Sample records for elevated partial pressures

  1. Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures.

    PubMed

    Atwell, B J; Henery, M L; Whitehead, D

    2003-01-01

    Clonal trees of Pinus radiata D. Don were grown in open-top chambers at a field site in New Zealand for 3 years at ambient (37 Pa) or elevated (65 Pa) carbon dioxide (CO2) partial pressure. Nitrogen (N) was supplied to half of the trees in each CO2 treatment, at 15 g N m-2 in the first year and 60 g N m-2 in the subsequent 2 years (high-N treatment). Trees in the low-N treatment were not supplied with N but received the same amount of other nutrients as trees in the high-N treatment. In the first year, stem basal area increased more in trees growing at elevated CO2 partial pressure and high-N supply than in control trees, suggesting a positive interaction between these resources. However, the relative rate of growth became the same across trees in all treatments after 450 days, resulting in trees growing at elevated CO2 partial pressure and high-N supply having larger basal areas than trees in the other treatments. Sapwood N content per unit dry mass was consistently about 0.09% in all treatments, indicating that N status was not suppressed by elevated CO2 partial pressure. Thus, during the first year of growth, an elevated CO2 partial pressure enhanced carbon (C) and N storage in woody stems, but there was no further stimulus to C and N deposition after the first year. The chemical composition of sapwood was unaffected by elevated CO2 partial pressure, indicating that no additional C was sequestered through lignification. However, independent of the treatments, early wood was 13% richer in lignin than late wood. Elevated CO2 partial pressure decreased the proportion of sapwood occupied by the lumina of tracheids by up to 12%, indicating increased sapwood density in response to CO2 enrichment. This effect was probably a result of thicker tracheid walls rather than narrower lumina.

  2. Effects of oxygen on responses to heating in two lizard species sampled along an elevational gradient.

    PubMed

    DuBois, P Mason; Shea, Tanner K; Claunch, Natalie M; Taylor, Emily N

    2017-08-01

    Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat-gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)-in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia. Copyright © 2017. Published by Elsevier Ltd.

  3. Separating the roles of nitrogen and oxygen in high pressure-induced blood-borne microparticle elevations, neutrophil activation, and vascular injury in mice.

    PubMed

    Yang, Ming; Bhopale, Veena M; Thom, Stephen R

    2015-08-01

    An elevation in levels of circulating microparticles (MPs) due to high air pressure exposure and the associated inflammatory changes and vascular injury that occur with it may be due to oxidative stress. We hypothesized that these responses arise due to elevated partial pressures of N2 and not because of high-pressure O2. A comparison was made among high-pressure air, normoxic high-pressure N2, and high-pressure O2 in causing an elevation in circulating annexin V-positive MPs, neutrophil activation, and vascular injury by assessing the leakage of high-molecular-weight dextran in a murine model. After mice were exposed for 2 h to 790 kPa air, there were over 3-fold elevations in total circulating MPs as well as subgroups bearing Ly6G, CD41, Ter119, CD31, and CD142 surface proteins-evidence of neutrophil activation; platelet-neutrophil interaction; and vascular injury to brain, omentum, psoas, and skeletal muscles. Similar changes were found in mice exposed to high-pressure N2 using a gas mixture so that O2 partial pressure was the same as that of ambient air, whereas none of these changes occurred after exposures to 166 kPa O2, the same partial pressure that occurs during high-pressure air exposures. We conclude that N2 plays a central role in intra- and perivascular changes associated with exposure to high air pressure and that these responses appear to be a novel form of oxidative stress. Copyright © 2015 the American Physiological Society.

  4. Toxicity of elevated partial pressures of carbon dioxide to invasive New Zealand mudsnails

    USGS Publications Warehouse

    Nielson, R. Jordan; Moffitt, Christine M.; Watten, Barnaby J.

    2012-01-01

    The authors tested the efficacy of elevated partial pressures of CO2 to kill invasive New Zealand mudsnails. The New Zealand mudsnails were exposed to 100 kPa at three water temperatures, and the survival was modeled versus dose as cumulative °C-h. We estimated an LD50 of 59.4°C-h for adult and juvenile New Zealand mudsnails. The results suggest that CO2 may be an effective and inexpensive lethal tool to treat substrates, tanks, or materials infested with New Zealand mudsnails.

  5. Positron beam study of indium tin oxide films on GaN

    NASA Astrophysics Data System (ADS)

    Cheung, C. K.; Wang, R. X.; Beling, C. D.; Djurisic, A. B.; Fung, S.

    2007-02-01

    Variable energy Doppler broadening spectroscopy has been used to study open-volume defects formed during the fabrication of indium tin oxide (ITO) thin films grown by electron-beam evaporation on n-GaN. The films were prepared at room temperature, 200 and 300 °C without oxygen and at 200 °C under different oxygen partial pressures. The results show that at elevated growth temperatures the ITO has fewer open volume sites and grows with a more crystalline structure. High temperature growth, however, is not sufficient in itself to remove open volume defects at the ITO/GaN interface. Growth under elevated temperature and under partial pressure of oxygen is found to further reduce the vacancy type defects associated with the ITO film, thus improving the quality of the film. Oxygen partial pressures of 6 × 10-3 mbar and above are found to remove open volume defects associated with the ITO/GaN interface. The study suggests that, irrespective of growth temperature and oxygen partial pressure, there is only one type of defect in the ITO responsible for trapping positrons, which we tentatively attribute to the oxygen vacancy.

  6. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  7. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  8. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    Objective The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. Methods The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Results Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). Conclusion In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin. PMID:27096671

  9. Equivalent air depth: fact or fiction.

    PubMed

    Berghage, T E; McCraken, T M

    1979-12-01

    In mixed-gas diving theory, the equivalent air depth (EAD) concept suggests that oxygen does not contribute to the total tissue gas tension and can therefore be disregarded in calculations of the decompression process. The validity of this assumption has been experimentally tested by exposing 365 rats to various partial pressures of oxygen for various lengths of time. If the EAD assumption is correct, under a constant exposure pressure each incremental change in the oxygen partial pressure would produce a corresponding incremental change in pressure reduction tolerance. Results of this study suggest that the EAD concept does not adequately describe the decompression advantages obtained from breathing elevated oxygen partial pressures. The authors suggest that the effects of breathing oxygen vary in a nonlinear fashion across the range from anoxia to oxygen toxicity, and that a simple inert gas replacement concept is no longer tenable.

  10. Mechanical properties of turbine blade alloys in hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Deluca, D. P.

    1981-01-01

    The mechanical properties of single crystal turbine blade alloys in a gaseous hydrogen environment were determined. These alloys are proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. Mechanical property tests included: tensile, creep, low fatigue (LCF), and crack growth. Specimens were in both transverse and longitudinal directions relative to the casting solidification direction. Testing was conducted on solid specimens exposed to externally pressurized environments of gaseous hydrogen and hydrogen-enriched steam.

  11. Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox.

    PubMed

    Cai, Chen; Hu, Shihu; Chen, Xueming; Ni, Bing-Jie; Pu, Jiaoyang; Yuan, Zhiguo

    2018-10-15

    Complete nitrogen removal has recently been demonstrated by integrating anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) processes. In this work, the effect of methane partial pressure on the performance of a membrane biofilm reactor (MBfR) consisting of DAMO and anammox microorganisms was evaluated. The activities of DAMO archaea and DAMO bacteria in the biofilm increased significantly with increased methane partial pressure, from 367 ± 9 and 58 ± 22 mg-N L -1 d -1 to 580 ± 12 and 222 ± 22 mg-N L -1 d -1 , respectively, while the activity of anammox bacteria only increased slightly, when the methane partial pressure was elevated from 0.24 to 1.39 atm in the short-term batch tests. The results were supported by a long-term (seven weeks) continuous test, when the methane partial pressure was dropped from 1.39 to 0.78 atm. The methane utilization efficiency was always above 96% during both short-term and long-term tests. Taken together, nitrogen removal rate (especially the nitrate reduction rate by DAMO archaea) and methane utilization efficiency could be maintained at high levels in a broad range of methane partial pressure (0.24-1.39 atm in this study). In addition, a previously established DAMO/anammox biofilm model was used to analyze the experimental data. The observed impacts of methane partial pressure on biofilm activity were well explained by the modeling results. These results suggest that methane partial pressure can potentially be used as a manipulated variable to control reaction rates, ultimately to maintain high nitrogen removal efficiency, according to nitrogen loading rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effect of Elevated Reperfusion Pressure on "No Reflow" Area and Infarct Size in a Porcine Model of Ischemia-Reperfusion.

    PubMed

    Pantsios, Chris; Kapelios, Chris; Vakrou, Styliani; Diakos, Nikolaos; Pozios, Iraklis; Kontogiannis, Chris; Nanas, John; Malliaras, Konstantinos

    2016-07-01

    The "no reflow" phenomenon (microvascular obstruction despite restoration of epicardial blood flow) develops postreperfusion in acute myocardial infarction and is associated with poor prognosis. We hypothesized that increased reperfusion pressure may attenuate the no reflow phenomenon, as it could provide adequate flow to overcome the high resistance of the microvasculature within the no reflow zone. Thus, we investigated the effect of modestly elevated blood pressure during reperfusion on the extent of no reflow area and infarct size in a porcine model of ischemia-reperfusion. Eighteen farm pigs underwent acute myocardial infarction by occlusion of the anterior descending coronary artery for 1 hour, followed by 2 hours of reperfusion. Just prior to reperfusion, animals were randomized into 2 groups: in group 1 (control group, n = 9), no intervention was performed. In group 2 (n = 9), aortic pressure was increased by ∼20% (compared to ischemia) by partial clamping of the ascending aorta during reperfusion. Following 2 hours of reperfusion, animals were euthanized to measure area at risk, infarct size, and area of no reflow. Partial clamping of the ascending aorta resulted in modest elevation of blood pressure during reperfusion. The area at risk did not differ between the 2 groups. The no reflow area was significantly increased in group 2 compared to control animals (50% ± 13% vs 37% ± 9% of the area at risk; P = .04). The infarcted area was significantly increased in group 2 compared to control animals (75% ± 17% vs 52% ± 23% of the area at risk; P = .03). Significant positive correlations were observed between systolic aortic pressure and no reflow area, between systolic aortic pressure and infarcted area and between infarcted area and no reflow area during reperfusion. Modestly elevated blood pressure during reperfusion is associated with an increase in no reflow area and in infarct size in a clinically relevant porcine model of ischemia-reperfusion. © The Author(s) 2015.

  13. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.

    PubMed

    Qian, Yangyang; Zhang, Jie; Wang, Jie

    2014-12-01

    The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time". Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Diagnostic importance of the alveolar-arterial oxygen gradient].

    PubMed

    Weinans, Marije A E; Drost-de Klerck, Amanda M; ter Maaten, Jan C

    2012-01-01

    The alveolar-arterial (A-a) oxygen gradient is the difference between the partial pressure of oxygen in the alveoli and the partial pressure of arterial oxygen and can be elevated in the case of pulmonary disease. We describe a 41-year-old patient with pneumonia who presented with abdominal pain, in whom calculation of the A-a gradient could have led to earlier diagnosis. The A-a oxygen gradient is mainly of diagnostic importance and the presented nomogram allows easy and quick interpretation. This might lead to a more frequent use of the A-a oxygen gradient in the future.

  15. Compositional dependent partial molar volume and compressibility of CO2 in rhyolite, phonolite and basalt glasses

    NASA Astrophysics Data System (ADS)

    Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.

    2012-12-01

    Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus of CO2 displays a strong compositional effect. If these compositional dependencies persist in the analogue melts, the partial molar volume of dissolved CO2 will depend on melt composition, both at low and elevated pressure. Thus, for CO2-bearing melts, a full quantitative understanding of density dependent magmatic processes, such as crystal fractionation, magma mixing and melt extraction will require in situ measurements for a range of melt compositions. [1] Richet, P. et al., 2000, Contrib Mineral Petrol, 138, 337-347. [2] Malfait et al. 2011, Am. Mineral. 96, 1402-1409. [3] Whittington et al., 2012, Am. Mineral. 97, 455-467.

  16. Effects of Mild Hypercapnia During Head-Down Bed Rest on Ocular Structures, Cerebral Blood Flow, aud Visual Acuity in Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Taibbi, G.; Lee, S. M. C.; Martin, D. S.; Zanello, S.; Ploutz-Snyder, R.; Hu, X.; Stenger, M. B.; Vizzeri, G.

    2014-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to cause an elevation in intracranial pressure (ICP) and contribute to the development of the Visual Impairment/Intracranial Pressure (VIIP) syndrome, as experienced by some astronauts during long-duration space flight. Elevated ambient partial pressure of carbon dioxide (PCO2) on ISS may also raise ICP and contribute to VIIP development. We seek to determine if the combination of mild CO2 exposure, similar to that occurring on the International Space Station, with the cephalad fluid shift induced by head-down tilt, will induce ophthalmic and cerebral blood flow changes similar to those described in the VIIP syndrome. We hypothesize that mild hypercapnia in the head-down tilt position will increase choroidal blood volume and cerebral blood flow, raise intraocular pressure (IOP), and transiently reduce visual acuity as compared to the seated or the head-down tilt position without elevated CO2, respectively.

  17. Effect of 1% Inspired CO2 During Head-Down Tilt on Ocular Structures, Cerebral Blood Flow, and Visual Acuity in Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Hu, X.; Lee, S. M. C.; Martin, D. S.; Phillips, T. R.; Ploutz-Snyder, R.; Smith, S. M.; Stenger, M. B.; Taibbi, G.; Zwart, S. R.; hide

    2016-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to elevate intracranial pressure (ICP) and contribute to the development of the visual impairment/intracranial pressure (VIIP) syndrome experienced by many astronauts during and after long-duration space flight. In addition, elevated ambient partial pressure of carbon dioxide (PCO2) on the International Space Station (ISS) has also been hypothesized to contribute to the development of VIIP. We seek to determine if an acute, mild CO2 exposure, similar to that occurring on the ISS, combined with the cephalad fluid shift induced by head-down tilt will induce ophthalmic and ICP changes consistent with the VIIP syndrome.

  18. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance.

    PubMed

    Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M

    2017-01-01

    Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Folding-unfolding transitions of Rv3221c on the pressure-temperature plane

    NASA Astrophysics Data System (ADS)

    Somkuti, Judit; Jain, Sriyans; Ramachandran, Srinivasan; ászló Smeller, L.

    2013-06-01

    Rv3221c is a biotin-binding protein found in Mycobacterium tuberculosis. It has been reported that an elevated temperature is needed for it to adopt a folded conformation. We determined the complete pressure-temperature phase diagram, and determined the thermodynamical parameters of the denaturation. The phase diagram follows well the Hawley theory. The secondary structure of the protein was found to contain predominantly beta sheet. The pressure unfolding was partially reversible, resulting in pressure-sensitive aggregates, besides the correctly refolded and biotin-bound fraction of proteins.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of knownmore » amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.« less

  1. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    PubMed

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Human respiration at rest in rapid compression and at high pressures and gas densities

    NASA Technical Reports Server (NTRS)

    Gelfand, R.; Lambertsen, C. J.; Strauss, R.; Clark, J. M.; Puglia, C. D.

    1983-01-01

    The ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were determined in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5000 feet of seawater was found to produce a complex pattern of change in PACO2. It was found that as both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is concluded that this pattern of PACO2 change results from the interaction on ventilation of the increase in pulmonary resistance due to the elevation of gas density with the increase in respiratory drive postulated as due to generalized central nervous system excitation associated with exposure to high hydrostatic pressure. It is suggested that a similar interaction exists between increased gas flow resistance and the increase in respiratory drive related to nitrogen partial pressure and the resulting narcosis.

  3. A System for Incubations at High Gas Partial Pressure

    PubMed Central

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid–gas–rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample. PMID:22347218

  4. Hypertension Awareness and Psychological Distress

    PubMed Central

    Hamer, Mark; Batty, G. David; Stamatakis, Emmanuel; Kivimaki, Mika

    2011-01-01

    There is conflicting evidence regarding the association of hypertension with psychological distress, such as anxiety and depressive symptoms. The association may be due to a direct effect of the raised blood pressure; side effects of treatment; or the consequences of labelling. In a representative study of 33,105 adults (aged 51.7 ±12.1 yrs, 45.8% men) we measured levels of psychological distress using the 12-item General Health Questionnaire and collected blood pressure, data on history of hypertension diagnosis, and medication usage. Awareness of hypertension was confirmed through a physician’s diagnosis or the use of anti-hypertensive medication and unaware hypertension was defined by elevated clinic blood pressure (systolic/diastolic ≥140/90 mm Hg) without prior treatment or diagnosis. In comparison with normotensive participants, an elevated risk of distress (General Health Questionnaire score ≥4) was observed in aware hypertensive participants (multivariable adjusted odds ratio [OR]=1.57, 95% CI, 1.41 – 1.74), although not in unaware hypertensives (OR = 0.91, 95% CI, 0.78 – 1.07). Anti-hypertensive medication and co-morbidity was also associated with psychological distress although this did not explain the greater risk of distress in aware hypertensives. We observed a weak curvilinear association between systolic blood pressure and distress which suggested that distressed participants were more likely to have low or highly elevated blood pressure. These findings suggest that labelling individuals as hypertensive, rather than elevated blood pressure per se, may partially explain the greater levels of distress in patients treated for hypertension. PMID:20625078

  5. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  6. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone

    Treesearch

    N.J. Karberg; K.S. Pregitzer; J.S. King; A.L. Friend; J.R. Wood

    2004-01-01

    Global emissions of atmospheric CO2 and tropospheric O3 are rising and expected to impact large areas of the Earth's forests. While CO2 stimulates net primary production, O3 reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects...

  7. Measurement and Control of Oxygen Partial Pressure in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.

    2014-01-01

    Recently the NASA Marshall Space Flight Center electrostatic levitation (ESL) laboratory has been upgraded to include an oxygen control system. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, at elevated temperatures, theoretically in the range from 10(exp -36) to 10(exp 0) bar. The role of active surface agents in liquid metals is fairly well known; however, published surface tension data typically has large scatter, which has been hypothesized to be caused by the presence of oxygen. The surface tension of metals is affected by even a small amount of adsorption of oxygen. It has even been shown that oxygen partial pressures may need to be as low as 10(exp -24) bar to avoid oxidation. While electrostatic levitation is done under high vacuum, oxide films or dissolved oxygen may have significant effects on materials properties, such as surface tension and viscosity. Therefore, the ability to measure and control the oxygen partial pressure within the chamber is highly desirable. The oxygen control system installed at MSFC contains a potentiometric sensor, which measures the oxygen partial pressure, and an oxygen ion pump. In the pump, a pulse-width modulated electric current is applied to yttrium-stabilized zirconia, resulting in oxygen transfer into or out of the system. Also part of the system is a control unit, which consists of temperature controllers for the sensor and pump, PID-based current loop for the ion pump, and a control algorithm. This system can be used to study the effects of oxygen on the thermophysical properties of metals, ceramics, glasses, and alloys. It can also be used to provide more accurate measurements by processing the samples at very low oxygen partial pressures. The oxygen control system will be explained in more detail and an overview of its use and limitations in an electrostatic levitator will be described. Some preliminary measurements have been made, and the results to date will be provided.

  8. Effects of competitive pressure on expert performance: underlying psychological, physiological, and kinematic mechanisms.

    PubMed

    Cooke, Andrew; Kavussanu, Maria; McIntyre, David; Boardley, Ian D; Ring, Christopher

    2011-08-01

    Although it is well established that performance is influenced by competitive pressure, our understanding of the mechanisms which underlie the pressure-performance relationship is limited. The current experiment examined mediators of the relationship between competitive pressure and motor skill performance of experts. Psychological, physiological, and kinematic responses to three levels of competitive pressure were measured in 50 expert golfers, during a golf putting task. Elevated competitive pressure increased putting accuracy, anxiety, effort, and heart rate, but decreased grip force. Quadratic effects of pressure were noted for self-reported conscious processing and impact velocity. Mediation analyses revealed that effort and heart rate partially mediated improved performance. The findings indicate that competitive pressure elicits effects on expert performance through both psychological and physiological pathways. Copyright © 2011 Society for Psychophysiological Research.

  9. Low cycle fatigue properties of MAR-M-246 Hf in hydrogen. [a cast nickel-base alloy

    NASA Technical Reports Server (NTRS)

    Warren, J. R.

    1979-01-01

    The transverse, low cycle fatigue properties were determined for directionally solidified and single crystal samples of a cast nickel-base alloy proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. The test temperature was 760 C (1400F) and the pressure of the gaseous hydrogen was 34.5 MPa (5000 psig). Low cycle fatique life was established by strain controlled testing using smooth specimens and a servohydraulic closed-loop test machine modified with a high pressure environmental chamber. Results and conclusions are discussed.

  10. Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Kong, Lingping; Guo, Peijun

    The discovery of elevated environmental stability in two-dimensional (2D) Ruddlesden–Popper hybrid perovskites represents a significant advance in low-cost, high-efficiency light absorbers. In comparison to 3D counterparts, 2D perovskites of organo-lead-halides exhibit wider, quantum-confined optical bandgaps that reduce the wavelength range of light absorption. Here, we characterize the structural and optical properties of 2D hybrid perovskites as a function of hydrostatic pressure. We observe bandgap narrowing with pressure of 633 meV that is partially retained following pressure release due to an atomic reconfiguration mechanism. We identify two distinct regimes of compression dominated by the softer organic and less compressible inorganic sublattices.more » Our findings, which also include PL enhancement, correlate well with density functional theory calculations and establish structure–property relationships at the atomic scale. These concepts can be expanded into other hybrid perovskites and suggest that pressure/strain processing could offer a new route to improved materials-by-design in applications.« less

  11. Heritability of HR and BP Response To Exercise Training in the HERITAGE Family Study.

    ERIC Educational Resources Information Center

    Rice, Treva; Gagnon, Jacques; Leon, Arthur S.; Skinner, James S.; Wilmore, Jack H.; Bouchard, Claude; Rao, D. C.

    2002-01-01

    Assessed the heritability of response to exercise training in resting blood pressure (BP) and heart rate (HR) among sedentary Caucasians comprising 98 families who completed an exercise training program. Results indicated that the trainability of systolic BP and HR in families with elevated BP was partially determined by genetic factors. Diastolic…

  12. Negative-Pressure Hydrocephalus: A Case Report on Successful Treatment Under Intracranial Pressure Monitoring with Bilateral Ventriculoperitoneal Shunts.

    PubMed

    Pandey, Sajan; Jin, Yi; Gao, Liang; Zhou, Cheng Cheng; Cui, Da Ming

    2017-03-01

    Negative-pressure hydrocephalus (NegPH), a very rare condition of unknown etiology and optimal treatment, usually presents postneurosurgery with clinical and imaging features of hydrocephalus, but with negative cerebrospinal fluid pressure. We describe a NegPH case of -3 mm Hg intracranial pressure that was successfully treated to achieve 5 mm Hg under continuous intracranial pressure monitoring with horizontal positioning, head down and legs elevated to 10°-15°, neck wrapping for controlled venous drainage, chest and abdomen bandages, infusion of 5% dextrose fluid to lower plasma osmolarity (Na + , 130-135 mmol/L), daily cerebrospinal fluid drainage >200 mL, and arterial blood gas partial pressure of carbon dioxide >40 mm Hg. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    NASA Astrophysics Data System (ADS)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  14. Fish allergy causing angioedema and secondary angle-closure glaucoma.

    PubMed

    Calder, Donovan; Calder, Jennifer

    2013-03-06

    A 56-year-old woman with a history of primary angle-closure glaucoma presented with acute generalised swelling, and facial angioedema following a fish meal. She complained of nausea, vomiting, headache, pain in both eyes and acute loss of vision. Her visual acuity was reduced and intraocular pressures (IOP) were elevated. Gonioscopy revealed complete angle closure in the left eye and complete to partial closure in the right eye. Through existing peripheral iridotomies the anterior capsules were seen pressed up against the iris of both eyes. A diagnosis of angle-closure glaucoma was made, medications were started to reduce the elevated intraocular pressure and systemic antihistamine to counter the allergic reaction. She was hospitalised for further management. A follow-up at 2 years revealed her visual acuities and IOP had remained normal.

  15. Phonotactic flight of the parasitoid fly Emblemasoma auditrix (Diptera: Sarcophagidae).

    PubMed

    Tron, Nanina; Lakes-Harlan, Reinhard

    2017-01-01

    The parasitoid fly Emblemasoma auditrix locates its hosts using acoustic cues from sound producing males of the cicada Okanagana rimosa. Here, we experimentally analysed the flight path of the phonotaxis from a landmark to the target, a hidden loudspeaker in the field. During flight, the fly showed only small lateral deviations. The vertical flight direction angles were initially negative (directed downwards relative to starting position), grew positive (directed upwards) in the second half of the flight, and finally flattened (directed horizontally or slightly upwards), typically resulting in a landing above the loudspeaker. This phonotactic flight pattern was largely independent from sound pressure level or target distance, but depended on the elevation of the sound source. The flight velocity was partially influenced by sound pressure level and distance, but also by elevation. The more elevated the target, the lower was the speed. The accuracy of flight increased with elevation of the target as well as the landing precision. The minimal vertical angle difference eliciting differences in behaviour was 10°. By changing the elevation of the acoustic target after take-off, we showed that the fly is able to orientate acoustically while flying.

  16. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    PubMed

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P <0.05). At the same time, there was no significant change in PcCO(2) ( P >0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  17. Effect of hepatic venous sphincter contraction on transmission of central venous pressure to lobar and portal pressure.

    PubMed

    Lautt, W W; Legare, D J; Greenway, C V

    1987-11-01

    In dogs anesthetized with pentobarbital, central vena caval pressure (CVP), portal venous pressure (PVP), and intrahepatic lobar venous pressure (proximal to the hepatic venous sphincters) were measured. The objective was to determine some characteristics of the intrahepatic vascular resistance sites (proximal and distal to the hepatic venous sphincters) including testing predictions made using a recent mathematical model of distensible hepatic venous resistance. The stimulus used was a brief rise in CVP produced by transient occlusion of the thoracic vena cava in control state and when vascular resistance was elevated by infusions of norepinephrine or histamine, or by nerve stimulation. The percent transmission of the downstream pressure rise to upstream sites past areas of vascular resistance was elevated. Even small increments in CVP are partially transmitted upstream. The data are incompatible with the vascular waterfall phenomenon which predicts that venous pressure increments are not transmitted upstream until a critical pressure is overcome and then further increments would be 100% transmitted. The hepatic sphincters show the following characteristics. First, small rises in CVP are transmitted less than large elevations; as the CVP rises, the sphincters passively distend and allow a greater percent transmission upstream, thus a large rise in CVP is more fully transmitted than a small rise in CVP. Second, the amount of pressure transmission upstream is determined by the vascular resistance across which the pressure is transmitted. As nerves, norepinephrine, or histamine cause the hepatic sphincters to contract, the percent transmission becomes less and the distensibility of the sphincters is reduced. Similar characteristics are shown for the "presinusoidal" vascular resistance and the hepatic venous sphincter resistance.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  19. Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor

    DOEpatents

    Tkaczyk, John Eric; Lay, Kenneth Wilbur; He, Qing

    1997-01-01

    A method is disclosed for fabricating a polycrystalline <223> thallium-containing superconductor having high critical current at elevated temperatures and in the presence of a magnetic field. A powder precursor containing compounds other than thallium is compressed on a substrate. Thallium is incorporated in the densified powder precursor at a high temperature in the presence of a partial pressure of a thallium-containing vapor.

  20. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

  1. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry

    PubMed Central

    2015-01-01

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents. PMID:26622165

  2. Positron annihilation and X-ray diffraction studies on tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Prabakar, K.; Abhaya, S.; Krishnan, R.; Kalavathi, S.; Dash, S.; Jayapandian, J.; Amarendra, G.

    2009-04-01

    Positron annihilation spectroscopy along with glancing incidence X-ray diffraction have been used to investigate tin oxide thin films grown on Si by pulsed laser deposition. The films were prepared at room temperature and at 670 K under oxygen partial pressure. As-grown samples are amorphous and are found to contain large concentration of open volume sites (vacancy defects). Post-deposition annealing of as-grown samples at 970 K is found to drastically reduce the number of open volume sites and the film becomes crystalline. However, film grown under elevated temperature and under partial pressure of oxygen is found to exhibit a lower S-parameter, indicating lower defect concentration. Based on the analysis of experimental positron annihilation results, the defect-sensitive S-parameter and the overlayer thickness of tin oxide thin films are deduced. S- W correlation plots exhibit distinct positron trapping defect states in three samples.

  3. Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor

    DOEpatents

    Tkaczyk, J.E.; Lay, K.W.; He, Q.

    1997-07-08

    A method is disclosed for fabricating a polycrystalline <223> thallium-containing superconductor having high critical current at elevated temperatures and in the presence of a magnetic field. A powder precursor containing compounds other than thallium is compressed on a substrate. Thallium is incorporated in the densified powder precursor at a high temperature in the presence of a partial pressure of a thallium-containing vapor. 2 figs.

  4. Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Alperin, Marc J.; Bebout, Brad M.; Martens, Christopher S.; Des Marais, David J.

    2002-01-01

    The simple biochemistry of H2 is critical to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. The sensitivity of each of these processes to H2 can be described collectively, through the quantitative language of thermodynamics. A necessary prerequisite is to understand the factors that, in turn, control H2 partial pressures. These factors are assessed for two distinctly different ecosystems. In anoxic sediments from Cape Lookout Bight (North Carolina, USA), H2 partial pressures are strictly maintained at low, steady-state levels by H2-consuming organisms, in a fashion that can be quantitatively predicted by simple thermodynamic calculations. In phototrophic microbial mats from Baja California (Mexico), H2 partial pressures are controlled by the activity of light-sensitive H2-producing organisms, and consequently fluctuate over orders of magnitude on a daily basis. The differences in H2 cycling can subsequently impact any of the H2-sensitive microbial processes in these systems. In one example, methanogenesis in Cape Lookout Bight sediments is completely suppressed through the efficient consumption of H2 by sulfate-reducing bacteria; in contrast, elevated levels of H2 prevail in the producer-controlled phototrophic system, and methanogenesis occurs readily in the presence of 40 mM sulfate.

  5. Endothelial microvesicles in hypoxic hypoxia diseases.

    PubMed

    Deng, Fan; Wang, Shuang; Xu, Riping; Yu, Wenqian; Wang, Xianyu; Zhang, Liangqing

    2018-05-29

    Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. FirefOx Design Reference fO2 Sensor for Hot, Deep Atmospheres

    NASA Astrophysics Data System (ADS)

    Izenberg, N.; Papadakis, S.; Deglau, D.; Francomacaro, A. S.

    2016-12-01

    Understanding the composition of the lowest portion of Venus' atmosphere is critical to knowing the stable mineralogy of the rocks there. Oxygen gas is a critical trace component, with fugacity, or partial pressure, estimated in the range of 10-19 to 10-22 from early probe measurements down to 22km altitude (Pioneer Venus, Venera), chemical equilibrium measurements, and other modeling. "FirefOx" is a simple oxygen fugacity sensor with the express purpose of determining the partial pressure of oxygen in the lowest scale heights of the Venus atmosphere, and especially the lowest hundreds of meters; the surface atmosphere interface, where the atmosphere and surface move to thermodynamic equilibrium. Knowledge of the fO2 at the surface atmosphere interface is crucial to determining the stable mineralogy of surface materials (e.g. magnetite vs. hematite) and gas chemistry in the near-surface atmosphere FirefOx is a Metal/Metal Oxide oxygen fugacity sensor intended to be mounted on the outside of a Venus descent probe, with electronics housed inside a thermally controlled environment. The sole sensor capability is the precise, accurate detection of the partial pressure of oxygen gas (fO2) in the near-surface environment of Venus, at up to 95-bar pressure (predominantly CO2. Surface temperatures at mean planetary elevation are near 735 K, thus a required operational temperature range of 710-740 K covers a range of near-surface elevations. FirefOx system requirements are low ( 100-200 grams, mass, milliwatt power, several kilobytes total science data). A design reference sensor, composed of custom, Yittria-ZrO ceramic electrolyte, with an encapsulated Pd/PdO standard and patterned Pt electrodes has demonstrated scientifically useful signal-to-noise millivolt level potential at temperatures as low as 620 K, relatable to fO2 by a Nernst equation E = RT/4F ln(PO2/PrefO2) where E = open circuit potential across the sensor electrolyte, R = universal gas constant, T = temperature, F = Faraday constant, PrefO2 = reference oxygen pressure, and PO2 = unknown oxygen pressure of the outside environment. The FirefOx sensor shows promise for direct fO2 measurement on potential upcoming Venus in situ and other deep atmosphere probes.

  7. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  8. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats.

    PubMed

    Jia, L; Cepurna, W O; Johnson, E C; Morrison, J C

    2000-05-01

    To determine the diural intraocular pressure (IOP) response of Brown Norway rat eyes after sclerosis of the aqueous humor outflow pathways and its relationship to optic nerve damage. Hypertonic saline was injected into a single episcleral vein in 17 animals and awake IOP measured in both the light and dark phases of the circadian cycle for 34 days. Mean IOP for light and dark phases during the experimental period were compared with the respective pressures of the uninjected fellow eyes. Optic nerve cross sections from each nerve were graded for injury by five independent masked observers. For fellow eyes, mean light- and dark-phase IOP was 21 +/- 1 and 31 +/- 1 mm Hg, respectively. For four experimental eyes, mean IOPs for both phases were not altered. Six eyes demonstrated significant mean IOP elevations only during the dark phase. Of these, five showed persistent, large circadian oscillations, and four had partial optic nerve lesions. The remaining seven eyes experienced significant IOP elevations during both phases, and all had extensive optic nerve damage. Episcleral vein injection of hypertonic saline is more likely to increase IOP during the dark phase than the light. This is consistent with aqueous outflow obstruction superimposed on a circadian rhythm of aqueous humor production. Because these periodic IOP elevations produced optic nerve lesions, both light- and dark-phase IOP determinations are necessary for accurate correlation of IOP history to optic nerve damage in animals housed in a light- dark environment.

  9. Spectral properties of gaseous uranium hexafluoride at high temperature

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1980-01-01

    A study to determine relative spectral emission and spectral absorption data for UF6-argon mixtures at elevated temperatures is discussed. These spectral data are required to assist in the theoretical analysis of radiation transport in the nuclear fuel-buffer gas region of a plasma core reactor. Relative emission measurements were made for UF6-argon mixtures over a range of temperatures from 650 to 1900 K and in the wavelength range from 600 to 5000 nanometers. All emission results were determined for a total pressure of 1.0 atm. Uranium hexafluoride partial pressures varied from about 3.5 to 12.7 mm Hg. Absorption measurements were attempted at 600, 625, 650 and 675 nanometers for a temperature of 1000 K. The uranium partial pressure for these determinations was 25 mm Hg. The results exhibit appreciable emission for hot UF6-argon mixtures at wavelengths between 600 and 1800 nanometers and no measurable absorption. The equipment used to evaluate the spectral properties of the UF6-argon mixtures included a plasma torch-optical plenum assembly, the monochromator, and the UF6 transfer system. Each is described.

  10. Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry

    DOE PAGES

    Osterberg, Paul M.; Niemeier, Jeffry K.; Welch, Christopher J.; ...

    2014-12-06

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. Furthermore, the data obtained from these studies help define safe operating conditions for the use of oxygen with organicmore » solvents.« less

  11. Ocean acidification causes structural deformities in juvenile coral skeletons.

    PubMed

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.

  12. Ocean acidification causes structural deformities in juvenile coral skeletons

    PubMed Central

    Foster, Taryn; Falter, James L.; McCulloch, Malcolm T.; Clode, Peta L.

    2016-01-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a “business-as-usual” emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100. PMID:26989776

  13. Acute metabolic and physiologic response of goats to narcosis

    NASA Technical Reports Server (NTRS)

    Schatte, C. L.; Bennett, P. B.

    1973-01-01

    Assessment of the metabolic consequences of exposure to elevated partial pressures of nitrogen and helium under normobaric and hyperbaric conditions in goats. The results include the finding that hyperbaric nitrogen causes and increase in metabolic rate and a general decrease in blood constituent levels which is interpreted as reflecting a shift toward fatty acid metabolism at the expense of carbohydrates. A similar but more pronounced pattern was observed with hyperbaric helium.

  14. Animal model of neuropathic tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.

    2001-01-01

    Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.

  15. Determination of partial molar volumes from free energy perturbation theory†

    PubMed Central

    Vilseck, Jonah Z.; Tirado-Rives, Julian

    2016-01-01

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood–Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm3 mol−1. The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute–solvent interactions. PMID:25589343

  16. Determination of partial molar volumes from free energy perturbation theory.

    PubMed

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2015-04-07

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.

  17. Is High Blood Pressure Self-Protection for the Brain?

    PubMed

    Warnert, Esther A H; Rodrigues, Jonathan C L; Burchell, Amy E; Neumann, Sandra; Ratcliffe, Laura E K; Manghat, Nathan E; Harris, Ashley D; Adams, Zoe; Nightingale, Angus K; Wise, Richard G; Paton, Julian F R; Hart, Emma C

    2016-12-09

    Data from animal models of hypertension indicate that high blood pressure may develop as a vital mechanism to maintain adequate blood flow to the brain. We propose that congenital vascular variants of the posterior cerebral circulation and cerebral hypoperfusion could partially explain the pathogenesis of essential hypertension, which remains enigmatic in 95% of patients. To evaluate the role of the cerebral circulation in the pathophysiology of hypertension. We completed a series of retrospective and mechanistic case-control magnetic resonance imaging and physiological studies in normotensive and hypertensive humans (n=259). Interestingly, in humans with hypertension, we report a higher prevalence of congenital cerebrovascular variants; vertebral artery hypoplasia, and an incomplete posterior circle of Willis, which were coupled with increased cerebral vascular resistance, reduced cerebral blood flow, and a higher incidence of lacunar type infarcts. Causally, cerebral vascular resistance was elevated before the onset of hypertension and elevated sympathetic nerve activity (n=126). Interestingly, untreated hypertensive patients (n=20) had a cerebral blood flow similar to age-matched controls (n=28). However, participants receiving antihypertensive therapy (with blood pressure controlled below target levels) had reduced cerebral perfusion (n=19). Finally, elevated cerebral vascular resistance was a predictor of hypertension, suggesting that it may be a novel prognostic or diagnostic marker (n=126). Our data indicate that congenital cerebrovascular variants in the posterior circulation and the associated cerebral hypoperfusion may be a factor in triggering hypertension. Therefore, lowering blood pressure may worsen cerebral perfusion in susceptible individuals. © 2016 American Heart Association, Inc.

  18. Prolonged partial upper airway obstruction during sleep – an underdiagnosed phenotype of sleep-disordered breathing

    PubMed Central

    Anttalainen, Ulla; Tenhunen, Mirja; Rimpilä, Ville; Polo, Olli; Rauhala, Esa; Himanen, Sari-Leena; Saaresranta, Tarja

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is a well-recognized disorder conventionally diagnosed with an elevated apnea–hypopnea index. Prolonged partial upper airway obstruction is a common phenotype of sleep-disordered breathing (SDB), which however is still largely underreported. The major reasons for this are that cyclic breathing pattern coupled with arousals and arterial oxyhemoglobin saturation are easy to detect and considered more important than prolonged episodes of increased respiratory effort with increased levels of carbon dioxide in the absence of cycling breathing pattern and repetitive arousals. There is also a growing body of evidence that prolonged partial obstruction is a clinically significant form of SDB, which is associated with symptoms and co-morbidities which may partially differ from those associated with OSAS. Partial upper airway obstruction is most prevalent in women, and it is treatable with the nasal continuous positive pressure device with good adherence to therapy. This review describes the characteristics of prolonged partial upper airway obstruction during sleep in terms of diagnostics, pathophysiology, clinical presentation, and comorbidity to improve recognition of this phenotype and its timely and appropriate treatment. PMID:27608271

  19. Infragravity waves on fringing reefs in the tropical Pacific: Dynamic setup

    NASA Astrophysics Data System (ADS)

    Becker, J. M.; Merrifield, M. A.; Yoon, H.

    2016-05-01

    Cross-shore pressure and current observations from four fringing reefs of lengths ranging from 135 to 420 m reveal energetic low-frequency (˜0.001-0.05 Hz) motions. The spatial structure and temporal amplitudes of an empirical orthogonal function analysis of the pressure measurements suggest the dominant low-frequency variability is modal. Incoming and outgoing linear flux estimates also support partially standing modes on the reef flat during energetic events. A cross-covariance analysis suggests that breakpoint forcing excites these partially standing modes, similar to previous findings at other steep reefs. The dynamics of Symonds et al. (1982) with damping are applied to a step reef, with forcing obtained by extending a point break model of Vetter et al. (2010) for breaking wave setup to the low-frequency band using the shoaled envelope of the incident free surface elevation. A one parameter, linear analytical model for the reef flat free surface elevation is presented, which describes between 75% and 97% of the variance of the observed low-frequency shoreline significant wave height for all reefs considered over a range of conditions. The linear model contains a single dimensionless parameter that is the ratio of the inertial to dissipative time scales, and the observations from this study exhibit more low-frequency variability when the dissipative time scale is greater than the inertial time scale for the steep reefs considered.

  20. [The effect of altered oxygen partial pressure on the resisitance to hypoxia and expression of oxygen-sensitive genes in Drosophila melanogaster].

    PubMed

    Berezovs'kyĭ, V Ia; Chaka, O H; Litovka, I H; Levashov, M I; Ianko, R V

    2014-01-01

    As a result of resistance test to hypoxia of Drosophilas melanogaster of Oregon strain, we identified a high resistance (Group II) and low resistance (Group III) subpopulations of flies. Flies from groups II and III were incubated in a constant normobaric hypoxia (Po2=62-64 mm Hg) for 10 generations. A highly resistant group (Group IV) were exposed to a shortterm anoxia (Po,=1,5 mm Hg, 5 min) every generation. Larvae from Groups II, III, and IV demonstrated significantly elevated levels of Sir and CG 14740 expression. Larvae from Group II had a significantly higher expression of CG 14740 compared to group III. The restitution time after exposure to anoxia was significantly reduced in Group II (on 31% of the control values) Our results suggest that long-term adaptation to low oxygen partial pressure of highly resistant Drosophila significantly reduces the time of restitution and increases the expression of Sir2 and CG14740 genes.

  1. Jumonji Domain Containing Protein 6: A Novel Oxygen Sensor in the Human Placenta.

    PubMed

    Alahari, Sruthi; Post, Martin; Caniggia, Isabella

    2015-08-01

    Persistent low oxygen is implicated in the pathogenesis of placental-associated pathologies such as preeclampsia, a serious disorder of pregnancy. Emerging evidence implicates a novel family of Jumonji C catalytic domain proteins as mediators of hypoxic gene expression. Here, we investigated the regulatory relationship between Jumonji C domain containing protein 6 (JMJD6) and hypoxia-inducible factor (HIF)1A in the human placenta at physiological and pathological conditions. JMJD6 expression inversely correlated with changes in oxygen tension during early placental development, ie, high at 7-9 weeks when-partial pressure of O2 is low and declining afterwards when-partial pressure of O2 increases. Moreover, JMJD6 protein was significantly elevated in early-onset preeclamptic placentae, localizing to the syncytiotrophoblast layer and syncytial knots. Exposure of primary isolated trophoblast cells, human villous explants, and JEG3 choriocarcinoma cells to low oxygen (3%) and sodium nitroprusside (inducer of oxidative stress) also resulted in elevated JMJD6 levels, which was abrogated by HIF1A knockdown. In normoxia, knockdown of JMJD6 in JEG3 cells stabilized HIF1A with a concomitant decrease in von Hippel-Lindau (VHL) tumor suppressor protein, a negative regulator of HIF1A stability. In contrast, overexpression of JMJD6 enhanced VHL expression and destabilized HIF1A. JMJD6 regulation of VHL stability did not involve the ubiquitin-proteasome system but likely occurred through lysyl hydroxylation and small ubiquitin-like modifier 1-dependent small ubiquitin-like modifierylation. In summary, our data signify a novel role for JMJD6 as an oxygen sensor in the human placenta, and alterations in the JMJD6-VHL-HIF1A feedback loop may indirectly contribute to elevated HIF1A found in preeclampsia.

  2. Formic Acid Formation by Clostridium ljungdahlii at Elevated Pressures of Carbon Dioxide and Hydrogen

    PubMed Central

    Oswald, Florian; Stoll, I. Katharina; Zwick, Michaela; Herbig, Sophia; Sauer, Jörg; Boukis, Nikolaos; Neumann, Anke

    2018-01-01

    Low productivities of bioprocesses using gaseous carbon and energy sources are usually caused by the low solubility of those gases (e.g., H2 and CO). It has been suggested that increasing the partial pressure of those gases will result in higher dissolved concentrations and should, therefore, be helpful to overcome this obstacle. Investigations of the late 1980s with mixtures of hydrogen and carbon monoxide showed inhibitory effects of carbon monoxide partial pressures above 0.8 bar. Avoiding any effects of carbon monoxide, we investigate growth and product formation of Clostridium ljungdahlii at absolute process pressures of 1, 4, and 7 bar in batch stirred tank reactor cultivations with carbon dioxide and hydrogen as sole gaseous carbon and energy source. With increasing process pressure, the product spectrum shifts from mainly acetic acid and ethanol to almost only formic acid at a total system pressure of 7 bar. On the other hand, no significant changes in overall product yield can be observed. By keeping the amount of substance flow rate constant instead of the volumetric gas feed rate when increasing the process pressure, we increased the overall product yield of 7.5 times of what has been previously reported in the literature. After 90 h of cultivation at a total pressure of 7 bar a total of 4 g L−1 of products is produced consisting of 82.7 % formic acid, 15.6 % acetic acid, and 1.7 % ethanol. PMID:29484294

  3. Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Shock, Everetr L.; Koretsky, Carla M.

    1995-04-01

    Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.

  4. A comparison of soil climate and biological activity along an elevation gradient in the eastern Mojave Desert

    USGS Publications Warehouse

    Amundson, R.G.; Chadwick, O.A.; Sowers, J.M.

    1989-01-01

    Soil temperature, moisture, and CO2 were monitored at four sites along an elevation transect in the eastern Mojave Desert from January to October, 1987. Climate appeared to be the major factor controlling CO2 partial pressures, primarily through its influence of rates of biological reactions, vegetation densities, and organic matter production. With increasing elevation, and increasing actual evapotranspiration, the organic C, plant density, and the CO2 content of the soils increased. Between January and May, soil CO2 concentrations at a given site were closely related to variations in soil temperature. In July and October, temperatures had little effect on CO2, presumably due to low soil moisture levels. Up to 75% of litter placed in the field in March was lost by October whereas, for the 3 lower elevations, less than 10% of the litter placed in the field in April was lost through decomposition processes. ?? 1989 Springer-Verlag.

  5. Rapid Liver Hypertrophy After Portal Vein Occlusion Correlates with the Degree of Collateralization Between Lobes-a Study in Pigs.

    PubMed

    Deal, Rebecca; Frederiks, Charles; Williams, Lauren; Olthof, Pim B; Dirscherl, Konstantin; Keutgen, Xavier; Chan, Edie; Deziel, Daniel; Hertl, Martin; Schadde, Erik

    2018-02-01

    Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) induces more rapid liver growth than portal vein ligation (PVL). Transection of parenchyma in ALPPS may prevent the formation of collaterals between lobes. The aim of this study was to determine if abrogating the formation of collaterals through parenchymal transection impacted growth rate. Twelve Yorkshire Landrace pigs were randomized to undergo ALPPS, PVL, or "partial ALPPS" by varying degrees of parenchymal transection. Hepatic volume was measured after 7 days. Portal blood flow and pressure were measured. Portal vein collaterals were examined from epoxy casts. PVL, ALPPS, and partial ALPPS led to volume increases of the RLL by 15.5% (range 3-22), 64% (range 45-76), and 32% (range 18-77), respectively, with significant differences between PVL and ALPPS/partial ALPPS (p < 0.05). In PVL and partial ALPPS, substantial new portal vein collaterals were found. The number of collaterals correlated inversely with the growth rate (p = 0.039). Portal vein pressure was elevated in all models after ligation suggesting hyperflow to the portal vein-supplied lobe (p < 0.05). These data suggest that liver hypertrophy following PVL is inversely proportional to the development of collaterals. Hypertrophy after ALPPS is likely more rapid due to reduction of collaterals through transection.

  6. Acute postoperative obstruction of extracardiac conduit due to separation of thin fibrous peel.

    PubMed

    Agarwal, K C; Edwards, W D; Puga, F J; Mair, D D

    1982-03-01

    Late postoperative obstruction of extracardiac conduits may occur in some patients and may result from one of several mechanisms. Severe intraoperative or early postoperative obstruction of such conduits is very rare. Herein we describe a case of acute, severe, early postoperative obstruction of an extracardiac conduit; this followed partial excision and replacement of a Hancock conduit in which late postoperative calcific valvular stenosis had occurred. Unexpectedly elevated right ventricular pressure should suggest the possibility of acute conduit obstruction. In cases with partial conduit replacement, the remaining segment should be carefully inspected for the presence of a peel; if a peel is present, it should be removed from the conduit even if it is considered thin and nonobstructive.

  7. Job strain associated with increases in ambulatory blood and pulse pressure during and after work hours among female hotel room cleaners.

    PubMed

    Feaster, Matt; Krause, Niklas

    2018-06-01

    Previously documented elevated hypertension rates among Las Vegas hotel room cleaners are hypothesized to be associated with job strain. Job strain was assessed by questionnaire. Ambulatory blood pressure (ABP) was recorded among 419 female cleaners from five hotels during 18 waking hours. Multiple linear regression models assessed associations of job strain with ABP and pulse pressure for 18-h, work hours, and after work hours. Higher job strain was associated with increased 18-h systolic ABP, after work hours systolic ABP, and ambulatory pulse pressure. Dependents at home but not social support at work attenuated effects. Among hypertensive workers, job strain effects were partially buffered by anti-hypertensive medication. High job strain is positively associated with blood pressure among female hotel workers suggesting potential for primary prevention at work. Work organizational changes, stress management, and active ABP surveillance and hypertension management should be considered for integrated intervention programs. © 2018 Wiley Periodicals, Inc.

  8. Exposure of Arabidopsis thaliana to Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Human Exploration Missions and Terraforming on Mars

    NASA Astrophysics Data System (ADS)

    Richards, Jeffrey T.; Corey, Kenneth A.; Paul, Anna-Lisa; Ferl, Robert J.; Wheeler, Raymond M.; Schuerger, Andrew C.

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P net) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO2 levels were allowed to drawdown from 0.1 kPa to CO2 compensation points to assess P net rates under different hypobaric conditions. Results showed that P net increased as the pressures decreased from 101 to 10 kPa when CO2 partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO2 was in the nonlimiting range from 0.10 to 0.07 kPa, the P net rates were insensitive to decreasing pressures. Thus, if CO2 concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P net rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

  9. Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars.

    PubMed

    Richards, Jeffrey T; Corey, Kenneth A; Paul, Anna-Lisa; Ferl, Robert J; Wheeler, Raymond M; Schuerger, Andrew C

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

  10. Warming and pCO2 effects on Florida stone crab larvae

    NASA Astrophysics Data System (ADS)

    Gravinese, Philip M.; Enochs, Ian C.; Manzello, Derek P.; van Woesik, Robert

    2018-05-01

    Greenhouse gas emissions are increasing ocean temperatures and the partial pressure of CO2 (pCO2), resulting in more acidic waters. It is presently unknown how elevated temperature and pCO2 will influence the early life history stages of the majority of marine coastal species. We investigated the combined effect of elevated temperature (30 °C control and 32 °C treatment) and elevated pCO2 (450 μatm control and 1100 μatm treatment) on the (i) growth, (ii) survival, (iii) condition, and (iv) morphology of larvae of the commercially important Florida stone crab, Menippe mercenaria. At elevated temperature, larvae exhibited a significantly shorter molt stage, and elevated pCO2 caused stage-V larvae to delay metamorphosis to post-larvae. On average, elevated pCO2 resulted in a 37% decrease in survivorship relative to the control; however the effect of elevated temperature reduced larval survivorship by 71%. Exposure to both elevated temperature and pCO2 reduced larval survivorship by 80% relative to the control. Despite this, no significant differences were detected in the condition or morphology of stone crab larvae when subjected to elevated temperature and pCO2 treatments. Although elevated pCO2 could result in a reduction in larval supply, future increases in seawater temperatures are even more likely to threaten the future sustainability of the stone-crab fishery.

  11. Thin-film nano-thermogravimetry applied to praseodymium-cerium oxide films at high temperatures

    NASA Astrophysics Data System (ADS)

    Schröder, Sebastian; Fritze, Holger; Bishop, Sean; Chen, Di; Tuller, Harry L.

    2018-05-01

    High precision measurements of oxygen nonstoichiometry δ in thin film metal oxides MaOb±δ at elevated temperatures and controlled oxygen partial pressures pO2 are reported with the aid of resonant microbalances. The resonant microbalances applied here consisted of y-cut langasite (La3Ga5SiO14) and CTGS (Ca3TaGa3Si2O14) piezoelectric resonators, operated in the thickness shear mode at ˜5 MHz. Measurements of variations in δ of Pr0.1Ce0.9O2-δ (PCO) films are reported for the oxygen partial pressure range from 10-8 bar to 0.2 bar at 700 °C, and these results were found to be in good agreement with previously reported oxygen nonstoichiometry δ data derived from chemical capacitance studies. The PCO thin-films were deposited via pulsed laser deposition on both sides of the resonators, whose series resonance frequency was tracked, converted into mass changes and, finally, into nonstoichiometry. The nonstoichiometry was observed to reach a plateau as the oxygen partial pressure dropped below about 10-5 bar, the behavior being attributed to the full reduction of Pr to the trivalent state. These resonators enable stable operation up to temperatures above 1000 °C, thereby maintaining high mass resolution suitable for determining oxygen nonstoichiometry variations in thin films deposited on such resonators. For the given experimental conditions, a mass resolution of ˜50 ng was achieved at 700 °C with the CTGS resonator.

  12. Time course of the establishment of uterine seawater conditions in late-term pregnant spiny dogfish (Squalus acanthias).

    PubMed

    Kormanik, G A

    1988-07-01

    The gestation period for embryos of the spiny dogfish, Squalus acanthias (L.) lasts for nearly 2 years. During the latter part of this period the pups remain in the uterus and the fluid surrounding the embryos resembles sea water with respect to the major ions, but is low in pH (approx. 6), high in partial pressure of carbon dioxide (approx. 3 mmHg; 1 mmHg = 133.3 Pa), low in total carbon dioxide content (approx. 0.2 mmol l-1), and may have a total ammonia concentration of up to 22 mmol l-1. Thus the conditions under which the pups complete their development in utero is quite remarkable. The derivation of these conditions was examined in late-term pregnant females, from whose uterine horns the pups had been removed, by monitoring changes that occurred in instilled uterine sea water. The mother is responsible for reducing the pH, reducing the total carbon dioxide content and elevating the partial pressure of carbon dioxide to the levels observed in fresh-caught females, in less than 24 h. The ammonia concentration is also elevated, but this takes rather longer. The decreased pH is responsible for the accumulation of ammonia in the uterine sea water, and it also serves to protect the pups from the toxic effects of NH3, by converting it to the relatively non-toxic ionic form, NH4+. The reasons for the establishment of these uterine seawater conditions are still not evident.

  13. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  14. Effects of elevated artificial pneumoperitoneum pressure on invasive blood pressure and levels of blood gases.

    PubMed

    Hypolito, Octavio; Azevedo, João Luiz; Gama, Fernanda; Azevedo, Otavio; Miyahira, Susana Abe; Pires, Oscar César; Caldeira, Fabiana Alvarenga; Silva, Thamiris

    2014-01-01

    to evaluate the clinical, hemodynamic, gas analysis and metabolic repercussions of high transient pressures of pneumoperitoneum for a short period of time to ensure greater security for introduction of the first trocar. sixty-seven patients undergoing laparoscopic procedures were studied and randomly distributed in P12 group: n=30 (intraperitoneal pressure [IPP] 12mmHg) and P20 group: n=37 (IPP of 20mmHg). Mean arterial pressure (MAP) was evaluated by catheterization of the radial artery; and through gas analysis, pH, partial pressure of oxygen (PaO2), partial pressure of CO2 (PaCO2), bicarbonate (HCO3) and alkalinity (BE) were evaluated. These parameters were measured in both groups at time zero before pneumoperitoneum (TP0); at time 1 (TP1) when IPP reaches 12mmHg in both groups; at time 2 (TP2) after five min with IPP=12mmHg in P12 and after 5min with IPP=20mmHg at P20; and at time 3 (TP3) after 10min with IPP=12mmHg in P12 and with return of IPP from 20 to 12mmHg, starting 10min after TP1 in P20. Different values from those considered normal for all parameters assessed, or the appearance of atypical organic phenomena, were considered as clinical changes. there were statistically significant differences in P20 group in MAP, pH, HCO3 and BE, but within normal limits. No clinical and pathological changes were observed. high and transient intra-abdominal pressure causes changes in MAP, pH, HCO3 and BE, but without any clinical impact on the patient. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    PubMed

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  16. Determination of Kicker Vacuum Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Martin E.

    This note examines the effect of elevated vacuum pressures in the kicker region of the DARHT 2nd Axis which can lead to changes in the beam tune due to the long pulse length. The kicker uses Rexolite as an insulator supporting the electrodes. Rexolite is hygroscopic resulting is a large outgassing rate and prolonged pump down times after exposure to atmospheric conditions. LAMDA [1] is used to simulate the effect of ionization of the residual gas resulting in partial space charge neutralization and changes to the tune between the beginning and end of the pulse. The effect of the ion-hosemore » instability is also examined. The purpose of this note is to establish/validate the required pressure in the downstream transport.« less

  17. Energy considerations in the partial space elevator

    NASA Astrophysics Data System (ADS)

    Woo, Pamela; Misra, Arun K.

    2014-06-01

    The space elevator has been proposed as an alternate method for space transportation. A partial elevator is composed of a tether of several hundreds of kilometres, held vertically in tension between two end masses, with its centre of orbit placed at the geosynchronous orbit. A spacecraft can dock at the lower end, and then use the climber on the elevator to ascend to higher altitudes. In this paper, energy calculations are performed, to determine whether a partial elevator can provide sufficient savings in operational costs, compared to the traditional rocket-powered launch. The energy required to launch a spacecraft from a Low Earth Orbit (LEO) to the geostationary orbit (GEO) is calculated for two trajectories. In the first trajectory, the spacecraft travels from LEO to GEO via a Hohmann transfer. In the second trajectory, the spacecraft travels from LEO to the lower end of the partial space elevator with a Hohmann transfer, and then uses the elevator to climb to GEO. The total energy required is compared between the two trajectories. The effects of tether length, spacecraft-to-climber mass ratio, altitude of LEO, and tether material are investigated.

  18. Detection of melting by X-ray imaging at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li; Weidner, Donald J.

    2014-06-15

    The occurrence of partial melting at elevated pressure and temperature is documented in real time through measurement of volume strain induced by a fixed temperature change. Here we present the methodology for measuring volume strains to one part in 10{sup −4} for mm{sup 3} sized samples in situ as a function of time during a step in temperature. By calibrating the system for sample thermal expansion at temperatures lower than the solidus, the onset of melting can be detected when the melting volume increase is of comparable size to the thermal expansion induced volume change. We illustrate this technique withmore » a peridotite sample at 1.5 GPa during partial melting. The Re capsule is imaged with a CCD camera at 20 frames/s. Temperature steps of 100 K induce volume strains that triple with melting. The analysis relies on image comparison for strain determination and the thermal inertia of the sample is clearly seen in the time history of the volume strain. Coupled with a thermodynamic model of the melting, we infer that we identify melting with 2 vol.% melting.« less

  19. 6. Partial view of rear elevations of shops building and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Partial view of rear elevations of shops building and Hangar 1301 with rear elevation of corridor (behind power plant) connecting the hangar and shops building. Side elevations of shops and hangar as well as upper rear story of power plant and stack are visible, looking south southwest - Dover Air Force Base, Hangar No. 1301, Dover, Kent County, DE

  20. Preflight studies on tolerance of pocket mice to oxygen and heat. I - Physiological studies

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Suri, K.; Mctigue, M.; Smith, J.; Cooper, W.; Miquel, J.; Ashley, W. W.; Behnke, A. R., Jr.; Saunders, J. F.

    1975-01-01

    Tests were carried out on pocket mice to ascertain their tolerance to elevated oxygen pressures alone and to a combination of hyperoxia and heat in excess of that expected during the flight of the mice on Apollo XVII. The mice withstood oxygen partial pressures up to 12 psi at normal room temperature (24 C, 75 F) over a period of 7 days. A few mice previously exposed to increased PO2 died in the course of exposure to an oxygen pressure of 10 psi or 12 psi (517 mm or 620 mm Hg) for 13 d in ambient heat of 32 C (90 F). Supplemental vitamin E and physiological saline loading given prior to exposure had no apparent protective effect. The overall conclusion was that the pocket mice which were to go on Apollo XVII could readily survive the ambient atmosphere to which they would be exposed.

  1. Efficient solar cells by space processing

    NASA Technical Reports Server (NTRS)

    Schmidt, F. A.; Campisi, G. J.; Bevolo, A.; Shanks, H. R.; Williams, D. E.

    1979-01-01

    Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation.

  2. Thin film devices used as oxygen partial pressure sensors

    NASA Technical Reports Server (NTRS)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  3. Some limitations on the possible composition of the ore-forming fluid

    USGS Publications Warehouse

    Barton, Paul B.

    1956-01-01

    The activity rations of various important anions (S, CO3, SO4, OH, F, and Cl) in hydrothermal solutions at the time of deposition are evaluated using a simple thermodynamic technique. The rations are interpreted in the light of the mineralogy of ore deposits and limites are placed on the variability of each ratio in hydrothermal solutions. All of the calculations are made for 25°C and cautious extrapolation to higher temperatures seems justified; however, additional data for elevated temperatures and pressures are needed before more than approximate values may be assigned to these ratios in the ore-forming fluid. The calculated partial pressure of CO2 in the ore fluid is generally less than one atmosphere, which suggests that a dense CO2 phase cannot be considered an importatn ore fluid for most deposits. The partial pressure of H2S is usually less than 10-4 atmospheres which makes it extremely difficult to defend the heory that metals (other than the easily complexible mercury, arsenic, antimony, and perhaps fols and silver) are transported in quantity as complex sulfide and hydrosulfides. The sulfate to sulfide ration is such that the oxidation potential at the time of deposition is defined by the following equation: Eh (in volts) = 0.22 ± 0.04 - 0.059 pH.

  4. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  5. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  6. Alveolar recruitment manoeuvre is safe in children prone to pulmonary hypertensive crises following open heart surgery: a pilot study.

    PubMed

    Amorim, Erica de Freitas; Guimaraes, Viviane Assuncao; Carmona, Fabio; Carlotti, Ana Paula de Carvalho Panzeri; Manso, Paulo Henrique; Ferreira, Cesar Augusto; Klamt, Jyrson Guilherme; Vicente, Walter Villela de Andrade

    2014-05-01

    To test the tolerance and safety of an alveolar recruitment manoeuvre performed in the immediate postoperative period of corrective open heart surgery in children with congenital heart disease associated with excessive pulmonary blood flow and pulmonary arterial hypertension due to left-to-right shunt. Ten infants aged 1-24 months with congenital heart disease associated with excessive pulmonary blood flow and pulmonary artery hypertension (mean pulmonary artery pressure ≥ 25 mmHg) were evaluated. The alveolar recruitment manoeuvre was performed in the operating theatre right after skin closure, and consisted of three successive stages of 30 s each, intercalated by a 1-min interval of baseline ventilation. Positive end-expiratory pressure was set to 10 cmH2O in the first stage and to 15 cmH2O in the two last ones, while the peak inspiratory pressure was kept at to 30 cmH2O in the first stage and at 35 cmH2O in the latter ones. Haemodynamic and respiratory variables were recorded. There was a slight but significant increase in mean pulmonary artery pressure from baseline to Stage 3 (P = 0.0009), as well as between Stages 1 and 2 (P = 0.0001), and 1 and 3 (P = 0.001), with no significant difference between Stages 2 and 3 (P = 0.06). Upon completion of the third stage, there were significant increases in arterial haemoglobin saturation as measured by pulse oximetry (P = 0.0009), arterial blood partial pressure of oxygen (P = 0.04), venous blood oxygen saturation of haemoglobin (P = 0.03) and arterial oxygen partial pressure over inspired oxygen fraction ratio (P = 0.04). A significant reduction in arterial blood partial pressure of carbon dioxide (P = 0.01) and in end tidal carbon dioxide also occurred (P = 0.009). The manoeuvre was well tolerated and besides a slight and transitory elevation in mean pulmonary artery, no other adverse haemodynamic or ventilatory effect was elicited. The alveolar recruitment manoeuvre seemed to be safe and well tolerated immediately after open heart surgery in infants liable to pulmonary hypertensive crises.

  7. Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure

    PubMed Central

    Griffin, Kevin L.; Anderson, O. Roger; Gastrich, Mary D.; Lewis, James D.; Lin, Guanghui; Schuster, William; Seemann, Jeffrey R.; Tissue, David T.; Turnbull, Matthew H.; Whitehead, David

    2001-01-01

    With increasing interest in the effects of elevated atmospheric CO2 on plant growth and the global carbon balance, there is a need for greater understanding of how plants respond to variations in atmospheric partial pressure of CO2. Our research shows that elevated CO2 produces significant fine structural changes in major cellular organelles that appear to be an important component of the metabolic responses of plants to this global change. Nine species (representing seven plant families) in several experimental facilities with different CO2-dosing technologies were examined. Growth in elevated CO2 increased numbers of mitochondria per unit cell area by 1.3–2.4 times the number in control plants grown in lower CO2 and produced a statistically significant increase in the amount of chloroplast stroma (nonappressed) thylakoid membranes compared with those in lower CO2 treatments. There was no observable change in size of the mitochondria. However, in contrast to the CO2 effect on mitochondrial number, elevated CO2 promoted a decrease in the rate of mass-based dark respiration. These changes may reflect a major shift in plant metabolism and energy balance that may help to explain enhanced plant productivity in response to elevated atmospheric CO2 concentrations. PMID:11226263

  8. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  9. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  10. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  11. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  12. Comparative Ecology of H2 Cycling in Organotrophic and Phototrophic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Bebout, Brad M.; Martens, Christopher S.; DesMarais, David J.; DeVincenzi, Don (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is critical to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. The sensitivity of these many processes to H2 can be described quantitatively, at a basic thermodynamic level. This shared dependence on H2 may provide a means for interpreting the ecology and system-level biogeochemistry of widely variant microbial ecosystems on a common (and quantitative) level. Understanding the factors that control H2 itself is a critical prerequisite. Here, we examine two ecosystems that vary widely with respect to H2 cycling. In anoxic, 'organotrophic' sediments from Cape Lookout Bight (North Carolina, USA), H2 partial pressures are strictly maintained at low, steady-state levels by H2-consuming organisms, in a fashion that can be quantitatively predicted by simple thermodynamic calculations. In phototrophic microbial mats from Baja, Mexico, H2 partial pressures are instead controlled by the activity of light-sensitive H2-producing organisms. In consequence, H2 partial pressures within the system fluctuate by orders of magnitude on hour-long time scales. The differences in H2 cycling subsequently impact H2-sensitive microbial processes, such as methanogenesis. For example, the presence of sulfate in the organotrophic system always yielded low levels of H2 that were inhibitory to methanogenesis; however, the elevated levels of H2 in the phototrophic system favored methane production at significant levels, even in the presence of high sulfate concentrations. The myriad of other H2-sensitive microbial processes are expected to exhibit similar behavior.

  13. 4. View northeast of west (partial) and south elevations. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View northeast of west (partial) and south elevations. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  14. 5. View northwest of south (partial) and east elevations. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View northwest of south (partial) and east elevations. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  15. [The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure].

    PubMed

    Yang, Zhikuan; Ge, Jian; Yin, Wei; Shen, Huangxuan; Liu, Haiquan; Guo, Yan

    2004-12-01

    To investigate the expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with Vitamin B1 and (or) elevated pressure. The retinal neuron of postnatal SD rats were cultured in vivo, the elevated pressure was produced after 7 days, and the total RNA was extracted after another 2 days, expression of p53, MDM2 and Ref1 gene were analyzed with RT-PCR. The expression level of p53 and MDM2 gene were increased in elevated pressure group, normal with Ref1 gene expression. But the expression of p53 and MDM2 gene were decreased significantly in elevated pressure group treated with vitamine B1 compare to the elevated group. Apoptosis seem to be a mechanism of cell death in retinal neurons of SD rats with elevated pressure.Vitamine B1 have protect effects against elevated pressure.

  16. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  17. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  18. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  19. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  20. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  1. Cerebral Pulsatility Index Is Elevated in Patients with Elevated Right Atrial Pressure.

    PubMed

    Lahiri, Shouri; Schlick, Konrad H; Padrick, Matthew M; Rinsky, Brenda; Gonzalez, Nestor; Jones, Heather; Mayer, Stephan A; Lyden, Patrick D

    2018-01-01

    Extracerebral venous congestion can precipitate intracranial hypertension due to obstruction of cerebral blood outflow. Conditions that increase right atrial pressure, such as hypervolemia, are thought to increase resistance to jugular venous outflow and contribute to cerebro-venous congestion. Cerebral pulsatility index (CPI) is considered a surrogate marker of distal cerebrovascular resistance and is elevated with intracranial hypertension. Thus, we sought to test the hypothesis that elevated right atrial pressure is associated with increased CPI compared to normal right atrial pressure. We retrospectively reviewed 61 consecutive patients with subarachnoid hemorrhage. We calculated CPI from transcranial Doppler studies and correlated these with echocardiographic measures of right atrial pressure. CPIs were compared from patients with elevated and normal right atrial pressure. There was a significant difference between CPI obtained from all patients with elevated right atrial pressure compared to those with normal right atrial pressure (P < .0001). This finding was consistent in sensitivity analysis that compared right and left hemispheric CPI from patients with both elevated and normal right atrial pressure. Patients with elevated right atrial pressure had significantly higher CPI compared to patients with normal right atrial pressure. These findings suggest that cerebro-venous congestion due to impaired jugular venous outflow may increase distal cerebrovascular resistance as measured by CPI. Since elevated CPI is associated with poor outcome in numerous neurological conditions, future studies are needed to elucidate the significance of these results in other populations. Copyright © 2017 by the American Society of Neuroimaging.

  2. Real-Time Optical Monitoring and Simulations of Gas Phase Kinetics in InN Vapor Phase Epitaxy at High Pressure

    NASA Technical Reports Server (NTRS)

    Dietz, Nikolaus; Woods, Vincent; McCall, Sonya D.; Bachmann, Klaus J.

    2003-01-01

    Understanding the kinetics of nucleation and coalescence of heteroepitaxial thin films is a crucial step in controlling a chemical vapor deposition process, since it defines the perfection of the heteroepitaxial film both in terms of extended defect formation and chemical integrity of the interface. The initial nucleation process also defines the film quality during the later stages of film growth. The growth of emerging new materials heterostructures such as InN or In-rich Ga(x)In(1-x)N require deposition methods operating at higher vapor densities due to the high thermal decomposition pressure in these materials. High nitrogen pressure has been demonstrated to suppress thermal decomposition of InN, but has not been applied yet in chemical vapor deposition or etching experiments. Because of the difficulty with maintaining stochiometry at elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its melting point, temperature-dependent heat capacity, heat and entropy of formation are known with far less accuracy than for InP, InAs and InSb. Also, no information exists regarding the partial pressures of nitrogen and phosphorus along the liquidus surfaces of mixed-anion alloys of InN, of which the InN(x)P(1-x) system is the most interesting option. A miscibility gap is expected for InN(x)P(1-x) pseudobinary solidus compositions, but its extent is not established at this point by experimental studies under near equilibrium conditions. The extension of chemical vapor deposition to elevated pressure is also necessary for retaining stoichiometric single phase surface composition for materials that are characterized by large thermal decomposition pressures at optimum processing temperatures.

  3. 133. PARTIAL PLAN AND ELEVATION OF MILL HOUSE & MAP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. PARTIAL PLAN AND ELEVATION OF MILL HOUSE & MAP OF RESERVOIRS, From Annual Report of 1851, Water Department of Philadelphia - Fairmount Waterworks, East bank of Schuylkill River, Aquarium Drive, Philadelphia, Philadelphia County, PA

  4. Partial elevation view of the Oregon Trunk Railway Freight Depot, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at south end of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR

  5. Partial elevation view of the Oregon Trunk Railway Freight Depot, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at north end of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR

  6. Partial elevation view of the Oregon Trunk Railway Freight Depot, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at center of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR

  7. Factors associated with elevated plateau pressure in patients with acute lung injury receiving lower tidal volume ventilation.

    PubMed

    Prescott, Hallie C; Brower, Roy G; Cooke, Colin R; Phillips, Gary; O'Brien, James M

    2013-03-01

    Lung-protective ventilation with lower tidal volume and lower plateau pressure improves mortality in patients with acute lung injury and acute respiratory distress syndrome. We sought to determine the incidence of elevated plateau pressure in acute lung injury /acute respiratory distress syndrome patients receiving lower tidal volume ventilation and to determine the factors that predict elevated plateau pressure in these patients. We used data from 1398 participants in Acute Respiratory Distress Syndrome Network trials, who received lower tidal volume ventilation (≤ 6.5mL/kg predicted body weight). We considered patients with a plateau pressure greater than 30cm H2O and/or a tidal volume less than 5.5mL/kg predicted body weight on study day 1 to have "elevated plateau pressure." We used logistic regression to identify baseline clinical variables associated with elevated plateau pressure and to develop a model to predict elevated plateau pressure using a subset of 1,188 patients. We validated the model in the 210 patients not used for model development. Medical centers participating in Acute Respiratory Distress Syndrome Network clinical trials. None. Of the 1,398 patients in our study, 288 (20.6%) had elevated plateau pressure on day 1. Severity of illness indices and demographic factors (younger age, greater body mass index, and non-white race) were independently associated with elevated plateau pressure. The multivariable logistic regression model for predicting elevated plateau pressure had an area under the receiving operator characteristic curve of 0.71 for both the developmental and the validation subsets. acute lung injury patients receiving lower tidal volume ventilation often have a plateau pressure that exceeds Acute Respiratory Distress Syndrome Network goals. Race, body mass index, and severity of lung injury are each independently associated with elevated plateau pressure. Selecting a smaller initial tidal volume for non-white patients and patients with higher severity of illness may decrease the incidence of elevated plateau pressure. Prospective studies are needed to evaluate this approach.

  8. Improved Li/BCX (thionyl chloride) cells for space applications

    NASA Technical Reports Server (NTRS)

    Clark, W. D. K.; Ebel, S. J.; Eberhard, D. P.; Takeuchi, E. S.

    1988-01-01

    New NASA requirements for the screening of lithium cells for space applications involve thermal soaks at elevated temperatures (149 C). The BCX DD and C size cells have been redesigned to pass this test with only marginal losses in capacity as was done previously for the D cells. In addition, the pressure increases in cells subjected to this high temperature environment have been characterized showing that the earlier designs failed this exposure due to lack of void volume. An improve BCX chemistry has been demonstrated which significantly improves voltage delay problems encountered after partial discharge and storage of the cells.

  9. VIEW OF PARTIAL FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PARTIAL FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTHEAST (with scale stick) - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI

  10. VIEW OF PARTIAL FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PARTIAL FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTHEAST (without scale stick). - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI

  11. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  12. Raman Line Imaging of Poly(ε-caprolactone)/Carbon Dioxide Solutions at High Pressures: A Combined Experimental and Computational Study for Interpreting Intermolecular Interactions and Free-Volume Effects.

    PubMed

    Pastore Carbone, Maria Giovanna; Musto, Pellegrino; Pannico, Marianna; Braeuer, Andreas; Scherillo, Giuseppe; Mensitieri, Giuseppe; Di Maio, Ernesto

    2016-09-01

    In the present study, a Raman line-imaging setup was employed to monitor in situ the CO2 sorption at elevated pressures (from 0.62 to 7.10 MPa) in molten PCL. The method allowed the quantitative measurement of gas concentration in both the time-resolved and the space-resolved modes. The combined experimental and theoretical approach allowed a molecular level characterization of the system. The dissolved CO2 was found to occupy a volume essentially coincident with its van der Waals volume and the estimated partial molar volume of the probe did not change with pressure. Lewis acid-Lewis base interactions with the PCL carbonyls was confirmed to be the main interaction mechanism. The geometry of the supramolecular complex and the preferential interaction site were controlled more by steric than electronic effects. On the basis of the indications emerging from Raman spectroscopy, an equation of state thermodynamic model for the PCL-CO2 system, based upon a compressible lattice fluid theory endowed with specific interactions, has been tailored to account for the interaction types detected spectroscopically. The predictions of the thermodynamic model in terms of molar volume of solution have been compared with available volumetric measurements while predictions for CO2 partial molar volume have been compared with the values estimated on the basis of Raman spectroscopy.

  13. The study of excited oxygen molecule gas species production and quenching on thermal protection system materials

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Fujimoto, Gordon T.; Greene, Frank T.

    1987-01-01

    The detection of excited oxygen and ozone molecules formed by surface catalyzed oxygen atom recombination and reaction was investigated by laser induced fluorescence (LIF), molecular beam mass spectrometric (MBMS), and field ionization (FI) techniques. The experiment used partially dissociated oxygen flows from a microwave discharge at pressures in the range from 60 to 400 Pa or from an inductively coupled RF discharge at atmospheric pressure. The catalyst materials investigated were nickel and the reaction cured glass coating used for Space Shuttle reusable surface insulation tiles. Nonradiative loss processes for the laser excited states makes LIF detection of O2 difficult such that formation of excited oxygen molecules could not be detected in the flow from the microwave discharge or in the gaseous products of atom loss on nickel. MBMS experiments showed that ozone was a product of heterogeneous O atom loss on nickel and tile surfaces at low temperatures and that ozone is lost on these materials at elevated temperatures. FI was separately investigated as a method by which excited oxygen molecules may be conveniently detected. Partial O2 dissociation decreases the current produced by FI of the gas.

  14. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    PubMed

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.

  15. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  16. Electronic and chemical structure of the H 2O/GaN(0001) interface under ambient conditions

    DOE PAGES

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H 2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H 2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H 2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H 2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorptionmore » of H 2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H 2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less

  17. Precipitation chemistry of Lhasa and other remote towns, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, David D.; Peart, Mervyn; Jim, C. Y.; He, Y. Q.; Li, B. S.; Chen, J. A.

    Precipitation event samples during 1987-1988 field expedition periods and 1997, 1998, 1999 and 2000 have been collected at Lhasa, Dingri, Dangxiong and Amdo, Tibet. The sampling and analysis were based on WMO recommendations for a background network with some modifications according to local conditions and environmental characteristics. The following precipitation constituents and related parameters were measured: pH, conductivity, CO 2 partial pressure, total suspended particles, and the content of K +, Na +, Ca 2+, Mg 2+, Fe, Mn, NH 4+, Cl -, NO 2-, NO 3-, SO42- Br-, HCO 3- and HPO 42-. Some atmospheric dust samples have also been collected. Over 300 precipitation events have been measured for pH and conductivity. Among these, 60 have been analysed for their chemical components. The results show that Lhasa's precipitation events were constantly alkaline with weighted averages of pH 8.36 in the 1987-1988 period, and 7.5 for 1997 to 1999. Only one event was weakly acidic during 1997-1999. Although CO 2 partial pressure, a major producer of acidity in natural water on the Plateau, falls with increasing elevation, the lowest measured CO 2 partial pressure can only raise pH value by 0.1 units in the sampling areas. Chemical analysis indicates that the major contributor to alkaline precipitation is the continental dust, which is rich in calcium. The analysis also shows that Tibet is still one of the cleanest areas in the world with little air pollution. However, the decline of pH from the 1980s to 1990s, which was reflected by an increase of NO 3- and SO 42- in precipitation, alerts us to the urgency of environmental protection in this fragile paradise.

  18. 1. VIEW LOOKING SOUTHWEST AT PARTIAL EAST ELEVATION OF FACTORY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHWEST AT PARTIAL EAST ELEVATION OF FACTORY, SHOWING FORMER OHIO & ERIE CANAL PRISM IN FOREGROUND THAT WAS USED AS WATER RESERVOIR (500,000 GALLON) - Jaite Paper Mill, 1200 West Highland Road, Sagamore Hills, Summit County, OH

  19. NORTHEAST SIDE, PARTIAL FRONT FACADE. NOTE: A MORE COMPLETE ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHEAST SIDE, PARTIAL FRONT FACADE. NOTE: A MORE COMPLETE ELEVATION WAS NOT POSSIBLE DUE TO VEGETATION, SEE OBLIQUE SHOTS 2 AND 5. VIEW FACING SOUTHWEST. - Hickam Field, Officers' Housing Type G, 205 Seventh Street, Honolulu, Honolulu County, HI

  20. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  1. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect

    USGS Publications Warehouse

    McDowell, N.G.; Allen, Craig D.; Marshall, L.

    2010-01-01

    Drought- and insect-associated tree mortality at low-elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low-elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole-crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa−pc) derived from tree ring carbon isotope ratios (δ13C), corrected for temporal trends in atmospheric CO2 and δ13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa−pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa−pc to climate, and a steep relationship between pa−pc and BAI/BA. The pa−pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought – i.e., chronic water stress. It appears that chronic water stress predisposed low-elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in mid-latitude regions may drive increased mortality and ecotone shifts in temperate forests and woodlands.

  2. Pneumatosis cystoides intestinalis, four cases of a rare disease.

    PubMed

    Rennenberg, R J M W; Koek, G H; Van Hootegem, Ph; Stockbrügger, R W

    2002-03-01

    Pneumatosis cystoides intestinalis (PCI) is a disease in which small gas-filled cysts appear in the intestinal wall. Four cases presented here demonstrate the diversity of the associated diseases. In two of the patients constipation probably played a role; in the third patient decreased colonic motility, elevated intestinal pressure and increased mucosal permeability in the context of enteritis treated with codeine was the underlying problem; in the fourth high protein feeding and bowel ischaemia was diagnosed. Various aetiologies are presented in the literature. There is no specific history and physical or laboratory findings do not help to diagnose PCI. Plain abdominal film, ultrasound, computer tomography, magnetic resonance imaging, barium contrast studies and/or endoscopy may be necessary for diagnosis. Therapy is based on enhancing partial oxygen pressure in the bowel wall. PCI usually runs a benign course.

  3. Volatile products from the interaction of KCl(g) with Cr2O3 and LaCrO3 in oxidizing environments

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Fryburg, G. C.; Dillard, J. G.

    1977-01-01

    Cooled target collection techniques and high pressure mass spectrometric sampling were used to measure the relative rates of oxidative vaporization and to identify the volatile products emanating from samples of chromia and Mg-doped lanthanum chromite. The materials were exposed to partial pressures of KCl with and without H2O in one atmosphere of slowly flowing oxygen at elevated temperatures. Chromia and fresh samples of lanthanum chromite exhibited enhanced rates of oxidative vaporization upon exposure to these reactants. Mass spectrometric identification showed that the enhancements resulted from the heterogeneous formation of complex molecules of the type KCl sub 1,2,3 CrO3 and KOH sub l,2 CrO3. Lanthanum chromite that had undergone prolonged oxidative vaporization exhibited no enhanced oxidation upon exposure to the reactants.

  4. Hydrogen sulfide capture by limestone and dolomite at elevated pressure. 2: Sorbent particle conversion modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, C.A.P.; Yrjas, K.P.; Hupa, M.M.

    1996-03-01

    The physical structure of a limestone or dolomite to be used in in-bed sulfur capture in fluidized bed gasifiers has a great impact on the efficiency of sulfur capture and sorbent use. In this study an unreacted shrinking core model with variable effective diffusivity is applied to sulfidation test data from a pressurized thermogravimetric apparatus (P-TGA) for a set of physically and chemically different limestone and dolomite samples. The particle size was 250--300 {micro}m for all sorbents, which were characterized by chemical composition analysis, particle density measurement, mercury porosimetry, and BET internal surface measurement. Tests were done under typical conditionsmore » for a pressurized fluidized-bed gasifier, i.e., 20% CO{sub 2}, 950 C, 20 bar. At these conditions the limestone remains uncalcined, while the dolomite is half-calcined. Additional tests were done at low CO{sub 2} partial pressures, yielding calcined limestone and fully calcined dolomite. The generalized model allows for determination of values for the initial reaction rate and product layer diffusivity.« less

  5. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  6. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  7. 4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER SLAB, SUPPORT CARRIAGE, CONCRETE 'A' FRAME STRUCTURE AND CAMERA TOWER LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  8. The Human Sympathetic Nervous System Response to Spaceflight

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  9. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.

    2016-12-01

    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic and Pacific Transforms. We conclude that higher rates of cooling along transform does not have a major effect on the onset of partial crystallization along the mid-ocean ridges

  10. Sodium Bicarbonate for Control of ICP: A Systematic Review.

    PubMed

    Zeiler, Frederick A; Sader, Nicholas; West, Michael; Gillman, Lawrence M

    2018-01-01

    Our goal was to perform a systematic review of the literature on the use of intravenous sodium bicarbonate for intracranial pressure (ICP) reduction in patients with neurologic illness. Data sources: articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to April 2015), reference lists of relevant articles, and gray literature were searched. 2 reviewers independently extracted data including population characteristics and treatment characteristics. The strength of evidence was adjudicated using both the Oxford and Grading of Recommendation Assessment Development and Education methodology. Our search strategy produced a total 559 citations. Three original articles were included in the review. There were 2 prospective studies, 1 randomized control trial and 1 single arm, and 1 retrospective case report.Across all studies there were a total of 19 patients studied, with 31 episodes of elevated ICP being treated. Twenty-one of those episodes were treated with sodium bicarbonate infusion, with the remaining 10 treated with hypertonic saline in a control model. All elevated ICP episodes treated with sodium bicarbonate solution demonstrated a significant drop in ICP, without an elevation of serum partial pressure of carbon dioxide. No significant complications were described. There currently exists Oxford level 4, Grading of Recommendation Assessment Development and Education D evidence to support an ICP reduction effect with intravenous sodium bicarbonate in TBI. No comments on its impact in other neuropathologic states, or on patient outcomes, can be made at this time.

  11. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  12. Elevated blood pressure among primary school children in Dar es salaam, Tanzania: prevalence and risk factors.

    PubMed

    Muhihi, Alfa J; Njelekela, Marina A; Mpembeni, Rose N M; Muhihi, Bikolimana G; Anaeli, Amani; Chillo, Omary; Kubhoja, Sulende; Lujani, Benjamin; Maghembe, Mwanamkuu; Ngarashi, Davis

    2018-02-13

    Whilst the burden of non-communicable diseases is increasing in developing countries, little data is available on blood pressure among Tanzanian children. This study aimed at determining the blood pressure profiles and risk factors associated with elevated blood pressure among primary school children in Dar es Salaam, Tanzania. We conducted a cross sectional survey among 446 children aged 6-17 years from 9 randomly selected primary schools in Dar es Salaam. We measured blood pressure using a standardized digital blood pressure measuring machine (Omron Digital HEM-907, Tokyo, Japan). We used an average of the three blood pressure readings for analysis. Elevated blood pressure was defined as average systolic or diastolic blood pressure ≥ 90th percentile for age, gender and height. The proportion of children with elevated blood pressure was 15.2% (pre-hypertension 4.4% and hypertension 10.8%). No significant gender differences were observed in the prevalence of elevated BP. Increasing age and overweight/obese children were significantly associated with elevated BP (p = 0.0029 and p < 0.0001) respectively. Similar associations were observed for age and overweight/obesity with hypertension. (p = 0.0506 and p < 0.0001) respectively. In multivariate analysis, age above 10 years (adjusted RR = 3.63, 95% CI = 1.03-7.82) was significantly and independently associated with elevated BP in this population of school age children. We observed a higher proportion of elevated BP in this population of school age children. Older age and overweight/obesity were associated with elevated BP. Assessment of BP and BMI should be incorporated in school health program in Tanzania to identify those at risk so that appropriate interventions can be instituted before development of associated complications.

  13. Effects of Acutely Elevated Hydrostatic Pressure in a Rat Ex Vivo Retinal Preparation

    PubMed Central

    Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2010-01-01

    Purpose. A new experimental glaucoma model was developed by using an ex vivo rat retinal preparation to examine the effects of elevated hydrostatic pressure on retinal morphology and glutamine synthetase (GS) activity. Methods. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours in the presence of glutamate or glutamate receptor antagonists and examined histologically. GS activity was assessed by colorimetric assay. Results. Pressure elevation induced axonal swelling in the nerve fiber layer. Axonal swelling was prevented by a combination of non-N-methyl-d-aspartate (non-NMDA) receptor antagonist and an NMDA receptor antagonist, indicating that the damage results from activation of both types of glutamate receptor. When glial function was preserved, the typical changes induced by glutamate consisted of reversible Müller cell swelling resulting from excessive glial glutamate uptake. The irreversible Müller cell swelling in hyperbaric conditions may indicate that pressure disrupts glutamate metabolism. Indeed, elevated pressure inhibited GS activity. In addition, glutamate exposure after termination of pressure exposure exhibited apparent Müller cell swelling. Conclusions. These results suggest that the neural degeneration observed during pressure elevation is caused by impaired glial glutamate metabolism after uptake. PMID:20688725

  14. Reversible stalling of transcription elongation complexes by high pressure.

    PubMed

    Erijman, L; Clegg, R M

    1998-07-01

    We have investigated the effect of high hydrostatic pressure on the stability of RNA polymerase molecules during transcription. RNA polymerase molecules participating in stalled or active ternary transcribing complexes do not dissociate from the template DNA and nascent RNA at pressures up to 180 MPa. A lower limit for the free energy of stabilization of an elongating ternary complex relative to the quaternary structure of the free RNAP molecules is estimated to be 20 kcal/mol. The rate of elongation decreases at high pressure; transcription completely halts at sufficiently high pressure. The overall rate of elongation has an apparent activation volume (DeltaVdouble dagger) of 55-65 ml . mol-1 (at 35 degrees C). The pressure-stalled transcripts are stable and resume elongation at the prepressure rate upon decompression. The efficiency of termination decreases at the rho-independent terminator tR2 after the transcription reaction has been exposed to high pressure. This suggests that high pressure modifies the ternary complex such that termination is affected in a manner different from that of elongation. The solvent and temperature dependence of the pressure-induced inhibition show evidence for major conformational changes in the core polymerase enzyme during RNA synthesis. It is proposed that the inhibition of the elongation phase of the transcription reaction at elevated pressures is related to a reduction of the partial specific volume of the RNA polymerase molecule; under high pressure, the RNA polymerase molecule does not have the necessary structural flexibility required for the protein to translocate.

  15. Origins of pressure-induced protein transitions.

    PubMed

    Chalikian, Tigran V; Macgregor, Robert B

    2009-12-18

    The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.

  16. Boiling regimes of impacting drops on a heated substrate under reduced pressure

    NASA Astrophysics Data System (ADS)

    van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef

    2018-05-01

    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.

  17. Association of elevated blood pressure with low distress and good quality of life: results from the nationwide representative German Health Interview and Examination Survey for Children and Adolescents.

    PubMed

    Berendes, Angela; Meyer, Thomas; Hulpke-Wette, Martin; Herrmann-Lingen, Christoph

    2013-05-01

    Quality of life is often impaired in patients with known hypertension, but it is less or not at all reduced in people unaware of their elevated blood pressure. Some studies have even shown less self-rated distress in adults with elevated blood pressure. In this substudy of the nationwide German Health Interview and Examination Survey for Children and Adolescents (KIGGS), we addressed the question whether, also in adolescents, hypertensive blood pressure is linked to levels of distress and quality of life. Study participants aged 11 to 17 years (N = 7688) received standardized measurements of blood pressure, quality of life (using the Children's Quality of Life Questionnaire), and distress (Strengths and Difficulties Questionnaire). Elevated blood pressure was twice as frequent as expected, with 10.7% (n = 825) above published age-, sex- and height-adjusted 95th percentiles. Hypertensive participants were more likely to be obese and to report on adverse health behaviors, but they showed better academic success than did normotensive participants. Elevated blood pressure was significantly and positively associated with higher self- and parent-rated quality of life (for both, p ≤ .006), less hyperactivity (for both, p < .005), and lower parent-rated emotional (p < .001), conduct (p = .021), and overall problems (p = .001). Multiple regression analyses confirmed these findings. Our observation linking elevated blood pressure to better well-being and low distress can partly be explained by the absence of confounding physical comorbidity and the unawareness of being hypertensive. It also corresponds to earlier research suggesting a bidirectional relationship with repressed emotions leading to elevated blood pressure and, furthermore, elevated blood pressure serving as a potential stress buffer.

  18. TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular Ca2+ with Exposure to Hydrostatic Pressure

    PubMed Central

    Sappington, Rebecca M.; Sidorova, Tatiana; Long, Daniel J.; Calkins, David J.

    2013-01-01

    Purpose Elevated hydrostatic pressure induces retinal ganglion cell (RGC) apoptosis in culture. The authors investigated whether the transient receptor potential vanilloid 1 (TRPV1) channel, which contributes to pressure sensing and Ca2+-dependent cell death in other systems, also contributes to pressure-induced RGC death and whether this contribution involves Ca2+. Methods trpv1 mRNA expression in RGCs was probed with the use of PCR and TRPV1 protein localization through immunocytochemistry. Subunit-specific antagonism (iodo-resiniferatoxin) and agonism (capsaicin) were used to probe how TRPV1 activation affects the survival of isolated RGCs at ambient and elevated hydrostatic pressure (+70 mm Hg). Finally, for RGCs under pressure, the authors tested whether EGTA chelation of Ca2+ improves survival and whether, with the Ca2+ dye Fluo-4 AM, TRPV1 contributes to increased intracellular Ca2+. Results RGCs express trpv1 mRNA, with robust TRPV1 protein localization to the cell body and axon. For isolated RGCs under pressure, TRPV1 antagonism increased cell density and reduced apoptosis to ambient levels (P ≤ 0.05), whereas for RGCs at ambient pressure, TRPV1 agonism reduced density and increased apoptosis to levels for elevated pressure (P ≤ 0.01). Chelation of extracellular Ca2+ reduced RGC apoptosis at elevated pressure by nearly twofold (P ≤ 0.01). Exposure to elevated hydrostatic pressure induced a fourfold increase in RGC intracellular Ca2+ that was reduced by half with TRPV1 antagonism. Finally, in the DBA/2 mouse model of glaucoma, levels of TRPV1 in RGCs increased with elevated IOP. Conclusions RGC apoptosis induced by elevated hydrostatic pressure arises substantially through TRPV1, likely through the influx of extracellular Ca2+. PMID:18952924

  19. Reversal of retinal and optic disc ischemia in a patient with sickle cell trait and glaucoma secondary to traumatic hyphema.

    PubMed

    Wax, M B; Ridley, M E; Magargal, L E

    1982-07-01

    A 14-year-old black boy with sickle cell trait, who sustained a traumatic hyphema, developed moderately elevated intraocular pressure that failed to respond to carbonic anhydrase inhibitors and osmotic agents. On the tenth postinjury day, a sudden increased cupping of the optic disc and partial central retinal artery obstruction caused painless loss of vision. Reversal of the cupping, the retinal ischemia, and the intraocular pressure was documented following anterior chamber paracentesis, and visual acuity returned to 6/6. Pathophysiology of the posterior ischemia is discussed. This case documents the potentially debilitating course of traumatic hyphema in "benign" sickle cell trait and its avoidance with proper management. The authors endorse recent suggestions for careful observation of any sickle cell patient with traumatic hyphema, and recommend anterior chamber paracentesis, supplemental oxygen, and avoidance of osmotic agents, if secondary glaucoma develops following the initial trauma.

  20. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual

    PubMed Central

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-01-01

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706

  1. Systematic review of decreased intracranial pressure with optimal head elevation in postcraniotomy patients: a meta-analysis.

    PubMed

    Jiang, Yan; Ye, Zeng pan-pan; You, Chao; Hu, Xin; Liu, Yi; Li, Hao; Lin, Sen; Li, Ji-Pin

    2015-10-01

    To determine an optimal head elevation degree to decrease intracranial pressure in postcraniotomy patients by meta-analysis. A change in head position can lead to a change in intracranial pressure; however, there are conflicting data regarding the optimal degree of elevation that decreases intracranial pressure in postcraniotomy patients. Quantitative systematic review with meta-analysis following Cochrane methods. The data were collected during 2014; three databases (PubMed, Embase and China National Knowledge Internet) were searched for published and unpublished studies in English. The bibliographies of the articles were also reviewed. The inclusion criteria referred to different elevation degrees and effects on intracranial pressure in postcraniotomy patients. According to pre-determined inclusion criteria and exclusion criteria, two reviewers extracted the eligible studies using a standard data form. These included a total of 237 participants who were included in the meta-analysis. (1) Compared with 0 degree: 10, 15, 30 and 45 degrees of head elevation resulted in lower intracranial pressure. (2) Intracranial pressure at 30 degrees was not significantly different in comparison to 45 degrees and was lower than that at 10 and 15 degrees. Patients with increased intracranial pressure significantly benefitted from a head elevation of 10, 15, 30 and 45 degrees compared with 0 degrees. A head elevation of 30 or 45 degrees is optimal for decreasing intracranial pressure. Research about the relationship of position changes and the outcomes of patient primary diseases is absent. © 2015 John Wiley & Sons Ltd.

  2. Hypertension, Cardiovascular Risk Factors and Anti-Hypertensive Medication Utilization among HIV-infected Individuals in Rakai, Uganda

    PubMed Central

    Sander, Laura D.; Newell, Kevin; Ssebbowa, Paschal; Serwadda, David; Quinn, Thomas C.; Gray, Ronald H.; Wawer, Maria J.; Mondo, George; Reynolds, Steven

    2014-01-01

    Objectives To assess the prevalence of hypertension, elevated blood pressure and cardiovascular risk factors among HIV-positive individuals in rural Rakai District, Uganda. Methods We assessed 426 HIV-positive individuals in Rakai, Uganda from 2007 to 2010. Prevalence of hypertension and elevated blood pressure assessed by clinical measurement was compared to clinician-recorded hypertension in case report forms. Multiple logistic regression and z-tests were used to examine the association of hypertension and elevated blood pressure with age, sex, body mass index, CD4 cell count, and anti-retroviral treatment (ART) use. For individuals on anti-hypertensives, medication utilization was reviewed. Results The prevalence of hypertension (two elevated blood pressure readings at different time points) was 8.0% (95% CI: 5.4–10.6%), and that of elevated blood pressure (one elevated blood pressure reading) was 26.3% (95% CI: 22.1–30.5%). Age ≥50 years and higher body mass index were positively associated with elevated blood pressure. ART use, time on ART, and CD4 cell count were not associated with hypertension. 83% of subjects diagnosed with hypertension were on anti-hypertensive medications, most commonly beta-blockers and calcium channel blockers. Conclusions Hypertension is common among HIV-positive individuals in rural Uganda. PMID:25430847

  3. Effects of Chamber Pressure and Partial Pressure of Water Vapor on Secondary Drying in Lyophilization.

    PubMed

    Searles, James A; Aravapalli, Sridhar; Hodge, Cody

    2017-10-01

    Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.

  4. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  5. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  6. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  7. Importance of measuring lactate levels in children with sepsis.

    PubMed

    Anil, Nisha

    2017-10-10

    Sepsis is a major public health problem as well as one of the leading causes of preventable death in children because of failure to recognise the early signs and symptoms and to resuscitate rapidly. Blood lactate levels are used to assess the severity of sepsis and the effectiveness of resuscitation. Lactate levels are easily obtainable and should be checked in all patients admitted with suspected sepsis within six hours of presentation. The test should be repeated four and eight-hours post-diagnosis of sepsis. For the diagnosis of sepsis, patients' clinical symptoms, along with the combined analysis of partial pressure of oxygen, carbon dioxide and lactate levels, should be used. A multitude of factors can cause elevated lactate levels and so clinicians should use elevated levels cautiously by considering all other aetiologies. This article, which focuses on practice in Australia but makes reference to the UK, discusses the importance of measuring lactate levels in sepsis, the pathophysiology of lactate production, causes of elevated lactate levels, lactate measurement, nursing management of patients with elevated lactate levels, limitations of using lactate as a biomarker for diagnosing sepsis and implications for practice. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  8. Oblique partial east elevation of Castle Garden Bridge, from south, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique partial east elevation of Castle Garden Bridge, from south, showing structural configuration of Pratt truss, including typical panels, downstream end of squared cut stone masonry center pier, and squared cut stone masonry north abutment - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  9. The relationship between partial upper-airway obstruction and inter-breath transition period during sleep.

    PubMed

    Mann, Dwayne L; Edwards, Bradley A; Joosten, Simon A; Hamilton, Garun S; Landry, Shane; Sands, Scott A; Wilson, Stephen J; Terrill, Philip I

    2017-10-01

    Short pauses or "transition-periods" at the end of expiration and prior to subsequent inspiration are commonly observed during sleep in humans. However, the role of transition periods in regulating ventilation during physiological challenges such as partial airway obstruction (PAO) has not been investigated. Twenty-nine obstructive sleep apnea patients and eight controls underwent overnight polysomnography with an epiglottic catheter. Sustained-PAO segments (increased epiglottic pressure over ≥5 breaths without increased peak inspiratory flow) and unobstructed reference segments were manually scored during apnea-free non-REM sleep. Nasal pressure data was computationally segmented into inspiratory (T I , shortest period achieving 95% inspiratory volume), expiratory (T E , shortest period achieving 95% expiratory volume), and inter-breath transition period (T Trans , period between T E and subsequent T I ). Compared with reference segments, sustained-PAO segments had a mean relative reduction in T Trans (-24.7±17.6%, P<0.001), elevated T I (11.8±10.5%, P<0.001), and a small reduction in T E (-3.9±8.0, P≤0.05). Compensatory increases in inspiratory period during PAO are primarily explained by reduced transition period and not by reduced expiratory period. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Influence of periodically changing oxidizing and reducing environment on sulfur capture under PFBC conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yrjas, P.; Hupa, M.

    1997-12-31

    In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 C. Previously, the maximum has been attributed to the sintering of the sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this paper the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) is reported. In themore » pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}, SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, may play a more important role than the slightly reducing zones, concerning the sulfur capture in fluidized bed combustors.« less

  11. A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function.

    PubMed

    Wallner, Markus; Eaton, Deborah M; Berretta, Remus M; Borghetti, Giulia; Wu, Jichuan; Baker, Sandy T; Feldsott, Eric A; Sharp, Thomas E; Mohsin, Sadia; Oyama, Mark A; von Lewinski, Dirk; Post, Heiner; Wolfson, Marla R; Houser, Steven R

    2017-11-29

    Heart Failure with preserved Ejection Fraction (HFpEF) represents a major public health problem. The causative mechanisms are multifactorial and there are no effective treatments for HFpEF, partially attributable to the lack of well-established HFpEF animal models. We established a feline HFpEF model induced by slow-progressive pressure overload. Male domestic short hair cats (n = 20), underwent either sham procedures (n = 8) or aortic constriction (n = 12) with a customized pre-shaped band. Pulmonary function, gas exchange, and invasive hemodynamics were measured at 4-months post-banding. In banded cats, echocardiography at 4-months revealed concentric left ventricular (LV) hypertrophy, left atrial (LA) enlargement and dysfunction, and LV diastolic dysfunction with preserved systolic function, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension. Furthermore, LV diastolic dysfunction was associated with increased LV fibrosis, cardiomyocyte hypertrophy, elevated NT-proBNP plasma levels, fluid and protein loss in pulmonary interstitium, impaired lung expansion, and alveolar-capillary membrane thickening. We report for the first time in HFpEF perivascular fluid cuff formation around extra-alveolar vessels with decreased respiratory compliance. Ultimately, these cardiopulmonary abnormalities resulted in impaired oxygenation. Our findings support the idea that this model can be used for testing novel therapeutic strategies to treat the ever growing HFpEF population.

  12. Posterior corneal topographic changes after partial flap during laser in situ keratomileusis

    PubMed Central

    Sharma, N; Rani, A; Balasubramanya, R; Vajpayee, R B; Pandey, R M

    2003-01-01

    Aim: To study the posterior corneal topographic changes in eyes with partial flaps during laser assisted in situ keratomileusis (LASIK). Methods: Case records of 16 patients, who had partial flap in one eye during LASIK (group 1) and uncomplicated surgery in the other eye (group 2), were studied. Following occurrence of partial flap intraoperatively, laser ablation was abandoned in all the eyes. A 160/180 μm flap was attempted during the initial procedure using the Hansatome microkeratome (Bausch & Lomb Surgicals, Munich, Germany). LASIK surgery in all cases was performed using a 180 μm plate, at the mean interval of 4.16 (SD 1.5) months following the initial procedure. None of the eyes had intraoperative complication during LASIK. Relative posterior corneal surface elevation above the best fit sphere (BFS) before the initial procedure, before, and after LASIK were compared using the Orbscan slit scanning corneal topography/pachymetry system. Results: Posterior corneal elevation was comparable in the two groups, both preoperatively (group 1; 16.4 (4.8) μm, group 2; 16.1 (4.8) μm) and after final surgery (group 1; 57.2 (15.6) μm, group 2; 54.3 (13.1) μm). In group 1 after occurrence of partial flap, the posterior corneal elevation was 16.9 (4.4) μm, and this increase was not significant statistically (p=0.4). On multiple linear regression analysis, residual bed thickness (p<0.001) was independently the significant determinant of final posterior corneal elevation in both groups. Conclusion: The inadvertent occurrence of partial flap during LASIK procedure does not contribute to the increase in posterior corneal elevation. PMID:12543743

  13. The Integrity of the Corpus Callosum Mitigates the Impact of Blood Pressure on the Ventral Attention Network and Information Processing Speed in Healthy Adults

    PubMed Central

    Wong, Nichol M. L.; Ma, Ernie Po-Wing; Lee, Tatia M. C.

    2017-01-01

    Hypertension is a risk factor for cognitive impairment in older age. However, evidence of the neural basis of the relationship between the deterioration of cognitive function and elevated blood pressure is sparse. Based on previous research, we speculate that variations in brain connectivity are closely related to elevated blood pressure even before the onset of clinical conditions and apparent cognitive decline in individuals over 60 years of age. Forty cognitively healthy adults were recruited. Each received a blood pressure test before and after the cognitive assessment in various domains. Diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) data were collected. Our findings confirm that elevated blood pressure is associated with brain connectivity variations in cognitively healthy individuals. The integrity of the splenium of the corpus callosum is closely related to individual differences in systolic blood pressure. In particular, elevated systolic blood pressure is related to resting-state ventral attention network (VAN) and information processing speed. Serial mediation analyses have further revealed that lower integrity of the splenium statistically predicts elevated systolic blood pressure, which in turn predicts weakened functional connectivity (FC) within the VAN and eventually poorer processing speed. The current study sheds light on how neural correlates are involved in the impact of elevated blood pressure on cognitive functioning. PMID:28484386

  14. Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure

    NASA Astrophysics Data System (ADS)

    Abdallah, B.; Naddaf, M.; A-Kharroub, M.

    2013-03-01

    Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).

  15. Elevated blood pressure in the developing world: a role for clinical pharmacists.

    PubMed

    Smith, Michael T; Monahan, Megan P; Nelson, Paige; Moruzzi, Matthew; DeLucenay, Alexander J; Birnie, Christine R

    2017-09-19

    The objective of this study was to evaluate the prevalence and patient knowledge of elevated blood pressure amongst a cross-section of patients in underserved communities in three selected low-income countries worldwide: El Salvador, India and Kenya. Mobile medical clinics were established as part of medical mission trips in El Salvador, India and Kenya. Willing male and female patients, at least 25 years of age, who presented at each clinic were screened for elevated blood pressure, including 332 patients in El Salvador, 847 patients in India and 160 patients in Kenya. Patients were classified into Stage I or II elevated blood pressure based on modified JNCVII guidelines. A questionnaire was completed regarding their knowledge about the existence and management of their disease state. Of the 1339 patients screened, 368 presented with elevated blood pressure (27%). Of these patients, 147 had been previously informed of hypertension or an elevated blood pressure (39.9%), 28 reported receiving antihypertensive medication (7.6%) and 24 reported awareness of non-pharmaceutical treatment options (6.5%). In Kenya, 81 patients were screened in a rural setting and 79 in an urban setting. Patients demonstrating controlled blood pressure were 63 (78%) and 38 (48%), respectively, demonstrating a significant difference between the rural versus urban settings (P = 0.00359). All regions demonstrated similar trends in the prevalence of elevated blood pressure, highlighting the need for increased disease state education in these regions. © 2017 Royal Pharmaceutical Society.

  16. Involvement of Smad3 pathway in atrial fibrosis induced by elevated hydrostatic pressure.

    PubMed

    Wei, Wei; Rao, Fang; Liu, Fangzhou; Xue, Yumei; Deng, Chunyu; Wang, Zhaoyu; Zhu, Jiening; Yang, Hui; Li, Xin; Zhang, Mengzhen; Fu, Yongheng; Zhu, Wensi; Shan, Zhixin; Wu, Shulin

    2018-06-01

    Hypertension is a main risk factor for atrial fibrillation, but the direct effects of hydrostatic pressure on the atrial fibrosis are still unknown. The present study investigated whether hydrostatic pressure is responsible for atrial fibrosis, and addressed a potential role of the Smad pathway in this pathology. Biochemical assays were used to study regulation and expression of fibrotic factors in spontaneously hypertensive rats (SHRs) and Wistar rats, and in cardiac fibroblasts (CFs) cultured under standard (0 mmHg) and elevated (20, 40 mmHg) hydrostatic pressure. Levels of atrial fibrosis and protein expression of fibrotic factors Col-1A1/-3A1, TGF-β1, and MMP-2 in SHRs' left atrial tissues were higher than those in Wistar rats. Exposure to elevated pressure was associated with the proliferation of CFs. The protein expression of Col-1A1/-3A1, TGF-β1, and MMP-2 in CFs was also up-regulated in a pressure-dependent manner. The proliferation of CFs and increased expressions of fibrotic markers induced by elevated hydrostatic pressure could be reversed by the Smad3 inhibitor naringenin. The activation of Smad3 pathway was also stimulated by elevated hydrostatic pressure. These results demonstrate that CF secretory function and proliferation can be up-regulated by exposure to elevated pressure, and that Smad3 may modulate CF activation induced by high hydrostatic pressure. © 2017 Wiley Periodicals, Inc.

  17. Elevated Serum Beta-D-Glucan with Pseudomonas, Aspergillus, and a Partially Acid-Fast Organism in Respiratory Cultures: A Case of Hickam's Dictum Over Occam's Razor.

    PubMed

    Khan, Salman; Hamula, Camille; Rana, Meenakshi; Sullivan, Timothy; Dunn, Dallas; Patel, Pinki; Mishkin, Aaron; Huprikar, Shirish

    2017-10-01

    We describe a case of a man with ectopic Cushing's syndrome, elevated serum beta-D-glucan, and respiratory cultures with Pseudomonas, Aspergillus, and a partially acid-fast organism. Our case highlights challenges in diagnosis and management of coinfection in an immunocompromised host.

  18. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    NASA Astrophysics Data System (ADS)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  19. Sulfur control in ion-conducting membrane systems

    DOEpatents

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  20. Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2006-01-01

    Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.

  1. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism.

    PubMed

    Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N

    2016-05-01

    Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion. © 2016 American Society for Nutrition.

  2. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  3. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films

    NASA Astrophysics Data System (ADS)

    Cheemadan, Saheer; Santhosh Kumar, M. C.

    2018-04-01

    Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.

  4. Lyme Carditis Buried Beneath ST-Segment Elevations

    PubMed Central

    Umpierrez De Reguero, Adrian

    2017-01-01

    Lyme disease is caused by the spirochete Borrelia burgdorferi and is carried to human hosts by infected ticks. There are nearly 30,000 cases of Lyme disease reported to the CDC each year, with 3-4% of those cases reporting Lyme carditis. The most common manifestation of Lyme carditis is partial heart block following bacterial-induced inflammation of the conducting nodes. Here we report a 45-year-old gentleman that presented to the hospital with intense nonradiating chest pressure and tightness. Lab studies were remarkable for elevated troponins. EKG demonstrated normal sinus rhythm with mild ST elevations. Three weeks prior to hospital presentation, patient had gone hunting near Madison. One week prior to admission, he noticed an erythematous lesion on his right shoulder. Because of his constellation of history, arthralgias, and carditis, he was started on ceftriaxone to treat probable Lyme disease. This case illustrates the importance of thorough history taking and extensive physical examination when assessing a case of possible acute myocardial infarction. Because Lyme carditis is reversible, recognition of this syndrome in young patients, whether in the form of AV block, myocarditis, or acute myocardial ischemia, is critical to the initiation of appropriate antibiotics in order to prevent permanent heart block, or even death. PMID:28713599

  5. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    NASA Astrophysics Data System (ADS)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  6. Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Striegl, Robert G.

    1988-01-01

    The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

  7. [Effects of gap junction blocking on the oxygen partial pressure in acupoints of the bladder meridian].

    PubMed

    Wang, Qi; Yu, Wei-Chang; Jiang, Hong-Zhi; Chen, Sheng-Li; Zhang, Ming-Min; Kong, E-Sheng; Huang, Guang-Ying

    2010-12-01

    To explore the relation between gap junction and meridian phenomenon. The oxygen partial pressure in acupoints [see text for formula] and in their corresponding non-acupoints of the Bladder Meridian was observed with the needle-type tissue oxygen tension sensor in the gap junction blocking goats by 1-Heptanol injection and the Connexin 43 (Cx43) gene knockout mice. (1) The oxygen partial pressure in acupoints of Bladder Meridian on goats was higher than that in non-acupoints after 1-Heptanol injection with significant differences between them (both P < 0.01). (2) The oxygen partial pressure in acupoints of Bladder Meridian on goats increased significantly after injecting 1-Heptanol as compare with that either injecting normal saline or injecting nothing with significant differences between them (all P < 0.01). (3) The oxygen partial pressure in acupoints of the Bladder Meridian was significantly higher than that in the non-acupoint controls in Cx43 wild type (WT) mice (all P < 0.01). In Cx43 heterozygote (HT) mice, the oxygen partial pressure between acupoints and non-acupoint controls showed no significant differences (all P > 0.05). (4) In acupoints, the oxygen partial pressure in Cx43 WT mice was significantly higher than that in Cx43 HT mice (all P < 0.05), while in the corresponding non-acupoints, this difference had no statistically significant (all P > 0.05). Gap junction maybe the essential factor in signal transduction of acupuncture.

  8. Aquaporin-1 shifts the critical transmural pressure to compress the aortic intima and change transmural flow: theory and implications.

    PubMed

    Joshi, Shripad; Jan, Kung-Ming; Rumschitzki, David S

    2015-12-01

    Transmural-pressure (ΔP)-driven plasma advection carries macromolecules into the vessel wall, the earliest prelesion atherosclerotic event. The wall's hydraulic conductivity, LP, the water flux-to-ΔP ratio, is high at low pressures, rapidly decreases, and remains flat to high pressures (Baldwin AL, Wilson LM. Am J Physiol Heart Circ Physiol 264: H26-H32, 1993; Nguyen T, Toussaint, Xue JD, Raval Y, Cancel CB, Russell LM, Shou S, Sedes Y, Sun O, Yakobov Y, Tarbell JM, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 308: H1051-H1064, 2015; Tedgui A, Lever MJ. Am J Physiol Heart Circ Physiol. 247: H784-H791, 1984. Shou Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 291: H2758-H2771, 2006) due to pressure-induced subendothelial intima (SI) compression that causes endothelial cells to partially block internal elastic laminar fenestrae. Nguyen et al. showed that rat and bovine aortic endothelial cells express the membrane protein aquaporin-1 (AQP1) and transmural water transport is both transcellular and paracellular. They found that LP lowering by AQP1 blocking was perplexingly ΔP dependent. We hypothesize that AQP1 blocking lowers average SI pressure; therefore, a lower ΔP achieves the critical force/area on the endothelium to partially block fenestrae. To test this hypothesis, we improve the approximate model of Huang et al. (Huang Y, Rumschitzki D, Chien S, Weinbaum SS. Am J Physiol Heart Circ Physiol 272: H2023-H2039, 1997) and extend it by including transcellular AQP1 water flow. Results confirm the observation by Nguyen et al.: wall LP and water transport decrease with AQP1 disabling. The model predicts 1) low-pressure LP experiments correctly; 2) AQP1s contribute 30-40% to both the phenomenological endothelial + SI and intrinsic endothelial LP; 3) the force on the endothelium for partial SI decompression with functioning AQP1s at 60 mmHg equals that on the endothelium at ∼43 mmHg with inactive AQP1s; and 4) increasing endothelial AQP1 expression increases wall LP and shifts the ΔP regime where LP drops to significantly higher ΔP than in Huang et al. Thus AQP1 upregulation (elevated wall LP) might dilute and slow low-density lipoprotein binding to SI extracellular matrix, which may be beneficial for early atherogenesis. Copyright © 2015 the American Physiological Society.

  9. The effect of the perfluorocarbon emulsion Oxycyte on platelet count and function in the treatment of decompression sickness in a swine model.

    PubMed

    Cronin, William A; Senese, Angela L; Arnaud, Francoise G; Regis, David P; Auker, Charles R; Mahon, Richard T

    2016-09-01

    Decompression from elevated ambient pressure is associated with platelet activation and decreased platelet counts. Standard treatment for decompression sickness (DCS) is hyperbaric oxygen therapy. Intravenous perfluorocarbon (PFC) emulsion is a nonrecompressive therapy being examined that improves mortality in animal models of DCS. However, PFC emulsions are associated with a decreased platelet count. We used a swine model of DCS to study the effect of PFC therapy on platelet count, function, and hemostasis. Castrated male swine (n = 50) were fitted with a vascular port, recovered, randomized, and compressed to 180 feet of sea water (fsw) for 31 min followed by decompression at 30 fsw/min. Animals were observed for DCS, administered 100% oxygen, and treated with either emulsified PFC Oxycyte (DCS-PFC) or isotonic saline (DCS-NS). Controls underwent the same procedures, but were not compressed (Sham-PFC and Sham-NS). Measurements of platelet count, thromboelastometry, and coagulation were obtained 1 h before compression and 1, 24, 48, 96, 168 and 192 h after treatment. No significant changes in normalized platelet counts were observed. Prothrombin time was elevated in DCS-PFC from 48 to 192 h compared with DCS-NS, and from 96 to 192 h compared with Sham-PFC. Normalized activated partial thromboplastin time was also elevated in DCS-PFC from 168 to 192 h compared with Sham-PFC. No bleeding events were noted. DCS treated with PFC (Oxycyte) does not impact platelet numbers, whole blood clotting by thromboelastometry, or clinical bleeding. Late changes in prothrombin time and activated partial thromboplastin time associated with PFC use in both DCS therapy and controls warrant further investigation.

  10. Morning pulse pressure is associated more strongly with elevated albuminuria than systolic blood pressure in patients with type 2 diabetes mellitus: post hoc analysis of a cross-sectional multicenter study.

    PubMed

    Ushigome, Emi; Fukui, Michiaki; Hamaguchi, Masahide; Matsumoto, Shinobu; Mineoka, Yusuke; Nakanishi, Naoko; Senmaru, Takafumi; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto

    2013-09-01

    Recently, focus has been directed toward pulse pressure as a potentially independent risk factor for micro- and macrovascular disease. This study was designed to examine the relationship between pulse pressure taken at home and elevated albuminuria in patients with type 2 diabetes. This study is a post hoc analysis of a cross-sectional multicenter study. Home blood pressure measurements were performed for 14 consecutive days in 858 patients with type 2 diabetes. We investigated the relationship between systolic blood pressure or pulse pressure in the morning or in the evening and urinary albumin excretion using univariate and multivariate analyses. Furthermore, we measured area under the receiver-operating characteristic curve (AUC) to compare the ability to identify elevated albuminuria, defined as urinary albumin excretion equal to or more than 30 mg/g creatinine, of systolic blood pressure or pulse pressure. Morning systolic blood pressure (β=0.339, P<0.001) and morning pulse pressure (β=0.378, P<0.001) were significantly associated with logarithm of urinary albumin excretion independent of other potential co-factors. AUC for elevated albuminuria in morning systolic blood pressure and morning pulse pressure were 0.668 (0.632-0.705; P<0.001) and 0.694 (0.659-0.730; P<0.001), respectively. AUC of morning pulse pressure was significantly greater than that of morning systolic blood pressure (P=0.040). Our findings implicate that morning pulse pressure is associated with elevated albuminuria in patients with type 2 diabetes, which suggests that lowering morning pulse pressure could prevent the development and progression of diabetic nephropathy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents.

    PubMed

    Lande, Marc B; Pearson, Thomas A; Vermilion, Roger P; Auinger, Peggy; Fernandez, Isabel D

    2008-12-01

    Adult hypertension is independently associated with elevated C-reactive protein levels, after controlling for obesity and other cardiovascular risk factors. The objective of this study was to determine, with a nationally representative sample of children, whether the relationship between elevated blood pressure and C-reactive protein levels may be evident before adulthood. Cross-sectional data for children 8 to 17 years of age who participated in the National Health and Nutrition Examination Survey between 1999 and 2004 were analyzed. Bivariate analyses compared children with C-reactive protein levels of >3 mg/L versus or=95th percentile and 1.3% had diastolic blood pressure of >or=95th percentile. Children with C-reactive protein levels of >3 mg/L had higher systolic blood pressure, compared with children with C-reactive protein levels of or=95th percentile was independently associated with C-reactive protein levels in boys but not girls. Subset analyses according to race/ethnicity demonstrated that the independent association of elevated systolic blood pressure with C-reactive protein levels was largely limited to black boys. These data indicate that there is interplay between race/ethnicity, elevated systolic blood pressure, obesity, and inflammation in children, a finding that has potential implications for disparities in cardiovascular disease later in life.

  12. Interactive effects of photoperiod and light intensity on blood physiological and biochemical reactions of broilers grown to heavy weights.

    PubMed

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2013-04-01

    The effects of photoperiod, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. A 3 × 3 factorial experiment in a randomized complete block design was used in this study. In each trial, all treatment groups were provided 23L:1D with 20 lx of intensity from placement to 7 d, and then subjected to the treatments. The 9 treatments consisted of 3 photoperiods [long/continuous (23L:1D) from d 8 to 56, regular/intermittent (2L:2D), and short/nonintermittent (8L:16D) from d 8 to 48 and 23L:1D from d 49 to 56, respectively] and exposure to 3 light intensities (10, 5.0, and 0.5 lx) from d 8 through d 56 at 50% RH. Feed and water were provided ad libitum. Venous blood samples were collected on d 7, 14, 28, 42, and 56. Main effects indicated that short/nonintermittent photoperiod significantly (P < 0.05) reduced BW, pH, partial pressure of O2, saturated O2, Na(+), K(+), Ca(2+), Cl(-), osmolality, triiodothyronine (T3), and total protein along with significantly (P < 0.05) elevated partial pressure of CO2, hematocrit, hemoglobin, and lactate concentrations. In addition, there were no effects of photoperiod on HCO3(-), glucose, anion gap, and thyroxine (T4). Plasma corticosterone was not affected by photoperiod, light intensity, or their interaction. There was no effect of light intensity on most of the blood variables examined. Acid-base regulation during photoperiod and light intensity exposure did not deteriorate despite a lower pH and higher partial pressure of CO2 with normal HCO3(-). These results indicate that continuous exposure of broiler chickens to varying light intensities had a minor effect on blood physiological variables, whereas the short photoperiod markedly affected most blood physiological variables without inducing physiological stress in broilers.

  13. Perceived social isolation moderates the relationship between early childhood trauma and pulse pressure in older adults.

    PubMed

    Norman, Greg J; Hawkley, Louise; Ball, Aaron; Berntson, Gary G; Cacioppo, John T

    2013-06-01

    Over a million children are subjected to some form of trauma in the United States every year. Early trauma has been shown to have deleterious effects on cardiovascular health in adulthood. However, the presence of strong social relationships as an adult can buffer an individual against many of the harmful effects of early trauma. Furthermore, the perception of social isolation has been shown to be a significant risk factor for the development of cardiovascular disease and is a strong predictor of all cause mortality. One likely mechanism thought to underlie the influence of perceived isolation on health is changes in arterial stiffness. One of the more widely used measures of arterial stiffness in older individuals is pulse pressure. The goal of the present study was to determine whether early childhood trauma is associated with elevations on pulse pressure. Furthermore, this study sought to determine whether perceived social isolation moderates the relationship between early trauma and pulse pressure. Results revealed that individuals with low perceived social isolation displayed no significant relationship between early trauma and pulse pressure. However, individuals who reported higher levels of perceived isolation showed a significant positive association between early trauma and pulse pressure. Therefore, the detrimental effects of early trauma may be partially dependent upon the quality of social relationships as an adult. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The effect of partial portal decompression on portal blood flow and effective hepatic blood flow in man: a prospective study.

    PubMed

    Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J

    1995-12-01

    With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.

  15. The Effect of Oxygen Partial Pressure on Microstructure and Properties of Fe40Al Alloy Sintered under Vacuum

    PubMed Central

    Siemiaszko, Dariusz; Kowalska, Beata; Jóźwik, Paweł; Kwiatkowska, Monika

    2015-01-01

    This paper presents the results of studies on the influence of oxygen partial pressure (vacuum level in the chamber) on the properties of FeAl intermetallics. One of the problems in the application of classical methods of prepared Fe-Al intermetallic is the occurrence of oxides. Applying a vacuum during sintering should reduce this effect. In order to analyze the effect of oxygen partial pressure on sample properties, five samples were processed (by a pressure-assisted induction sintering—PAIS method) under the following pressures: 3, 8, 30, 80, and 300 mbar (corresponding to oxygen partial pressures of 0.63, 1.68, 6.3, 16.8, and 63 mbar, respectively). The chemical and phase composition, hardness, density, and microstructure observations indicate that applying a vacuum significantly impacts intermetallic samples. The compact sintered at pressure 3 mbar is characterized by the most homogeneous microstructure, the highest density, high hardness, and nearly homogeneous chemical composition. PMID:28788015

  16. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    O'Hara, M. J.; Herzberg, C.

    2002-06-01

    The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense "primary" picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures - a conclusion supported by calculation of the melt composition, which would need to be extracted in order to explain the chemical variation between fertile and residual peridotite in natural ultramafic rock suites. The subtleties of magma chamber partial crystallization processes can produce an astounding array of "pseudospidergrams," a small selection of which have been explored here. Major modification of the trace element geochemistry and trace element ratios, even those of the highly incompatible elements, must always be entertained whenever the evidence suggests the possibility of partial crystallization. At one extreme, periodically recharged, periodically tapped magma chambers might undergo partial crystallization by ˜95% consolidation of a succession of small packets of the magma. Refluxing of the 5% residual melts from such a process into the main body of melt would lead to eventual discrimination between highly incompatible elements in that residual liquid comparable with that otherwise achieved by 0.1 to 0.3% liquid extraction in equilibrium partial melting. Great caution needs to be exercised in attempting the reconstruction of more primitive compositions by addition of troctolite, gabbro, and olivine to apparently primitive lava compositions. Special attention is focussed on the phase equilibria involving olivine, plagioclase (i.e., troctolite), and liquid because a high proportion of erupted basalts carry these two phases as phenocrysts, yet the equilibria are restricted to crustal pressures and are only encountered by wide ranges of basaltic compositions at pressures less than 0.5 GPa. The mere presence of plagioclase phenocrysts may be sufficient to disqualify candidate primitive magmas. Determination of the actual contributions of crustal processes to petrogenesis requires a return to detailed field, experimental, and forensic petrologic studies of individual erupted basalt flows; of a multitude of cumulate gabbros and their contacts; and of upper-mantle outcrops.

  17. Hydrostatic pressure and muscarinic receptors are involved in the release of inflammatory cytokines in human bladder smooth muscle cells.

    PubMed

    Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang

    2017-06-01

    Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.

  18. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    NASA Astrophysics Data System (ADS)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  19. Influence of oxygen partial pressure on the microstructural and magnetic properties of Er-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming

    2015-06-15

    Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less

  20. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  1. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption

    PubMed Central

    Morris, Megan M.; Brown, Matt; Doane, Michael; Edwards, Matthew S.; Michael, Todd P.; Dinsdale, Elizabeth A.

    2018-01-01

    Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production. PMID:29474389

  2. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  3. Cardiovascular and metabolic activity at rest and during psychological and physical challenge in normotensives and subjects with mildly elevated blood pressure.

    PubMed

    Sims, J; Carroll, D

    1990-03-01

    Heart rate, systolic and diastolic blood pressure, and respiratory and metabolic activity were recorded prior to and during mental arithmetic and a video game task in 20 young men with mildly elevated casual systolic blood pressures. Twenty-five unambiguously normotensive young men were tested under the same protocol. For pretask baseline physiological activity, group differences emerged for all cardiovascular and metabolic variables; thus the elevated blood pressure group displayed not only higher resting cardiovascular levels than normotensive subjects, but higher levels of metabolic activity too. With regard to change in physiological activity from rest to task, the group with mildly elevated blood pressure showed reliably larger increases in heart rate to the mental arithmetic task than the normotensive subjects. These effects, however, were not paralleled by group differences in metabolic activity increase. Physiological measures were also taken prior to and during graded dynamic exercise. The subsequent calculation of individual heart rate-oxygen consumption exercise regression lines allowed the comparison of actual and predicted heart rates during psychological challenge. The subjects with mildly elevated blood pressure displayed significantly greater discrepancies between actual and predicted heart rate values than normotensives during the psychological tasks in general and mental arithmetic in particular. Group differences in physiological activity during exercise largely reflected the pattern seen at rest. A possible exception here was systolic blood pressure. Not only were systolic blood pressure levels higher throughout the exercise phase for mildly elevated blood pressure subjects, but this group evidenced more of an increase from rest to exercise than the normotensives.

  4. Elevated ambulatory blood pressure in a multi-ethnic population of obese children and adolescents.

    PubMed

    Aguilar, Alexandra; Ostrow, Vlady; De Luca, Francesco; Suarez, Elizabeth

    2010-06-01

    To evaluate the relationship among ambulatory blood pressure (ABP), body mass index (BMI), and homeostasis model assessment (HOMA) in a multi-ethnic population of obese children with clinic blood pressure in the reference range. A total of 43 obese normotensive children (7-17 years old) were recruited. ABP monitoring, oral glucose tolerance test, lipid levels, and urine microalbumin levels were obtained. Fourteen percent of the subjects had elevated 24-hour systolic blood pressure (SBP), 9.3% had elevated daytime SBP, and 32.6 % elevated nighttime SBP. For diastolic blood pressure, 4.7% of the sample had an elevated mean nighttime value. Children with more severe obesity (BMI SD score >2.5) had higher 24-hour and nighttime SBP than children with less severe obesity (BMI SD score < or =2.5). Children with HOMA values in the highest quartile had larger waist circumference and higher clinic blood pressure than children with HOMA values in the lowest quartile, and no difference in the mean ABP values was found in the 2 groups . Multiple linear regression analysis showed that 24-hour and nighttime SBP were significantly correlated with BMI SD score. Obese children with normal clinic blood pressure often exhibit elevated ABP. The risk for ambulatory hypertension appears to be correlated with the degree of obesity. Copyright 2010 Mosby, Inc. All rights reserved.

  5. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    PubMed

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  6. Prevalence of elevated blood pressure in Hispanic versus non-Hispanic 6th graders.

    PubMed

    Tarlton, Patricia A

    2007-02-01

    Blood pressure screening was conducted on 4,311 (Hispanic n = 763 [17.7%], White n = 2,566 [59.5%], African American n = 610 [14.1%], Asian n = 136 [3.2%], Multiracial n = 231 [5.4%], and Native American n = 5 [0.1%]) 6th-grade students enrolled in Seminole County, Florida, Public Schools from August to December 2005. Prevalence of obesity was 21% for the overall population, with Hispanics n = 218 (28.6%) having a greater prevalence than non-Hispanics n = 630 (19.0%). Following a second screening, overall prevalence of elevated blood pressure was 1.9%, with Hispanics at 2.6% versus 1.6% for non-Hispanics. This was found to be significant when Hispanics were further compared to the White population. However, when adjusted for obesity, elevated blood pressure was not significant for Hispanics. Results confirm the presence of elevated blood pressure and obesity in all population groups, with an elevated risk for both among the Hispanic population.

  7. Inhibition on Apoptosis Induced by Elevated Hydrostatic Pressure in Retinal Ganglion Cell-5 via Laminin Upregulating β1-integrin/Focal Adhesion Kinase/Protein Kinase B Signaling Pathway.

    PubMed

    Li, Yi; Chen, Yan-Ming; Sun, Ming-Ming; Guo, Xiao-Dan; Wang, Ya-Chen; Zhang, Zhong-Zhi

    2016-04-20

    Glaucoma is a progressive optic neuropathy characterized by degeneration of neurons due to loss of retinal ganglion cells (RGCs). High intraocular pressure (HIOP), the main risk factor, causes the optic nerve damage. However, the precise mechanism of HIOP-induced RGC death is not yet completely understood. This study was conducted to determine apoptosis of RGC-5 cells induced by elevated hydrostatic pressures, explore whether laminin is associated with apoptosis under pressure, whether laminin can protect RGCs from apoptosis and affirm the mechanism that regulates the process of RGCs survival. RGC-5 cells were exposed to 0, 20, 40, and 60 mmHg in a pressurized incubator for 6, 12, and 24 h, respectively. The effect of elevated hydrostatic pressure on RGC-5 cells was measured by Annexin V-fluorescein isothiocyanate/propidium iodide staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Western blotting of cleaved caspase-3 protein. Location and expression of laminin were detected by immunofluorescence. The expression of β1-integrin, phosphorylation of focal adhesion kinase (FAK) and protein kinase B (PKB, or AKT) were investigated with real-time polymerase chain reaction and Western blotting analysis. Elevated hydrostatic pressure induced apoptosis in cultured RGC-5 cells. Pressure with 40 mmHg for 24 h induced a maximum apoptosis. Laminin was declined in RGC-5 cells after exposing to 40 mmHg for 24 h. After pretreating with laminin, RGC-5 cells survived from elevated pressure. Furthermore, β1-integrin and phosphorylation of FAK and AKT were increased compared to 40 mmHg group. The data show apoptosis tendency of RGC-5 cells with elevated hydrostatic pressure. Laminin can protect RGC-5 cells against high pressure via β1-integrin/FAK/AKT signaling pathway. These results suggest that the decreased laminin of RGC-5 cells might be responsible for apoptosis induced by elevated hydrostatic pressure, and laminin or activating β1-integrin/FAK/AKT pathway might be potential treatments to prevent RGC loss in glaucomatous optic neuropathy.

  8. Inhibition on Apoptosis Induced by Elevated Hydrostatic Pressure in Retinal Ganglion Cell-5 via Laminin Upregulating β1-integrin/Focal Adhesion Kinase/Protein Kinase B Signaling Pathway

    PubMed Central

    Li, Yi; Chen, Yan-Ming; Sun, Ming-Ming; Guo, Xiao-Dan; Wang, Ya-Chen; Zhang, Zhong-Zhi

    2016-01-01

    Background: Glaucoma is a progressive optic neuropathy characterized by degeneration of neurons due to loss of retinal ganglion cells (RGCs). High intraocular pressure (HIOP), the main risk factor, causes the optic nerve damage. However, the precise mechanism of HIOP-induced RGC death is not yet completely understood. This study was conducted to determine apoptosis of RGC-5 cells induced by elevated hydrostatic pressures, explore whether laminin is associated with apoptosis under pressure, whether laminin can protect RGCs from apoptosis and affirm the mechanism that regulates the process of RGCs survival. Methods: RGC-5 cells were exposed to 0, 20, 40, and 60 mmHg in a pressurized incubator for 6, 12, and 24 h, respectively. The effect of elevated hydrostatic pressure on RGC-5 cells was measured by Annexin V-fluorescein isothiocyanate/propidium iodide staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Western blotting of cleaved caspase-3 protein. Location and expression of laminin were detected by immunofluorescence. The expression of β1-integrin, phosphorylation of focal adhesion kinase (FAK) and protein kinase B (PKB, or AKT) were investigated with real-time polymerase chain reaction and Western blotting analysis. Results: Elevated hydrostatic pressure induced apoptosis in cultured RGC-5 cells. Pressure with 40 mmHg for 24 h induced a maximum apoptosis. Laminin was declined in RGC-5 cells after exposing to 40 mmHg for 24 h. After pretreating with laminin, RGC-5 cells survived from elevated pressure. Furthermore, β1-integrin and phosphorylation of FAK and AKT were increased compared to 40 mmHg group. Conclusions: The data show apoptosis tendency of RGC-5 cells with elevated hydrostatic pressure. Laminin can protect RGC-5 cells against high pressure via β1-integrin/FAK/AKT signaling pathway. These results suggest that the decreased laminin of RGC-5 cells might be responsible for apoptosis induced by elevated hydrostatic pressure, and laminin or activating β1-integrin/FAK/AKT pathway might be potential treatments to prevent RGC loss in glaucomatous optic neuropathy. PMID:27064044

  9. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    ERIC Educational Resources Information Center

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  10. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  11. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  12. Tibiofemoral contact pressures in radial tears of the meniscus treated with all-inside repair, inside-out repair and partial meniscectomy.

    PubMed

    Zhang, Alan L; Miller, Stephanie L; Coughlin, Dezba G; Lotz, Jeffrey C; Feeley, Brian T

    2015-10-01

    To test contact pressures in the knee after treatment of a radial meniscus tear with an all-inside meniscal repair technique and compare the results with inside-out repair and partial meniscectomy. Six non-paired cadaveric knees were analyzed with intra-compartment pressures measured at loads of 250 N, 500 N and 1000 N at 0°, eight degrees, 15°, and 30° of knee flexion. Compartmental contact pressures were measured for the intact medial meniscus, radial tear in the posterior horn, all-inside repair using the NovoStitch suture passer device (Ceterix Orthopaedics Inc., Menlo Park, CA), inside-out repair method, and partial meniscectomy. One-way ANOVA was used for statistical analysis. The greatest differences in peak pressures between treatments were observed under 1000 N load at 30° flexion (0.8± (SD) 0.1 MPa (intact meniscus), 0.8± (SD) 0.1 MPa (all-inside), 0.9± (SD) 0.1 MPa (inside-out) and 1.6± (SD) 0.2 MPa (partial meniscectomy)). Treatment with partial meniscectomy resulted in the highest peak pressures compared to all other states (p<0.0001 at each angle). Repair of the radial tear using the all-inside technique as well as the inside-out technique resulted in significantly decreased compartment pressures compared to partial meniscectomies (p<0.0001 at each angle). There were no significant differences between peak pressures in the intact state and after repair with the all-inside or inside-out techniques. An all-inside repair technique using the NovoStitch suture passer can decrease contact pressures for a radial meniscus tear similarly to the inside-out repair technique when compared to partial meniscectomy. This novel arthroscopic suture passer warrants further analysis in the clinical setting as it may be a reliable method for repair of radial meniscal tears through an arthroscopic all-inside technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The influence of participant characteristics on the relationship between cuff pressure and level of blood flow restriction.

    PubMed

    Hunt, Julie E A; Stodart, Clare; Ferguson, Richard A

    2016-07-01

    Previous investigations to establish factors influencing the blood flow restriction (BFR) stimulus have determined cuff pressures required for complete arterial occlusion, which does not reflect the partial restriction prescribed for this training technique. This study aimed to establish characteristics that should be accounted for when prescribing cuff pressures required for partial BFR. Fifty participants were subjected to incremental blood flow restriction of the upper and lower limbs by proximal pneumatic cuff inflation. Popliteal and brachial artery diameter, blood velocity and blood flow was assessed with Doppler ultrasound. Height, body mass, limb circumference, muscle-bone cross-sectional area, adipose thickness (AT) and arterial blood pressure were measured and used in different models of hierarchical linear regression to predict the pressure at which 60 % BFR (partial occlusion) occurred. Combined analysis revealed a difference in cuff pressures required to elicit 60 % BFR in the popliteal (111 ± 12 mmHg) and brachial arteries (101 ± 12 mmHg). MAP (r = 0.58) and AT (r = -0.45) were the largest independent determinants of lower and upper body partial occlusion pressures. However, greater variance was explained by upper and lower limb regression models composed of DBP and BMI (48 %), and arm AT and DBP (30 %), respectively. Limb circumference has limited impact on the cuff pressure required for partial blood flow restriction which is in contrast to its recognised relationship with complete arterial occlusion. The majority of the variance in partial occlusion pressure remains unexplained by the predictor variables assessed in the present study.

  14. PP043. Oxidative stress in the maternal body also affects the fetus in preeclamptic women with fetal growth restriction.

    PubMed

    Watanabe, Kazushi; Iwasaki, Ai; Mori, Toshitaka; Kimura, Chiharu; Matsushita, Hiroshi; Shinohara, Koichi; Wakatsuki, Akihiko

    2013-04-01

    The purpose of the present study was to determine whether oxidative stress occurring in the maternal body also affects the fetus in preeclamptic women with FGR. We ∥@consecutively recruited 17 preeclamptic women with FGR, 16 preeclamptic women without FGR, and 16 healthy pregnant women with uncomplicated pregnancy. We measured concentrations of derivatives of reactive oxygen metabolites (d-ROMs) as a marker of oxygen free radicals in a maternal vein, umbilical artery, and umbilical vein. ∥@Maternal d-ROM levels were higher in preeclamptic groups compared to the control group. Umbilical artery and vein d-ROM levels were elevated in preeclamptic women with FGR compared to the control group. Umbilical artery d-ROM levels were significantly higher than in the vein in preeclamptic women with FGR, but not in those without FGR. Umbilical arterial blood pH was significantly lower in preeclamptic women with FGR. The partial pressure of oxygen (PaO2) in umbilical arterial blood tended to be lower in preeclamptic women with FGR (p=0.08). The partial pressure of carbon dioxide (PaCO2) in umbilical arterial blood was significantly higher in preeclamptic women with FGR. These results indicate that oxidative stress occurring in the maternal body also affects the fetus in preeclamptic women with FGR. Copyright © 2013. Published by Elsevier B.V.

  15. Cross-sectional examination of metabolites and metabolic phenotypes in uremia.

    PubMed

    Kalim, Sahir; Clish, Clary B; Deferio, Joseph J; Ortiz, Guillermo; Moffet, Alexander S; Gerszten, Robert E; Thadhani, Ravi; Rhee, Eugene P

    2015-07-07

    Although metabolomic approaches have begun to document numerous changes that arise in end stage renal disease (ESRD), how these alterations relate to established metabolic phenotypes in uremia is unknown. In 200 incident hemodialysis patients we used partial least squares discriminant analysis to identify which among 166 metabolites could best discriminate individuals with or without diabetes, and across tertiles of body mass index, serum albumin, total cholesterol, and systolic blood pressure. Our data do not recapitulate metabolomic signatures of diabetes and obesity identified among individuals with normal renal function (e.g. elevations in branched chain and aromatic amino acids) and highlight several potential markers of diabetes status specific to ESRD, including xanthosine-5-phosphate and vanillylmandelic acid. Further, our data identify significant associations between elevated tryptophan and long-chain acylcarnitine levels and both decreased total cholesterol and systolic blood pressure in ESRD. Higher tryptophan levels were also associated with higher serum albumin levels, but this may reflect tryptophan's significant albumin binding. Finally, an examination of the uremic retention solutes captured by our platform in relation to 24 clinical phenotypes provides a framework for investigating mechanisms of uremic toxicity. In sum, these studies leveraging metabolomic and metabolic phenotype data acquired in a well-characterized ESRD cohort demonstrate striking differences from metabolomics studies in the general population, and may provide clues to novel functional pathways in the ESRD population.

  16. Ocean acidification accelerates reef bioerosion.

    PubMed

    Wisshak, Max; Schönberg, Christine H L; Form, Armin; Freiwald, André

    2012-01-01

    In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO(2)) in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process - biologically induced carbonate dissolution via bioerosion - has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO(2) world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia's Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO(2) confirms a significant enforcement of the sponges' bioerosion capacity with increasing pCO(2) under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.

  17. Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.

    PubMed

    Fang, Yung Chieh; Tai, Cheng-Chi

    2016-08-01

    A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths.

  18. 5. View West. West side and rear elevations of c. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View West. West side and rear elevations of c. 1890 first rear addition; partial north rear elevation of c. 1900 side ell addition; and north rear and west side elevation of final rear addition of c. 1940. - Vaughn Chevrolet Building, 101-109 East Main Street, Monongahela, Washington County, PA

  19. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  20. Thermal equation of state of TiC: A synchrotron x-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Xiaohui; National Lab for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080; Department of Physics, University of Science and Technology of China, Hefei 230026

    2010-06-15

    The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{sub 0}{sup '}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0}=268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P}=-0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1})=a+bT with a=1.62(12)x10{sup -5} K{supmore » -1} and b=1.07(17)x10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{alpha}/{partial_derivative}P){sub T}=(-3.62{+-}1.14)x10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V}=-0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less

  1. Thermal equation-of-state of TiC: a synchrotron x-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaohui; Lin, Zhijun; Zhang, Jianzhong

    2009-01-01

    The pressure (P)-volume (V)-temperature (T) measurements were carried out for titanium carbide at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal-pressure approach. With the pressure derivative of the bulk modulus, K'{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub p} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity a{sub T}(K{sup -1}) = a + bT with a =more » 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}a/{partial_derivative}P){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub v} = -0.015 (8) GPa K{sup -1}. These results provide fundamental thermo physical properties for TiC and are important to theoretical and computational modeling of transition metal carbides.« less

  2. Effect of O 2 gas partial pressure on structures and dielectric characteristics of rf sputtered ZrO 2 thin films

    NASA Astrophysics Data System (ADS)

    Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y.

    2007-08-01

    Amorphous and polycrystalline zirconium oxide thin films have been deposited by reactive rf magnetron sputtering in a mixed argon/oxygen or pure oxygen atmosphere with no intentional heating of the substrate. The films were characterized by high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and capacitance versus voltage ( C- V) measurements to investigate the variation of structure, surface morphology, thickness of SiO 2-like interfacial layer as well as dielectric characteristics with different oxygen partial pressures. The films deposited at low oxygen partial pressures (less than 15%) are amorphous and dense with a smooth surface. In contrast, the films prepared at an oxygen partial pressure higher than 73% are crystallized with the microstructure changing from the mixture of monoclinic and tetragonal phases to a single monoclinic structure. The film structural transition is believed to be consequences of decrease in the oxygen vacancy concentration in the film and of increase of the energetically neutral particles in the plasma due to an increased oxygen partial pressure. SE measurements showed that significant interfacial SiO 2 growth has taken place above approximately 51%. The best C- V results in terms of relative dielectric constant values are obtained for thin films prepared at an oxygen partial pressure of 15%.

  3. Growth in elevated CO(2) can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition.

    PubMed

    Hymus, G J; Baker, N R; Long, S P

    2001-11-01

    Biochemically based models of C(3) photosynthesis can be used to predict that when photosynthesis is limited by the amount of Rubisco, increasing atmospheric CO(2) partial pressure (pCO(2)) will increase light-saturated linear electron flow through photosystem II (J(t)). This is because the stimulation of electron flow to the photosynthetic carbon reduction cycle (J(c)) will be greater than the competitive suppression of electron flow to the photorespiratory carbon oxidation cycle (J(o)). Where elevated pCO(2) increases J(t), then the ratio of absorbed energy dissipated photochemically to that dissipated non-photochemically will rise. These predictions were tested on Dactylis glomerata grown in fully controlled environments, at either ambient (35 Pa) or elevated (65 Pa) pCO(2), and at two levels of nitrogen nutrition. As was predicted, for D. glomerata grown in high nitrogen, J(t) was significantly higher in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). This was due to a significant increase in J(c) exceeding any suppression of J(o). This increase in photochemistry at elevated pCO(2) protected against photoinhibition at high light. For plants grown at low nitrogen, J(t) was significantly lower in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). Elevated pCO(2) again suppressed J(o); however growth in elevated pCO(2) resulted in an acclimatory decrease in leaf Rubisco content that removed any stimulation of J(c). Consistent with decreased photochemistry, for leaves grown at low nitrogen, the recovery from a 3-h photoinhibitory treatment was slower at elevated pCO(2).

  4. Solar photothermochemical alkane reverse combustion

    PubMed Central

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.

    2016-01-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  5. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1966-01-01

    Changes in the oxygen partial pressure of air over the range of 8 to 258 mm of Hg did not adversely affect the photosynthetic capacity of Chlorella pyrenoidosa. Gas exchange and growth measurements remained constant for 3-week periods and were similar to air controls (oxygen pressure of 160 mm of Hg). Oxygen partial pressures of 532 and 745 mm of Hg had an adverse effect on algal metabolism. Carbon dioxide consumption was 24% lower in the gas mixture containing oxygen at a pressure 532 mm of Hg than in the air control, and the growth rate was slightly reduced. Oxygen at a partial pressure of 745 mm of Hg decreased the photosynthetic rate 39% and the growth rate 37% over the corresponding rates in air. The lowered metabolic rates remained constant during 14 days of measurements, and the effect was reversible after this time. Substitution of helium or argon for the nitrogen in air had no effect on oxygen production, carbon dioxide consumption, or growth rate for 3-week periods. All measurements were made at a total pressure of 760 mm of Hg, and all gas mixtures were enriched with 2% carbon dioxide. Thus, the physiological functioning and reliability of a photosynthetic gas exchanger should not be adversely affected by: (i) oxygen partial pressures ranging from 8 to 258 mm of Hg; (ii) the use of pure oxygen at reduced total pressure (155 to 258 mm of Hg) unless pressure per se affects photosynthesis, or (iii) the inclusion of helium or argon in the gas environment (up to a partial pressure of 595 mm of Hg). PMID:5927028

  6. Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulatingmore » HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.« less

  7. Oxygen partial pressure influenced structural and optical properties of DC magnetron sputtered ZrO{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondaiah, P.; Madhavi, V.; Uthanna, S.

    2013-02-05

    Thin films of zirconium oxide (ZrO{sub 2}) were deposited on (100) p-silicon and quartz substrates by sputtering of metallic zirconium target under different oxygen partial pressures in the range 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa. The effect of oxygen partial pressure on the structural and optical properties of the deposited films was systematically investigated. The deposition rate of the films decreased from 3.3 to 1.83 nm/min with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively. The X-ray diffraction profiles revealed that the films exhibit (111) refection of zirconium oxide in monoclinic phase.more » The optical band gap of the films increased from 5.62 to 5.80 eV and refractive index increased from 2.01 to 2.08 with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively.« less

  8. Emotional reactivity and blood pressure elevations: anxiety as a mediator.

    PubMed

    Ifeagwazi, Chuka Mike; Egberi, Helen Eleh; Chukwuorji, JohnBosco Chika

    2018-06-01

    There is a strong link between emotional reactivity and hypertension, yet little research to date has examined mediators of this relationship. Ourstudy  investigated the mediating roleof anxiety on the relationship between emotional reactivity and blood pressure elevations. Participants were226 hypertensive patients (93 men and 133 women, Mean age = 53.09, SD = 13.88 years), purposivelydrawn from the General Outpatient Department in University of Calabar Teaching Hospital, Calabar, , Nigeria. .  Measures for data collection were Emotional Reactivity Scale, State Trait Anxiety Inventory, and the Mercury Sphygmomanometer. Hayes PROCESS macro for SPSS which uses a regression-based, path-analytical framework, was employed in analysing the data. Results showed that emotional reactivity was positively associated with blood pressure elevations. Anxiety was positively associated with blood pressure elevations. Anxiety also fully mediated the relationship between emotional reactivity and blood pressure elevations, even after adjusting for the control variables (e.g., age, family history of hypertension, and educational status). The finding suggests that being less emotionally reactive is associated with a decrease in disabling influences of anxiety, thereby contributing to lower levels of mean arterial blood pressure. The findings may be helpful  in improving prevention, control and management of hypertension in healthcare.

  9. Extreme elevation of intrasellar pressure in patients with pituitary tumor apoplexy: relation to pituitary function.

    PubMed

    Zayour, Dany H; Selman, Warren R; Arafah, Baha M

    2004-11-01

    The dominant mechanism for hypopituitarism and hyperprolactinemia commonly observed in patients with pituitary macroadenomas was postulated to be increased intrasellar pressure (ISP) caused by the slow and gradual expansion of adenomas within the sella turcica. Hemorrhagic infarction of adenomas (pituitary tumor apoplexy) is associated with a rapid, rather than gradual, increase in intrasellar contents. The impacts of the sudden increase in intrasellar contents on ISP and pituitary function are unknown. ISP and pituitary function were determined in 13 patients with pituitary tumor apoplexy who had surgical decompression within 1 wk of symptoms' onset. ISP measurements were remarkably high (median, 47 mm Hg), whereas serum prolactin (PRL) concentrations were generally low (median, 3.5 microg/liter). There was an inverse correlation (r = -0.76; P < 0.01) between ISP measurements and serum PRL concentrations. Postoperatively, partial recovery or maintenance of pituitary function was noted in seven of 13 patients. These seven patients had higher (P = 0.013) serum PRL levels (9.3 +/- 7.4 microg/liter) and lower (P < 0.001) ISP measurements (35.9 +/- 7.3 mm Hg) than the respective values in the remaining six with persistent postoperative hypopituitarism (1.6 +/- 0.6 microg/liter and 55.9 +/- 2.4 mm Hg, respectively). The low serum PRL levels in patients with tumor apoplexy suggested that ischemic necrosis of the anterior pituitary resulting from sudden and extreme elevation of ISP was commonly observed in this setting. A normal or elevated serum PRL level in patients with non-PRL-secreting macroadenomas indicates the presence of viable pituitary cells and the high likelihood of postoperative recovery of pituitary function.

  10. Brain-derived neurotrophic factor modulates angiotensin signaling in the hypothalamus to increase blood pressure in rats

    PubMed Central

    Backes, Iara; McCowan, Michael L.; Hayward, Linda F.; Scheuer, Deborah A.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli including stress and hyperosmolarity. However, it is unclear whether BDNF in the PVN contributes to increases in blood pressure (BP). We tested the hypothesis that increased BDNF levels within the PVN would elevate baseline BP and heart rate (HR) and cardiovascular stress responses by altering central angiotensin signaling. BP was recorded using radiotelemetry in male Sprague-Dawley rats after bilateral PVN injections of adeno-associated viral vectors expressing green fluorescent protein (GFP) or myc epitope-tagged BDNF fusion protein. Cardiovascular responses to acute stress were evaluated 3 to 4 wk after injections. Additional GFP and BDNF-treated animals were equipped with osmotic pumps for intracerebroventricular infusion of saline or the angiotensin type-1 receptor (AT1R) inhibitor losartan (15 μg·0.5 μl−1·h−1). BDNF treatment significantly increased baseline BP (121 ± 3 mmHg vs. 99 ± 2 mmHg in GFP), HR (394 ± 9 beats/min vs. 314 ± 4 beats/min in GFP), and sympathetic tone indicated by HR- and BP-variability analysis and adrenomedullary tyrosine hydroxylase protein expression. In contrast, body weight and BP elevations to acute stressors decreased. BDNF upregulated AT1R mRNA by ∼80% and downregulated Mas receptor mRNA by ∼50% in the PVN, and losartan infusion partially inhibited weight loss and increases in BP and HR in BDNF-treated animals without any effect in GFP rats. Our results demonstrate that BDNF overexpression in the PVN results in sympathoexcitation, BP and HR elevations, and weight loss that are mediated, at least in part, by modulating angiotensin signaling in the PVN. PMID:25576628

  11. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure.

    PubMed

    Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan

    2017-01-01

    Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2 protein upregulated the level of presynaptic proteins. Finally, gabapentin decreased the expression of presynaptic proteins in mixed cultures by blocking the interaction of thrombospondin 2 and α2δ-1. Taken together, these results indicate that activated macroglia cells may participate in alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure, and macroglia-derived thrombospondin 2 may modulate these changes via binding to its neuronal receptor α2δ-1.

  12. Urinary Angiotensinogen Excretion Level Is Associated With Elevated Blood Pressure in the Normotensive General Population.

    PubMed

    Sato, Emiko; Wang, An Yi; Satoh, Michihiro; Nishikiori, Yoko; Oba-Yabana, Ikuko; Yoshida, Mai; Sato, Hiroshi; Ito, Sadayoshi; Hida, Wataru; Mori, Takefumi

    2018-05-07

    Inflammation, intrarenal renin-angiotensin system (RAS) activation, oxidative stress, and carbonyl stress have been postulated to play a fundamental role in controlling blood pressure. However, little is known about the association among renal RAS activation, carbonyl stress, and blood pressure elevation. We evaluated the relationship between blood pressure elevation and either renal RAS activity or carbonyl stress in the general population (N = 355) in Japan. To minimize the effect of antihypertensive drug therapy, we divided participants into 3 groups (normotensive, hypertensive-with-non-medication, and hypertensive-with-medication). Intrarenal RAS activity and carbonyl stress were indicated by the urinary angiotensinogen (AGT) and carbonyl compound excretion levels, respectively. The urinary AGT and carbonyl compound excretion levels were significantly associated with blood pressure. Using a stepwise multiple regression analysis, we found that the urinary AGT excretion levels were strongly associated with blood pressure elevation, compared with inflammation, oxidative stress, and carbonyl stress markers, in all groups. Urinary carbonyl compound excretion was significantly associated with blood pressure in only the hypertensive-without-medication group. Furthermore, blood pressure was significantly increased in these participants, and both the urinary AGT and carbonyl compound levels were high. The urinary AGT excretion levels were strongly associated with elevated blood pressure in normotensive people, and inappropriate renal RAS activity and carbonyl stress independently contributed to the development of hypertension. These findings suggest that RAS activation, particularly renal RAS activation exert a fundamental role in the pathogenesis of hypertension in the general population.

  13. Selective loss of orientation column maps in visual cortex during brief elevation of intraocular pressure.

    PubMed

    Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande

    2003-01-01

    To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.

  14. Bedside Optic Nerve Sheath Diameter Assessment in the Identification of Increased Intracranial Pressure in Suspected Idiopathic Intracranial Hypertension.

    PubMed

    Irazuzta, Jose E; Brown, Martha E; Akhtar, Javed

    2016-01-01

    We determined whether the bedside assessment of the optic nerve sheath diameter could identify elevated intracranial pressure in individuals with suspected idiopathic intracranial hypertension. This was a single-center, prospective, rater-blinded study performed in a freestanding pediatric teaching hospital. Patients aged 12 to 18 years scheduled for an elective lumbar puncture with the suspicion of idiopathic intracranial hypertension were eligible to participate. Optic nerve sheath diameter was measured via ultrasonography before performing a sedated lumbar puncture for measuring cerebrospinal fluid opening pressure. Abnormal measurements were predefined as optic nerve sheath diameter ≥4.5 mm and a cerebrospinal fluid opening pressure greater than 20 cmH2O. Thirteen patients participated in the study, 10 of whom had elevated intracranial pressure. Optic nerve sheath diameter was able to predict or rule out elevated intracranial pressure in all patients. Noninvasive assessment of the optic nerve sheath diameter could help to identify patients with elevated intracranial pressure when idiopathic intracranial hypertension is suspected. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOEpatents

    Sircar, Shivaji; Hufton, Jeffrey Raymond; Nataraj, Shankar

    2000-01-01

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  16. Evaluation of a liquid cooling garment as a component of the Launch and Entry Suit (LES)

    NASA Technical Reports Server (NTRS)

    Waligora, J.; Charles, J.; Fritsch, I.; Fortney, S.; Siconolfi, S.; Pepper, L.; Bagian, L.; Kumar, V.

    1994-01-01

    The LES is a partial pressure suit and a component of the shuttle life support system used during launch and reentry. The LES relies on gas ventilation with cabin air to provide cooling. There are conditions during nominal launch and reentry, landing, and post-landing phases when cabin temperature is elevated. Under these conditions, gas cooling may result in some discomfort and some decrement in orthostatic tolerance. There are emergency conditions involving loss of cabin ECS capability that would challenge crew thermal tolerance. The results of a series of tests are presented. These tests were conducted to assess the effectiveness of a liquid-cooled garment in alleviating thermal discomfort, orthostatic intolerance, and thermal intolerance during simulated mission phases.

  17. Altitude test of several afterburner configurations on a turbofan engine with a hydrogen heater to simulate an elevated turbine discharge temperature

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.; Cullom, R. R.

    1977-01-01

    A performance test of several experimental afterburner configurations was conducted with a mixed-flow turbofan engine in an altitude facility. The simulated flight conditions were for Mach 1.4 at two altitudes, 12,190 and 14,630 meters. Turbine discharge temperatures of 889 and 1056 K were used. A production afterburner was tested for comparison. The research afterburners included partial forced mixers with V-gutter flameholders, a carburetted V-gutter flameholder, and a triple ring V-gutter flameholder with four swirl-can fuel mixers. Fuel injection variations were included. Performance data shown include augmented thrust ratio, thrust specific fuel consumption, combustion efficiency, and total pressure drop across the afterburner.

  18. Elevated preoperative blood pressures in adult surgical patients are highly predictive of elevated home blood pressures.

    PubMed

    Schonberger, Robert B; Nwozuzu, Adambeke; Zafar, Jill; Chen, Eric; Kigwana, Simon; Monteiro, Miriam M; Charchaflieh, Jean; Sophanphattana, Sophisa; Dai, Feng; Burg, Matthew M

    2018-04-01

    Blood pressure (BP) measurement during the presurgical assessment has been suggested as a way to improve longitudinal detection and treatment of hypertension. The relationship between BP measured during this assessment and home blood pressure (HBP), a better indicator of hypertension, is unknown. The purpose of the present study was to determine the positive predictive value of presurgical BP for predicting elevated HBP. We prospectively enrolled 200 patients at a presurgical evaluation clinic with clinic blood pressures (CBPs) ≥130/85 mm Hg, as measured using a previously validated automated upper-arm device (Welch Allyn Vital Sign Monitor 6000 Series), to undergo daily HBP monitoring (Omron Model BP742N) between the index clinic visit and their day of surgery. Elevated HBP was defined, per American Heart Association guidelines, as mean systolic HBP ≥135 mm Hg or mean diastolic HBP ≥85 mm Hg. Of the 200 participants, 188 (94%) returned their home blood pressure monitors with valid data. The median number of HBP recordings was 10 (interquartile range, 7-14). Presurgical CBP thresholds of 140/90, 150/95, and 160/100 mm Hg yielded positive predictive values (95% confidence interval) for elevated HBP of 84.1% (0.78-0.89), 87.5% (0.81-0.92), and 94.6% (0.87-0.99), respectively. In contrast, self-reported BP control, antihypertensive treatment, availability of primary care, and preoperative pain scores demonstrated poor agreement with elevated HBP. Elevated preoperative CBP is highly predictive of longitudinally elevated HBP. BP measurement during presurgical assessment may provide a way to improve longitudinal detection and treatment of hypertension. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.

  19. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    PubMed

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.

  20. Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing

    NASA Technical Reports Server (NTRS)

    Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.

    1992-01-01

    A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.

  1. Elevated hydrostatic pressure triggers release of OPA1 and cytochrome C, and induces apoptotic cell death in differentiated RGC-5 cells

    PubMed Central

    Kim, Keun-Young; Lindsey, James D.; Angert, Mila; Patel, Ankur; Scott, Ray T.; Liu, Quan; Crowston, Jonathan G.; Ellisman, Mark H.; Perkins, Guy A.; Weinreb, Robert N.

    2009-01-01

    Purpose This study was conducted to determine whether elevated hydrostatic pressure alters mitochondrial structure, triggers release of the dynamin-related guanosine triphosphatase (GTPase) optic atrophy type 1 (OPA1) or cytochrome C from mitochondria, alters OPA1 gene expression, and can directly induce apoptotic cell death in cultured retinal ganglion cell (RGC)-5 cells. Methods Differentiated RGC-5 cells were exposed to 30 mmHg for three days in a pressurized incubator. As a control, differentiated RGC-5 cell cultures were incubated simultaneously in a conventional incubator. Live RGC-5 cells were then labeled with MitoTracker Red and mitochondrial morphology was assessed by fluorescence microscopy. Mitochondrial structural changes were also assessed by electron microscopy and three-dimenstional (3D) electron microscope tomography. OPA1 mRNA was measured by Taqman quantitative PCR. The cellular distribution of OPA1 protein and cytochrome C was assessed by immunocytochemistry and western blot. Caspase-3 activation was examined by western blot. Apoptotic cell death was evaluated by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Results Mitochondrial fission, characterized by the conversion of tubular fused mitochondria into isolated small organelles, was triggered after three days exposure to elevated hydrostatic pressure. Electron microscopy confirmed the fission and noted no changes to mitochondrial architecture, nor outer membrane rupture. Electron microscope tomography showed that elevated pressure depleted mitochondrial cristae content by fourfold. Elevated hydrostatic pressure increased OPA1 gene expression by 35±14% on day 2, but reduced expression by 36±4% on day 3. Total OPA1 protein content was not changed on day 2 or 3. However, pressure treatment induced release of OPA1 and cytochrome C from mitochondria to the cytoplasm. Elevated pressure also activated caspase-3 and induced apoptotic cell death. Conclusions Elevated hydrostatic pressure triggered mitochondrial changes including mitochondrial fission and abnormal cristae depletion, alteration of OPA1 gene expression, and release of OPA1 and cytochrome C into the cytoplasm before the onset of apoptotic cell death in differentiated RGC-5 cells. These results suggest that sustained moderate pressure elevation may directly damage RGC integrity by injuring mitochondria. PMID:19169378

  2. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: a mechanistic view.

    PubMed

    Levitan, Orly; Kranz, Sven A; Spungin, Dina; Prásil, Ondrej; Rost, Björn; Berman-Frank, Ilana

    2010-09-01

    The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO(2) partial pressure (pCO(2)) with higher N(2) fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO(2) (150 and 900 microatm) and light (50 and 200 micromol photons m(-2) s(-1)) on Trichodesmium IMS101. We expand on a complementary study that demonstrated that while elevated pCO(2) enhanced N(2) fixation and growth, oxygen evolution and carbon fixation increased mainly as a response to high light. Here, we investigated changes in the photosynthetic fluorescence parameters of photosystem II, in ratios of the photosynthetic units (photosystem I:photosystem II), and in the pool sizes of key proteins involved in the fixation of carbon and nitrogen as well as their subsequent assimilation. We show that the combined elevation in pCO(2) and light controlled the operation of the CO(2)-concentrating mechanism and enhanced protein activity without increasing their pool size. Moreover, elevated pCO(2) and high light decreased the amounts of several key proteins (NifH, PsbA, and PsaC), while amounts of AtpB and RbcL did not significantly change. Reduced investment in protein biosynthesis, without notably changing photosynthetic fluxes, could free up energy that can be reallocated to increase N(2) fixation and growth at elevated pCO(2) and light. We suggest that changes in the redox state of the photosynthetic electron transport chain and posttranslational regulation of key proteins mediate the high flexibility in resources and energy allocation in Trichodesmium. This strategy should enable Trichodesmium to flourish in future surface oceans characterized by elevated pCO(2), higher temperatures, and high light.

  3. Elevated pressure causes endothelial dysfunction in mouse carotid arteries by increasing local angiotensin signaling

    PubMed Central

    Zhao, Yingzi; Flavahan, Sheila; Leung, Susan W.; Xu, Aimin; Vanhoutte, Paul M.

    2014-01-01

    Experiments were performed to determine whether or not acute exposure to elevated pressure would disrupt endothelium-dependent dilatation by increasing local angiotensin II (ANG II) signaling. Vasomotor responses of mouse-isolated carotid arteries were analyzed in a pressure myograph at a control transmural pressure (PTM) of 80 mmHg. Acetylcholine-induced dilatation was reduced by endothelial denudation or by inhibition of nitric oxide synthase (NG-nitro-l-arginine methyl ester, 100 μM). Transient exposure to elevated PTM (150 mmHg, 180 min) inhibited dilatation to acetylcholine but did not affect responses to the nitric oxide donor diethylamine NONOate. Elevated PTM also increased endothelial reactive oxygen species, and the pressure-induced endothelial dysfunction was prevented by the direct antioxidant and NADPH oxidase inhibitor apocynin (100 μM). The increase in endothelial reactive oxygen species in response to elevated PTM was reduced by the ANG II type 1 receptor (AT1R) antagonists losartan (3 μM) or valsartan (1 μM). Indeed, elevated PTM caused marked expression of angiotensinogen, the precursor of ANG II. Inhibition of ANG II signaling, by blocking angiotensin-converting enzyme (1 μM perindoprilat or 10 μM captopril) or blocking AT1Rs prevented the impaired response to acetylcholine in arteries exposed to 150 mmHg but did not affect dilatation to the muscarinic agonist in arteries maintained at 80 mmHg. After the inhibition of ANG II, elevated pressure no longer impaired endothelial dilatation. In arteries treated with perindoprilat to inhibit endogenous formation of the peptide, exogenous ANG II (0.3 μM, 180 min) inhibited dilatation to acetylcholine. Therefore, elevated pressure rapidly impairs endothelium-dependent dilatation by causing ANG expression and enabling ANG II-dependent activation of AT1Rs. These processes may contribute to the pathogenesis of hypertension-induced vascular dysfunction and organ injury. PMID:25485905

  4. Elevated pressure causes endothelial dysfunction in mouse carotid arteries by increasing local angiotensin signaling.

    PubMed

    Zhao, Yingzi; Flavahan, Sheila; Leung, Susan W; Xu, Aimin; Vanhoutte, Paul M; Flavahan, Nicholas A

    2015-02-15

    Experiments were performed to determine whether or not acute exposure to elevated pressure would disrupt endothelium-dependent dilatation by increasing local angiotensin II (ANG II) signaling. Vasomotor responses of mouse-isolated carotid arteries were analyzed in a pressure myograph at a control transmural pressure (PTM) of 80 mmHg. Acetylcholine-induced dilatation was reduced by endothelial denudation or by inhibition of nitric oxide synthase (NG-nitro-L-arginine methyl ester, 100 μM). Transient exposure to elevated PTM (150 mmHg, 180 min) inhibited dilatation to acetylcholine but did not affect responses to the nitric oxide donor diethylamine NONOate. Elevated PTM also increased endothelial reactive oxygen species, and the pressure-induced endothelial dysfunction was prevented by the direct antioxidant and NADPH oxidase inhibitor apocynin (100 μM). The increase in endothelial reactive oxygen species in response to elevated PTM was reduced by the ANG II type 1 receptor (AT1R) antagonists losartan (3 μM) or valsartan (1 μM). Indeed, elevated PTM caused marked expression of angiotensinogen, the precursor of ANG II. Inhibition of ANG II signaling, by blocking angiotensin-converting enzyme (1 μM perindoprilat or 10 μM captopril) or blocking AT1Rs prevented the impaired response to acetylcholine in arteries exposed to 150 mmHg but did not affect dilatation to the muscarinic agonist in arteries maintained at 80 mmHg. After the inhibition of ANG II, elevated pressure no longer impaired endothelial dilatation. In arteries treated with perindoprilat to inhibit endogenous formation of the peptide, exogenous ANG II (0.3 μM, 180 min) inhibited dilatation to acetylcholine. Therefore, elevated pressure rapidly impairs endothelium-dependent dilatation by causing ANG expression and enabling ANG II-dependent activation of AT1Rs. These processes may contribute to the pathogenesis of hypertension-induced vascular dysfunction and organ injury. Copyright © 2015 the American Physiological Society.

  5. Cystic Fibrosis Transmembrane Conductance Regulator Potentiation as a Therapeutic Strategy for Pulmonary Edema: A Proof-of-Concept Study in Pigs.

    PubMed

    Li, Xiaopeng; Vargas Buonfiglio, Luis G; Adam, Ryan J; Stoltz, David A; Zabner, Joseph; Comellas, Alejandro P

    2017-12-01

    To determine the feasibility of using a cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770/Kalydeco, Vertex Pharmaceuticals, Boston, MA), as a therapeutic strategy for treating pulmonary edema. Prospective laboratory animal investigation. Animal research laboratory. Newborn and 3 days to 1 week old pigs. Hydrostatic pulmonary edema was induced in pigs by acute volume overload. Ivacaftor was nebulized into the lung immediately after volume overload. Grams of water per grams of dry lung tissue were determined in the lungs harvested 1 hour after volume overload. Ivacaftor significantly improved alveolar liquid clearance in isolated pig lung lobes ex vivo and reduced edema in a volume overload in vivo pig model of hydrostatic pulmonary edema. To model hydrostatic pressure-induced edema in vitro, we developed a method of applied pressure to the basolateral surface of alveolar epithelia. Elevated hydrostatic pressure resulted in decreased cystic fibrosis transmembrane conductance regulator activity and liquid absorption, an effect which was partially reversed by cystic fibrosis transmembrane conductance regulator potentiation with ivacaftor. Cystic fibrosis transmembrane conductance regulator potentiation by ivacaftor is a novel therapeutic approach for pulmonary edema.

  6. Moderate acute pancreatitis with pleural effusion and impaired kidney functions

    NASA Astrophysics Data System (ADS)

    Lumbantoruan, O. H.; Dairi, L. B.

    2018-03-01

    Acute pancreatitis is a pancreatic inflammatory reaction that is clinically characterized by acute abdominal pain accompanied by elevated amylase and lipase enzymes. A 57-year-old female patient came to the emergency department with the main complaint of localized pain in the epigastric region within the last three days. Blood pressure 130/90mmHg, pulse 90x/i, RR 20x/i, temperature 37°C, sub-icteric on the eyes and tenderness in the epigastric region. Laboratory findings were leukocytosis, increased amylase, and lipase, elevated liver enzymes, hypoalbuminemia, elevated Kidney Functions, acidosis, and hypoglycemia. Abdominal CT-Scan revealed a partially lobulated edge with solid and necrotic components of the caput pancreas and widespread suspicion to the pancreatic corpus. The mass appeared to cause widening of the biliary and intrahepatic systems with minimal right pleural effusion. The liverwas slightly enlarged. The patient was with acute pancreatitis and treated with the installation of an open nasogastric tube, and resuscitated with ringer lactate fluid followed by IVFD D5%. Patients fasted for three days before giving a low fat, protein diet, antibiotic and proton pump inhibitors for seven days. After nine days, amylase and lipase levels decreased with significant clinical improvement. The next three days, the patient was discharged.

  7. Effects of supervised exercise on lipid profiles and blood pressure control in people with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials.

    PubMed

    Hayashino, Yasuaki; Jackson, Jeffrey L; Fukumori, Norio; Nakamura, Fumiaki; Fukuhara, Shunichi

    2012-12-01

    Our study's purpose was to perform a systematic review to assess the effect of supervised exercise interventions on lipid profiles and blood pressure control. We searched electronic databases and selected studies that evaluated the effect of supervised exercise intervention on cardiovascular risk factors in adult people with type 2 diabetes. We used random effect models to derive weighted mean differences of exercise on lipid profiles and blood pressure control. Forty-two RCTs (2808 subjects) met inclusion criteria and are included in our meta-analysis. Structured exercise was associated with a change in systolic blood pressure (SBP) of -2.42 mmHg (95% CI, -4.39 to -0.45 mmHg), diastolic blood pressure (DBP) of -2.23 mmHg (95% CI, -3.21 to -1.25 mmHg), high-density lipoprotein cholesterol (HDL-C) of 0.04 mmol/L (95% CI, 0.02-0.07 mmol/L), and low-density lipoprotein cholesterol (LDL-C) of -0.16 mmol/L (95% CI, -0.30 to -0.01 mmol/L). Heterogeneity was partially explained by age, dietary co-intervention and the duration and intensity of the exercise. Supervised exercise is effective in improving blood pressure control, lowering LDL-C, and elevating HDL-C levels in people with diabetes. Physicians should recommend exercise for their adult patients with diabetes who can safely do so. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    PubMed

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  9. Inhibitory effects of losartan and azelnidipine on augmentation of blood pressure variability induced by angiotensin II in rats.

    PubMed

    Jiang, Danfeng; Kawagoe, Yukiko; Kuwasako, Kenji; Kitamura, Kazuo; Kato, Johji

    2017-07-05

    Increased blood pressure variability has been shown to be associated with cardiovascular morbidity and mortality. Recently we reported that continuous infusion of angiotensin II not only elevated blood pressure level, but also increased blood pressure variability in a manner assumed to be independent of blood pressure elevation in rats. In the present study, the effects of the angiotensin type I receptor blocker losartan and the calcium channel blocker azelnidipine on angiotensin II-induced blood pressure variability were examined and compared with that of the vasodilator hydralazine in rats. Nine-week-old male Wistar rats were subcutaneously infused with 240 pmol/kg/min angiotensin II for two weeks without or with oral administration of losartan, azelnidipine, or hydralazine. Blood pressure variability was evaluated using a coefficient of variation of blood pressure recorded every 15min under an unrestrained condition via an abdominal aortic catheter by a radiotelemetry system. Treatment with losartan suppressed both blood pressure elevation and augmentation of systolic blood pressure variability in rats infused with angiotensin II at 7 and 14 days. Azelnidipine also inhibited angiotensin II-induced blood pressure elevation and augmentation of blood pressure variability; meanwhile, hydralazine attenuated the pressor effect of angiotensin II, but had no effect on blood pressure variability. In conclusion, angiotensin II augmented blood pressure variability in an angiotensin type 1 receptor-dependent manner, and azelnidipine suppressed angiotensin II-induced augmentation of blood pressure variability, an effect mediated by the mechanism independent of the blood pressure-lowering action. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Optimal optic nerve sheath diameter threshold for the identification of elevated opening pressure on lumbar puncture in a Chinese population.

    PubMed

    Wang, Lijuan; Feng, Liangshu; Yao, Yan; Wang, Yuzhi; Chen, Ying; Feng, Jiachun; Xing, Yingqi

    2015-01-01

    Ultrasonography of the optic nerve sheath diameter (ONSD) is a non-invasive and rapid method that might be helpful in the identification of increased intracranial pressure (ICP). The use of an ONSD greater than 5 mm on ultrasound as an indicator of increased ICP in a Caucasian population has been studied. However, the cut-off point of this predictor in Chinese patients has not been established. Thus, we conducted this study to identify the ONSD criterion for the detection of elevated opening pressure on lumbar puncture (LP) in a Chinese population and to investigate the influencing factors. This study was a blind cross-sectional study. Patients who presented with suspected increased ICP were included. The opening pressure on LP of each participant was confirmed. We analyzed the clinical differences between the groups of patients with abnormal and normal opening pressures on LP. A receiver operating characteristic curve was constructed to determine the ONSD cut-off point for the identification of abnormal opening pressure on LP. In total, 279 patients were recruited, and 101 patients presented with elevated opening pressure on LP. ONSD was a significant independent predictor of elevated opening pressure on LP (p<0.001). However, no statistical significance was observed regarding the factors that might have affected this relationship including gender, age, body mass index, waistline, head circumference, hypertension and pathological subtype. The ONSD cut-off point for the identification of elevated opening pressure on LP was 4.1 mm; this cut-off yielded a sensitivity of 95% and a specificity of 92%. ONSD is a strong and accurate predictor of elevated opening pressure on LP. The cut-off point of this predictor in a Chinese population was remarkably lower than that found in a Caucasian population. Thus, ethnic differences should be noted when using the ONSD as an indicator of increased ICP.

  11. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.

  12. Thermal Equation of State of TiC: A Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, X.; Lin, Z; Zhang, J

    2010-01-01

    The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{prime}{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1}) =more » a+b T with a = 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8}K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{sub {alpha}}/{partial_derivative}{sub P}){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V} = -0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less

  13. Intraocular pressure and cerebral oxygenation during prolonged headward acceleration.

    PubMed

    Eiken, Ola; Keramidas, Michail E; Taylor, Nigel A S; Grönkvist, Mikael

    2017-01-01

    Supra-tolerance head-to-foot directed gravitoinertial load (+Gz) typically induces a sequence of symptoms/signs, including loss of: peripheral vision-central vision-consciousness. The risk of unconsciousness is greater when anti-G-garment failure occurs after prolonged rather than brief exposures, presumably because, in the former condition, mental signs are not consistently preceded by impaired vision. The aims were to investigate if prolonged exposure to moderately elevated +Gz reduces intraocular pressure (IOP; i.e., improves provisions for retinal perfusion), or the cerebral anoxia reserve. Subjects were exposed to 4-min +Gz plateaux either at 2 and 3 G (n = 10), or at 4 and 5 G (n = 12). Measurements included eye-level mean arterial pressure (MAP), oxygenation of the cerebral frontal cortex, and at 2 and 3 G, IOP. IOP was similar at 1 (14.1 ± 1.6 mmHg), 2 (14.0 ± 1.6 mmHg), and 3 G (14.0 ± 1.6 mmHg). During the G exposures, MAP exhibited an initial prompt drop followed by a partial recovery, end-exposure values being reduced by ≤30 mmHg. Cerebral oxygenation showed a similar initial drop, but without recovery, and was followed by either a plateau or a further slight decrement to a minimum of about -14 μM. Gz loading did not affect IOP. That cerebral oxygenation remained suppressed throughout these G exposures, despite a concomitant partial recovery of MAP, suggests that the increased risk of unconsciousness upon G-garment failure after prolonged +Gz exposure is due to reduced cerebral anoxia reserve.

  14. Spatial Characteristics of F/A-18 Vertical Tail Buffet Pressures Measured in Flight

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1998-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails, at high angles of attack. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting estimates were computed using the measured buffet pressures and compared to the measured responses. The estimates did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting estimates. Several wind-tunnel investigations were conducted for this purpose. When combined and compared, the results of these tests show that the partial correlation depends on and scales with flight conditions. One of the remaining questions is whether the windtunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the high alpha research vehicle (HARV) indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  15. Correlation of Fin Buffet Pressures on an F/A-18 with Scaled Wind-Tunnel Measurements

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1999-01-01

    Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  16. Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study

    NASA Astrophysics Data System (ADS)

    Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent

    2018-02-01

    Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.

  17. Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration.

    PubMed

    Pihl, Liselotte; Persson, Patrik; Fasching, Angelica; Hansell, Peter; DiBona, Gerald F; Palm, Fredrik

    2012-07-01

    Glomerular filtration rate (GFR) and renal blood flow (RBF) are normally kept constant via renal autoregulation. However, early diabetes results in increased GFR and the potential mechanisms are debated. Tubuloglomerular feedback (TGF) inactivation, with concomitantly increased RBF, is proposed but challenged by the finding of glomerular hyperfiltration in diabetic adenosine A(1) receptor-deficient mice, which lack TGF. Furthermore, we consistently find elevated GFR in diabetes with only minor changes in RBF. This may relate to the use of a lower streptozotocin dose, which produces a degree of hyperglycemia, which is manageable without supplemental suboptimal insulin administration, as has been used by other investigators. Therefore, we examined the relationship between RBF and GFR in diabetic rats with (diabetes + insulin) and without suboptimal insulin administration (untreated diabetes). As insulin can affect nitric oxide (NO) release, the role of NO was also investigated. GFR, RBF, and glomerular filtration pressures were measured. Dynamic RBF autoregulation was examined by transfer function analysis between arterial pressure and RBF. Both diabetic groups had increased GFR (+60-67%) and RBF (+20-23%) compared with controls. However, only the diabetes + insulin group displayed a correlation between GFR and RBF (R(2) = 0.81, P < 0.0001). Net filtration pressure was increased in untreated diabetes compared with both other groups. The difference between untreated and insulin-treated diabetic rats disappeared after administering N(ω)-nitro-l-arginine methyl ester to inhibit NO synthase and subsequent NO release. In conclusion, mechanisms causing diabetes-induced glomerular hyperfiltration are animal model-dependent. Supplemental insulin administration results in a RBF-dependent mechanism, whereas elevated GFR in untreated diabetes is mediated primarily by a tubular event. Insulin-induced NO release partially contributes to these differences.

  18. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Fang; Guo, Ming-Lan; Guo, Ya-Juan; Zhang, Yu-Yang; Zhou, Guo-Wei; Cai, Lin; Lian, Jian-Sheng; Qian, Pei-Yuan; Huang, Hui

    2018-03-01

    This study tested the interactive effects of increased seawater temperature and CO2 partial pressure ( pCO2) on the photochemistry, bleaching, and early growth of the reef coral Pocillopora damicornis. New recruits were maintained at ambient or high temperature (29 or 30.8 °C) and pCO2 ( 500 and 1100 μatm) in a full-factorial experiment for 3 weeks. Neither a sharp decline in photochemical efficiency (Fv/Fm) nor evident bleaching was observed at high temperature and/or high pCO2. Furthermore, elevated temperature greatly promoted lateral growth and calcification, while polyp budding exhibited temperature-dependent responses to pCO2. High pCO2 depressed calcification by 28% at ambient temperature, but did not impact calcification at 30.8 °C. Interestingly, elevated temperature in concert with high pCO2 significantly retarded the budding process. These results suggest that increased temperature can mitigate the adverse effects of acidification on the calcification of juvenile P. damicornis, but at a substantial cost to asexual budding.

  19. Topographic effects on infrasound propagation.

    PubMed

    McKenna, Mihan H; Gibson, Robert G; Walker, Bob E; McKenna, Jason; Winslow, Nathan W; Kofford, Aaron S

    2012-01-01

    Infrasound data were collected using portable arrays in a region of variable terrain elevation to quantify the effects of topography on observed signal amplitude and waveform features at distances less than 25 km from partially contained explosive sources during the Frozen Rock Experiment (FRE) in 2006. Observed infrasound signals varied in amplitude and waveform complexity, indicating propagation effects that are due in part to repeated local maxima and minima in the topography on the scale of the dominant wavelengths of the observed data. Numerical simulations using an empirically derived pressure source function combining published FRE accelerometer data and historical data from Project ESSEX, a time-domain parabolic equation model that accounted for local terrain elevation through terrain-masking, and local meteorological atmospheric profiles were able to explain some but not all of the observed signal features. Specifically, the simulations matched the timing of the observed infrasound signals but underestimated the waveform amplitude observed behind terrain features, suggesting complex scattering and absorption of energy associated with variable topography influences infrasonic energy more than previously observed. © 2012 Acoustical Society of America.

  20. Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures.

    PubMed

    Joo, Peter H; Gao, Jinlong; Li, Zhongshan; Aldén, Marcus

    2015-03-01

    The design and features of a high pressure chamber and burner that is suitable for combustion experiments at elevated pressures are presented. The high pressure combustion apparatus utilizes a high pressure burner that is comprised of a chamber burner module and an easily accessible interchangeable burner module to add to its flexibility. The burner is well suited to study both premixed and non-premixed flames. The optical access to the chamber is provided through four viewports for direct visual observations and optical-based diagnostic techniques. Auxiliary features include numerous access ports and electrical connections and as a result, the combustion apparatus is also suitable to work with plasmas and liquid fuels. Images of methane flames at elevated pressures up to 25 atm and preliminary results of optical-based measurements demonstrate the suitability of the high pressure experimental apparatus for combustion experiments.

  1. Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure

    NASA Astrophysics Data System (ADS)

    Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi

    We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.

  2. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  3. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    PubMed

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    PubMed

    Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  5. PPARγ Ligands Decrease Hydrostatic Pressure-Induced Platelet Aggregation and Proinflammatory Activity

    PubMed Central

    Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940

  6. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was tomore » provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.« less

  7. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    ERIC Educational Resources Information Center

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  8. Test anxiety and cardiovascular responses to daily academic stressors.

    PubMed

    Conley, Kristen M; Lehman, Barbara J

    2012-02-01

    Routine academic events may cause stress and produce temporary elevations in blood pressure. Students who experience test anxiety may be especially prone to cardiovascular activation in response to academic stress. This study drew on self-reported stress and ambulatory blood pressure measurements provided by 99 undergraduate participants (30% men, mean age=21 years) who participated over 4 days. Posture, activity level, recent consumption and the previous same-day reading were considered as covariates in a series of hierarchical linear models. Results indicate elevations in systolic blood pressure at times of acute academic stressors; neither diastolic blood pressure nor heart rate was linked with academic stress. In addition, those participants higher in test anxiety exhibited especially pronounced elevations in systolic blood pressure during times of acute academic stress. This research suggests that everyday academic stressors are linked with temporary increases in blood pressure and that test anxiety may contribute to these elevations. Test anxiety has implications for future academic and job success, and cardiovascular responses to everyday stress may contribute to health problems later in life. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Economic analysis for commingling effects of insect activity in the elevator boot area

    USDA-ARS?s Scientific Manuscript database

    Boot areas in commercial grain elevators and feed mills contribute to commingling of insects with grain that moves through the elevator leg. A partial budget and stochastic dominance model was developed to improve pest management decision-making and risk analysis assessment from commingling effects ...

  10. Decline in arterial partial pressure of oxygen after exercise: a surrogate marker of pulmonary vascular obstructive disease in patients with atrial septal defect and severe pulmonary hypertension.

    PubMed

    Laksmivenkateshiah, Srinivas; Singhi, Anil K; Vaidyanathan, Balu; Francis, Edwin; Karimassery, Sundaram R; Kumar, Raman K

    2011-06-01

    To examine the utility of decline in arterial partial pressure of oxygen after exercise as a marker of pulmonary vascular obstructive disease in patients with atrial septal defect and pulmonary hypertension. Treadmill exercise was performed in 18 patients with atrial septal defect and pulmonary hypertension. Arterial blood gas samples were obtained before and after peak exercise. A decline in the arterial pressure of oxygen of more than 10 millimetres of mercury after exercise was considered significant based on preliminary tests conducted on the controls. Cardiac catheterisation was performed in all patients and haemodynamic data sets were obtained on room air, oxygen, and a mixture of oxygen and nitric oxide (30-40 parts per million). There were 10 patients who had more than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise and who had a basal pulmonary vascular resistance index of more than 7 Wood units per square metre. Out of eight patients who had less than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise, seven had a basal pulmonary vascular resistance index of less than 7 Wood units per square metre, p equals 0.0001. A decline in arterial partial pressure of oxygen of more than 10 millimetres of mercury predicted a basal pulmonary vascular resistance index of more than 7 Wood units per square metre with a specificity of 100% and a sensitivity of 90%. A decline in arterial partial pressure of oxygen following exercise appears to predict a high pulmonary vascular resistance index in patients with atrial septal defect and pulmonary hypertension. This test is a useful non-invasive marker of pulmonary vascular obstructive disease in this subset.

  11. Subatmospheric vapor pressures for fluoromethane (R41), 1,1-difluoroethane (R152a), and 1,1,1-trifluoroethane (R143a) evaluated from internal-energy measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte-Garza, H.A.; Magee, J.W.

    1999-09-01

    Vapor pressures were evaluated from measured internal-energy changes {Delta}U{sup (2)} in the vapor + liquid two-phase region. The method employed a thermodynamic relationship between the derivative quantity ({partial_derivative}U{sup (2)}/{partial_derivative}V){sub T}, the vapor pressure p{sub {sigma}}, and its temperature derivative ({partial_derivative}p/{partial_derivative}T){sub {sigma}}. This method was applied at temperatures between the triple point and the normal boiling point of three substances: fluoromethane (R41), 1,1-difluoroethane (R152a), and 1,1,1-trifluoroethane (R143a). In the case of R41, vapor pressures up to 1 MPa were calculated to validate the technique at higher pressures. For R152a, the calculated vapor pressure at the triple-point temperature differed from a directmore » experimental measurement by less than the claimed uncertainty (5 Pa) of the measurement. The calculated vapor pressures for R41 helped to resolve discrepancies in several published vapor pressure sources. Agreement with experimentally measured vapor pressures for R152a and for R143a near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately 0.04 kPa (0.04%) for the published measurements.« less

  12. Effect of partial meniscectomy at the medial posterior horn on tibiofemoral contact mechanics and meniscal hoop strains in human knees.

    PubMed

    Seitz, Andreas Martin; Lubomierski, Anja; Friemert, Benedikt; Ignatius, Anita; Dürselen, Lutz

    2012-06-01

    We examined the influence of partial meniscectomy of 10 mm width on 10 human cadaveric knee joints, as it is performed during the treatment of radial tears in the posterior horn of the medial meniscus, on maximum contact pressure, contact area (CA), and meniscal hoop strain in the lateral and medial knee compartments. In case of 0° and 30° flexion angle, 20% and 50% partial meniscectomy did not influence maximum contact pressure and area. Only in case of 60° knee flexion, 50% partial resection increased medial maximum contact pressure and decreased the medial CA statistically significant. However, 100% partial resection increased maximum contact pressure and decreased CA significantly in the meniscectomized medial knee compartment in all tested knee positions. No significant differences were noted for meniscal hoop strain. From a biomechanical point of view, our in vitro study suggests that the medial joint compartment is not in danger of accelerated cartilage degeneration up to a resection limit of 20% meniscal depth and 10 mm width. Contact mechanics are likely to be more sensitive to partial meniscectomy at higher flexion angles, which has to be further investigated. Copyright © 2011 Orthopaedic Research Society.

  13. Point Defect Structure of Cr203

    DTIC Science & Technology

    1987-10-01

    Calculation of Electron Hole Mobility ........................ 104 6.2.3 Construction of the Defect Concentration vs. Oxygen Pressure Diagram...1000’ to 16000C ............ 123 7.7 Calculated diffusion coefficient vs. oxygen partial pressure diagram for pure Cr203 at 1100 0 C...127 7.10 Calculated parabolic rate constant vs. oxygen partial pressure diagram for pure Cr203 at

  14. Acetone photophysics at 282 nm excitation at elevated pressure and temperature. II: Fluorescence modeling

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen

    2017-07-01

    This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.

  15. Growth Responses of Neurospora crassa to Increased Partial Pressures of the Noble Gases and Nitrogen

    PubMed Central

    Buchheit, R. G.; Schreiner, H. R.; Doebbler, G. F.

    1966-01-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622–627. 1966.—Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically “inert gas” present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar ≫ Ne ≫ He. Nitrogen (N2) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He (∼ 300 atm). With respect to inhibition of growth, the noble gases and N2 differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O2-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases. PMID:5883104

  16. Elevated arterial blood pressure after superior cavo-pulmonary anastomosis is associated with elevated pulmonary artery pressure and cerebrovascular dysautoregulation.

    PubMed

    Cabrera, Antonio G; Kibler, Kathleen K; Blaine Easley, R; Goldsworthy, Michelle; Shekerdemian, Lara S; Andropoulos, Dean B; Heinle, Jeffrey; Gottlieb, Erin A; Vu, Eric; Brady, Ken M

    2018-04-18

    BackgroundElevated arterial blood pressure (ABP) is common after superior bidirectional cavopulmonary anastomosis (BCPA). The effects of elevated ABP after BCPA on cerebrovascular hemodynamics are unknown. We sought to determine the relationship between elevated ABP and cerebrovascular autoregulation after BCPA.MethodsProspective, observational study on infants with single-ventricle physiology after BCPA surgery. Continuous recordings of mean ABP, mean cavopulmonary artery pressure (PAP), near-infrared spectroscopy measures of cerebral oximetry (regional cerebral oxygen saturation (rSO 2 )), and relative cerebral blood volume index were obtained from admission to extubation. Autoregulation was measured as hemoglobin volume index (HVx). Physiologic variables, including the HVx, were tested for variance across ABP.ResultsSixteen subjects were included in the study. Elevated ABP post-BCPA was associated with both, elevated PAP (P<0.0001) and positive HVx (dysautoregulation; P<0.0001). No association was observed between ABP and alterations in rSO 2 . Using piecewise regression, the relationship of PAP to ABP demonstrated a breakpoint at 68 mm Hg (interquartile range (IQR) 62-70 mm Hg). Curve fit of HVx as a function of ABP identified optimal ABP supporting robust autoregulation at a median ABP of 55 mm Hg (IQR 51-64 mm Hg).ConclusionsElevated ABP post-BCPA is associated with cerebrovascular dysautoregulation, and elevated PAP. The effects, of prolonged dysautoregulation within this population, require further study.Pediatric Research advance online publication, 18 April 2018; doi:10.1038/pr.2018.31.

  17. Blood pressure in firefighters, police officers, and other emergency responders.

    PubMed

    Kales, Stefanos N; Tsismenakis, Antonios J; Zhang, Chunbai; Soteriades, Elpidoforos S

    2009-01-01

    Elevated blood pressure is a major risk factor for cardiovascular morbidity and mortality. Increased risk begins in the prehypertensive range and increases further with higher pressures. The strenuous duties of emergency responders (firefighters, police officers, and emergency medical services (EMS) personnel) can interact with their personal risk profiles, including elevated blood pressure, to precipitate acute cardiovascular events. Approximately three-quarters of emergency responders have prehypertension or hypertension, a proportion which is expected to increase, based on the obesity epidemic. Elevated blood pressure is also inadequately controlled in these professionals and strongly linked to cardiovascular disease morbidity and mortality. Notably, the majority of incident cardiovascular disease events occur in responders who are initially prehypertensive or only mildly hypertensive and whose average premorbid blood pressures are in the range in which many physicians would hesitate to prescribe medications (140-146/88-92). Laws mandating public benefits for emergency responders with cardiovascular disease provide an additional rationale for aggressively controlling their blood pressure. This review provides a background on emergency responders, summarizes occupational risk factors for hypertension and the metabolic syndrome, their prevalence of elevated blood pressure, and evidence linking hypertension with adverse outcomes in these professions. Next, discrepancies between relatively outdated medical standards for emergency responders and current, evidence-based guidelines for blood pressure management in the general public are highlighted. Finally, a workplace-oriented approach for blood pressure control among emergency responders is proposed, based on the seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.

  18. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  19. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  20. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    NASA Technical Reports Server (NTRS)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  1. 11. GIRDER PARTIAL ELEVATION AND SECTIONS, 80 FOOT THROUGH PLATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GIRDER PARTIAL ELEVATION AND SECTIONS, 80 FOOT THROUGH PLATE GIRDER SPAN. (Also includes a Marking Diagram and a schedule of parts.) American Bridge Company, Ambridge Plant No. 5, sheet no. 1, dated April 7, 1928, order no. F5073. For U.S. Steel Products Company, Pacific Coast Depot, order no. SF578. For Southern Pacific Company, order no. 8873-P-28746. Scale 1/4 inch to one foot. - Napa River Railroad Bridge, Spanning Napa River, east of Soscol Avenue, Napa, Napa County, CA

  2. Influence of oxygen partial pressure on the composition and orientation of strontium-doped lead zirconate titanate thin films.

    PubMed

    Sriram, S; Bhaskaran, M; du Plessis, J; Short, K T; Sivan, V P; Holland, A S

    2009-01-01

    The influence of oxygen partial pressure during the deposition of piezoelectric strontium-doped lead zirconate titanate thin films is reported. The thin films have been deposited by RF magnetron sputtering in an atmosphere of high purity argon and oxygen (in the ratio of 9:1), on platinum-coated silicon substrates (heated to 650 degrees C). The influence of oxygen partial pressure is studied to understand the manner in which the stoichiometry of the thin films is modified, and to understand the influence of stoichiometry on the perovskite orientation. This article reports on the results obtained from films deposited at oxygen partial pressures of 1-5 mTorr. The thin films have been studied using a combination of X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GA-XRD), and atomic force microscopy (AFM). XPS analysis highlights the marked influence of variations in oxygen pressure during sputtering, observed by variations in oxygen concentration in the thin films, and in some cases by the undesirable decrease in lead concentration in the thin films. GA-XRD is used to study the relative variations in perovskite peak intensities, and has been used to determine the deposition conditions to attain the optimal combination of stoichiometry and orientation. AFM scans show the marked influence of the oxygen partial pressure on the film morphology.

  3. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload

    PubMed Central

    Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.

    2012-01-01

    Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and/or gravitational loads. PMID:22886407

  4. Uric Acid Level and Elevated Blood Pressure in U.S. Adolescents

    PubMed Central

    Loeffler, Lauren F.; Navas-Acien, Ana; Brady, Tammy M.; Miller, Edgar R.; Fadrowski, Jeffrey J.

    2012-01-01

    Uric acid is associated with cardiovascular disease (CVD) and CVD risk factors in adults, including chronic kidney disease, coronary artery disease, stroke, diabetes, preeclampsia, and hypertension. We examined the association between uric acid and elevated blood pressure in a large, nationally representative cohort of U.S. adolescents, a population with a relatively low prevalence of CVD and CVD risk factors. Among 6,036 adolescents 12-17 years of age examined in the 1999-2006 National Health and Nutrition Examination Survey (NHANES) the mean age was 14.5 years, 17% were obese (body mass index [BMI] ≥95th percentile), and 3.3% had elevated blood pressure. Mean serum uric acid level was 5.0 mg/dL and 34% had a uric acid level ≥5.5 mg/dL. In analyses adjusted for age, sex, race/ethnicity and BMI percentile, the odds ratio of elevated blood pressure, defined as a systolic or diastolic blood pressure ≥95th percentile for age, sex and height, for each 0.1 mg/dL increase in uric acid level was 1.38 (95% confidence interval [CI], 1.16 to 1.65). Compared to <5.5 mg/dL, participants with a uric acid level ≥5.5 mg/dL had a 2.03 times higher odds of having elevated blood pressure (95% CI, 1.38 to 3.00). In conclusion, increasing levels of serum uric acid are associated with elevated blood pressure in healthy U.S. adolescents. Additional prospective studies and clinical trials are needed to determine if uric acid is merely a marker in a complex metabolic pathway, or causal of hypertension and thus a potential screening and therapeutic target. PMID:22353609

  5. Comparison of biochemical stress indicators in juvenile captive estuarine crocodiles (Crocodylus porosus) following physical restraint or chemical restraint by midazolam injection.

    PubMed

    Olsson, Annabelle; Phalen, David

    2013-07-01

    Using a prospective, randomized study design we demonstrate that midazolam sedation minimizes acidosis compared with physical restraint in captive juvenile estuarine crocodiles during handling or noninvasive procedures at preferred body temperature. A dose of midazolam (5.0 mg/kg) was administered intramuscularly into the forelimb of 20 male estuarine crocodiles weighing 2-3.5 kg. Their heart and respiratory rate and degree of sedation were monitored until recovery and then daily for 7 subsequent days. Blood samples were taken at 30, 60, 90, 180, and 360 min. We recorded lactate, partial pressure of carbon dioxide (CO2), hematocrit, glucose, and blood pH. A second group (1.9-2.6 kg) was physically restrained for 5 min and the same parameters recorded. Physically restrained animals demonstrated elevated heart rate, respiratory rate, glucose, lactate, and anion gap compared with the midazolam-treated group. Physically restrained animals had lower pH, bicarbonate, and partial pressure of CO2 compared with the midazolam-treated group. Behavior in the physically restrained group in the days following the study was disrupted, with reluctance to feed and bask, compared with midazolam-treated animals whose behavior was normal. We conclude that midazolam administered in the forelimb of captive estuarine crocodiles of 2-3.5 kg provides predictable onset and duration of sedation enabling physical examination, sample collection, and translocation of the animals with minimal disturbance to lactate, pH, and CO2. Behavior following recovery appears normal.

  6. Activation of Autophagy in a Rat Model of Retinal Ischemia following High Intraocular Pressure

    PubMed Central

    Piras, Antonio; Gianetto, Daniele; Conte, Daniele; Bosone, Alex; Vercelli, Alessandro

    2011-01-01

    Acute primary open angle glaucoma is an optic neuropathy characterized by the elevation of intraocular pressure, which causes retinal ischemia and neuronal death. Rat ischemia/reperfusion enhances endocytosis of both horseradish peroxidase (HRP) or fluorescent dextran into ganglion cell layer (GCL) neurons 24 h after the insult. We investigated the activation of autophagy in GCL-neurons following ischemia/reperfusion, using acid phosphatase (AP) histochemistry and immunofluorescence against LC3 and LAMP1. Retinal I/R lead to the appearance of AP-positive granules and LAMP1-positive vesicles 12 and 24 h after the insult, and LC3 labelling at 24 h, and induced a consistent retinal neuron death. At 48 h the retina was negative for autophagic markers. In addition, Western Blot analysis revealed an increase of LC3 levels after damage: the increase in the conjugated, LC3-II isoform is suggestive of autophagic activity. Inhibition of autophagy by 3-methyladenine partially prevented death of neurons and reduces apoptotic markers, 24 h post-lesion. The number of neurons in the GCL decreased significantly following I/R (I/R 12.21±1.13 vs controls 19.23±1.12 cells/500 µm); this decrease was partially prevented by 3-methyladenine (17.08±1.42 cells/500 µm), which potently inhibits maturation of autophagosomes. Treatment also prevented the increase in glial fibrillary acid protein immunoreactivity elicited by I/R. Therefore, targeting autophagy could represent a novel and promising treatment for glaucoma and retinal ischemia. PMID:21799881

  7. Short-duration hypothermia after ischemic stroke prevents delayed intracranial pressure rise.

    PubMed

    Murtha, L A; McLeod, D D; McCann, S K; Pepperall, D; Chung, S; Levi, C R; Calford, M B; Spratt, N J

    2014-07-01

    Intracranial pressure elevation, peaking three to seven post-stroke is well recognized following large strokes. Data following small-moderate stroke are limited. Therapeutic hypothermia improves outcome after cardiac arrest, is strongly neuroprotective in experimental stroke, and is under clinical trial in stroke. Hypothermia lowers elevated intracranial pressure; however, rebound intracranial pressure elevation and neurological deterioration may occur during rewarming. (1) Intracranial pressure increases 24 h after moderate and small strokes. (2) Short-duration hypothermia-rewarming, instituted before intracranial pressure elevation, prevents this 24 h intracranial pressure elevation. Long-Evans rats with two hour middle cerebral artery occlusion or outbred Wistar rats with three hour middle cerebral artery occlusion had intracranial pressure measured at baseline and 24 h. Wistars were randomized to 2·5 h hypothermia (32·5°C) or normothermia, commencing 1 h after stroke. In Long-Evans rats (n = 5), intracranial pressure increased from 10·9 ± 4·6 mmHg at baseline to 32·4 ± 11·4 mmHg at 24 h, infarct volume was 84·3 ± 15·9 mm(3) . In normothermic Wistars (n = 10), intracranial pressure increased from 6·7 ± 2·3 mmHg to 31·6 ± 9·3 mmHg, infarct volume was 31·3 ± 18·4 mm(3) . In hypothermia-treated Wistars (n = 10), 24 h intracranial pressure did not increase (7·0 ± 2·8 mmHg, P < 0·001 vs. normothermia), and infarct volume was smaller (15·4 ± 11·8 mm(3) , P < 0·05). We saw major intracranial pressure elevation 24 h after stroke in two rat strains, even after small strokes. Short-duration hypothermia prevented the intracranial pressure rise, an effect sustained for at least 18 h after rewarming. The findings have potentially important implications for design of future clinical trials. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.

  8. Supercritical CO2 uptake by nonswelling phyllosilicates

    PubMed Central

    Tokunaga, Tetsu K.; Ashby, Paul D.; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J.

    2018-01-01

    Interactions between supercritical (sc) CO2 and minerals are important when CO2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO2), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO2, can increase CO2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO2 uptake constitutes a previously unrecognized potential trapping mechanism. PMID:29339499

  9. Supercritical CO2 uptake by nonswelling phyllosilicates.

    PubMed

    Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J

    2018-01-30

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.

  10. High Hydrostatic Pressure Extract of Ginger Exerts Antistress Effects in Immobilization-Stressed Rats.

    PubMed

    Moon, Sohee; Lee, Mak-Soon; Jung, Sunyoon; Kang, Bori; Kim, Seog-Young; Park, Seonyoung; Son, Hye-Yeon; Kim, Chong-Tai; Jo, Young-Hee; Kim, In-Hwan; Kim, Young Soon; Kim, Yangha

    2017-09-01

    Stress contributes to physiological changes such as weight loss and hormonal imbalances. The aim of the present study was to investigate antistress effects of high hydrostatic pressure extract of ginger (HPG) in immobilization-stressed rats. Male Sprague-Dawley rats (n = 24) were divided into three groups as follows: control (C), immobilization stress (2 h daily, for 2 weeks) (S), and immobilization stress (2 h daily, for 2 weeks) plus oral administration of HPG (150 mg/kg body weight/day) (S+G). Immobilization stress reduced the body weight gain and thymus weight by 50.2% and 31.3%, respectively, compared to the control group. The levels of serum aspartate transaminase, alanine transaminase, and corticosterone were significantly higher in the stress group, compared to the control group. Moreover, immobilization stress elevated the mRNA levels of tyrosine hydroxylase (Th), dopamine beta-hydroxylase (Dbh), and cytochrome P450 side-chain cleavage (P450scc), which are related to catecholamine and corticosterone synthesis in the adrenal gland. HPG administration also increased the body weight gain and thymus weight by 12.7% and 16.6%, respectively, compared to the stress group. Furthermore, the mRNA levels of Th, Dbh, phenylethanolamine-N-methyltransferase, and P450scc were elevated by the HPG treatment when compared to the stress group. These results suggest that HPG would have antistress effects partially via the reversal of stress-induced physiological changes and suppression of mRNA expression of genes related to corticosterone and catecholamine synthetic enzymes.

  11. Supercritical CO 2 uptake by nonswelling phyllosilicates

    DOE PAGES

    Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.; ...

    2018-01-16

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less

  12. Effects of age, ethnicity and menopause on ambulatory blood pressure: Japanese-American and Caucasian school teachers in Hawaii.

    PubMed

    Brown, D E; Sievert, L L; Aki, S L; Mills, P S; Etrata, M B; Paopao, R N; James, G D

    2001-01-01

    Ambulatory blood pressure (BP) measurements of 120 female teachers of Japanese-American or Caucasian ethnicity working in public schools located in Hilo, Hawaii, were recorded. BP was measured at 15-min intervals during waking hours and 30-min intervals during sleep over a 24-hr period that included a full work day. These measurements were averaged during three daily settings: at work, at home while awake ("home"), and during sleep. ANCOVAs using ethnicity as a predictor variable of BP, with age and the body mass index (BMI) as covariates, show a significant interaction effect between age and ethnicity in some daily settings. Among Japanese-Americans partial correlations between age and systolic BP controlling for the BMI are significant in these settings, while among Caucasians none of the correlations are significant. Menopausal status is not significantly related to BP when age is controlled in analyses. There was no significant ethnic difference in number of symptoms reported, including frequency of "hot flushes/flashes," within the past two weeks. Those who reported hot flushes had significantly elevated BP in waking settings but not during sleep. The greater increase in BP with age in Japanese-Americans may be related to their elevated risk for development of hypertension. The lack of a significant relationship between menopausal status and BP may be due to the high rate of usage of hormonal replacement therapy in this sample, as well as an unusually high rate of hysterectomy.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less

  14. Partial cambial mortality in high-elevation Pinus aristata (Pinaceae)

    Treesearch

    Andrew J. Schauer; Anna W. Schoettle; Richard L. Boyce

    2001-01-01

    Partial cambial mortality is a growth form that is characteristic of Pinus aristata trees. To better elucidate their cambial death pattern, tree size and aspect of cambial death data were gathered from three Pinus aristata forests in central Colorado, USA. Stripping frequency tended to be higher for larger diameter classes. Partial cambial mortality exhibits...

  15. Measuring Ancient Air Pressure Using Fossilized Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Silverman, S. N.; Som, S. M.; Gordon, R.; Bebout, B.

    2016-12-01

    The evolution of Earth's atmosphere has been governed by biological evolution. The dominant air component, nitrogen, has undergone substantial variation over geological time. Today, the partial pressure of nitrogen is 0.79 bar, but this value could have been much higher during early Earth1. The nitrogen partial pressure is postulated to have dropped to a maximum of 0.5 bar before the Great Oxidation Event 2.4 billion years ago, and subsequently recovered to the 0.8 bar value of our modern atmosphere over the next 330 million years2. We are placing constraints on the trajectory of this recovery by investigating how nitrogen partial pressure influences the morphology of a certain species of filamentous cyanobacteria that has been found fossilized in 2 billion year old rocks. These filamentous cyanobacteria convert nitrogen from its dissolved gaseous state (N2) to a biologically useful state (i.e. NH3) when the latter is present at growth-limiting concentrations in their aquatic environment. Such cyanobacteria develop heterocysts (specialized, visually distinct cells), which fix the nitrogen and laterally distribute it to neighboring cells along the one-dimensional filament. We suggest that the distance between heterocysts reflects the nitrogen partial pressure dissolved in water, which is related to atmospheric pN2 by Henry's law. In the laboratory, we are quantifying the relationship between heterocyst distance, variance and covariance to atmospheric pN2 by subjecting cyanobacteria (in media devoid of nitrate) to different partial pressures of N2 at a constant temperature and lighting for the representative species Anabaena variabilis. As far as we know, such experiments have not been previously conducted. This new geobarometer will complement existing methods of quantifying ancient nitrogen partial pressure. 1Goldblatt, Colin, et al. "Nitrogen-enhanced greenhouse warming on early Earth." Nature Geoscience 2 (2009): 891-896. 2Som, S., et al. "Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels." Nature Geoscience 9 (2016): 448-451.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.

    The partial pressure of thallium in high-pressure Hg-TlI discharges with different mercury, thallium, and electron pressures has been measured by using the optically thin line Tl 655 nm and the self-reversed line Tl 535 nm. The partial pressure of the arc axis has been measured from the line Tl 655nm. The effective partial pressure has been measured from the self-reversed line Tl 535 nm on the basis of the multiparameter method, and it has been calculated from the known axis pressure of thallium and the calculation of its radial variation by taking into account the chemical reactions. The experimental resultsmore » confirm the dispersion character of the blue wing of the line Tl 535 nm. The systematic difference obtained between the measured and calculated effective pressure, particularly at the moment of minimum electron density, may be interpreted by deviations from the local thermodynamic equilibrium (LTE) caused by overpopulation of the upper level of the line Tl 535 nm.« less

  17. 36. ARCHITECTURAL AND STRUCTURAL DETAILS OF ELEVATOR HOUSING, NaK HEATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ARCHITECTURAL AND STRUCTURAL DETAILS OF ELEVATOR HOUSING, NaK HEATER STACK ROOF FLASHING, HOOD ELEVATION DETAIL. INCLUDES PARTIAL 'BILL OF MATERIAL.' INEEL DRAWING NUMBER 200-0633-00-287-106361. FLUOR NUMBER 5775-CPP-633-A-11. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  18. Laying hen responses to acute heat stress and carbon dioxide supplementation: I. Blood gas changes and plasma lactate accumulation.

    PubMed

    Koelkebeck, K W; Odom, T W

    1994-04-01

    Exposure to heat stress lowered partial pressure of arterial blood carbon dioxide (paCO2), arterial blood bicarbonate ion (HCO3-), but increased arterial blood pH (pHa) and plasma lactate (LA). Increasing ambient carbon dioxide (CO2) to 1.5% increased paCO2 from hypocapnic levels to normocapnic levels, raised HCO3-, lowered pHa and plasma LA to pre-heat stress levels. Following CO2 treatment, respiratory alkalosis conditions returned. It was evident in this study that increasing ambient chamber CO2 to 1.5% was effective in ameliorating acid-base disturbances and reducing elevated levels of plasma LA which normally develops when laying hens are subjected to an acute heat stress exposure.

  19. Methods and apparatus for reducing corrosion in refractory linings

    DOEpatents

    Poeppel, Roger B.; Greenberg, Sherman; Diercks, Dwight R.

    1987-01-01

    Methods and apparatus are provided for reducing corrosion in a refractory lining of a liquid-containing vessel used in direct steelmaking processes. The vessel operates at between about 1600.degree. C. and about 1800.degree. C. and an oxygen partial pressure of about 10.sup.-12 atmospheres, creating slag which is rich in FeO. The refractory lining includes a significant level of chromium oxide (Cr.sub.2 O.sub.3), and has small interconnected pores which may be filled with a gas mixture having a higher total pressure and oxygen partial pressure than the total pressure and oxygen partial pressure associted with the liquid against the lining of the vessel. The gas mixture is forced through the pores of the lining so that the pores are continuously filled with the mixture. In this manner, the gas mixture creates a blanket which increases the oxygen partial pressure at the lining enough to maintain the chromium in the lining in a selected valence state in which the chromium has decreased solubility in the FeO slag, thereby reducing corrosion by the FeO and increasing the useful life of the refractory lining.

  20. Progress Toward Optimizing Prosthetic Socket Fit and Suspension Using Elevated Vacuum to Promote Residual Limb Health.

    PubMed

    Wernke, Matthew M; Schroeder, Ryan M; Haynes, Michael L; Nolt, Lonnie L; Albury, Alexander W; Colvin, James M

    2017-07-01

    Objective: Prosthetic sockets are custom made for each amputee, yet there are no quantitative tools to determine the appropriateness of socket fit. Ensuring a proper socket fit can have significant effects on the health of residual limb soft tissues and overall function and acceptance of the prosthetic limb. Previous work found that elevated vacuum pressure data can detect movement between the residual limb and the prosthetic socket; however, the correlation between the two was specific to each user. The overall objective of this work is to determine the relationship between elevated vacuum pressure deviations and prosthetic socket fit. Approach: A tension compression machine was used to apply repeated controlled forces onto a residual limb model with sockets of different internal volume. Results: The vacuum pressure-displacement relationship was dependent on socket fit. The vacuum pressure data were sensitive enough to detect differences of 1.5% global volume and can likely detect differences even smaller. Limb motion was reduced as surface area of contact between the limb model and socket was maximized. Innovation: The results suggest that elevated vacuum pressure data provide information to quantify socket fit. Conclusions: This study provides evidence that the use of elevated vacuum pressure data may provide a method for prosthetists to quantify and monitor socket fit. Future studies should investigate the relationship between socket fit, limb motion, and limb health to define optimal socket fit parameters.

  1. Incidence and Determinants of Port Occlusions in Cancer Outpatients: A Prospective Cohort Study.

    PubMed

    Milani, Alessandra; Mazzocco, Ketti; Gandini, Sara; Pravettoni, Gabriella; Libutti, Livio; Zencovich, Claudia; Sbriglia, Ada; Pari, Chiara; Magon, Giorgio; Saiani, Luisa

    Normal saline is considered a safe alternative for heparin as a locking solution in totally implantable venous access devices. The incidence rate of partial occlusion with the use of normal saline (easy injection, impossible aspiration) is estimated at 4%. The aim of this study was to investigate determinants of partial occlusions with the use of normal saline solution and the maintenance of positive pressure in the catheter. We enrolled 218 patients with different solid tumors who underwent pharmacologic treatment through the port with different frequencies: from once every week to at least once every month. The port was flushed with normal saline solution keeping a positive pressure in the catheter. We performed 4111 observations and documented normal port functioning in 99% of observations (n = 4057) and partial occlusions in 1% of observations (n = 54). Partial occlusions were significantly associated with frequency of port flushing (P < .05), chemotherapy (P < .001), and blood sample collection (P < .001). The use of positive pressure in addition to normal saline reduces the incidence rate of partial occlusions. The type of treatment, blood sample collection, and treatment schedule are important determinants of partial occlusions. Nurses play a key role in maintaining a functioning port using positive pressure during the flushing techniques. Certain risk factors must be monitored to prevent partial occlusions, and certain patients are more likely to present with port-related problems.

  2. Partial rotator cuff repair and biceps tenotomy for the treatment of patients with massive cuff tears and retained overhead elevation: midterm outcomes with a minimum 5 years of follow-up.

    PubMed

    Cuff, Derek J; Pupello, Derek R; Santoni, Brandon G

    2016-11-01

    A subset of patients with massive irreparable rotator cuff tears present with retained overhead elevation and pain as their primary complaint. Our aim was to evaluate the outcomes of partial arthroscopic rotator cuff repair with biceps tenotomy and to report the failure rate of this procedure for patients with >5 years of follow-up. Thirty-four patients underwent partial rotator cuff repair and biceps tenotomy for treatment of a massive rotator cuff tear. Patients had preoperative active forward elevation >120° and no radiographic evidence of glenohumeral arthritis. Patients were followed up clinically and radiographically, and 28 patients had a minimum of 5 years of follow-up. Failure was defined as an American Shoulder and Elbow Surgeons score of <70, loss of active elevation >90°, or revision to reverse shoulder arthroplasty during the study period. Patients demonstrated improvements in average preoperative to postoperative American Shoulder and Elbow Surgeons scores (46.6 to 79.3 [P < .001]) and Simple Shoulder Test scores (5.7 to 9.1 [P < .001]) along with decrease in visual analog scale for pain scores (6.9 to 1.9 [P < .001]). No significant change in forward elevation (168° to 154° [P = .07]), external rotation (38° to 39° [P = 1.0]), or internal rotation (84% to 80% [P = 1.0]) was identified; 36% of patients had progression of the Hamada stage. The failure rate was 29%; 75% of patients were satisfied with their index procedure. Partial rotator cuff repair and biceps tenotomy for patients with massive irreparable rotator cuff tears with retained overhead elevation and pain as the primary complaint produced reasonable outcomes at midterm follow-up of at least 5 years. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Effects of Shock-Breakout Pressure on Ejection of Micron-Scale Material from Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Hammerberg, James; Hixson, Robert; Morley, Kevin; Obst, Andrew; Olson, Russell; Payton, Jeremy; Rigg, Paulo; Buttler, William; Grover, Michael; Iverson, Adam; Macrum, Gregory; Stevens, Gerald; Turley, William; Veeser, Lynn; Routley, Nathan

    2007-06-01

    Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metal surfaces. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.

  4. Pressure Effects on the Ejection of Material from Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.

    2007-12-01

    Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metals that have surface defects. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.

  5. Fuel cell serves as oxygen level detector

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Monitoring the oxygen level in the air is accomplished by a fuel cell detector whose voltage output is proportional to the partial pressure of oxygen in the sampled gas. The relationship between output voltage and partial pressure of oxygen can be calibrated.

  6. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1984-01-01

    A method of enhancing the thermal desorption of a first isotope of a diatomic gas from a metal comprises the steps of (a) establishing a partial pressure of a second isotope of the diatomic gas in vicinity of the metal; heating the metal to a temperature such that the first isotope is desorbed from the metal; and reducing the partial pressure of the desorbed first isotope while maintaining the partial pressure of the second isotope substantially constant. The method is especially useful for enhancing the desorption of tritium from the Zr-Al getter in a plasma confinement device.

  7. Parameter setting and analysis of a dynamic tubular SOFC model

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Fang, Ruixian; Khan, Jamil A.; Dougal, Roger A.

    An improved one-dimensional dynamic model of a tubular SOFC stack capable of system simulation in the virtual test bed (VTB) simulation environment is presented in this paper. This model is based on the electrochemical and thermal modeling, accounting for the voltage losses and temperature dynamics. The modeling of an external reformer is also included in this study. A detailed parametric analysis of working conditions and cell configuration of the solid oxide fuel cell (SOFC) stack is the main focus of this paper. The following operating parameters are investigated: pressure ratio, temperature, mass flow rate, external reforming degree and stream to carbon (S/C) ratio. The cell geometric parameters studied include cell diameter and cell length. Elevated operating pressure improves the cell performance. Whereas, higher operating temperature decreases both the Nernst potential and the irreversible losses, resulting in an initial increase then a decrease in cell efficiency. It was found that a higher S/C ratio yields a lower H 2 concentration and partial pressure, which has a negative effect on the Nernst potential. Increased cell diameter is found to increase the power due to a larger activation area at the same time and due to longer current path length there is an increase in the ohmic loss. Increased length of the cell has the undesired affect of an increased pressure drop.

  8. Study on the intrinsic defects in ZnO by combing first-principle and thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Ma, Changmin; Liu, Tingyu; Chang, Qiuxiang

    2015-11-01

    In this paper, the intrinsic point defects in ZnO crystal have been studied by the approach that integrates first-principles, thermodynamic calculations and the contributions of vibrational entropy. With temperature increasing and oxygen partial pressure decreasing, the formation energies of oxygen vacancy (VO), zinc interstitial (Zni) and zinc anti-site (ZnO) are decreasing, while it increases for zinc vacancy (VZn), oxygen interstitial (Oi) and oxygen anti-site (OZn). They are more sensitive to temperature than oxygen partial pressure. There are two interesting phenomena. First, VO or VZn have the lowest formation energies for whole Fermi level at special environment condition (such as at T = 300K, about PO2 = 10-10atm or T = 1500K, about PO2 = 104atm) and intrinsic p-type doping of ZnO is possible by VZn at these special conditions. Second, VO as donors have lowest formation energy for all Fermi level at high temperature and low oxygen partial pressure (T = 1500K, PO2 = 10-10atm). According to our analysis, the VO could produce n-type doping in ZnO at these special conditions and change p-type ZnO to n-type ZnO at condition from low temperature and high oxygen partial pressure to high temperature and low oxygen partial pressure.

  9. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    PubMed

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  10. Venous sinus stenting for reduction of intracranial pressure in IIH: a prospective pilot study.

    PubMed

    Liu, Kenneth C; Starke, Robert M; Durst, Christopher R; Wang, Tony R; Ding, Dale; Crowley, R Webster; Newman, Steven A

    2017-11-01

    OBJECTIVE Idiopathic intracranial hypertension (IIH) may cause blindness due to elevated intracranial pressure (ICP). Venous sinus stenosis has been identified in select patients, leading to stenting as a potential treatment, but its effects on global ICP have not been completely defined. The purpose of this pilot study was to assess the effects of venous sinus stenting on ICP in a small group of patients with IIH. METHODS Ten patients for whom medical therapy had failed were prospectively followed. Ophthalmological examinations were assessed, and patients with venous sinus stenosis on MR angiography proceeded to catheter angiography, venography with assessment of pressure gradient, and ICP monitoring. Patients with elevated ICP measurements and an elevated pressure gradient across the stenosis were treated with stent placement. RESULTS All patients had elevated venous pressure (mean 39.5 ± 14.9 mm Hg), an elevated gradient across the venous sinus stenosis (30.0 ± 13.2 mm Hg), and elevated ICP (42.2 ± 15.9 mm Hg). Following stent placement, all patients had resolution of the stenosis and gradient (1 ± 1 mm Hg). The ICP values showed an immediate decrease (to a mean of 17.0 ± 8.3 mm Hg), and further decreased overnight (to a mean of 8 ± 4.2 mm Hg). All patients had subjective and objective improvement, and all but one improved during follow-up (median 23.4 months; range 15.7-31.6 months). Two patients developed stent-adjacent stenosis; retreatment abolished the stenosis and gradient in both cases. Patients presenting with papilledema had resolution on follow-up funduscopic imaging and optical coherence tomography (OCT) and improvement on visual field testing. Patients presenting with optic atrophy had optic nerve thinning on follow-up OCT, but improved visual fields. CONCLUSIONS For selected patients with IIH and venous sinus stenosis with an elevated pressure gradient and elevated ICP, venous sinus stenting results in resolution of the venous pressure gradient, reduction in ICP, and functional, neurological, and ophthalmological improvement. As patients are at risk for stent-adjacent stenosis, further follow-up is necessary to determine long-term outcomes and gain an understanding of venous sinus stenosis as a primary or secondary pathological process behind elevated ICP.

  11. The role of cerebrospinal fluid pressure in glaucoma and other ophthalmic diseases: A review

    PubMed Central

    Fleischman, David; Allingham, R. Rand

    2013-01-01

    Glaucoma is one of the most common causes of blindness in the world. Well-known risk factors include age, race, a positive family history and elevated intraocular pressures. A newly proposed risk factor is decreased cerebrospinal fluid pressure (CSFP). This concept is based on the notion that a pressure differential exists across the lamina cribrosa, which separates the intraocular space from the subarachnoid fluid space. In this construct, an increased translaminar pressure difference will occur with a relative increase in elevated intraocular pressure or a reduction in CSFP. This net change in pressure is proposed to act on the tissues within the optic nerve head, potentially contributing to glaucomatous optic neuropathy. Similarly, patients with ocular hypertension who have elevated CSFPs, would enjoy a relatively protective effect from glaucomatous damage. This review will focus on the current literature pertaining to the role of CSFP in glaucoma. Additionally, the authors examine the relationship between glaucoma and other known CSFP-related ophthalmic disorders. PMID:24227969

  12. Effects of garlic on blood pressure in patients with and without systolic hypertension: a meta-analysis.

    PubMed

    Reinhart, Kurt M; Coleman, Craig I; Teevan, Colleen; Vachhani, Payal; White, C Michael

    2008-12-01

    Garlic has been suggested to lower blood pressure; however, studies evaluating this parameter have provided conflicting results. To examine the effect of garlic on blood pressure in patients with and without elevated systolic blood pressure (SPB) through meta-analyses of randomized controlled trials. A systematic search of MEDLINE, CINAHL, and the Cochrane Central Register of Controlled Trials was conducted to identify randomized controlled trials in humans evaluating garlic's effect on blood pressure. All databases were searched from their inception through June 26, 2008, using the key words garlic, Allium sativum, and allicin. A manual search of published literature was used to identify additional relevant studies. To be included in the analysis, studies must have been written in English or German and reported endpoints of SBP or diastolic blood pressure (DBP). Studies whose population had a mean baseline SBP greater than 140 mm Hg were evaluated separately from those whose population had lower baseline blood pressures. Garlic's effect on SBP and DBP was treated as a continuous variable and weighted mean differences were calculated using a random-effects model. Ten trials were included in the analysis; 3 of these had patients with elevated SBP. Garlic reduced SBP by 16.3 mm Hg (95% CI 6.2 to 26.5) and DBP by 9.3 mm Hg (95% CI 5.3 to 13.3) compared with placebo in patients with elevated SBP. However, the use of garlic did not reduce SBP or DBP in patients without elevated SBP. There was only a minor degree of heterogeneity in the analyses and publication bias did not appear to influence the results. This meta-analysis suggests that garlic is associated with blood pressure reductions in patients with an elevated SBP although not in those without elevated SBP. Future research should focus on the impact of garlic on clinical events and the assessment of the long-term risk of harm.

  13. Origin and Constraints on Ilmenite-rich Partial Melt in the Lunar Lower Mantle

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Fuqua, H.; Bremner, P. M.; Panovska, S.; Diamond, M. R.; Lock, S. J.; Nishikawa, Y.; Jiménez-Pérez, H.; Shahar, A.; Panero, W. R.; Lognonne, P. H.; Faul, U.

    2015-12-01

    Existence of a partially molten layer at the lunar core-mantle boundary has been proposed to explain the lack of observed far-side deep moonquakes, the observation of reflected seismic phases from deep moonquakes, and the dissipation of tidal energy within the lunar interior [1,2]. However, subsequent models explored the possibility that dissipation due to elevated temperatures alone can explain the observed dissipation factor (Q) and tidal love numbers [3]. Using thermo-chemical and dynamic modeling (including models of the early lunar mantle convection), we explore the hypothesis that an ilmenite-rich layer forms below crustal anorthosite during lunar magma ocean crystallization and may sink to the base of the mantle to create a partial melt layer at the lunar core-mantle boundary. Self-consistent physical parameters (including gravity, pressure, density, VP and Vs) are forward calculated for a well-mixed mantle with uniform bulk composition versus a mantle with preserved mineralogical stratigraphy from lunar magma ocean crystallization. These parameters are compared against observed mass, moment of inertia, real and imaginary parts of the Love numbers, and seismic travel times to further limit the acceptable models for the Moon. We have performed a multi-step grid search with over twenty thousand forward calculations varying thicknesses of chemically/mineralogically distinct layers within the Moon to evaluate if a partially molten layer at the base of the lunar mantle is well-constrained by the observed data. Furthermore, dynamic mantle modeling was employed on the best-fit model versions to determine the survivability of a partially molten layer at the core-mantle boundary. This work was originally initiated at the CIDER 2014 program. [1] Weber et al. (2011). Science 331(6015), 309-12. [2] Khan et al. (2014). JGR 119. [3] Nimmo et al. (2012). JGR 117, 1-11.

  14. A Conceptual Framework for Studying Alcohol Intake and Blood Pressure on Historically Black College and University Campuses

    ERIC Educational Resources Information Center

    Carter-Edwards, Lori; Godette, Dionne C.; White, Sumitra Shantakumar; Tyson, William

    2009-01-01

    Drinking increases the risk of elevated blood pressure, a risk factor for chronic ailments such as hypertension and cardiovascular disease. The experience of elevated blood pressure in young adulthood may be critical for the development of these diseases later in life. College campuses are venues replete with young adults, and drinking is a…

  15. Transcapillary fluid shifts in head and neck tissues during and after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Hargens, Alan R.; Tucker, B.; Aratow, M.; Styf, J.; Crenshaw, A.

    1991-01-01

    To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head down for 8 hr, and all four Starling transcapillary pressures were directly measured before, during, and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip: capillary pressures increased from 27.2 +/- 5 mm Hg pre-HDT to 33.9 +/- 1.7 mm Hg by the end of tilt. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, while interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressures dropped significantly after 4 hr of HDT, suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 hr of seated recovery from HDT, microvascular pressures remained significantly elevated by 5 to 8 mm Hg above baseline values, despite a significant HDT diuresis and the orthostatic challenge of an upright, seated posture. During the control (baseline) period, urine output was 46.7 ml/hr; during HDT, it was 126.5 ml/hr. These results indicate that facial edema resulting from HDT is primarily caused by elevated capillary pressures and decreased plasma colloid osmotic pressures. Elevation of cephalic capillary pressures sustained for 4 hr after HDT suggests that there is a compensatory vasodilation to maintain microvascular perfusion. The negativity of interstitial fluid pressures above heart level also has implications for the maintenance of tissue fluid balance in upright posture.

  16. Partial Section Through Stack, Water Tank, and Privy; Plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial Section Through Stack, Water Tank, and Privy; Plan - Stack, Privies, & Changing Rooms; Elevation - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  17. Role of autonomic nervous activity, as measured by heart rate variability, on the effect of mortality in disabled older adults with low blood pressure in long-term care.

    PubMed

    Shibasaki, Koji; Ogawa, Sumito; Yamada, Shizuru; Ouchi, Yasuyoshi; Akishita, Masahiro

    2018-04-11

    Previous studies have shown the relationship between low blood pressure and high mortality in frail, disabled older adults in long-term care. However, the mechanism of this relationship is still unclear. We hypothesized that autonomic nervous activity decline is involved in the relationship between low blood pressure and high mortality. The present prospective cohort study recruited 61 participants aged ≥75 years. The data from 24-h Holter monitoring and blood pressure recorded by ambulatory blood pressure monitoring were collected. Measured data were divided into three categories: 24-h, daytime and night-time. From power spectral density in the electrocardiogram, low frequency, high frequency and low frequency/high frequency ratio were calculated. The primary end-point was death. High blood pressure was connected to both high daytime low frequency and high frequency (partial correlation coefficients: 0.42, P < 0.05 and 0.35, P < 0.05, respectively). In addition, the low blood pressure group had higher mortality than the high blood pressure group, and disabled older adults in long-term care and those with elevated daytime systolic and diastolic blood pressure had less risk of mortality compared with those without (systolic: hazard ratio 0.89, 95% confidence interval 0.83-0.96, P = 0.003; diastolic: hazard ratio 0.98, 95% confidence interval 0.79-1.00, P = 0.049). The average blood pressures in the high blood pressure groups were approximately 140/80 mmHg and were connected to low mortality. Attenuated autonomic nervous activity might lead to low blood pressure in the daytime and high mortality in disabled older adults in long-term care. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.

  18. The development of reversible hematuria and oliguria following elevation of renal venous pressure.

    DOT National Transportation Integrated Search

    1963-01-01

    An investigation was completed to study the acute effects of elevated renal venous pressure in the development of reversible gross hematuria and oliguria. Both isolated and intact dog kidney preparations were utilized. Results demonstrate that gross ...

  19. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    PubMed

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  20. Measurement of alveolar oxygen partial pressure in the rat lung using Carr-Purcell-Meiboom-Gill spin-spin relaxation times of hyperpolarized 3He and 129Xe at 74 mT.

    PubMed

    Kraayvanger, Ryan J; Bidinosti, Christopher P; Dominguez-Viqueira, William; Parra-Robles, Juan; Fox, Matthew; Lam, Wilfred W; Santyr, Giles E

    2010-11-01

    Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (<0.1 T) in vivo. R(2) measurements can be achieved efficiently using the Carr-Purcell-Meiboom-Gill pulse sequence. In this work, alveolar oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure. Copyright © 2010 Wiley-Liss, Inc.

  1. Incidence of Intraocular Pressure Elevation following Intravitreal Ranibizumab (Lucentis) for Age-related Macular Degeneration.

    PubMed

    Reis, Gustavo Msm; Grigg, John; Chua, Brian; Lee, Anne; Lim, Ridia; Higgins, Ralph; Martins, Alessandra; Goldberg, Ivan; Clement, Colin I

    2017-01-01

    The aim of this article is to evaluate the rate of patients developing sustained elevated intraocular pressure (IOP) after ranibizumab (Lucentis) intravitreal (IVT) injections. This is a retrospective study. Charts of 192 consecutive patients receiving Lucentis for age-related macular degeneration (AMD) were retrospectively reviewed. We enrolled patients with at least two IOP measurements between injections. Elevated IOP was defined as >21 mm Hg with an increase of at least 20% from baseline. Noninjected contralateral eyes of the same patient cohort were used as control. Primary outcome was defined as elevated IOP. Secondary outcomes were presence and type of glaucoma, number of injections, and time to IOP elevation. Elevated IOP occurred at a significantly higher rate in eyes receiving IVT ranibizumab (7.47%; n = 9) compared with control (0.93%; n = 1). Patients with preexisting glaucoma or ocular hypertension (OHT) were more likely to develop elevated IOP after IVT ranibizumab injection. Intravitreal ranibizumab injections are associated with sustained IOP elevation in some eyes. Reis GMSM, Grigg J, Chua B, Lee A, Lim R, Higgins R, Martins A, Goldberg I, Clement CI. The Incidence of Intraocular Pressure Elevation following Intravitreal Ranibizumab (Lucentis) for Age-related Macular Degeneration. J Curr Glaucoma Pract 2017;11(1):3-7.

  2. Orthogonal P-wave morphology is affected by intra-atrial pressures.

    PubMed

    Petersson, Richard; Smith, J Gustav; Larsson, David A; Reitan, Öyvind; Carlson, Jonas; Platonov, Pyotr; Holmqvist, Fredrik

    2017-12-06

    It has previously been shown that the morphology of the P-wave neither depends on atrial size in healthy subjects with physiologically enlarged atria nor on the physiological anatomical variation in transverse orientation of the left atrium. The present study aimed to investigate if different pressures in the left and right atrium are associated with different P-wave morphologies. 38 patients with isolated, increased left atrial pressure, 51 patients with isolated, increased right atrial pressure and 76 patients with biatrially increased pressure were studied. All had undergone right heart catheterization and had 12-lead electrocardiographic recordings, which were transformed into vectorcardiograms for detailed P-wave morphology analysis. Normal P-wave morphology (type 1) was more common in patients with isolated increased pressure in the right atrium while abnormal P-wave morphology (type 2) was more common in the groups with increased left atrial pressure (P = 0.032). Moreover, patients with increased left atrial pressure, either isolated or in conjunction with increased right atrial pressure, had significantly more often a P-wave morphology with a positive deflection in the sagittal plane (P = 0.004). Isolated elevated right atrial pressure was associated with normal P-wave morphology while left-sided atrial pressure elevation, either isolated or in combination with right atrial pressure elevation, was associated with abnormal P-wave morphology.

  3. The effects of endothelin-1 on the cardiorespiratory physiology of the freshwater trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias).

    PubMed

    Perry, S F; Montpetit, C J; McKendry, J; Desforges, P R; Gilmour, K M; Wood, C M; Olson, K R

    2001-11-01

    The aim of the present study was to evaluate the effects of endothelin-l-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg(-1)) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by approximately 1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (approximately 0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml(-1)) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by approximately 10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.

  4. Valve movement of three species of North American freshwater mussels exposed to elevated carbon dioxide.

    PubMed

    Hasler, Caleb T; Hannan, Kelly D; Jeffrey, Jennifer D; Suski, Cory D

    2017-06-01

    Freshwater mussels are at-risk taxa and may be exposed to high levels of carbon dioxide (CO 2 ) because of the potential use of CO 2 to control the movement of invasive aquatic fish species. One potential behavioral response to a change in the partial pressure of CO 2 (pCO 2 ) may be altered valve movement. In this study, three species of mussels were fitted with modified sensors and exposed to two regimes of pCO 2 to define thresholds of impaired valve movement. The first experiment demonstrated that Pyganodon grandis were much more tolerant to rising pCO 2 relative to Lampsilis siliquoidea (acute closure at ∼200,000 μatm in comparison to ∼80,000 μatm). The second experiment consisted of monitoring mussels for 6 days and exposing them to elevated pCO 2 (∼70,000 μatm) over a 2-day period. During exposure to high pCO 2 , Lampsilis cardium were open for nearly the entire high pCO 2 period. Conversely, P. grandis were closed for most of the period following exposure to high pCO 2 . For L. siliquoidea, the number of closures decreased nearly 40-fold during high pCO 2 . The valve movement responses observed suggest species differences, and exposure to elevated pCO 2 requires a reactive response.

  5. Airway exchange of highly soluble gases.

    PubMed

    Hlastala, Michael P; Powell, Frank L; Anderson, Joseph C

    2013-03-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.

  6. Airway exchange of highly soluble gases

    PubMed Central

    Powell, Frank L.; Anderson, Joseph C.

    2013-01-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981

  7. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  8. Effects of various oxygen partial pressures on Ti-doped ZnO thin film transistors fabricated on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Yu, Wen; Shi, Pan; Zhang, Yi; Huang, Lingling; Cong, Yingying; Zhou, Xiaoliang; Zhang, Xiaomi; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2016-04-01

    By applying a novel active layer of titanium zinc oxide (TiZO), we have successfully fabricated fully transparent thin-film transistors (TFTs) with a bottom gate structure fabricated on a flexible plastic substrate at low temperatures. The effects of various oxygen partial pressures during channel deposition were studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant impact on the performance of TiZO TFTs, and that the TFT developed under 10% oxygen partial pressure exhibits superior performance with a low threshold voltage (V th) of 2.37 V, a high saturation mobility (μsat) of 125.4 cm2 V-1 s-1, a steep subthreshold swing (SS) of 195 mV/decade and a high I on/I off ratio of 3.05 × 108. These results suggest that TiZO thin films are promising for high-performance fully transparent flexible TFTs and displays.

  9. [Correlation between the inspired fraction of oxygen, maternal partial oxygen pressure, and fetal partial oxygen pressure during cesarean section of normal pregnancies].

    PubMed

    Castro, Carlos Henrique Viana de; Cruvinel, Marcos Guilherme Cunha; Carneiro, Fabiano Soares; Silva, Yerkes Pereira; Cabral, Antônio Carlos Vieira; Bessa, Roberto Cardoso

    2009-01-01

    Despite changes in pulmonary function, maternal oxygenation is maintained during obstetric regional blocks. But in those situations, the administration of supplementary oxygen to parturients is a common practice. Good fetal oxygenation is the main justification; however, this has not been proven. The objective of this randomized, prospective study was to test the hypothesis of whether maternal hyperoxia is correlated with an increase in fetal gasometric parameters in elective cesarean sections. Arterial blood gases of 20 parturients undergoing spinal block with different inspired fractions of oxygen were evaluated and correlated with fetal arterial blood gases. An increase in maternal inspired fraction of oxygen did not show any correlation with an increase of fetal partial oxygen pressure. Induction of maternal hyperoxia by the administration of supplementary oxygen did not increase fetal partial oxygen pressure. Fetal gasometric parameters did not change even when maternal parameters changed, induced by hyperoxia, during cesarean section under spinal block.

  10. Respiratory gas exchange of high altitude adapted chick embryos

    NASA Technical Reports Server (NTRS)

    Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.

    1974-01-01

    Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.

  11. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.

    PubMed

    Cazier, E A; Trably, E; Steyer, J P; Escudie, R

    2015-08-01

    In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure.

    PubMed

    Wei, Lei; Wang, Qing; Wu, Huifeng; Ji, Chenglong; Zhao, Jianmin

    2015-01-01

    The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed throughout most of the world's oceans, is a model organism for marine environmental science. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the effects of ocean acidification on Pacific oyster C. gigas, hopefully shedding light on the physiological responses of marine mollusk to the OA stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of arm elevation on radial artery pressure: a new method to distinguish hypovolemic shock and septic shock from hypotension.

    PubMed

    Xie, Zhiyi; Zhang, Zhenyu; Xu, Yuan; Zhou, Hua; Wu, Sheng; Wang, Zhong

    2018-06-01

    In this prospective observational study, we investigated the variability in radial artery invasive blood pressure associated with arm elevation in patients with different hemodynamic types. We carried out a prospective observational study using data from 73 general anesthesia hepatobiliary postoperative adult patients admitted to an ICU over a 1-year period. A standard procedure was used for the arm elevation test. The value of invasive radial arterial pressure was recorded at baseline, and 30 and 60 s after the arm had been raised from 0° to 90°. We compared the blood pressure before versus after arm elevation, and between hemodynamically stable, hypovolemic shock, and septic shock patient groups. In all 73 patients, systolic arterial pressure (SAP) decreased, diastolic arterial pressure (DAP) increased, and pulse pressure (PP) decreased at 30 and 60 s after arm elevation (P<0.01), but the mean arterial pressure (MAP) was unchanged (P>0.05). On comparing 30 and 60 s, there was no significant difference in SAP, DAP, PP, or MAP (P>0.05). In 40 hemodynamically stable patients, SAP and PP decreased, and DAP and MAP increased significantly at 30 and 60 s after arm elevation compared with baseline (P<0.01). In 16 hypovolemic patients, SAP, DAP, and MAP increased significantly compared with baseline at 30 and 60 s (P<0.01), but PP was unchanged (P>0.05). In 17 patients with septic shock, SAP, PP, and MAP decreased significantly versus baseline at 30 and 60 s (P<0.01), but DAP was unchanged (P>0.05). Comparison of the absolute value of pressure change of septic shock patients at 30 s after raising the arm showed that SAP, DAP, and MAP changes were significantly lower compared with those in hypovolemic shock and hemodynamically stable patients (P<0.01). The areas under the receiver operator characteristic curve for predicting septic shock was 0.930 [95% confidence interval (CI): 0.867-0.992, P< 0.001] for change value at 30 s after arm elevation of SAP. The best cut-off point for the SAP change value was -5 mmHg or less, with a sensitivity of 94.12%, a specificity of 80.36%, a positive likelihood ratio of 4.79 (95% CI: 2.8-8.2), and a negative likelihood ratio of 0.073 (95% CI: 0.01-0.5). Our study shows that hypovolemic shock and septic shock patients have significantly different radial artery invasive blood pressure changes in an arm elevation test, which could be applied as a new method to distinguish hypovolemic shock and septic shock from hypotension.

  14. The conundrum of arterial stiffness, elevated blood pressure, and aging.

    PubMed

    AlGhatrif, Majd; Lakatta, Edward G

    2015-02-01

    Isolated systolic hypertension is a major health burden that is expanding with the aging of our population. There is evidence that central arterial stiffness contributes to the rise in systolic blood pressure (SBP); at the same time, central arterial stiffening is accelerated in patients with increased SBP. This bidirectional relationship created a controversy in the field on whether arterial stiffness leads to hypertension or vice versa. Given the profound interdependency of arterial stiffness and blood pressure, this question seems intrinsically challenging, or probably naïve. The aorta's function of dampening the pulsatile flow generated by the left ventricle is optimal within a physiological range of distending pressure that secures the required distal flow, keeps the aorta in an optimal mechanical conformation, and minimizes cardiac work. This homeostasis is disturbed by age-associated, minute alterations in aortic hemodynamic and mechanical properties that induce short- and long-term alterations in each other. Hence, it is impossible to detect an "initial insult" at an epidemiological level. Earlier manifestations of these alterations are observed in young adulthood with a sharp decline in aortic strain and distensibility accompanied by an increase in diastolic blood pressure. Subsequently, aortic mechanical reserve is exhausted, and aortic remodeling with wall stiffening and dilatation ensue. These two phenomena affect pulse pressure in opposite directions and different magnitudes. With early remodeling, there is an increase in pulse pressure, due to the dominance of arterial wall stiffness, which in turn accelerates aortic wall stiffness and dilation. With advanced remodeling, which appears to be greater in men, the effect of diameter becomes more pronounced and partially offsets the effect of wall stiffness leading to plateauing in pulse pressure in men and slower increase in pulse pressure (PP) than that of wall stiffness in women. The complex nature of the hemodynamic changes with aging makes the "one-size-fits-all" approach suboptimal and urges for therapies that address the vascular profile that underlies a given blood pressure, rather than the blood pressure values themselves.

  15. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  16. Elevated blood pressure and its predictors among secondary school students in Sarawak: a cross-sectional study.

    PubMed

    Grace Kho, Woei Feng; Cheah, Whye Lian; Hazmi, Helmy

    2018-03-01

    Hypertension is a health issue affecting adolescents. Accumulating evidence affirms that elevated blood pressure begins in childhood and tracks into adulthood. This cross-sectional study was conducted to determine the prevalence of elevated blood pressure and its predictors among secondary school students in Sarawak, Malaysia. A total of 2,461 secondary school students aged 12-17 years from 19 schools in Sarawak participated in the study. Questionnaire was used to obtain socio-demographic data, parental history of hypertension, and self-reported physical activity. Anthropometric and blood pressure measurements were taken. Data was entered and analysed using SPSS version 23.0. The prevalence of adolescents with elevated blood pressure, overweight, central obesity, and overfat were 30.1%, 24.3%, 13.5%, and 6.7%, respectively. Multivariate logistic regression demonstrated the predictors significantly associated with elevated blood pressure among respondents: overweight (adjusted odds ratio=3.144), being male (adjusted odds ratio=3.073), being Chinese (adjusted odds ratio=2.321) or Iban (adjusted odds ratio=1.578), central obesity (adjusted odds ratio=2.145), being overfat (adjusted odds ratio=1.885), and being an older adolescent (adjusted odds ratio=1.109). Parental history of hypertension, locality, and physical activity showed no significant associations. The obesity epidemic must be tackled at community and school levels by health education and regulation of school canteen foods. Copyright© by the National Institute of Public Health, Prague 2018.

  17. Partial Molar Volumes of Aqua Ions from First Principles.

    PubMed

    Wiktor, Julia; Bruneval, Fabien; Pasquarello, Alfredo

    2017-08-08

    Partial molar volumes of ions in water solution are calculated through pressures obtained from ab initio molecular dynamics simulations. The correct definition of pressure in charged systems subject to periodic boundary conditions requires access to the variation of the electrostatic potential upon a change of volume. We develop a scheme for calculating such a variation in liquid systems by setting up an interface between regions of different density. This also allows us to determine the absolute deformation potentials for the band edges of liquid water. With the properly defined pressures, we obtain partial molar volumes of a series of aqua ions in very good agreement with experimental values.

  18. Densification and Electrical Properties of Zinc Oxide Varistors Microwave-Sintered Under Different Oxygen Partial Pressures

    NASA Astrophysics Data System (ADS)

    Lin, Cong; Wang, Bo; Xu, Zheng; Peng, Hu

    2012-11-01

    ZnO varistors were prepared by microwave sintering under different oxygen partial pressures. The temperature profile and the densification behavior in different atmospheres were investigated. It was found that the density of ZnO varistors during sintering was the key factor affecting the absorption of microwave energy. The electrical properties, including the nonlinear properties and capacitance-voltage ( C- V) characteristics, were also carefully studied. The results showed that the oxygen partial pressure has significant effects on the electrical properties of ZnO varistors by changing the concentration of defects through a series of reactions involving oxygen during sintering.

  19. Control of magnetization reversal in oriented strontium ferrite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  20. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  1. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yaowei; Hu, Jiansheng, E-mail: hujs@ipp.ac.cn; Wan, Zhao

    2016-03-15

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ∼0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10{sup −6}–5.0 × 10{sup −2} Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eVmore » and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (P{sub D{sub 2}}) and helium partial pressure (P{sub He}) could be obtained. The result shows that deuterium partial pressure could be measured if P{sub D{sub 2}} > 10{sup −6} Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if P{sub He}/P{sub D{sub 2}} > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.« less

  2. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric

    PubMed Central

    Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo

    2016-01-01

    Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality. PMID:27458024

  3. Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans.

    PubMed

    Ainslie, P N; Lucas, S J E; Fan, J-L; Thomas, K N; Cotter, J D; Tzeng, Y C; Burgess, Keith R

    2012-10-01

    We sought to determine the influence of sympathoexcitation on dynamic cerebral autoregulation (CA), cerebrovascular reactivity, and ventilatory control in humans at high altitude (HA). At sea level (SL) and following 3-10 days at HA (5,050 m), we measured arterial blood gases, ventilation, arterial pressure, and middle cerebral blood velocity (MCAv) before and after combined α- and β-adrenergic blockade. Dynamic CA was quantified using transfer function analysis. Cerebrovascular reactivity was assessed using hypocapnia and hyperoxic hypercapnia. Ventilatory control was assessed from the hypercapnia and during isocapnic hypoxia. Arterial Pco(2) and ventilation and its control were unaltered following blockade at both SL and HA. At HA, mean arterial pressure (MAP) was elevated (P < 0.01 vs. SL), but MCAv remained unchanged. Blockade reduced MAP more at HA than at SL (26 vs. 15%, P = 0.048). At HA, gain and coherence in the very-low-frequency (VLF) range (0.02-0.07 Hz) increased, and phase lead was reduced (all P < 0.05 vs. SL). Following blockade at SL, coherence was unchanged, whereas VLF phase lead was reduced (-40 ± 23%; P < 0.01). In contrast, blockade at HA reduced low-frequency coherence (-26 ± 20%; P = 0.01 vs. baseline) and elevated VLF phase lead (by 177 ± 238%; P < 0.01 vs. baseline), fully restoring these parameters back to SL values. Irrespective of this elevation in VLF gain at HA (P < 0.01), blockade increased it comparably at SL and HA (∼43-68%; P < 0.01). Despite elevations in MCAv reactivity to hypercapnia at HA, blockade reduced (P < 0.05) it comparably at SL and HA, effects we attributed to the hypotension and/or abolition of the hypercapnic-induced increase in MAP. With the exception of dynamic CA, we provide evidence of a redundant role of sympathetic nerve activity as a direct mechanism underlying changes in cerebrovascular reactivity and ventilatory control following partial acclimatization to HA. These findings have implications for our understanding of CBF function in the context of pathologies associated with sympathoexcitation and hypoxemia.

  4. Blood pressure-to-height ratio as a screening indicator of elevated blood pressure among children and adolescents in Chongqing, China.

    PubMed

    Wang, L Y; Liu, Q; Cheng, X T; Jiang, J J; Wang, H

    2017-07-01

    We aimed to evaluate the performance of blood pressure-to-height ratio (BPHR) and establish their optimal thresholds for elevated blood pressure (BP) among children aged 6 to 17 years in Chongqing, China. Data were collected from 11 029 children and adolescents aged 6-17 years in 12 schools in Chongqing according to multistage stratified cluster sampling method. The gold standard for elevated BP was defined as systolic blood pressure (SBP) and/or diastolic blood pressure (DBP) ⩾95th percentile for gender, age and height. The diagnostic performance of systolic BPHR (SBPHR) and diastolic BPHR (DBPHR) to screen for elevated BP was evaluated through receiver-operating characteristic curves (including the area under the curve (AUC) and its 95% confidence interval, sensitivity and specificity). The prevalence of elevated BP in children and adolescents in Chongqing was 10.36% by SBP and/or DBP ⩾95th percentile for gender, age and height. The optimal thresholds of SBPHR/DBPHR for identifying elevated BP were 0.86/0.58 for boys and 0.85/0.57 for girls among children aged 6 to 8 years, 0.81/0.53 for boys and 0.80/0.52 for girls among children aged 9 to 11 years and 0.71/0.45 for boys and 0.72/0.47 for girls among adolescents aged 12-17 years, respectively. Across gender and the specified age groups, AUC ranged from 0.82 to 0.88, sensitivity were above 0.94 and the specificities were over 0.7. The positive predictive values ranged from 0.30 to 0.38 and the negative predictive values were ⩾0.99. BPHR, with uniform values across broad age groups (6-8, 9-11 and 12-17 years) for boys and for girls is a simple indicator to screen elevated BP in children and adolescents in Chongqing.

  5. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  6. Does Potassium Deficiency Contribute to Hypertension in Children and Adolescents?

    PubMed

    Falkner, Bonita

    2017-05-01

    The increasing prevalence of cardiovascular risk factors in children and adolescents has been largely, but not entirely, related to the childhood obesity epidemic. Among the noted risk factors detectable in children is elevated blood pressure. Emerging findings indicate that in addition to overweight and obesity, sodium intake is associated with elevated blood pressure in youth. Moreover, dietary sodium intake is quite high and well above recommended levels throughout childhood. In adults, the relationship of sodium consumption with hypertension is well established, and there is evidence from both population and clinical studies that potassium intake is also associated with blood pressure. Higher potassium intake is associated with lower blood pressure; and potassium deficit leads to an increase in blood pressure. Findings on relationships of potassium intake with blood pressure in childhood are sparse. There are some reports that provide evidence that a dietary pattern that includes potassium-rich foods is associated with lower blood pressure and may also lower blood pressure in adolescents with elevated blood pressure. Considering the secular changes in dietary patterns throughout childhood, it is prudent to encourage a diet for children that is high in potassium-rich foods.

  7. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile

    2010-05-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  8. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.

    2009-09-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  9. Traffic congestion and blood pressure elevation: A comparative cross-sectional study in Lebanon.

    PubMed

    Bou Samra, Patrick; El Tomb, Paul; Hosni, Mohammad; Kassem, Ahmad; Rizk, Robin; Shayya, Sami; Assaad, Sarah

    2017-12-01

    This comparative cross-sectional study examines the association between traffic congestion and elevation of systolic and/or diastolic blood pressure levels among a convenience sample of 310 drivers. Data collection took place during a gas station pause at a fixed time of day. Higher average systolic (142 vs 123 mm Hg) and diastolic (87 vs 78 mm Hg) blood pressures were detected among drivers exposed to traffic congestion compared with those who were not exposed (P<.001), while controlling for body mass index, age, sex, pack-year smoking, driving hours per week, and occupational driving. Moreover, among persons exposed to traffic congestion, longer exposure time was associated with higher systolic and diastolic blood pressures. Further studies are needed to better understand the mechanisms of the significant association between elevated blood pressure and traffic congestion. ©2017 Wiley Periodicals, Inc.

  10. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O[sub 3]) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O[sub 3] partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O[sub 3]more » partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 [mu]Pa Pa[sup [minus]1] O[sub 3] in the charcoal filtered, ambient, and ambient + O[sub 3] treatments, respectively. Leaf net CO[sub 2] assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O[sub 3] partial pressures. Mission was unaffected by O[sub 3] and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O[sub 3] treatments. The results indicate that there are almond cultivars that are sensitive to O[sub 3] exposure.« less

  11. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition

    PubMed Central

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  12. A Psychophysical Evaluation of Spectral Enhancement

    ERIC Educational Resources Information Center

    DiGiovanni, Jeffrey J.; Nelson, Peggy B.; Schlauch, Robert S.

    2005-01-01

    Listeners with sensorineural hearing loss have well-documented elevated hearing thresholds; reduced auditory dynamic ranges; and reduced spectral (or frequency) resolution that may reduce speech intelligibility, especially in the presence of competing sounds. Amplification and amplitude compression partially compensate for elevated thresholds and…

  13. Does pressure cause liver cirrhosis? The sinusoidal pressure hypothesis.

    PubMed

    Mueller, Sebastian

    2016-12-28

    Independent of their etiology, all chronic liver diseases ultimately lead to liver cirrhosis, which is a major health problem worldwide. The underlying molecular mechanisms are still poorly understood and no efficient treatment strategies are available. This paper introduces the sinusoidal pressure hypothesis (SPH), which identifies an elevated sinusoidal pressure (SP) as cause of fibrosis. SPH has been mainly derived from recent studies on liver stiffness. So far, pressure changes have been exclusively seen as a consequence of cirrhosis. According to the SPH, however, an elevated SP is the major upstream event that initiates fibrosis via biomechanic signaling by stretching of perisinusoidal cells such as hepatic stellate cells or fibroblasts (SPH part I: initiation). Fibrosis progression is determined by the degree and time of elevated SP. The SPH predicts that the degree of extracellular matrix eventually matches SP with critical thresholds > 12 mmHg and > 4 wk. Elevated arterial flow and final arterialization of the cirrhotic liver represents the self-perpetuating key event exposing the low-pressure-organ to pathologically high pressures (SPH part II: perpetuation). It also defines the "point of no return" where fibrosis progression becomes irreversible. The SPH is able to explain the macroscopic changes of cirrhotic livers and the uniform fibrotic response to various etiologies. It also opens up new views on the role of fat and disease mechanisms in other organs. The novel concept will hopefully stimulate the search for new treatment strategies.

  14. A painful pulsatile abdominal mass in a young man with elevated blood pressures: an unusual presentation of phaeochromocytoma.

    PubMed

    Lee, B M K; Ti, L K

    2002-08-01

    We report an unusual presentation of phaeochromocytoma in a young man with a painful, pulsatile abdominal mass and elevated blood pressures. This led to a delay in diagnosis and resulted in the administration of triggers of catecholamine release, possibly causing a catecholamine surge. This caused the development of catecholamine-induced cardiomyopathy and multiple organ failure, requiring inotropic and ventilatory support, intra-aortic balloon pump and dialysis. Fortunately, his condition reversed with supportive treatment and alpha-adrenergic blockade. This illustrates the importance of having a high index of suspicion of phaeochromocytoma, especially in young patients with elevated blood pressures.

  15. Prenatal malnutrition-induced changes in blood pressure: dissociation of stress and nonstress responses using radiotelemetry.

    PubMed

    Tonkiss, J; Trzcińska, M; Galler, J R; Ruiz-Opazo, N; Herrera, V L

    1998-07-01

    A link between prenatal malnutrition and hypertension in human populations has recently been proposed. Rat models of prenatal malnutrition have provided major support for this theory on the basis of tail-cuff measurements. However, this technique requires restraint and elevated temperature, both potential sources of stress. To determine the effect of prenatal protein malnutrition on blood pressure under nonstress conditions, 24-hour radiotelemetric measurements were taken in the home cage. Male rats born to dams fed a 6% casein diet for 5 weeks before mating and throughout pregnancy were studied in early adulthood (from 96 days of age). During the waking phase of their cycle but not the sleep phase, prenatal malnutrition gave rise to small but significant elevations of diastolic blood pressure and heart rate compared with well-nourished controls. Direct effects of stress on blood pressure responses were determined in a second experiment using an olfactory stressor. Prenatally malnourished rats showed a greater increase in both systolic and diastolic pressures compared with well-nourished controls during the first exposure to ammonia. A different pattern of change of cardiovascular responses was also observed during subsequent presentations of the stressor. These findings of a small baseline increase in diastolic pressure consequent to prenatal malnutrition, but an augmented elevation of both systolic and diastolic pressures after first exposure to stress, suggest the need to reevaluate interpretation of the large elevations in blood pressure previously observed in malnourished animals using the stressful tail-cuff procedure.

  16. Cellular and Molecular Mechanisms of High Pressure Inotropy in Cardiac Muscle

    DTIC Science & Technology

    1989-08-01

    on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Membranes, Cardiac Muscle , Contraction Force, uW - Calcium, Inotropy...elevated hydrostatic pressure over the range of 2 to 150 atmospheres causes an increase in the force of cardiac muscle contraction (1). In the first year...The present findings indicate that elevated hydrostatic pressure enhances cardiac muscle contraction by somehow affecting the disposition of calcium as

  17. Proceedings: 2002 Workshop on Pressurized Water Reactor Elevated Feedwater Iron Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2002-11-01

    Some pressurized water reactor (PWR) stations have experienced difficulty with maintaining feedwater (FW) iron concentrations below recommended concentration on a regular basis. A workshop held on September 17-18 in Dana Point, California, addressed the challenge of elevated feedwater iron transport in PWRs.

  18. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  19. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 1: Fully Open Ended Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Measurements of pressure distributions and force coefficients were carried out in two types of squeeze film dampers, executing a circular centered orbit, an open-ended configuration, and a partially sealed one, in order to investigate the effect of fluid inertia and cavitation on pressure distributions and force coefficients. Dynamic pressure measurements were carried out for two orbit radii, epsilon 0.5 and 0.8. It was found that the partially sealed configuration was less influenced by fluid inertia than the open ended configuration.

  20. Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, M. H.

    1984-01-01

    A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.

  1. Zero-Boil-Off Tank (ZBOT) Experiment: Ground-Based Validation of Self-Pressurization and Pressure Control Two-Phase CFD Model

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga

    2017-01-01

    Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.

  2. Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius.

    PubMed

    Enok, Sanne; Leite, Gabriella S P C; Leite, Cléo A C; Gesser, Hans; Hedrick, Michael S; Wang, Tobias

    2016-10-01

    To accommodate the pronounced metabolic response to digestion, pythons increase heart rate and elevate stroke volume, where the latter has been ascribed to a massive and fast cardiac hypertrophy. However, numerous recent studies show that heart mass rarely increases, even upon ingestion of large meals, and we therefore explored the possibility that a rise in mean circulatory filling pressure (MCFP) serves to elevate venous pressure and cardiac filling during digestion. To this end, we measured blood flows and pressures in anaesthetized Python regius The anaesthetized snakes exhibited the archetypal tachycardia as well as a rise in both venous pressure and MCFP that fully account for the approximate doubling of stroke volume. There was no rise in blood volume and the elevated MCFP must therefore stem from increased vascular tone, possibly by means of increased sympathetic tone on the veins. Furthermore, although both venous pressure and MCFP increased during volume loading, there was no evidence that postprandial hearts were endowed with an additional capacity to elevate stroke volume. In vitro measurements of force development of paced ventricular strips also failed to reveal signs of increased contractility, but the postprandial hearts had higher activities of cytochrome oxidase and pyruvate kinase, which probably serves to sustain the rise in cardiac work during digestion. © 2016. Published by The Company of Biologists Ltd.

  3. Lethal and sublethal responses of native mussels (Unionidae: Lampsilis siliquoidea and L. higginsii) to elevated carbon dioxide

    USGS Publications Warehouse

    Waller, Diane L.; Bartsch, Michelle; Bartsch, Lynn; Jackson, Craig

    2018-01-01

    Levels of carbon dioxide (CO2) that have been proposed for aquatic invasive species (AIS) control [24 000 – 96 000 µatm partial pressure CO2 (PCO2); 1 atm = 101.325 kPa] were tested on juvenile mussels, the Fatmucket (Lampsilis siliquoidea) and the U.S. federally endangered Higgins Eye (L. higginsii). A suite of responses (survival, growth, behavior, and gene expression) were measured after 28-d exposure and 14-d postexposure to CO2. The 28-d LC20 (lethal concentration to 20%) was lower for L. higginsii (31 800 µatm PCO2, 95% confidence interval (CI) 15 000 – 42 800 µatm) than for L. siliquoidea (58 200 µatm PCO2, 95% CI 45 200 – 68 100 µatm). Treatment-related reductions occurred in all measures of growth and condition. Expression of chitin synthase, key for shell formation, was down-regulated at 28-d exposure. Carbon dioxide caused narcotization and unburial of mussels, behaviors that could increase mortality by predation and displacement. We conclude that survival and growth of juvenile mussels could be reduced by continuous exposure to elevated CO2, but recovery may be possible in shorter duration exposure.

  4. Uterine blood flow responses to ICI 182 780 in ovariectomized oestradiol-17beta-treated, intact follicular and pregnant sheep.

    PubMed

    Magness, Ronald R; Phernetton, Terrance M; Gibson, Tiffini C; Chen, Dong-Bao

    2005-05-15

    Oestrogen dramatically increases uterine blood flow (UBF) in ovariectomized (Ovx) ewes. Both the follicular phase and pregnancy are normal physiological states with elevated levels of circulating oestrogen. ICI 182 780 is a pure steroidal oestrogen receptor (ER) antagonist that blocks oestrogenic actions in oestrogen-responsive tissue. We hypothesized that an ER-mediated mechanism is responsible for in vivo rises in UBF in physiological states of high oestrogen. The purpose of the study was to examine the effect of an ER antagonist on exogenous and endogenous oestradiol-17beta (E2beta)-mediated elevations in UBF. Sheep were surgically instrumented with bilateral uterine artery blood flow transducers, and uterine and femoral artery catheters. Ovx animals (n = 8) were infused with vehicle (35% ethanol) or ICI 182 780 (0.1-3.0 microg min(-1)) into one uterine artery for 10 min before and 50 min after E2beta was given (1 microg kg(-1) I.V. bolus) and UBF was recorded for an additional hour. Intact, cycling sheep were synchronized to the follicular phase using progesterone, prostaglandin F2alpha(PGF2alpha) and pregnant mare serum gonadotrophin (PMSG). When peri-ovulatory rises in UBF reached near peak levels, ICI 182 780 (1 or 2 microg (ml uterine blood flow)-1) was infused unilaterally (n = 4 sheep). Ewes in the last stages of pregnancy (late pregnant ewes) were also given ICI 182 780 (0.23-2.0 microg (ml uterine blood flow)-1; 60 min infusion) into one uterine artery (n = 8 sheep). In Ovx sheep, local infusion of ICI 182 780 did not alter systemic cardiovascular parameters, such as mean arterial blood pressure or heart rate; however, it maximally decreased ipsilateral, but not contralateral, UBF vasodilatory responses to exogenous E2beta by approximately 55-60% (P < 0.01). In two models of elevated endogenous E2beta, local ICI 182 780 infusion inhibited the elevated UBF seen in follicular phase and late pregnant ewes in a time-dependent manner by approximately 60% and 37%, respectively; ipsilateral > contralateral effects (P < 0.01). In late pregnant sheep ICI 182 780 also mildly and acutely (for 5-30 min) elevated mean arterial pressure and heart rate (P < 0.05). We conclude that exogenous E2beta-induced increases in UBF in the Ovx animal and endogenous E2beta-mediated elevations of UBF during the follicular phase and late pregnancy are partially mediated by ER-dependent mechanisms.

  5. Uterine blood flow responses to ICI 182 780 in ovariectomized oestradiol-17β-treated, intact follicular and pregnant sheep

    PubMed Central

    Magness, Ronald R; Phernetton, Terrance M; Gibson, Tiffini C; Chen, Dong-bao

    2005-01-01

    Oestrogen dramatically increases uterine blood flow (UBF) in ovariectomized (Ovx) ewes. Both the follicular phase and pregnancy are normal physiological states with elevated levels of circulating oestrogen. ICI 182 780 is a pure steroidal oestrogen receptor (ER) antagonist that blocks oestrogenic actions in oestrogen-responsive tissue. We hypothesized that an ER-mediated mechanism is responsible for in vivo rises in UBF in physiological states of high oestrogen. The purpose of the study was to examine the effect of an ER antagonist on exogenous and endogenous oestradiol-17β (E2β)-mediated elevations in UBF. Sheep were surgically instrumented with bilateral uterine artery blood flow transducers, and uterine and femoral artery catheters. Ovx animals (n = 8) were infused with vehicle (35% ethanol) or ICI 182 780 (0.1–3.0 μg min−1) into one uterine artery for 10 min before and 50 min after E2β was given (1 μg kg−1i.v. bolus) and UBF was recorded for an additional hour. Intact, cycling sheep were synchronized to the follicular phase using progesterone, prostaglandin F2α(PGF2α) and pregnant mare serum gonadotrophin (PMSG). When peri-ovulatory rises in UBF reached near peak levels, ICI 182 780 (1 or 2 μg (ml uterine blood flow)−1) was infused unilaterally (n = 4 sheep). Ewes in the last stages of pregnancy (late pregnant ewes) were also given ICI 182 780 (0.23–2.0 μg (ml uterine blood flow)−1; 60 min infusion) into one uterine artery (n = 8 sheep). In Ovx sheep, local infusion of ICI 182 780 did not alter systemic cardiovascular parameters, such as mean arterial blood pressure or heart rate; however, it maximally decreased ipsilateral, but not contralateral, UBF vasodilatory responses to exogenous E2β by ∼55–60% (P < 0.01). In two models of elevated endogenous E2β, local ICI 182 780 infusion inhibited the elevated UBF seen in follicular phase and late pregnant ewes in a time-dependent manner by ∼60% and 37%, respectively; ipsilateral ≫ contralateral effects (P < 0.01). In late pregnant sheep ICI 182 780 also mildly and acutely (for 5–30 min) elevated mean arterial pressure and heart rate (P < 0.05). We conclude that exogenous E2β-induced increases in UBF in the Ovx animal and endogenous E2β-mediated elevations of UBF during the follicular phase and late pregnancy are partially mediated by ER-dependent mechanisms. PMID:15774510

  6. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    PubMed

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.

  7. Elevated corticosterone in the dorsal hindbrain increases plasma norepinephrine and neuropeptide Y, and recruits a vasopressin response to stress

    PubMed Central

    Daubert, Daisy L.; Looney, Benjamin M.; Clifton, Rebekah R.; Cho, Jake N.

    2014-01-01

    Repeated stress and chronically elevated glucocorticoids cause exaggerated cardiovascular responses to novel stress, elevations in baseline blood pressure, and increased risk for cardiovascular disease. We hypothesized that elevated corticosterone (Cort) within the dorsal hindbrain (DHB) would: 1) enhance arterial pressure and neuroendocrine responses to novel and repeated restraint stress, 2) increase c-Fos expression in regions of the brain involved in sympathetic stimulation during stress, and 3) recruit a vasopressin-mediated blood pressure response to acute stress. Small pellets made of 10% Cort were implanted on the surface of the DHB in male Sprague-Dawley rats. Blood pressure was measured by radiotelemetry. Cort concentration was increased in the DHB in Cort-treated compared with Sham-treated rats (60 ± 15 vs. 14 ± 2 ng Cort/g of tissue, P < 0.05). DHB Cort significantly increased the integrated arterial pressure response to 60 min of restraint stress on days 6, 13, and 14 following pellet implantation (e.g., 731 ± 170 vs. 1,204 ± 68 mmHg/60 min in Sham- vs. Cort-treated rats, day 6, P < 0.05). Cort also increased baseline blood pressure by day 15 (99 ± 2 vs. 108 ± 3 mmHg for Sham- vs. Cort-treated rats, P < 0.05) and elevated baseline plasma norepinephrine and neuropeptide Y concentrations. Cort significantly enhanced stress-induced c-Fos expression in vasopressin-expressing neurons in the paraventricular nucleus of the hypothalamus, and blockade of peripheral vasopressin V1 receptors attenuated the effect of DHB Cort to enhance the blood pressure response to restraint. These data indicate that glucocorticoids act within the DHB to produce some of the adverse cardiovascular consequences of chronic stress, in part, by a peripheral vasopressin-dependent mechanism. PMID:24829502

  8. Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia.

    PubMed

    Ocampo-Peñuela, Natalia; Pimm, Stuart L

    2015-01-01

    Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species' ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800 m. Three transects were forested from 2200 to 2800 m, and three were partially deforested with forest cover only above 2400 m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species' elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species' elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.

  9. Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia

    PubMed Central

    2015-01-01

    Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations. PMID:26641477

  10. Cerebrovascular response to the cold pressor test - the critical role of carbon dioxide.

    PubMed

    Tymko, Michael M; Kerstens, Thijs P; Wildfong, Kevin W; Ainslie, Philip N

    2017-12-01

    What is the central question of this study? What is the role of carbon dioxide in the cerebral blood flow (CBF) response to the cold pressor test (CPT)? What is the main finding and its importance? The CBF response was elevated during the isocapnic (controlled CO 2 ) CPT in the middle cerebral artery and the internal carotid artery compared with the poikilocapnic (uncontrolled CO 2 ) CPT, owing to ventilation-associated reductions in end-tidal CO 2 . Furthermore, the common carotid artery vasodilated to a greater extent during the isocapnic compared with the poikilocapnic CPT, whereas the internal carotid artery vasoconstricted during both CPTs. Our data highlight the importance of CO 2 control when investigating the CBF response to the CPT. In addition to increasing sympathetic nervous activity, blood pressure and cerebral blood flow (CBF), the cold pressor test (CPT) stimulates pain receptors, which may increase ventilation above metabolic demand; this response is likely to reduce the partial pressure of end-tidal carbon dioxide (P ET ,CO2) and will attenuate elevations in CBF. Our hypotheses were as follows: (i) the CPT will elicit hyperventilation, effectively lowering P ET ,CO2; (ii) the CBF response will be elevated during an isocapnic (controlled P ET ,CO2) compared with a poikilocapnic CPT (uncontrolled P ET ,CO2); and (iii) in response to the CPT, the common carotid artery (CCA) will vasodilate, while the internal carotid artery (ICA) will remain unchanged to help regulate CBF. Using a new, randomized experimental design, we measured the cerebrovascular response in the middle cerebral artery (MCA), CCA and internal carotid artery (ICA), during an isocapnic and poikilocapnic CPT in 15 participants. Blood pressure and cardiac output (finger photoplethysmography), heart rate (ECG), MCA mean velocity (transcranial Doppler ultrasound) and CCA and ICA CBF (Duplex ultrasound) were recorded during both CPT trials. Our findings were as follows: (i) ventilation increased, which reduced P ET ,CO2 (-5.3 ± 6.4 mmHg) during the poikilocapnic compared with the isocapnic CPT; (ii) the CBF response was elevated during the isocapnic compared with the poikilocapnic CPT in the MCA and ICA, but not in the CCA; and (iii) the CCA dilated to a greater extent during the isocapnic compared with the poikilocapnic CPT, and the ICA vasoconstricted during both trials. Our data emphasize the importance of P ET ,CO2 control in the CBF response to the CPT and in the differential vasomotor regulation between the CCA and ICA. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  11. In vivo Ca2+ buffering capacity and microvascular oxygen pressures following muscle contractions in diabetic rat skeletal muscles: fiber-type specific effects.

    PubMed

    Eshima, Hiroaki; Poole, David C; Kano, Yutaka

    2015-07-15

    In Type 1 diabetes, skeletal muscle resting intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca(2+)]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca(2+)]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2 ) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca(2+) imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL (P < 0.05) but not SOL. In recovery, SOL [Ca(2+)]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca(2+)]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca(2+)]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca(2+)]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca(2+)-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30-40%, P < 0.05). However, Pmv(O2) recovery kinetics were markedly slowed in EDL such that mean Pmv(O2) was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca(2+)]i. In contrast, this was not the case for SOL (P > 0.05) in that neither [Ca(2+)]i nor Pmv(O2) were deranged in recovery with DIA. In conclusion, recovery of [Ca(2+)]i homeostasis is impaired in diabetic rat fast-twitch but not slow-twitch muscle in concert with reduced Pmv(O2) pressures. Copyright © 2015 the American Physiological Society.

  12. Randomized trial of low versus high carbon dioxide insufflation pressures in posterior retroperitoneoscopic adrenalectomy.

    PubMed

    Fraser, Sheila; Norlén, Olov; Bender, Kyle; Davidson, Joanne; Bajenov, Sonya; Fahey, David; Li, Shawn; Sidhu, Stan; Sywak, Mark

    2018-05-01

    Posterior retroperitoneoscopic adrenalectomy has gained widespread acceptance for the removal of benign adrenal tumors. Higher insufflation pressures using carbon dioxide (CO 2 ) are required, although the ideal starting pressure is unclear. This prospective, randomized, single-blinded, study aims to compare physiologic differences with 2 different CO 2 insufflation pressures during posterior retroperitoneoscopic adrenalectomy. Participants were randomly assigned to a starting insufflation pressure of 20 mm Hg (low pressure) or 25 mm Hg (high pressure). The primary outcome measure was partial pressure of arterial CO 2 at 60 minutes. Secondary outcomes included end-tidal CO 2 , arterial pH, blood pressure, and peak airway pressure. Breaches of protocol to change insufflation pressure were permitted if required and were recorded. A prospective randomized trial including 31 patients (low pressure: n = 16; high pressure: n = 15) was undertaken. At 60 minutes, the high pressure group had greater mean partial pressure of arterial CO 2 (64 vs 50 mm Hg, P = .003) and end-tidal CO 2 (54 vs 45 mm Hg, P = .008) and a lesser pH (7.21 vs 7.29, P = .0005). There were no significant differences in base excess, peak airway pressure, operative time, or duration of hospital stay. Clinically indicated protocol breaches were more common in the low pressure than the high pressure group (8 vs 3, P = .03). In posterior retroperitoneoscopic adrenalectomy, greater insufflation pressures are associated with greater partial pressure of arterial CO 2 and end-tidal CO 2 and lesser pH at 60 minutes, be significant. Commencing with lesser CO 2 insufflation pressures decreases intraoperative acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers create elevated water tables and pore pressures, they do not necessarily produce the largest or deepest collapses. This suggests that mechanical properties of both the edifice and layers still exert a significant control, and collapse volumes depend on a complex interplay of mechanical factors and layering.

  14. Does Long-Term Elevation of CO2 Concentration Increase Photosynthesis in Forest Floor Vegetation? (Indiana Strawberry in a Maryland Forest).

    PubMed

    Osborne, C. P.; Drake, B. G.; LaRoche, J.; Long, S. P.

    1997-05-01

    As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.

  15. Does long-term elevation of CO{sub 2} concentration increase photosynthesis in forest floor vegetation? Indiana strawberry in a Maryland forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, C.P.; Long, S.P.; Drake, B.G.

    1997-05-01

    As the partial pressure of CO{sub 2} (pCO{sub 2}) in the atmosphere rises, photorespiratory loss of carbon in C, photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor was tested. Open-top chambers were used to elevate the pCO{sub 2} of a forest floor habitat to 67 Pa and were paired with control chambers with an ambient pCO{sub 2} of 38 Pa. After 3.5 years, D. indica leaves in the elevated pCO{sub 2} showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) andmore » a lower light compensation point (by 42%) than leaves in the control chambers. The quantum efficiency to minimize photorespiration was the same for controls and plants grown at elevated pCO{sub 2}, showing the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and the increase in light-limited photosynthesis at elevated pCO{sub 2} was a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Leaves of D. indica grown and measured at elevated pCO{sub 2} showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO{sub 2}. In situ measurements under natural lighting showed large increases in leaf photosynthesis at elevated pCO{sub 2}, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO{sub 2} allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO{sub 2}. 33 refs., 3 figs., 3 tabs.« less

  16. Concentration polarization of hyaluronan on the surface of the synovial lining of infused joints

    PubMed Central

    Lu, Y; Levick, JR; Wang, W

    2004-01-01

    Hyaluronan (HA) in joints conserves the lubricating synovial fluid by making trans-synovial fluid escape almost insensitive to pressure elevation (e.g. effusions, joint flexion). This phenomenon, ‘outflow buffering’, was discovered during HA infusion into the rabbit knee joint cavity. It was also found that HA is partially reflected by the joint lining (molecular sieving), and that the reflected fraction R decreases as trans-synovial filtration rate Q is increased. It was postulated therefore that outflow buffering is mediated by HA reflection. Reflection creates a HA concentration polarization layer, the osmotic pressure of which opposes fluid loss. A steady-state, cross-flow ultrafiltration model was previously used to explain the outflow buffering and negative R-vs.-Q relation. However, the steady-state, cross-perfusion assumptions restricted the model's applicability for an infused, dead-end cavity or a non-infused joint during cyclical motion. We therefore developed a new, non-steady-state model which describes the time course of dead-end, partial HA ultrafiltration. The model describes the progressive build-up of a HA concentration polarization layer at the synovial surface over time. Using experimental parameter values, the model successfully accounts for the observed negative R-vs.-Q relation and shows that the HA reflected fraction (R) also depends on HA diffusivity, membrane area expansion and the synovial HA reflection coefficient. The non-steady-state model thus explains existing experimental work, and it is a key stage in understanding synovial fluid turnover in intact, moving, human joints or osteoarthritic joints treated by HA injections. PMID:15579541

  17. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  18. Effects of elevated oxygen and carbon dioxide partial pressures on respiratory function and cognitive performance.

    PubMed

    Gill, Matthew; Natoli, Michael J; Vacchiano, Charles; MacLeod, David B; Ikeda, Keita; Qin, Michael; Pollock, Neal W; Moon, Richard E; Pieper, Carl; Vann, Richard D

    2014-08-15

    Hyperoxia during diving has been suggested to exacerbate hypercapnic narcosis and promote unconsciousness. We tested this hypothesis in male volunteers (12 at rest, 10 at 75 W cycle ergometer exercise) breathing each of four gases in a hyperbaric chamber. Inspired Po2 (PiO2 ) was 0.21 and 1.3 atmospheres (atm) without or with an individual subject's maximum tolerable inspired CO2 (PiO2 = 0.055-0.085 atm). Measurements included end-tidal CO2 partial pressure (PetCO2 ), rating of perceived discomfort (RPD), expired minute ventilation (V̇e), and cognitive function assessed by auditory n-back test. The most prominent finding was, irrespective of PetCO2 , that minute ventilation was 8-9 l/min greater for rest or exercise with a PiO2 of 1.3 atm compared with 0.21 atm (P < 0.0001). For hyperoxic gases, PetCO2 was consistently less than for normoxic gases (P < 0.01). For hyperoxic hypercapnic gases, n-back scores were higher than for normoxic gases (P < 0.01), and RPD was lower for exercise but not rest (P < 0.02). Subjects completed 66 hyperoxic hypercapnic trials without incident, but five stopped prematurely because of serious symptoms (tunnel vision, vision loss, dizziness, panic, exhaustion, or near syncope) during 69 normoxic hypercapnic trials (P = 0.0582). Serious symptoms during hypercapnic trials occurred only during normoxia. We conclude serious symptoms with hyperoxic hypercapnia were absent because of decreased PetCO2 consequent to increased ventilation. Copyright © 2014 the American Physiological Society.

  19. Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Aglyamov, Salavat R.; Liu, Chih-Hao; Han, Zhaolong; Singh, Manmohan; Larin, Kirill V.

    2017-02-01

    Many ocular diseases such as glaucoma and uveitis can lead to the elevation of intraocular pressure (IOP). Previous research implies a link between elevated IOP and lens disease. However, the relationship between IOP elevation and biomechanical properties of the crystalline lens has not been directly studied yet. In this work, we investigated the biomechanical properties of porcine lens as a function of IOP by acoustic radiation force optical coherence elastography.

  20. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  1. Social support buffering of the relation between low income and elevated blood pressure in at-risk African-American adults.

    PubMed

    Coulon, S M; Wilson, D K

    2015-10-01

    Socioeconomic disadvantage has been linked to elevated blood pressure (BP), and the purpose of this study was to assess whether interpersonal social supports buffer these adverse relations in African-American adults. In three communities matched demographically, a subsample of participants (N = 204) of the Positive Action for Today's Health trial provided measures of perceived social support, annual household income, and BP. Multiple regression analyses with cross-product interactions were conducted using follow-up data. The sample had a mean age of 52.8 years (SD = 15.1), and was predominantly female (66 %) with a high body mass index (M = 33.5, SD = 14.7). Results indicated an inverse relation between social support and diastolic BP (B = -.178, p = .005), and also an interaction with income (p = .046), such that higher social support related to lower diastolic BP in the lowest-income individuals (B = -1.05). The same direct (B = -.141, p = .025) and interacting (B = -1.42, p = .040) social support effects were present for systolic BP, however the omnibus model for systolic BP was not significant, F(6, 196) = 1.80, p = .09. The hypothesized buffering effect of social support on the adverse relation of income to BP was partially supported in at-risk African-American adults. Future prevention efforts for reducing the impact of socioeconomic stress on BP may aim to increase perceptions of social support.

  2. Blood pressure interacts with APOE ε4 to predict memory performance in a midlife sample.

    PubMed

    Oberlin, Lauren E; Manuck, Stephen B; Gianaros, Peter J; Ferrell, Robert E; Muldoon, Matthew F; Jennings, J Richard; Flory, Janine D; Erickson, Kirk I

    2015-09-01

    Elevated blood pressure and the Apolipoprotein ε4 allele (APOE ε4) are independent risk factors for Alzheimer's disease. We sought to determine whether the combined presence of the APOE ε4 allele and elevated blood pressure is associated with lower cognitive performance in cognitively healthy middle-aged adults. A total of 975 participants aged 30-54 (mean age = 44.47) were genotyped for APOE. Cardiometabolic risk factors including blood pressure, lipids, and glucose were assessed and cognitive function was measured using the Trail Making Test and the Visual Reproduction and Logical Memory subtests from the Wechsler Memory Scale. Multivariable regression analysis showed that the association between APOE ε4 and episodic memory performance varied as a function of systolic blood pressure (SBP), such that elevated SBP was predictive of poorer episodic memory performance only in APOE ε4 carriers (β = -.092; t = -2.614; p = .009). Notably, this association was apparent at prehypertensive levels (≥130 mmHg), even after adjusting for physical activity, depression, smoking, and other cardiometabolic risk factors. The joint presence of APOE ε4 and elevated SBP, even at prehypertensive levels, is associated with lower cognitive performance in healthy, middle-aged adults. Results of this study suggest that the combination of APOE ε4 and elevated SBP may synergistically compromise memory function well before the appearance of clinically significant impairments. Interventions targeting blood pressure control in APOE ε4 carriers during midlife should be studied as a possible means to reduce the risk of cognitive decline in genetically susceptible samples. (c) 2015 APA, all rights reserved).

  3. A new method of applying a controlled soil water stress, and its effect on the growth of cotton and soybean seedlings at ambient and elevated carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    While numerous studies have shown that elevated carbon dioxide can delay soil water depletion by causing partial stomatal closure, few studies have compared responses of plant growth to the same soil water deficits imposed at ambient and elevated carbon dioxide. We applied a vacuum to ceramic cups ...

  4. Geometry of α-Cr2O3(0001) as a Function of H2O Partial Pressure

    PubMed Central

    2015-01-01

    Surface X-ray diffraction has been employed to elucidate the surface structure of α-Cr2O3(0001) as a function of water partial pressure at room temperature. In ultra high vacuum, following exposure to ∼2000 Langmuir of H2O, the surface is found to be terminated by a partially occupied double layer of chromium atoms. No evidence of adsorbed OH/H2O is found, which is likely due to either adsorption at minority sites, or X-ray induced desorption. At a water partial pressure of ∼30 mbar, a single OH/H2O species is found to be bound atop each surface Cr atom. This adsorption geometry does not agree with that predicted by ab initio calculations, which may be a result of some differences between the experimental conditions and those modeled. PMID:26877825

  5. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. 868.1150 Section 868.1150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... “Class II Special Controls Guidance Document: Indwelling Blood Gas Analyzers; Final Guidance for Industry...

  6. Classifying Acute Respiratory Distress Syndrome Severity: Correcting the Arterial Oxygen Partial Pressure to Fractional Inspired Oxygen at Altitude.

    PubMed

    Pérez-Padilla, Rogelio; Hernández-Cárdenas, Carmen Margarita; Lugo-Goytia, Gustavo

    2016-01-01

    In the well-known Berlin definition of acute respiratory distress syndrome (ARDS), there is a recommended adjustment for arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FIO2) at altitude, but without a reference as to how it was derived.

  7. Solubility of carbon dioxide in aqueous mixtures of alkanolamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawodu, O.F.; Meisen, A.

    1994-07-01

    The solubility of CO[sub 2] in water + N-methyldiethanolamine + monoethanolamine (MDEA + MEA) and water + N-methyldiethanolamine + diethanolamine (MDEA + DEA) are reported at two compositions of 3.4 M MDEA + 0.8 M MEA or DEA and 2.1 M MDEA + 2.1 M MEA or DEA at temperatures from 70 to 180 C and CO[sub 2] partial pressures from 100 to 3,850 kPa. The solubility of CO[sub 2] in the blends decreased with an increase in temperature but increased with an increase in CO[sub 2] partial pressure. At low partial pressures of CO[sub 2] and the same totalmore » amine concentration, the equilibrium CO[sub 2] loadings were in the order MDEA + MEA > MDEA + DEA > MDEA. However, at high CO[sub 2] partial pressures, the equilibrium CO[sub 2] loadings in the MDEA solutions were higher than those of the MDEA + MEA and MDEA + DEA blends of equal molar strengths due to the stoichiometric loading limitations of MEA and DEA. The nonadditivity of the equilibrium loadings for single amine systems highlights the need for independent measurements on amine blends.« less

  8. Method for sensing and measuring a concentration or partial pressure of a reactant used in a redox reaction

    DOEpatents

    Findl, E.

    1984-12-21

    A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.

  9. Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses

    PubMed Central

    Choh, Vivian; Gurdita, Akshay; Tan, Bingyao; Prasad, Ratna C.; Bizheva, Kostadinka; Joos, Karen M.

    2016-01-01

    Purpose Moderately elevated intraocular pressure (IOP) is a risk factor for open-angle glaucoma. Some patients suffer glaucoma despite clinically measured normal IOPs. Fluctuations in IOP may have a significant role since IOPs are higher during sleep and inversion activities. Controlled transient elevations of IOPs in rats over time lead to optic nerve structural changes that are similar to the early changes observed in constant chronic models of glaucoma. Because early intervention decreases glaucoma progression, this study was done to determine if early physiological changes to the retina could be detected with noninvasive electrophysiological and optical imaging tests during moderately elevated IOP. Methods Intraocular pressures were raised to moderately high levels (35 mm Hg) in one eye of Sprague-Dawley rats while the other (control) eye was untreated. One group of rats underwent scotopic threshold response (STR) and electroretinogram (ERG) testing, while another 3 groups underwent optical coherence tomography (OCT) imaging, Western blot, or histologic evaluation. Results The amplitudes of the STR and ERG responses in eyes with moderately elevated IOPs were enhanced compared to the values before IOP elevation, and compared to untreated contralateral eyes. Structural changes to the optic nerve also occurred during IOP elevation. Conclusions Although ischemic IOP elevations are well-known to globally reduce components of the scotopic ERG, acute elevation in rats to levels often observed in untreated glaucoma patients caused an increase in these parameters. Further exploration of these phenomena may be helpful in better understanding the mechanisms mediating early retinal changes during fluctuating or chronically elevated IOP. PMID:27100161

  10. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Serra, J. L.

    2007-01-01

    T-300 carbon fibers and T-300 carbon fiber reinforced silicon carbide composites (C/SiC) were oxidized in flowing reduced oxygen partial pressure environments at a total pressure of one atmosphere (0.5 atm O2, 0.05 atm O2 and 0.005 atm O2, balance argon). Experiments were conducted at four temperatures (816deg, 1149deg, 1343deg, and 1538 C). The oxidation kinetics were monitored using thermogravimetric analysis. T-300 fibers were oxidized to completion for times between 0.6 and 90 h. Results indicated that fiber oxidation kinetics were gas phase diffusion controlled. Oxidation rates had an oxygen partial pressure dependence with a power law exponent close to one. In addition, oxidation rates were only weakly dependent on temperature. The C/SiC coupon oxidation kinetics showed some variability, attributed to differences in the number and width of cracks in the SiC seal coat. In general, weight losses were observed indicating oxidation of the carbon fibers dominated the oxidation behavior. Low temperatures and high oxygen pressures resulted in the most rapid consumption of the carbon fibers. At higher temperatures, the lower oxidation rates were primarily attributed to crack closure due to SiC thermal expansion, rather than oxidation of SiC since these reduced rates were observed even at the lowest oxygen partial pressures where SiC oxidation is minimal.

  11. Intraocular Pressure Increases After Intraarticular Knee Injection With Triamcinolone but Not Hyaluronic Acid.

    PubMed

    Taliaferro, Kevin; Crawford, Alexander; Jabara, Justin; Lynch, Jonathan; Jung, Edward; Zvirbulis, Raimonds; Banka, Trevor

    2018-07-01

    Intraarticular steroid injections are a common first-line therapy for severe osteoarthritis, which affects an estimated 27 million people in the United States. Although topical, oral, intranasal, and inhalational steroids are known to increase intraocular pressure in some patients, the effect of intraarticular steroid injections on intraocular pressure has not been investigated, to the best of our knowledge. If elevated intraocular pressure is sustained for long periods of time or is of sufficient magnitude acutely, permanent loss of the visual field can occur. How does intraocular pressure change 1 week after an intraarticular knee injection either with triamcinolone acetonide or hyaluronic acid? A nonrandomized, nonblinded prospective cohort study was conducted at an outpatient, ambulatory orthopaedic clinic. This study compared intraocular pressure elevation before and 1 week after intraarticular knee injection of triamcinolone acetonide versus hyaluronic acid for management of primary osteoarthritis of the knee. Patients self-selected to be injected in their knee with either triamcinolone acetonide or hyaluronic acid before being informed of the study. The primary endpoint was intraocular pressure elevation of ≥ 7 mm Hg 1 week after injection. This cutoff is determined as the minimum significant pressure change in the ophthalmology literature recognized as an intermediate responder to steroids. Intraocular pressure was measured using a handheld Tono-Pen® applanation device. This device is frequently used in intraocular pressure measurement in clinical and research settings; 10 sequential measurements are obtained and averaged with a confidence interval. Only measurements with a 95% confidence interval were used. Over a 6-month period, a total of 96 patients were approached to enroll in the study. Sixty-two patients out of 96 approached (65%) agreed. Thirty-one (50%) were injected with triamcinolone and 31 (50%) were injected with hyaluronic acid. Patients with osteoarthritis of the knee who were suitable candidates for either a steroid injection or hyaluronic acid injection were included in the study. Exclusion criteria included previous glaucoma surgery, previous corneal injury precluding use of a Tono-Pen, current acute or chronic steroid use, and diagnosis of glaucoma other than primary open-angle. Patients with elevated intraocular pressure at the 1-week timepoint were invited to return at 1 month for repeat measurement; however, only five of nine (55.6%) were able to do so. The mean age of the total population was 64.1 ± 11.65 years. There were 46 (74%) women and 16 men. Patient in the hyaluronic acid injection group were younger than the triamcinolone group, 59.5 ± 11.7 versus 68.7 ± 9.7 years of age (p < 0.003). The mean intraocular pressure increased by 2.79 mm Hg 1 week after treatment with triamcinolone, but it did not change among those patients treated with hyaluronic acid (2.79 ± 9.9 mm Hg versus -0.14 ± 2.96 mm Hg; mean difference 2.93 mm Hg; 95% confidence interval, -0.71 to 6.57 mm Hg; p = 0.12). More patients who received triamcinolone injections developed an increase in intraocular pressure > 7 mm than did those who received hyaluronic acid (29% [nine of 29] versus 0% [zero of 31]; p = 0.002). Of the nine patients who developed elevated intraocular pressure after a triamcinolone injection, five returned for reevaluation 1 month later, and four of them had pressures that remained elevated > 7 mm Hg from baseline. There appears to be an associated intraocular pressure elevation found in patients who have undergone a triamcinolone injection of the knee. Further larger scale randomized investigations are warranted to determine the longevity of this pressure elevation as well as long-term clinical implications, including optic nerve damage and visual field loss. Level II, therapeutic study.

  12. Evaluation of Optical Coherence Tomography to Detect Elevated Intracranial Pressure in Children.

    PubMed

    Swanson, Jordan W; Aleman, Tomas S; Xu, Wen; Ying, Gui-Shuang; Pan, Wei; Liu, Grant T; Lang, Shih-Shan; Heuer, Gregory G; Storm, Phillip B; Bartlett, Scott P; Katowitz, William R; Taylor, Jesse A

    2017-04-01

    Detecting elevated intracranial pressure in children with subacute conditions, such as craniosynostosis or tumor, may enable timely intervention and prevent neurocognitive impairment, but conventional techniques are invasive and often equivocal. Elevated intracranial pressure leads to structural changes in the peripapillary retina. Spectral-domain (SD) optical coherence tomography (OCT) can noninvasively quantify retinal layers to a micron-level resolution. To evaluate whether retinal measurements from OCT can serve as an effective surrogate for invasive intracranial pressure measurement. This cross-sectional study included patients undergoing procedures at the Children's Hospital of Philadelphia from September 2014 to June 2015. Three groups of patients (n = 79) were prospectively enrolled from the Craniofacial Surgery clinic including patients with craniosynostosis (n = 40). The positive control cohort consisted of patients with hydrocephalus and suspected intracranial hypertension (n = 5), and the negative control cohort consisted of otherwise healthy patients undergoing a minor procedure (n = 34). Spectral-domain OCT was performed preoperatively in all cohorts. Children with cranial pathology, but not negative control patients, underwent direct intraoperative intracranial pressure measurement. The primary outcome was the association between peripapillary retinal OCT parameters and directly measured elevated intracranial pressure. The mean (SD) age was 34.6 (45.2) months in the craniosynostosis cohort (33% female), 48.9 (83.8) months in the hydrocephalus and suspected intracranial hypertension cohort (60% female), and 59.7 (64.4) months in the healthy cohort (47% female). Intracranial pressure correlated with maximal retinal nerve fiber layer thickness (r = 0.60, P ≤ .001), maximal retinal thickness (r = 0.53, P ≤ .001), and maximal anterior retinal projection (r = 0.53, P = .003). Using cut points derived from the negative control patients, OCT parameters yielded 89% sensitivity (95% CI, 69%-97%) and 62% specificity (95% CI, 41%-79%) for detecting elevated intracranial pressure. The SD-OCT measures had high intereye agreement (intraclass correlation, 0.83-0.93) and high intragrader and intergrader agreement (intraclass correlation ≥0.94). Conventional clinical signs had low sensitivity (11%-42%) for detecting intracranial hypertension. Noninvasive quantitative measures of the peripapillary retinal structure by SD-OCT were correlated with invasively measured intracranial pressure. Optical coherence tomographic parameters showed promise as surrogate, noninvasive measures of intracranial pressure, outperforming other conventional clinical measures. Spectral-domain OCT of the peripapillary region has the potential to advance current treatment paradigms for elevated intracranial pressure in children.

  13. Evaluation of Optical Coherence Tomography to Detect Elevated Intracranial Pressure in Children

    PubMed Central

    Swanson, Jordan W.; Aleman, Tomas S.; Xu, Wen; Ying, Gui-Shuang; Pan, Wei; Liu, Grant T.; Lang, Shih-Shan; Heuer, Gregory G.; Storm, Phillip B.; Bartlett, Scott P.; Katowitz, William R.

    2017-01-01

    Importance Detecting elevated intracranial pressure in children with subacute conditions, such as craniosynostosis or tumor, may enable timely intervention and prevent neurocognitive impairment, but conventional techniques are invasive and often equivocal. Elevated intracranial pressure leads to structural changes in the peripapillary retina. Spectral-domain (SD) optical coherence tomography (OCT) can noninvasively quantify retinal layers to a micron-level resolution. Objective To evaluate whether retinal measurements from OCT can serve as an effective surrogate for invasive intracranial pressure measurement. Design, Setting, and Participants This cross-sectional study included patients undergoing procedures at the Children’s Hospital of Philadelphia from September 2014 to June 2015. Three groups of patients (n = 79) were prospectively enrolled from the Craniofacial Surgery clinic including patients with craniosynostosis (n = 40). The positive control cohort consisted of patients with hydrocephalus and suspected intracranial hypertension (n = 5), and the negative control cohort consisted of otherwise healthy patients undergoing a minor procedure (n = 34). Main Outcomes and Measures Spectral-domain OCT was performed preoperatively in all cohorts. Children with cranial pathology, but not negative control patients, underwent direct intraoperative intracranial pressure measurement. The primary outcome was the association between peripapillary retinal OCT parameters and directly measured elevated intracranial pressure. Results The mean (SD) age was 34.6 (45.2) months in the craniosynostosis cohort (33% female), 48.9 (83.8) months in the hydrocephalus and suspected intracranial hypertension cohort (60% female), and 59.7 (64.4) months in the healthy cohort (47% female). Intracranial pressure correlated with maximal retinal nerve fiber layer thickness (r = 0.60, P ≤ .001), maximal retinal thickness (r = 0.53, P ≤ .001), and maximal anterior retinal projection (r = 0.53, P = .003). Using cut points derived from the negative control patients, OCT parameters yielded 89% sensitivity (95% CI, 69%-97%) and 62% specificity (95% CI, 41%-79%) for detecting elevated intracranial pressure. The SD-OCT measures had high intereye agreement (intraclass correlation, 0.83-0.93) and high intragrader and intergrader agreement (intraclass correlation ≥0.94). Conventional clinical signs had low sensitivity (11%-42%) for detecting intracranial hypertension. Conclusions and Relevance Noninvasive quantitative measures of the peripapillary retinal structure by SD-OCT were correlated with invasively measured intracranial pressure. Optical coherence tomographic parameters showed promise as surrogate, noninvasive measures of intracranial pressure, outperforming other conventional clinical measures. Spectral-domain OCT of the peripapillary region has the potential to advance current treatment paradigms for elevated intracranial pressure in children. PMID:28241164

  14. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Taniguchi, Y.; Okuno, A.; Kato, M.

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.

  15. Optimizing the physical ergonomics indices for the use of partial pressure suits.

    PubMed

    Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang

    2015-03-01

    This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Inexpensive Method of Testing Ambient and Thermally Elevated Resistive and Piezoresistive Thin-Film Pressure Gauges

    NASA Astrophysics Data System (ADS)

    Armstrong, Christopher; Rae, Philip; Heatwole, Eric; Tasker, Douglas; Los Alamos National Labortatory Team

    2017-06-01

    Manganin is an alloy that changes resistance when subjected to high-pressure, but is insensitive to temperature changes. Resistance curves as a function of pressure for these gauges have been established. Another commonly used piezoresistive pressure sensor are thin-film carbon gauges, which are more pressure sensitive than manganin gauges. Carbon gauge response in high temperature is not well quantified. The current research is focused on verifying these established resistance curves as well as verifying this specific experimental configuration. In this research the carbon gauges' resistance change is measured for thermally elevated gauges. In this setup a 20 mm caliber gun drove planar copper projectiles at the gauge, which was embedded in a copper anvil. The Hugoniot relationship allows for a comparison between observed and theoretical pressure over a pressure range 5 to 20 GPa for manganin gauges and 1 to 5 GPa for carbon gauges. The comparison between the data obtained in this research and that of others shows that the pressure-resistance curve of manganin does to not vary between lots of manganin. Additionally, the data shows that this setup is a relatively inexpensive quick means of testing gauge response to high-pressure shocks and is suitable for elevated temperature.

  17. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  18. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    PubMed

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  19. Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents.

    PubMed

    Zhang, Kai; Ren, Shuhang; Hou, Yucui; Wu, Weize

    2017-02-15

    Sulfur dioxide (SO 2 ) emitted from the burning of fossil fuels is one of the main air contaminants. In this work, we found that environmentally benign solvents, deep eutectic solvents (DESs) could be designed with a function to absorb low-partial pressure SO 2 from simulated flue gas. Two kinds of biodegradable functional DESs based on betaine (Bet) and l-carnitine (L-car) as hydrogen bond accepters (HBA) and ethylene glycol (EG) as a hydrogen bond donor (HBD) were prepared with mole ratios of HBA to HBD from 1:3 to 1:5, and they were investigated to absorb SO 2 with different partial pressures at various temperatures. The results showed that the two DESs could absorb low-partial pressure SO 2 efficiently. SO 2 absorption capacities of the DESs with HBA/HBD mole ratio of 1:3 were 0.332mol SO 2 /mol HBA for Bet+EG DES and 0.820mol SO 2 /mol HBA for L-car+EG DES at 40°C with a SO 2 partial pressure of 0.02atm. In addition, the regeneration experiments demonstrated that the absorption capacities of DESs did not change after five absorption and desorption cycles. Furthermore, the absorption mechanism of SO 2 by DESs was studied by FT-IR, 1 H NMR and 13 C NMR spectra. It was found that there are strong acid-base interactions between SO 2 and -COO - on HBA. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana

    2012-08-01

    TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.

  1. Right ventricular pressure elevated in one-kidney, one clip Goldblatt hypertensive rats.

    PubMed

    Ketabchi, Farzaneh; Bajoovand, Shirin; Adlband, Mojtaba; Naseh, Maryam; Nekooeian, Ali A; Mashghoolozekr, Elaheh

    2017-01-01

    Both renal and respiratory diseases are common with high mortality rate around the world. This study was the first to compare effects of two kidneys, one clip (2K1C) and one-kidney, one clip (1K1C) Goldblatt hypertension on right ventricular pressure during normal condition and mechanical ventilation with hypoxia gas. Male Sprague-Dawley rats were subjected to control, 2K1C, or 1K1C groups. Twenty-eight days after the first surgery, animals were anesthetized, and femoral artery and vein, and right ventricle cannulated. Systemic arterial pressure and right ventricular systolic pressures (RVSP) were recorded during ventilation the animals with normoxic or hypoxic gas. RVSP in the 1K1C group was significantly more than the control and 2K1C groups during baseline conditions and ventilation the animals with hypoxic gas. Administration of antioxidant Trolox increased RVSP in the 1K1C and control groups compared with their baselines. Furthermore, there was no alteration in RVSP during hypoxia in the presence of Trolox. This study indicated that RVSP only increased after 28 days induction of 1K1C but not 2K1C model. In addition, it seems that the response to hypoxic gas and antioxidants in 1K1C is more than 2K1C. These data also suggest that effects of 1K1C may partially be related to reactive oxygen species (ROS) pathways.

  2. Benefit of azilsartan on blood pressure elevation around rest-to-active phase in spontaneously hypertensive rats.

    PubMed

    Isegawa, Kengo; Hirooka, Yoshitaka; Kishi, Takuya; Yasukawa, Keiji; Utsumi, Hideo; Sunagawa, Kenji

    2015-01-01

    Abnormal elevation of blood pressure in early morning (rest-to-active phase) is suggested to cause cardiovascular events. We investigated whether azilsartan (AZL), a novel potent angiotensin receptor blocker, suppresses blood pressure elevation from the light-rest to dark-active phase in spontaneously hypertensive rats (SHRs). AZL has a sustained depressor effect around the rest-to-active phase in SHRs to a greater extent than candesartan (CAN), despite their similar depressor effects for over 24 h. AZL did not cause sympathoexcitation. These results suggest that AZL has a more sustained depressor effect than CAN around the rest-to-active phase in SHRs, and might have advantages for early morning hypertension.

  3. Phase development in the Bi 2Sr 2CaCu 2O y system . Effects of oxygen pressure

    NASA Astrophysics Data System (ADS)

    List, F. A.; Hsu, H.; Cavin, O. B.; Porter, W. D.; Hubbard, C. R.; Kroeger, D. M.

    1992-11-01

    Studies have been undertaken using thermal analysis, in conjunction with high-temperature and room temperature X-ray diffraction, fraction, to elucidate phase relationships during thermal processing of thick films of initially phase pure Bi 2Sr 2CaCu 2O y (2212) on silver substrates in various oxygen-containing atmospheres (0.001 to 100% O 2). Exothermic events on cooling at 10°C/min from a partially liquid state vary with oxygen partial pressure and can be grouped into three sets (I-III). Set I is prominent for 0.001% and 0.1% O 2 in the range of 740-775°C and is believed to be associated with the crystallization of a Cu-free ∼ Bi 5Sr 3Ca 1 oxide phase. Set II results from the crystallization of 2212; it is observed for p(O 2)≥1.0% in the temperature range 800-870°C. Set III appears for 21% and 100% O 2 in the temperature range 880-910°C, and its origin is not clear from the results of this study. Subsequent room temperature X-ray diffraction from these samples suggests that in general high oxygen partial pressures (100% O 2) tend to favor the formation of Bi 2Sr 2CuO 6 (2201), whereas low oxygen partial pressures (0.001-0.1% O 2) lead to the formation of a Cu-free, Bi-Sr-Ca oxide phase. The 2212 phase forms at this cooling rate predominantly for intermediate oxygen partial pressures (7.6-21% O 2). High-temperature X-ray diffraction during cooling (2°C/h) from the partially liquid state shows a pronounced dependence of the order of evolution of crystalline 2212 and 2201 phases on p(O 2). For an oxygen partial pressure of 1.0% the formation of 2212 precedes that of 2201, whereas for 0.01% O 2 2201 crystallizes at a higher temperature than 2212. The implications of these results pertaining to thermal processing of thick 2212 films are discussed.

  4. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  5. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  6. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  7. Does pressure cause liver cirrhosis? The sinusoidal pressure hypothesis

    PubMed Central

    Mueller, Sebastian

    2016-01-01

    Independent of their etiology, all chronic liver diseases ultimately lead to liver cirrhosis, which is a major health problem worldwide. The underlying molecular mechanisms are still poorly understood and no efficient treatment strategies are available. This paper introduces the sinusoidal pressure hypothesis (SPH), which identifies an elevated sinusoidal pressure (SP) as cause of fibrosis. SPH has been mainly derived from recent studies on liver stiffness. So far, pressure changes have been exclusively seen as a consequence of cirrhosis. According to the SPH, however, an elevated SP is the major upstream event that initiates fibrosis via biomechanic signaling by stretching of perisinusoidal cells such as hepatic stellate cells or fibroblasts (SPH part I: initiation). Fibrosis progression is determined by the degree and time of elevated SP. The SPH predicts that the degree of extracellular matrix eventually matches SP with critical thresholds > 12 mmHg and > 4 wk. Elevated arterial flow and final arterialization of the cirrhotic liver represents the self-perpetuating key event exposing the low-pressure-organ to pathologically high pressures (SPH part II: perpetuation). It also defines the “point of no return” where fibrosis progression becomes irreversible. The SPH is able to explain the macroscopic changes of cirrhotic livers and the uniform fibrotic response to various etiologies. It also opens up new views on the role of fat and disease mechanisms in other organs. The novel concept will hopefully stimulate the search for new treatment strategies. PMID:28082801

  8. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO.

    PubMed

    Kapil, Vikas; Milsom, Alexandra B; Okorie, Michael; Maleki-Toyserkani, Sheiva; Akram, Farihah; Rehman, Farkhanda; Arghandawi, Shah; Pearl, Vanessa; Benjamin, Nigel; Loukogeorgakis, Stavros; Macallister, Raymond; Hobbs, Adrian J; Webb, Andrew J; Ahluwalia, Amrita

    2010-08-01

    Ingestion of dietary (inorganic) nitrate elevates circulating and tissue levels of nitrite via bioconversion in the entero-salivary circulation. In addition, nitrite is a potent vasodilator in humans, an effect thought to underlie the blood pressure-lowering effects of dietary nitrate (in the form of beetroot juice) ingestion. Whether inorganic nitrate underlies these effects and whether the effects of either naturally occurring dietary nitrate or inorganic nitrate supplementation are dose dependent remain uncertain. Using a randomized crossover study design, we show that nitrate supplementation (KNO(3) capsules: 4 versus 12 mmol [n=6] or 24 mmol of KNO(3) (1488 mg of nitrate) versus 24 mmol of KCl [n=20]) or vegetable intake (250 mL of beetroot juice [5.5 mmol nitrate] versus 250 mL of water [n=9]) causes dose-dependent elevation in plasma nitrite concentration and elevation of cGMP concentration with a consequent decrease in blood pressure in healthy volunteers. In addition, post hoc analysis demonstrates a sex difference in sensitivity to nitrate supplementation dependent on resting baseline blood pressure and plasma nitrite concentration, whereby blood pressure is decreased in male volunteers, with higher baseline blood pressure and lower plasma nitrite concentration but not in female volunteers. Our findings demonstrate dose-dependent decreases in blood pressure and vasoprotection after inorganic nitrate ingestion in the form of either supplementation or by dietary elevation. In addition, our post hoc analyses intimate sex differences in nitrate processing involving the entero-salivary circulation that are likely to be major contributing factors to the lower blood pressures and the vasoprotective phenotype of premenopausal women.

  9. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains.

    PubMed

    Zinder, S H; Anguish, T

    1992-10-01

    CO and H(2) have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H(2), CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H(2) to partial pressures of 40 to 70 Pa (1 Pa = 0.987 x 10 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H(2) to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N(2)-CO(2), accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H(2) (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 mumol of viologen reduced min mg of protein. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H(2) in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate.

  10. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains

    PubMed Central

    Zinder, S. H.; Anguish, T.

    1992-01-01

    CO and H2 have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H2, CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H2 to partial pressures of 40 to 70 Pa (1 Pa = 0.987 × 10-5 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H2 to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N2-CO2, accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H2 (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 μmol of viologen reduced min-1 mg of protein-1. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H2 in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate. PMID:16348788

  11. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times higher than that encountered at low water (1708 μatm). Partial pressures and emissions of both CO2 and CH4 were greatest in open water habitats and consistently higher at night. These patterns reflected the higher levels of wind driven mixing and turbulence in open water environments and higher convective mixing at night which promoted diffusive emission.

  12. High-pressure NaCl-phase of tetrahedral compounds

    NASA Astrophysics Data System (ADS)

    Soma, T.; -Matsuo Kagaya, H.

    1984-04-01

    The phase transition of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe under pressure is investigated from the electronic theory of solids by using our recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The partially ionic forces give the important contributions to the high-pressure phase and stabilize the NaCl-type structure for the high-pressure phase of these compounds, although not reported for GaP experimentally. Then, the numerical results such as the transition pressure, the volume-discontinuity, the transition heat with respect to the pressure-induced phase transition from the zinc-blende-to the NaCl-type lattice are obtained theoretically.

  13. Influence of meteorological conditions on hospital admission in patients with acute coronary syndrome with and without ST-segment elevation: Results of the AIRACOS study.

    PubMed

    Dominguez-Rodriguez, A; Juarez-Prera, R A; Rodríguez, S; Abreu-Gonzalez, P; Avanzas, P

    2016-05-01

    Evaluate whether the meterological parameters affecting revenues in patients with ST-segment and non-ST-segment elevation ACS. A prospective cohort study was carried out. Coronary Care Unit of Hospital Universitario de Canarias We studies a total of 307 consecutive patients with a diagnosis of ST-segment and non-ST-segment elevation ACS. We analyze the average concentrations of particulate smaller than 10 and 2.5μm diameter, particulate black carbon, the concentrations of gaseous pollutants and meteorological parameters (wind speed, temperature, relative humidity and atmospheric pressure) that were exposed patients from one day up to 7 days prior to admission. None. Demographic, clinical, atmospheric particles, concentrations of gaseous pollutants and meterological parameters. A total of 138 (45%) patients were classified as ST-segment and 169 (55%) as non-ST-segment elevation ACS. No statistically significant differences in exposure to atmospheric particles in both groups. Regarding meteorological data, we did not find statistically significant differences, except for higher atmospheric pressure in ST-segment elevation ACS (999.6±2.6 vs. 998.8±2.5 mbar, P=.008). Multivariate analysis showed that atmospheric pressure was significant predictor of ST-segment elevation ACS presentation (OR: 1.14, 95% CI: 1.04-1.24, P=.004). In the patients who suffer ACS, the presence of higher number of atmospheric pressure during the week before the event increase the risk that the ST-segment elevation ACS. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  14. Cardiac Reactivity and Elevated Blood Pressure Levels among Young African Americans: The Importance of Stress.

    ERIC Educational Resources Information Center

    Livingston, Ivor Lensworth; Marshall, Ronald J.

    1990-01-01

    Explores the racial differences in elevated arterial blood pressure between African American youth, especially adolescents, and their White counterparts. Argues that African American adolescents' perception of day-to-day stress is an important contributor to this condition. Considers a conceptual model of the sociopsychophysiological stress…

  15. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Hernández-Pérez, Francisco E.; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P. H.

    2017-09-01

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  16. Effects of Repeated Valsalva Maneuver Straining on Cardiac and Vasoconstrictive Baroreflex Responses

    DTIC Science & Technology

    2003-03-01

    of blood pressure regulation that differ in men repeatedly exposed to high G acceleration. Am J Physiol Regul Integr Comp Physiol 2001; 280:R947–58. 10...Methods: We tested this hypothesis by measuring cardiac baroreflex responses to carotid baroreceptor stimulation (neck pressures ), and changes in heart rate...hypothesis is the observation that elevated pulse pressures in isolated carotid sinuses of dogs sen- sitized baroreceptor afferent firing (4,5). Elevated arte

  17. Phenylephrine-induced elevations in arterial blood pressure are attenuated in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To test the hypothesis that phenylephrine-induced elevations in blood pressure are attenuated in heat-stressed humans, blood pressure was elevated via steady-state infusion of three doses of phenylephrine HCl in 10 healthy subjects in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature by 0.5 degrees C, muscle sympathetic nerve activity (MSNA), heart rate, and cardiac output and decreased total peripheral vascular resistance (TPR; all P < 0.005) but did not change mean arterial blood pressure (MAP; P > 0.05). At the highest dose of phenylephrine, the increase in MAP and TPR from predrug baselines was significantly attenuated during the heat stress [DeltaMAP 8.4 +/- 1.2 mmHg; DeltaTPR 0.96 +/- 0.85 peripheral resistance units (PRU)] compared with normothermia (DeltaMAP 15.4 +/- 1.4 mmHg, DeltaTPR 7.13 +/- 1.18 PRU; all P < 0.001). The sensitivity of baroreflex control of MSNA and heart rate, expressed as the slope of the relationship between MSNA and diastolic blood pressure, as well as the slope of the relationship between heart rate and systolic blood pressure, respectively, was similar between thermal conditions (each P > 0.05). These data suggest that phenylephrine-induced elevations in MAP are attenuated in heat-stressed humans without affecting baroreflex control of MSNA or heart rate.

  18. Exaggerated blood pressure response to exercise--a new portent of masked hypertension.

    PubMed

    Kayrak, Mehmet; Bacaksiz, Ahmet; Vatankulu, Mehmet Akif; Ayhan, Selim S; Kaya, Zeynettin; Ari, Hatem; Sonmez, Osman; Gok, Hasan

    2010-01-01

    Masked hypertension (MHT) is a popular entity with increased risk of developing sustained hypertension, heart attack, stroke, and death. Subjects have normal blood pressure (BP) at office but elevated values at night so it is difficult to diagnose. Exaggerated blood pressure response to exercise (EBPR) is also a predictor of future hypertension. To investigate the relationship between these two entities, we evaluated 61 normotensive subjects with EBPR. The subjects underwent 24-h ambulatory blood pressure monitoring (ABPM). The prevalence of masked hypertension among subjects with EBPR was 41%. Body mass index (BMI), non-high density lipoprotein (HDL) cholesterol, diastolic blood pressure (DBP) at peak exercise and recovery, nondipping DBP pattern, and elevated early morning average BPs were associated with masked hypertension. In multivariate logistic regression analysis, the DBP measured at peak exercise was detected as an independent predictor of MHT in subjects with EBPR. Subjects with abnormally elevated BP during exercise are prone to MHT, necessitate medical assessment and close follow-up for hypertension.

  19. The Relationship of Mucus Concentration (Hydration) to Mucus Osmotic Pressure and Transport in Chronic Bronchitis

    PubMed Central

    Coakley, Raymond D.; Button, Brian; Henderson, Ashley G.; Zeman, Kirby L.; Alexis, Neil E.; Peden, David B.; Lazarowski, Eduardo R.; Davis, C. William; Bailey, Summer; Fuller, Fred; Almond, Martha; Qaqish, Bahjat; Bordonali, Elena; Rubinstein, Michael; Bennett, William D.; Kesimer, Mehmet; Boucher, Richard C.

    2015-01-01

    Rationale: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. Objectives: We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. Methods: We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. Measurements and Results: CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. Conclusions: Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis. PMID:25909230

  20. Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Wang, Li

    2012-11-01

    The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.

  1. 18. Photocopy of circa 1839 ink and wash drawing by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of circa 1839 ink and wash drawing by Richard Upjohn in Avery Library, Columbia University ELEVATION OF ENTRANCE FRONT (above) AND PRELIMINARY OR PARTIAL FIRST FLOOR PLAN WITH TWO SMALL ELEVATION SKETCHES (below) - Kingscote, Bellevue Avenue & Bowery Street, Newport, Newport County, RI

  2. O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Parmigiani, F.; Shen, Z. X.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1991-02-01

    High-quality Bi2Sr2CaCu2O8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ~=0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure.

  3. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin

    PubMed Central

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-01-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier. PMID:17660257

  4. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin.

    PubMed

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-09-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.

  5. Progress Toward Optimizing Prosthetic Socket Fit and Suspension Using Elevated Vacuum to Promote Residual Limb Health

    PubMed Central

    Wernke, Matthew M.; Schroeder, Ryan M.; Haynes, Michael L.; Nolt, Lonnie L.; Albury, Alexander W.; Colvin, James M.

    2017-01-01

    Objective: Prosthetic sockets are custom made for each amputee, yet there are no quantitative tools to determine the appropriateness of socket fit. Ensuring a proper socket fit can have significant effects on the health of residual limb soft tissues and overall function and acceptance of the prosthetic limb. Previous work found that elevated vacuum pressure data can detect movement between the residual limb and the prosthetic socket; however, the correlation between the two was specific to each user. The overall objective of this work is to determine the relationship between elevated vacuum pressure deviations and prosthetic socket fit. Approach: A tension compression machine was used to apply repeated controlled forces onto a residual limb model with sockets of different internal volume. Results: The vacuum pressure–displacement relationship was dependent on socket fit. The vacuum pressure data were sensitive enough to detect differences of 1.5% global volume and can likely detect differences even smaller. Limb motion was reduced as surface area of contact between the limb model and socket was maximized. Innovation: The results suggest that elevated vacuum pressure data provide information to quantify socket fit. Conclusions: This study provides evidence that the use of elevated vacuum pressure data may provide a method for prosthetists to quantify and monitor socket fit. Future studies should investigate the relationship between socket fit, limb motion, and limb health to define optimal socket fit parameters. PMID:28736683

  6. Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.

  7. The Effect of Head Up Cardiopulmonary Resuscitation on Cerebral and Systemic Hemodynamics.

    PubMed

    Ryu, Hyun Ho; Moore, Johanna C; Yannopoulos, Demetris; Lick, Michael; McKnite, Scott; Shin, Sang Do; Kim, Tae Yun; Metzger, Anja; Rees, Jennifer; Tsangaris, Adamantios; Debaty, Guillaume; Lurie, Keith G

    2016-05-01

    Chest compressions during cardiopulmonary resuscitation (CPR) increase arterial and venous pressures, delivering simultaneous bidirectional high-pressure compression waves to the brain. We hypothesized that this may be detrimental and could be partially overcome by elevation of the head during CPR. Female Yorkshire farm pigs (n=30) were sedated, intubated, anesthetized, and placed on a table able to elevate the head 30° (15cm) (HUP) and the heart 10° (4cm) or remain in the supine (SUP) flat position during CPR. After 8minutes of untreated ventricular fibrillation and 2minutes of SUP CPR, pigs were randomized to HUP or SUP CPR for 20 more minutes. In Group A, pigs were randomized after 2minutes of flat automated conventional (C) CPR to HUP (n=7) or SUP (n=7) C-CPR. In Group B, pigs were randomized after 2minutes of automated active compression decompression (ACD) CPR plus an impedance threshold device (ITD) SUP CPR to either HUP (n=8) or SUP (n=8). The primary outcome of the study was difference in CerPP (mmHg) between the HUP and SUP positions within groups. After 22minutes of CPR, CerPP was 6±3mmHg in the HUP versus -5±3 in the SUP (p=0.016) in Group A, and 51±8 versus 20±5 (p=0.006) in Group B. Coronary perfusion pressures after 22minutes were HUP 6±2 vs SUP 3±2 (p=0.283) in Group A and HUP 32±5 vs SUP 19±5, (p=0.074) in Group B. In Group B, 6/8 pigs were resuscitated in both positions. No pigs were resuscitated in Group A. The HUP position in both C-CPR and ACD+ITD CPR significantly improved CerPP. This simple maneuver has the potential to improve neurological outcomes after cardiac arrest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease.

    PubMed

    Varbo, Anette; Benn, Marianne; Smith, George Davey; Timpson, Nicholas J; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G

    2015-02-13

    Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. To test the hypothesis that the increased IHD risk because of obesity is mediated through lipoproteins, blood pressure, glucose, and C-reactive protein. Approximately 90 000 participants from Copenhagen were included in a Mendelian randomization design with mediation analyses. Associations were examined using conventional measurements of body mass index and intermediate variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood pressure, and possibly also through elevated nonfasting glucose levels; however, reduced high-density lipoprotein cholesterol and elevated C-reactive protein levels were not mediators in genetic analyses. The 3 intermediate variables that explained the highest excess risk of IHD from genetically determined obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. The increased IHD risk because of obesity was partly mediated through elevated levels of nonfasting remnant and low-density lipoprotein cholesterol and through elevated blood pressure. Our results suggest that there may be benefit to gain by reducing levels of these risk factors in obese individuals not able to achieve sustained weight loss. © 2014 American Heart Association, Inc.

  9. Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature

    NASA Technical Reports Server (NTRS)

    Yu, Ping; Nalette, Tim; Kayatin, Matthew

    2016-01-01

    The Water Processor Assembly (WPA) at International Space Station (ISS) processes a waste stream via multi-filtration beds, where inorganic and non-volatile organic contaminants are removed, and a catalytic reactor, where low molecular weight organics not removed by the adsorption process are oxidized at elevated pressure in the presence of oxygen and elevated temperature above the normal water boiling point. Operation at an elevated pressure requires a more complex system design compared to a reactor that could operate at ambient pressure. However, catalysts currently available have insufficient activity to achieve complete oxidation of the organic load at a temperature less than the water boiling point and ambient pressure. Therefore, it is highly desirable to develop a more active and efficient catalyst at ambient pressure and a moderate temperature that is less than water boiling temperature. This paper describes our efforts in developing high efficiency water processing catalysts. Different catalyst support structures and coating metals were investigated in subscale reactors and results were compared against the flight WPA catalyst. Detailed improvements achieved on alternate metal catalysts at ambient pressure and 200 F will also be presented in the paper.

  10. Arsenic exposure assists ccm3 genetic polymorphism in elevating blood pressure

    PubMed Central

    Liu, Xinxia; Xing, Xiumei; Zhang, Huimin; Yun, Jianpei; Ou, Xiaoyan; Su, Xiaolin; Lu, Yao; Sun, Yi; Yang, Yarui; Jiang, Jun; Cui, Dong; Zhuang, Zhixiong; He, Yun

    2018-01-01

    Epidemiologic study has suggested that arsenic exposure is positively related to increased blood pressure. However, the underlying mechanism concerning interaction between genetic polymorphisms and arsenic exposure remains unclear. In present study, within 395 Chinese, the effects of interaction between arsenic exposure and CCM3 gene polymorphisms on elevation of blood pressure were probed by multiple Logistic regression models after adjusting for confounding factors. Firstly, we found that serum arsenic was positively associated with blood pressure, cholesterol, glucose and C-reactive protein. Then, adjusted for confounding factors of age, gender, smoking, alcohol consumption, BMI and degree of education, arsenic exposure incurred the hazard of increased systolic pressure and diastolic pressure, with odds ratios (ORs) being 1.725 and 1.425, respectively. Distinctly, we found that interactions between rs3804610* rs9818496, rs6784267*rs9818496, and rs3804610* rs6784267 variant genotype can increase significantly risks of SBP. Additionally, interactions between rs9818496, rs3804610 and rs6784267 genotypic variantions and arsenic exposure boosted the hazard of increased systolic pressure, with ORs being 1.496, 1.496 and 1.312. In conclusion, our fingdings suggest that As exposure of population can assist CCM3 polymorphism in elevating SBP. PMID:29435151

  11. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.

  12. The Role of the Pressure in the Partial Regularity Theory for Weak Solutions of the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther

    2018-04-01

    We study the role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. By introducing the notion of dissipative solutions, due to D uchon and R obert (Nonlinearity 13:249-255, 2000), we will provide a generalization of the Caffarelli, Kohn and Nirenberg theory. Our approach sheels new light on the role of the pressure in this theory in connection to Serrin's local regularity criterion.

  13. Solubility of carbon monoxide in n-hexane between 293 and 473 K and CO pressures up to 200 bar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koelliker, R.; Thies, H.

    The solubility of carbon monoxide, CO, in n-hexane was measured at 293, 323, 373, 423, and 473 K for CO partial pressures up to 200 bar. The enthalpy of solution was calculated between 293 and 473 K. Using the Krichevsky-Ilinskaya equation of state, the solubility of CO in n-hexane can be calculated between 293 and 423 K for CO partial pressures up to 200 bar with an accuracy better than 5%.

  14. Variable range hopping in ZnO films

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Ghosh, Subhasis

    2018-04-01

    We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.

  15. [Device to assess in-socket pressure distribution for partial foot amputation].

    PubMed

    Alvarez-Camacho, Michelín; Urrusti, José Luis; Acero, María Del Carmen; Galván Duque-Gastélum, Carlos; Rodríguez-Reyes, Gerardo; Mendoza-Cruz, Felipe

    2014-07-01

    A device for dynamic acquisition and distribution analysis of in-socket pressure for patients with partial foot amputation is presented in this work. By using the developed system, we measured and generated pressure distribution graphs, obtained maximal pressure, and calculated pressure-time integral (PTI) of three subjects with partial foot amputation and of a group of Healthy subjects (Hs) (n = 10). Average maximal pressure in the healthy group was 19.4 ± 4.11 PSI, while for the three amputated patients, this was 27.8 ± 1.38, 17.6 ± 1.15, 29.10 ± 3.9 PSI, respectively. Maximal pressure-time integral for healthy subjects was 11.56 ± 2.83 PSI*s, and for study subjects was 19.54 ± 1.9, 12.35 ± 1.48, and 13.17 ± 1.31 PSI*s, respectively. The results of the control group agree with those previously reported in the literature. The pressure distribution pattern showed clear differences between study subjects and those of the control group; these graphs allowed us to identify the pressure in regions-of-interest that could be critical, such as surgical scars. The system presented in this work will aid to assess the effectiveness with which prosthetic systems distribute load, given that the formation of ulcers is highly linked to the pressure exercised at the point of contact; in addition, these results will help to investigate the comfort perception of the prosthesis, a factor directly influenced by the stump's pressure distribution.

  16. Proposal for Prevention or Alleviation of Protein/Lymph-Losing Enteropathy (PLE/LLE) After Fontan Circulation Treatment of Univentricular Hearts: Restoration of Lymph Balance With a "Lymphatic Right-to-Left Shunt."

    PubMed

    James, H; Witte, M H; Bernas, M; Barber, B

    2016-09-01

    In Fontan circulations created for univentricular hearts, systemic venous return is diverted to the lungs before returning to the heart. The Total Cavopulmonary Connection (TCPC) is often the preferred surgical procedure whereby a 4-way anastomosis is created with inflow from the superior vena cava (SVC) and inferior vena cava (IVC) and outflow to the right and left branches of the pulmonary artery. In this arrangement, the systemic venous pressure must be elevated sufficiently to perfuse the lungs passively without the normal boost of the right ventricle. Hence, unlike surgical corrections for other congenital heart conditions, the systemic venous pressures in a Fontan circuit must be elevated to make the circulation work. It is proposed here that the incidence of PLE/LLE is directly related to elevated venous and lymphatic pressures, which cause leakage of proteins/lymph into the gastrointestinal tract (GIT) and expulsion from the body. It is commonly held that elevated venous pressures are relatively better tolerated in the upper body, but much less so in the heptatosplanchnic circulation and the lower body. It is also well established that elevated venous pressure increases lymph formation, most of which is produced in the hepatosplanchnic region (liver and intestine). It is further argued here that the increase in lymph filling pressure arising from the higher lymph flow, in association with the backpressure exerted by elevated venous pressure at the main drainage point into the venous system, results in a substantial increase in pressure in the thoracic duct. This pressure is transmitted back to the intestinal lymphatics, causing dilatation with lacteal rupture and protein or bulk lymph leakage into the intestine. We propose in this paper a new approach, based on experimental evidence, to prevent and/or alleviate this condition by draining or redirecting the thoracic duct (or, alternatively, a more localized intestinal lymphatic vessel) into one of the pulmonary veins or the left atrium, which are typically at near-normal pressure in a Fontan circulation. This “lymphatic-venous right-to-left” shunt maneuver would significantly reduce the venous backpressure on the lymphatics as well as improve lymph circulation, resulting in a decrease in the intestinal lymphatic pressure and thereby prevent or alleviate protein/lymph loss, i.e. lymph balance would be restored. Moreover, the greatly facilitated lymphatic flow would encourage further capillary filtration to relieve excessive venous pressure in the hepatosplanchnic region and protect the liver and kidneys. This paper is intended as a discussion document for elicitation of comments on the soundness and viability of this proposal as well as on technical challenges and steps to explore and advance it.

  17. Pressure buffering by the tympanic membrane. In vivo measurements of middle ear pressure fluctuations during elevator motion.

    PubMed

    Padurariu, Simona; de Greef, Daniël; Jacobsen, Henrik; Nlandu Kamavuako, Ernest; Dirckx, Joris J; Gaihede, Michael

    2016-10-01

    The tympanic membrane (TM) represents a pressure buffer, which contributes to the overall pressure regulation of the middle ear (ME). This buffer capacity is based on its viscoelastic properties combined with those of the attached ossicular chain, muscles and ligaments. The current work presents a set of in vivo recordings of the ME pressure variations normally occurring in common life: elevator motion. This is defined as a situation of smooth ambient pressure increase or decrease on a limited range and at a low rate of pressure change. Based on these recordings, the purpose was a quantitative analysis of the TM buffer capacity including the TM compliance. The pressure changes in seven normal adult ME's with intact TM's were continuously recorded directly inside the ME cavity during four different elevator trips using a high precision instrument. The TM buffer capacity was determined by the ratio between the changes in ME and the ambient pressure. Further, the ME volumes were calculated by Boyle's Law from pressure recordings during inflation-deflation tests; subsequently the TM compliance could also be calculated. Finally, the correlation between the ME volume and buffer function was determined. Twenty-one elevator trips could be used for the analysis. The overall mean TM pressure buffering capacity was 23.3% (SEM = 3.4), whereas the mean overall compliance was 28.9 × 10 -3  μL/Pa (SEM = 4.8). A strong negative linear correlation was found between the TM buffer capacity and the ME volumes (R 2  = 0.92). These results were in fair agreement with the literature obtained in clinical as well as temporal bone experiments, and they provide an in vivo reference for the normal ME function as well as for ME modeling. The TM buffer capacity was found more efficient in smaller mastoids. Possible clinical implications are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sea-level haemoglobin concentration is associated with greater exercise capacity in Tibetan males at 4200 m.

    PubMed

    Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L

    2015-11-01

    What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2)  = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  19. Blood pressure interacts with APOE ε4 to predict memory performance in a midlife sample

    PubMed Central

    Oberlin, Lauren E.; Manuck, Stephen B.; Gianaros, Peter J.; Ferrell, Robert E.; Muldoon, Matthew F.; Jennings, J. Richard; Flory, Janine D.; Erickson, Kirk I.

    2015-01-01

    Objective Elevated blood pressure and the Apolipoprotein ε4 allele (APOE ε4) are independent risk factors for Alzheimer’s disease. We sought to determine whether the combined presence of the APOE ε4 allele and elevated blood pressure is associated with lower cognitive performance in cognitively healthy middle-aged adults. Methods A total of 975 participants aged 30–54 (mean age = 44.47) were genotyped for APOE. Cardiometabolic risk factors including blood pressure, lipids, and glucose were assessed and cognitive function was measured using the Trail Making Test and the Visual Reproduction and Logical Memory subtests from the Wechsler Memory Scale. Results Multivariable regression analysis showed that the association between APOE ε4 and episodic memory performance varied as a function of systolic blood pressure (SBP), such that elevated SBP was predictive of poorer episodic memory performance only in APOE ε4 carriers (β = −.092; t = −2.614; p = .009). Notably, this association was apparent at prehypertensive levels (≥ 130 mm Hg), even after adjusting for physical activity, depression, smoking, and other cardiometabolic risk factors. Conclusions The joint presence of APOE ε4 and elevated SBP, even at prehypertensive levels, is associated with lower cognitive performance in healthy, middle-aged adults. Results of this study suggest that the combination of APOE ε4 and elevated SBP may synergistically compromise memory function well before the appearance of clinically significant impairments. Interventions targeting blood pressure control in APOE ε4 carriers during midlife should be studied as a possible means to reduce the risk of cognitive decline in genetically susceptible samples. PMID:25730733

  20. Blood flow vs. venous pressure effects on filtration coefficient in oleic acid-injured lung.

    PubMed

    Anglade, D; Corboz, M; Menaouar, A; Parker, J C; Sanou, S; Bayat, S; Benchetrit, G; Grimbert, F A

    1998-03-01

    On the basis of changes in capillary filtration coefficient (Kfc) in 24 rabbit lungs, we determined whether elevations in pulmonary venous pressure (Ppv) or blood flow (BF) produced differences in filtration surface area in oleic acid-injured (OA) or control (Con) lungs. Lungs were cyclically ventilated and perfused under zone 3 conditions by using blood and 5% albumin with no pharmacological modulation of vascular tone. Pulmonary arterial, venous, and capillary pressures were measured by using arterial, venous, and double occlusion. Before and during each Kfc-measurement maneuver, microvascular/total vascular compliance was measured by using venous occlusion. Kfc was measured before and 30 min after injury, by using a Ppv elevation of 7 cmH2O or a BF elevation from 1 to 2 l . min-1 . 100 g-1 to obtain a similar double occlusion pressure. Pulmonary arterial pressure increased more with BF than with Ppv in both Con and OA lungs [29 +/- 2 vs. 19 +/- 0.7 (means +/- SE) cmH2O; P < 0. 001]. In OA lungs compared with Con lungs, values of Kfc (200 +/- 40 vs. 83 +/- 14%, respectively; P < 0.01) and microvascular/total vascular compliance ratio (86 +/- 4 vs. 68 +/- 5%, respectively; P < 0.01) increased more with BF than with Ppv. In conclusion, for a given OA-induced increase in hydraulic conductivity, BF elevation increased filtration surface area more than did Ppv elevation. The steep pulmonary pressure profile induced by increased BF could result in the recruitment of injured capillaries and could also shift downstream the compression point of blind (zone 1) and open injured vessels (zone 2).

  1. A preliminary investigation into the effect of pressure on flotation performance

    NASA Astrophysics Data System (ADS)

    Young, Courtney A.

    2007-10-01

    In a previous study, various pyrite depressants were examined to improve the flotation performance of a copper-sulfide ore containing tetrahedrite (Cu12Sb4S13). Optimal results from this study were used to examine the effect of elevation on recovery and grade. Tests were conducted at elevations of 3,350 meters, 1,735 meters, 610 meters, and-760 meters, consisting of five repetitive experiments for statistical analysis. The experiments were performed both with and without airflow control. Tests were also performed in a glove box at Montana Tech of The University of Montana to mimic the pressure conditions. Results indicate that both recovery and grade are dependent on pressure via bubble size and airflow, suggesting that pressurized fl otation cells should be considered for operations, particularly those at high elevation. Economics are extremely favorable for implementation because ensuing capital expenses are inconsequential with minimal time for return-on-investment.

  2. Predation of freshwater fish in environments with elevated carbon dioxide

    USGS Publications Warehouse

    Midway, Stephen R.; Hasler, Caleb T.; Wagner, Tyler; Suski, Cory D.

    2017-01-01

    Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2(pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10 000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96 P. promelas were consumed (n = 96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.

  3. Conspecific aggregations mitigate the effects of ocean acidification on calcification of the coral Pocillopora verrucosa.

    PubMed

    Evensen, Nicolas R; Edmunds, Peter J

    2017-03-15

    In densely populated communities, such as coral reefs, organisms can modify the physical and chemical environment for neighbouring individuals. We tested the hypothesis that colony density (12 colonies each placed ∼0.5 cm apart versus ∼8 cm apart) can modulate the physiological response (measured through rates of calcification, photosynthesis and respiration in the light and dark) of the coral Pocillopora verrucosa to partial pressure of CO 2 ( P CO 2 ) treatments (∼400 μatm and ∼1200 μatm) by altering the seawater flow regimes experienced by colonies placed in aggregations within a flume at a single flow speed. While light calcification decreased 20% under elevated versus ambient P CO 2  for colonies in low-density aggregations, light calcification of high-density aggregations increased 23% at elevated versus ambient P CO 2 As a result, densely aggregated corals maintained calcification rates over 24 h that were comparable to those maintained under ambient P CO 2 , despite a 45% decrease in dark calcification at elevated versus ambient P CO 2 Additionally, densely aggregated corals experienced reduced flow speeds and higher seawater retention times between colonies owing to the formation of eddies. These results support recent indications that neighbouring organisms, such as the conspecific coral colonies in the present example, can create small-scale refugia from the negative effects of ocean acidification. © 2017. Published by The Company of Biologists Ltd.

  4. Aerodynamic forces and flows of the full and partial clap-fling motions in insects

    PubMed Central

    Sun, Mao

    2017-01-01

    Most of the previous studies on Weis-Fogh clap-fling mechanism have focused on the vortex structures and velocity fields. Detailed pressure distribution results are provided for the first time in this study to reveal the differences between the full and the partial clap-fling motions. The two motions are studied by numerically solving the Navier–Stokes equations in moving overset grids. The Reynolds number is set to 20, relevant to the tiny flying insects. The following has been shown: (1) During the clap phase, the wings clap together and create a high pressure region in the closing gap between wings, greatly increasing the positive pressure on the lower surface of wing, while pressure on the upper surface is almost unchanged by the interaction; during the fling phase, the wings fling apart and create a low pressure region in the opening gap between wings, greatly increasing the suction pressure on the upper surface of wing, while pressure on the lower surface is almost unchanged by the interaction; (2) The interference effect between wings is most severe at the end of clap phase and the start of the fling phase: two sharp force peaks (8–9 times larger than that of the one-winged case) are generated. But the total force peaks are manifested mostly as drag and barely as lift of the wing, owing to the vertical orientation of the wing section; (3) The wing–wing interaction effect in the partial clap-fling case is much weaker than that in the full clap-fling case, avoiding the generation of huge drag. Compared with a single wing flapping with the same motion, mean lift in the partial case is enhanced by 12% without suffering any efficiency degradation, indicating that partial clap-fling is a more practical choice for tiny insects to employ. PMID:28289562

  5. Backrest position in prevention of pressure ulcers and ventilator-associated pneumonia: Conflicting recommendations

    PubMed Central

    Burk, Ruth Srednicki; Jo Grap, Mary

    2013-01-01

    Pressure ulcers and ventilator-associated pneumonia (VAP) are both common in acute and critical care settings and are considerable sources of morbidity, mortality, and health care costs. To prevent pressure ulcers, guidelines limit bed backrest elevation to less than 30 degrees, whereas recommendations to reduce VAP include use of backrest elevations of 30 degrees or more. Although a variety of risk factors beyond patient position have been identified for both pressure ulcers and VAP, this article will focus on summarizing the major evidence for each of these apparently conflicting positioning strategies and discuss implications for practice in managing mechanically ventilated patients with risk factors for both pressure ulcers and VAP. PMID:22819601

  6. Cerebrospinal fluid pulse pressure amplitude during lumbar infusion in idiopathic normal pressure hydrocephalus can predict response to shunting

    PubMed Central

    2010-01-01

    Background We have previously seen that idiopathic normal pressure hydrocephalus (iNPH) patients having elevated intracranial pressure (ICP) pulse amplitude consistently respond to shunt surgery. In this study we explored how the cerebrospinal fluid pressure (CSFP) pulse amplitude determined during lumbar infusion testing, correlates with ICP pulse amplitude determined during over-night ICP monitoring and with response to shunt surgery. Our goal was to establish a more reliable screening procedure for selecting iNPH patients for shunt surgery using lumbar intrathecal infusion. Methods The study population consisted of all iNPH patients undergoing both diagnostic lumbar infusion testing and continuous over-night ICP monitoring during the period 2002-2007. The severity of iNPH was assessed using our NPH grading scale before surgery and 12 months after shunting. The CSFP pulse was characterized from the amplitude of single pressure waves. Results Totally 62 iNPH patients were included, 45 of them underwent shunt surgery, in whom 78% were shunt responders. Among the 45 shunted patients, resistance to CSF outflow (Rout) was elevated (≥ 12 mmHg/ml/min) in 44. The ICP pulse amplitude recorded over-night was elevated (i.e. mean ICP wave amplitude ≥ 4 mmHg) in 68% of patients; 92% of these were shunt responders. In those with elevated overnight ICP pulse amplitude, we found also elevated CSFP pulse amplitude recorded during lumbar infusion testing, both during the opening phase following lumbar puncture and during a standardized period of lumbar infusion (15 ml Ringer over 10 min). The clinical response to shunting after 1 year strongly associated with the over-night ICP pulse amplitude, and also with the pulsatile CSFP during the period of lumbar infusion. Elevated CSFP pulse amplitude during lumbar infusion thus predicted shunt response with sensitivity of 88 and specificity of 60 (positive and negative predictive values of 89 and 60, respectively). Conclusions In iNPH patients, shunt response can be anticipated in 9/10 patients with elevated overnight ICP pulse amplitude, while in only 1/10 with low ICP pulse amplitude. Additionally, the CSFP pulse amplitude during lumbar infusion testing was elevated in patients with elevated over-night ICP pulse amplitude. In particular, measurement of CSFP pulse amplitude during a standardized infusion of 15 ml Ringer over 10 min was useful in predicting response to shunt surgery and can be used as a screening procedure for selection of iNPH patients for shunting. PMID:20205911

  7. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  8. A Longitudinal Study of Overweight, Elevated Blood Pressure, and Acanthosis Nigricans among Low-Income Middle School Students

    ERIC Educational Resources Information Center

    Kopping, Dana; Nevarez, Holly; Goto, Keiko; Morgan, Irene; Frigaard, Martin; Wolff, Cindy

    2012-01-01

    This longitudinal study examined the rates of overweight, elevated blood pressure, acanthosis nigricans, and their associated factors in third through fifth grade students over 4 years. Participants consisted of 279 students who participated in health screenings in 2002 and 2006. Hispanic students had significantly higher rates of overweight and…

  9. Intracranial pressure dynamics during simulated microgravity using a new noninvasive ultrasonic technique

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Ballard, R. E.; Shuer, L. M.; Yost, W. T.; Cantrell, J. H.; Hargens, A. R.

    1998-01-01

    It is believed that intracranial pressure (ICP) may be elevated in microgravity because a fluid shift toward the head occurs due to loss of gravitational blood pressures. Elevated ICP may contribute to space adaptation syndrome, because as widely observed in clinical settings, elevated ICP causes headache, nausea, and projectile vomiting, which are similar to symptoms of space adaptation syndrome. However, the hypothesis that ICP is altered in microgravity is difficult to test because of the invasiveness of currently-available techniques. We have developed a new ultrasonic technique, which allows us to record ICP waveforms noninvasively. The present study was designed to understand postural effects on ICP and assess the feasibility of our new device in future flight experiments.

  10. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Böttjer, Daniela; Karl, David M.; Letelier, Ricardo M.; Viviani, Donn A.; Church, Matthew J.

    2014-06-01

    We examined short-term (24-72 h) responses of naturally occurring marine N2 fixing microorganisms (termed diazotrophs) to abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater during nine incubation experiments conducted between May 2010 and September 2012 at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Rates of N2 fixation, nitrogenase (nifH) gene abundances and transcripts of six major groups of cyanobacterial diazotrophs (including both unicellular and filamentous phylotypes), and rates of primary productivity (as measured by 14C-bicarbonate assimilation into plankton biomass) were determined under contemporary (~390 ppm) and elevated pCO2 conditions (~1100 ppm). Quantitative polymerase chain reaction (QPCR) amplification of planktonic nifH genes revealed that unicellular cyanobacteria phylotypes dominated gene abundances during these experiments. In the majority of experiments (seven out of nine), elevated pCO2 did not significantly influence rates of dinitrogen (N2) fixation or primary productivity (two-way analysis of variance (ANOVA), P > 0.05). During two experiments, rates of N2 fixation and primary productivity were significantly lower (by 79 to 82% and 52 to 72%, respectively) in the elevated pCO2 treatments relative to the ambient controls (two-way ANOVA, P < 0.05). QPCR amplification of nifH genes and gene transcripts revealed that diazotroph abundances and nifH gene expression were largely unchanged by the perturbation of the seawater pCO2. Our results suggest that naturally occurring N2 fixing plankton assemblages in the NPSG are relatively resilient to large, short-term increases in pCO2.

  11. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.

    PubMed

    Perry, Dean M; Redman, Dylan H; Widman, James C; Meseck, Shannon; King, Andrew; Pereira, Jose J

    2015-09-01

    Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 μatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 μatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.

  12. Elevated lactate during psychogenic hyperventilation.

    PubMed

    ter Avest, E; Patist, F M; Ter Maaten, J C; Nijsten, M W N

    2011-04-01

    Elevated arterial lactate levels are closely related to morbidity and mortality in various patient categories. In the present retrospective study, the relation between arterial lactate, partial pressure of carbon dioxide (Pco(2)) and pH was systematically investigated in patients who visited the emergency department (ED) with psychogenic hyperventilation. Over a 5-month period, all the patients who visited the ED of a university hospital with presumed psychogenic hyperventilation were evaluated. Psychogenic hyperventilation was presumed to be present when an increased respiratory rate (>20 min) was documented at or before the ED visit and when somatic causes explaining the hyperventilation were absent. Arterial blood gas and lactate levels (reference values 0.5-1.5 mmol/l) were immediately measured by a point-of-care analyser that was managed and calibrated by the central laboratory. During the study period, 46 patients were diagnosed as having psychogenic hyperventilation. The median (range) Pco(2) for this group was 4.3 (2.0-5.5) kPa, the pH was 7.47 (7.40-7.68) and the lactate level was 1.2 (0.5-4.4) mmol/l. 14 participants (30%) had a lactate level above the reference value of 1.5 mmol/l. Pco(2) was the most important predictor of lactate in multivariate analysis. None of the participants underwent any medical treatment other than observation at the ED or had been hospitalised after their ED visit. In patients with psychogenic hyperventilation, lactate levels are frequently elevated. Whereas high lactates are usually associated with acidosis and an increased risk of poor outcome, in patients with psychogenic hyperventilation, high lactates are associated with hypocapnia and alkalosis. In this context, elevated arterial lactate levels should not be regarded as an adverse sign.

  13. Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria.

    PubMed

    Ivanina, Anna V; Dickinson, Gary H; Matoo, Omera B; Bagwe, Rita; Dickinson, Ashley; Beniash, Elia; Sokolova, Inna M

    2013-09-01

    The continuing increase of carbon dioxide (CO2) levels in the atmosphere leads to increases in global temperatures and partial pressure of CO2 (PCO2) in surface waters, causing ocean acidification. These changes are especially pronounced in shallow coastal and estuarine waters and are expected to significantly affect marine calcifiers including bivalves that are ecosystem engineers in estuarine and coastal communities. To elucidate potential effects of higher temperatures and PCO2 on physiology and biomineralization of marine bivalves, we exposed two bivalve species, the eastern oysters Crassostrea virginica and the hard clams Mercenaria mercenaria to different combinations of PCO2 (~400 and 800μatm) and temperatures (22 and 27°C) for 15weeks. Survival, bioenergetic traits (tissue levels of lipids, glycogen, glucose and high energy phosphates) and biomineralization parameters (mechanical properties of the shells and activity of carbonic anhydrase, CA) were determined in clams and oysters under different temperature and PCO2 regimes. Our analysis showed major inter-species differences in shell mechanical traits and bioenergetics parameters. Elevated temperature led to the depletion of tissue energy reserves indicating energy deficiency in both species and resulted in higher mortality in oysters. Interestingly, while elevated PCO2 had a small effect on the physiology and metabolism of both species, it improved survival in oysters. At the same time, a combination of high temperature and elevated PCO2 lead to a significant decrease in shell hardness in both species, suggesting major changes in their biomineralization processes. Overall, these studies show that global climate change and ocean acidification might have complex interactive effects on physiology, metabolism and biomineralization in coastal and estuarine marine bivalves. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Oviedo, A. M.; Ziveri, P.; Gazeau, F.

    2017-02-01

    The effects of elevated partial pressure of CO2 (pCO2) on plankton communities in oligotrophic ecosystems were studied during two mesocosm experiments: one during summer 2012 in the Bay of Calvi, France, and another during winter 2013 in the Bay of Villefranche, France. Here we report on the relative abundances of coccolithophores versus siliceous phytoplankton, coccolithophore community structure, Emiliania huxleyi coccolith morphology and calcification degree. A pCO2 mediated succession of phytoplankton groups did not occur. During both experiments, coccolithophore abundance and community structure varied with time independently of pCO2 levels. Changes in the community structure were partly explained by the concentration of phosphate during the winter experiment. During the summer experiment, it was not clearly related to any of the parameters measured but possibly to changes in temperature. Phenological changes in the community and an attenuated response due to the low biomass building during the winter experiment could have masked the response to pCO2. E. huxleyi dominated the coccolithophore community in winter; it was not affected by elevated pCO2 at any time. In contrast, the abundance of Rabdosphaera clavigera, the dominant species in summer, increased with time and this increase was affected at elevated pCO2. Thus, a different coccolithophore community response based on species-specific sensitivities to pCO2 is still likely. Finally, elevated pCO2 had no traceable effect on E. huxleyi (type A) coccolith morphology or on the degree of coccolith calcification. Our results highlight the possibility that, in oligotrophic regions, nutrient availability, temperature or intrinsic phenological changes might exert larger constrains on the coccolithophore community structure than high pCO2 does solely.

  15. Characterization of solid fuels at pressurized fluidized bed gasification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, R.; Hupa, M.

    1998-07-01

    The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir-Hinshelwood model.« less

  16. Combined effects of inspired oxygen, carbon dioxide, and carbon monoxide on oxygen transport and aerobic capacity.

    PubMed

    Crocker, George H; Toth, Balazs; Jones, James H

    2013-09-01

    We hypothesized that breathing hypoxic, hypercapnic, and CO-containing gases together reduces maximal aerobic capacity (Vo2max) as the sum of each gas' individual effect on Vo2max. To test this hypothesis, goats breathed combinations of inspired O2 fraction (FiO2) of 0.06-0.21 and inspired CO2 fraction of 0.00 or 0.05, with and without inspired CO that elevated carboxyhemoglobin fraction (FHbCO) to 0.02-0.45, while running on a treadmill at speeds eliciting Vo2max. Individually, hypoxia and elevated FHbCO decreased fractional Vo2max (FVo2max, fraction of a goat's Vo2max breathing air) in linear, dose-dependent manners; hypercapnia did not change Vo2max. Concomitant hypoxia and elevated FHbCO decreased Vo2max less than the individual gas effects summed, indicating their combined effects on Vo2max are attenuated, fitting the following regression: FVo2max = 4.24 FiO2 + 0.519 FHbCO - 8.22 (FiO2 × FHbCO) + 0.117, (R(2) = 0.965, P < 0.001). The FVo2max correlated highly with total cardiopulmonary O2 delivery, not peripheral diffusing capacity, and with arterial O2 concentration (CaO2), not cardiac output. Hypoxia and elevated FHbCO decreased CaO2 by different mechanisms: hypoxia decreased arterial O2 saturation (SaO2), whereas elevated FHbCO decreased O2 capacitance {concentration of hemoglobin (Hb) available to bind O2 ([Hbavail])}. When breathing hypoxic gas (FiO2 0.12), CaO2 did not change with increasing FHbCO up to 0.30 because higher SaO2 of Hbavail offset decreased [Hbavail] due to the following: 1) hyperventilation with hypoxia and/or elevated FHbCO; 2) increased Hb affinity for O2 due to both Bohr and direct carboxyhemoglobin effects; and 3) the sigmoid relationship between O2 saturation and partial pressure elevating SaO2 more with hypoxia than normoxia.

  17. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    NASA Astrophysics Data System (ADS)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  18. An earthquake mechanism based on rapid sealing of faults

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1992-01-01

    RECENT seismological, heat flow and stress measurements in active fault zones such as the San Andreas have led to the suggestion1,2 that such zones can be relatively weak. One explanation for this may be the presence of overpressured fluids along the fault3-5, which would reduce the shear stress required for sliding by partially 'floating' the rock. Although several mechanisms have been proposed for overpressurizing fault fluids3,4,6,7, we recall that 'pressure seals' are known to form in both sedimentary8 and igneous9 rocks by the redistribution of materials in solution; the formation of such a seal along the boundaries of a fault will prevent the communication of fluids between the porous, deforming fault zone and the surrounding country rock. Compaction of fault gouge, under hydrostatic loading and/or during shear, elevates pore pressure in the sealed fault and allows sliding at low shear stress. We report the results of laboratory sliding experiments on granite, which demonstrate that the sliding resistance of faults can be significantly decreased by sealing and compaction. The weakening that results from shear-induced compaction can be rapid, and may provide an instability mechanism for earthquakes.

  19. BMD Loci Contribute to Ethnic and Developmental Differences in Skeletal Fragility across Populations: Assessment of Evolutionary Selection Pressures

    PubMed Central

    Medina-Gómez, Carolina; Chesi, Alessandra; Heppe, Denise H.M.; Zemel, Babette S.; Yin, Jia-Lian; Kalkwarf, Heidi J.; Hofman, Albert; Lappe, Joan M.; Kelly, Andrea; Kayser, Manfred; Oberfield, Sharon E.; Gilsanz, Vicente; Uitterlinden, André G.; Shepherd, John A.; Jaddoe, Vincent W.V.; Grant, Struan F.A.; Lao, Oscar; Rivadeneira, Fernando

    2015-01-01

    Bone mineral density (BMD) is a highly heritable trait used both for the diagnosis of osteoporosis in adults and to assess bone health in children. Ethnic differences in BMD have been documented, with markedly higher levels in individuals of African descent, which partially explain disparity in osteoporosis risk across populations. To date, 63 independent genetic variants have been associated with BMD in adults of Northern-European ancestry. Here, we demonstrate that at least 61 of these variants are predictive of BMD early in life by studying their compound effect within two multiethnic pediatric cohorts. Furthermore, we show that within these cohorts and across populations worldwide the frequency of those alleles associated with increased BMD is systematically elevated in individuals of Sub-Saharan African ancestry. The amount of differentiation in the BMD genetic scores among Sub-Saharan and non-Sub-Saharan populations together with neutrality tests, suggest that these allelic differences are compatible with the hypothesis of selective pressures acting on the genetic determinants of BMD. These findings constitute an explorative contribution to the role of selection on ethnic BMD differences and likely a new example of polygenic adaptation acting on a human trait. PMID:26226985

  20. Clinical significance of stress-related increase in blood pressure: current evidence in office and out-of-office settings.

    PubMed

    Munakata, Masanori

    2018-05-29

    High blood pressure is the most significant risk factor of cardiovascular and cerebrovascular diseases worldwide. Blood pressure and its variability are recognized as risk factors. Thus, hypertension control should focus not only on maintaining optimal levels but also on achieving less variability in blood pressure. Psychosocial stress is known to contribute to the development and worsening of hypertension. Stress is perceived by the brain and induces neuroendocrine responses in either a rapid or long-term manner. Moreover, endothelial dysfunction and inflammation might be further involved in the modulation of blood pressure elevation associated with stress. White-coat hypertension, defined as high clinic blood pressure but normal out-of-office blood pressure, is the most popular stress-related blood pressure response. Careful follow-up is necessary for this type of hypertensive patients because some show organ damage or a worse prognosis. On the other hand, masked hypertension, defined as high out-of-office blood pressure but normal office blood pressure, has received considerable interest as a poor prognostic condition. The cause of masked hypertension is complex, but evidence suggests that chronic stress at the workplace or home could be involved. Chronic psychological stress could be associated with distorted lifestyle and mental distress as well as long-lasting allostatic load, contributing to the maintenance of blood pressure elevation. Stress issues are common in patients in modern society. Considering psychosocial stress as the pathogenesis of blood pressure elevation is useful for achieving an individual-focused approach and 24-h blood pressure control.

  1. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank ullage, and combined use of the axial jet and spray hoops. A submerged liquid pump and compact heat exchanger located inside the test tank were used with all the mixer configurations. The initial series without helium and the final series with liquid nitrogen both used the axial jet mixer. The axial jet configuration successfully demonstrated the ability to control tank pressure; but in the normal-gravity environment, the temperature in the upper tank region (ullage and unwetted wall) was not controlled. The spray hoops and axial jet combination also successfully demonstrated pressure control as well as temperature control of the entire tank and contents. The spray-hoops-only configuration was not expected to be a reliable means of tank mixing because there was no direct means to produce liquid circulation. However, surprisingly good results also were obtained with the sprayhoops- only configuration (i.e., performance metrics such as cycle-averaged vent flowrate were similar to those obtained with the other configurations). A simple thermodynamic model was developed that correctly predicted the TVS behavior (temperature rise or pressure drop per TVS cycle) when helium was present in the ullage. The model predictions were correlated over a range of input parameters. The correlations show that temperature rise or pressure drop per cycle was proportional to both helium mole fraction and tank heat input. The response also depended on the tank fill fraction: the temperature rise or pressure drop (per TVS cycle) increased as the ullage volume decreased.

  2. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that formmore » as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.« less

  3. Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.

    1991-01-01

    Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.

  4. Downregulation of Glutamine Synthetase via GLAST Suppression Induces Retinal Axonal Swelling in a Rat Ex Vivo Hydrostatic Pressure Model

    PubMed Central

    Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2011-01-01

    Purpose. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. Methods. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. Results. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. Conclusions. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression. PMID:21775659

  5. Downregulation of glutamine synthetase via GLAST suppression induces retinal axonal swelling in a rat ex vivo hydrostatic pressure model.

    PubMed

    Ishikawa, Makoto; Yoshitomi, Takeshi; Zorumski, Charles F; Izumi, Yukitoshi

    2011-08-22

    PURPOSE. High levels of glutamate can be toxic to retinal GCs. Thus, effective buffering of extracellular glutamate is important in preserving retinal structure and function. GLAST, a major glutamate transporter in the retina, and glutamine synthetase (GS) regulate extracellular glutamate accumulation and prevent excitotoxicity. This study was an examination of changes in function and expression of GLAST and GS in ex vivo rat retinas exposed to acute increases in ambient pressure. METHODS. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours. The expression of GLAST and GS were examined using immunochemistry and real-time PCR analysis. Also examined were the effects of (2S,3S)-3-[3-[4-(trifluoromethyl) benzoylamino] benzyloxy] aspartate (TFB-TBOA), an inhibitor of glutamate transporters, and l-methionine-S-sulfoximine (MSO), an inhibitor of GS. RESULTS. In this acute model, Western blot and real-time RT-PCR analyses revealed that substantially (75 mm Hg), but not moderately (35 mm Hg), elevated pressure depressed GLAST expression, diminished GS activity, and induced axonal swelling between the GC layer and the inner limiting membrane. However, at the moderately elevated pressure (35 mm Hg), administration of either TFB-TBOA or MSO also induced axonal swelling and excitotoxic neuronal damage. MSO did not depress GLAST expression but TFB-TBOA significantly suppressed GS, suggesting that downregulation of GS during pressure loading may result from impaired GLAST expression. CONCLUSIONS. The retina is at risk during acute intraocular pressure elevation due to downregulation of GS activity resulting from depressed GLAST expression.

  6. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  7. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    PubMed

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  8. Excess weight, arterial pressure and physical activity in commuting to school: correlations.

    PubMed

    Silva, Kelly S; Lopes, Adair S

    2008-08-01

    The prevalence of obesity and elevated arterial pressure (AP) has increased in children and adolescents, whereas physical activity has decreased. To identify and correlate excess weight, body fat and elevated AP among active and passive students with the way they commute to school. One thousand five hundred and seventy students aged 7 to 12 years participated in the study conducted in João Pessoa, state of Paraíba. Students completed a questionnaire about the way they commuted to school (active = walking/biking or passive = by car/motorcycle/bus) and the time spent traveling to school. Excess weight was determined by BMI > or =25 kg/m(2), excess body fat as > or =85th percentile for tricipital fold measurement, and high AP as > or =90th percentile. Chi-square test and Poisson's regression were used for the analysis. Active commuting was associated with a lower prevalence of excess weight and body fat as compared to passive commuting (p<0.05). The prevalence ratio (PR) of excess weight was associated with excess body fat (Male: PR= 6.45 95%CI= 4.55-9.14; Female: PR= 4.10 95%CI= 3.09-5.45), elevated SAP [Systolic Arterial Pressure] (Male: PR= 1.99 95%CI= 1.30-3.06; Female: PR= 2.09 95%CI= 1.45-3.01), and elevated DAP [Diastolic Arterial Pressure] in girls (PR = 1.96 95%CI= 1.41-2.75). No association with active commuting was observed (p>0.05) Passive commuting to school showed a correlation with excess weight and body fat but not with elevated AP. Excess weight was associated with excessive body fat and elevated AP. Excess weight should be prevented as a way to avoid fat accumulation and AP elevation.

  9. Influence of central venous pressure upon sinus node responses to arterial baroreflex stimulation in man

    NASA Technical Reports Server (NTRS)

    Mark, A. L.; Takeshita, A.; Eckberg, D. L.; Abboud, F. M.

    1978-01-01

    Measurements were made of sinus node responses to arterial baroreceptor stimulation with phenylephrine injection or neck suction, before and during changes of central venous pressure provoked by lower body negative pressure or leg and lower truck elevation. Variations of central venous pressure between 1.1 and 9.0 mm Hg did not influence arterial baroreflex mediated bradycardia. Baroreflex sinus node responses were augmented by intravenous propranolol, but the level of responses after propranolol was comparable during the control state, lower body negative pressure, and leg and trunk elevation. Sinus node responses to very brief baroreceptor stimuli applied during the transitions of central venous pressure also were comparable in the three states. The authors conclude that physiological variations of central venous pressure do not influence sinus node responses to arterial baroreceptor stimulation in man.

  10. Ambulatory Blood Pressure Monitoring in Clinical Practice: A Review

    PubMed Central

    Viera, Anthony J.; Shimbo, Daichi

    2016-01-01

    Ambulatory blood pressure monitoring offers the ability to collect blood pressure readings several times an hour across a 24-hour period. Ambulatory blood pressure monitoring facilitates the identification of white-coat hypertension, the phenomenon whereby certain individuals who are not on antihypertensive medication show elevated blood pressure in a clinical setting but show non-elevated blood pressure averages when assessed by ambulatory blood pressure monitoring. Additionally, readings can be segmented into time windows of particular interest, e.g., mean daytime and nighttime values. During sleep, blood pressure typically decreases, or dips, such that mean sleep blood pressure is lower than mean awake blood pressure. A non-dipping pattern and nocturnal hypertension are strongly associated with increased cardiovascular morbidity and mortality. Approximately 70% of individuals dip ≥10% at night, while 30% have non-dipping patterns, when blood pressure remains similar to daytime average, or occasionally rises above daytime average. The various blood pressure categorizations afforded by ambulatory blood pressure monitoring are valuable for clinical management of high blood pressure since they increase accuracy for diagnosis and the prediction of cardiovascular risk. PMID:25107387

  11. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    PubMed

    Tien, Joe; Truslow, James G; Nelson, Celeste M

    2012-01-01

    This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D) aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  12. Plant-herbivore interactions along elevational gradient: Comparison of field and common garden data

    NASA Astrophysics Data System (ADS)

    Rokaya, Maan Bahadur; Dostálek, Tomáš; Münzbergová, Zuzana

    2016-11-01

    In response to climate change, various organisms tend to migrate to higher elevations and latitudes. Unequal migration rates of plants and animals are expected to result in changes in the type and intensity of their interactions such as plant-herbivore interactions. In the present study, we studied the extent of herbivore damage in Salvia nubicola along an elevational gradient in Manang, central Nepal. A common garden experiment was also carried out by sowing seeds collected from different populations along the elevational gradient. As expected, the extent of herbivore damage in the field was significantly lower at higher elevations, and it increased with the population size and at sites without shrubs. In the common garden experiment, herbivore damage was higher in plants originating from lower elevations and from more open habitats. While higher herbivore pressure in the field at lower elevations may suggest that plants will be better protected against herbivores at lower elevations, the common garden study demonstrated the opposite. A possible explanation could be that plants from higher elevations have to adapt to extreme conditions, and lower palatability is a side effect of these adaptations. Thus, S. nubicola in the Himalayan region is likely to survive the expected higher herbivore pressure caused by an upward shift of herbivores under future climate change. Future studies should attempt to elucidate generality of such a conclusion by studying multiple species along similar gradients. Our results from comparison of the field and common garden study suggest that future experiments need to include comparisons in common environments to understand the expected response of plants to changes in herbivore pressure.

  13. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    PubMed

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  14. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  15. Pressure induced swelling in microporous materials

    DOEpatents

    Vogt, Thomas; Hriljac, Joseph A.; Lee, Yongjae

    2006-07-11

    A method for capturing specified materials which includes contacting a microporous material with a hydrostatic fluid having at least one specified material carried therein, under pressure which structurally distorts the lattice sufficiently to permit entry of the at least one specified material. The microporous material is capable of undergoing a temporary structural distortion which alters resting lattice dimensions under increased ambient pressure and at least partially returning to rest lattice dimensions when returned to ambient pressure. The pressure of the fluid is then reduced to permit return to at least partial resting lattice dimension while the at least one specified material is therein. By this method, at least one specified material is captured in the microporous material to form a modified microporous material.

  16. [Study of setting of ventilator volume tidal and airway pressure alarm threshold with continuous extra-sternum heart compression in cardiopulmonary resuscitation].

    PubMed

    Luo, Jian-yu; Wang, Xiao-yuan; Cai, Tian-bin; Jiang, Wen-fang

    2013-02-01

    To investigate the setting of ventilator volume tidal (VT) and airway pressure alarm threshold during cardiopulmonary resuscitation (CPR) by continuous extra-sternum heart compression. Forty cases with respiration and cardiac arrest in the department of critical care medicine were randomly divided into low VT ventilation group and conventional VT group. Both groups were given the volume control mode. In the low VT ventilation group, VT was set on 6 - 7 ml/kg, and high pressure alarm threshold was adjusted to 60 cm H2O by the conventional 40 cm H2O during CPR. In the conventional VT group, VT and high pressure alarm threshold were set at 8 - 12 ml/kg and 40 cm H2O, respectively. Real-time actual VT, peak inspiratory pressure (PIP), and arterial blood gas test, blood lactic acid at 10 minutes and 30 minutes after CPR were observed. At 10 minutes after CPR, in the low VT ventilation group, arterial blood pH, arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), HCO3(-), arterial oxygen saturation (SaO2) and blood lactic acid were better as compared with those in the conventional VT ventilation group (pH: 7.21±0.09 vs. 7.13±0.07, PaO2: 45.35±5.92 mm Hg vs. 40.70±4.70 mm Hg, PaCO2: 57.10±7.59 mm Hg vs. 61.60±5.47 mm Hg, HCO3(-): 18.50±3.50 mmol/L vs. 14.75±2.65 mmol/L, SaO2: 0.796±0.069 vs. 0.699±0.066, blood lactic acid: 7.07±1.60 mmol/L vs. 8.13±1.56 mmol/L, all P<0.05). The success rate of resuscitation in the low VT ventilation group was higher than that of the conventional VT ventilation group (45% vs. 15%, P<0.05), and PIP (cm H2O) of low VT ventilation group was lower than that of the conventional VT group (37.25±7.99 cm H2O vs. 42.70±7.40 cm H2O, P<0.05). In all the patients in both groups barotrauma did not occur. The strategy of low ventilator VT (6 - 7 ml/kg) with appropriate elevation of airway pressure alarm threshold was better than that of conventional ventilation setting, with no increase in incidence of barotraumas during CPR.

  17. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions

    PubMed Central

    Parati, Gianfranco; Agostoni, Piergiuseppe; Basnyat, Buddha; Bilo, Grzegorz; Brugger, Hermann; Coca, Antonio; Festi, Luigi; Giardini, Guido; Lironcurti, Alessandra; Luks, Andrew M; Maggiorini, Marco; Modesti, Pietro A; Swenson, Erik R; Williams, Bryan; Bärtsch, Peter; Torlasco, Camilla

    2018-01-01

    Abstract Take home figureAdapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide. PMID:29340578

  18. The effect of increased intra-abdominal pressure on orbital subarachnoid space width and intraocular pressure.

    PubMed

    Liu, Su-Meng; Wang, Ning-Li; Zuo, Zhen-Tao; Chen, Wei-Wei; Yang, Di-Ya; Li, Zhen; Cao, Yi-Wen

    2018-02-01

    In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can relieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 ± 0.1 mm (range: 0.77-1.05 mm), 0.77 ± 0.11 mm (range: 0.60-0.94 mm), 0.70 ± 0.08 mm (range: 0.62-0.80 mm), and 0.68 ± 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the intraocular pressure before, during and after the intra-abdominal pressure elevation. These results verified that the increased intra-abdominal pressure widens the orbital subarachnoid space in this acute trial, but does not alter the intraocular pressure, indicating that intraocular pressure is not affected by rapid increased intra-abdominal pressure. This study was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-ONRC-14004947).

  19. Intraventricular catheter placement by electromagnetic navigation safely applied in a paediatric major head injury patient.

    PubMed

    Aufdenblatten, Christoph Alexander; Altermatt, Stefan

    2008-09-01

    In the management of severe head injuries, the use of intraventricular catheters for intracranial pressure (ICP) monitoring and the option of cerebrospinal fluid drainage is gold standard. In children and adolescents, the insertion of a cannula in a compressed ventricle in case of elevated intracranial pressure is difficult; therefore, a pressure sensor is placed more often intraparenchymal as an alternative option. In cases of persistent elevated ICP despite maximal brain pressure management, the use of an intraventricular monitoring device with the possibility of cerebrospinal fluid drainage is favourable. We present the method of intracranial catheter placement by means of an electromagnetic navigation technique.

  20. Arterial waveform parameters in a large, population-based sample of adults: relationships with ethnicity and lifestyle factors.

    PubMed

    Sluyter, J D; Hughes, A D; Thom, S A McG; Lowe, A; Camargo, C A; Hametner, B; Wassertheurer, S; Parker, K H; Scragg, R K R

    2017-05-01

    Little is known about how aortic waveform parameters vary with ethnicity and lifestyle factors. We investigated these issues in a large, population-based sample. We carried out a cross-sectional analysis of 4798 men and women, aged 50-84 years from Auckland, New Zealand. Participants were 3961 European, 321 Pacific, 266 Maori and 250 South Asian people. We assessed modifiable lifestyle factors via questionnaires, and measured body mass index (BMI) and brachial blood pressure (BP). Suprasystolic oscillometry was used to derive aortic pressure, from which several haemodynamic parameters were calculated. Heavy alcohol consumption and BMI were positively related to most waveform parameters. Current smokers had higher levels of aortic augmentation index than non-smokers (difference=3.7%, P<0.0001). Aortic waveform parameters, controlling for demographics, antihypertensives, diabetes and cardiovascular disease (CVD), were higher in non-Europeans than in Europeans. Further adjustment for brachial BP or lifestyle factors (particularly BMI) reduced many differences but several remained. Despite even further adjustment for mean arterial pressure, pulse rate, height and total:high-density lipoprotein cholesterol, compared with Europeans, South Asians had higher levels of all measured aortic waveform parameters (for example, for backward pressure amplitude: β=1.5 mm Hg; P<0.0001), whereas Pacific people had 9% higher log e (excess pressure integral) (P<0.0001). In conclusion, aortic waveform parameters varied with ethnicity in line with the greater prevalence of CVD among non-white populations. Generally, this was true even after accounting for brachial BP, suggesting that waveform parameters may have increased usefulness in capturing ethnic variations in cardiovascular risk. Heavy alcohol consumption, smoking and especially BMI may partially contribute to elevated levels of these parameters.

  1. Arterial waveform parameters in a large, population-based sample of adults: relationships with ethnicity and lifestyle factors

    PubMed Central

    Sluyter, J D; Hughes, A D; Thom, S A McG; Lowe, A; Camargo Jr, C A; Hametner, B; Wassertheurer, S; Parker, K H; Scragg, R K R

    2017-01-01

    Little is known about how aortic waveform parameters vary with ethnicity and lifestyle factors. We investigated these issues in a large, population-based sample. We carried out a cross-sectional analysis of 4798 men and women, aged 50–84 years from Auckland, New Zealand. Participants were 3961 European, 321 Pacific, 266 Maori and 250 South Asian people. We assessed modifiable lifestyle factors via questionnaires, and measured body mass index (BMI) and brachial blood pressure (BP). Suprasystolic oscillometry was used to derive aortic pressure, from which several haemodynamic parameters were calculated. Heavy alcohol consumption and BMI were positively related to most waveform parameters. Current smokers had higher levels of aortic augmentation index than non-smokers (difference=3.7%, P<0.0001). Aortic waveform parameters, controlling for demographics, antihypertensives, diabetes and cardiovascular disease (CVD), were higher in non-Europeans than in Europeans. Further adjustment for brachial BP or lifestyle factors (particularly BMI) reduced many differences but several remained. Despite even further adjustment for mean arterial pressure, pulse rate, height and total:high-density lipoprotein cholesterol, compared with Europeans, South Asians had higher levels of all measured aortic waveform parameters (for example, for backward pressure amplitude: β=1.5 mm Hg; P<0.0001), whereas Pacific people had 9% higher loge (excess pressure integral) (P<0.0001). In conclusion, aortic waveform parameters varied with ethnicity in line with the greater prevalence of CVD among non-white populations. Generally, this was true even after accounting for brachial BP, suggesting that waveform parameters may have increased usefulness in capturing ethnic variations in cardiovascular risk. Heavy alcohol consumption, smoking and especially BMI may partially contribute to elevated levels of these parameters. PMID:28004730

  2. Aortic remodeling after transverse aortic constriction in mice is attenuated with AT1 receptor blockade.

    PubMed

    Kuang, Shao-Qing; Geng, Liang; Prakash, Siddharth K; Cao, Jiu-Mei; Guo, Steven; Villamizar, Carlos; Kwartler, Callie S; Peters, Andrew M; Brasier, Allan R; Milewicz, Dianna M

    2013-09-01

    Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of angiotensin II type 1 receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model. Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation and thickening of the medial and adventitial layers of the aorta. There was significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density attributable to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC-induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC-induced adventitial hyperplasia, collagen accumulation, and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas were effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked extracellular signal-regulated kinase activation and reactive oxygen species production in the TAC ascending aorta. Inhibition of the angiotensin II type 1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased transforming growth factor-β1 expression, adventitial Smad2 signaling, and collagen accumulation. These results help to delineate the aortic transforming growth factor-β signaling that is dependent and independent of the angiotensin II type 1 receptor after TAC.

  3. Headaches secondary to intraventricular silicone oil successfully managed with ventriculoperitoneal shunt.

    PubMed

    Hruby, Paul M; Poley, Preeti R; Terp, Patricia A; Thorell, William E; Margalit, Eyal

    2013-01-01

    To describe a case of intravitreal silicone oil (SO) migration into the cerebral ventricles with secondary chronic headaches. Retrospective case report. Chart review. Single patient. A 51-year-old man with a history of proliferative diabetic retinopathy underwent surgery for traction retinal detachment using SO. Postoperatively, he developed elevated intraocular pressure, headaches, and a blind painful eye, which was enucleated. Neuroimaging revealed SO within the cerebral ventricles. Five years after the initial retinal detachment surgery, the patient developed chronic headaches. Lumbar puncture revealed an elevated opening pressure. The headaches were initially managed medically. A ventriculoperitoneal shunt was placed after the headaches persisted, which resulted in their complete resolution at 6 weeks after shunt placement. Ocular hypertension after intravitreal SO placement may play a role in SO intracranial migration. In the case presented, intraventricular SO was the apparent cause of elevated intracranial pressure and headaches. As all published cases of intraventricular SO migration reporting intraocular pressure to this point have described ocular hypertension, careful monitoring of intraocular pressure and aggressive control of ocular hypertension in the presence of intravitreal SO is recommended.

  4. Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures.

    PubMed

    Zhang, Li-Fan; Hargens, Alan R

    2018-01-01

    Visual impairment intracranial pressure (VIIP) syndrome is considered an unexplained major risk for future long-duration spaceflight. NASA recently redefined this syndrome as Spaceflight-Associated Neuro-ocular Syndrome (SANS). Evidence thus reviewed supports that chronic, mildly elevated intracranial pressure (ICP) in space (as opposed to more variable ICP with posture and activity on Earth) is largely accounted for by loss of hydrostatic pressures and altered hemodynamics in the intracranial circulation and the cerebrospinal fluid system. In space, an elevated pressure gradient across the lamina cribrosa, caused by a chronic but mildly elevated ICP, likely elicits adaptations of multiple structures and fluid systems in the eye which manifest themselves as the VIIP syndrome. A chronic mismatch between ICP and intraocular pressure (IOP) in space may acclimate the optic nerve head, lamina cribrosa, and optic nerve subarachnoid space to a condition that is maladaptive to Earth, all contributing to the pathogenesis of space VIIP syndrome. Relevant findings help to evaluate whether artificial gravity is an appropriate countermeasure to prevent this seemingly adverse effect of long-duration spaceflight. Copyright © 2018 the American Physiological Society.

  5. Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.

    2016-12-01

    We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.

  6. Backrest position in prevention of pressure ulcers and ventilator-associated pneumonia: conflicting recommendations.

    PubMed

    Burk, Ruth Srednicki; Grap, Mary Jo

    2012-01-01

    Pressure ulcers and ventilator-associated pneumonia (VAP) are both common in acute and critical care settings and are considerable sources of morbidity, mortality, and health care costs. To prevent pressure ulcers, guidelines limit bed backrest elevation to less than 30 degrees, whereas recommendations to reduce VAP include use of backrest elevations of 30 degrees or more. Although a variety of risk factors beyond patient position have been identified for both pressure ulcers and VAP, this article will focus on summarizing the major evidence for each of these apparently conflicting positioning strategies and discuss implications for practice in managing mechanically ventilated patients with risk factors for both pressure ulcers and VAP. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Development of a lameness model in sheep for assessing efficacy of analgesics.

    PubMed

    Colditz, I G; Paull, D R; Hervault, G; Aubriot, D; Lee, C

    2011-08-01

    To develop a lameness model to assess the efficacy of analgesics for alleviating pain, swelling and systemic signs of inflammation in sheep. The response to subcutaneous injection of 0.1 or 0.2 mL turpentine in a forelimb pastern (n = 4 ewes per dose) was examined at 0, 3, 6, 24, 48 and 72 h. In a second experiment, responses were measured at 0, 2, 4, 6, 8, 10, 12 and 24 h in ewes receiving 0.1 mL turpentine ± meloxicam 1 mg/kg IV at 0 h (n = 6 per group). Responses measured included forceplate pressure, skin temperature, limb circumference, nociception, leucocyte count, neutrophil : lymphocyte ratio, haptoglobin and daily feed intake. Turpentine injection caused a decrease in weight borne on the treated limb, increased skin temperature, increased sensitivity at the injection site and leucocytosis by 2 h and increased limb circumference by 4 h. Weight borne and sensitivity of the injected limb returned to control levels after around 24 h, whereas tissue swelling, elevated skin temperature and elevated haptoglobin levels persisted for at least 72 h. Treatment with meloxicam improved weight borne by and tolerance to pressure exerted on the turpentine-injected limb. The local and systemic signs of inflammation and pain, temporary reduction in function of the affected limb and partial amelioration of some of these changes by the dose of meloxicam used here suggest that injection of turpentine in the lower forelimb provides a suitable model for examining the efficacy of analgesics for alleviation of pain and inflammation in sheep. © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.

  8. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, D.C.; Yu, Z.J.; Chen, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recoverymore » to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.« less

  9. LIF measurements and chemical kinetic analysis of methylidyne formation in high-pressure counter-flow partially premixed and non-premixed flames

    NASA Astrophysics Data System (ADS)

    Naik, S. V.; Laurendeau, N. M.

    2004-11-01

    We report quantitative, spatially resolved, linear laser-induced fluorescence (LIF) measurements of methylidyne concentration ([CH]) in laminar, methane air, counter-flow partially premixed and non-premixed flames using excitation near 431.5 nm in the A X (0,0) band. For partially premixed flames, fuel-side equivalence ratios (ϕB) of 1.45, 1.6 and 2.0 are studied at pressures of 1, 3, 6, 9 and 12 atm. For non-premixed flames, the fuel-side mixture consists of 25% CH4 and 75% N2; measurements are obtained at pressures of 1, 2, 3, 4, 5, 6, 9 and 12 atm. The quantitative CH measurements are compared with predictions from an opposed-flow flame code utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). LIF measurements of [CH] are corrected for variations in the quenching rate coefficient by using major species concentrations and temperatures generated by the code along with suitable quenching cross sections for CH available from the literature. A pathway analysis provides relative contributions from important elementary reactions to the total amount of CH produced at various pressures. Key reactions controlling peak CH concentrations are also identified by using a sensitivity analysis. For the partially premixed flames, measured CH profiles are reproduced reasonably well by GRI 3.0, although some quantitative disagreement exists at all pressures. Two CH radical peaks are observed for ϕB=1.45 and ϕB=1.6 at pressures above 3 atm. Peak CH concentrations for the non-premixed flames are significantly underpredicted by GRI 3.0. The latter agrees with previously reported NO concentrations, which are also underpredicted in these same high-pressure counter-flow diffusion flames.

  10. Introduction to total- and partial-pressure measurements in vacuum systems

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Kern, F. A.

    1989-01-01

    An introduction to the fundamentals of total and partial pressure measurement in the vacuum regime (760 x 10 to the -16th power Torr) is presented. The instrument most often used in scientific fields requiring vacuum measurement are discussed with special emphasis on ionization type gauges and quadrupole mass spectrometers. Some attention is also given to potential errors in measurement as well as calibration techniques.

  11. Interatrial septal motion as a novel index to predict left atrial pressure.

    PubMed

    Masai, Kumiko; Kishima, Hideyuki; Takahashi, Satoshi; Ashida, Kenki; Goda, Akiko; Mine, Takanao; Asakura, Masanori; Ishihara, Masaharu; Masuyama, Tohru

    2018-01-22

    We investigated whether the interatrial septal (IAS) motion of each heartbeat which is observed by transesophageal echocardiography reflects left atrial pressure (LAP) in patients with atrial fibrillation (AF). We studied 100 patients (70 males, age 67 ± 9 years) who underwent catheter ablation for AF. The amplitude of IAS motion was measured using M-mode and averaged for five cardiac cycles. Left and right atrial pressures, the left to right atrial pressure gradient were directly measured during the catheter ablation. In patients with sinus rhythm during measurement, elevated mean LAP, larger maximum left to right atrial pressure gradient, and greater left atrial emptying fraction were associated with IAS motion. The optimal cut-off value of the IAS motion for predicting high LAP (mean LAP > 15 mmHg) was 8.5 mm (sensitivity 100%, specificity 70.1%) in patients with sinus rhythm during pressure measurement. In addition, all patients were divided into 6 groups based on rhythm during measurement and cutoff value of IAS motion. In patients with sinus rhythm during measurement, low IAS motion group had a highest prevalence of elevated LAP compared with high IAS motion group (64 vs. 0%, P < 0.0001). The amplitude of interatrial septal motion during sinus rhythm reflects left atrial pressure in patients with atrial fibrillation. Interatrial septal motion could be a new index to predict elevated left atrial pressure.

  12. A negative feedback mechanism for the long-term stabilization of the earth's surface temperature

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Hays, P. B.; Kasting, J. F.

    1981-01-01

    It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

  13. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  14. Preflight studies on tolerance of pocket mice to oxygen and heat. IV - Observations on the brain

    NASA Technical Reports Server (NTRS)

    Bailey, O. T.; Ordy, J. M.; Haymaker, W.

    1975-01-01

    Experiments designed to ascertain the effects of oxygen at 8, 10, and 12 psi partial pressure on the brains of pocket mice (Perognathus longimembris) were carried out at room temperature (24 C, 75 F) and at 32 C (90 F). The animals exposed to 8-12 psi at 32 C had been in earlier KO2 oxygen tests. Five animals exposed either to 10 or 12 psi (517 mm or 620 mm Hg) O2 partial pressure at 32 C died during the course of the tests, possibly as a consequence of injury sustained by the earlier O2 partial pressure testing. Autopsy was not carried out. In the other 36 exposed animals, no pathological changes were observed in the brain. It is thus highly probable that oxygen pressures at the hyperbaric levels to which the pocket mice would be exposed during the Apollo XVII mission would not result in any lesions in the brain.

  15. Direct numerical simulations of temporally developing hydrocarbon shear flames at elevated pressure: effects of the equation of state and the unity Lewis number assumption

    NASA Astrophysics Data System (ADS)

    Korucu, Ayse; Miller, Richard

    2016-11-01

    Direct numerical simulations (DNS) of temporally developing shear flames are used to investigate both equation of state (EOS) and unity-Lewis (Le) number assumption effects in hydrocarbon flames at elevated pressure. A reduced Kerosene / Air mechanism including a semi-global soot formation/oxidation model is used to study soot formation/oxidation processes in a temporarlly developing hydrocarbon shear flame operating at both atmospheric and elevated pressures for the cubic Peng-Robinson real fluid EOS. Results are compared to simulations using the ideal gas law (IGL). The results show that while the unity-Le number assumption with the IGL EOS under-predicts the flame temperature for all pressures, with the real fluid EOS it under-predicts the flame temperature for 1 and 35 atm and over-predicts the rest. The soot mass fraction, Ys, is only under-predicted for the 1 atm flame for both IGL and real gas fluid EOS models. While Ys is over-predicted for elevated pressures with IGL EOS, for the real gas EOS Ys's predictions are similar to results using a non-unity Le model derived from non-equilibrium thermodynamics and real diffusivities. Adopting the unity Le assumption is shown to cause misprediction of Ys, the flame temperature, and the mass fractions of CO, H and OH.

  16. On Boiling of Crude Oil under Elevated Pressure

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2016-02-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  17. An ion interaction model for the volumetric properties of natural waters: Density of the solution and partial molal volumes of electrolytes to high concentrations at 25°C

    NASA Astrophysics Data System (ADS)

    Monnin, Christophe

    1989-06-01

    Literature density data for binary and common ion ternary solutions in the Na-K-Ca-Mg-Cl-SO 4-HCO 3-CO3-H 2O system at 25°C have been analysed with Pitzer's ion interaction model, which provides an adequate representation of the experimental data for binary and common ion ternary solutions up to high concentration. This analysis yields Pitzer's interaction parameters for the apparent and partial molal volumes, which are the first derivatives with respect to pressure of the interaction parameters for the free energy. From this information, densities of natural waters as well as partial molal volumes of their solutes can be predicted with good accuracy, as shown by several comparisons of calculated and measured values. It is shown that V¯MX - V¯0mx, the excess partial molal volume of the salt MX, depends more on the type of salt than on the electrolyte itself and that it increases with the charges of the salt components. The influence of concentration and composition on the variation of activity coefficients with pressure and on the partial molal volumes of the salts is discussed, using as an example the partial molal volume of CaSO 4(aq) in solutions of various compositions. The increase of V¯CaSO 4, with ionic strength is very large but is not very different for a NaCl-dominated natural water like the Red Sea lower brine than for a simple NaCl solution. Although the variation of activity coefficients with pressure is usually ignored for moderate pressures, like those found in hydrothermal environments, the present example shows that it can be as large as 30% for a 2-2 salt for a pressure increase from 1 to 500 bars at high ionic strength.

  18. Estimating tropospheric phase delay in SAR interferograms using Global Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Doin, M.; Lasserre, C.; Peltzer, G.; Cavalie, O.; Doubre, C.

    2008-12-01

    The main limiting factor on the accuracy of Interferometric SAR (InSAR) measurements comes from phase propagation delays through the Earth's troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal in InSAR data, and a turbulent component. The stratified delay can be expressed as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. We compare the stratified delay computed using results from global atmospheric models with the topography-dependent signal observed in interferograms covering three test areas in different geographic and climatic environments: Lake Mead, Nevada, USA, the Haiyuan fault area, Gansu, China, and Afar, Republic of Djibouti. For each site we compute a multi-year series of interferograms. The phase-elevation ratio is estimated for each interferogram and the series is inverted to form a timeline of delay-elevation ratios characterizing each epoch of data acquisition. InSAR derived ratios are in good agreement with the ratios computed from global atmospheric models. This agreement shows that both estimations of the delay-elevation ratio can be used to perform a first order correction of the InSAR phase. Seasonal variations of the atmosphere significantly affect the phase delay throughout the year, aliasing the results of time series inversions using temporal smoothing or data stacking when the acquisitions are not evenly distributed in time. This is particularly critical when the spatial shape of the signal of interest correlates with topography. In the Lake Mead area, the irregular temporal sampling of our SAR data results in an interannual bias of amplitude ~2~cm on range change estimates. In the Haiyuan Fault area, the coarse and uneven data sampling results in a bias of up to ~0.5~cm/yr on the line of sight velocity across the fault. In the Afar area, the seasonal signal exceeds the deformation signal in the phase time series. In all cases, correcting interferograms from the stratified delay helps removing these biases. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependance to the elevation, as consistent non-linear relationships are observed in many interferograms as well as in global atmospheric models.

  19. Cardiovascular reactivity, stress, and physical activity

    PubMed Central

    Huang, Chun-Jung; Webb, Heather E.; Zourdos, Michael C.; Acevedo, Edmund O.

    2013-01-01

    Psychological stress has been proposed as a major contributor to the progression of cardiovascular disease (CVD). Acute mental stress can activate the sympathetic-adrenal-medullary (SAM) axis, eliciting the release of catecholamines (NE and EPI) resulting in the elevation of heart rate (HR) and blood pressure (BP). Combined stress (psychological and physical) can exacerbate these cardiovascular responses, which may partially contribute to the elevated risk of CVD and increased proportionate mortality risks experienced by some occupations (e.g., firefighting and law enforcement). Studies have supported the benefits of physical activity on physiological and psychological health, including the cardiovascular response to acute stress. Aerobically trained individuals exhibit lower sympathetic nervous system (e.g., HR) reactivity and enhanced cardiovascular efficiency (e.g., lower vascular reactivity and decreased recovery time) in response to physical and/or psychological stress. In addition, resistance training has been demonstrated to attenuate cardiovascular responses and improve mental health. This review will examine stress-induced cardiovascular reactivity and plausible explanations for how exercise training and physical fitness (aerobic and resistance exercise) can attenuate cardiovascular responses to stress. This enhanced functionality may facilitate a reduction in the incidence of stroke and myocardial infarction. Finally, this review will also address the interaction of obesity and physical activity on cardiovascular reactivity and CVD. PMID:24223557

  20. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    PubMed

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  1. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    PubMed Central

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  2. Primary angioplasty for infarction due to isolated right ventricular artery occlusion.

    PubMed

    Chahal, Anwar A; Kim, Min-Young; Borg, Alexander N; Al-Najjar, Yahya

    2014-11-26

    We report an unusual case of an isolated right ventricular infarction with haemodynamic compromise caused by spontaneous isolated proximal occlusion of the right ventricular branch of the right coronary artery (RCA), successfully treated by balloon angioplasty. A 58-year-old gentleman presented with epigastric pain radiating into both arms. Electrocardiograph with right ventricular leads confirmed ST elevation in V4R and a diagnosis of isolated right ventricular infarction was made. Urgent primary percutaneous intervention was performed which revealed occlusion of the right ventricular branch of the RCA. During the procedure, the patient's blood pressure dropped to 80/40 mmHg, and echocardiography showed impaired right ventricular systolic function. Despite aggressive fluid resuscitation, the patient remained hypotensive, continued to have chest pain and persistent electrocardiograph changes, and hence balloon angioplasty was performed on the proximal right ventricular branch which restored flow to the vessel and revealed a severe ostial stenosis. This was treated with further balloon angioplasty which restored TIMI 3 flow with resolution of patient's symptoms. Repeat echocardiography showed complete resolution of the ST-elevation in leads V4R and V5R and partial resolution in V1. Subsequent dobutamine-stress echocardiography at 4 wk showed good left and right ventricular contractions. The patient was discharged after a 3-d in-patient stay without any complications.

  3. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    NASA Astrophysics Data System (ADS)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward diffusion of oxygen with an external Al2O3 layer and effectively reduced the activity of Si in the underlying glass. Thus, the Mo-Si-B based coating is established as a viable protective coating for oxidation and corrosion protection for next-generation aerospace and aeronautical materials.

  4. Study of Chromium Oxide Activities in EAF Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du

    2016-02-01

    The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.

  5. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    PubMed

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to ongoing global climate shifts.

  6. Experimental and analytical transonic flutter characteristics of a geared-elevator configuration

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1980-01-01

    The flutter model represented the aft fuselage and empennage of a proposed supersonic transport airplane and had an all movable horizontal tail with a geared elevator. It was tested mounted from a sting in the transonic dynamics tunnel. Symmetric flutter boundaries were determined experimentally at Mach numbers from 0.7 to 1.14 for a geared elevator configuration (gear ratio of 2.8 to 1.0) and an ungeared elevator configuration (gear ratio of 1.0 to 1.0). Gearing the elevator increased the experimental flutter dynamic pressures about 20 percent. Flutter calculations were made for the geared elevator configuration by using two analytical methods based on subsonic lifting surface theory. Both methods analyzed the stabilizer and elevator as a single, deforming surface, but one method also allowed the elevator to be analyzed as hinged from the stabilizer. All analyses predicted lower flutter dynamic pressures than experiment with best agreement (within 12 percent) for the hinged elevator method. Considering the model as mounted from a flexible rather than rigid sting in the analyses, had only a slight effect on the flutter results but was significant in that a sting related vibration mode was identified as a potentially flutter critical mode.

  7. Outwardly Propagating Flames at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.

    2001-01-01

    Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.

  8. Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi

    Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.

  9. Effects of Local Compression on Peroneal Nerve Function in Humans

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Botte, Michael J.; Swenson, Michael R.; Gelberman, Richard H.; Rhoades, Charles E.; Akeson, Wayne H.

    1993-01-01

    A new apparatus was developed to compress the anterior compartment selectively and reproducibly in humans. Thirty-five normal volunteers were studied to determine short-term thresholds of local tissue pressure that produce significant neuromuscular dysfunction. Local tissue fluid pressure adjacent to the deep peroneal nerve was elevated by the compression apparatus and continuously monitored for 2-3 h by the slit catheter technique. Elevation of tissue fluid pressure to within 35-40 mm Hg of diastolic blood pressure (approx. 40 mm Hg of in situ pressure in our subjects) elicited a consistent progression of neuromuscular deterioration including, in order, (a) gradual loss of sensation, as assessed by Semmes-Weinstein monofilaments, (b) subjective complaints, (c) reduced nerve conduction velocity, (d) decreased action potential amplitude of the extensor digitorum brevis muscle, and (e) motor weakness of muscles within the anterior compartment. Generally, higher intracompartment at pressures caused more rapid deterioration of neuromuscular function. In two subjects, when in situ compression levels were 0 and 30 mm Hg, normal neuromuscular function was maintained for 3 h. Threshold pressures for significant dysfunction were not always the same for each functional parameter studied, and the magnitudes of each functional deficit did not always correlate with compression level. This variable tolerance to elevated pressure emphasizes the need to monitor clinical signs and symptoms carefully in the diagnosis of compartment syndromes. The nature of the present studies was short term; longer term compression of myoneural tissues may result in dysfunction at lower pressure thresholds.

  10. Utility of Intracranial Pressure Monitoring for Diagnosis of Idiopathic Intracranial Hypertension in the Absence of Papilledema.

    PubMed

    Bridges, Kelly J; Raslan, Ahmed M

    2018-03-01

    Idiopathic intracranial hypertension (IIH) is characterized by headaches, visual obscurations, and papilledema, and the diagnosis involves lumbar puncture (LP) with an elevated opening pressure (OP) ≥20 cm H 2 0. When papilledema is absent, the diagnosis becomes less clear. Some physicians have argued that the absence of papilledema rules out IIH, whereas others maintain that elevated OP is sufficient for diagnosis. The authors performed a single-institution 4-year retrospective analysis of patients who underwent invasive intracranial pressure (ICP) monitoring for presumed IIH. A total of 22 patients were reviewed, and 13 had classic symptoms of IIH, documented elevated OP, and absence of papilledema; 5/13 (38%) patients had proven intracranial hypertension as shown by invasive ICP monitoring, whereas 8/13 (62%) had normal ICP. With the use of current diagnostic algorithms of clinical presentation and elevated OP, over half of patients without papilledema in our series would be falsely diagnosed with IIH, which could result in unnecessary medical and surgical intervention. Thus, elevated OP as determined by LP is insufficient to diagnose IIH. On the other hand, the absence of papilledema does not rule out intracranial hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Body Fatness and Risk for Elevated Blood Pressure, Total Cholesterol, and Serum Lipoprotein Ratios in Children and Adolescents.

    ERIC Educational Resources Information Center

    Williams, Daniel P.; And Others

    1992-01-01

    Examines the relationship between body fat percent and risk for elevated blood pressure, serum total cholesterol, and serum lipoprotein ratios in 1,230 African-American and 2,090 white 5-18 year olds (1,667 males and 1,653 females). Results support body fatness standards in children and adolescents as cardiovascular risk factors. (SLD)

  12. Elevated intrabolus pressure identifies obstructive processes when integrated relaxation pressure is normal on esophageal high-resolution manometry.

    PubMed

    Quader, Farhan; Reddy, Chanakyaram; Patel, Amit; Gyawali, C Prakash

    2017-07-01

    Elevated integrated relaxation pressure (IRP) on esophageal high-resolution manometry (HRM) identifies obstructive processes at the esophagogastric junction (EGJ). Our aim was to determine whether intrabolus pressure (IBP) can identify structural EGJ processes when IRP is normal. In this observational cohort study, adult patients with dysphagia and undergoing HRM were evaluated for endoscopic evidence of structural EGJ processes (strictures, rings, hiatus hernia) in the setting of normal IRP. HRM metrics [IRP, distal contractile integral (DCI), distal latency (DL), IBP, and EGJ contractile integral (EGJ-CI)] were compared among 74 patients with structural EGJ findings (62.8 ± 1.6 yr, 67.6% women), 27 patients with normal EGD (52.9 ± 3.2 yr, 70.3% women), and 21 healthy controls (27.6 ± 0.6 yr, 52.4% women). Findings were validated in 85 consecutive symptomatic patients to address clinical utility. In the primary cohort, mean IBP (18.4 ± 0.9 mmHg) was higher with structural EGJ findings compared with dysphagia with normal EGD (13.5 ± 1.1 mmHg, P = 0.002) and healthy controls (10.9 ± 0.9 mmHg, P < 0.001). However, mean IRP, DCI, DL, and EGJ-CI were similar across groups ( P > 0.05 for each comparison). During multiple rapid swallows, IBP remained higher in the structural findings group compared with controls ( P = 0.02). Similar analysis of the prospective validation cohort confirmed IBP elevation in structural EGJ processes, but correlation with dysphagia could not be demonstrated. We conclude that elevated IBP predicts the presence of structural EGJ processes even when IRP is normal, but correlation with dysphagia is suboptimal. NEW & NOTEWORTHY Integrated relaxation pressure (IRP) above the upper limit of normal defines esophageal outflow obstruction using high-resolution manometry. In patients with normal IRP, elevated intrabolus pressure (IBP) can be a surrogate marker for a structural restrictive or obstructive process at the esophagogastric junction (EGJ). This has the potential to augment the clinical value of esophageal HRM by raising suspicion for a structural EGJ process when IBP is elevated.

  13. Process and continuous apparatus for chemical conversion of materials

    DOEpatents

    Rugg, Barry; Stanton, Robert

    1983-01-01

    A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.

  14. Lower body negative pressure: Third manned Skylab mission

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Hoffler, G. W.; Nicogossian, A. E.; Bergman, S. A., Jr.; Jackson, M. M.

    1974-01-01

    The crew of the Skylab 4 Mission exhibited physiological changes during their 84-day mission that resembled but in several important areas did not reach the magnitude of changes exhibited in crewmen of the two earlier Skylab flights. At rest all three crewmen showed, in comparison to preflight levels, elevated mean systolic and pulse pressures and decreased mean diastolic and mean arterial pressures. Similar changes were seen in most Skylab 2 and Skylab 3 crewmen. While mean resting heart rates of both the Skylab 3 and Skylab 4 crews were elevated, those of the Skylab 2 crew were, however, lower than during preflight tests. Stressed heart rates followed previous patterns in being consistently elevated over preflight values. Postflight changes in cardiovascular parameters for the most part resembled those seen in previous crewmen of space missions. Their recovery to preflight limits occurred rapidly. In-flight data and subjective impressions of the crewmen confirmed that lower body negative pressure in weightlessness imposed a greater stress upon the cardiovascular system than in earth's gravity.

  15. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 2: Partially Sealed Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.

  16. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    PubMed Central

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  17. Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions

    DOEpatents

    Garrett, W. Ray

    1997-01-01

    A method and apparatus for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components.

  18. Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions

    DOEpatents

    Garrett, W.R.

    1997-11-11

    A method and apparatus are disclosed for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components. 9 figs.

  19. Isochoric Burn, an Internally Consistent Method for the Reactant to Product Transformation in Reactive Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E; Lee, E L

    2002-07-01

    Mixture rules for partially reacted explosives differ amongst various models. For instance, JWL++ uses a partial pressure addition to compute an average zonal pressure, Ignition and Growth requires pressure equilibration and thermal equilibration of temperature dependent JWL EOSs, CHEETAH In Line RF also assumes temperature and pressure equilibration. It has been suggested in the past that a more realistic equilibration scheme should comprise isentropic pressure equilibration of the separate reacted and unreacted phases. This turns out not to be a proper path for equilibration. Rather, we find that the only internally consistent method is the evaluation of the equilibrium pressuremore » that satisfies the particular conditions of reactant and product resulting from deflagration in a fixed volume.« less

  20. Use of Precast Concrete Walls for Blast Protection of Steel Stud Construction Preprint

    DTIC Science & Technology

    2007-11-01

    Side Elevation Front Elevation Front Elevation Side Elevation a) Sandwich Wall b) Solid Wall I I---6’-10" " 11.. Exterior Face - Form finish 2------C...damage to the interior drywall was visible. The instnunentation consisted of three external reflected pressure gages at the front face of the test

Top