2−•/H2O2 by mitochondria is associated with range of pathological conditions and aging. However, O2−•/H2O2 are only dangerous in large quantities. If produced in a controlled fashion and maintained at a low concentration, cells can benefit greatly from the redox properties of O2−•/H2O2. Indeed, low rates of O2−•/H2O2 production are required for intrinsic mitochondrial signaling (e.g. modulation of mitochondrial processes) and communication with the rest of the cell. O2−•/H2O2 levels are kept in check by anti-oxidant defense systems that sequester O2−•/H2O2 with extreme efficiency. Given the importance of O2−•/H2O2 in cellular function, it is imperative to consider how mitochondria produce O2−•/H2O2 and how O2−•/H2O2 genesis is regulated in conjunction with fluctuations in nutritional and redox states. Here, I discuss the fundamentals of electron transfer reactions in mitochondria and emerging knowledge on the 11 potential sources of mitochondrial O2−•/H2O2 in tandem with their significance in contributing to overall O2−•/H2O2 emission in health and disease. The potential for classifying these different sites in isopotential groups, which is essentially defined by the redox properties of electron donator involved in O2−•/H2O2 production, as originally suggested by Brand and colleagues is also surveyed in detail. In addition, redox signaling mechanisms that control O2−•/H2O2 genesis from these sites are discussed. Finally, the current methodologies utilized for measuring O2−•/H2O2 in isolated mitochondria, cell culture and in vivo are reviewed. PMID:25744690
Davidoff, R A; Hackman, J C; Holohean, A M; Vega, J L; Zhang, D X
1988-01-01
1. Changes in extracellular K+ activity were measured with ion-selective microelectrodes in the grey matter of the isolated hemisected frog spinal cord. The magnitude of the elevation of [K+]o (delta[K+]o) produced by repetitive stimulation (25 Hz, 10 s) of afferent fibres in the sciatic nerve was monotonically related to the strength of the electrical stimuli applied to the sciatic nerve. Repetitive stimulation of the largest diameter A alpha and A beta fibres, which were found histologically to comprise only 11% of the afferent axons in the dorsal root, elevated [K+]o to approximately 60% of the maximum level seen when all afferent fibres were stimulated. 2. Addition of Mg2+ (20 mM) to Ringer solution devoid of Mg2+ reduced delta[K+]o by over 85% suggesting that about 15% of delta[K+]o results from action potentials in presynaptic primary afferents. When 20 mM-Mg2+ was added to spinal cords bathed in Ringer solution containing a physiological (i.e. 1.0 mM) concentration of Mg2+, delta[K+]o was reduced by ca. 65-75% indicating that in spinal cords bathed in medium containing 'physiological' concentrations of Mg2+ about 25-35% of the K+ is released from primary afferent fibres. 3. Application of excitatory amino acids and agonists increased [K+]o with the following potency pattern: quisqualate greater than kainate greater than NMDA (N-methyl-D-aspartate) greater than glutamate greater than aspartate. 4. D(-)-2-Amino-5-phosphonovalerate (APV), an NMDA antagonist, reduced [K+]o by only about 50%, but kynurenate, an NMDA and non-NMDA antagonist, reduced [K+]o by approximately 85%; i.e. the same levels observed when synaptic transmission was blocked with 20 mM-Mg2+. These findings support the idea that synaptic release of excitatory amino acids such as L-glutamate and/or L-aspartate and subsequent activation of specific receptors by these putative transmitters are necessary for the postsynaptic component of delta[K+]o. 5. Addition of tachykinins elevated [K+]o but the effect appeared to require the participation of excitatory amino acids because it was blocked by APV and by kynurenate. 6. The finding that tetrodotoxin substantially reduced the ability of excitatory amino acid agonists and tachykinins to elevate [K+]o suggests that discharges in interneurones as a result of excitatory amino acid receptor activation are responsible for the postsynaptic component of delta[K+]o. PMID:3261795
Davidoff, R A; Hackman, J C; Holohean, A M; Vega, J L; Zhang, D X
1988-03-01
1. Changes in extracellular K+ activity were measured with ion-selective microelectrodes in the grey matter of the isolated hemisected frog spinal cord. The magnitude of the elevation of [K+]o (delta[K+]o) produced by repetitive stimulation (25 Hz, 10 s) of afferent fibres in the sciatic nerve was monotonically related to the strength of the electrical stimuli applied to the sciatic nerve. Repetitive stimulation of the largest diameter A alpha and A beta fibres, which were found histologically to comprise only 11% of the afferent axons in the dorsal root, elevated [K+]o to approximately 60% of the maximum level seen when all afferent fibres were stimulated. 2. Addition of Mg2+ (20 mM) to Ringer solution devoid of Mg2+ reduced delta[K+]o by over 85% suggesting that about 15% of delta[K+]o results from action potentials in presynaptic primary afferents. When 20 mM-Mg2+ was added to spinal cords bathed in Ringer solution containing a physiological (i.e. 1.0 mM) concentration of Mg2+, delta[K+]o was reduced by ca. 65-75% indicating that in spinal cords bathed in medium containing 'physiological' concentrations of Mg2+ about 25-35% of the K+ is released from primary afferent fibres. 3. Application of excitatory amino acids and agonists increased [K+]o with the following potency pattern: quisqualate greater than kainate greater than NMDA (N-methyl-D-aspartate) greater than glutamate greater than aspartate. 4. D(-)-2-Amino-5-phosphonovalerate (APV), an NMDA antagonist, reduced [K+]o by only about 50%, but kynurenate, an NMDA and non-NMDA antagonist, reduced [K+]o by approximately 85%; i.e. the same levels observed when synaptic transmission was blocked with 20 mM-Mg2+. These findings support the idea that synaptic release of excitatory amino acids such as L-glutamate and/or L-aspartate and subsequent activation of specific receptors by these putative transmitters are necessary for the postsynaptic component of delta[K+]o. 5. Addition of tachykinins elevated [K+]o but the effect appeared to require the participation of excitatory amino acids because it was blocked by APV and by kynurenate. 6. The finding that tetrodotoxin substantially reduced the ability of excitatory amino acid agonists and tachykinins to elevate [K+]o suggests that discharges in interneurones as a result of excitatory amino acid receptor activation are responsible for the postsynaptic component of delta[K+]o.
Cheng, Xingqun; Redanz, Sylvio; Cullin, Nyssa; Zhou, Xuedong; Xu, Xin; Joshi, Vrushali; Koley, Dipankar; Merritt, Justin; Kreth, Jens
2018-01-15
Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H 2 O 2 , which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H 2 O 2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H 2 O 2 production by S. sanguinis and S. gordonii S. sanguinis H 2 O 2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H 2 O 2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H 2 O 2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H 2 O 2 IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H 2 O 2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival, while others maintain their H 2 O 2 production at a constant level. The differential control of H 2 O 2 production provides important insights into the role of environmental conditions for growth competition of the oral flora. Copyright © 2018 American Society for Microbiology.
Kaul, D K; Koshkaryev, A; Artmann, G; Barshtein, G; Yedgar, S
2008-10-01
To explore the contribution of red blood cell (RBC) deformability and interaction with endothelial cells (ECs) to circulatory disorders, these RBC properties were modified by treatment with hydrogen peroxide (H(2)O(2)), and their effects on vascular resistance were monitored following their infusion into rat mesocecum vasculature. Treatment with 0.5 mM H(2)O(2) increased RBC/EC adherence without significant alteration of RBC deformability. At 5.0 mM H(2)O(2), RBC deformability was considerably reduced, inducing a threefold increase in the number of undeformable cells, whereas RBC/EC adherence was not further affected by the increased H(2)O(2) concentration. This enabled the selective manipulation of RBC adherence and deformability and the testing of their differential effect on vascular resistance. Perfusion of RBCs with enhanced adherence and unchanged deformability (treatment with 0.5 mM H(2)O(2)) increased vascular resistance by about 35% compared with untreated control RBCs. Perfusion of 5.0 mM H(2)O(2)-treated RBCs, with reduced deformability (without additional increase of adherence), further increased vascular resistance by about 60% compared with untreated control RBCs. These results demonstrate the specific effects of elevated adherence and reduced deformability of oxidized RBCs on vascular resistance. These effects can be additive, depending on the oxidation conditions. The oxidation-induced changes applied in this study are moderate compared with those observed in RBCs in pathological states. Yet, they caused a considerable increase in vascular resistance, thus demonstrating the potency of RBC/EC adherence and RBC deformability in determining resistance to blood flow in vivo.
Shojaee, Majid; Sabzghabaei, Anita; Alimohammadi, Hossein; Derakhshanfar, Hojjat; Amini, Afshin; Esmailzadeh, Bahareh
2017-01-01
Finding the probable governing pattern of PEEP and CVP changes is an area of interest for in-charge physicians and researchers. Therefore, the present study was designed with the aim of evaluating the relationship between the mentioned pressures. In this quasi-experimental study, patients under mechanical ventilation were evaluated with the aim of assessing the effect of PEEP change on CVP. Non-trauma patients, over 18 years of age, who were under mechanical ventilation and had stable hemodynamics, with inserted CV line were entered. After gathering demographic data, patients underwent 0, 5, and 10 cmH 2 O PEEPs and the respective CVPs of the mentioned points were recorded. The relationship of CVP and PEEP in different cut points were measured using SPSS 21.0 statistical software. 60 patients with the mean age of 73.95 ± 11.58 years were evaluated (68.3% male). The most frequent cause of ICU admission was sepsis with 45.0%. 5 cmH 2 O increase in PEEP led to 2.47 ± 1.53 mean difference in CVP level. If the PEEP baseline is 0 at the time of 5 cmH 2 O increase, it leads to a higher raise in CVP compared to when the baseline is 5 cmH 2 O (2.47 ± 1.53 vs. 1.57 ± 1.07; p = 0.039). The relationship between CVP and 5 cmH 2 O (p = 0.279), and 10 cmH 2 O (p = 0.292) PEEP changes were not dependent on the baseline level of CVP. The findings of this study revealed the direct relationship between PEEP and CVP. Approximately, a 5 cmH 2 O increase in PEEP will be associated with about 2.5 cmH 2 O raise in CVP. When applying a 5 cmH 2 O PEEP increase, if the baseline PEEP is 0, it leads to a significantly higher raise in CVP compared to when it is 5 cmH 2 O (2.5 vs. 1.6). It seems that sex, history of cardiac failure, baseline CVP level, and hypertension do not have a significant effect in this regard.
Hansen, Bjørn Henrik; Hallmann, Anna; Altin, Dag; Jenssen, Bjørn Munro; Ciesielski, Tomasz M
2017-01-01
Use of hydrogen peroxide (H 2 O 2 ) for removal of salmon lice in the aquaculture industry has created concern that non-target organisms might be affected during treatment scenarios. The aim of the present study was to examine the potential for H 2 O 2 to produce oxidative stress and reduce survival in one of the most abundant zooplankton species in Norwegian coastal areas, the copepod Calanus finmarchicus. Copepods were subjected to two 96-hr tests: (1) acute toxicity test where mortality was determined and (2) treated copepods were exposed to concentrations below the No Observed Effect Concentration (0.75 mg/L) H 2 O 2 and analyzed for antioxidant enzyme activities, as well as levels of glutathione (GSH) and malondialdehyde (MDA). Compared to available and comparable LC 50 values from the literature, our results suggest that C. finmarchicus is highly sensitive to H 2 O 2 . However, 96-hr exposure of C. finmarchicus to 0.75 mg H 2 O 2 /L did not significantly affect the antioxidant systems even though the concentration is just below the level where mortality is expected. Data suggest that aqueous H 2 O 2 exposure did not cause cellular accumulation with associated oxidative stress, but rather produced acute effects on copepod surface (carapace). Further investigation is required to ensure that aqueous exposure during H 2 O 2 treatment in salmon fish farms does not exert adverse effects on local non-target crustacean species and populations. In particular, studies on copepod developmental stages with a more permeable carapace are warranted.
2009-09-10
Calibration Tool(s) Surface Temperature ~1250oC Furnace, R-type TC & IR Gas Temperature < 1800oC R-type TC Gas Velocity ~ Mach 0.5 XS -4 High Speed...Camera Equivalence Ratio ~ 0.9 HVOFTM Flow Controller Gas Composition H 2 O, O 2 ,CO 2 , CO, NOx Testo XL 350 Gas Analyzer Mechanical Loading Fatigue...unavailability, however, gas velocity was measured using the X-StreamTM XS -4 High Speed Camera. The range of our interest was the velocity in the upstream of a
Zhang, Jing-Yi; Guo, Ying; Si, Jin-Ping; Sun, Xiao-Bo; Sun, Gui-Bo; Liu, Jing-Jing
2017-11-01
Dendrobium officinale is one valuable traditional Chinese medicine, which has skyscraping medicinal value. Polysaccharide is the main active ingredient in D. officinale; its antioxidant activity is a hot research topic nowadays. Oxidative stress plays an important role in the pathological progress of a variety of cardiovascular disease, as one of key factors of cardiomyocyte apoptosis. This research adopts a model of H 2 O 2 induction-H9c2 cardiomyocytes apoptosis, aiming to study the effect of Dendrobium officinale Polysaccharide (DOP-GY) for cardiomyocyte apoptosis caused by oxidative stress and its possible mechanism. Our results showed that pretreatment of DOP-GY (low dose: 6.25μg/mL, medium dose: 12.5μg/mL, high dose: 25μg/mL) followed by a 2h incubation with 200μM H 2 O 2 elevated the survival rate, cutted the LDH leakage, reduced lipid peroxidation damage, improved the activity of the endogenous antioxidant enzymes. In addition, the pretreatment of DOP-GY significantly inhibited the production of ROS, declined of the mitochondrial membrane potential, down-regulated pro-apoptosis protein and up-regulated anti-apoptosis protein. The protective effect was correlated with the PI3K/Akt and MAPK signal pathway. Collectively, these observations suggest that DOY-GY has the potential to exert cardioprotective effects against H 2 O 2 -induced H9c2 cardiomyocyte apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Strader, Michael Brad; Hicks, Wayne A; Kassa, Tigist; Singleton, Eileen; Soman, Jayashree; Olson, John S; Weiss, Mitchell J; Mollan, Todd L; Wilson, Michael T; Alayash, Abdu I
2014-08-08
A pathogenic V67M mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of human fetal Hb Toms River (γ67(E11)Val → Met) and β subunits of adult Hb (HbA) Bristol-Alesha (β67(E11)Val → Met) that were associated with hemolytic anemia. Using kinetic, proteomic, and crystal structural analysis, we were able to show that the Met → Asp transformation involves heme cycling through its oxoferryl state in the recombinant versions of both proteins. The conversion to Met and Asp enhanced the spontaneous autoxidation of the mutants relative to wild-type HbA and human fetal Hb, and the levels of Asp were elevated with increasing levels of hydrogen peroxide (H2O2). Using H2(18)O2, we verified incorporation of (18)O into the Asp carboxyl side chain confirming the role of H2O2 in the oxidation of the Met side chain. Under similar experimental conditions, there was no conversion to Asp at the αMet(E11) position in the corresponding HbA Evans (α62(E11)Val → Met). The crystal structures of the three recombinant Met(E11) mutants revealed similar thioether side chain orientations. However, as in the solution experiments, autoxidation of the Hb mutant crystals leads to electron density maps indicative of Asp(E11) formation in β subunits but not in α subunits. This novel post-translational modification highlights the nonequivalence of human Hb α, β, and γ subunits with respect to redox reactivity and may have direct implications to α/β hemoglobinopathies and design of oxidatively stable Hb-based oxygen therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Lu, Xi; Mestres, Gemma; Singh, Vijay Pal; Effati, Pedram; Poon, Jia-Fei; Engman, Lars; Karlsson Ott, Marjam
2017-01-01
Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2-induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress. PMID:28216602
Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min
2015-12-05
Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Maalouf, Marwan; Rho, Jong M
2008-11-15
Previous studies have shown that ketone bodies (KB) exert antioxidant effects in experimental models of neurological disease. In the present study, we explored the effects of the KB acetoacetate (ACA) and beta-hydroxybutyrate (BHB) on impairment of hippocampal long-term potentiation (LTP) in rats by hydrogen peroxide (H(2)O(2)) using electrophysiological, fluorescence imaging, and enzyme assay techniques. We found that: 1) a combination of ACA and BHB (1 mM each) prevented impairment of LTP by H(2)O(2) (200 microM); 2) KB significantly lowered intracellular levels of reactive oxygen species (ROS)--measured with the fluorescent indicator carboxy-H(2)DCFDA (carboxy-2',7'-dichlorodihydrofluorescein diacetate)--in CA1 pyramidal neurons exposed to H(2)O(2); 3) the effect of KB on LTP was replicated by the protein phosphatase 2A (PP2A) inhibitor fostriecin; 4) KB prevented impairment of LTP by the PP2A activator C(6) ceramide; 5) fostriecin did not prevent the increase in ROS levels in CA1 pyramidal neurons exposed to H(2)O(2), and C(6) ceramide did not increase ROS levels; 6) PP2A activity was enhanced by both H(2)O(2) and rotenone (a mitochondrial complex I inhibitor that increases endogenous superoxide production); and 7) KB inhibited PP2A activity in protein extracts from brain tissue treated with either H(2)O(2) or ceramide. We propose that oxidative impairment of hippocampal LTP is associated with PP2A activation, and that KB prevent this impairment in part by inducing PP2A inhibition through an antioxidant mechanism.
Fu, Ling; Hamzeh, Mahsa; Dodard, Sabine; Zhao, Yuan H; Sunahara, Geoffrey I
2015-05-01
This study investigated the possibility that titanium dioxide nanoparticles (nano-TiO2) toxicity in Pseudokirchneriella subcapitata involves reactive oxygen species (ROS) production, using the dichlorodihydrofluorescein (DCF) assay. Algae were exposed to nano-TiO2 under laboratory fluorescent lamps supplemented with UV irradiation for 3h, with or without a UV filter. Results showed that nano-TiO2 increased ROS production in UV-exposed cells, with or without a UV filter (LOEC values were 250 and 10mg/L, respectively). Sublethal effects of nano-TiO2 on UV pre-exposed algae were also examined. Toxicity studies indicated that exposure to nano-TiO2 agglomerates decreased algal growth following 3h pre-exposure to UV, with or without a UV filter (EC50s were 8.7 and 6.3mg/L, respectively). The present study suggests that the growth inhibitory effects of nano-TiO2 in algae occurred at concentrations lower than those that can elevate DCF fluorescence, and that ROS generation is not directly involved with the sublethal effects of nano-TiO2 in algae. Copyright © 2015 Elsevier B.V. All rights reserved.
What is the mechanism of the OSO ring formation in sulfur tetroxide (SO4(C2v)) molecule?
NASA Astrophysics Data System (ADS)
Goodarzi, Moein; Vahedpour, Morteza; Solimannejad, Mohammad
2012-06-01
The mechanism of SO2 + O2 and O + SO3(D3h) reactions have been investigated at the MP2/6-31 + G(d) and CCSD(T)/cc-pV(Q + d)Z//MP2 levels on the triplet and singlet PESs. Although, no stable collision complexes have been found for the SO2 + O2(3∑g-), O(3P) + SO3(D3h) and O(1D) + SO3(D3h) reactions, 1IN(O2S-O2) has been considered on the singlet PES for the SO2 + O2(1Δg) reaction. The results show that there are no favorable paths for the OSO ring formation of SO4(C2v) in the atmospheric reactions of the SO2 + O2(3∑g-), SO2 + O2(1Δg) and O(3P) + SO3(D3h) while, the O(1D) + SO3(D3h) reaction can be suitable for the SO4(C2v) formation on the singlet PES.
Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying
2012-04-01
During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Moreira, Nuno F F; Narciso-da-Rocha, Carlos; Polo-López, M Inmaculada; Pastrana-Martínez, Luisa M; Faria, Joaquim L; Manaia, Célia M; Fernández-Ibáñez, Pilar; Nunes, Olga C; Silva, Adrián M T
2018-05-15
Solar-driven advanced oxidation processes were studied in a pilot-scale photoreactor, as tertiary treatments of effluents from an urban wastewater treatment plant. Solar-H 2 O 2 , heterogeneous photocatalysis (with and/or without the addition of H 2 O 2 and employing three different photocatalysts) and the photo-Fenton process were investigated. Chemical (sulfamethoxazole, carbamazepine, and diclofenac) and biological contaminants (faecal contamination indicators, their antibiotic resistant counterparts, 16S rRNA and antibiotic resistance genes), as well as the whole bacterial community, were characterized. Heterogeneous photocatalysis using TiO 2 -P25 and assisted with H 2 O 2 (P25/H 2 O 2 ) was the most efficient process on the degradation of the chemical organic micropollutants, attaining levels below the limits of quantification in less than 4 h of treatment (corresponding to Q UV < 40 kJ L -1 ). This performance was followed by the same process without H 2 O 2 , using TiO 2 -P25 or a composite material based on graphene oxide and TiO 2 . Regarding the biological indicators, total faecal coliforms and enterococci and their antibiotic resistant (tetracycline and ciprofloxacin) counterparts were reduced to values close, or beneath, the detection limit (1 CFU 100 mL -1 ) for all treatments employing H 2 O 2 , even upon storage of the treated wastewater for 3-days. Moreover, P25/H 2 O 2 and solar-H 2 O 2 were the most efficient processes in the reduction of the abundance (gene copy number per volume of wastewater) of the analysed genes. However, this reduction was transient for 16S rRNA, intI1 and sul1 genes, since after 3-days storage of the treated wastewater their abundance increased to values close to pre-treatment levels. Similar behaviour was observed for the genes qnrS (using TiO 2 -P25), bla CTX-M and bla TEM (using TiO 2 -P25 and TiO 2 -P25/H 2 O 2 ). Interestingly, higher proportions of sequence reads affiliated to the phylum Proteobacteria (Beta- and Gammaproteobacteria) were found after 3-days storage of treated wastewater than before its treatment. Members of the genera Pseudomonas, Rheinheimera and Methylotenera were among those with overgrowth. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hung, Cheng-Chun; Lin, Yow-Jon
2018-01-01
The effect of H2O2 treatment on the surface properties of SiO2 is studied. H2O2 treatment leads to the formation of Si(sbnd OH)x at the SiO2 surface that serves to reduce the number of trap states, inducing the shift of the Fermi level toward the conduction band minimum. H2O2 treatment also leads to a noticeable reduction in the value of the SiO2 capacitance per unit area. The effect of SiO2 layers with H2O2 treatment on the behavior of carrier transports for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. Experimental identification confirms that the shift of the threshold voltage towards negative gate-source voltages is due to the reduced number of trap states in SiO2 near the pentacene/SiO2 interface. The existence of a hydrogenated layer between pentacene and SiO2 leads to a change in the pentacene-SiO2 interaction, increasing the value of the carrier mobility.
Garvin, Jeffrey L.
2014-01-01
Luminal flow stimulates Na reabsorption along the nephron and activates protein kinase C (PKC) which enhances endogenous superoxide (O2−) production by thick ascending limbs (TALs). Exogenously-added O2− augments TAL Na reabsorption, a process also dependent on PKC. Luminal Na/H exchange (NHE) mediates NaHCO3 reabsorption. However, whether flow-stimulated, endogenously-produced O2− enhances luminal NHE activity and the signaling pathway involved are unclear. We hypothesized that flow-induced production of endogenous O2− stimulates luminal NHE activity via PKC in TALs. Intracellular pH recovery was measured as an indicator of NHE activity in isolated, perfused rat TALs. Increasing luminal flow from 5 to 20 nl/min enhanced total NHE activity from 0.104 ± 0.031 to 0.167 ± 0.036 pH U/min, 81%. The O2− scavenger tempol decreased total NHE activity by 0.066 ± 0.011 pH U/min at 20 nl/min but had no significant effect at 5 nl/min. With the NHE inhibitor EIPA in the bath to block basolateral NHE, tempol reduced flow-enhanced luminal NHE activity by 0.029 ± 0.010 pH U/min, 30%. When experiments were repeated with staurosporine, a nonselective PKC inhibitor, tempol had no effect. Because PKC could mediate both induction of O2− by flow and the effect of O2− on luminal NHE activity, we used hypoxanthine/xanthine oxidase to elevate O2−. Hypoxanthine/xanthine oxidase increased luminal NHE activity by 0.099 ± 0.020 pH U/min, 137%. Staurosporine and the PKCα/β1-specific inhibitor Gö6976 blunted this effect. We conclude that flow-induced O2− stimulates luminal NHE activity in TALs via PKCα/β1. This accounts for part of flow-stimulated bicarbonate reabsorption by TALs. PMID:25080525
Ha, Yejin; Myung, Dongshin; Shim, Jun Ho; Kim, Myung Hwa; Lee, Youngmi
2013-09-21
In this study, a dual microsensing electrochemical probe for measuring oxygen (O2) and pH levels was developed based on a dual recessed Pt disk electrode (each disk diameter, 10 μm) with the use of two Ag/AgCl reference electrodes (one for each disk of the dual electrode). One of the recessed Pt disks of the dual electrode was electrodeposited with a porous Pt layer and then coated with a hydrophobic photocured polymer (partially fluorinated epoxy diacrylate, abbreviated as FED). The Pt-FED covered disk was used as an amperometric O2 sensor and exhibited a linear current increase that was proportional to the PO2 level (partial O2 pressure) with high sensitivity (168.4 ± 33.8 pA mmHg(-1)) and fast response time (t90% = 0.17 ± 0.05 s). The other recessed Pt disk was electrodeposited with an IrO2 layer. The potential between the IrO2 deposited electrode and the Ag/AgCl reference electrode produced a reliable Nernstian response to pH changes (58.3 ± 1.5 mV pH(-1)) with a t90% of 0.43 ± 0.09 s. The sensor displayed high stability in the in vitro organ tissue measurements for at least 2.5 h. By using the developed dual O2/pH microsensor as a probe tip for scanning electrochemical microscopy, the two-dimensional images of the location-dependent PO2 and pH levels were simultaneously acquired and could be used to assess the surface of a rat kidney tissue slice. When compared to the corresponding medullary levels, both PO2 and pH were observed to be higher in the cortex area, while the modest level gradient was observed near the cortex-medulla border. This finding suggests that there is a direct relationship between the tissue O2 supply/consumption and pH, which is mainly determined by metabolite, such as CO2, production.
Peng, Ying-Jie; Makarenko, Vladislav V.; Nanduri, Jayasri; Vasavda, Chirag; Raghuraman, Gayatri; Yuan, Guoxiang; Gadalla, Moataz M.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.
2014-01-01
Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Humans and animals exhibit substantial interindividual variation in this chemosensory reflex response, with profound effects on cardiorespiratory functions. However, the underlying mechanisms are not known. Here, we report that inherent variations in carotid body O2 sensing by carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling contribute to reflex variation in three genetically distinct rat strains. Compared with Sprague-Dawley (SD) rats, Brown-Norway (BN) rats exhibit impaired carotid body O2 sensing and develop pulmonary edema as a consequence of poor ventilatory adaptation to hypobaric hypoxia. Spontaneous Hypertensive (SH) rat carotid bodies display inherent hypersensitivity to hypoxia and develop hypertension. BN rat carotid bodies have naturally higher CO and lower H2S levels than SD rat, whereas SH carotid bodies have reduced CO and greater H2S generation. Higher CO levels in BN rats were associated with higher substrate affinity of the enzyme heme oxygenase 2, whereas SH rats present lower substrate affinity and, thus, reduced CO generation. Reducing CO levels in BN rat carotid bodies increased H2S generation, restoring O2 sensing and preventing hypoxia-induced pulmonary edema. Increasing CO levels in SH carotid bodies reduced H2S generation, preventing hypersensitivity to hypoxia and controlling hypertension in SH rats. PMID:24395806
Kusakisako, Kodai; Galay, Remil Linggatong; Umemiya-Shirafuji, Rika; Hernandez, Emmanuel Pacia; Maeda, Hiroki; Talactac, Melbourne Rio; Tsuji, Naotoshi; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya
2016-08-19
Ticks are obligate hematophagous arthropods that feed on vertebrate blood that contains iron. Ticks also concentrate host blood with iron; this concentration of the blood leads to high levels of iron in ticks. The host-derived iron reacts with oxygen in the tick body and this may generate high levels of reactive oxygen species, including hydrogen peroxide (H2O2). High levels of H2O2 cause oxidative stress in organisms and therefore, antioxidant responses are necessary to regulate H2O2. Here, we focused on peroxiredoxin (Prx), an H2O2-scavenging enzyme in the hard tick Haemaphysalis longicornis. The mRNA and protein expression profiles of 2-Cys peroxiredoxin (HlPrx2) in H. longicornis were investigated in whole ticks and internal organs, and developmental stages, using real-time PCR and Western blot analysis during blood-feeding. The localization of HlPrx2 proteins in tick tissues was also observed by immunostaining. Moreover, knockdown experiments of HlPrx2 were performed using RNA interference to evaluate its function in ticks. Real-time PCR showed that HlPrx2 gene expression in whole ticks and internal organs was significantly upregulated by blood-feeding. However, protein expression, except in the midgut, was constant throughout blood-feeding. Knockdown of the HlPrx2 gene caused significant differences in the engorged body weight, egg weight and hatching rate for larvae as compared to the control group. Finally, detection of H2O2 after knockdown of HlPrxs in ticks showed that the concentration of H2O2 significantly increased before and after blood-feeding. Therefore, HlPrx2 can be considered important for successful blood-feeding and reproduction through the regulation of H2O2 concentrations in ticks before and after blood-feeding. This study contributes to the search for a candidate target for tick control and further understanding of the tick's oxidative stress coping mechanism during blood-feeding.
Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; ...
2013-03-12
The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H 2/CO/O 2/N 2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistrymore » for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H 2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H 2 + HO˙ 2 ↔ H˙+H 2O 2 followed by H 2O 2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H 2+HO˙ 2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values. As a result, a rate constant for this reaction is recommended based on available literature values and on our mechanism validation.« less
Lee, Yunho; Gerrity, Daniel; Lee, Minju; Gamage, Sujanie; Pisarenko, Aleksey; Trenholm, Rebecca A; Canonica, Silvio; Snyder, Shane A; von Gunten, Urs
2016-04-05
UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.
Operational Test Instrumentation Guide.
1981-11-01
Water Vapor 1 oz/100 in2/day +0.02 gm/100 Transmission (25 gm/645 cm2 /day) in2/day H-12 Parameter Range Accuracy Corrosion Weight Loss Unlimited +10 mg...Abrasion Resistance Unlimited ( weight loss ) +10 mg Metallographic Microscope up to 1,500X Magnification Examination Rockwell Hardness Any +1 point...S-band conversion is possible in approximately 30 days. b Limitations. (o Large data errors at elevation angles below 3 degrees. A-21 o Loss of
Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S
2011-10-28
Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 < x < 0.32) were prepared by careful control of an ion exchange process. The water content (0.23 > n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011
Supplemental Carbon Dioxide Stabilizes the Upper Airway in Volunteers Anesthetized with Propofol.
Ruscic, Katarina Jennifer; Bøgh Stokholm, Janne; Patlak, Johann; Deng, Hao; Simons, Jeroen Cedric Peter; Houle, Timothy; Peters, Jürgen; Eikermann, Matthias
2018-05-10
Propofol impairs upper airway dilator muscle tone and increases upper airway collapsibility. Preclinical studies show that carbon dioxide decreases propofol-mediated respiratory depression. We studied whether elevation of end-tidal carbon dioxide (PETCO2) via carbon dioxide insufflation reverses the airway collapsibility (primary hypothesis) and impaired genioglossus muscle electromyogram that accompany propofol anesthesia. We present a prespecified, secondary analysis of previously published experiments in 12 volunteers breathing via a high-flow respiratory circuit used to control upper airway pressure under propofol anesthesia at two levels, with the deep level titrated to suppression of motor response. Ventilation, mask pressure, negative pharyngeal pressure, upper airway closing pressure, genioglossus electromyogram, bispectral index, and change in end-expiratory lung volume were measured as a function of elevation of PETCO2 above baseline and depth of propofol anesthesia. PETCO2 augmentation dose-dependently lowered upper airway closing pressure with a decrease of 3.1 cm H2O (95% CI, 2.2 to 3.9; P < 0.001) under deep anesthesia, indicating improved upper airway stability. In parallel, the phasic genioglossus electromyogram increased by 28% (23 to 34; P < 0.001). We found that genioglossus electromyogram activity was a significant modifier of the effect of PETCO2 elevation on closing pressure (P = 0.005 for interaction term). Upper airway collapsibility induced by propofol anesthesia can be reversed in a dose-dependent manner by insufflation of supplemental carbon dioxide. This effect is at least partly mediated by increased genioglossus muscle activity.
Shakoor, Muhammad Bilal; Ali, Shafaqat; Hameed, Amjad; Farid, Mujahid; Hussain, Sabir; Yasmeen, Tahira; Najeeb, Ullah; Bharwana, Saima Aslam; Abbasi, Ghulam Hasan
2014-11-01
Phytoextraction is an environmentally friendly and a cost-effective strategy for remediation of heavy metal contaminated soils. However, lower bioavailability of some of the metals in polluted environments e.g. lead (Pb) is a major constraint of phytoextraction process that could be overcome by applying organic chelators. We conducted a glasshouse experiment to evaluate the role of citric acid (CA) in enhancing Pb phytoextraction. Brassica napus L. seedlings were grown in hydroponic media and exposed to various treatments of Pb (50 and 100 μM) as alone or in combination with CA (2.5mM) for six weeks. Pb-induced damage in B. napus toxicity was evident from elevated levels of malondialdehyde (MDA) and H2O2 that significantly inhibited plant growth, biomass accumulation, leaf chlorophyll contents and gas exchange parameters. Alternatively, CA application to Pb-stressed B. napus plants arrested lipid membrane damage by limiting MDA and H2O2 production and by improving antioxidant enzyme activities. In addition, CA significantly increased the Pb accumulation in B. napus plants. The study concludes that CA has a potential to improve Pb phytoextraction without damaging plant growth. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lone , Abdul G.; Atci, Erhan; Renslow, Ryan S.
A partial-thickness epidermal explant model was colonized with GFP-expressing S. aureus and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. Oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using MSE mass spectrometry. We found that S. aureus biofilm grows predominantly in sebum-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2-3 fold) inmore » these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after four days of culture. The colonized explants released significantly (P< 0.01) more anti-oxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentration found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in media from infected explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.« less
Elevated Serum Liver Enzymes in Patients with Obstructive Sleep Apnea-hypopnea Syndrome.
Li, Jie; Zhang, Yan-Lin; Chen, Rui; Wang, Yi; Xiong, Kang-Ping; Huang, Jun-Ying; Han, Fei; Liu, Chun-Feng
2015-11-20
Obstructive sleep apnea-hypopnea syndrome (OSAS) is associated with elevated liver enzymes and fatty liver. The purpose of this study was to measure serum liver enzyme levels in patients evaluated by polysomnography (PSG) and the factors associated with liver injury in OSAS patients. All patients referred to PSG for evaluation of sleep apnea symptoms between June 2011 and November 2014 were included in this study. Demographic data and PSG parameters were recorded. Serum alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase levels were systematically measured. OSAS patients were divided into mild, moderate, and severe groups according to the apnea-hypopnea index (AHI) values of 5-14 events/h, 15-29 events/h, and ≥30 events/h. A total of 540 patients were enrolled in this study; among these patients, 386 were male. Elevated liver enzymes were present in 42.3% of OSAS patients (32.4% in mild/moderate group; 51.0% in severe group) and 28.1% patients without OSAS. Patients with OSAS had higher body mass index (BMI) (P < 0.01). In the bivariate correlation, the liver enzymes level was negatively correlated with age and the lowest arterial oxygen saturation (SaO 2 ), and was positively correlated with BMI, oxygen desaturation index, percent of total time with oxygen saturation level <90% (TS90%), AHI, total cholesterol (TC), and triglyceride (TG). In logistic regression analysis, Age, BMI, TS90%, TC, and TG were included in the regression equation. Our data suggest that OSAS is a risk factor for elevated liver enzymes. The severity of OSAS is correlated with liver enzyme levels; we hypothesize that hypoxia is one of main causes of liver damage in patients with OSAS.
Elevated Serum Liver Enzymes in Patients with Obstructive Sleep Apnea-hypopnea Syndrome
Li, Jie; Zhang, Yan-Lin; Chen, Rui; Wang, Yi; Xiong, Kang-Ping; Huang, Jun-Ying; Han, Fei; Liu, Chun-Feng
2015-01-01
Background: Obstructive sleep apnea-hypopnea syndrome (OSAS) is associated with elevated liver enzymes and fatty liver. The purpose of this study was to measure serum liver enzyme levels in patients evaluated by polysomnography (PSG) and the factors associated with liver injury in OSAS patients. Methods: All patients referred to PSG for evaluation of sleep apnea symptoms between June 2011 and November 2014 were included in this study. Demographic data and PSG parameters were recorded. Serum alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase levels were systematically measured. OSAS patients were divided into mild, moderate, and severe groups according to the apnea-hypopnea index (AHI) values of 5–14 events/h, 15–29 events/h, and ≥30 events/h. Results: A total of 540 patients were enrolled in this study; among these patients, 386 were male. Elevated liver enzymes were present in 42.3% of OSAS patients (32.4% in mild/moderate group; 51.0% in severe group) and 28.1% patients without OSAS. Patients with OSAS had higher body mass index (BMI) (P < 0.01). In the bivariate correlation, the liver enzymes level was negatively correlated with age and the lowest arterial oxygen saturation (SaO2), and was positively correlated with BMI, oxygen desaturation index, percent of total time with oxygen saturation level <90% (TS90%), AHI, total cholesterol (TC), and triglyceride (TG). In logistic regression analysis, Age, BMI, TS90%, TC, and TG were included in the regression equation. Conclusions: Our data suggest that OSAS is a risk factor for elevated liver enzymes. The severity of OSAS is correlated with liver enzyme levels; we hypothesize that hypoxia is one of main causes of liver damage in patients with OSAS. PMID:26608975
Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, L.J.; Goeden, H.; Roth, S.H.
1990-09-01
Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and inmore » the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.« less
Saito, Akiko; Nakazato, Risa; Suhara, Yoshitomo; Shibata, Masahiro; Fukui, Toshiki; Ishii, Takeshi; Asanuma, Toshimichi; Mochizuki, Kazuo; Nakayama, Tsutomu; Osakabe, Naomi
2016-06-01
Theaflavins are polyphenols found in black tea; their physiological activities were not well investigated. The present study in rats evaluated the influence of theaflavins on circulation. In addition, an intervention pilot study examined the influence of a theaflavin drink on postprandial hemodynamic change. In an animal study, a single oral dose of theaflavin rich fraction (TF, 10mg/kg) caused transient increase in mean blood pressure (MBP) and heart rate (HR). TF also elevated cremastric blood flow significantly, and the magnitude of this effect was in this order: theaflavin 3'-O-gallate (TF2B) >theaflavin-3-O-gallate (TF2A) >theaflavin (TF1)=theaflavin-3, 3'-di-O-gallate (TF3). In addition, these hemodynamic alterations in mammals totally disappeared when pretreated with carvedilol as an adrenaline blocker. We also treated 10-mg/kg/day TF to the rats for 2 weeks. At the end of the ingestion period, MBP was reduced significantly, and aortic eNOS level was elevated by the repeated ingestion of TF compared with distilled water. In the intervention trial, blood pressure of the volunteers was increased significantly 2 and 4h after ingestion of the TF drink (45mg/drink) compared with before treatment. A significant difference was observed in FMD between the placebo and theaflavin groups 4h after ingestion. These results suggested that theaflavin has potent activity to alter hemodynamics in both murine and healthy subjects. Further studies is needed to elucidate the details; however, the results of animal study suggested that the possible involvement of sympathetic nervous system in the hemodynamic changes caused by TF. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Miller, R. A.; Kohl, F. J.; Stearns, C. A.
1977-01-01
Cooled target collection techniques were used to study the formation of volatile products when samples of Cr, Ti, IN-738, 713C, NASA-TRW VIA and B-1900 were exposed, at elevated temperatures, to oxidizing environments containing H2O(g) and NaCl(g). Samples were heated to 1050 C in one atmosphere of slowly flowing oxygen, saturated with water at 21 C, and containing about 50 ppm NaCl(g). Volatile products were detected for all materials except B-1900 and Ti. High pressure mass spectrometric sampling was used to directly identify volatile products emanating from samples of Cr and IN-738 subject to the above environments.
Crocker, George H; Toth, Balazs; Jones, James H
2013-09-01
We hypothesized that breathing hypoxic, hypercapnic, and CO-containing gases together reduces maximal aerobic capacity (Vo2max) as the sum of each gas' individual effect on Vo2max. To test this hypothesis, goats breathed combinations of inspired O2 fraction (FiO2) of 0.06-0.21 and inspired CO2 fraction of 0.00 or 0.05, with and without inspired CO that elevated carboxyhemoglobin fraction (FHbCO) to 0.02-0.45, while running on a treadmill at speeds eliciting Vo2max. Individually, hypoxia and elevated FHbCO decreased fractional Vo2max (FVo2max, fraction of a goat's Vo2max breathing air) in linear, dose-dependent manners; hypercapnia did not change Vo2max. Concomitant hypoxia and elevated FHbCO decreased Vo2max less than the individual gas effects summed, indicating their combined effects on Vo2max are attenuated, fitting the following regression: FVo2max = 4.24 FiO2 + 0.519 FHbCO - 8.22 (FiO2 × FHbCO) + 0.117, (R(2) = 0.965, P < 0.001). The FVo2max correlated highly with total cardiopulmonary O2 delivery, not peripheral diffusing capacity, and with arterial O2 concentration (CaO2), not cardiac output. Hypoxia and elevated FHbCO decreased CaO2 by different mechanisms: hypoxia decreased arterial O2 saturation (SaO2), whereas elevated FHbCO decreased O2 capacitance {concentration of hemoglobin (Hb) available to bind O2 ([Hbavail])}. When breathing hypoxic gas (FiO2 0.12), CaO2 did not change with increasing FHbCO up to 0.30 because higher SaO2 of Hbavail offset decreased [Hbavail] due to the following: 1) hyperventilation with hypoxia and/or elevated FHbCO; 2) increased Hb affinity for O2 due to both Bohr and direct carboxyhemoglobin effects; and 3) the sigmoid relationship between O2 saturation and partial pressure elevating SaO2 more with hypoxia than normoxia.
Domènech, Alba; Ayté, José; Antunes, Fernando; Hidalgo, Elena
2018-06-01
Hydrogen peroxide (H 2 O 2 ) is generated as a by-product of metabolic reactions during oxygen use by aerobic organisms, and can be toxic or participate in signaling processes. Cells, therefore, need to be able to sense and respond to H 2 O 2 in an appropriate manner. This is often accomplished through thiol switches: Cysteine residues in proteins that can act as sensors, and which are both scarce and finely tuned. Bacteria and eukaryotes use different types of such sensors-either a one-component (OxyR) or two-component (Pap1-Tpx1) redox relay, respectively. However, the biological significance of these two different signaling modes is not fully understood, and the concentrations and peroxides driving those types of redox cascades have not been determined, nor the intracellular H 2 O 2 levels linked to toxicity. Here we elucidate the characteristics, rates, and dynamic ranges of both systems. By comparing the activation of both systems in fission yeast, and applying mathematical equations to the experimental data, we estimate the toxic threshold of intracellular H 2 O 2 able to halt aerobic growth, and the temporal gradients of extracellular to intracellular peroxides. By calculating both the oxidation rates of OxyR and Tpx1 by peroxides, and their reduction rates by the cellular redoxin systems, we propose that, while Tpx1 is a sensor and an efficient H 2 O 2 scavenger because it displays fast oxidation and reduction rates, OxyR is strictly a H 2 O 2 sensor, since its reduction kinetics are significantly slower than its oxidation by peroxides, and therefore, it remains oxidized long enough to execute its transcriptional role. We also show that these two paradigmatic H 2 O 2 -sensing models are biologically similar at pre-toxic peroxide levels, but display strikingly different activation behaviors at toxic doses. Both Tpx1 and OxyR contain thiol switches, with very high reactivity towards peroxides. Nevertheless, the fast reduction of Tpx1 defines it as a scavenger, and this efficient recycling dramatically changes the Tpx1-Pap1 response to H 2 O 2 and connects H 2 O 2 sensing to the redox state of the cell. In contrast, OxyR is a true H 2 O 2 sensor but not a scavenger, being partially insulated from the cellular electron donor capacity.
Lee, Sun-Young; Baek, Seung-Youb
2008-06-01
Escherichia coli O157:H7 contaminated spinach has recently caused several outbreaks of human illness in the USA and Canada. However, to date, there has been no study demonstrating an effective way to eliminate E. coli O157:H7 in spinach. Therefore, this study was conducted to investigate the effect of chemical sanitizers alone or in combination with packaging methods such as vacuum and modified atmosphere packaging (MAP) on inactivating E. coli O157:H7 in spinach during storage time. Spinach inoculated with E. coli O157:H7 was packaged in four different methods (air, vacuum, N(2) gas, and CO(2) gas packaging) following treatment with water, 100 ppm chlorine dioxide, or 100 ppm sodium hypochlorite for 5 min at room temperature and stored at 7+/-2 degrees C. Treatment with water did not significantly reduce levels of E. coli O157:H7 in spinach. However, treatment with chlorine dioxide and sodium hypochlorite significantly decreased levels of E. coli O157:H7 by 2.6 and 1.1 log(10)CFU/g, respectively. Levels of E. coli O157:H7 in samples packaged in air following treatments grew during storage time, whereas levels were maintained in samples packaged in other packaging methods (vacuum, N(2) gas, and CO(2) gas packaging). Therefore there were significant differences (about 3-4 log) of E. coli O157:H7 populations between samples packed in air and other packaging methods following treatment with chemical sanitizers after 7 days storage. These results suggest that the combination of treatment with chlorine dioxide and packaging methods such as vacuum and MAP may be useful for improving the microbial safety of spinach against E. coli O157:H7 during storage.
Ji, G E; Park, S Y; Wong, S S; Pestka, J J
1998-02-06
Characterization of how vomitoxin (VT) and other trichothecenes affect macrophage regulatory and effector function may contribute to improved understanding of mechanisms by which these mycotoxins impact the immune system. The RAW 264.7 murine cell line was used as a macrophage model to assess effects of the VT on proliferation and the production of nitric oxide (NO), hydrogen peroxide (H2O2) and cytokines. Using the MTT cleavage assay, VT at concentrations of 50 ng/ml or higher was found to significantly decrease proliferation and viability of RAW 264.7 cells without stimulation or with stimulation by lipopolysaccharide (LPS) or interferon (IFN)-gamma. In the absence of an activation agent, VT (25-250 ng/ml) had negligible effects on the production of NO, H2O2, and cytokines. Upon activation with LPS at concentrations of 10 to 100 ng/ml, VT at 25-100 ng/ml markedly enhanced production of H2O2 but was inhibitory at 250 ng/ml. VT enhancement of H2O2 production was observed as early as 12 h after LPS stimulation. When IFN-gamma was used as the stimulant, VT (25-250 ng/ml) delayed peak H2O2 production. VT (25-250 ng/ml) also markedly decreased NO production in cells activated with LPS or IFN-gamma. Interestingly, VT superinduced TNF-alpha and IL-6 production in LPS-stimulated cells and also elevated TNF-alpha in IFN-gamma stimulated cells. These results suggest that VT can selectively and concurrently upregulate or downregulate critical functions associated with activated macrophages.
Binding of human serum proteins to titanium dioxide particles in vitro.
Zaqout, Mazen S K; Sumizawa, Tomoyuki; Igisu, Hideki; Higashi, Toshiaki; Myojo, Toshihiko
2011-01-01
To determine the capacity of human serum proteins to bind to titanium dioxide (TiO(2)) particles of different polymorphs and sizes. TiO(2) particles were mixed with diluted human serum, purified human serum albumin (HSA) or purified human serum gamma-globulin (HGG) solutions. After incubation at 37°C for 1 h, the particles were sedimented by centrifugation, and proteins in the supernatant, as well as those bound to the particles, were analyzed. The total protein concentration in the supernatant was lowered by TiO(2), whereas the albumin/globulin ratio was elevated by the particles. Incubation with TiO(2) also lowered the immunoglobulin, pre-albumin, beta2-microglobulin, ceruloplasmin and retinol-binding protein levels, but not ferritin levels, in the supernatant. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins in the supernatant, especially HGG, were observed to decrease, while those released from the particles (after adding 1% SDS and heating) increased, depending on the dose of TiO(2). Purified HGG and HSA were also bound to TiO(2), although the former appeared to have a higher affinity. All the proteins tested showed the highest binding potency to the amorphous particles (<50 nm) and the lowest to the rutile particles (<5,000 nm), while binding to anatase particles was intermediate. The affinity to the larger anatase was higher than that to smaller anatase particles in most cases. Human serum proteins, including the two major components, HSA and HGG, are bound by TiO(2) particles. The polymorph of the particles seems to be important for determining the binding capacity of the particles and it may affect distribution of the particles in the body.
Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.
Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar
2017-05-04
In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H 2 O 2 residual in the effluent of the combined UV-C/H 2 O 2 -VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOC o ) and hydrogen peroxide (H 2 O 2o ) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H 2 O 2 residual of 1.05% were TOC o of 213 mg L -1 , H 2 O 2o of 450 mg L -1 , and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H 2 O 2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H 2 O 2 , and UV-C/H 2 O 2 , were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H 2 O 2 -VUV processes. Results confirmed that an adequate combination of the UV-C/H 2 O 2 -VUV processes is essential for an optimized TOC removal and H 2 O 2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H 2 O 2 -VUV processes.
Food-grade submicrometer particles from salts prepared using ethanol-in-oil mixtures.
Paques, Jerome P; van der Linden, Erik; Sagis, Leonard M C; van Rijn, Cees J M
2012-08-29
A simple method for preparing food-grade particles in the submicrometer range of ethanol soluble salts using ethanol-in-oil (E/O) mixtures is described. Salts CaCl2·2H2O and MgCl2·6H2O were dissolved in ethanol that subsequently was mixed with a medium-chain triglyceride oil phase. It was found that type and concentration of salt have a significant influence on the miscibility of ethanol and oil phase and on the stability of E/O mixtures. The ethanol phase was evaporated from the mixture at elevated temperatures, and salt particles with dimensions in the submicrometer range (6-400 nm) remained suspended in the oil phase. It was found that the concentration of salt and volume fraction of ethanol in MCT oil have a significant influence on the size distribution of salt particles. The size of CaCl2 and MgCl2 submicrometer particles was ascertained by scanning electron microscopy and dynamic light scattering.
Eliason, Erika J; Higgs, David A; Farrell, Anthony P
2008-04-01
The present study is the first to simultaneously and continuously measure oxygen consumption (MO(2)) and gastrointestinal blood flow (q(gi)) in fish. In addition, while it is the first to compare the effects of three isoenergetic diets on q(gi) in fish, no significant differences among diets were found for postprandial MO(2), q(gi) or heart rate (f(H)) in rainbow trout, Oncorhynchus mykiss. Postprandial q(gi), f(H) and MO(2) were significantly elevated above baseline levels by 4 h. Postprandial q(gi) peaked at 136% above baseline after 11 h, f(H) peaked at 110% above baseline after 14 h and MO(2) peaked at 96% above baseline after 27 h. Moreover, postprandial MO(2) remained significantly elevated above baseline longer than q(gi) (for 41 h and 30 h, respectively), perhaps because most of the increase in MO(2) associated with feeding is due to protein handling, a process that continues following the absorption of nutrients which is thought to be the primary reason for the elevation of q(gi). In addition to the positive relationships found between postprandial MO(2) and q(gi) and between postprandial MO(2) and f(H), we discovered a novel relationship between postprandial q(gi) and f(H).
Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi
2017-10-01
The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells.
Schraufstätter, I U; Hinshaw, D B; Hyslop, P A; Spragg, R G; Cochrane, C G
1985-01-01
Exposure of target cells to a bolus of H2O2 induced cell lysis after a latent period of several hours, which was prevented only when the H2O2 was removed within the first 30 min of injury by addition of catalase. This indicated that early metabolic events take place that are important in the fate of the cell exposed to oxidants. In this study, we described two early and independent events of H2O2-induced injury in P388D1 macrophagelike tumor cells: activation of the glutathione cycle and depletion of cellular NAD. Glutathione cycle and hexose monophosphate shunt (HMPS) were activated within seconds after the addition of H2O2. High HMPS activity maintained glutathione that was largely reduced. However, when HMPS activity was inhibited--by glucose depletion or by incubation at 4 degrees C--glutathione remained in the oxidized state. Total pyridine nucleotide levels were diminished when cells were exposed to H2O2, and the breakdown product, nicotinamide, was recovered in the extracellular medium. Intracellular NAD levels fell by 80% within 20 min of exposure of cells to H2O2. The loss of NADP(H) and stimulation of the HMPS could be prevented when the glutathione cycle was inhibited by either blocking glutathione synthesis with buthionine sulfoximine (BSO) or by inhibiting glutathione reductase with (1,3-bis) 2 chlorethyl-1-nitrosourea. The loss of NAD developed independently of glutathione cycle and HMPS activity, as it also occurred in BSO-treated cells. PMID:3840176
Acute, but not chronic, leptin treatment induces acyl-CoA oxidase in C2C12 myotubes.
Ceci, Roberta; Sabatini, Stefania; Duranti, Guglielmo; Savini, Isabella; Avigliano, Luciana; Rossi, Antonello
2007-09-01
The product of the obesity gene (ob), leptin, has a well-recognized role in regulating energy homeostasis. During the period of weight maintenance, circulating leptin concentration reflects total body fat mass. On the other hand, overnutrition is accompanied by progressive hyperleptinemia. In overnourished animals, the elevation in circulating fatty acids results in increased uptake and excessive deposition of lipids within muscle cells. Consequently, triglicerydes overload seems to strongly correlate to the impairment of insulin signaling in skeletal muscle, the primary target for insulin stimulated glucose disposal. High levels of leptin in the course of fat storage may protect non-adipose tissues from lipid accumulation. Here, we aim to evaluate in vitro the relationship between leptin treatment and expression of acyl-CoA oxidase (ACOX), a peroxisomal key enzyme involved in fatty acid catabolism. We also evaluate the adaptive response of cells to a putative oxidative insult, resulting from H(2)O(2) production. The effects of increasing levels of leptin, at different times, were assessed on mouse C2C12 myotubes by semiquantitative PCR. Activation pathway was investigated by using extracellular signal-regulated kinase (ERK) and cytosolic phospholipase A(2) (cPLA(2)) inhibitors. Cellular adaptive response to oxidative stress was evaluated by measuring glutathione concentration, oxidized/reduced glutathione ratio and the main antioxidant enzymatic activities. A 1.8-fold increase in ACOX mRNA expression was evident at 20 ng/ml leptin, a dose comparable to that found in hyperleptinemic subjects. The induction was dose-dependent, with an increase of 3-fold at 100 ng/ml; the ability of leptin to stimulate ACOX mRNA reached a maximum at 20 min and was lost in myotubes continuously exposed for more than 1 h. ACOX enzymatic activity followed mRNA changes: it was doubled after 1 h treatment and remained elevated for 24 h. ERK and cPLA(2) pathway is involved, since their inhibitors abrogated the ACOX mRNA induction. Myotubes counteract the resulting oxidative insult by catalase and glutathione peroxidase activation, thus removing H(2)O(2) at the expenses of the reduced glutahione pool. The present study shows that acute, but not chronic, leptin treatment of C2C12 myotubes induces ACOX expression. Peroxisomal fatty acid oxidation may work together with mitochondrial beta-oxidation to remove excessive lipids from non-adipose tissues, during early stages of overnutrition and before development of leptin resistance.
Pourbaix diagrams for the ternary system of iron-chromium-nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beverskog, B.; Puigdomenech, I.
1999-11-01
Pourbaix diagrams (potential-pH diagrams) for the ternary system of Fe-Cr-Ni at 25 C to 300 C were calculated. Extrapolation of thermochemical data to elevated temperatures was performed with the revised model of Helgeson-Kirkham-Flowers, which also allows uncharged aqueous complexes to be handled. The large stability of the bimetallic spinel oxides (trevorite [NiFe{sub 2}O{sub 4}], chromite [FeCr{sub 2}O{sub 4}], and nichromite [NiCr{sub 2}O{sub 4}]) is shown by their predominance areas on top of those for the single metal Pourbaix diagrams. NiFe{sub 2}O{sub 4} had the largest stability area of the spinels, and it covered the entire potential range for the stabilitymore » of water at intermediate pH. FeCr{sub 2}O{sub 4} had the smallest stability area and was the least stable of the bimetallic spinels. Results were discussed in connection with the different chemistries used in nuclear power reactors of the boiling water type.« less
NASA Astrophysics Data System (ADS)
Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian
2017-02-01
Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.
Lenz, Oliver; Ludwig, Marcus; Schubert, Torsten; Bürstel, Ingmar; Ganskow, Stefanie; Goris, Tobias; Schwarze, Alexander; Friedrich, Bärbel
2010-04-26
[NiFe]-hydrogenases catalyze the oxidation of H(2) to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni-Fe active site and several [Fe-S] clusters. H(2) catalysis of most [NiFe]-hydrogenases is sensitive to dioxygen. However, some bacteria contain hydrogenases that activate H(2) even in the presence of O(2). There is now compelling evidence that O(2) affects hydrogenase on three levels: 1) H(2) catalysis, 2) hydrogenase maturation, and 3) H(2)-mediated signal transduction. Herein, we summarize the genetic, biochemical, electrochemical, and spectroscopic properties related to the O(2) tolerance of hydrogenases resident in the facultative chemolithoautotroph Ralstonia eutropha H16. A focus is given to the membrane-bound [NiFe]-hydogenase, which currently represents the best-characterized member of O(2)-tolerant hydrogenases.
Jia, Jingjing; Zhang, Ting; Chi, Jieshan; Liu, Xiaoma; Sun, Jingjing; Xie, Qizhi; Peng, Sijia; Li, Changyan; Yi, Li
2018-06-07
CeO 2 nanoparticles (nanoceria) have been used in many studies as a powerful free radical scavenger, and LXW7, a small-molecule peptide, can specifically target the integrin αvβ3, whose neuroprotective effects have also been demonstrated. The objective of this study is to observe the neuroprotective effect and potential mechanism of CeO 2 @PAA-LXW7, a new compound that couples CeO 2 @PAA (nanoceria modified with the functional group of polyacrylic acid) with LXW7 via a series of chemical reactions, in H 2 O 2 -induced NGF-differentiated PC12 cells. We examined the effects of LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 on the viability of primary hippocampal neurons and found that there was no significant difference under control conditions, but increased cellular viability was observed in the case of H 2 O 2 -induced injury. We used H 2 O 2 -induced NGF-differentiated PC12 cells as the classical injury model to investigate the neuroprotective effect of CeO 2 @PAA-LXW7. In this study, LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 inhibit H 2 O 2 -induced oxidative stress by reducing the production of reactive oxygen species (ROS) and regulating Bax/Bcl-2, cleaved caspase-3 and mitochondrial cytochrome C (cyto C) in the apoptotic signaling pathways. We found that the levels of phosphorylation of focal adhesion kinase (FAK) and of signal transducer and activator of transcription 3 (STAT3) increased significantly in H 2 O 2 -induced NGF-differentiated PC12 cells, whereas LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 suppressed the increase to different degrees. Among the abovementioned changes, the inhibitory effect of CeO 2 @PAA-LXW7 on H 2 O 2 -induced changes, including the increases in the levels of p-FAK and p-STAT3, is more obvious than that of LXW7 or CeO 2 @PAA alone. In summary, these results suggest that integrin signaling participates in the regulation of apoptosis via the regulation of ROS and of the apoptosis pathway in H 2 O 2 -induced NGF-differentiated PC12 cells. LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 can play neuroprotective roles by counteracting the oxidative stress and apoptosis induced by H 2 O 2 in NGF-differentiated PC12 cells. CeO 2 @PAA-LXW7 exerting a more powerful synergistic effect via the conjunction of LXW7 and CeO 2 @PAA.
Intracellular diffusion of oxygen and hypoxic sensing: role of mitochondrial respiration.
Takahashi, Eiji; Sato, Michihiko
2010-01-01
In vivo, diffusional O(2) gradients from the capillary blood to the intracellular space determine O(2) availability at the O(2) sensing molecules in the cell. With a novel technique for imaging intracellular O(2) levels using green fluorescent protein (GFP), we examined the possibility that diffusional O(2) concentration gradients might be involved in the cellular hypoxic sensing in cultured Hep3B cells. In the present study, we failed to demonstrate significant gradients of intracellular O(2) when mitochondrial respiration was maximally elevated by an uncoupler of oxidative phosphorylation. Thus, we conclude that intracellular O(2) gradients may be negligible at normal mitochondrial O(2) demand in these cells.
Cortes-Puentes, Gustavo A; Cortes-Puentes, Luis A; Adams, Alexander B; Anderson, Christopher P; Marini, John J; Dries, David J
2013-06-01
Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) may complicate monitoring of pulmonary mechanics owing to their impact on the respiratory system. However, recommendations for mechanical ventilation of patients with IAH/ACS and the interpretation of thoracoabdominal interactions remain unclear. Our study aimed to characterize the influence of elevated intra-abdominal pressure (IAP) and positive end-expiratory pressure (PEEP) on airway plateau pressure (PPLAT) and bladder pressure (PBLAD). Nine deeply anesthetized swine were mechanically ventilated via tracheostomy: volume-controlled mode at tidal volume (VT) of 10 mL/kg, frequency of 15, inspiratory-expiratory ratio of 1:2, and PEEP of 1 and 10 cm H2O (PEEP1 and PEEP10, respectively). A tracheostomy tube was placed in the peritoneal cavity, and IAP levels of 5, 10, 15, 20, and 25 mm Hg were applied, using a continuous positive airway pressure system. At each IAP level, PBLAD and airway pressure measurements were performed during both PEEP1 and PEEP10. PBLAD increased as experimental IAP rose (y = 0.83x + 0.5; R = 0.98; p < 0.001 at PEEP1). Minimal underestimation of IAP by PBLAD was observed (-2.5 ± 0.8 mm Hg at an IAP of 10-25 mm Hg). Applying PEEP10 did not significantly affect the correlation between experimental IAP and PBLAD. Approximately 50% of the PBLAD (in cm H2O) was reflected by changes in PPLAT, regardless of the PEEP level applied. Increasing IAP did not influence hemodynamics at any level of IAP generated. With minimal underestimation, PBLAD measurements closely correlated with experimentally regulated IAP, independent of the PEEP level applied. For each PEEP level applied, a constant proportion (approximately 50%) of measured PBLAD (in cm H2O) was reflected in PPLAT. A higher safety threshold for PPLAT should be considered in the setting of IAH/ACS as the clinician considers changes in VT. A strategy of reducing VT to cap PPLAT at widely recommended values may not be warranted in the setting of increased IAP.
Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F
2016-03-03
The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.
Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3.
Riikonen, Johanna; Percy, Kevin E; Kivimäenpää, Minna; Kubiske, Mark E; Nelson, Neil D; Vapaavuori, Elina; Karnosky, David F
2010-04-01
Betula papyrifera trees were exposed to elevated concentrations of CO(2) (1.4 x ambient), O(3) (1.2 x ambient) or CO(2) + O(3) at the Aspen Free-air CO(2) Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO(2) and O(3) increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO(2). Cuticular ridges and epicuticular wax crystallites were less evident under CO(2) and CO(2) + O(3). The increase in amorphous deposits, particularly under CO(2) + O(3,) was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO(2) + O(3). The combination of elevated CO(2) and O(3) resulted in different responses than expected under exposure to CO(2) or O(3) alone. 2009 Elsevier Ltd. All rights reserved.
Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S
2002-09-11
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.
Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats.
Jegede, A I; Offor, U; Azu, O O; Akinloye, O
2015-01-01
To study the protective effect of Red Palm Oil (RPO) on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL) and lead acetate (i.p.) 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS) significantly (p < 0.05) as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility.
Early events in copper-ion catalyzed oxidation of α-synuclein.
Tiwari, Manish K; Leinisch, Fabian; Sahin, Cagla; Møller, Ian Max; Otzen, Daniel E; Davies, Michael J; Bjerrum, Morten J
2018-04-22
Previous studies on metal-ion catalyzed oxidation of α-synuclein oxidation have mostly used conditions that result in extensive modification precluding an understanding of the early events in this process. In this study, we have examined time-dependent oxidative events related to α-synuclein modification using six different molar ratios of Cu 2+ /H 2 O 2 /protein and Cu 2+ /H 2 O 2 /ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu 2+ /H 2 O 2 /protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4.7:15.6:1 gave 0.22 carbonyls per α-synuclein within 15 min. With the latter conditions, rapid conversion of 3 out of 4 methionines (Met) to methionine sulfoxide, and 2 out of 4 tyrosines (Tyr) were converted to products including inter- and intra-molecular dityrosine cross-links and protein oligomers, as determined by SDS-PAGE and Western blot analysis. Limited histidine (His) modification was observed. The rapid formation of dityrosine cross-links was confirmed by fluorescence and mass-spectrometry. These data indicate that Met and Tyr oxidation are early events in Cu 2+ /H 2 O 2 -mediated damage, with carbonyl formation being a minor process. With the Cu 2+ /H 2 O 2 /ascorbate system, rapid protein carbonyl formation was detected with the first 5 min, but after this time point, little additional carbonyl formation was detected. With this system, lower levels of Met and Tyr oxidation were detected (2 Met and 1 Tyr modified with a Cu 2+ /H 2 O 2 /ascorbate/protein ratio of 2.3:7.8:7.8:1), but greater His oxidation. Only low levels of intra- dityrosine cross-links and no inter- dityrosine oligomers were detected under these conditions, suggesting that ascorbate limits Cu 2+ /H 2 O 2 -induced α-synuclein modification. Copyright © 2018. Published by Elsevier Inc.
Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem
He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong
2014-01-01
The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems. PMID:24108327
Multi-species laser absorption sensors for in situ monitoring of syngas composition
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Sun, Kai; Jeffries, Jay B.; Hanson, Ronald K.
2014-04-01
Tunable diode laser absorption spectroscopy sensors for detection of CO, CO2, CH4 and H2O at elevated pressures in mixtures of synthesis gas (syngas: products of coal and/or biomass gasification) were developed and tested. Wavelength modulation spectroscopy (WMS) with 1f-normalized 2f detection was employed. Fiber-coupled DFB diode lasers operating at 2325, 2017, 2290 and 1352 nm were used for simultaneously measuring CO, CO2, CH4 and H2O, respectively. Criteria for the selection of transitions were developed, and transitions were selected to optimize the signal and minimize interference from other species. For quantitative WMS measurements, the collision-broadening coefficients of the selected transitions were determined for collisions with possible syngas components, namely CO, CO2, CH4, H2O, N2 and H2. Sample measurements were performed for each species in gas cells at a temperature of 25 °C up to pressures of 20 atm. To validate the sensor performance, the composition of synthetic syngas was determined by the absorption sensor and compared with the known values. A method of estimating the lower heating value and Wobbe index of the syngas mixture from these measurements was also demonstrated.
Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L
2012-11-27
The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO(2) NPs to plants and the possible transfer into the food chain are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO(2) NPs at 400 or 800 mg/kg. Stress-related parameters, such as H(2)O(2), catalase (CAT), and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP70), lipid peroxidation, cell death, and leaf gas exchange were analyzed at 10, 15, and 20 days post-germination. Confocal laser scanning microscopy was used to image H(2)O(2) distribution in corn leaves. Results showed that the CeO(2) NP treatments increased accumulation of H(2)O(2), up to day 15, in phloem, xylem, bundle sheath cells and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H(2)O(2) levels. Both 400 and 800 mg/kg CeO(2) NPs triggered the up-regulation of the HSP70 in roots, indicating a systemic stress response. None of the CeO(2) NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO(2) NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting that membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO(2) NPs. Our results suggest that the CAT, APX, and HSP70 might help the plants defend against CeO(2) NP-induced oxidative injury and survive NP exposure.
Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A.; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R.; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L.
2014-01-01
The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO2 NPs to plants, and the possible transfer into the food chain, are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO2 NPs at 400 or 800 mg/kg. Stress related parameters, such as: H2O2, catalase (CAT) and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP 70), lipid peroxidation, cell death and leaf gas exchange were analyzed at 10, 15, and 20 days post germination. Confocal laser scanning microscopy was used to image H2O2 distribution in corn leaves. Results showed that the CeO2 NP treatments increased accumulation of H2O2, up to day 15, in phloem, xylem, bundle sheath cells, and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H2O2 levels. Both 400 and 800 mg/kg CeO2 NPs triggered the up regulation of the HSP 70 in roots, indicating a systemic stress response. None of the CeO2 NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO2 NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO2 NPs. Our results suggest that the CAT, APX and HSP 70 might help the plants defend against CeO2 NPs induced oxidative injury and survive NP exposure. PMID:23050848
Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun
2014-01-01
Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant potential clearly differ between salmonid and cyprinid species. PMID:24740135
Chakrabarti, Somsubhra; Maikap, Siddheswar; Samanta, Subhranu; Jana, Surajit; Roy, Anisha; Qiu, Jian-Tai
2017-10-04
The resistive switching characteristics of a scalable IrO x /Al 2 O 3 /W cross-point structure and its mechanism for pH/H 2 O 2 sensing along with glucose detection have been investigated for the first time. Porous IrO x and Ir 3+ /Ir 4+ oxidation states are observed via high-resolution transmission electron microscope, field-emission scanning electron spectroscopy, and X-ray photo-electron spectroscopy. The 20 nm-thick IrO x devices in sidewall contact show consecutive long dc cycles at a low current compliance (CC) of 10 μA, multi-level operation with CC varying from 10 μA to 100 μA, and long program/erase endurance of >10 9 cycles with 100 ns pulse width. IrO x with a thickness of 2 nm in the IrO x /Al 2 O 3 /SiO 2 /p-Si structure has shown super-Nernstian pH sensitivity of 115 mV per pH, and detection of H 2 O 2 over the range of 1-100 nM is also achieved owing to the porous and reduction-oxidation (redox) characteristics of the IrO x membrane, whereas a pure Al 2 O 3 /SiO 2 membrane does not show H 2 O 2 sensing. A simulation based on Schottky, hopping, and Fowler-Nordheim tunneling conduction, and a redox reaction, is proposed. The experimental I-V curve matches very well with simulation. The resistive switching mechanism is owing to O 2- ion migration, and the redox reaction of Ir 3+ /Ir 4+ at the IrO x /Al 2 O 3 interface through H 2 O 2 sensing as well as Schottky barrier height modulation is responsible. Glucose at a low concentration of 10 pM is detected using a completely new process in the IrO x /Al 2 O 3 /W cross-point structure. Therefore, this cross-point memory shows a method for low cost, scalable, memory with low current, multi-level operation, which will be useful for future highly dense three-dimensional (3D) memory and as a bio-sensor for the future diagnosis of human diseases.
Lehmann, Petra; Rank, Petra; Hallfeldt, Klaus L J; Krebs, Bjarne; Gärtner, Roland
2006-08-01
Apoptosis of thyroid follicular cells is induced by high doses of iodide, epidermal growth factor (EGF), transforming growth factor-beta (TGF-beta), as well as H2O2 and might be attenuated by antioxidants. Therefore, we examined the apoptotic index induced by these substances in selenium-treated vs untreated human thyroid follicular cells. Reconstituted human thyroid follicles were incubated with sodium selenite (10 or 100 nM) for 72 h; controls received none. The follicles were then distributed to 24-well plates and incubated with potassium iodide (5, 10, or 20 nM), EGF (5 ng/mL), TGF-beta (5 ng/mL), or H2O2 (100 muM). Apoptosis was determined by a mitochondrial potential assay and the number of apoptotic cells counted by two independent, experienced technicians and the glutathione peroxidase (GPx) activity was determined. Asignificant increase of apoptic cells was obtained in control thyroid follicles treated with iodine (5, 10, or 20 microM), thyroidstimulating hormone (TSH) 1, or 10 mU/mL in combination with 5 and 10 microM iodine, EGF (5 ng/mL) and TGF-beta (5 ng/mL), or H2O2 (100 microM) (p < 0.001). In contrast, in thyroid follicles preincubated with 10 or 100 nM sodium selenite, the apoptototic index was identical to the basal rate. In H2O2-treated follicles, the apoptotic index was still significantly elevated but 50% lower compared to control cells. The GPx activity increased from 1.4 +/- 0.2 to 2.25 +/- 0.4 mU/microg DNA with 10 nMselenite and 2.6 + 0.4 mU/microg DNA with 100 nM selenite. Sodium selenite might increase the antioxidative potential in human thyroid follicles in vitro and therefore diminish the apoptosis induced by TGF-beta, EGF, iodide, and even H2O2.
NASA Astrophysics Data System (ADS)
Dong, B.; Wang, G. X.; Yu, H. G.
2017-08-01
The periphyton, attached to the surfaces of submerged plants, has important effects on plant growth and development in eutrophic waters. Periphyton complicates the microenvironment of diffusive boundary layer around submerged plants. We researched periphyton characteristics, oxygen (O2), pH, and Eh microprofiles at various growing stages of Vallisneria natans. The results suggested that during the growing period of V. natans, O2 concentration and pH decreased from 0 to 2 mm above the leaf surface, whereas the Eh increased. As V. natans grew, O2 and pH gradually increased until they peaked during stable growing stages, while the Eh decreased. However, during the decline stage, O2 and pH gradually decreased, and Eh increased. To summarise, O2 and pH showed a unimodal pattern in response to the life cycle of V. natans, with the maximum levels during the stable growth stage and the minimum levels during the rapid growth and decline stages. Our study demonstrated that V. natans growth induced steep gradients in O2 concentrations, pH, and Eh at the DBL by increasing the layer’s thickness, macrophyte photosynthetic capacity, and periphyton biomass in eutrophic waters.
NASA Astrophysics Data System (ADS)
Foustoukos, D.; Mysen, B. O.
2011-12-01
Understanding the effect of temperature on the relative distribution of volatiles in supercritical aqueous solutions is important to constrain elemental and isotopic partitioning/fractionation effects in systems applicable to planetary interiors where the temperature-pressure conditions are often beyond existing experimental or theoretical datasets. For example, very little exists for the fundamental equilibria between H2, D2 and HD (H2 + D2 = 2HD), which, in turn, constrains the internal D/H isotope exchange and the evolution of HD in H2-containing systems such as H2-CH4 and H2-H2O. Theoretical calculations considering the partition functions of the molecules predict that with temperature increase, the equilibrium constant of this reaction approximates values that correspond to the stochastic distribution of species. These calculations consider pure harmonic vibrational frequencies, which, however, do not apply to the diatomic molecule of hydrogen, especially because anharmonic oscillations are anticipated to become stronger at high temperatures. Published experimental data have been limited to conditions lower than 468°C with large uncertainties at elevated temperatures. To address the lack of experimental data, a series of hydrothermal diamond anvil experiments has been conducted utilizing vibrational spectroscopy as a novel quantitative method to explore the relative distribution of H- and D-bearing volatiles in the H2-D2-D2O-H2O-Ti-TiO2 system. The fundamentals of this methodology are based on the distinct Raman frequency shift resulting from deuterium substitution in the H-H and O-H bonds. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (for 3-9hrs) at 600-800°C and pressures of 0.5-1 GPa, leading to formation of H2, D2, HD and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in-situ and in the quenched gas phase, indicate a significant deviation from the theoretical estimate of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy change for the 2HD=D2+H2 reaction, ΔHrx, approximates -3.1 kcal/mol, which differs greatly from the +0.2 kcal/mol predicted by statistical mechanics models. Similar differences in ΔHrx are observed for the isotope equilibrium reaction of 2HDO=H2O + D2O. The establishment of negative ΔHrx and the decrease of equilibrium constants with temperature increase are possibly triggered by dominant contribution of anharmonic vibrations or differences on the Henry Law constant between the H- and D-bearing species dissolved in supercritical fluids. The distinct Raman frequency shift due to deuterium isotopic substitutions demonstrated for H2 and H2O, would also be expected for other H-containing compounds such as, for example, CH4 and NH3. This approach to the experimental determination of isotopic equilibria may, therefore, provide ways to describe the equilibrium of isotope exchange reactions for which theoretical or experimental measurements are lacking and which are critical for evaluation of COHN fluid behavior in metamorphic and magmatic processes in the planetary interiors.
Subramani, Baskar; Subbannagounder, Sellamuthu; Ramanathanpullai, Chithra; Palanivel, Sekar; Ramasamy, Rajesh
2017-03-01
Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H 2 O 2 ) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H 2 O 2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H 2 O 2 . The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( I KDR , I KCa , I to and I Na.TTX ) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H 2 O 2 . Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H 2 O 2 . Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.
Riikonen, Johanna; Kets, Katre; Darbah, Joseph; Oksanen, Elina; Sober, Anu; Vapaavuori, Elina; Kubiske, Mark E; Nelson, Neil; Karnosky, David F
2008-02-01
Paper birch (Betula papyrifera Marsh.) and three trembling aspen clones (Populus tremuloides Michx.) were studied to determine if alterations in carbon gain in response to an elevated concentration of CO(2) ([CO(2)]) or O(3) ([O(3)]) or a combination of both affected bud size and carbohydrate composition in autumn, and early leaf development in the following spring. The trees were measured for gas exchange, leaf size, date of leaf abscission, size and biochemical characteristics of the overwintering buds and early leaf development during the 8th-9th year of free-air CO(2) and O(3) exposure at the Aspen FACE site located near Rhinelander, WI. Net photosynthesis was enhanced 49-73% by elevated [CO(2)], and decreased 13-30% by elevated [O(3)]. Elevated [CO(2)] delayed, and elevated [O(3)] tended to accelerate, leaf abscission in autumn. Elevated [CO(2)] increased the ratio of monosaccharides to di- and oligosaccharides in aspen buds, which may indicate a lag in cold acclimation. The total carbon concentration in overwintering buds was unaffected by the treatments, although elevated [O(3)] decreased the amount of starch by 16% in birch buds, and reduced the size of aspen buds, which may be related to the delayed leaf development in aspen during the spring. Elevated [CO(2)] generally ameliorated the effects of elevated [O(3)]. Our results show that both elevated [CO(2)] and elevated [O(3)] have the potential to alter carbon metabolism of overwintering buds. These changes may cause carry-over effects during the next growing season.
Gill, Tejpal; Levine, Alan D
2013-09-06
T cell receptor (TCR)-initiated signal transduction is reported to increase production of intracellular reactive oxygen species, such as superoxide (O2˙(-)) and hydrogen peroxide (H2O2), as second messengers. Although H2O2 can modulate signal transduction by inactivating protein phosphatases, the mechanism and the subcellular localization of intracellular H2O2 as a second messenger of the TCR are not known. The antioxidant enzyme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2˙(-) into H2O2 and thus acts as an intracellular generator of H2O2. As charged O2˙(-) is unable to diffuse through intracellular membranes, cells express distinct SOD isoforms in the cytosol (Cu,Zn-SOD) and mitochondria (Mn-SOD), where they locally scavenge O2˙(-) leading to production of H2O2. A 2-fold organelle-specific overexpression of either SOD in Jurkat T cell lines increases intracellular production of H2O2 but does not alter the levels of intracellular H2O2 scavenging enzymes such as catalase, membrane-bound peroxiredoxin1 (Prx1), and cytosolic Prx2. We report that overexpression of Mn-SOD enhances tyrosine phosphorylation of TCR-associated membrane proximal signal transduction molecules Lck, LAT, ZAP70, PLCγ1, and SLP76 within 1 min of TCR cross-linking. This increase in mitochondrial H2O2 specifically modulates MAPK signaling through the JNK/cJun pathway, whereas overexpressing Cu,Zn-SOD had no effect on any of these TCR-mediated signaling molecules. As mitochondria translocate to the immunological synapse during TCR activation, we hypothesize this translocation provides the effective concentration of H2O2 required to selectively modulate downstream signal transduction pathways.
Effect of H2O and CO2 on The Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dryepondt, Sebastien N; Rouaix-Vande Put, Aurelie; Pint, Bruce A
Cyclic oxidation testing was conducted on alloy MA956 and two different batches of alloy PM2000 at 1100 and 1200 C in different atmospheres rich in O2, H2O and CO2. Compare to 1h cycle in dry O2, exposure in air + 10 vol.% H2O resulted in an increase of the oxidation rate and a decrease of the time to breakaway for both alloys at 1200 C, and a faster consumption of Al in the MA956 alloy. 1h cyclic testing in 50%CO2/50%H2O+0.75% O2 had less of an impact on the oxidation rate but led to an increased formation of voids for alloymore » MA956, which had an impact on the alloy creep resistance. At 1100 C, exposure in 50%CO2/50%H2O resulted in significant oxide spallation compared with oxidation in air, but it was not the case when 0.75% O2 was added to the CO2/H2O mixture as a buffer. The control of impurities levels drastically improved the PM2000 oxidation resistance.« less
Baez, Antonino; Shiloach, Joseph
2013-03-12
High concentrations of reactive oxygen species (ROS) were reported to cause oxidative stress to E. coli cells associated with reduced or inhibited growth. The high ROS concentrations described in these reports were generated by exposing the bacteria to H2O2 and superoxide-generating chemicals which are non-physiological growth conditions. However, the effect of molecular oxygen on oxidative stress response has not been evaluated. Since the use of oxygen-enriched air is a common strategy to support high density growth of E. coli, it was important to investigate the effect of high dissolved oxygen concentrations on the physiology and growth of E. coli and the way it responds to oxidative stress. To determine the effect of elevated oxygen concentrations on the growth characteristics, specific gene expression and enzyme activity in E. coli, the parental and SOD-deficient strain were evaluated when the dissolved oxygen (dO2) level was increased from 30% to 300%. No significant differences in the growth parameters were observed in the parental strain except for a temporary decrease of the respiration and acetate accumulation profile. By performing transcriptional analysis, it was determined that the parental strain responded to the oxidative stress by activating the SoxRS regulon. However, following the dO2 switch, the SOD-deficient strain activated both the SoxRS and OxyR regulons but it was unable to resume its initial growth rate. The transcriptional analysis and enzyme activity results indicated that when E. coli is exposed to dO2 shift, the superoxide stress regulator SoxRS is activated and causes the stimulation of the superoxide dismutase system. This enables the E. coli to protect itself from the poisoning effects of oxygen. The OxyR protecting system was not activated, indicating that H2O2 did not increase to stressing levels.
2013-01-01
Background High concentrations of reactive oxygen species (ROS) were reported to cause oxidative stress to E. coli cells associated with reduced or inhibited growth. The high ROS concentrations described in these reports were generated by exposing the bacteria to H2O2 and superoxide-generating chemicals which are non-physiological growth conditions. However, the effect of molecular oxygen on oxidative stress response has not been evaluated. Since the use of oxygen-enriched air is a common strategy to support high density growth of E. coli, it was important to investigate the effect of high dissolved oxygen concentrations on the physiology and growth of E. coli and the way it responds to oxidative stress. Results To determine the effect of elevated oxygen concentrations on the growth characteristics, specific gene expression and enzyme activity in E. coli, the parental and SOD-deficient strain were evaluated when the dissolved oxygen (dO2) level was increased from 30% to 300%. No significant differences in the growth parameters were observed in the parental strain except for a temporary decrease of the respiration and acetate accumulation profile. By performing transcriptional analysis, it was determined that the parental strain responded to the oxidative stress by activating the SoxRS regulon. However, following the dO2 switch, the SOD-deficient strain activated both the SoxRS and OxyR regulons but it was unable to resume its initial growth rate. Conclusion The transcriptional analysis and enzyme activity results indicated that when E. coli is exposed to dO2 shift, the superoxide stress regulator SoxRS is activated and causes the stimulation of the superoxide dismutase system. This enables the E. coli to protect itself from the poisoning effects of oxygen. The OxyR protecting system was not activated, indicating that H2O2 did not increase to stressing levels. PMID:23497217
Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases
NASA Astrophysics Data System (ADS)
Mahmoud, M. A.; Zaitone, S. A.; Ammar, A. M.; Sallam, S. A.
2016-03-01
A series of Cr3+ complexes with Schiff-bases of metformin with each of salicylaldehyde (HL1); 2,3-dihydroxybenzaldehyde (H2L2); 2,4-dihydroxybenzaldehyde (H2L3); 2,5-dihydroxybenzaldehyde (H2L4); 3,4-dihydroxybenzaldehyde (H2L5) and 2-hydroxynaphthaldehyde (HL6) were synthesized by template reaction. The new compounds were characterized through elemental analysis, conductivity and magnetic moment measurements, IR, UV-Vis., NMR and mass spectroscopy. The complexes have octahedral structure with μ value of hexacoordinated chromium ion. TGA, DTG and DTA analysis confirm the proposed stereochemistry and a mechanism for thermal decomposition was proposed. Thermodynamic parameters are calculated for the second and third decomposition steps. [CrL4Cl(H2O)2].3H2O and [CrL5Cl(H2O)2].2½H2O were able to produce significant decreases in the blood glucose level.
Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats.
Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait
2017-01-01
Hydrogen peroxide (H 2 O 2 ) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H 2 O 2 -induced oxidative stress in male rats. After randomization, male Wistar rats were divided into four groups ( n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H 2 O 2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Administration of H 2 O 2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H 2 O 2 , geraniol, and geraniol+H 2 O 2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H 2 O 2 -treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H 2 O 2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H 2 O 2 and control groups. H 2 O 2 -induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H 2 O 2 -induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H 2 O 2 -induced alterations.
Astroglial pentose phosphate pathway rates in response to high-glucose environments
Takahashi, Shinichi; Izawa, Yoshikane; Suzuki, Norihiro
2012-01-01
ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke. PMID:22300409
Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark
2012-11-15
The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.
Lehtonen, Mark P; Burnett, Louis E
2016-11-01
The responses of estuarine invertebrates to hypoxic conditions are well established. However, many studies have investigated hypoxia as an isolated condition despite its frequent co-occurrence with hypercapnia (elevated CO 2 ). Although many studies suggest deleterious effects, hypercapnia has been observed to improve blue crab walking performance in hypoxia. To investigate the physiological effects of combined hypercapnic hypoxia, we measured Po 2 , pH, [l-lactate], Pco 2 , and total O 2 in pre- and postbranchial hemolymph sampled from blue crabs during walking exercise. Crabs walked at 8 m min -1 on an aquatic treadmill in normoxic (100% air saturation), moderately hypoxic (50%), and severely hypoxic (20%) seawater with and without the addition of hypercapnia (about 2% CO 2 ). Respiration was almost completely aerobic in normoxic conditions, with little buildup of lactate. During exercise under severe hypoxia, lactate increased from 1.4 to 11.0 mM, indicating a heavy reliance on anaerobic respiration. The O 2 saturation of arterial hemocyanin was 47% in severe hypoxia after 120 min, significantly lower than in normoxia (80%). However, the addition of hypercapnia significantly increased the percentage saturation of arterial hemocyanin in severe hypoxia to 92% after 120 min of exercise, equivalent to normoxic levels. Hypercapnia in severe hypoxia also caused a marked increase in hemolymph Pco 2 (around 1.1 kPa), but caused only a minor decrease in pH of 0.1 units. We suggest that the improved O 2 saturation at the gills results from a specific effect of molecular CO 2 on hemocyanin oxygen binding affinity, which works independently of and counter to the effects of decreased pH. © 2016 Wiley Periodicals, Inc.
[Ozone effects on soil microbial community of rice investigated by 13C isotope labeling].
Chen, Zhan; Wang, Xiao-Ke; Shang, He
2014-10-01
This study was initiated to explore the effects of dynamic ozone (O3) exposure on soil microbial biomass and phospholipid fatty acids (PLFAs) under potted rice. A pulse-chase labeling experiment was designed to expose potted rice with 13CO2 for 6 h after one and two months, the rice were fumigated by elevated O3 concentration with an 8 h mean of 110 nL · L(-1) (O3). The allocation of the assimilated 13C to soil microorganisms was estimated by analyzing the 13C profile of microbial phospholipid fatty acids (PLFAs). After one month O3 exposure, the soil microbial biomass carbon was not affected, while the 13C-microbial biomass was significantly decreased with elevated O3. Both the total and 13C microbial biomass carbon was remarkably lower than that of control treatment after two months O3 exposure. Principal components analysis of 13C-PLFA data showed that elevated O3 significantly changed soil microbial structure after two month exposures, while there was no difference of 13C-PLFA structure between control and elevated O3 treatments after one month exposure. Δδ13C per hundred thousand of individual PLFA was significantly affected by O3 after both one and two month exposures. Only did ozone change the relative abundance of individual 13C-PLFA (13C%) of bacterial fatty acids after one month exposure, while after two month exposures, the 13C% of fungal and actinomycetic fatty acids were markedly changed by elevated O3.
Semisch, Annetta; Ohle, Julia; Witt, Barbara; Hartwig, Andrea
2014-02-13
Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive.