Sample records for elevated ph values

  1. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  2. Effect of particle size on calcium release and elevation of pH of endodontic cements.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Lotfi, Mehrdad; Soukup, Jason W; Garcia-Godoy, Franklin; Sheibani, Nader

    2015-06-01

    Elevation of pH and calcium ion release are of great importance in antibacterial activity and the promotion of dental soft and hard tissue healing process. In this study, we evaluated the effect of particle size on the elevation of pH and the calcium ion release from calcium silicate-based dental cements. Twelve plastic tubes were divided into three groups, filled with white mineral trioxide aggregate (WMTA), WMTA plus 1% methylcellulose, and nano-modified WMTA (nano-WMTA), and placed inside flasks containing 10 ml of distilled water. The pH values were measured using a pH sensor 3, 24, 72, and 168 h after setting of the cements. The calcium ion release was measured using an atomic absorption spectrophotometer with same sample preparation method. Data were subjected to two-way analysis of variance (anova) followed by post hoc Tukey tests with significance level of P < 0.05. Nano-WMTA showed significant pH elevation only after 24 h (P < 0.05) compared with WMTA, and after 3, 24, and 72 h compared with WMTA plus 1% methylcellulose (P < 0.05). Nano-WMTA showed significantly higher calcium ion release values compared to the other two groups (P < 0.05). Nano-modification of WMTA remarkably increased the calcium ion release at all time intervals postsetting, which can significantly influence the osteogenic properties of human dental pulp cells and as a consequence enhance mineralized matrix nodule formation to achieve desirable clinical outcomes. However, the increase in pH values mainly occurred during the short time postsetting. Addition of 1% methylcellulose imposed a delay in elevation of pH and calcium ion release by WMTA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis

    PubMed Central

    Catalán, Marcelo A.; Scott-Anne, Kathleen; Klein, Marlise I.; Koo, Hyun; Bowen, William H.; Melvin, James E.

    2011-01-01

    Background Dental caries is the single most prevalent and costly infectious disease worldwide, affecting more than 90% of the population in the U.S. The development of dental cavities requires the colonization of the tooth surface by acid-producing bacteria, such as Streptococcus mutans. Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model. Methodology/Principal Findings We induced carious lesions in CF and wildtype mice by infecting their oral cavity with S. mutans, a well-studied cariogenic bacterium. After infection, the mice were fed a high-sucrose diet for 5 weeks (diet 2000). The mice were then euthanized and their jaws removed for caries scoring and bacterial counting. A dramatic increase in caries and severity of lesions scores were apparent in CF mice compared to their wildtype littermates. The elevated incidence of carious lesions correlated with a striking increase in the S. mutans viable population in dental plaque (20-fold increase in CF vs. wildtype mice; p value<0.003; t test). We also found that the pilocarpine-stimulated saliva bicarbonate concentration was significantly reduced in CF mice (16±2 mM vs. 31±2 mM, CF and wildtype mice, respectively; p value<0.01; t test). Conclusions/Significance Considering that bicarbonate is the most important pH buffering system in saliva, and the adherence and survival of aciduric bacteria such as S. mutans are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse. PMID:21304986

  4. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOEpatents

    Moens, Luc

    1994-01-01

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

  5. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOEpatents

    Moens, L.

    1994-12-06

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

  6. Coralline algae elevate pH at the site of calcification under ocean acidification.

    PubMed

    Cornwall, Christopher E; Comeau, Steeve; McCulloch, Malcolm T

    2017-10-01

    Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species-specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pH cf ) using δ 11 B as a proxy. Declines in δ 11 B for all three species are consistent with shifts in δ 11 B expected if B(OH) 4 - was incorporated during precipitation. In particular, the δ 11 B ratio in Amphiroa anceps was too low to allow for reasonable pH cf values if B(OH) 3 rather than B(OH) 4 - was directly incorporated from the calcifying fluid. This points towards δ 11 B being a reliable proxy for pH cf for coralline algal calcite and that if B(OH) 3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH) 4 - . We thus show that pH cf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO 2 , as did their pH cf . Neogoniolithon sp. had the highest pH cf , and most constant calcification rates, with the decrease in pH cf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pH cf under ocean acidification is physiologically important and should be included in future models involving calcification. © 2017 John Wiley & Sons Ltd.

  7. Effect of increasing the colloidal calcium phosphate of milk on the texture and microstructure of yogurt.

    PubMed

    Ozcan, T; Horne, D; Lucey, J A

    2011-11-01

    The effect of increasing the colloidal calcium phosphate (CCP) content on the physical, rheological, and microstructural properties of yogurt was investigated. The CCP content of heated (85°C for 30 min) milk was increased by increasing the pH by the addition of alkali (NaOH). Alkalized milk was dialyzed against pasteurized skim milk at approximately 4°C for 72 h to attempt to restore the original pH and soluble Ca content. By adjustment of the milk to pH values 7.45, 8.84, 10.06, and 10.73, the CCP content was increased to approximately 107, 116, 123, and 128%, respectively, relative to the concentration in heated milk. During fermentation of milk, the storage modulus (G') and loss tangent values of yogurts were measured using dynamic oscillatory rheology. Large deformation rheological properties were also measured. The microstructure of yogurt was observed using fluorescence microscopy, and whey separation was determined. Acid-base titration was used to evaluate changes in the CCP content in milk. Total Ca and casein-bound Ca increased with an increase in the pH value of alkalization. During acidification, elevated buffering occurred in milk between pH values 6.7 to 5.2 with an increase in the pH of alkalization. When acidified milk was titrated with alkali, elevated buffering occurred in milk between pH values 5.6 to 6.4 with an increase in the pH of alkalization. The high residual pH of milk after dialysis could be responsible for the decreased contents of soluble Ca in these milks. The pH of gelation was higher in all dialyzed samples compared with the heated control milk, and the gelation pH was higher with an increase in CCP content. The sample with highest CCP content (128%) exhibited gelation at very high pH (6.3), which could be due to alkali-induced CN micellar disruption. The G' values at pH 4.6 were similar in gels with CCP levels up to 116%; at higher CCP levels, the G' values at pH 4.6 greatly decreased. Loss tangent values at pH 5.1 were similar in all samples except in gels with a CCP level of 128%. For dialyzed milk, the whey separation levels were similar in gels made from milk with up to 107% CCP but increased at higher CCP levels. Microstructure of yogurt gels made from milk with 100 to 107% CCP was similar but very large clusters were observed in gels made from milk with higher CCP levels. By dialyzing heated milk against pasteurized milk, we may have retained some heat-induced Ca phosphate on micelles that normally dissolves on cooling because, during dialysis, pasteurized milk provided soluble Ca ions to the heated milk system. Yogurt texture was significantly affected by increasing the casein-bound Ca (and total Ca) content of milk as well as by the alkalization procedure involved in that approach. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  9. Flotation as a remediation technique for heavily polluted dredged material. 1. A feasibility study.

    PubMed

    Cauwenberg, P; Verdonckt, F; Maes, A

    1998-01-19

    The flotation behaviour of highly polluted dredged material was investigated at different pH values by mechanical agitated (Denver) flotation. Up to 80% of cadmium, copper, lead and zinc could be concentrated in the froth layer which represented only 30% of the total mass. The maximum specificity for heavy metals, defined as the concentrating factor, was obtained at pH 8-9. The maximum recovery of heavy metals on the other hand was found to be reached at elevated pH values (pH 12). In addition the specificity of the flotation process for the transition metals could be assigned to their presence as metal sulphides in the dredged material. However, the interaction with organic matter is an important factor in determining their flotability. The carbonate fraction was irrelevant for the flotation behaviour of heavy metals.

  10. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    PubMed

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Rigor mortis development at elevated temperatures induces pale exudative turkey meat characteristics.

    PubMed

    McKee, S R; Sams, A R

    1998-01-01

    Development of rigor mortis at elevated post-mortem temperatures may contribute to turkey meat characteristics that are similar to those found in pale, soft, exudative pork. To evaluate this effect, 36 Nicholas tom turkeys were processed at 19 wk of age and placed in water at 40, 20, and 0 C immediately after evisceration. Pectoralis muscle samples were taken at 15 min, 30 min, 1 h, 2 h, and 4 h post-mortem and analyzed for R-value (an indirect measure of adenosine triphosphate), glycogen, pH, color, and sarcomere length. At 4 h, the remaining intact Pectoralis muscle was harvested, and aged on ice 23 h, and analyzed for drip loss, cook loss, shear values, and sarcomere length. By 15 min post-mortem, the 40 C treatment had higher R-values, which persisted through 4 h. By 1 h, the 40 C treatment pH and glycogen levels were lower than the 0 C treatment; however, they did not differ from those of the 20 C treatment. Increased L* values indicated that color became more pale by 2 h post-mortem in the 40 C treatment when compared to the 20 and 0 C treatments. Drip loss, cook loss, and shear value were increased whereas sarcomere lengths were decreased as a result of the 40 C treatment. These findings suggested that elevated post-mortem temperatures during processing resulted in acceleration of rigor mortis and biochemical changes in the muscle that produced pale, exudative meat characteristics in turkey.

  12. Evaluation of end-tidal CO2 pressure at the anaerobic threshold for detecting and assessing pulmonary hypertension.

    PubMed

    Higashi, Akifumi; Dohi, Yoshihiro; Yamabe, Sayuri; Kinoshita, Hiroki; Sada, Yoshiharu; Kitagawa, Toshiro; Hidaka, Takayuki; Kurisu, Satoshi; Yamamoto, Hideya; Yasunobu, Yuji; Kihara, Yasuki

    2017-11-01

    Cardiopulmonary exercise testing (CPET) is useful for the evaluation of patients with suspected or confirmed pulmonary hypertension (PH). End-tidal carbon dioxide pressure (PETCO 2 ) during exercise is reduced with elevated pulmonary artery pressure. However, the utility of ventilatory parameters such as CPET for detecting PH remains unclear. We conducted a review in 155 patients who underwent right heart catheterization and CPET. Fifty-nine patients had PH [mean pulmonary arterial pressure (mPAP) ≥25 mmHg]. There was an inverse correlation between PETCO 2 at the anaerobic threshold (AT) and mPAP (r = -0.66; P < 0.01). Multiple regression analysis showed that PETCO 2 at the AT was independently associated with an elevated mPAP (P = 0.04). The sensitivity and specificity of CPET for PH were 80 and 86%, respectively, when the cut-off value identified by receiver operating characteristic curve analysis for PETCO 2 at the AT was ≤34.7 mmHg. A combination of echocardiography and CPET improved the sensitivity in detecting PH without markedly reducing specificity (sensitivity 87%, specificity 85%). Evaluation of PETCO 2 at the AT is useful for estimating pulmonary pressure. A combination of CPET and previous screening algorithms for PH may enhance the diagnostic ability of PH.

  13. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations

    USGS Publications Warehouse

    Cravotta, C.A.

    2008-01-01

    Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.

  14. Update to Millstone 3 elevated pH tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, C.A.; Perock, J.D.; Hudson, M.J.B.

    1995-03-01

    In view of the potential radiological benefits of elevated coolant pH operation, Northwest Utilities (NU), in support of an EPRI-Westinghouse program, agreed to operate the Millstone 3 plant at the start of its second fuel cycle as a demonstration of the effect of elevated coolant pH on out-of-core radiation fields. Operating with an elevated pH is defined as operating with an average lithium concentration of 3.35 ppm, until reaching an end of cycle pH of 7.2 or 7.4. The plant operated during its second and third cycles with an elevated coolant pH. The end of cycle pH during the secondmore » cycle was 7.4, and 7.2 during the third cycle. (During the first cycle, operation was with a coordinated pH of 7.0). Evaluation of the dose rate trends in Millstone 3 after two cycles of elevated coolant pH operation concluded that an elevated coolant pH resulted in a 15 percent lower component dose rate compared to other plants that operated with coordinated pH 6.9. However, due to a possible increase in fuel clad corrosion, operation during cycle 4 was restricted to pH 6.9 coordinated chemistry, with the exception of the last two months during which the pH increased to 7.35. At the end of cycle 4 (EOC4), there was a greater increase in component and crud trap dose rates than expected. This paper reviews the radiological trends in the plant and discusses the potential causes for the increase in the dose rates at EOC4.« less

  15. Control of Diapause by Acidic pH and Ammonium Accumulation in the Hemolymph of Antarctic Copepods

    PubMed Central

    Schründer, Sabine; Schnack-Schiel, Sigrid B.; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 +) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 +). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  16. Pourbaix Diagrams at Elevated Temperatures A Study of Zinc and Tin

    NASA Astrophysics Data System (ADS)

    Palazhchenko, Olga

    Metals in industrial settings such as power plants are often subjected to high temperature and pressure aqueous environments, where failure to control corrosion compromises worker and environment safety. For instance, zircaloy (1.2-1.7 wt.% Sn) fuel rods are exposed to aqueous 250-310 °C coolant in CANDU reactors. The Pourbaix (EH-pH) diagram is a plot of electrochemical potential versus pH, which shows the domains of various metal species and by inference, corrosion susceptibility. Elevated temperature data for tin +II and tin +IV species were obtained using solid-aqueous phase equilibria with the respective oxides, in a batch vessel with in-situ pH measurement. Solubilities, determined via spectroscopic techniques, were used to calculate equilibrium constants and the Gibbs energies of Sn complexes for E-pH diagram construction. The SnOH3+ and Sn(OH )-5 species were incorporated, for the first time, into the 298.15 K and 358.15 K diagrams, with novel Go values determined at 358.15 K. Key words: Pourbaix diagrams, EH-pH, elevated temperatures, solubility, equilibrium, metal oxides, hydrolysis, redox potential, pH, thermochemical data, tin, zinc, zircaloy, corrosion, passivity.

  17. Optimization of Malachite Green Removal from Water by TiO₂ Nanoparticles under UV Irradiation.

    PubMed

    Ma, Yongmei; Ni, Maofei; Li, Siyue

    2018-06-13

    TiO₂ nanoparticles with surface porosity were prepared by a simple and efficient method and presented for the removal of malachite green (MG), a representative organic pollutant, from aqueous solution. Photocatalytic degradation experiments were systematically conducted to investigate the influence of TiO₂ dosage, pH value, and initial concentrations of MG. The kinetics of the reaction were monitored via UV spectroscopy and the kinetic process can be well predicted by the pseudo first-order model. The rate constants of the reaction kinetics were found to decrease as the initial MG concentration increased; increased via elevated pH value at a certain amount of TiO₂ dosage. The maximum efficiency of photocatalytic degradation was obtained when the TiO₂ dosage, pH value and initial concentrations of MG were 0.6 g/L, 8 and 10 −5 mol/L (M), respectively. Results from this study provide a novel optimization and an efficient strategy for water pollutant treatment.

  18. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties.

    PubMed

    Lu, Xianqin; Wang, Can; Li, Xuezhi; Zhao, Jian

    2017-12-01

    Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Elevated plasma corticosterone concentrations influence the onset of rigor mortis and meat color in broilers.

    PubMed

    Kannan, G; Heath, J L; Wabeck, C J; Owens, S L; Mench, J A

    1998-02-01

    This experiment was conducted to determine the effect of elevated plasma corticosterone (CORT) levels on meat quality characteristics. Male broilers (Arbor Acres) were either 1) fed a diet containing corticosterone (CORT) prior to processing, 2) transported by truck for 3 h before processing, or 3) processed without either of the above treatments. Six crates of birds (10 birds per crate; two crates per treatment) were stunned or killed using CO2 gas. Six birds per crate were processed and blood samples were collected during exsanguination for plasma CORT analysis. Meat samples were collected from carcasses either at 20 min or at 4 h post-mortem. At each sampling time (ST), Pectoralis superficialis samples were collected and either individually quick frozen (IQF) in liquid nitrogen or aged on ice (AOI) for 24 h prior to pH, ratio of inosine to adenosine nucleotides (R-value), cooking loss, shear value, and color analyses. The IQF Biceps femoris samples were used for pH, R-value, color, and heme pigment analysis. Mean (+/- SEM) CORT concentrations were 12.9+/-2.57, 11.7+/-1.38 and 7.9+/-0.79 ng/mL, respectively, in the CORT, transported, and control groups. There were significant treatment by ST (P < 0.05) and ST (P < 0.001) effects on the R-value of IQF P. superficialis samples. The CORT group had the highest L* value (P < 0.01) and the lowest a* value (P < 0.06). There was also a significant main effect of ST on shear values (P < 0.05) of AOI P. superficialis samples, with the means higher at 4 h than at 20 min post-mortem. The R-value of IQF B. femoris samples was markedly influenced by treatment (P < 0.001) and ST (P < 0.001). The results indicate that artificially elevating circulating CORT concentrations results in lighter meat color in broilers.

  20. Determining pH at elevated pressure and temperature using in situ ¹³C NMR.

    PubMed

    Surface, J Andrew; Wang, Fei; Zhu, Yanzhe; Hayes, Sophia E; Giammar, Daniel E; Conradi, Mark S

    2015-02-03

    We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.

  1. Alkaline approach to treating cooling towers for control of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    States, S.J.; Conley, L.F.; Towner, S.G.

    1987-08-01

    Earlier field and laboratory studies have shown that Legionella species survive and multiply in the pH range 5.5 to 9.2. Additionally, the technical feasibility of operating cooling towers at elevated alkalinities and pH has previously been documented by published guidelines. The guidelines indicate that these conditions facilitate corrosion control and favor chlorine persistence which enhances the effectiveness of continuous chlorination in biofouling control. This information suggest that control of Legionella species in cooling towers can be accomplished by operating the towers under alkaline conditions. To test this possibility, we collected water samples over a period of months from a hospitalmore » cooling tower. The samples were analyzed for a variety of chemical parameters. Subsamples were pasteurized and inoculated with non-agar-passaged Legionella pneumophila which had been maintained in tap water. Correlation of subsequent Legionella growth with corresponding pH and alkalinity values revealed statistically significant inverse associations. These data support the hypothesis that operating cooling towers outside of the optimal conditions for Legionella growth (e.g., at elevated alkalinities and a pH greater than 9) may be a useful approach to controlling growth in this habitat.« less

  2. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.

    PubMed

    Nelson, Cassandra R; Debold, Edward P; Fitts, Robert H

    2014-11-15

    Skeletal muscle fatigue is characterized by the buildup of H(+) and inorganic phosphate (Pi), metabolites that are thought to cause fatigue by inhibiting muscle force, velocity, and power. While the individual effects of elevated H(+) or Pi have been well characterized, the effects of simultaneously elevating the ions, as occurs during fatigue in vivo, are still poorly understood. To address this, we exposed slow and fast rat skinned muscle fibers to fatiguing levels of H(+) (pH 6.2) and Pi (30 mM) and determined the effects on contractile properties. At 30°C, elevated Pi and low pH depressed maximal shortening velocity (Vmax) by 15% (4.23 to 3.58 fl/s) in slow and 31% (6.24 vs. 4.55 fl/s) in fast fibers, values similar to depressions from low pH alone. Maximal isometric force dropped by 36% in slow (148 to 94 kN/m(2)) and 46% in fast fibers (148 to 80 kN/m(2)), declines substantially larger than what either ion exerted individually. The strong effect on force combined with the significant effect on velocity caused peak power to decline by over 60% in both fiber types. Force-stiffness ratios significantly decreased with pH 6.2 + 30 mM Pi in both fiber types, suggesting these ions reduced force by decreasing the force per bridge and/or increasing the number of low-force bridges. The data indicate the collective effects of elevating H(+) and Pi on maximal isometric force and peak power are stronger than what either ion exerts individually and suggest the ions act synergistically to reduce muscle function during fatigue. Copyright © 2014 the American Physiological Society.

  3. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    PubMed

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Increased 2,3-Diphosphoglycerate During Normocapnic Hypobaric Hypoxia,

    DTIC Science & Technology

    Maintenance of normal plasma pH at high altitude (HA) by acetazolamide has been shown to prevent the HA-induced change in 2,3- diphosphoglycerate (DPG...had significant elevations in DPG above sea- level values after two days. Mean corpuscular hemoglobin concentrations (MCHC) remained within normal...limits during the first two days, then decreased significantly below sea- level values in Group I (days 3-5) and Group II (days 4-5). Thus prevention of

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, R.S.; Cossins, A.I.; Kem, W.R.

    The solution properties of the polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I) have been investigated by high-resolution H nuclear magnetic resonance (NMR) spectroscopy at 300 MHz. The pH dependence of the spectra has been examined over the range 1.1-12.2 at 27{degree}C. Individual pK{sub a} values have been obtained for the {alpha}-ammonium group of Ala-1 (8.6) and the side chains of Glu-8 (3.7), Tyr-36 (10.9), and Tyr-37 (10.8). For the remaining seven carboxyl groups in the molecule, four pK{sub a} values can be clearly identified. The five Lys residues titrate in the range 10.5-11, but individual pK{submore » a} values could not be obtained because of peak overlap. Conformational changes associated with the protonation of carboxylates occur below pH 4, while in the alkaline pH range major unfolding occurs above pH 10. The molecule also unfolds at elevated temperatures. Exchange of the backbone amide protons has been monitored at various values of pH and temperature in the ranges pH 4-5 and 12-27{degree}C. Comparison of these properties of Sh I in solution with those of the related polypeptides anthopleurin A and Anemonia sulcata toxins I and II indicates that Sh I is less stable thermally and that there are some significant differences in the ionic interactions that maintain the tertiary structure. The solvent accessibility of aromatic residues has been probed with photochemically induced dynamic nuclear polarization NMR at 360 MHz.« less

  6. Coral calcification mechanisms facilitate adaptive responses to ocean acidification.

    PubMed

    Schoepf, Verena; Jury, Christopher P; Toonen, Robert J; McCulloch, Malcolm T

    2017-12-06

    Ocean acidification (OA) is a pressing threat to reef-building corals, but it remains poorly understood how coral calcification is inhibited by OA and whether corals could acclimatize and/or adapt to OA. Using a novel geochemical approach, we reconstructed the carbonate chemistry of the calcifying fluid in two coral species using both a pH and dissolved inorganic carbon (DIC) proxy (δ 11 B and B/Ca, respectively). To address the potential for adaptive responses, both species were collected from two sites spanning a natural gradient in seawater pH and temperature, and then subjected to three pH T levels (8.04, 7.88, 7.71) crossed by two temperatures (control, +1.5°C) for 14 weeks. Corals from the site with naturally lower seawater pH calcified faster and maintained growth better under simulated OA than corals from the higher-pH site. This ability was consistently linked to higher pH yet lower DIC values in the calcifying fluid, suggesting that these differences are the result of long-term acclimatization and/or local adaptation to naturally lower seawater pH. Nevertheless, all corals elevated both pH and DIC significantly over seawater values, even under OA. This implies that high pH upregulation combined with moderate levels of DIC upregulation promote resistance and adaptive responses of coral calcification to OA. © 2017 The Author(s).

  7. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    PubMed

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  8. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    NASA Astrophysics Data System (ADS)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  9. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    PubMed Central

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values. PMID:26956399

  10. Effect of Sustained Elevated Gastric pH Levels on Gefitinib Exposure.

    PubMed

    Tang, Weifeng; Tomkinson, Helen; Masson, Eric

    2017-09-01

    This open-label, randomized, phase 1 crossover study investigated the effect of elevated gastric pH level (>5) on the relative bioavailability and pharmacokinetic profile of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib. Healthy male volunteers (n = 26) were randomized to gefitinib 250 mg (fasted), either alone on day 1 (unmodified gastric pH) or 1 hour following the second of 2 oral doses of the H 2 -receptor antagonist ranitidine 450 mg (elevated gastric pH). After a 3-week washout period, volunteers crossed to the other treatment. The geometric least-squares (GLS) mean AUC 0-∞ and C max for gefitinib were reduced by 47% and 71%, respectively, under conditions of sustained elevated gastric pH; for both parameters, the 90%CI for the ratio of the GLS means lay below the prespecified lower limit. Median t max was delayed from 5 to 6 hours. Mean t 1/2 was similar under both gastric pH conditions. No serious adverse events were reported. The bioavailability of a single oral gefitinib 250-mg dose was reduced by approximately 50% when gefitinib was administered under conditions of sustained elevated gastric pH. © 2017, The American College of Clinical Pharmacology.

  11. Chemical composition of acid precipitation in central Texas

    Treesearch

    Hal B. H., Jr. Cooper; Jerry M. Demo

    1976-01-01

    Studies were undertaken to determine factors affecting composition of acidic precipitation formation in the Austin area of Central Texas. The study was initiated to determine background levels of acid and alkalinity producing constituents in an area with elevated natural dust levels from nearby limestone rock formations. Results showed normal rainfall pH values of 6.5...

  12. Fermentation pH influences the physiological-state dynamics of Lactobacillus bulgaricus CFL1 during pH-controlled culture.

    PubMed

    Rault, Aline; Bouix, Marielle; Béal, Catherine

    2009-07-01

    This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.

  13. Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strengths with fulvic acid fractions by Schubert's method

    USGS Publications Warehouse

    Brown, G.K.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The equilibrium binding of Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ with unfractionated Suwannee river fulvic acid (SRFA) and an enhanced metal binding subfraction of SRFA was measured using Schubert's ion-exchange method at pH 6.0 and at an ionic strength (??) of 0.1 (NaNO3). The fractionation and subfractionation were directed towards obtaining an isolate with an elevated metal binding capacity or binding strength as estimated by Cu2+ potentiometry (ISE). Fractions were obtained by stepwise eluting an XAD-8 column loaded with SRFA with water eluents of pH 1.0 to pH 12.0. Subfractions were obtained by loading the fraction eluted from XAD-8 at pH 5.0 onto a silica gel column and eluting with solvents of increasing polarity. Schuberts ion exchange method was rigorously tested by measuring simultaneously the conditional stability constants (K) of citric acid complexed with the five metals at pH 3.5 and 6.0. The logK of SRFA with Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ determined simultaneously at pH 6.0 follow the sequence of Cu2+>Cd2+>Ni2+>Zn2+>Ca2+ while all logK values increased for the enhanced metal binding subfraction and followed a different sequence of Cu2+>Cd2+>Ca2+>Ni2+>Zn2+. Both fulvic acid samples and citric acid exhibited a 1:1 metal to ligand stochiometry under the relatively low metal loading conditions used here. Quantitative 13C nuclear magnetic resonance spectroscopy showed increases in aromaticity and ketone content and decreases in aliphatic carbon for the elevated metal binding fraction while the carboxyl carbon, and elemental nitrogen, phosphorus, and sulfur content did not change. The more polar, elevated metal binding fraction did show a significant increase in molecular weight over the unfractionated SRFA. Copyright (C) 1999 Elsevier Science B.V.

  14. Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study

    PubMed Central

    Endres, Sonja; Galgani, Luisa; Riebesell, Ulf; Schulz, Kai-Georg; Engel, Anja

    2014-01-01

    Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5–10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean. PMID:24941307

  15. PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES

    DOEpatents

    Sawyer, C.W.; Handley, R.W.

    1959-07-14

    A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.

  16. Use of D(acid)-, D(bile)-, z(acid)-, and z(bile)-values in evaluating Bifidobacteria with regard to stomach pH and bile salt sensitivity.

    PubMed

    Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D

    2010-01-01

    The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (<3.4 log CFU/mL). The z(acid)- and z(bile)-values calculated from the D(acid)- and D(bile)-values ranged from 1.11 to 1.55 pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as probiotics for use in real-life situations.

  17. Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster Pinctada fucata

    PubMed Central

    Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian

    2012-01-01

    Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983

  18. Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA

    USGS Publications Warehouse

    Cravotta, C.A.

    2007-01-01

    This report evaluates the results of a continuous 4.5-day laboratory aeration experiment and the first year of passive, aerobic treatment of abandoned mine drainage (AMD) from a typical flooded underground anthracite mine in eastern Pennsylvania, USA. During 1991-2006, the AMD source, locally known as the Otto Discharge, had flows from 20 to 270 L/s (median 92 L/s) and water quality that was consistently suboxic (median 0.9 mg/L O2) and circumneutral (pH ??? 6.0; net alkalinity >10) with moderate concentrations of dissolved iron and manganese and low concentrations of dissolved aluminum (medians of 11, 2.2, and <0.2 mg/L, respectively). In 2001, the laboratory aeration experiment demonstrated rapid oxidation of ferrous iron (Fe 2+) without supplemental alkalinity; the initial Fe2+ concentration of 16.4 mg/L decreased to less than 0.5 mg/L within 24 h; pH values increased rapidly from 5.8 to 7.2, ultimately attaining a steady-state value of 7.5. The increased pH coincided with a rapid decrease in the partial pressure of carbon dioxide (PCO2) from an initial value of 10 -1.1atm to a steady-state value of 10-3.1atm. From these results, a staged aerobic treatment system was conceptualized consisting of a 2 m deep pond with innovative aeration and recirculation to promote rapid oxidation of Fe2+, two 0.3 m deep wetlands to facilitate iron solids removal, and a supplemental oxic limestone drain for dissolved manganese and trace-metal removal. The system was constructed, but without the aeration mechanism, and began operation in June 2005. During the first 12 months of operation, estimated detention times in the treatment system ranged from 9 to 38 h. However, in contrast with 80-100% removal of Fe2+ over similar elapsed times during the laboratory aeration experiment, the treatment system typically removed less than 35% of the influent Fe2+. Although concentrations of dissolved CO2 decreased progressively within the treatment system, the PCO2 values for treated effluent remained elevated (10-2.4 to 10-1.7atm). The elevated PCO 2 maintained the pH within the system at values less than 7 and hence slowed the rate of Fe2+ oxidation compared to the aeration experiment. Kinetic models of Fe2+ oxidation that consider effects of pH and dissolved O2 were incorporated in the geochemical computer program PHREEQC to evaluate the effects of detention time, pH, and other variables on Fe2+ oxidation and removal rates. These models and the laboratory aeration experiment indicate that performance of this and other aerobic wetlands for treatment of net-alkaline AMD could be improved by aggressive, continuous aeration in the initial stage to decrease PCO 2, increase pH, and accelerate Fe2+ oxidation. ?? 2007 Springer-Verlag.

  19. The Interactive Effects of Elevated CO2 and Ammonium Enrichment on the Physiological Performances of Saccharina japonica (Laminariales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Kang, Jin Woo; Chung, Ik Kyo

    2018-04-01

    Environmental challenges such as ocean acidification and eutrophication influence the physiology of kelp species. We investigated their interactive effects on Saccharina japonica (Laminariales, Phaeophyta) under two pH conditions [Low, 7.50; High (control), 8.10] and three NH4 +concentrations (Low, 4; Medium, 60; High, 120 μM). The degree of variation of pH values in the culture medium and inhibition rate of photosynthetic oxygen evolution by acetazolamide were affected by pH treatments. Relative growth rates, carbon, nitrogen, and the C:N ratio in tissue samples were influenced by higher concentrations of NH4 + . Rates of photosynthetic oxygen evolution were enhanced under elevated CO2 or NH4 +conditions, independently, but these two factors did not show an interactive effect. However, rates of NH4 +uptake were influenced by the interactive effect of increased CO2 under elevated NH4 +treatment. Although ocean acidification and eutrophication states had an impact on physiological performance, chlorophyll fluorescence was not affected by those conditions. Our results indicated that the physiological reactions by this alga were influenced to some extent by a rise in the levels of CO2 and NH4 + . Therefore, we expect that the biomass accumulation of S. japonica may well increase under future scenarios of ocean acidification and eutrophication.

  20. Chlorine disinfection of recreational water for Cryptosporidium parvum.

    PubMed Central

    Carpenter, C.; Fayer, R.; Trout, J.; Beach, M. J.

    1999-01-01

    We examined the effects of chlorine on oocyst viability, under the conditions of controlled pH and elevated calcium concentrations required for most community swimming pools. We found that fecal material may alter the Ct values (chlorine concentration in mg/L, multiplied by time in minutes) needed to disinfect swimming pools or other recreational water for Cryptosporidium parvum. PMID:10458969

  1. 75 FR 22589 - Preliminary Listing of an Additional Water to Wisconsin's 2008 List of Waters Under Section 303(d...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... to the presence of excessive nutrients, including phosphorus, elevated pH values, as well as the... Wisconsin does not have numeric criterian for phosphorus and WDNR did not believe that the available data..., and that the Bay was not impaired due to phosphorus. WDNR stated that it will continue to monitor...

  2. Mercury contribution to an Adirondack lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrudato, R.J.; Long, D.; Weinbloom, R.

    1987-01-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipitation.

  3. Mercury contribution to an adirondack lake

    NASA Astrophysics Data System (ADS)

    Scrudato, R. J.; Long, D.; Weinbloom, Robert

    1987-10-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.

  4. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport.

    PubMed

    Berenbrink, M; Völkel, S; Heisler, N; Nikinmaa, M

    2000-07-01

    The effects of pH and O(2) tension on the isotonic ouabain-resistant K(+) (Rb+) flux pathway and on haemoglobin O2 binding were studied in trout red blood cells (RBCs) in order to test for a direct effect of haemoglobin O(2) saturation on K(+) transport across the RBC membrane. At pH values corresponding to in vivo control arterial plasma pH and higher, elevation of the O(2) partial pressure (PO(2)) from 7.8 to 157 mmHg increased unidirectional K(+) influx across the RBC membrane several-fold. At lower extracellular pH values, stimulation of K(+) influx by O(2) was depressed, exhibiting an apparent pK(a) (pK'(a)) for the process of 8.0. Under similar conditions the pK'(a) for acid-induced deoxygenation of haemoglobin (Hb) was 7.3. When trout RBCs were exposed to PO(2) values between 0 and 747 mmHg, O(2) equilibrium curves typical of Hb O(2) saturation were also obtained for K(+) influx and efflux. However, at pH 7.9, the PO(2) for half-maximal K(+) efflux and K(+) influx (P50) was about 8- to 12-fold higher than the P(50) for Hb-O(2) binding. While K(+) influx and efflux stimulation by O(2) was essentially non-cooperative, Hb-O(2) equilibrium curves were distinctly sigmoidal (Hill parameters close to 1 and 3, respectively). O(2)-stimulated K(+) influx and efflux were strongly pH dependent. When the definition of the Bohr factor for respiratory pigments (Phi = delta logP50 x delta pH(-1)) was extended to the effect of pH on O(2)-dependent K(+) influx and efflux, extracellular Bohr factors (Phi(o) of -2.00 and -2.06 were obtained, values much higher than that for Hb (Phi(o) = -0.49). The results of this study are consistent with an O(2) sensing mechanism differing markedly in affinity and cooperativity of O(2) binding, as well as in pH sensitivity, from bulk Hb.

  5. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly regulate digestion pH, and where the waste is produced at a pH value much higher than neutral.

  6. Impact on sediments and water by release of copper from chalcopyrite bearing rock due to acidic mine drainage

    NASA Astrophysics Data System (ADS)

    Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath

    2018-04-01

    Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.

  7. Evidence for an Elevated Aspartate pKa in the Active Site of Human Aromatase*

    PubMed Central

    Di Nardo, Giovanna; Breitner, Maximilian; Bandino, Andrea; Ghosh, Debashis; Jennings, Gareth K.; Hackett, John C.; Gilardi, Gianfranco

    2015-01-01

    Aromatase (CYP19A1), the enzyme that converts androgens to estrogens, is of significant mechanistic and therapeutic interest. Crystal structures and computational studies of this enzyme shed light on the critical role of Asp309 in substrate binding and catalysis. These studies predicted an elevated pKa for Asp309 and proposed that protonation of this residue was required for function. In this study, UV-visible absorption, circular dichroism, resonance Raman spectroscopy, and enzyme kinetics were used to study the impact of pH on aromatase structure and androstenedione binding. Spectroscopic studies demonstrate that androstenedione binding is pH-dependent, whereas, in contrast, the D309N mutant retains its ability to bind to androstenedione across the entire pH range studied. Neither pH nor mutation perturbed the secondary structure or heme environment. The origin of the observed pH dependence was further narrowed to the protonation equilibria of Asp309 with a parallel set of spectroscopic studies using exemestane and anastrozole. Because exemestane interacts with Asp309 based on its co-crystal structure with the enzyme, its binding is pH-dependent. Aromatase binding to anastrozole is pH-independent, consistent with the hypothesis that this ligand exploits a distinct set of interactions in the active site. In summary, we assign the apparent pKa of 8.2 observed for androstenedione binding to the side chain of Asp309. To our knowledge, this work represents the first experimental assignment of a pKa value to a residue in a cytochrome P450. This value is in agreement with theoretical calculations (7.7–8.1) despite the reliance of the computational methods on the conformational snapshots provided by crystal structures. PMID:25425647

  8. Factors related to elevated vaginal pH in the first trimester of pregnancy.

    PubMed

    Zodzika, Jana; Rezeberga, Dace; Jermakova, Irina; Vasina, Olga; Vedmedovska, Natalija; Donders, Gilbert

    2011-01-01

    To assess different bacterial and epidemiological factors associations with increased vaginal pH in the pregnant women population during the first trimester. A cross-sectional, observational study. Three outpatient clinics in Riga. From July 2009 until January 2010, 139 unselected consecutive pregnant women at the first prenatal visit. Pregnant women were submitted to an interview, vaginal examination and vaginal specimen collection for pH measurement and native microscopy. Vaginal pH ≥4.5 was considered as elevated. Abnormal bacterial microflora was classified according to Donders. Elevated vaginal pH was significantly associated with bacterial vaginosis (p < 0.001), aerobic vaginitis (p < 0.001) and mixed aerobic vaginitis and bacterial vaginosis flora (p < 0.001) and presence of sperm cells in the smears (p= 0.024). Most cases with sperm were associated with abnormal vaginal flora. Normal lactobacillary morphotypes were more often found in the pH ≤4.4 group (p < 0.001), while leptosomic and short types were found more frequently with increased pH. Elevated vaginal pH is associated with different types of abnormal vaginal flora and the presence of sperm cells. © 2010 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2010 Nordic Federation of Societies of Obstetrics and Gynecology.

  9. Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi.

    PubMed Central

    DePasquale, D A; Montville, T J

    1990-01-01

    In this study we examined the mechanism by which ammonium bicarbonate inhibits mycotoxigenic fungi. Elevated extracellular pH, alone, was not responsible for the antifungal activity. Although conidia of Penicillium griseofulvum and Fusarium graminearum had internal pH (pHi) values as high as 8.0 in buffer at an external pH (pHo) of 9.5, their viability was not markedly affected. The pHi values from conidia equilibrated in glycine-NaOH-buffered treatments without ammonium bicarbonate or ammonium sulfate were similar to values obtained from buffered treatments containing the ammonium salts. Thus, inhibition did not appear to be directly related to increased pHi. Ammonium sulfate in buffered media at pH greater than or equal to 8.7 was as inhibitory as ammonium bicarbonate, but was completely ineffective at pH less than or equal to 7.8. The hypothesis that free ammonia caused the fungal inhibition was tested by using ammonium sulfate as a model for ammonium bicarbonate. Viability, expressed as log CFU/ml, and percent germination of P. griseofulvum and F. graminearum decreased dramatically as the free ammonia concentration increased. Germination rate ratios (the germination rate in buffered ammonium sulfate divided by the germination rate in buffer alone) decreased linearly as the free ammonia concentration increased, further establishing NH3 as the toxic agent. Ammonium bicarbonate inhibits fungi because the bicarbonate anion supplies the alkalinity necessary to establish an antifungal concentration of free ammonia. PMID:2082821

  10. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests

    DOE PAGES

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.; ...

    2016-02-04

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less

  11. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests.

    PubMed

    Carrino-Kyker, Sarah R; Kluber, Laurel A; Petersen, Sheryl M; Coyle, Kaitlin P; Hewins, Charlotte R; DeForest, Jared L; Smemo, Kurt A; Burke, David J

    2016-03-01

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less

  13. Stream Water Quality Modeling in the Great Smoky Mountains National Park

    NASA Astrophysics Data System (ADS)

    Barnett, T. W.; Robinson, R. B.

    2003-12-01

    The purpose of this study was to examine water quality in the acid-impacted Great Smoky Mountains National Park (GRSM). Water samples have been collected roughly quarterly at ninety sampling sites throughout the Park from October, 1993 to November, 2002.. These samples were analyzed for pH, acid neutralizing capacity (ANC), conductivity, major cations, and major anions. The trout fisheries of the GRSM are considered some of the best in the eastern United States. However, fisheries biologists at the GRSM believe that some of the streams that once supported trout populations twenty or thirty years ago, no longer do. This study outlines and quantifies surface water quality conditions that might be harmful to trout populations through a literature review. This study identifies 71 sites (79 percent of total sampling sites) that currently have a median pH of greater than 6.0, above which, is unlikely to be harmful to trout species unless a high runoff of acid, Al-rich water creates a mixing zone where Al(OH)3 precipitates. The precipitate can accumulate on the gills and impede normal diffusion of O2, CO2, and nutrients. There are 17 sites (18 percent) that have median pH values in the 5.0 to 6.0 range. This range of pH values is likely to be harmful to trout species when aluminum concentrations exceed about 0.2 mg/l. The lower end of this range is probably harmful to the eggs and fry of trout and also to non-acclimated trout especially when calcium, sodium, and chloride concentrations are low. Only two sampling sites have median pH values in the 4.5 to 5.0 range. This pH range is likely harmful to eggs, fry and adult trout, particularly in the soft water conditions prevalent in the GRSM. The mechanisms adversely affecting trout in these ranges are ionoregulatory dysfunction, respiratory stress, and circulatory stress. Currently, there are no sampling sites with median pH values less than 4.5, although pH values could be lowered by more than one pH unit during high-flow episodic events depending on the ANC in the stream. Stepwise multiple linear regression was used to model pH, ANC, nitrate and sulfate. This study incorporates basin characteristics, time, acid deposition data, USGS stream flow data as surrogate hydrologic data, and precipitation data, e.g., inches of rain on preceding days, to determine whether these variables are associated with water quality. Acid deposition data came from biweekly wet only and throughfall monitoring at the Noland Divide, which is a high elevation acid deposition monitoring site within the Park. Precipitation data is collected at five National Weather Service monitoring sites within the Park. Each of the above variables were found to be statistically significant (p<0.05) influencing factors to water quality, particularly pH. Water quality conditions were adversely (decreasing pH and ANC and increasing sulfate and nitrate) affected by increased stream flows, acid deposition and precipitation. Models for pH and ANC produced R-square values around 0.71 and 0.86, respectively. Nitrate and sulfate modeling produced R-square values around 0.30. This study also analyzes temporal trends in pH. Modeling reveals statistically significant decreasing trends in pH with time. If conditions remain the same and past trends continue, models suggest that 30.0 percent of the sampling sites will reach pH values less than 6.0 in less than 10 years, 63.3 percent of the sites will reach pH values less than 6.0 in less than 25 years, and 96.7 percent of the sites will reach pH values less than 6.0 in less than 50 years. The models used to predict future pH values explain around 70 percent of the variability in the data.

  14. Elevated lactate during psychogenic hyperventilation.

    PubMed

    ter Avest, E; Patist, F M; Ter Maaten, J C; Nijsten, M W N

    2011-04-01

    Elevated arterial lactate levels are closely related to morbidity and mortality in various patient categories. In the present retrospective study, the relation between arterial lactate, partial pressure of carbon dioxide (Pco(2)) and pH was systematically investigated in patients who visited the emergency department (ED) with psychogenic hyperventilation. Over a 5-month period, all the patients who visited the ED of a university hospital with presumed psychogenic hyperventilation were evaluated. Psychogenic hyperventilation was presumed to be present when an increased respiratory rate (>20 min) was documented at or before the ED visit and when somatic causes explaining the hyperventilation were absent. Arterial blood gas and lactate levels (reference values 0.5-1.5 mmol/l) were immediately measured by a point-of-care analyser that was managed and calibrated by the central laboratory. During the study period, 46 patients were diagnosed as having psychogenic hyperventilation. The median (range) Pco(2) for this group was 4.3 (2.0-5.5) kPa, the pH was 7.47 (7.40-7.68) and the lactate level was 1.2 (0.5-4.4) mmol/l. 14 participants (30%) had a lactate level above the reference value of 1.5 mmol/l. Pco(2) was the most important predictor of lactate in multivariate analysis. None of the participants underwent any medical treatment other than observation at the ED or had been hospitalised after their ED visit. In patients with psychogenic hyperventilation, lactate levels are frequently elevated. Whereas high lactates are usually associated with acidosis and an increased risk of poor outcome, in patients with psychogenic hyperventilation, high lactates are associated with hypocapnia and alkalosis. In this context, elevated arterial lactate levels should not be regarded as an adverse sign.

  15. Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.

    PubMed

    Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh

    2017-04-01

    The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.

  16. Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values.

    PubMed

    Koster van Groos, Paul G; Kaplan, Daniel I; Chang, Hyun-Shik; Seaman, John C; Li, Dien; Peacock, Aaron D; Scheckel, Kirk G; Jaffé, Peter R

    2016-11-01

    Small-scale continuous flow wetland mesocosms (∼0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed sediments were an order of magnitude greater than concentrations in root excluded sediments. Micro X-ray absorption near-edge structure (μ-XANES) spectroscopy indicated that U was associated with the plant roots primarily as U(VI) or U(V), with limited evidence of U(IV). Micro X-ray fluorescence (μ-XRF) of plant roots suggested that for high iron loading at circumneutral pH, U was co-located with Fe, perhaps co-precipitated with root Fe plaques, while for low iron loading at a pH of ∼4 the correlation between U and Fe was not significant, consistent with previous observations of U associated with organic matter. Quantitative PCR analyses indicated that the root exposed sediments also contained elevated numbers of Geobacter spp., which are likely associated with enhanced iron cycling, but may also reduce mobile U(VI) to less mobile U(IV) species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Oxygen transport in congenital heart disease: influence of fetal hemoglobin, red cell pH, and 2,3-diphosphoglycerate.

    PubMed

    Versmold, H T; Linderkamp, C; Döhlemann, C; Riegel, K P

    1976-06-01

    In 48 individuals (age 1 day to 13 years) with congenital heart disease, blood oxygen transport function was studied in order to evaluate adaptive changes in shunt hypoxemia and to investigate the in vivo regulation of erythrocyte 2, 3-diphosphoglycerate concentration (RBC 2, 3-DPG) in the presence of fetal hemoglobin (HbF). Arterial pO2 and oxygen content, oxygen capacity, acid base status, oxygen affinity, HbF fraction, plasma pH, red cell pH, and RBC 2, 3-DPG were determined. During the first 50 days of life values of standard P50 (stdP50) (37, pH 7.4), actual in vivo P50 (actP50), RBC 2, 3-DPG, O2 capacity, arterial plasma pH, and red cell pH were scattered around the normal range, although tending to low values for stdP50 and arterial plasma pH and to high values for O2 capacity. After the third month, stdP50 actP50, RBC 2, 3-DPG, O2 capacity, and red cell pH were found to be elevated. Plasma pH and actP50 were scattered around the normal range (Figs. 1 and 2). Intraerythrocytic pH in hypoxemic infants was increased compared with normal children when related to plasma pH (Fig. 3). A close to normal intraerythrocytic pH was therefore found in the hypoxemic infants with low plasma pH, and an increased intraerythrocytic pH in the hypoxemic children with normal plasma pH (Fig. 1). A significant negative correlation exists between erythrocyte H+ ion and 2, 3-DPG concentration (Fig. 5); regression constants derived from data at high (mean 47%) and low (mean 9%) fractions of HbF are not significantly different (Regression Equations 8 and 11 in Table 1). Thus, the known difference in 2, 3-DPG binding to fetal or adult deoxyhemoglobin does not measurably influence the erythrocyte 2, 3-DPG concentration, indicating that in vivo the 2, 3-DPG synthesis in hypoxia is virtually regulated by the erythrocyte pH, which in turn is determined by plasma pH and the oxygenation state of hemoglobin.

  18. Hypercapnia and low pH induce neuroepithelial cell proliferation and emersion behaviour in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Robertson, Cayleih E; Turko, Andy J; Jonz, Michael G; Wright, Patricia A

    2015-10-01

    Aquatic hypercapnia may have helped to drive ancestral vertebrate invasion of land. We tested the hypothesis that amphibious fishes sense and respond to elevated aquatic PCO2 by behavioural avoidance mechanisms, and by morphological changes at the chemoreceptor level. Mangrove rivulus (Kryptolebias marmoratus) were exposed to 1 week of normocapnic control water (pH 8), air, hypercapnia (5% CO2, pH 6.8) or isocapnic acidosis (pH 6.8). We found that the density of CO2/H(+) chemoreceptive neuroepithelial cells (NECs) was increased in hypercapnia or isocapnic acidosis-exposed fish. Projection area (a measure of cell size) was unchanged. Acute exposure to progressive hypercapnia induced the fish to emerse (leave water) at water pH values ∼6.1, whereas addition of HCl to water caused a more variable response with a lower pH threshold (∼pH 5.5). These results support our hypothesis and suggest that aquatic hypercapnia provides an adequate stimulus for extant amphibious fishes to temporarily transition from aquatic to terrestrial habitats. © 2015. Published by The Company of Biologists Ltd.

  19. Predictive value of late decelerations for fetal acidemia in unselective low-risk pregnancies.

    PubMed

    Sameshima, Hiroshi; Ikenoue, Tsuyomu

    2005-01-01

    We evaluated the clinical significance of late decelerations (LD) of intrapartum fetal heart rate (FHR) monitoring to detect low pH (< 7.1) in low-risk pregnancies. We selected two secondary and two tertiary-level institutions where 10,030 women delivered. Among them, 5522 were low-risk pregnancies. The last 2 hours of FHR patterns before delivery were interpreted according to the guidelines of the National Institute of Child Health and Human Development. The correlation between the incidence of LD (occasional, < 50%; recurrent, > or = 50%) and severity (reduced baseline FHR accelerations and variability) of LD, and low pH (< 7.1) were evaluated. Statistical analyses included a contingency table with chi2 and the Fisher test, and one-way analysis of variance with the Bonferroni/Dunn test. In the 5522 low-risk pregnancies, 301 showed occasional LD and 99 showed recurrent LD. Blood gases and pH values deteriorated as the incidence of LD increased and as baseline accelerations or variability was decreased. Positive predictive value for low pH (< 7.1) was exponentially elevated from 0% at no deceleration, 1% in occasional LD, and > 50% in recurrent LD with no baseline FHR accelerations and reduced variability. In low-risk pregnancies, information on LD combined with acceleration and baseline variability enables us to predict the potential incidence of fetal acidemia.

  20. The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World

    PubMed Central

    Glas, Martin S.; Fabricius, Katharina E.; de Beer, Dirk; Uthicke, Sven

    2012-01-01

    Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA. PMID:23166810

  1. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    PubMed

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p < 0.05) higher values for the heavy metals cadmium, chromium, copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p < 0.05) lower than the control soil. Similar significant (p < 0.05) elevations were observed in the lake water temperature, salinity, pH, calcium, magnesium, sodium, potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  2. Calcium Isotope (δ44/40Ca) Composition of Morozovella Velascoensis During the Paleocene Eocene Thermal Maximum Ocean Acidification Event

    NASA Astrophysics Data System (ADS)

    Kitch, G. D.; Jacobson, A. D.; Hurtgen, M.; Sageman, B. B.; Harper, D. T.; Zachos, J. C.

    2017-12-01

    Ocean acidification (OA) events are transient disruptions to the carbonate chemistry of seawater that involve decreases in pH, [CO32-] and carbonate mineral saturation states (Ω). Numerical modeling studies predict that the Ca isotope (δ44/40Ca) composition of primary marine carbonate should be sensitive to OA1, and recent evidence from the rock record may support this hypothesis2. Boron isotope (δ11B) data for the planktonic foraminifera Morozovella velascoensis indicate that the Paleocene-Eocene Thermal Maximum (PETM; 55 Mya) was an interval of pronounced OA3, although the Ca isotope composition of the bulk carbonate record appears to show post-burial diagenetic effects4. To further evaluate the Ca isotope proxy, we used a high-precision (2σSD=±0.04‰), double-spike (43Ca-42Ca) TIMS method5 to measure δ44/40Ca values of well-preserved M. velascoensis tests spanning the PETM. M. velascoensis tests (250-355 µm) were picked from samples recovered during ODP Leg 198, Site 1209 on Shatsky Rise in the equatorial Pacific. Five M. velascoensis tests were combined per sample, dissolved, spiked, and analyzed using a Triton TIMS. Repeat dissolutions of ten samples gave δ44/40Ca values within ±0.04‰ of the original measurements. Method and procedural blanks were negligible. δ44/40Ca values are elevated, even before the negative carbon isotope excursion (CIE) that marks the PETM. When δ11/10B values decrease during the CIE, δ44/40Ca values remain elevated, but then decrease by 0.10‰ as δ11B values return to pre-CIE levels. The apparent inverse correlation between δ44/40Ca and δ11B values suggests that Ca isotope fractionation by M. velascoensis was sensitive to OA. A decrease in pH indicated by lower δ11B values is consistent with higher δ44/40Ca values (decreased fractionation) due to elevated [Ca2+]/[CO32-] ratios and reduced W. The Ca isotope composition of pristine foraminiferal calcite may have potential for reconstructing [CO32-]. The current, preliminary dataset may indicate changes in [CO32-] prior to the CIE. 1Nielsen et al., 2012. 2Du Vivier et al., 2015. 3Penman et al., 2014. 4Griffith et al., 2015. 5Lehn et al., 2013.

  3. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium

    USDA-ARS?s Scientific Manuscript database

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known abou...

  4. A prospective echocardiographic evaluation of pulmonary hypertension in chronic hemodialysis patients in the United States: prevalence and clinical significance.

    PubMed

    Ramasubbu, Kumudha; Deswal, Anita; Herdejurgen, Cheryl; Aguilar, David; Frost, Adaani E

    2010-10-05

    Pulmonary hypertension (PH), a disease which carries substantial morbidity and mortality, has been reported to occur in 25%-45% of dialysis patients. No prospective evaluation of the prevalence or clinical significance of PH in chronic dialysis patients in the United States (US) has been undertaken. Echocardiograms were performed prospectively in chronic hemodialysis patients prior to dialysis at a single dialysis center. PH was defined as a tricuspid regurgitant jet ≥2.5 m/s and "more severe PH" as ≥3.0 m/s. Clinical outcomes recovered were all-cause hospitalizations and death at 12 months. In a cohort of 90 patients, 42 patients (47%) met the definition of PH. Of those, 18 patients (20%) met the definition of more severe PH. At 12 months, mortality was significantly higher in patients with PH (26%) compared with patients without PH (6%). All-cause hospitalizations were similar in patients with PH and without PH. Echocardiographic findings suggesting impaired left ventricular function and elevated pulmonary capillary wedge pressure were significantly associated with PH. This prospective cross-sectional study of a single dialysis unit suggests that PH may be present in nearly half of US dialysis patients and when present is associated with increased mortality. Echocardiographic findings demonstrate an association between elevated filling pressures, elevated pulmonary artery pressures, and higher mortality, suggesting that the PH may be secondary to diastolic dysfunction and compounded by volume overload.

  5. The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0.

    PubMed

    Wood, Chris M; Gonzalez, R J; Ferreira, Márcio Soares; Braz-Mota, Susana; Val, Adalberto Luis

    2018-05-01

    The Tambaqui is a model neotropical teleost which is of great economic and cultural importance in artisanal fisheries and commercial aquaculture. It thrives in ion-poor, often acidic Amazonian waters and exhibits excellent regulation of physiology down to water pH 4.0. Curiously, however, it is reported to perform poorly in aquaculture at pH 8.0, an only slightly alkaline pH which would be benign for most freshwater fish. In initial experiments with Tambaqui of intermediate size (30-50 g), we found that ammonia excretion rate was unchanged at pH 4, 5, 6, and 7, but elevated after 20-24 h at pH 8, exactly opposite the pattern seen in most teleosts. Subsequent experiments with large Tambaqui (150-300 g) demonstrated that only ammonia, and not urea excretion was increased at pH 8.0, and that the elevation was proportional to a general increase in MO 2 . There was an accompanying elevation in net acidic equivalent excretion and/or basic equivalent uptake which occurred mainly at the gills. Net Na + balance was little affected while Cl - balance became negative, implicating a disturbance of Cl - versus base exchange rather than Na + versus acid exchange. Arterial blood pH increased by 0.2 units at pH 8.0, reflecting combined metabolic and respiratory alkaloses. Most parameters recovered to control levels by 18-24 h after return to pH 6.0. With respect to large Tambaqui, we conclude that a physiology adapted to acidic pH performs inappropriately at moderately alkaline pH. In small Tambaqui (4-15 g), the responses were very different, with an initial inhibition of ammonia excretion rate at pH 8.0 followed by a subsequent restoration of control levels. Elevated ammonia excretion rate occurred only after return to pH 6.0. Furthermore, MO 2 , plasma cortisol, and branchial vH + ATPase activities all declined during pH 8.0 exposure in small Tambaqui, in contrast to the responses in larger fish. Overall, small Tambaqui appear to cope better at pH 8.0, a difference that may correlate with their natural history in the wild.

  6. Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001

    USGS Publications Warehouse

    Fisher, Lawrence H.; Wood, Tamara M.

    2004-01-01

    Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance and observed in total phosphorus data collected at individual locations.

  7. Sensitivity to ocean acidification differs between populations of the Sydney rock oyster: Role of filtration and ion-regulatory capacities.

    PubMed

    Stapp, Laura S; Parker, Laura M; O'Connor, Wayne A; Bock, Christian; Ross, Pauline M; Pörtner, Hans O; Lannig, G

    2018-04-01

    Understanding mechanisms of intraspecific variation in resilience to environmental drivers is key to predict species' adaptive potential. Recent studies show a higher CO 2 resilience of Sydney rock oysters selectively bred for increased growth and disease resistance ('selected oysters') compared to the wild population. We tested whether the higher resilience of selected oysters correlates with an increased ability to compensate for CO 2 -induced acid-base disturbances. After 7 weeks of exposure to elevated seawater PCO 2 (1100 μatm), wild oysters had a lower extracellular pH (pH e = 7.54 ± 0.02 (control) vs. 7.40 ± 0.03 (elevated PCO 2 )) and increased hemolymph PCO 2 whereas extracellular acid-base status of selected oysters remained unaffected. However, differing pH e values between oyster types were not linked to altered metabolic costs of major ion regulators (Na + /K + -ATPase, H + -ATPase and Na + /H + -exchanger) in gill and mantle tissues. Our findings suggest that selected oysters possess an increased systemic capacity to eliminate metabolic CO 2 , possibly through higher and energetically more efficient filtration rates and associated gas exchange. Thus, effective filtration and CO 2 resilience might be positively correlated traits in oysters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Temperature Dependent Effects of Elevated CO2 on Shell Composition and Mechanical Properties of Hydroides elegans: Insights from a Multiple Stressor Experiment

    PubMed Central

    Chan, Vera B. S.; Thiyagarajan, Vengatesen; Lu, Xing Wen; Zhang, Tong; Shih, Kaimin

    2013-01-01

    The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal’s ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27‰), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C. PMID:24265732

  9. A prospective echocardiographic evaluation of pulmonary hypertension in chronic hemodialysis patients in the United States: prevalence and clinical significance

    PubMed Central

    Ramasubbu, Kumudha; Deswal, Anita; Herdejurgen, Cheryl; Aguilar, David; Frost, Adaani E

    2010-01-01

    Background Pulmonary hypertension (PH), a disease which carries substantial morbidity and mortality, has been reported to occur in 25%–45% of dialysis patients. No prospective evaluation of the prevalence or clinical significance of PH in chronic dialysis patients in the United States (US) has been undertaken. Methods Echocardiograms were performed prospectively in chronic hemodialysis patients prior to dialysis at a single dialysis center. PH was defined as a tricuspid regurgitant jet ≥2.5 m/s and “more severe PH” as ≥3.0 m/s. Clinical outcomes recovered were all-cause hospitalizations and death at 12 months. Results In a cohort of 90 patients, 42 patients (47%) met the definition of PH. Of those, 18 patients (20%) met the definition of more severe PH. At 12 months, mortality was significantly higher in patients with PH (26%) compared with patients without PH (6%). All-cause hospitalizations were similar in patients with PH and without PH. Echocardiographic findings suggesting impaired left ventricular function and elevated pulmonary capillary wedge pressure were significantly associated with PH. Conclusion This prospective cross-sectional study of a single dialysis unit suggests that PH may be present in nearly half of US dialysis patients and when present is associated with increased mortality. Echocardiographic findings demonstrate an association between elevated filling pressures, elevated pulmonary artery pressures, and higher mortality, suggesting that the PH may be secondary to diastolic dysfunction and compounded by volume overload. PMID:21042428

  10. Functional and morphological changes in the adenohypophysis of dogs with induced primary hypothyroidism: loss of TSH hypersecretion, hypersomatotropism, hypoprolactinemia, and pituitary enlargement with transdifferentiation.

    PubMed

    Diaz-Espiñeira, M M; Mol, J A; van den Ingh, T S G A M; van der Vlugt-Meijer, R H; Rijnberk, A; Kooistra, H S

    2008-07-01

    From case studies in humans it is known that primary hypothyroidism (PH) may be associated with morphological and functional changes of the pituitary. There is no insight into the time scale of these changes. In this study, seven beagle dogs were followed up for 3 years after the induction of primary hypothyroidism. Three of these dogs were followed up for another 1.5 years while receiving l-thyroxine. Adenohypophyseal function was investigated at 2-month intervals with the combined intravenous injection of CRH, GHRH, GnRH, and TRH, and measurement of the plasma concentrations of ACTH, GH, LH, PRL, and TSH. In addition, after 2 years of hypothyroidism a single TRH-stimulation test and a somatostatin test were performed, with measurements of the same pituitary hormones. Every 6 months the pituitary gland was visualized by computed tomography (CT). Induction of PH led to high plasma TSH concentrations for a few months, where after concentrations gradually declined to values no longer significantly different from pre-PH values. A blunted response to stimulation of TSH release preceded this decline. Basal plasma GH concentrations increased during PH and there was a paradoxical hyperresponsiveness to TRH stimulation. Basal GH concentrations remained elevated and returned only to low values during l-thyroxine treatment. Basal PRL concentrations decreased significantly during PH and normalized after several months of l-thyroxine treatment. The pituitary gland became enlarged in all dogs. Histomorphology and immunohistochemical studies in 4 dogs, after 3 years of PH, revealed thyrotroph hyperplasia, large vacuolated thyroid deficiency cells, and decreased numbers of mammotrophs. Several cells stained for both GH and TSH. In conclusion, with time PH led to a loss of the TSH response to low T4 concentrations, hypersecretion of GH, and hyposecretion of PRL. The enlarged pituitaries were characterized by thyrotroph hyperplasia, large vacuolated thyroid deficiency cells, and double-staining cells, which are indicative of transdifferentiation.

  11. Noninvasive model including right ventricular speckle tracking for the evaluation of pulmonary hypertension.

    PubMed

    Mahran, Yossra; Schueler, Robert; Weber, Marcel; Pizarro, Carmen; Nickenig, Georg; Skowasch, Dirk; Hammerstingl, Christoph

    2016-08-26

    To find parameters from transthorathic echocardiography (TTE) including speckle-tracking (ST) analysis of the right ventricle (RV) to identify precapillary pulmonary hypertension (PH). Forty-four patients with suspected PH undergoing right heart catheterization (RHC) were consecutively included (mean age 63.1 ± 14 years, 61% male gender). All patients underwent standardized TTE including ST analysis of the RV. Based on the subsequent TTE-derived measurements, the presence of PH was assessed: Left ventricular ejection fraction (LVEF) was calculated by Simpsons rule from 4Ch. Systolic pulmonary artery pressure (sPAP) was assessed with continuous wave Doppler of systolic tricuspid regurgitant velocity and regarded raised with values ≥ 30 mmHg as a surrogate parameter for RA pressure. A concomitantly elevated PCWP was considered a means to discriminate between the precapillary and postcapillary form of PH. PCWP was considered elevated when the E/e' ratio was > 12 as a surrogate for LV diastolic pressure. E/e' ratio was measured by gauging systolic and diastolic velocities of the lateral and septal mitral valve annulus using TDI mode. The results were then averaged with conventional measurement of mitral valve inflow. Furthermore, functional testing with six minutes walking distance (6MWD), ECG-RV stress signs, NT pro-BNP and other laboratory values were assessed. PH was confirmed in 34 patients (precapillary PH, n = 15, postcapillary PH, n = 19). TTE showed significant differences in E/e' ratio (precapillary PH: 12.3 ± 4.4, postcapillary PH: 17.3 ± 10.3, no PH: 12.1 ± 4.5, P = 0.02), LV volumes (ESV: 25.0 ± 15.0 mL, 49.9 ± 29.5 mL, 32.2 ± 13.6 mL, P = 0.027; EDV: 73.6 ± 24.0 mL, 110.6 ± 31.8 mL, 87.8 ± 33.0 mL, P = 0.021) and systolic pulmonary arterial pressure (sPAP: 61.2 ± 22.3 mmHg, 53.6 ± 20.1 mmHg, 31.2 ± 24.6 mmHg, P = 0.001). STRV analysis showed significant differences for apical RV longitudinal strain (RVAS: -7.5% ± 5.6%, -13.3% ± 4.3%, -14.3% ± 6.3%, P = 0.03). NT pro-BNP was higher in patients with postcapillary PH (4677.0 ± 7764.1 pg/mL, precapillary PH: 1980.3 ± 3432.1 pg/mL, no PH: 367.5 ± 420.4 pg/mL, P = 0.03). Patients with precapillary PH presented significantly more often with ECG RV-stress signs (P = 0.001). Receiver operating characteristics curve analyses displayed the most significant area under the curve (AUC) for RVAS (cut-off < -6.5%, AUC 0.91, P < 0.001), sPAP (cut-off > 33 mmHg, AUC 0.86, P < 0.001) and ECG RV stress signs (AUC 0.83, P < 0.001). The combination of these parameters had a sensitivity of 82.8% and a specificity of 17.2% to detect precapillary PH. The combination of non-invasive measurements allows feasible assessment of PH and seems beneficial for the differentiation between the pre- and postcapillary form of this disease.

  12. Elevated vaginal pH in the absence of current vaginal infection, still a challenging obstetrical problem.

    PubMed

    Hantoushzadeh, Sedigheh; Sheikh, Mahdi; Javadian, Pouya; Shariat, Mamak; Amini, Elaheh; Abdollahi, Alireza; Kashanian, Maryam

    2014-04-01

    To assess the association of vaginal pH ≥ 5 in the absence of vaginal infection with systemic inflammation and adverse pregnancy outcome. Four-hundred sixty pregnant women completed the study, upon enrollment Vaginal pH was measured for all women, maternal and umbilical sera were obtained for determining C-reactive protein (CRP) and uric acid levels. Umbilical blood was tested for gas parameters, 1 and 5 min Apgar scores, the need for neonatal resuscitation and neonatal intensive care unit (NICU) admission were recorded. Elevated vaginal pH was significantly associated with preterm birth (odds ratio (OR), 2.23; 95% confidence interval (CI), 1.04-4.76), emergency cesarean section (OR 2.57; 95% CI 1.32-5), neonatal resuscitation in the delivery room (OR 2.85; 95% CI 1.1-7.38), elevated cord base deficit (OR 8.01; 95% CI 1.61-39.81), low cord bicarbonate (OR 4.16, 95% CI 1.33-12.92) and NICU admission (OR 2.02; 95% CI 1.12-3.66). Increased vaginal pH was also significantly associated with maternal leukocytosis, hyperuricemia and elevated CRP levels in maternal and umbilical sera. Elevated vaginal pH in the absence of current vaginal infection still constitutes a risk for adverse pregnancy outcome which is mediated by systemic inflammatory response.

  13. In Vivo Monitoring of pH, Redox Status, and Glutathione Using L-Band EPR for Assessment of Therapeutic Effectiveness in Solid Tumors

    PubMed Central

    Bobko, Andrey A.; Eubank, Timothy D.; Voorhees, Jeffrey L.; Efimova, Olga V.; Kirilyuk, Igor A.; Petryakov, Sergey; Trofimiov, Dmitrii G.; Marsh, Clay B.; Zweier, Jay L.; Grigor’ev, Igor A.; Samouilov, Alexandre; Khramtsov, Valery V.

    2011-01-01

    Approach for in vivo real-time assessment of tumor tissue extracellular pH (pHe), redox, and intracellular glutathione based on L-band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony-stimulating factor. It was observed that tumor pHe is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony-stimulating factor decreased the value of pHe by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony-stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pHe mapping was performed using recently proposed variable frequency proton–electron double-resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pHe values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pHe, extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors. Magn Reson Med 000:000–000, 2011. PMID:22113626

  14. Impact of Thermal Degradation of Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells

    PubMed Central

    Pace, Eric; Jiang, Yuanyuan; Clemens, Amy; Crossman, Tennille

    2018-01-01

    Cyanidin-3-O-glucoside (C3G), the predominant anthocyanin in haskap berries (Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G. PMID:29382057

  15. Impact of Thermal Degradation of Cyanidin-3-O-Glucoside of Haskap Berry on Cytotoxicity of Hepatocellular Carcinoma HepG2 and Breast Cancer MDA-MB-231 Cells.

    PubMed

    Pace, Eric; Jiang, Yuanyuan; Clemens, Amy; Crossman, Tennille; Rupasinghe, H P Vasantha

    2018-01-27

    Cyanidin-3 -O -glucoside (C3G), the predominant anthocyanin in haskap berries ( Lonicera caerulea L.), possesses antioxidant and many other biological activities. This study investigated the impact of temperature and pH on the degradation of the C3G-rich haskap fraction. The effect of the thermal degradation products on the viability of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells was also studied in vitro. Using column chromatography, the C3G-rich fraction was isolated from acetone extracts of haskap berries. The C3G stability in these fractions was studied under elevated temperatures (70 °C and 90 °C) at three different pH values (2.5, 4, and 7) by monitoring the concentration of C3G and its major degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), using liquid chromatography mass spectrometry. Significant degradation of C3G was observed at elevated temperatures and at neutral pH. Conversely, the PCA and PGA concentration increased at higher pH and temperature. Similar to C3G, neutral pH also has a prominent effect on the degradation of PGA, which is further accelerated by heating. The C3G-rich fraction exhibited dose-dependent inhibitory effects on cell metabolic activity when the HepG2 cells were exposed for 48 h. Interestingly, PGA but not PCA exhibited cytotoxic effects against both MDA-MB-231 and HepG2 cells. The results suggest that thermal food processing of haskap could influence its biological properties due to the degradation of C3G.

  16. Side-chain dynamics of a detergent-solubilized membrane protein: Measurement of tryptophan and glutamine hydrogen-exchange rates in M13 coat protein by sup 1 H NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neil, J.D.J.; Sykes, B.D.

    M13 coat protein is a small (50 amino acids) lipid-soluble protein that becomes an integral membrane protein during the infection stage of the life cycle of the M13 phage and is therefore used as a model membrane protein. To study side-chain dynamics in the protein, the authors have measured individual hydrogen-exchange rates for a primary amide in the side chain of glutamine-15 and for the indole amine of tryptophan-26. The protein was solubilized with the use of perdeuteriated sodium dodecyl sulfate (SDS), and hydrogen-exchange rates were measured by using {sup 1}H nuclear magnetic resonance spectroscopy. The glutamine-15 syn proton exchangedmore » at a rate identical with that in glutamine model peptides except that the pH corresponding to minimum exchange was elevated by about 1.5 pH units. The tryptophan-26 indole amine proton exchange was biphasic, suggesting that two populations of tryptophan-26 exist. It is suggested that the two populations may reflect protein dimerization or aggregation in the SDS micelles. The pH values of minimum exchange for tryptophan-26 in both environments were also elevated by 1.3-1.9 pH units. This phenomenon is reproduced when small tryptophan- and glutamine-containing hydrophobic peptides are dissolved in the presence of SDS micelles. The electrostatic nature of this phenomenon is proven by showing that the minimum pH for exchange can be reduced by dissolving the hydrophobic peptides in the positively charged detergent micelle dodecyltrimethylammonium bromide.« less

  17. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    PubMed Central

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  18. Effect of hemodialysis on factors influencing oxygen transport.

    PubMed

    Hirszel, P; Maher, J F; Tempel, G E; Mengel, C E

    1975-06-01

    Ten patients underwent 4 study hemodialyses, one with standard dialysis conditions, one with an isophosphate dialysate, one with simultaneous ammonium chloride loading, and other, after pretreatment, with sodium bicarbonate. Measurement of hemoglobin oxygen affinity (P-50), erythrocyte 2,3-DPG, blood-gasses, and serum chemistries revealed biochemically effective hemodialyses and slight changes in oxygen transport parameters. The P-50 (in vivo) values decreased slightly but significantly (p greater than 0.05) with dialysis. When corrected to pH 7.4, eliminating the Bohr effect, P-50 increased (p greater than 0.05). With unmodified dialysis elevated values of 2,3-DPG (in comparison to normal) decreased, a change that did not correlate with delta-p-50, delta-serum phosphate, or delta-serum creatinine. With standard and isophosphate dialyses Po-2 decreased significantly. The decrease correlated with delta-hydrogen ion concentration and did not occur with dialyses designed to maintain pH constant. Thus, hemodialysis influences many factors that affect oxygen transport in different and counterbalancing directions. These changes are not totally explained by alterations in 2,3-DPG, pH or serum phosphate. Maintenance of acidosis or hyperphosphatemia during dialysis is not recommended.

  19. Soil pH determines fungal diversity along an elevation gradient in Southwestern China.

    PubMed

    Liu, Dan; Liu, Guohua; Chen, Li; Wang, Juntao; Zhang, Limei

    2018-01-03

    Fungi play important roles in ecosystem processes, and the elevational pattern of fungal diversity is still unclear. Here, we examined the diversity of fungi along a 1,000 m elevation gradient on Mount Nadu, Southwestern China. We used MiSeq sequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs) and to measure the fungal composition and diversity. Though the species richness and phylogenetic diversity of the fungal community did not exhibit significant trends with increasing altitude, they were significantly lower at mid-altitudinal sites than at the base. The Bray-Curtis distance clustering also showed that the fungal communities varied significantly with altitude. A distance-based linear model multivariate analysis (DistLM) identified that soil pH dominated the explanatory power of the species richness (23.72%), phylogenetic diversity (24.25%) and beta diversity (28.10%) of the fungal community. Moreover, the species richness and phylogenetic diversity of the fungal community increased linearly with increasing soil pH (P<0.05). Our study provides evidence that pH is an important predictor of soil fungal diversity along elevation gradients in Southwestern China.

  20. The association between a low urine pH and the components of metabolic syndrome in the Korean population: Findings based on the 2010 Korea National health and nutrition examination survey

    PubMed Central

    Cho, Young Hye; Lee, Sang Yeoup; Jeong, Dong Wook; Choi, Eun Jung; Nam, Kyung Jee; Kim, Yun Jin; Lee, Jeong Gyu; Yi, Yu Hyone; Tak, Young Jin; Cho, Byung Mann; Lee, Soo Bong; Lee, Ka Young

    2014-01-01

    Background: Low urine pH is related to obesity and insulin resistance, which are components of metabolic syndrome (MS). The aim of this study was to identify the relation between a low urine pH and MS after controlled for other covariates including demographic and lifestyle factors in adult Korean population. Materials and Methods: We analyzed data from the 2010 Korea National Health and Nutrition Examination Survey, a cross-sectional and nationally representative survey and 1960 men and 2702 women were included in this study. Study subjects were divided into the group with urine pH <5.5 and the group with urine pH ≥5.5 refer to literature. We then evaluated the association between low urine pH and MS. Results: After adjusting for age, sex, smoking status, drinking status, regular exercise, and blood urea nitrogen level, the odds ratio (OR) for the presence of MS in the group with urine pH <5.5 was 1.350 (95% confidence interval [95% CI]: 1.158-1.573) using the American Heart Association/National Heart, Lung, and Blood Institute criteria or 1.304 (95% CI: 1.082-1.572) using the International Diabetes Federation criteria. Among MS components, elevated fasting glucose (OR: 1.231, 95% CI: 1.058-1.433, P = 0.007) and elevated triglyceride (TG) (OR: 1.389, 95% CI: 1.189-1.623, P < 0.001) showed a significantly high OR. Conclusion: The findings confirmed that low urine pH is associated with MS in the Korean population. Among MS components, elevated fasting glucose and elevated TG showed a significantly high OR. PMID:25364357

  1. Physiological responses of Daphnia pulex to acid stress

    PubMed Central

    Weber, Anna K; Pirow, Ralph

    2009-01-01

    Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of whether a carbonic anhydrase (CA) is involved in the catalysis of the reaction, which led to the discovery of 31 CA-genes in the genome of D. pulex. PMID:19383148

  2. Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands--adsorption studies.

    PubMed

    Hua, T; Haynes, R J; Zhou, Y-F; Boullemant, A; Chandrawana, I

    2015-03-15

    The potential to remove Al, Mo, V, As and Ga from alkaline (pH 8.0-8.6) drainage originating from seawater neutralized bauxite processing residue storage areas using constructed wetland technology was studied in a laboratory study. Bauxite processing residue sand, bauxite, alum water treatment sludge and blast furnace slag were investigated as potential active filter materials. Al was shown to precipitate as Al(OH)3 in the pH range 7.0-8.0 in aqueous solution and 6.0-8.5 in the presence of silica sand particles that provided a surface for nucleation. For V As Mo and Ga, adsorption to the surfaces of the adsorbents decreased greatly at elevated pH values (>pH 6-9). Water treatment sludge and bauxite had a greater ability to adsorb V, As and Mo at high pH (As and V at pH 7-9 and Mo at pH 5-7) than processing sand and slag. Adsorption isotherm data for As and V onto all four adsorbent than processing sand and slag. Adsorption isotherm data for As and V onto all four adsorbent materials fitted equally well to the Langmuir and Freundlich equations but for Ga, and to a lesser extent Mo, the Freundlich equation gave higher R(2) values. For all four ions, the maximum adsorption capacity (Langmuir value qmax) was greatest for water treatment sludge. Bauxite adsorbed more Mo, Ga and V than residue sand or slag. The pseudo-second order equation gave a better fit to the experimental kinetic data than the pseudo-first order model suggesting that chemisorption rather than diffusion/exchange was the rate limiting step to adsorption. It was concluded that water treatment sludge and bauxite were the most effective adsorbents and that for effective removal of the target ions the pH of the drainage water needs to be decreased to 6.0-7.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dynamics of soil available phosphorus and its impact factors under simulated climate change in typical farmland of Taihu Lake region, China.

    PubMed

    Yu, Kaihao; Chen, Xiaomin; Pan, Genxing; Zhang, Xuhui; Chen, Can

    2016-02-01

    Global climate change affects the availability of soil nutrients, thereby influencing crop productivity. This research was conducted to investigate the effects of elevated CO2, elevated temperature, and the interaction of the elevated CO2 and temperature on the soil available phosphorus (P) of a paddy-wheat rotation in the Taihu Lake region, China. Winter wheat (Triticum aestivum L.) was cultivated during the study period from 2011 to 2014 at two CO2 levels (350 μL•L(-1) ambient and 500 μL•L(-1) elevated by 150 μL•L(-1)) and two temperatures (ambient and 2 °C above the ambient). Soil available P content increased at the first season and decreased at the last season during the three wheat growing seasons. Soil available P content showed seasonal variation, whereas dynamic changes were not significant within each growing season. Soil available P content had no obvious trends under different treatments. But for the elevated temperature, CO2, and their combination treatments, soil available P content decreased in a long time period. During the period of wheat ripening stage, significant positive correlations were found between soil available P content and saturated hydraulic conductivity (Ks) and organic matter, but significant negative correlations with soil clay content and pH value; the correlation coefficients were 0.9400 (p < 0.01), 0.9942 (p < 0.01), -0.9383 (p < 0.01), and -0.6403 (p < 0.05), respectively. Therefore, Ks, organic matter, soil clay, and pH were the major impact factors on soil available P content. These results can provide a basis for predicting the trend of soil available P variation, as well as guidance for managing the soil nutrients and best fertilization practices in the future climate change scenario.

  4. Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae

    NASA Astrophysics Data System (ADS)

    Andersen, Sissel; Grefsrud, Ellen S.; Harboe, Torstein

    2017-02-01

    The increasing amount of dissolved anthropogenic CO2 has caused a drop in pH values in the open ocean known as ocean acidification. This change in seawater carbonate chemistry has been shown to have a negative effect on a number of marine organisms. Early life stages are the most vulnerable, and especially the organisms that produce calcified structures in the phylum Mollusca. Few studies have looked at effects on scallops, and this is the first study presented including fed larvae of the great scallop (Pecten maximus) followed until day 14 post-fertilization. Fertilized eggs from unexposed parents were exposed to three levels of pCO2 using four replicate units: 465 (ambient), 768 and 1294 µatm, corresponding to pHNIST of 7.94, 7.75 (-0.19 units) and 7.54 (-0.40 units), respectively. All of the observed parameters were negatively affected by elevated pCO2: survival, larval development, shell growth and normal shell development. The latter was observed to be affected only 2 days after fertilization. Negative effects on the fed larvae at day 7 were similar to what was shown earlier for unfed P. maximus larvae. Growth rate in the group at 768 µatm seemed to decline after day 7, indicating that the ability to overcome the environmental change at moderately elevated pCO2 was lost over time. The present study shows that food availability does not decrease the sensitivity to elevated pCO2 in P. maximus larvae. Unless genetic adaptation and acclimatization counteract the negative effects of long term elevated pCO2, recruitment in populations of P. maximus will most likely be negatively affected by the projected drop of 0.06-0.32 units in pH within year 2100.

  5. Comparative effects of pH and Vision herbicide on two life stages of four anuran amphibian species.

    PubMed

    Edginton, Andrea N; Sheridan, Patrick M; Stephenson, Gerald R; Thompson, Dean G; Boermans, Herman J

    2004-04-01

    Vision, a glyphosate-based herbicide containing a 15% (weight:weight) polyethoxylated tallow amine surfactant blend, and the concurrent factor of pH were tested to determine their interactive effects on early life-stage anurans. Ninety-six-hour laboratory static renewal studies, using the embryonic and larval life stages (Gosner 25) of Rana clamitans, R. pipiens, Bufo americanus, and Xenopus laevis, were performed under a central composite rotatable design. Mortality and the prevalence of malformations were modeled using generalized linear models with a profile deviance approach for obtaining confidence intervals. There was a significant (p < 0.05) interaction of pH with Vision concentration in all eight models, such that the toxicity of Vision was amplified by elevated pH. The surfactant is the major toxic component of Vision and is hypothesized, in this study, to be the source of the pH interaction. Larvae of B. americanus and R. clamitans were 1.5 to 3.8 times more sensitive than their corresponding embryos, whereas X. laevis and R. pipiens larvae were 6.8 to 8.9 times more sensitive. At pH values above 7.5, the Vision concentrations expected to kill 50% of the test larvae in 96-h (96-h lethal concentration [LC50]) were predicted to be below the expected environmental concentration (EEC) as calculated by Canadian regulatory authorities. The EEC value represents a worst-case scenario for aerial Vision application and is calculated assuming an application of the maximum label rate (2.1 kg acid equivalents [a.e.]/ha) into a pond 15 cm in depth. The EEC of 1.4 mg a.e./L (4.5 mg/L Vision) was not exceeded by 96-h LC50 values for the embryo test. The larvae of the four species were comparable in sensitivity. Field studies should be completed using the more sensitive larval life stage to test for Vision toxicity at actual environmental concentrations.

  6. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2

    NASA Astrophysics Data System (ADS)

    Bunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.; Akram, Neelam; Vila-Costa, Maria; Palovaara, Joakim; Svensson, Lovisa; Holmfeldt, Karin; González, José M.; Calvo, Eva; Pelejero, Carles; Marrasé, Cèlia; Dopson, Mark; Gasol, Josep M.; Pinhassi, Jarone

    2016-05-01

    Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l-1) however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l-1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

  7. Noninvasive model including right ventricular speckle tracking for the evaluation of pulmonary hypertension

    PubMed Central

    Mahran, Yossra; Schueler, Robert; Weber, Marcel; Pizarro, Carmen; Nickenig, Georg; Skowasch, Dirk; Hammerstingl, Christoph

    2016-01-01

    AIM To find parameters from transthorathic echocardiography (TTE) including speckle-tracking (ST) analysis of the right ventricle (RV) to identify precapillary pulmonary hypertension (PH). METHODS Forty-four patients with suspected PH undergoing right heart catheterization (RHC) were consecutively included (mean age 63.1 ± 14 years, 61% male gender). All patients underwent standardized TTE including ST analysis of the RV. Based on the subsequent TTE-derived measurements, the presence of PH was assessed: Left ventricular ejection fraction (LVEF) was calculated by Simpsons rule from 4Ch. Systolic pulmonary artery pressure (sPAP) was assessed with continuous wave Doppler of systolic tricuspid regurgitant velocity and regarded raised with values ≥ 30 mmHg as a surrogate parameter for RA pressure. A concomitantly elevated PCWP was considered a means to discriminate between the precapillary and postcapillary form of PH. PCWP was considered elevated when the E/e’ ratio was > 12 as a surrogate for LV diastolic pressure. E/e’ ratio was measured by gauging systolic and diastolic velocities of the lateral and septal mitral valve annulus using TDI mode. The results were then averaged with conventional measurement of mitral valve inflow. Furthermore, functional testing with six minutes walking distance (6MWD), ECG-RV stress signs, NT pro-BNP and other laboratory values were assessed. RESULTS PH was confirmed in 34 patients (precapillary PH, n = 15, postcapillary PH, n = 19). TTE showed significant differences in E/e’ ratio (precapillary PH: 12.3 ± 4.4, postcapillary PH: 17.3 ± 10.3, no PH: 12.1 ± 4.5, P = 0.02), LV volumes (ESV: 25.0 ± 15.0 mL, 49.9 ± 29.5 mL, 32.2 ± 13.6 mL, P = 0.027; EDV: 73.6 ± 24.0 mL, 110.6 ± 31.8 mL, 87.8 ± 33.0 mL, P = 0.021) and systolic pulmonary arterial pressure (sPAP: 61.2 ± 22.3 mmHg, 53.6 ± 20.1 mmHg, 31.2 ± 24.6 mmHg, P = 0.001). STRV analysis showed significant differences for apical RV longitudinal strain (RVAS: -7.5% ± 5.6%, -13.3% ± 4.3%, -14.3% ± 6.3%, P = 0.03). NT pro-BNP was higher in patients with postcapillary PH (4677.0 ± 7764.1 pg/mL, precapillary PH: 1980.3 ± 3432.1 pg/mL, no PH: 367.5 ± 420.4 pg/mL, P = 0.03). Patients with precapillary PH presented significantly more often with ECG RV-stress signs (P = 0.001). Receiver operating characteristics curve analyses displayed the most significant area under the curve (AUC) for RVAS (cut-off < -6.5%, AUC 0.91, P < 0.001), sPAP (cut-off > 33 mmHg, AUC 0.86, P < 0.001) and ECG RV stress signs (AUC 0.83, P < 0.001). The combination of these parameters had a sensitivity of 82.8% and a specificity of 17.2% to detect precapillary PH. CONCLUSION The combination of non-invasive measurements allows feasible assessment of PH and seems beneficial for the differentiation between the pre- and postcapillary form of this disease. PMID:27621775

  8. Nanoparticle titanium dioxide aqueous interfacial energy can be modified to control phase stability, coarsening, and morphology

    NASA Astrophysics Data System (ADS)

    Finnegan, Michael Patrick

    The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.

  9. Chemical composition and structural characteristics of Arabian camel (Camelus dromedarius) m. longissimus thoracis.

    PubMed

    Al-Owaimer, A N; Suliman, G M; Sami, A S; Picard, B; Hocquette, J F

    2014-03-01

    Saudi Arabian camels of four breeds (6 animals per breed) were used to evaluate characteristics and quality of their meat. Chemical composition, fibre cross sectional area, collagen content, muscle metabolism, cooking loss, pH at 24 h post mortem, colour values (except redness) and shear force of Longissimus thoracis (LT) muscle did not differ between the breeds. Elevated pH values and short sarcomeres reduced overall tenderisation, with a difference between myofibril fragmentation index (P<0.001) and sarcomere length (P<0.05) between breeds. A positive correlation was observed between the activities of the mitochondrial enzymes (r>0.49), between the glycolytic activities (PFK and LDH) (r=0.61) and between Myosin Heavy Chain IIa and LDH activity. The intramuscular fat content was positively associated with redness and muscle oxidative metabolism, whereas shear force had a slight positive association with collagen content and muscle glycolytic metabolism and a negative association with muscle oxidative metabolism and muscle fibre area. © 2013.

  10. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline.

    PubMed

    Li, Guixiang; Xu, Guorui; Shen, Congcong; Tang, Yong; Zhang, Yuxin; Ma, Keming

    2016-11-01

    Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil conditions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly decreasing pattern in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohnen, V.A.; Aneja, V.; Bailey, B.

    The report summarizes the results of the four year field measurement and data analysis program of MCCP. The MCCP is sponsored by the U.S. Environmental Protection Agency as part of the joint U.S. Forest Service-EPA Spruce-Fir Research Cooperative. The objectives of the project have been met and the result is an assessment of principal atmospheric constituents as they impact the high elevation forests of the Eastern U.S. Deposition of SO4(-2), NO3(-), H(+), and NH(4+) in cloud water represents a significant input to forest canopies with elevations greater than 1000m. Cloud water deposition can exceed wet (rain) deposition and may bemore » the dominant process for input of sulfate and nitrate compounds during the growing season in high elevation forests frequently exposed to clouds. Cloud water pH concentrations may be as much as 0.6pH units lower than pH in rain. SO(4+) and NO3(-) concentrations are also higher in cloud water than in precipitation. Ozone data reveals that significant differences exist between ozone concentrations at high elevation and low elevation sites. The primary effect of the difference is to produce higher mean ozone concentrations and longer episodes at the higher elevation sites.« less

  12. Physiological and isotopic responses of scleractinian corals to ocean acidification

    NASA Astrophysics Data System (ADS)

    Krief, Shani; Hendy, Erica J.; Fine, Maoz; Yam, Ruth; Meibom, Anders; Foster, Gavin L.; Shemesh, Aldo

    2010-09-01

    Uptake of anthropogenic CO 2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state ( Ωarag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistillata, exposed to high pCO 2 (or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistillata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO 2 conditions, corresponding to pH T values of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater Ωarag < 1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C), and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density, and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO 2 (low pH) conditions. Both species showed similar trends of δ 11B depletion and δ 18O enrichment under reduced pH, whereas the δ 13C results imply species-specific metabolic response to high pCO 2 conditions. The skeletal δ 11B values plot above seawater δ 11B vs. pH borate fractionation curves calculated using either the theoretically derived α B value of 1.0194 (Kakihana et al. (1977) Bull. Chem. Soc. Jpn.50, 158) or the empirical α B value of 1.0272 (Klochko et al. (2006) EPSL248, 261). However, the effective α B must be greater than 1.0200 in order to yield calculated coral skeletal δ 11B values for pH conditions where Ωarag ⩾ 1. The δ 11B vs. pH offset from the seawater δ 11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal δ 13C and δ 18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeletons.

  13. Inner-Helmholtz potential development at the hematite (α-Fe 2O 3) (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Boily, Jean-François; Chatman, Shawn; Rosso, Kevin M.

    2011-08-01

    Electric potentials of the (0 0 1) surface of hematite were measured as a function of pH and ionic strength in solutions of sodium nitrate and oxalic acid using the single-crystal electrode approach. The surface is predominantly charge-neutral in the pH 4-14 range, and develops a positive surface potential below pH 4 due to protonation of μ-OH 0 sites (p K1,1,0,int = -1.32). This site is resilient to deprotonation up to at least pH 14 (-p K-1,1,0,int ≫ 19). The associated Stern layer capacitance of 0.31-0.73 F/m 2 is smaller than typical values of powders, and possibly arises from a lower degree of surface solvation. Acid-promoted dissolution under elevated concentrations of HNO 3 etches the (0 0 1) surface, yielding a convoluted surface populated by -OH20.5+ sites. The resulting surface potential was therefore larger under these conditions than in the absence of dissolution. Oxalate ions also promoted (0 0 1) dissolution. Associated electric potentials were strongly negative, with values as large as -0.5 V, possibly from metal-bonded interactions with oxalate. The hematite surface can also acquire negative potentials in the pH 7-11 range due to surface complexation and/or precipitation of iron species (0.0038 Fe/nm 2) produced from acidic conditions. Oxalate-bearing systems also result in negative potentials in the same pH range, and may include ferric-oxalate surface complexes and/or surface precipitates. All measurements can be modeled by a thermodynamic model that can be used to predict inner-Helmholtz potentials of hematite surfaces.

  14. Responding for a conditioned reinforcer or unconditioned sensory reinforcer in mice: interactions with environmental enrichment, social isolation, and monoamine reuptake inhibitors.

    PubMed

    Browne, Caleb J; Fletcher, Paul J; Zeeb, Fiona D

    2016-03-01

    Environmental factors influence the etiology of many psychiatric disorders. Likewise, environmental factors can alter processes central to motivation. Therefore, motivational deficits present in many disorders may be influenced by early life environmental conditions. We examined whether housing animals in different environmental conditions influenced the ability of sensory stimuli to acquire incentive value and whether elevated monoamine activity altered responsing for these stimuli. Isolation-housed (IH), pair-housed (PH), and environmentally enriched (EE) male C57BL/6N mice were examined in tests of responding for a conditioned reinforcer (CRf) or an unconditioned sensory reinforcer (USRf). The CRf was previously paired with saccharin delivery through Pavlovian conditioning, while the USRf was not conditioned with a reward. Following baseline tests of responding for the CRf or USRf, the effects of elevated monoamine activity were examined. At baseline, PH and EE mice responded similarly for the CRf or USRf. IH mice responded more for the CRf but exhibited slower acquisition of responding for the USRf. Administration of citalopram, a serotonin transporter blocker, or atomoxetine, a norepinephrine transporter blocker, decreased responding for the CRf and USRf in all groups. The dopamine transporter blocker GBR 12909 generally increased responding for the CRf and USRf, but further analysis revealed enhanced responding for both reinforcers only in EE mice. Baseline incentive motivation is strongly influenced by the social component of housing conditions. Furthermore, environmental enrichment increased the sensitivity to elevated dopamine activity, while acute elevations in serotonin and norepinephrine inhibit incentive motivation irrespective of housing condition.

  15. Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects.

    PubMed

    Lawrence, Patrick G; Lapitsky, Yakov

    2015-02-03

    Gel-like coacervates that adhere to both hydrophilic and hydrophobic substrates under water have recently been prepared by ionically cross-linking poly(allylamine) (PAH) with pyrophosphate (PPi) and tripolyphosphate (TPP). Among the many advantages of these underwater adhesives (which include their simple preparation and low cost) is their ability to dissolve on demand when exposed to high or low pH. To further analyze their stimulus-responsive properties, we have investigated the pH and ionic strength effects on the formation, rheology and adhesion of PAH/PPi and PAH/TPP complexes. The ionic cross-linker concentrations needed to form these adhesives decreased with increasing pH and ionic strength (although the complexes ceased to form when the parent solution pH exceeded ca. 8.5; i.e., the effective pKa of PAH). Once formed, their ionic cross-links were most stable (as inferred from their relaxation times) at near-neutral or slightly alkaline pH values (of roughly 6.5-9) and at low ionic strengths. The decrease in ionic cross-link stability within complexes prepared at other pH values and at elevated (150-300 mM) NaCl concentrations diminished both the strength and longevity of adhesion (although, under most conditions tested, the short-term tensile adhesion strengths remained above 10(5) Pa). Additionally, the sensitivity of PAH/PPi and PAH/TPP complexes to ionic strength was demonstrated as a potential route to injectable adhesive design (where spontaneous adhesive formation was triggered via injection of low-viscosity, colloidal PAH/TPP dispersions into phosphate buffered saline). Thus, while the sensitivity of ionically cross-linked PAH networks to pH and ionic strength can weaken their adhesion, it can also impart them with additional functionality, such as minimally invasive, injectable delivery, and ability to form and dissolve their bonds on demand.

  16. Temperature and pH effects on feeding and growth of Antarctic krill

    NASA Astrophysics Data System (ADS)

    Saba, G.; Bockus, A.; Fantasia, R. L.; Shaw, C.; Sugla, M.; Seibel, B.

    2016-02-01

    Rapid warming in the Western Antarctic Peninsula (WAP) region is occurring, and is associated with an overall decline in primary, secondary, and higher trophic levels, including Antarctic krill (Euphausia superba), a key species in Antarctic food webs. Additionally, there are predictions that by the end of this century the Southern Ocean will be one of the first regions to be affected by seawater chemistry changes associated with enhanced CO2. Ocean acidification and warming may act synergistically to impair animal performance, which may negatively impact Antarctic krill. We assessed the effects of temperature (ambient temperature, ambient +3 degrees C) and pH (Experiment 1 = 8.0, 7.7; Experiment 2 = 8.0, 7.5, 7.1) on juvenile Antarctic krill feeding and growth (growth increment and intermolt period) during incubation experiments at Palmer Station, Antarctica. Food intake was lower in krill exposed to reduced pH. Krill intermolt period (IMP) was significantly lower in the elevated temperature treatments (16.9 days) compared to those at 0 degrees (22.8 days). Within the elevated temperature treatment, minor increases in IMP occurred in krill exposed reduced pH. Growth increment (GI) was lower with decreased pH at the first molt, and this was exacerbated at elevated temperature. However, differences in GI were eliminated between the first and second molts suggesting potential ability of Antarctic krill to acclimate to changes in temperature and pH. Reductions in juvenile krill growth and feeding under elevated temperature and reduced pH are likely caused by higher demands for internal acid-base regulation or a metabolic suppression. However, the subtlety of these feeding and growth responses leaves an open question as to how krill populations will tolerate prolonged future climate change in the Antarctic.

  17. Hepatectomy-Related Hypophosphatemia: A Novel Phosphaturic Factor in the Liver-Kidney Axis

    PubMed Central

    Nomura, Kengo; Miyagawa, Atsumi; Shiozaki, Yuji; Sasaki, Shohei; Kaneko, Ichiro; Ito, Mikiko; Kido, Shinsuke; Segawa, Hiroko; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2014-01-01

    Marked hypophosphatemia is common after major hepatic resection, but the pathophysiologic mechanism remains unknown. We used a partial hepatectomy (PH) rat model to investigate the molecular basis of hypophosphatemia. PH rats exhibited hypophosphatemia and hyperphosphaturia. In renal and intestinal brush-border membrane vesicles isolated from PH rats, Na+-dependent phosphate (Pi) uptake decreased by 50%–60%. PH rats also exhibited significantly decreased levels of renal and intestinal Na+-dependent Pi transporter proteins (NaPi-IIa [NaPi-4], NaPi-IIb, and NaPi-IIc). Parathyroid hormone was elevated at 6 hours after PH. Hyperphosphaturia persisted, however, even after thyroparathyroidectomy in PH rats. Moreover, DNA microarray data revealed elevated levels of nicotinamide phosphoribosyltransferase (Nampt) mRNA in the kidney after PH, and Nampt protein levels and total NAD concentration increased significantly in the proximal tubules. PH rats also exhibited markedly increased levels of the Nampt substrate, urinary nicotinamide (NAM), and NAM catabolites. In vitro analyses using opossum kidney cells revealed that NAM alone did not affect endogenous NaPi-4 levels. However, in cells overexpressing Nampt, the addition of NAM led to a marked decrease in cell surface expression of NaPi-4 that was blocked by treatment with FK866, a specific Nampt inhibitor. Furthermore, FK866-treated mice showed elevated renal Pi reabsorption and hypophosphaturia. These findings indicate that hepatectomy-induced hypophosphatemia is due to abnormal NAM metabolism, including Nampt activation in renal proximal tubular cells. PMID:24262791

  18. 1 H NMRS of carnosine combined with 31 P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy.

    PubMed

    Reyngoudt, Harmen; Turk, Suna; Carlier, Pierre G

    2018-01-01

    In recent years, quantitative nuclear magnetic resonance imaging and spectroscopy (NMRI and NMRS) have been used more systematically as outcome measures in natural history and clinical trial studies for Duchenne muscular dystrophy (DMD). Whereas most of these studies have emphasized the evaluation of the fat fraction as an assessment for disease severity, less focus has been placed on metabolic indices measured by NMRS. 31 P NMRS in DMD reveals an alkaline inorganic phosphate (P i ) pool, originating from either leaky dystrophic myocytes or an increased interstitial space. 1 H NMRS, exploiting the pH-sensitive proton resonances of carnosine, an intracellular dipeptide, was used to distinguish between these two hypotheses. NMR data were obtained in 23 patients with DMD and 14 healthy subjects on a 3-T clinical NMR system. Both 31 P and 1 H NMRS data were acquired at the level of the gastrocnemius medialis muscle. A multi-slice multi-echo imaging acquisition was performed for the determination of water T 2 and fat fraction in the same region of interest. Whereas nearly all patients with DMD showed an elevated pH compared with healthy controls when using 31 P NMRS, 1 H NMRS-determined pH was not systematically increased. As expected, the carnosine-based intracellular pH was never found to be alkaline in the absence of a concurrent P i -based pH elevation. In addition, abnormal intracellular pH, based on carnosine, was never associated with normal water T 2 values. We conclude that, in one group of patients, both 1 H and 31 P NMRS showed an alkaline pH, originating from the intracellular compartment and reflecting ionic dysregulation in dystrophic myocytes. In the other patients with DMD, intracellular pH was normal, but an alkaline P i pool was still present, suggesting an extracellular origin, probably revealing an expanded interstitial volume fraction, often associated with fibrotic changes. The data demonstrate that 1 H NMRS could serve as a biomarker to assess the normalization of intramyocytic pH and sarcolemmal permeability following therapy inducing dystrophin expression in patients with DMD. Copyright © 2017 John Wiley & Sons, Ltd.

  19. High-shear, jet-cooking, and alkali treatment of corn distillers' dried grains to obtain products with enhanced protein, oil and phenolic antioxidants.

    PubMed

    Inglett, G E; Chen, D; Rose, D J; Berhow, M

    2010-08-01

    Distillers dried grains (DDG) have potential to be a nutritionally important source of protein, oil and phenolic antioxidants. DDG was subjected to high-shear and jet-cooking, with or without alkaline pH adjustment and autoclaving. Soluble and insoluble fractions were analyzed for protein, oil and ash. Extracts were analyzed for phenolic acids and antioxidant activity. Protein contents were significantly elevated in the insoluble fractions after treatment and the oil content was drastically increased in the insoluble fraction after high-shear and jet-cooking without pH adjustment. Alkaline pH adjustment resulted in a soluble fraction that was highest in phenolic acids, but not antioxidant activity. The highest antioxidant activity was found in the 50% ethanol extract from DDG that had been subjected to high-shear and jet-cooking. These results suggest that high-shear and jet-cooking may be useful processing treatments to increase the value of DDG by producing fractions high in protein, oil and extractable phenolic acids with high antioxidant activity. The DDG fractions and extracts described herein may be useful as food and nutraceutical ingredients, and, if used for these applications, will increase the value of DDG and ease economic burdens on ethanol producers, allowing them to compete in the bio-fuel marketplace.

  20. Characterization of major-ion chemistry and nutrients in headwater streams along the Appalachian National Scenic Trail and within adjacent watersheds, Maine to Georgia

    USGS Publications Warehouse

    Argue, Denise M.; Pope, Jason P.; Dieffenbach, Fred

    2012-01-01

    An inventory of water-quality data on field parameters, major ions, and nutrients provided a summary of water quality in headwater (first- and second-order) streams within watersheds along the Appalachian National Scenic Trail (Appalachian Trail). Data from 1,817 sampling sites in 831 catchments were used for the water-quality summary. Catchment delineations from NHDPlus were used as the fundamental geographic units for this project. Criteria used to evaluate sampling sites for inclusion were based on selected physical attributes of the catchments adjacent to the Appalachian Trail, including stream elevation, percentage of developed land cover, and percentage of agricultural land cover. The headwater streams of the Appalachian Trail are generally dilute waters, with low pH, low acid neutralizing capacity (ANC), and low concentrations of nutrients. The median pH value was slightly acidic at 6.7; the median specific conductance value was 23.6 microsiemens per centimeter, and the median ANC value was 98.7 milliequivalents per liter (μeq/L). Median concentrations of cations (calcium, magnesium, sodium, and potassium) were each less than 1.5 milligrams per liter (mg/L), and median concentrations of anions (bicarbonate, chloride, fluoride, sulfate, and nitrate) were less than 10 mg/L. Differences in water-quality constituent levels along the Appalachian Trail may be related to elevation, atmospheric deposition, geology, and land cover. Spatial variations were summarized by ecological sections (ecosections) developed by the U.S. Forest Service. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all negatively correlated with elevation. The highest elevation ecosections (White Mountains, Blue Ridge Mountains, and Allegheny Mountains) had the lowest pH, ANC, and concentrations of major ions. The lowest elevation ecosections (Lower New England and Hudson Valley) generally had the highest pH, ANC, and concentrations of major ions. The geology in discrete portions of these two ecosections was classified as containing carbonate minerals which has likely influenced the chemical character of the streamwater. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all positively correlated with percentages of developed and agricultural land uses at the lower elevations of the central region of the Appalachian Trail (including the Green-Taconic-Berkshire Mountains, Lower New England, Hudson Valley, and Northern Ridge and Valley ecosections). The distinctly different chemical character of the streams in the central sections of the Appalachian Trail is likely related to the lower elevations, the presence of carbonate minerals in the geology, higher percentages of developed and agricultural land uses, and possibly the higher inputs of sulfate and nitrate from atmospheric deposition. Acid deposition of sulfate and nitrate are important influences on the acid-base chemistry of the surface waters of the Appalachian Trail. Atmospheric deposition estimates are consistently high (more than 18 kilograms per hectare (kg/ha) for sulfate, and more than 16 kg/ha for nitrate) at both the highest and lowest elevations. However, the lowest elevation (Green-Taconic-Berkshire Mountains, Lower New England, Hudson Valley, Northern Glaciated Allegheny Plateau, and Northern Ridge and Valley ecosections) included the largest spatial area of sustained high estimates of atmospheric deposition. Calcium-bicarbonate was the most frequently calculated water type in the Lower New England and Hudson Valley ecosections. In the northern and southern sections of the Appalachian Trail mix-cation water types were most prevalent and sulfate was the predominate anion. The predominance of the sulfate anion in the surface waters of the northern and southern ecosections likely reflects the influence of sulfate deposition. Although the central portion of the Appalachian Trail has the largest spatial area of high atmospheric acid deposition, the lower ionic strength waters in the northern and southern ecosections of the Appalachian Trail may have been more adversely affected by acid deposition. The low ionic strength of the streams in the White Mountains, Blue Ridge Mountains, and Allegheny Mountains ecosections makes parts of these regions susceptible to seasonal or event-driven episodic acidification, which can be detrimental to health of aquatic and terrestrial ecosystems. Median catchment ANC values were classified into three groups - acidic, sensitive, and insensitive. The White Mountains, Blue Ridge Mountains, and Allegheny Mountains ecosections included the highest frequency of catchments classified as acidic or sensitive. More than 56 percent of the catchments from the White Mountains ecosection were classified as sensitive to acidic inputs. In the Blue Ridge ecosection, 1.6 percent of the catchments were classified as acidic, and 38.2 percent of the catchments were classified as sensitive to acidic inputs. In the Allegheny Mountains ecosection, 17.6 percent of the catchments were classified as acidic, and 29.4 percent of the catchments were classified as sensitive to acidic inputs. Median concentrations of nitrogen species were less than 0.4 mg/L, and median concentrations of total phosphorus were less than 0.02 mg/L along the Appalachian Trail. A comparison of median catchment concentrations of nutrients to estimated national background concentrations demonstrated that concentrations along the Appalachian Trail are generally lower. A comparison of median concentrations of total nitrogen and total phosphorus to the U.S. Environmental Protection Agency's (USEPA) nutrient criteria for the Eastern U.S. ecoregions showed that the concentrations of total nitrogen in the northern section of the Appalachian Trail were generally higher than the USEPA criterion. Similarly, median concentrations of total phosphorus in the southern regions of the Appalachian Trail were approximately twice as high as USEPA criteria. Sections of the Appalachian Trail are adjacent to modest amounts of agricultural and developed land areas. These nonforested land areas may be contributing to the percentage of catchments in which concentrations of total nitrogen and total phosphorus are higher than USEPA nutrient ecoregion criteria.

  1. Biomarkers of airway acidity and oxidative stress in exhaled breath condensate from grain workers.

    PubMed

    Do, Ron; Bartlett, Karen H; Dimich-Ward, Helen; Chu, Winnie; Kennedy, Susan M

    2008-11-15

    Grain workers report adverse respiratory symptoms due to exposures to grain dust and endotoxin. Studies have shown that biomarkers in exhaled breath condensate (EBC) vary with the severity of airway inflammation. The purpose of the study was to evaluate biomarkers of airway acidity (pH and ammonium [NH(4)(+)]) and oxidative stress (8-isoprostane) in the EBC of grain workers. A total of 75 workers from 5 terminal elevators participated. In addition to EBC sampling, exposure monitoring for inhalable grain dust and endotoxin was performed; spirometry, allergy testing, and a respiratory questionnaire derived from that of the American Thoracic Society were administered. Dust and endotoxin levels ranged from 0.010 to 13 mg/m(3) (median, 1.0) and 8.1 to 11,000 endotoxin units/m(3) (median, 610) respectively. EBC pH values varied from 4.3 to 8.2 (median, 7.9); NH(4)(+) values from 22 to 2,400 microM (median, 420); and 8-isoprostane values from 1.3 to 45 pg/ml (median, 11). Univariate and multivariable analyses revealed a consistent effect of cumulative smoking and obesity with decreased pH and NH(4)(+), and intensity of grain dust and endotoxin with increased 8-isoprostane. Duration of work on the test day was associated with decreased pH and NH(4)(+), whereas duration of employment in the industry was associated with decreased 8-isoprostane. Chronic exposures are associated with airway acidity, whereas acute exposures are more closely associated with oxidative stress. These results suggest that the collection of EBC may contribute to predicting the pathological state of the airways of workers exposed to acute and chronic factors.

  2. Steel slag raises pH of greenhouse substrates

    USDA-ARS?s Scientific Manuscript database

    Dolomitic lime (DL) is the primary liming agent used for increasing pH in peatmoss-based substrates. Steel slag (SS) is a byproduct of the steel manufacturing industry that has been used to elevate field soil pH. The objective of this research was to determine the pH response of a peatmoss-based g...

  3. Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension.

    PubMed

    Swift, Andrew J; Rajaram, Smitha; Condliffe, Robin; Capener, Dave; Hurdman, Judith; Elliot, Charlie; Kiely, David G; Wild, Jim M

    2012-10-01

    The aim of this study was to evaluate the clinical use of magnetic resonance imaging measurements related to pulmonary artery stiffness in the evaluation of pulmonary hypertension (PH). A total of 134 patients with suspected PH underwent right heart catheterization (RHC) and magnetic resonance imaging on a 1.5-T scanner within 2 days. Phase contrast imaging at the pulmonary artery trunk and cine cardiac views were acquired. Pulmonary artery area change (AC), relative AC (RAC), compliance (AC/pulse pressure from RHC), distensibility (RAC/pulse pressure from RHC), right ventricular functional indices, and right ventricular mass were all derived. Regression curve fitting identified the statistical model of best fit between RHC measurements and pulmonary artery stiffness indices. The diagnostic accuracy and prognostic value of noninvasive AC and RAC were also assessed. The relationship between pulmonary vascular resistance and pulmonary artery RAC was best reflected by an inverse linear model. Patients with mild elevation in pulmonary vascular resistance (<4 Woods units) demonstrated reduced RAC (P = 0.02) and increased right ventricular mass index (P < 0.0001) without significant loss of right ventricular function (P = 0.17). At follow-up of 0 to 40 months, 18 patients with PH had died (16%). Analysis of Kaplan-Meier plots showed that both AC and RAC predicted mortality (log-rank test, P = 0.046 and P = 0.012, respectively). Area change and RAC were also predictors of mortality using univariate Cox proportional hazards regression analysis (P = 0.046 and P = 0.03, respectively). Noninvasive assessment of pulmonary artery RAC is a marker sensitive to early increased vascular resistance in PH and is a predictor of adverse outcome.

  4. Active modulation of the calcifying fluid carbonate chemistry (δ11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits.

    PubMed

    Ross, Claire L; Falter, James L; McCulloch, Malcolm T

    2017-10-23

    Coral calcification is dependent on both the supply of dissolved inorganic carbon (DIC) and the up-regulation of pH in the calcifying fluid (cf). Using geochemical proxies (δ 11 B, B/Ca, Sr/Ca, Li/Mg), we show seasonal changes in the pH cf and DIC cf for Acropora yongei and Pocillopora damicornis growing in-situ at Rottnest Island (32°S) in Western Australia. Changes in pH cf range from 8.38 in summer to 8.60 in winter, while DIC cf is 25 to 30% higher during summer compared to winter (×1.5 to ×2 seawater). Thus, both variables are up-regulated well above seawater values and are seasonally out of phase with one another. The net effect of this counter-cyclical behaviour between DIC cf and pH cf is that the aragonite saturation state of the calcifying fluid (Ω cf ) is elevated ~4 times above seawater values and is ~25 to 40% higher during winter compared to summer. Thus, these corals control the chemical composition of the calcifying fluid to help sustain near-constant year-round calcification rates, despite a seasonal seawater temperature range from just ~19° to 24 °C. The ability of corals to up-regulate Ω cf is a key mechanism to optimise biomineralization, and is thus critical for the future of coral calcification under high CO 2 conditions.

  5. A laboratory study evaluating the pH of various modern root canal filling materials.

    PubMed

    Pawińska, Małgorzata; Szczurko, Grzegorz; Kierklo, Anna; Sidun, Jarosław

    2017-01-01

    Alkaline pH is responsible for antibacterial activity and the stimulation of periapical tissue healing. It neutralizes the acidic environment of inflammatory tissues in the periapical region of the teeth and favors bone repair by activating tissue enzymes. The aim of this study was to evaluate and compare in vitro the pH of 8 root canal filling materials (sealers and points) -AH Plus Jet (AH), Apexit Plus (AP), Endomethasone N (END), Epiphany (EP), GuttaFlow (GF), gutta-percha (G), Resilon (R), Tubliseal (T). 0.1 g of each material (n = 6) was placed in dialysis tubes and immersed in 20 mL of deionized water. The control contained deionized water (pH 6.6) with an empty tube. The pH values were recorded immediately after immersion (baseline) and after 1, 2, 24, 48, 120, and 192 h with a pH-meter. Data were statistically analyzed using the Student's -t test and 1-way analysis of variance (p < 0.05). Nearly all the materials had pH significantly higher than the control (p < 0.05). There were significant differences in the pH between the materials tested at each time point (p < 0.001). The highest pH was exhibited by EP, followed by AP and AH. The lowest pH was shown by GF, G and R. Among the materials studied, only EP, AP and AH Plus were able to elevate the pH level that would allow inactivation of microorganisms in the root canals and promote healing of inflamed periapical tissues. However, the low alkalizing potential of G and R can be modified by the concomitant application of sealers producing alkaline pH.

  6. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    PubMed

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p<0.05). The test sealers showed water sorption and porosity similar to MTA (p>0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells.

    PubMed

    Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez

    2015-04-20

    Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of β-aggregation in alcohol-denaturated α-chymotrypsin.

    PubMed

    Alcaráz, Mirta R; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2016-06-01

    In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.

  9. Variation in Phenometric Lapse Rates in Pasture Resources across Four Rayons in Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Tomaszewska, M. A.; Kelgenbaeva, K.

    2017-12-01

    High elevation pasture resources form the foundation of agro-pastoralist livelihoods in Kyrgyzstan and elsewhere in montane Central Asia. We explore the temporal and the topographical variation in phenometric lapse rates (PLRs: the change in a phenometric as a function of elevation) across four rayons in two oblasts of the Kyrgyz Republic—Alay, At-Bashy, Chong Alay, and Naryn—with the aim of identifying and quantifying robust generic patterns in the PLRs. We evaluate two fundamental phenometrics derived from the downward convex quadratic model of land surface phenology that links the NDVI to accumulated growing degree-day (AGDD). The peak height (PH) is the maximum NDVI value obtained from the fitted model. The thermal time to peak (TTP) is the amount of AGDD required to reach the PH. We fitted sixteen years of Landsat NDVI data at 30 m spatial resolution to annual AGDD progressions derived from MODIS land surface temperature time series at 1 km spatial resolution, yielding maps for each phenometric. If the coefficient of determination was less than 0.5, then the model fit was deemed a failure. We classified the reliability of pasture resources into five classes based on the number of years of successful model fit: very persistent (14-16 y); persistent (11-13 y); marginal (7-10 y); occasional (4-6); and rare (1-3). We explore the interactive roles of elevation, slope, aspect, latitude, and rayon on the PLRs and pasture resource persistence to identify critical areas for resource management.

  10. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.

    PubMed

    Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru

    2017-09-01

    When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma)

    NASA Astrophysics Data System (ADS)

    Mu, J.; Jin, F.; Wang, J.; Zheng, N.; Cong, Y.

    2015-01-01

    The potential effects of elevated CO2 level and reduced carbonate saturation state in marine environment on fishes and other non-calcified organisms are still poorly known. In present study, we investigated the effects of ocean acidification on embryogenesis and organogenesis of newly hatched larvae of marine medaka (Oryzias melastigma) after 21 d exposure of eggs to different artificially acidified seawater (pH 7.6 and 7.2, respectively), and compared with those in control group (pH 8.2). Results showed that CO2-driven seawater acidification (pH 7.6 and 7.2) had no detectable effect on hatching time, hatching rate, and heart rate of embryos. However, the deformity rate of larvae in pH 7.2 treatment was significantly higher than that in control treatment. The left and right sagitta areas did not differ significantly from each other in each treatment. However, the mean sagitta area of larvae in pH 7.6 treatment was significantly smaller than that in the control (p = 0.024). These results suggest that although marine medaka might be more tolerant of elevated CO2 than some other fishes, the effect of elevated CO2 level on the calcification of otolith is likely to be the most susceptibly physiological process of pH regulation in early life stage of marine medaka.

  12. The Influence of Marine Microfouling on the Corrosion Behaviour of Passive Materials and Copper Alloys

    DTIC Science & Technology

    2008-01-02

    to organometallic catalysis, acidification of the electrode surface, the combined effects of elevated H20 2 and decreased pH and the production of...Ennoblement in marine waters has been ascribed to depolarization of the oxygen reduction reaction due to organometallic catalysis, acidification of the...organometallic catalysis, acidification of the electrode surface, the combined effects of elevated hydrogen peroxide (H202) and decreased pH and the production

  13. Exhaled breath condensate pH decreases following oral glucose tolerance test.

    PubMed

    Bikov, Andras; Pako, Judit; Montvai, David; Kovacs, Dorottya; Koller, Zsofia; Losonczy, Gyorgy; Horvath, Ildiko

    2015-12-15

    Exhaled breath condensate (EBC) pH is a widely measured non-invasive marker of airway acidity. However, some methodological aspects have not been thoroughly investigated. The aim of the study was to determine the effect of oral glucose tolerance test (OGTT) on EBC pH in attempt to better standardize its measurement. Seventeen healthy subjects (24  ±  2 years, 6 men, 11 women) participated in the study. EBC collection and capillary blood glucose measurements were performed before as well as 0, 30, 60 and 120 min after a standardized OGTT test. The rate of respiratory droplet dilution and pH were evaluated in EBC. Blood glucose significantly increased at 30 min and maintained elevation after 60 and 120 min following OGTT. Compared to baseline (7.99  ±  0.25) EBC pH significantly decreased immediately after OGTT (7.41  ±  0.47); this drop sustained over 30 (7.44  ±  0.72) and 60 min (7.62  ±  0.44) without a significant difference at 120 min (7.78  ±  0.26). No change was observed in the rate of respiratory droplet dilution. There was no relationship between blood glucose and EBC pH values. Sugar intake may significantly decrease EBC pH. This effect needs to be considered when performing EBC pH studies. Further experiments are also warranted to investigate the effect of diet on other exhaled biomarkers.

  14. Stair-Step Pattern of Soil Bacterial Diversity Mainly Driven by pH and Vegetation Types Along the Elevational Gradients of Gongga Mountain, China

    PubMed Central

    Li, Jiabao; Shen, Zehao; Li, Chaonan; Kou, Yongping; Wang, Yansu; Tu, Bo; Zhang, Shiheng; Li, Xiangzhen

    2018-01-01

    Ecological understandings of soil bacterial community succession and assembly mechanism along elevational gradients in mountains remain not well understood. Here, by employing the high-throughput sequencing technique, we systematically examined soil bacterial diversity patterns, the driving factors, and community assembly mechanisms along the elevational gradients of 1800–4100 m on Gongga Mountain in China. Soil bacterial diversity showed an extraordinary stair-step pattern along the elevational gradients. There was an abrupt decrease of bacterial diversity between 2600 and 2800 m, while no significant change at either lower (1800–2600 m) or higher (2800–4100 m) elevations, which coincided with the variation in soil pH. In addition, the community structure differed significantly between the lower and higher elevations, which could be primarily attributed to shifts in soil pH and vegetation types. Although there was no direct effect of MAP and MAT on bacterial community structure, our partial least squares path modeling analysis indicated that bacterial communities were indirectly influenced by climate via the effect on vegetation and the derived effect on soil properties. As for bacterial community assembly mechanisms, the null model analysis suggested that environmental filtering played an overwhelming role in the assembly of bacterial communities in this region. In addition, variation partition analysis indicated that, at lower elevations, environmental attributes explained much larger fraction of the β-deviation than spatial attributes, while spatial attributes increased their contributions at higher elevations. Our results highlight the importance of environmental filtering, as well as elevation-related spatial attributes in structuring soil bacterial communities in mountain ecosystems. PMID:29636740

  15. Aspect has a greater impact on alpine soil bacterial community structure than elevation.

    PubMed

    Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin

    2017-03-01

    Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of < 1000 m, bacterial community composition was more closely related to the aspect of a site than its elevation. However, despite large differences in climate and resource-availability factors across elevation- and aspect-related gradients, bacterial community composition and richness were most strongly correlated with soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Effects of elevated temperature and mobile phase composition on a novel C18 silica column.

    PubMed

    Lippert, J Andreas; Johnson, Todd M; Lloyd, Jarem B; Smith, Jared P; Johnson, Bryce T; Furlow, Jason; Proctor, Angela; Marin, Stephanie J

    2007-05-01

    A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.

  17. Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation

    USGS Publications Warehouse

    Holloway, J.M.; Nordstrom, D. Kirk; Böhlke, J.K.; McCleskey, R. Blaine; Ball, J.W.

    2011-01-01

    Dissolved inorganic nitrogen, largely in reduced form (NH4(T)≈NH4(aq)++NH3(aq)o), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with NH3(aq)o loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to NH3(g)o condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.

  18. Enzymatic Saccharification of Lignocelluloses Should be Conducted at Elevated pH 5.2-6.2

    Treesearch

    T.Q. Lan; Hongming Lou; J.Y. Zhu

    2013-01-01

    This study revealed that cellulose enzymatic saccharification response curves of lignocellulosic substrates were very different from those of pure cellulosic substrates in terms of optimal pH and pH operating window. The maximal enzymatic cellulose saccharification of lignocellulosic substrates occurs at substrate suspension

  19. Ocean acidification buffering effects of seagrass in Tampa Bay

    USGS Publications Warehouse

    Yates, Kimberly K.; Moyer, Ryan P.; Moore, Christopher; Tomasko, David A.; Smiley, Nathan A.; Torres-Garcia, Legna; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana; Smiley, Nathan; Torres-Garcia, Legna M.; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana

    2016-01-01

    The Intergovernmental Panel on Climate Change has identified ocean acidification as a critical threat to marine and estuarine species in ocean and coastal ecosystems around the world. However, seagrasses are projected to benefit from elevated atmospheric pCO2, are capable of increasing seawater pH and carbonate mineral saturation states through photosynthesis, and may help buffer against the chemical impacts of ocean acidification. Additionally, dissolution of carbonate sediments may also provide a mechanism for buffering seawater pH. Long-term water quality monitoring data from the Environmental Protection Commission of Hillsborough County indicates that seawater pH has risen since the 1980‘s as seagrass beds have continued to recover since that time. We examined the role of seagrass beds in maintaining and elevating pH and carbonate mineral saturation state in northern and southern Tampa Bay where the percent of carbonate sediments is low (<3%) and high (>40%), respectively. Basic water quality and carbonate system parameters (including pH, total alkalinity, dissolved inorganic carbon, partial pressure of CO2, and carbonate mineral saturation state) were measured over diurnal time periods along transects (50-100 m) including dense and sparse Thalassia testudinum. seagrass beds, deep edge seagrass, and adjacent bare sand bottom. Seagrass density and productivity, sediment composition and hydrodynamic parameters were also measured, concurrently. Results indicate that seagrass beds locally elevate pH by up to 0.5 pH unit and double carbonate mineral saturation states relative to bare sand habitats. Thus, seagrass beds in Tampa Bay may provide refuge for marine organisms from the impacts of ocean acidification.

  20. Lung tissue remodelling in MCT-induced pulmonary hypertension: a proposal for a novel scoring system and changes in extracellular matrix and fibrosis associated gene expression.

    PubMed

    Franz, Marcus; Grün, Katja; Betge, Stefan; Rohm, Ilonka; Ndongson-Dongmo, Bernadin; Bauer, Reinhard; Schulze, P Christian; Lichtenauer, Michael; Petersen, Iver; Neri, Dario; Berndt, Alexander; Jung, Christian

    2016-12-06

    Pulmonary hypertension (PH) is associated with vasoconstriction and remodelling. We studied lung tissue remodelling in a rat model of PH with special focus on histology and extracellular matrix (ECM) remodelling. After induction of PH by monocrotaline, lung tissue was analysed histologically, by gene expression analysis and immunofluorescence labelling of ED-A domain containing fibronectin (ED-A+ Fn), B domain containing tenascin-C (B+ Tn-C) as well as alpha-smooth muscle actin (α-SMA). Serum concentrations of ED-A+ Fn were determined by ELISA. Systolic right ventricular pressure (RVPsys) values were significantly elevated in PH (n = 18; 75 ± 26.4 mmHg) compared to controls (n = 10; 29 ± 19.3 mmHg; p = 0.015). The histological sum-score was significantly increased in PH (8.0 ± 2.2) compared to controls (2.5 ± 1.6; p < 0.001). Gene expression analysis revealed relevant induction of several key genes of extracellular matrix remodelling. Increased protein deposition of ED-A+ Fn but not of B+ Tn-C and α-SMA in lung tissue was found in PH (2.88 ± 3.19 area%) compared to controls (1.32 ± 0.16 area%; p = 0.030). Serum levels of ED-A+ Fn were significantly higher in PH (p = 0.007) positively correlating with RVPsys (r = 0.618, p = 0.019). We here present a novel histological scoring system to assess lung tissue remodelling in PH. Gene expression analysis revealed induction of candidate genes involved in collagen matrix turnover, fibrosis and vascular remodelling. The stable increased tissue deposition of ED-A+ Fn in PH as well as its dynamics in serum suggests a role as a promising novel biomarker and potential therapeutic target.

  1. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature.

    PubMed

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-06

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. "Ion and acid-base regulation" related genes and "amino acid metabolism" pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, "anti-oxidation"-related genes and "Toll-like receptor signaling", "arachidonic acid metabolism", "lysosome" and "other glycan degradation" pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.

  2. Folates in Asian noodles: II. A comparison of commercial samples and the impact of cooking.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    The folate contents of 26 commercial noodle samples were investigated. The impact of ingredients, pH, and cooking on folate content was studied for the 3 predominant styles of noodles: white salted, yellow alkaline, and instant. Some variability was found in the proportion of folate present in the free form and the noodles generally had low total folate contents. The pH values of the samples covered a wide range, varying from 3.7 to 10.3; however, the results did not provide strong evidence for a relationship between pH and folate content for any of the noodle styles studied. Higher folate levels were typically found in yellow alkaline samples compared to white salted and instant noodles. The storage of noodles in dry or moist forms did not appear to influence total folate contents, and subsequent losses during cooking depended upon the time of exposure to elevated temperatures. The enzymatic treatment of samples was particularly important for cooked noodles, indicating that folates were bound or entrapped during this process.

  3. Does elevated pCO2 affect reef octocorals?

    PubMed

    Gabay, Yasmin; Benayahu, Yehuda; Fine, Maoz

    2013-03-01

    Increasing anthropogenic pCO2 alters seawater chemistry, with potentially severe consequences for coral reef growth and health. Octocorals are the second most important faunistic component in many reefs, often occupying 50% or more of the available substrate. Three species of octocorals from two families were studied in Eilat (Gulf of Aqaba), comprising the zooxanthellate Ovabunda macrospiculata and Heteroxenia fuscescens (family Xeniidae), and Sarcophyton sp. (family Alcyoniidae). They were maintained under normal (8.2) and reduced (7.6 and 7.3) pH conditions for up to 5 months. Their biolological features, including protein concentration, polyp weight, density of zooxanthellae, and their chlorophyll concentration per cell, as well as polyp pulsation rate, were examined under conditions more acidic than normal, in order to test the hypothesis that rising pCO2 would affect octocorals. The results indicate no statistically significant difference between the octocorals exposed to reduced pH values compared to the control. It is therefore suggested that the octocorals' tissue may act as a protective barrier against adverse pH conditions, thus maintaining them unharmed at high levels of pCO2.

  4. Hydrogen ion secretion by the collecting duct as a determinant of the urine to blood PCO2 gradient in alkaline urine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuBose, T.D. Jr.

    1982-01-01

    Several theories have been advanced to explain the elevation in urinary PCO/sub 2/ during bicarbonate loading and include: (a) H+ secretion, (b) countercurrent system for CO/sub 2/, (c) the ampholyte properties of bicarbonate, and (d) mixing of urine of disparate bicarbonate and butter concentrations. In this study microelectrodes were used to measure in situ and equilibrium pH (pHis and pHeq) and PCO/sub 2/ in control and bicarbonate loaded rats before and after infusion of carbonic anhydrase. The disequilibrium pH method (pHdq . pHis - pHeq) was used to demonstrate H+ secretion. Control rats excreting an acid urine (pH . 6.04more » +/- 0.06) failed to display a significant disequilibrium pH at the base (BCD), or tip (TCD) of the papillary collecting duct. Urine pH (7.54 +/- 0.12), and urine to blood (U-B) PCO/sub 2/ increased significantly during NaHCO/sub 3/ loading while PCO/sub 2/ at the BCD and TCD also increased (95 +/- 4 and 122 +/- 4). Furthermore, an acid disequilibrium pH was present at both the BCD and TCD (-0.42 +/- 0.04 and -0.36 +/- 0.03) and was obliterated by carbonic anhydrase. Comparison of the PCO/sub 2/ in the BCD or TCD with the adjacent vasa recta revealed similar values (r . 0.97). It is concluded that H+ secretion by the collecting duct into bicarbonate containing fluid with delayed dehydration of H/sub 2/CO/sub 3/, is the most likely determinant of the U-B PCO/sub 2/ in alkaline urine. Similar values for PCO/sub 2/ in the collecting duct and the adjacent vasa recta suggests trapping of CO/sub 2/ in the medullary countercurrent system. The rise in PCO/sub 2/ occurs both along the collecting duct and after exit from the papilla.« less

  5. Combined effect of pH and heating conditions on the physical properties of Alaska pollock surimi gels.

    PubMed

    Lee, Myeong Gi; Yoon, Won Byong; Park, Jae W

    2017-06-01

    Physical properties of Alaska pollock surimi paste were investigated as affected by pH (4.0 and 6.0-10.0) and heating conditions (slow and fast). The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. The effect of pH was strikingly high at pH 7.5 when gels were prepared using 2-step heating, indicating the pH dependence of endogenous transglutaminase. However, the highest gel strength was obtained at pH 8.0 when gels were prepared in fast heating. Whiteness value (L - 3b*) increased significantly (p < .05) as pH increased from 6.0 to 6.5, but thereafter decreased significantly (p < .05) as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance, probably due to the effect of reduced browning reaction. The uniqueness of this study was to measure the combined effect of pH and heating conditions on the gel texture and color. There were various studies dealing with pH or heating conditions independently. As the primary character for surimi seafood is gel texture and color. The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. Whiteness value (L - 3b*) increased significantly as pH increased from 6.0 to 6.5, but thereafter decreased significantly as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance. © 2016 Wiley Periodicals, Inc.

  6. Groundwater quality for 75 domestic wells in Lycoming County, Pennsylvania, 2014

    USGS Publications Warehouse

    Gross, Eliza L.; Cravotta, Charles A.

    2017-03-06

    Groundwater is a major source of drinking water in Lycoming County and adjacent counties in north-central and northeastern Pennsylvania, which are largely forested and rural and are currently undergoing development for hydrocarbon gases. Water-quality data are needed for assessing the natural characteristics of the groundwater resource and the potential effects from energy and mineral extraction, timber harvesting, agriculture, sewage and septic systems, and other human influences.This report, prepared in cooperation with Lycoming County, presents analytical data for groundwater samples from 75 domestic wells sampled throughout Lycoming County in June, July, and August 2014. The samples were collected using existing pumps and plumbing prior to any treatment and analyzed for physical and chemical characteristics, including nutrients, major ions, metals and trace elements, volatile organic compounds, gross-alpha particle and gross beta-particle activity, uranium, and dissolved gases, including methane and radon-222.Results indicate groundwater quality generally met most drinking-water standards, but that some samples exceeded primary or secondary maximum contaminant levels (MCLs) for arsenic, iron, manganese, total dissolved solids (TDS), chloride, pH, bacteria, or radon-222. Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 9 of the 75 (12 percent) well-water samples, with concentrations as high as 23.6 μg/L; arsenic concentrations were higher than the health advisory level (HAL) of 2 μg/L in 23 samples (31 percent). Total iron concentrations exceeded the secondary maximum contaminant level (SMCL) of 300 μg/L in 20 of the 75 samples. Total manganese concentrations exceeded the SMCL of 50 μg/L in 20 samples and the HAL of 300 μg/L in 2 of those samples. Three samples had chloride concentrations that exceeded the SMCL of 250 milligrams per liter (mg/L); two of those samples exceeded the SMCL of 500 mg/L for TDS. The pH ranged from 5.3 to 9.15 and did not meet the SMCL range of 6.5 to 8.5 in 22 samples, with 17 samples having a pH less than 6.5 and 8 samples having pH greater than 8.5. Generally, the samples that had elevated TDS, chloride, or arsenic concentrations had high pH.Total coliform bacteria were detected in 39 of 75 samples (52 percent), with Escherichia coli detected in 10 of those 39 samples. Radon-222 activities ranged from non-detect to 7,420 picocuries per liter (pCi/L), with a median of 863 pCi/L, and exceeded the proposed drinking-water standard of 300 pCi/L in 50 (67 percent) of the 75 samples; radon-222 activities were higher than the alternative proposed standard of 4,000 pCi/L in 3 samples.Water from 15 of 75 (20 percent) wells had concentrations of methane greater than the reporting level of 0.01 mg/L; detectable methane concentrations ranged from 0.04 to 16.8 mg/L. Two samples had methane concentrations (13.1 and 16.8 mg/L) exceeding the action level of 7 mg/L. Low levels of ethane (up to 0.12 mg/L) were present in the five samples with the highest methane concentrations (near or above 1 mg/L) that were analyzed for hydrocarbon compounds and isotopic composition. The isotopic composition of methane in four of these groundwater samples, from the Catskill and Lock Haven Formations and the Hamilton Group, have sample carbon isotopic ratio delta values (carbon-13/carbon-12) ranging from –42.36 to –36.08 parts per thousand (‰) and hydrogen isotopic ratio delta values (deuterium/protium) ranging from –212.0 to –188.4 ‰, which are consistent with the isotopic compositions reported for mud-gas logging samples from these geologic units and a thermogenic source of the methane. However, the isotopic composition and ratios of methane to ethane in a fifth sample indicate the methane in that sample may be of microbial origin that subsequently underwent oxidation. The fifth sample had the highest concentration of methane, 16.8 mg/L, with an carbon isotopic ratio delta values of -50.59 ‰ and a hydrogen isotopic ratio delta values of -209.7 ‰.The six well-water samples with the highest methane concentrations also had among the highest pH values (8.25 to 9.15) and elevated concentrations of sodium, lithium, boron, fluoride, arsenic, and bromide. Relatively elevated concentrations of some other constituents, such as barium, strontium, and chloride, commonly were present in, but not limited to, those well-water samples with elevated methane.Three of the six groundwater samples with the highest methane concentrations had chloride/bromide ratios that indicate mixing with a small amount of brine (0.02 percent or less) similar in composition to those reported at undetermined depth below the freshwater aquifer and for gas and oil well brines in Pennsylvania. The sample with the highest methane concentration and most other samples with low methane concentrations (less than about 1 mg/L) have chloride/bromide ratios that indicate predominantly anthropogenic sources of chloride, such as road-deicing salt, septic systems, and (or) animal waste. Brines that are naturally present may originate from deeper parts of the aquifer system, while anthropogenic sources are more likely to affect shallow groundwater because they occur on or near the land-surface.The spatial distribution of groundwater compositions generally indicate that (1) uplands along the western border of Lycoming County usually have dilute, slightly acidic oxygenated, calcium-bicarbonate type waters; (2) intermediate altitudes or areas of carbonate bedrock usually have water of near neutral pH, with highest amounts of hardness (calcium and magnesium); (3) stream valleys, low elevations where groundwater may be discharging, and deep wells in uplands usually have water with pH values greater than 8 and highest arsenic, sodium, lithium, bromide concentrations. Geochemical modeling indicated that for samples with elevated pH, sodium, lithium, bromide, and alkalinity, the water chemistry could have resulted by dissolution of calcite (calcium carbonate) combined with cation-exchange and mixing with a small amount of brine. Through cation-exchange reactions between water and bedrock, which are equivalent to processes in a water softener, calcium ions released by calcite dissolution are exchanged for sodium ions on clay minerals. Thus, the assessment of groundwater quality in Lycoming County indicates groundwater is generally of good quality, but various parts of Lycoming County can have groundwater with low to moderate concentrations of methane and other constituents that appear in naturally present brine and produced waters from gas and oil wells at high concentrations."

  7. Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids.

    PubMed

    Deigweiher, Katrin; Hirse, Timo; Bock, Christian; Lucassen, Magnus; Pörtner, Hans O

    2010-03-01

    Mechanisms responsive to hypercapnia (elevated CO(2) concentrations) and shaping branchial energy turnover were investigated in isolated perfused gills of two Antarctic Notothenioids (Gobionotothen gibberifrons, Notothenia coriiceps). Branchial oxygen consumption was measured under normo- versus hypercapnic conditions (10,000 ppm CO(2)) at high extracellular pH values. The fractional costs of ion regulation, protein and RNA synthesis in the energy budgets were determined using specific inhibitors. Overall gill energy turnover was maintained under pH compensated hypercapnia in both Antarctic species as well as in a temperate zoarcid (Zoarces viviparus). However, fractional energy consumption by the examined processes rose drastically in G. gibberifrons (100-180%), and to a lesser extent in N. coriiceps gills (7-56%). In conclusion, high CO(2) concentrations under conditions of compensated acidosis induce cost increments in epithelial processes, however, at maintained overall rates of branchial energy turnover.

  8. A new lime material for container substrates

    USDA-ARS?s Scientific Manuscript database

    The primary component in greenhouse potting substrates is sphagnum peatmoss. Substrate solution pH of non-amended peatmoss ranges from 4.0 to 4.5. Ideal pH for most greenhouse floriculture crops ranges from 5.8 to 6.2. Dolomitic lime is most often used to elevate substrate pH in peatmoss-based me...

  9. The Effect of Geraniol on Liver Regeneration Αfter Hepatectomy in Rats

    PubMed Central

    CANBEK, MEDIHA; UYANOGLU, MUSTAFA; CANBEK, SELCUK; CEYHAN, EMRE; OZEN, AHMET; DURMUS, BASAK; TURGAK, OZGE

    2017-01-01

    Geraniol is a monoterpenoid alcohol that has a hepatoprotective effect. We investigated the regenerative effects of geraniol in rats after a 70% partial hepatectomy (PH). Using Wistar albino rats, nine groups were created: Group I was the control group, while the remaining groups received a single intraperitoneal dose of saline, Silymarin, or geraniol after PH. A 70% PH was performed on all groups except for groups II and III. Blood serum samples were obtained for alanine amino transferase (ALT) analysis. Then liver tissues were harvested for histological and real-time polymerase chain reaction (PCR) analyses. Tumor necrosis factor-α (TNFα) and interleukin 6 (IL6) gene expression were examined 24 and 48 h after PH. ALT levels were found to be statistically significantly increased in all PH-treated groups. TNFα and IL6 gene expression levels were elevated in geraniol-treated groups. Histological evaluation revealed a hepatoprotective effect for geraniol-treated groups. Our results suggest that geraniol plays a significant role during liver regeneration, which involves the elevated expression of TNFα and IL6 48 h after PH. PMID:28358702

  10. The response of Antarctic sea ice algae to changes in pH and CO2.

    PubMed

    McMinn, Andrew; Müller, Marius N; Martin, Andrew; Ryan, Ken G

    2014-01-01

    Ocean acidification substantially alters ocean carbon chemistry and hence pH but the effects on sea ice formation and the CO2 concentration in the enclosed brine channels are unknown. Microbial communities inhabiting sea ice ecosystems currently contribute 10-50% of the annual primary production of polar seas, supporting overwintering zooplankton species, especially Antarctic krill, and seeding spring phytoplankton blooms. Ocean acidification is occurring in all surface waters but the strongest effects will be experienced in polar ecosystems with significant effects on all trophic levels. Brine algae collected from McMurdo Sound (Antarctica) sea ice was incubated in situ under various carbonate chemistry conditions. The carbon chemistry was manipulated with acid, bicarbonate and bases to produce a pCO2 and pH range from 238 to 6066 µatm and 7.19 to 8.66, respectively. Elevated pCO2 positively affected the growth rate of the brine algal community, dominated by the unique ice dinoflagellate, Polarella glacialis. Growth rates were significantly reduced when pH dropped below 7.6. However, when the pH was held constant and the pCO2 increased, growth rates of the brine algae increased by more than 20% and showed no decline at pCO2 values more than five times current ambient levels. We suggest that projected increases in seawater pCO2, associated with OA, will not adversely impact brine algal communities.

  11. Diagnosis, Evaluation and Treatment of Pulmonary Arterial Hypertension in Children

    PubMed Central

    Frank, Benjamin S.

    2018-01-01

    Pulmonary Hypertension (PH), the syndrome of elevated pressure in the pulmonary arteries, is associated with significant morbidity and mortality for affected children. PH is associated with a wide variety of potential underlying causes, including cardiac, pulmonary, hematologic and rheumatologic abnormalities. Regardless of the cause, for many patients the natural history of PH involves progressive elevation in pulmonary arterial resistance and pressure, right ventricular dysfunction, and eventually heart failure. In recent years, a number of pulmonary arterial hypertension (PAH)-targeted therapies have become available to reduce pulmonary artery pressure and improve outcome. A growing body of evidence in both the adult and pediatric literature demonstrates enhanced quality of life, functional status, and survival among treated patients. This review provides a description of select etiologies of PH seen in pediatrics and an update on the most recent data pertaining to evaluation and management of children with PH/PAH. The available evidence for specific classes of PAH-targeted therapies in pediatrics is additionally discussed. PMID:29570688

  12. Characterizing the variation in pH measurements with apheresis platelets.

    PubMed

    Moroff, Gary; Seetharaman, Shalini; Kurtz, James; Wagner, Stephen J

    2011-11-01

    pH measurements of platelet (PLT) components remain a key parameter when assessing how storage and shipping conditions influence the retention of PLT properties. Studies were conducted to characterize variations in pH measured with two pH meters and a blood gas analyzer. Samples were obtained from apheresis PLT units that were stored with or without continuous agitation to measure a range of pH values. pH values were determined with pH meters at room temperature (20-24°C) upon placing of samples in 5-mL sterile polypropylene tubes and with the blood gas analyzer at 37°C upon injection of identical samples, with conversion to 22°C. The calculated coefficient of variation (%CV) of pH measurements using pH meters (n = 10) was 0.43% or less. The %CV values were comparable with different samples having pH values ranging from 6.0 to 7.4. The %CV levels with the blood gas analyzer were comparable to those observed with the pH meters. The difference in the mean pH values for the two pH meters was no greater than 0.10 units, with 9 of 10 samples having differences in values of 0.05 or less; however, greater differences of values (0.1 to 0.2) were observed between pH measured using the blood gas analyzer and pH meters. Our data show good precision and comparability of pH measurements with two pH meters. Differences in pH values were greater on comparison of the blood gas analyzer with the pH meters. © 2011 American Association of Blood Banks.

  13. Negative impacts of elevated nitrate on physiological performance are not exacerbated by low pH.

    PubMed

    Gomez Isaza, Daniel F; Cramp, Rebecca L; Franklin, Craig E

    2018-05-15

    Multiple environmental stressors, including nutrient effluents (i.e. nitrates [NO 3 - ]) and altered pH regimes, influence the persistence of freshwater species in anthropogenically disturbed habitats. Independently, nitrate and low pH affect energy allocation by increasing maintenance costs and disrupting oxygen uptake, which ultimately results in impacts upon whole animal performance. However, the interaction between these two stressors has not been characterised. To address this, the effects of nitrate and pH and their interaction on aerobic scope and physiological performance were investigated in the blueclaw crayfish, Cherax destructor. Crayfish were exposed to a 2 × 3 factorial combination, with two pH levels (pH 5.0 and 7.0) and three nitrate concentrations (0, 50 and 100 mg L -1 NO 3 - ). Crayfish were exposed to experimental conditions for 65 days and growth and survival were monitored. Aerobic scope (i.e. maximal - standard oxygen uptake) was measured at six time points (1, 3, 5, 7, 14, and 21 days) during exposure to experimental treatments. Crayfish performance was assessed after 28 days, by measuring chelae strength and whole animal activity capacity via the righting response. Survival was reduced in crayfish exposed to pH 5.0, but there was no exacerbation of this effect by exposure to high nitrate levels. Aerobic scope was compromised by the interaction between low pH and nitrate and resulted in prolonged elevations of standard oxygen uptake rates. Exposure to nitrate alone affected aerobic scope, causing a 59% reduction in maximum oxygen uptake. Reduced aerobic capacity translated to reduced chelae strength and righting capacity. Together, these data show that low pH and elevated nitrate levels reduce aerobic scope and translate to poorer performance in C. destructor, which may have the potential to affect organismal fitness in disturbed habitats. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    USGS Publications Warehouse

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and brown trout along pH gradients. ?? Copyright by the American Fisheries Society 2005.

  15. Fertility status of cultivated floodplain soils in the Zambezi Valley, northern Zimbabwe

    NASA Astrophysics Data System (ADS)

    Chimweta, M.; Nyakudya, I. W.; Jimu, L.

    2018-06-01

    Flood-recession cropping improves smallholder farmers' household food security. The objective of this study was to determine the fertility status of cultivated Zambezi Valley floodplain soils, in northern Zimbabwe. The study was conducted at three sites, along tributaries of Musengezi River. Soil samples were taken at 0.20 m depth increments to 0.60 m from hydromorphologically stratified fields, during the cropping season. Sampling points were replicated twice in each stratum at points equidistant from river edges. Relative elevations of sampling points were measured using levelling equipment. Soil was analysed using: core method for bulk density, hydrometer method for texture, loss on ignition for soil organic carbon (SOC), Kjeldahl procedure for total nitrogen (N), 0.01 M CaCl2 for pH, and Inductively Coupled Plasma (ICP) for Mehlich 3 extractable elements. Data from soil analyses were subjected to One Way Analysis of Variance and Pearson's correlation analysis. Bulk density ranged from 1.2 to 1.4 g cm-3 and it was negatively related to distance from river; and positively related to elevation at two sites. Highest values for SOC and total N were 2.04% and 0.36% respectively. Soil pH ranged from 7.70 to 8.60. Soil organic carbon and N were positively related to distance from river but negatively related to elevation. Threshold concentrations for deficiency: < 12 ppm for K, and <39 ppm for Mg, were exceeded. Calcium, Na, and micronutrients in most cases exceeded concentrations reported for floodplains. Practices that slow down flowing water and fertilizer microdosing are among possible fertility management options.

  16. Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate.

    PubMed

    Commun, L; Mialon, M M; Martin, C; Baumont, R; Veissier, I

    2009-10-01

    This study aimed to investigate whether sheep offered free-choice intake of forage and concentrate develop subacute ruminal acidosis (SARA) and to identify SARA-associated feeding behavior components. In a crossover design over two 28-d periods, 11 rumen-cannulated wethers received wheat and alfalfa hay in 2 separate compartments. Concentrate and forage were provided for ad libitum access or in a fixed amount corresponding to 80% of ad libitum hay intake with a concentrate:forage ratio of 60:40 on a DM basis. In both diets, sheep were fed 2 equal portions at 0800 and 1600 h. Ruminal pH, voluntary intake, and feeding behavior were recorded continuously from d 1 to 9 and d 15 to 23 in each period. When no measurements were performed, the animals were housed in larger pens with straw bedding. When fed for ad libitum intake, the sheep ingested 1,340 g of DM/d consisting of 49.1% wheat, whereas with the fixed diet they ate 872 g of DM/d consisting of 58.4% wheat. Sheep fed for ad libitum intake spent more time with ruminal pH < 5.6 than when fed in fixed amounts (7.77 vs. 3.05 h/d, P < 0.001). The time spent with ruminal pH <5.6 was mainly linked to the amount of feed ingested and especially the amount of wheat (P < 0.001). Our results suggest that when fed for ad libitum intake with free choice wheat, the achieved concentrate:forage ratio of near 50:50 and a larger hay intake enable sheep to consume more wheat. When sheep were fed for ad libitum intake, feeding bouts were spread evenly throughout the day. Although ruminal pH reached the same minimum level in both diets after main meals, time to reach pH nadir was longer with ad libitum diet (P < 0.001). In addition, after reaching this minimum value, ruminal pH increased more slowly in this diet, inducing a decreased preprandial ruminal pH (P < 0.001). Consequently, the ad libitum diet led to a longer time below pH 5.6. A slow decrease in ruminal pH may enable sheep to consume larger quantities of food. However, free access to concentrate maintains continuously elevated content of ruminal fermentation end products and so requires more time for pH to return to neutral values. Thus, interval between feed distributions should be as large as possible to help resume the preprandial ruminal pH and to limit time spent with pH <5.6.

  17. Pharmacokinetics and absorption of the anticancer agents dasatinib and GDC-0941 under various gastric conditions in dogs--reversing the effect of elevated gastric pH with betaine HCl.

    PubMed

    Pang, Jodie; Dalziel, Gena; Dean, Brian; Ware, Joseph A; Salphati, Laurent

    2013-11-04

    Changes in gastric pH can impact the dissolution and absorption of compounds presenting pH-dependent solubility. We assessed, in dogs, the effects of gastric pH-modifying agents on the oral absorption of two weakly basic anticancer drugs, dasatinib and GDC-0941. We also tested whether drug-induced hypochlorhydria could be temporarily mitigated using betaine HCl. Pretreatments with pentagastrin, famotidine, betaine HCl, or combinations of famotidine and betaine HCl were administered orally to dogs prior to drug dosing. The gastric pH was measured under each condition for up to 7 h, and the exposure of the compounds tested was calculated. The average gastric pH in fasted dogs ranged from 1.45 to 3.03. Pentagastrin or betaine HCl treatments lowered the pH and reduced its variability between dogs compared to control animals. In contrast, famotidine treatment maintained gastric pH at values close to 7 for up to 5 h, while betaine HCl transiently reduced the pH to approximately 2 in the famotidine-treated dogs. Famotidine pretreatment lowered GDC-0941 exposure by 5-fold, and decreased dasatinib measurable concentrations 30-fold, compared to the pentagastrin-treated dogs. Betaine HCl restored GDC-0941 AUC in famotidine-treated dogs to levels achieved in control animals, and increased dasatinib AUC to 1.5-fold that measured in control dogs. The results confirmed the negative impact of acid-reducing agents on the absorption of weakly basic drugs. They also suggested that betaine HCl coadministration may be a viable strategy in humans treated with acid-reducing agents in order to temporarily reduce gastric pH and restore drug exposure.

  18. Study of the Characteristics of Pulmonary Trunk in Pulmonary Hypertension Secondary to Left Heart Disease Using Pressure-Velocity Loops (PU-Loops).

    PubMed

    Hanya, Shizuo; Yoshii, Kengo; Sugawara, Motoaki

    2017-09-25

    Objectives : Although pulmonary hypertension (PH) caused by left heart disease (PH-LHD) is more common in PH, little is known about its properties of pulmonary artery (PA) in PH-LHD. The purpose of this study was to measure pulmonary regional pulse wave velocity (PWV) and to quantify the magnitude of reflected waves in patients with PH-LHD by the analysis of the pressure-velocity loops (PU-loop). Methods : High-fidelity PA pressure (Pm) and PA velocity (Vm) were measured in 11 subjects with PH-LHD (mean Pm>25 mmHg), 1 subject with atrial septal defect (ASD) without PH and 12 control subjects, using multisensor catheters. PWV was calculated as the slope of the initial part of the PU-loop in early systole. The similarity in the shapes of the pressure and flow velocity waveforms over one PU-loop was quantified as the magnitude of reflected wave by calculating the standard error of the estimate (Sy/x) from linear regression analysis between Pm and corresponding Vm. PWV and Sy/x during a Valsalva maneuver (VM) were also assessed in nine control subjects. Results : The contour of PU-loop was so characteristic between control and PH-LHD. Max. PWV (349 cm/s) was recorded in PH-LHD and min. PWV (111 cm/s) was recorded in ASD. VM increased Pm (12 [7-15] mmHg vs. 50 [18-110] mmHg; p=0.009) and PWV (200 [148-238] cm/s vs. 260 [192-306] cm/s; p=0.009) significantly without significant increase of Sy/x (19.6 [12.7-28.9]% vs. 28.2 [19.3-40.7]%; p=0.079). Although Sy/x was significantly higher in PH-LHD than in control and ASD (31.0 [14.3-36.3]% vs. 17.5 [8.4-28.9]%; p=0.009, ASD: 18.2%) , no significant difference was found in PWV between PH-LHD and control (269 [159-349] cm/s vs. 203 [154-289] cm/s; p=0.089). Conclusions : 1) The magnitude of wave reflection was elevated in PH-LHD significantly as compared with control and ASD. 2) Despite the significant increase in PA-PWV caused by abrupt elevation in Pm during VM in control, chronic elevation in Pm did not increase PA-PWV in PH-LHD significantly. It was hypothesized that the PA constituted a self-regulating system for maintaining the arterial stiffness stable against the chronic elevation in Pm in PH-LHD by a remodeling of increasing proximal pulmonary arterial crosssectional area gradually, which was compatible with the Moens-Korteweg equation. The PU-loop could provide a new simple and conventional method for assessing the pulmonary arterial properties, clinically. (This is a translation of J Jpn Coll Angiol 2016; 56: 45-53.).

  19. Study of the Characteristics of Pulmonary Trunk in Pulmonary Hypertension Secondary to Left Heart Disease Using Pressure–Velocity Loops (PU-Loops)

    PubMed Central

    Hanya, Shizuo; Yoshii, Kengo; Sugawara, Motoaki

    2017-01-01

    Objectives: Although pulmonary hypertension (PH) caused by left heart disease (PH-LHD) is more common in PH, little is known about its properties of pulmonary artery (PA) in PH-LHD. The purpose of this study was to measure pulmonary regional pulse wave velocity (PWV) and to quantify the magnitude of reflected waves in patients with PH-LHD by the analysis of the pressure–velocity loops (PU-loop). Methods: High-fidelity PA pressure (Pm) and PA velocity (Vm) were measured in 11 subjects with PH-LHD (mean Pm>25 mmHg), 1 subject with atrial septal defect (ASD) without PH and 12 control subjects, using multisensor catheters. PWV was calculated as the slope of the initial part of the PU-loop in early systole. The similarity in the shapes of the pressure and flow velocity waveforms over one PU-loop was quantified as the magnitude of reflected wave by calculating the standard error of the estimate (Sy/x) from linear regression analysis between Pm and corresponding Vm. PWV and Sy/x during a Valsalva maneuver (VM) were also assessed in nine control subjects. Results: The contour of PU-loop was so characteristic between control and PH-LHD. Max. PWV (349 cm/s) was recorded in PH-LHD and min. PWV (111 cm/s) was recorded in ASD. VM increased Pm (12 [7–15] mmHg vs. 50 [18–110] mmHg; p=0.009) and PWV (200 [148–238] cm/s vs. 260 [192–306] cm/s; p=0.009) significantly without significant increase of Sy/x (19.6 [12.7–28.9]% vs. 28.2 [19.3–40.7]%; p=0.079). Although Sy/x was significantly higher in PH-LHD than in control and ASD (31.0 [14.3–36.3]% vs. 17.5 [8.4–28.9]%; p=0.009, ASD: 18.2%) , no significant difference was found in PWV between PH-LHD and control (269 [159–349] cm/s vs. 203 [154–289] cm/s; p=0.089). Conclusions: 1) The magnitude of wave reflection was elevated in PH-LHD significantly as compared with control and ASD. 2) Despite the significant increase in PA-PWV caused by abrupt elevation in Pm during VM in control, chronic elevation in Pm did not increase PA-PWV in PH-LHD significantly. It was hypothesized that the PA constituted a self-regulating system for maintaining the arterial stiffness stable against the chronic elevation in Pm in PH-LHD by a remodeling of increasing proximal pulmonary arterial crosssectional area gradually, which was compatible with the Moens–Korteweg equation. The PU-loop could provide a new simple and conventional method for assessing the pulmonary arterial properties, clinically. (This is a translation of J Jpn Coll Angiol 2016; 56: 45–53.) PMID:29147168

  20. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2

    NASA Astrophysics Data System (ADS)

    Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk

    2014-09-01

    Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.

  1. Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and Group III pulmonary hypertension.

    PubMed

    Chen, Ning-Yuan; D Collum, Scott; Luo, Fayong; Weng, Tingting; Le, Thuy-Trahn; M Hernandez, Adriana; Philip, Kemly; Molina, Jose G; Garcia-Morales, Luis J; Cao, Yanna; Ko, Tien C; Amione-Guerra, Javier; Al-Jabbari, Odeaa; Bunge, Raquel R; Youker, Keith; Bruckner, Brian A; Hamid, Rizwan; Davies, Jonathan; Sinha, Neeraj; Karmouty-Quintana, Harry

    2016-08-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-β activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF. Copyright © 2016 the American Physiological Society.

  2. Exercise Training in Group 2 Pulmonary Hypertension: Which Intensity and What Modality.

    PubMed

    Arena, Ross; Lavie, Carl J; Borghi-Silva, Audrey; Daugherty, John; Bond, Samantha; Phillips, Shane A; Guazzi, Marco

    2016-01-01

    Pulmonary hypertension (PH) due to left-sided heart disease (LSHD) is a common and disconcerting occurrence. For example, both heart failure (HF) with preserved and reduced ejection fraction (HFpEF and HFrEF) often lead to PH as a consequence of a chronic elevation in left atrial filling pressure. A wealth of literature demonstrates the value of exercise training (ET) in patients with LSHD, which is particularly robust in patients with HFrEF and growing in patients with HFpEF. While the effects of ET have not been specifically explored in the LSHD-PH phenotype (i.e., composite pathophysiologic characteristics of patients in this advanced disease state), the overall body of evidence supports clinical application in this subgroup. Moderate intensity aerobic ET significantly improves peak oxygen consumption, quality of life and prognosis in patients with HF. Resistance ET significantly improves muscle strength and endurance in patients with HF, which further enhance functional capacity. When warranted, inspiratory muscle training and neuromuscular electrical stimulation are becoming recognized as important components of a comprehensive rehabilitation program. This review will provide a detailed account of ET programing considerations in patients with LSHD with a particular focus on those concomitantly diagnosed with PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Improved sugar beet pectin-stabilized emulsions through complexation with sodium caseinate.

    PubMed

    Li, Xiangyang; Fang, Yapeng; Phillips, Glyn O; Al-Assaf, Saphwan

    2013-02-13

    The study investigates the complexes formed between sodium caseinate (SC) and sugar beet pectin (SBP) and to harness them to stabilize SBP emulsions. We find that both hydrophobic and electrostatic interactions are involved in the complexation. In SC/SBP mixed solution, soluble SC/SBP complexes first form on acidification and then aggregate into insoluble complexes, which disassociate into soluble polymers upon further decreasing pH. The critical pH's for the formation of soluble and insoluble complexes and disappearance of insoluble complexes are designated as pH(c), pH(φ), and pH(d), respectively. These critical pH values define four regions in the phase diagram of complexation, and SC/SBP emulsions were prepared in these regions. The results show that the stability of SBP-stabilized emulsion is greatly improved at low SC/SBP ratios and acidic pH's. This enhancement can be attributed to an increase in the amount of adsorbed SBP as a result of cooperative adsorption to sodium caseinate. Using a low ratio of SC/SBP ensured that all caseinate molecules are completely covered by adsorbed SBP chains, which eliminates possible instability induced by thermal aggregation of caseinate molecules resulting from stress acceleration at elevated temperatures. A mechanistic model for the behavior is proposed.

  4. Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun.

    PubMed

    Bausinger, Tobias; Bonnaire, Eric; Preuss, Johannes

    2007-09-01

    The destruction of arsenical shells from the 1914/18 war in the vicinity of Verdun (France) during the 1920s resulted in a locally limited but severe soil contamination by arsenic and heavy metals. At the study site, the main part of the contaminant inventory occurs in the upper 20 cm of the topsoil which is essentially composed of combustion residues. Besides, some Cu (cmax.=16,877 mg/kg) and Pb (cmax.=26,398 mg/kg) in this layer, As (cmax.=175,907 mg/kg) and Zn (cmax.=133,237 mg/kg) were detected in very high concentrations. The mobilities of Cu, Mn, Pb and Zn in the soil system were derived from ammonium nitrate eluates. They are strongly influenced by the soil pH and can be described by quadratic regression curves from which threshold pH values were calculated. Below these values more than 10% of the element content was available as mobile species. Within the examined pH range, this method could not be adopted for arsenic, because the mobility of As was only slightly controlled by the soil pH. In the heavily contaminated topsoil, Cu and Pb were fixed by the moderately acidic soil pH which varied from 4.8 to 5.8. No migration to the underlying horizons occurred. A different behavior was observed for As and Zn. The calculated threshold pH of Zn was 5.5, so certain amount of this element was transferred to the subsoil and the leachate (cmax.=350 microg/l). However, a major dispersion of Zn was prevented by a rise of the soil pH in the carbonate-containing subsoil. Elevated concentrations of As were found in all soil horizons up to a depth of 2 m and also in the leachate (cmax.=2377 microg/l). Contrary to Cu, Pb and Zn the mobility of As evidently was less affected by the subsoil. Regarding organic contaminants, nitroaromatic explosives were detected only in minor concentrations in the soil (cmax.=14.7 mg/kg) and the leachate (cmax.=13.5 microg/l). No aromatic organoarsenicals were detected in the soil and the leachate samples. The main hazard of the site is the severe arsenic contamination and the transfer of this carcinogen by leachate, surface runoff and probably by wind. Nevertheless, some studies on the effects of the contaminant inventory on the local vegetation revealed that ammonium nitrate elutable zinc is responsible for the spatial distribution of some tolerant plant species and not arsenic. Previously undetected buried munitions from the former delaboration facility can be an other source of environmental contaminants. This is supported by elevated concentrations of chlorate (cmax.=71 mg/l) and perchlorate (cmax.=0.8 mg/l) detected in the leachate samples. This is the second report about environmental contamination related to post-war ammunition destruction activities along the 1914/18 Western Front.

  5. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature

    NASA Astrophysics Data System (ADS)

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-01

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.

  6. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature

    PubMed Central

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-01

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture. PMID:26732540

  7. Elevated phosphodiester and T2 levels can be measured in the absence of fat infiltration in Duchenne muscular dystrophy patients.

    PubMed

    Hooijmans, M T; Niks, E H; Burakiewicz, J; Verschuuren, J J G M; Webb, A G; Kan, H E

    2017-01-01

    Quantitative MRI and MRS are increasingly important as non-invasive outcome measures in therapy development for Duchenne muscular dystrophy (DMD). Many studies have focussed on individual measures such as fat fraction and metabolite levels in relation to age and functionality, but much less attention has been given to how these indices relate to each other. Here, we assessed spatially resolved metabolic changes in leg muscles of DMD patients, and classified muscles according to the degree of fat replacement compared with healthy controls. Quantitative MRI (three-point Dixon and multi-spin echo without fat suppression and a tri-exponential fit) and 2D-CSI 31 P MRS scans were obtained from 18 DMD patients and 12 healthy controls using a 3 T and a 7 T MR scanner. Metabolite levels, T 2 values and fat fraction were individually assessed for five lower leg muscles. In muscles with extensive fat replacement, phosphodiester over adenosine triphosphate (PDE/ATP), inorganic phosphate over phosphocreatine, intracellular tissue pH and T 2 were significantly increased compared with healthy controls. In contrast, in muscles without extensive fat replacement, only PDE/ATP and T 2 values were significantly elevated. Overall, our results show that PDE levels and T 2 values increase prior to the occurrence of fat replacement and remain elevated in later stages of the disease. This suggests that these individual measures could not only function as early markers for muscle damage but also reflect potentially reversible pathology in the more advanced stages. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Soil properties determine the elevational patterns of base cations and micronutrients in the plant-soil system up to the upper limits of trees and shrubs

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhen; Wang, Xue; Jiang, Yong; Cerdà, Artemi; Yin, Jinfei; Liu, Heyong; Feng, Xue; Shi, Zhan; Dijkstra, Feike A.; Li, Mai-He

    2018-03-01

    To understand whether base cations and micronutrients in the plant-soil system change with elevation, we investigated the patterns of base cations and micronutrients in both soils and plant tissues along three elevational gradients in three climate zones in China. Base cations (Ca, Mg, and K) and micronutrients (Fe, Mn, and Zn) were determined in soils, trees, and shrubs growing at lower and middle elevations as well as at their upper limits on Balang (subtropical, SW China), Qilian (dry temperate, NW China), and Changbai (wet temperate, NE China) mountains. No consistent elevational patterns were found for base cation and micronutrient concentrations in both soils and plant tissues (leaves, roots, shoots, and stem sapwood). Soil pH, soil organic carbon (SOC), total soil nitrogen (TN), the SOC to TN ratio (C : N), and soil extractable nitrogen (NO3- and NH4+) determined the elevational patterns of soil exchangeable Ca and Mg and available Fe, Mn, and Zn. However, the controlling role of soil pH and SOC was not universal as revealed by their weak correlations with soil base cations under tree canopies at the wet temperate mountain and with micronutrients under both tree and shrub canopies at the dry temperate mountain. In most cases, soil base cation and micronutrient availabilities played fundamental roles in determining the base cation and micronutrient concentrations in plant tissues. An exception existed for the decoupling of leaf K and Fe with their availabilities in the soil. Our results highlight the importance of soil physicochemical properties (mainly SOC, C : N, and pH) rather than elevation (i.e., canopy cover and environmental factors, especially temperature), in determining base cation and micronutrient availabilities in soils and subsequently their concentrations in plant tissues.

  9. Biogas properties and enzymatic analysis during anaerobic fermentation of Phragmites australis straw and cow dung: influence of nickel chloride supplement.

    PubMed

    Tian, Yonglan; Zhang, Huayong; Chai, Yang; Wang, Lijun; Mi, Xueyue; Zhang, Luyi; Ware, Maxwell Adam

    2017-02-01

    The importance of nickel (added as NiCl 2 ) on mesophilic anaerobic fermentation of Phragmites australis straw and cow dung was demonstrated by investigating the biogas properties, pH values, organic matter degradation [chemical oxygen demand (COD)] and enzyme activities (cellulase, protease and dehydrogenase) during the fermentation process. The results showed that Ni 2+ addition increased the cumulative biogas yields by >18 % by improving the efficiency of first peak stage and bringing forward the second peak stage. The pH values were not significantly influenced by Ni 2+ addition (p > 0.05). Biogas yields were associated with variations in COD concentrations rather than momentary concentrations. At the start-up stage of fermentation (4th day), the biogas yields increased gradually together with the increase of dehydrogenase activities at elevated Ni 2+ concentrations when cellulase and protease activities were similar in all test groups. It is suggested that Ni 2+ addition was mainly dependent on the methanogenic stage. After the start-up stage, the impact of Ni 2+ addition on biogas production was mainly dependent on its effect on cellulase activities, rather than protease or dehydrogenase activities.

  10. Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes

    DOE PAGES

    Suna, Yuki; Fujita, Etsuko; Ertem, Mehmed Z.; ...

    2014-11-12

    Proton-responsive half-sandwich Cp*Ir(III) complexes possessing a bipyridine ligand with two hydroxy groups at the 3,3'-, 4,4'-, 5,5'- or 6,6'-positions (3DHBP, 4DHBP, 5DHBP, or 6DHBP) were systematically investigated. UV-vis titration data provided average pK a values of the hydroxy groups on the ligands. Both hydroxy groups were found to deprotonate in the pH 4.6–5.6 range for the 4–6DHBP complexes. One of the hydroxy groups of the 3DHBP complex exhibited the low pK a value of < 0.4 because the deprotonation is facilitated by the strong intramolecular hydrogen bond formed between the generated oxyanion and the remaining hydroxy group, which in turnmore » leads to an elevated pK a value of ~13.6 for the second deprotonation step. The crystal structures of the 4– and 6DHBP complexes obtained from basic aqueous solutions revealed their deprotonated forms. The intramolecular hydrogen bond in the 3DHBP complex was also observed in the crystal structures. The catalytic activities of these complexes in aqueous phase reactions, at appropriate pH, for hydrogenation of carbon dioxide (pH 8.5), dehydrogenation of formic acid (pH 1.8), transfer hydrogenation reactions using formic acid/formate as a hydrogen source (pH 7.2 and 2.6) were investigated to compare the positional effects of the hydroxy groups. The 4– and 6DHBP complexes exhibited remarkably enhanced catalytic activities under basic conditions because of the resonance effect of the strong electrondonating oxyanions, whereas the 5DHBP complex exhibited negligible activity despite the presence of electron-donating groups. The 3DHBP complex exhibited relatively high catalytic activity at low pH owing to the one strong electron-donating oxyanion group stabilized by the intramolecular hydrogen bond. DFT calculations were employed to study the mechanism of CO₂ hydrogenation by the 4DHBP and 6DHBP complexes, and comparison of the activation free energies of the H₂ heterolysis and CO₂ insertion steps indicated that H₂ heterolysis is the rate-determining step for both complexes. The presence of a pendent base in the 6DHBP complex was found to facilitate the rate-determining step, and renders 6DHBP a more effective catalyst for formate production.« less

  11. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Heavy metal migration in soils and rocks at historical smelting sites.

    PubMed

    Maskall, J; Whitehead, K; Thornton, I

    1995-09-01

    The vertical migration of metals through soils and rocks was investigated at five historical lead smelting sites ranging in age between 220 and 1900 years. Core samples were taken through metal-contaminated soils and the underlying strata. Concentration profiles of lead and zinc are presented from which values for the distances and rates of migration have been derived. Slag-rich soil horizons contain highly elevated metal concentrations and some contamination of underlying strata has occurred at all sites. However, the amounts of lead and zinc that have migrated from soils and been retained at greater depths are comparatively low. This low metal mobility in contaminated soils is partly attributed to the elevation of soil pH by the presence of calcium and carbonate originating from slag wastes and perhaps gangue minerals. Distances and rates of vertical migration were higher at those sites with soils underlain by sandstone than at those with soils underlain by clay. For sites with the same parent material, metal mobility appears to be increased at lower soil pH. The mean migration rates for lead and zinc reach maxima of 0.75 and 0.46 cm yr(-1) respectively in sandstone at Bole A where the elements have moved mean distances of 4.3 and 2.6 m respectively. There is some evidence that metal transport in the sandstone underlying Bole A and Cupola B occurs preferentially along rock fractures. The migration of lead and zinc is attenuated by subsurface clays leading to relatively low mean migration rates which range from 0.03 to 0.31 cm yr(-1) with many values typical of migration solely by diffusion. However, enhanced metal migration in clays at Cupola A suggest a preferential transport mechanism possibly in cracks or biopores.

  13. A Biochemical Study on the Gastroprotective Effect of Andrographolide in Rats Induced with Gastric Ulcer

    PubMed Central

    Saranya, P.; Geetha, A.; Selvamathy, S. M. K. Narmadha

    2011-01-01

    The major objective of the study was to evaluate the gastroprotective property of andrographolide, a chief component of the leaves of Andrographis paniculata in terms of the ulcer preventive effect in rats. An acute toxicity test was conducted with different concentrations of andrographolide to determine the LD50 value. The dose responsive study was conducted in rats pretreated with andrographolide (1, 3 and 5 mg/kg) for a period of 30 days, prior to ulcer induction by administering ethanol, aspirin or by pyloric ligation. The ulcer protective efficacy was tested by determining the ulcer score, pH, pepsin, titrable acidity, gastric mucin, lipid peroxides, reduced glutathione, and enzymatic antioxidants superoxide dismutase, catalase and glutathione peroxidase in gastric tissue. The activities of H+-K+ ATPase and myeloperoxidase were also determined in gastric tissue. The LD50 value was found to be 48 mg/kg b. wt and the effective dose was found to be 3 mg/kg. We have observed a significant reduction in the ulcer score in rats pretreated with 3 mg of andrographolide/kg body weight. A favourable increase in the pH and decrease in titrable acidity were observed in the gastric fluid of rats pretreated with the test drug. The gastric tissue H+-K+ ATPase and myeloperoxidase activities were elevated in ulcer-induced animals. The elevation in the enzyme activity was significantly minimized in the andrographolide received animals. The antioxidants and mucin levels were significantly maintained in the gastric tissue of drug-pretreated animals. Andrographolide did not produce any toxic effects in normal rats. This study reveals that the ulcer preventive efficacy of andrographolide may probably due to its antioxidant, cytoprotective and antiacid secretory effects. PMID:22923868

  14. A biochemical study on the gastroprotective effect of andrographolide in rats induced with gastric ulcer.

    PubMed

    Saranya, P; Geetha, A; Selvamathy, S M K Narmadha

    2011-09-01

    The major objective of the study was to evaluate the gastroprotective property of andrographolide, a chief component of the leaves of Andrographis paniculata in terms of the ulcer preventive effect in rats. An acute toxicity test was conducted with different concentrations of andrographolide to determine the LD(50) value. The dose responsive study was conducted in rats pretreated with andrographolide (1, 3 and 5 mg/kg) for a period of 30 days, prior to ulcer induction by administering ethanol, aspirin or by pyloric ligation. The ulcer protective efficacy was tested by determining the ulcer score, pH, pepsin, titrable acidity, gastric mucin, lipid peroxides, reduced glutathione, and enzymatic antioxidants superoxide dismutase, catalase and glutathione peroxidase in gastric tissue. The activities of H(+)-K(+) ATPase and myeloperoxidase were also determined in gastric tissue. The LD(50) value was found to be 48 mg/kg b. wt and the effective dose was found to be 3 mg/kg. We have observed a significant reduction in the ulcer score in rats pretreated with 3 mg of andrographolide/kg body weight. A favourable increase in the pH and decrease in titrable acidity were observed in the gastric fluid of rats pretreated with the test drug. The gastric tissue H(+)-K(+) ATPase and myeloperoxidase activities were elevated in ulcer-induced animals. The elevation in the enzyme activity was significantly minimized in the andrographolide received animals. The antioxidants and mucin levels were significantly maintained in the gastric tissue of drug-pretreated animals. Andrographolide did not produce any toxic effects in normal rats. This study reveals that the ulcer preventive efficacy of andrographolide may probably due to its antioxidant, cytoprotective and antiacid secretory effects.

  15. Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan.

    PubMed

    Mushtaq, Nisbah; Younas, Ayesha; Mashiatullah, Azhar; Javed, Tariq; Ahmad, Arslan; Farooqi, Abida

    2018-06-01

    Geochemical investigation was carried out for delineating factors responsible for the mobilization of arsenic (As) from aquifer material into the groundwater. Four sites along Ravi River, (Samada, Sarai Chimba, Kot Maiga and Chah Fatehwala), were selected based on the blanket survey. Groundwater-rock interaction and evaporation were the key phenomena controlling groundwater chemistry, as shown by the hydrogeochemical data. Groundwater was predominantly Na-Cl type, with other principle facies being Na-HCO 3 , Na-Ca-HCO 3 and Ca-Mg-Cl. The groundwater As concentration ranged between below detection level (2 μg/L) to 548 μg/L with 59% samples exceeding the World Health Organization (WHO) guidelines for As in drinking water (10 μg/L) and 31% having higher concentrations than the National Environmental Quality Standard (NEQS, 50 μg/L). Moderate to high concentrations of SO 4 -2 averaged at 244 mg/L and moderate NO 3 - concentrations averaged at 8 mg/L, together with alkaline pH (7.3-8.8) and high Eh values (113-402 mV) suggest partial oxidizing nature of the aquifers. The values for δ 18 O and δ 2 H in groundwater varied between -9.14 and -5.51‰, and -56.57 to -39.5‰ respectively, and suggests meteoric origin of the groundwater with some evaporative loss. This effect could be partly responsible for elevated levels of pH and salinity in groundwater. Based on geochemical and isotopic composition of groundwater, desorption of As from metal surfaces under alkaline environment might be the factor causing As enrichment in study area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, D.C.; Yu, Z.J.; Chen, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recoverymore » to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.« less

  17. Near-future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod Heliconoides inflatus.

    PubMed

    Moya, Aurelie; Howes, Ella L; Lacoue-Labarthe, Thomas; Forêt, Sylvain; Hanna, Bishoy; Medina, Mónica; Munday, Philip L; Ong, Jue-Sheng; Teyssié, Jean-Louis; Torda, Gergely; Watson, Sue-Ann; Miller, David J; Bijma, Jelle; Gattuso, Jean-Pierre

    2016-12-01

    Shelled pteropods play key roles in the global carbon cycle and food webs of various ecosystems. Their thin external shell is sensitive to small changes in pH, and shell dissolution has already been observed in areas where aragonite saturation state is ~1. A decline in pteropod abundance has the potential to disrupt trophic networks and directly impact commercial fisheries. Therefore, it is crucial to understand how pteropods will be affected by global environmental change, particularly ocean acidification. In this study, physiological and molecular approaches were used to investigate the response of the Mediterranean pteropod, Heliconoides inflatus, to pH values projected for 2100 under a moderate emissions trajectory (RCP6.0). Pteropods were subjected to pH T 7.9 for 3 days, and gene expression levels, calcification and respiration rates were measured relative to pH T 8.1 controls. Gross calcification decreased markedly under low pH conditions, while genes potentially involved in calcification were up-regulated, reflecting the inability of pteropods to maintain calcification rates. Gene expression data imply that under low pH conditions, both metabolic processes and protein synthesis may be compromised, while genes involved in acid-base regulation were up-regulated. A large number of genes related to nervous system structure and function were also up-regulated in the low pH treatment, including a GABA A receptor subunit. This observation is particularly interesting because GABA A receptor disturbances, leading to altered behavior, have been documented in several other marine animals after exposure to elevated CO 2 . The up-regulation of many genes involved in nervous system function suggests that exposure to low pH could have major effects on pteropod behavior. This study illustrates the power of combining physiological and molecular approaches. It also reveals the importance of behavioral analyses in studies aimed at understanding the impacts of low pH on marine animals. © 2016 John Wiley & Sons Ltd.

  18. Potassium extrusion by the moderately halophilic and alkaliphilic methanogen methanolobus taylorii GS-16 and homeostasis of cytosolic pH.

    PubMed Central

    Ni, S; Boone, J E; Boone, D R

    1994-01-01

    Methanolobus taylorii GS-16, a moderately halophilic and alkaliphilic methanogen, grows over a wide pH range, from 6.8 to 9.0. Cells suspended in medium with a pH above 8.2 reversed their transmembrane pH gradient (delta pH), making their cytosol more acidic than the medium. The decreased energy in the proton motive force due to the reversed delta pH was partly compensated by an increased electric membrane potential (delta psi). The cytosolic acidification by M. taylorii at alkaline pH values was accompanied by K+ extrusion. The cytosolic K+ concentration was 110 mM in cells suspended at pH 8.7, but it was 320 mM in cells suspended at neutral pH values. High external K+ concentrations (210 mM or higher) inhibited the growth of M. taylorii at alkaline pH values, perhaps by preventing K+ extrusion. Cells suspended at pH 8.5 and 300 mM external K+ failed to acidify their cytosol. The key observation indicative of the involvement of K+ transport in cytosolic acidification was that valinomycin (0.8 microM), a K+ uniporter, inhibited the growth of M. taylorii only at alkaline pH values. Experiments with resting cells indicated that at alkaline pH values valinomycin uncoupled catabolic reactions from ATP synthesis. Thus, K+/H+ antiport activity was proposed to account for the K+ extrusion and the uncoupling effect of valinomycin at alkaline pH values. Such antiport activity was demonstrated by the sharp drop in pH of the bulk medium of the cell suspension upon the addition of 0.1 M KCl. The antiporter appeared to be active only at alkaline pH values, which was in accordance with a possible role in pH homeostasis by M. taylorii growing at alkaline pH values. PMID:7961499

  19. Hyperammonaemia and associated factors in unprovoked convulsive seizures: A cross-sectional study.

    PubMed

    Sato, Kenichiro; Arai, Noritoshi; Omori, Aki; Hida, Ayumi; Kimura, Akio; Takeuchi, Sousuke

    2016-12-01

    Hyperammonaemia is frequently observed in patients who have experienced convulsive seizures. Although excessive muscle contraction is presumed to be responsible for the elevated levels of ammonia, the underlying mechanism is poorly understood. The present study aimed to identify the independent factors associated with ammonia elevation using large-scale multivariate analysis. We conducted a cross-sectional study involving 379 adult patients who had been transported to our emergency department and treated for unprovoked convulsive seizures between August 2010 and September 2015. Elevation of venous plasma ammonia levels was set as the primary endpoint, and patients' clinical and laboratory data were obtained. Those with severe liver dysfunction, known hepatic encephalopathy, or convulsions due to cardiovascular or psychogenic causes, and those taking valproate were excluded. Using a cut-off value of 50μg/dL, 183 patients (48.3%) were found to have elevated levels of plasma ammonia. Four factors were identified as independent variables associated with hyperammonaemia following seizures: elevated venous lactate, lowered venous pH, sex (male), and longer duration of convulsion. The results of the present study revealed independent factors associated with hyperammonaemia following unprovoked convulsive seizures in a larger scale and with more plausible statistical analysis. The authors further suggest that the excessive skeletal muscle contraction and/or respiratory failure during/after convulsive seizure may be the primary mechanism of hyperammonaemia. Copyright © 2016. Published by Elsevier Ltd.

  20. The Effect of Geraniol on Liver Regeneration After Hepatectomy in Rats.

    PubMed

    Canbek, Mediha; Uyanoglu, Mustafa; Canbek, Selcuk; Ceyhan, Emre; Ozen, Ahmet; Durmus, Basak; Turgak, Ozge

    2017-01-01

    Geraniol is a monoterpenoid alcohol that has a hepatoprotective effect. We investigated the regenerative effects of geraniol in rats after a 70% partial hepatectomy (PH). Using Wistar albino rats, nine groups were created: Group I was the control group, while the remaining groups received a single intraperitoneal dose of saline, Silymarin, or geraniol after PH. A 70% PH was performed on all groups except for groups II and III. Blood serum samples were obtained for alanine amino transferase (ALT) analysis. Then liver tissues were harvested for histological and real-time polymerase chain reaction (PCR) analyses. Tumor necrosis factor-α (TNFα) and interleukin 6 (IL6) gene expression were examined 24 and 48 h after PH. ALT levels were found to be statistically significantly increased in all PH-treated groups. TNFα and IL6 gene expression levels were elevated in geraniol-treated groups. Histological evaluation revealed a hepatoprotective effect for geraniol-treated groups. Our results suggest that geraniol plays a significant role during liver regeneration, which involves the elevated expression of TNFα and IL6 48 h after PH. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Low Medium pH Value Enhances Anthocyanin Accumulation in Malus Crabapple Leaves

    PubMed Central

    Tian, Ji; Jin, Kaina; Yao, Yuncong

    2014-01-01

    Anthocyanin is a critical factor involved in coloration of plant tissues, but the mechanism how medium pH values affect anthocyanin accumulation in woody plants is unknown. We analyzed anthocyanin composition and the expression of elements encoding anthocyanin and flavonols biosynthesis underlying different medium pH values by using three different leave color type cultivars. HPLC analysis demonstrated that high medium pH values treatment induced a dramatic decrease in the concentration of cyaniding in crabapple leaves. Conversely, the high medium pH values induced up-regulation of the content of flavones and flavonols, suggesting that low pH treatment-induced anthocyanin accumulation. Quantitative real time PCR experiment showed the expression level of anthocyanidin synthase (McANS) and uridine diphosphate glucose flavonoid 3-O-glucosyltransferase (McUFGT) was up-regulated by low pH values treatment, and high medium pH value treatment up-regulate the transcription level of flavonol synthase (McFLS). Meanwhile, several MYB TFs have been suggested in the regulation of pH responses. These results strongly indicate that the low pH treatment-induced anthocyanin accumulation is mediated by the variation of mRNA transcription of the anthocyanin biosynthetic genes. PMID:24914811

  2. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    PubMed

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  3. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    NASA Astrophysics Data System (ADS)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  4. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Tosca, Nicholas J.

    2018-03-01

    Despite their clear economic significance, Cretaceous presalt carbonates of the South Atlantic continental margins are not well-described by published facies models. This knowledge gap arises, in part, because the chemical processes that generate distinctive sedimentary products in alkaline, non-marine environments are poorly understood. Here, we use constraints inferred from reported mineralogical and geochemical features of presalt carbonate rocks to design and perform a suite of laboratory experiments to quantify the processes of alkaline chemical sedimentation. Using real-time observations of in-situ fluid chemistry, post-experiment analysis of precipitated solids, and geochemical modeling tools, we illustrate that spherulitic carbonates and Mg-silicate clays observed in presalt carbonates were likely precipitated from elevated pH (∼10-10.5) waters with high concentrations of silica and alkali cations typical of intermediate to felsic rocks, such as Na+ and K+. Charge balance constraints require that these cations were not counterbalanced to any significant degree by anions typical of seawater, such as Cl- and SO4-, which implies minimal seawater involvement in presalt deposition. Experimental data suggest that, at this alkaline pH, only modest concentrations (i.e., ∼0.5-1 mmol/kg) of Ca++ would have been required to precipitate spheroidal CaCO3. Given the rapid rates of CaCO3 nucleation and growth under such conditions, it is unlikely that Ca++ concentrations in lake waters ever exceeded these values, and sustained chemical fluxes are therefore required for extensive sediment accumulation. Moreover, our experiments indicate that the original mineralogy of presalt CaCO3 could have been calcite or aragonite, but the differing time scales of precipitation between CaCO3 and Mg-silicates would have tended to skew the Mg/Ca ratio in solution towards elevated values which favor aragonite. Mg-silicate nucleation and growth rates measured during our experiments suggest that elevated SiO2(aq) and high pH would have limited (to 1-2 mmol/kg) the Mg++ concentrations required to precipitate poorly crystalline Mg-silicates, which, through time, crystallize to minerals such as sepiolite and stevensite. Although our results provide robust constraints on the geochemistry of Mg-silicate-carbonate interactions during alkaline lake sedimentation, they leave open the potential for biological contributions to sedimentation within the presalt basins, as well as the hydrogeochemical mechanisms that maintained a productive carbonate factory of the scale observed along the South Atlantic margins.

  5. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Cox, T. Erin; Gazeau, Frédéric; Alliouane, Samir; Hendriks, Iris E.; Mahacek, Paul; Le Fur, Arnaud; Gattuso, Jean-Pierre

    2016-04-01

    Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m3, and an additional reference plot in the ambient environment (2 m2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of ˜ 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.

  6. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract.

    PubMed

    Huda, Rafiq; Pollema-Mays, Sarah L; Chang, Zheng; Alheid, George F; McCrimmon, Donald R; Martina, Marco

    2012-10-01

    Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .

  7. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    PubMed

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. Copyright © 2016. Published by Elsevier B.V.

  8. A mathematical model of the influence of salivary urea on the pH of fasted dental plaque and on the changes occurring during a cariogenic challenge.

    PubMed

    Dibdin, G H; Dawes, C

    1998-01-01

    Urea diffusing from saliva into dental plaque is converted to ammonia and carbon dioxide by bacterial ureases. The influence of normal salivary urea levels on the pH of fasted plaque and on the depth and duration of a Stephan curve is uncertain. A numerical model which simulates a cariogenic challenge (a 10% sucrose rinse alone or one followed by use of chewing-gum with or without sugar) was modified to include salivary urea levels from 0 to 30 mmol/l. It incorporated: site-dependent exchange between bulk saliva and plaque surfaces via a salivary film; sugar and urea diffusion into plaque; pH-dependent rates of acid formation and urea breakdown; diffusion and dissociation of end-products and other buffers (acetate, lactate, phosphate, ammonia and carbonate); diffusion of protons and other ions; equilibration with fixed and mobile buffers; and charge-coupling between ionic flows. The Km (2.12 mmol/l) and Vmax (0.11 micromol urea/min/mg dry weight) values for urease activity and the pH dependence of Vmax were taken from the literature. From the results, it is predicted that urea concentrations normally present in saliva (3-5 mmol/l) will increase the pH at the base of a 0.5-mm-thick fasted plaque by up to 1 pH unit, and raise the pH minimum after a sucrose rinse or sugar-containing chewing-gum by at least half a pH unit. The results suggest that plaque cariogenicity may be inversely related to salivary urea concentrations, not only when the latter are elevated because of disease, but even when they are in the normal range.

  9. The Quality of Fog Water Collected for Domestic and Agricultural Use in Chile.

    NASA Astrophysics Data System (ADS)

    Schemenauer, Robert S.; Cereceda, Pilar

    1992-03-01

    One exciting new application of meteorology is the prospect of using high-elevation fogs as an and land's water resource. This has now become reality in northern Chile where a pilot project has used 50 fog collectors to generate an average of 7200 1 of water per day during three drought years. The chemical composition of the fog water is of primary importance and is examined in this paper.A small, carefully cleaned fog-water collector was used at the site (elevation 780 m) to study the incoming fog (cloud). The ion and trace-element concentrations met Chilean and the World Health Organization's (WHO) drinking-water standards. The pH values, however, were at times extremely low. Samples from 1987 and 1988 were consistent with those from the larger dataset in 1989. The lowest observed pH was 3.46. The acidity was associated with high concentrations (89%) of excess sulfate in the 15 fog-water samples (based on Cl as the seawater tracer element). The NO3/SO4 equivalents ratio for the fog samples was 0.18, showing the dominance of SO4 in determining the acidity of the fog samples. The relative abundances of ions and trace elements in the dry deposition are very similar to those in the fog water, suggesting that the aerosols originate primarily from evaporated cloud droplets over the ocean. Based on enrichment-factor calculations (with Cl as the indicator element for seawater and A1 for the earth's crust), sea salts were the main source of Na+, Mg++, and Cl in the fog water; soil dust was the main source of Fe, Al and Ti; and other sources provided Ca++, K+, NH4+, Br SO4NO3 As,Cd,Pb,V,Mn,Ni,Cu,SrSb,and Ba in the fog water.The use of enrichment factors based on the relative abundances in soil extracts suggests that As, V, Cu, and Sr may be available from wetted soil dust.The output from the large (48 m2) fog collectors was also acceptable, except for several of the 24 trace elements, which exceeded the maximum allowable values in the first flush of water after a dry period of a few days. The pH values were again near 4 and would have to undergo a simple treatment to raise them to a value of 6 or more to meet the drinking-water standard. The output from a 2000-1 fog-water storage tank was completely acceptable and that from a 25 000-1 storage tank completely acceptable, except for a low pH. In contrast, both the water presently being used in a nearby village and local spring water were unacceptable. It is concluded that fog water is an attractive alternative as a water supply even after collection on the large meshes at this site.

  10. The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in North-eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Wai, Ka Ming; Gao, Jian; Liu, Xiaohuan; Wang, Tao; Wang, Wenxing

    Ninety precipitation samples were collected from 2004 to 2006 at the summit of the Mt. Tai in order to detect the impacts of regional sources of pollution on precipitation chemistry in the highly polluted North China Plains. The annual volume-weighted pH of the precipitation was found to be 4.7, in contrast to the less-acidic nature (pH>5.6) of precipitation in northern China reported in many past studies. Non-sea-salt (nss)-SO 42- (131.5 μeq L -1), NH 4+ (82.2 μeq L -1) and Ca 2+ (61.4 μeq L -1) were the most abundant species in precipitation. The wide range of the Cl -/Na + ratios (0.2-5.4) in precipitation implied the co-existence of Cl - enrichment and depletion. The nss-SO 42-, NO 3-, NH 4+, Ca 2+ and K + concentrations peaked in spring, but with the lowest acidity. The very strong correlations of Ca 2+ with nss-SO 42- and NO 3- suggested a significant uptake of nss-SO 42- and NO 3- on dust aerosol during spring. Samples with the lowest pH value (4.5) are associated with the stagnant air conditions. The nss-SO 42- and NH 4+ concentrations at Mt. Tai were the highest compared with those at the EANET, NADP and EMEP sites of similar elevations. With relatively high rainfall amount measured at our site, the high wet deposition of the major acidic/alkaline species exerted large loadings to the ecosystem. The associated impacts on agriculture, soil and aquatic systems should be investigated.

  11. Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions.

    PubMed

    Elgetti Brodersen, Kasper; Koren, Klaus; Lichtenberg, Mads; Kühl, Michael

    2016-07-01

    Seagrasses can modulate the geochemical conditions in their immediate rhizosphere through the release of chemical compounds from their below-ground tissue. This is a vital chemical defence mechanism, whereby the plants detoxify the surrounding sediment. Using novel nanoparticle-based optical O2 and pH sensors incorporated in reduced and transparent artificial sediment, we investigated the spatio-temporal dynamics of pH and O2 within the entire rhizosphere of Zostera marina L. during experimental manipulations of light and temperature. We combined such measurements with O2 microsensor measurements of the photosynthetic productivity and respiration of seagrass leaves. We found pronounced pH and O2 microheterogeneity within the immediate rhizosphere of Z. marina, with higher below-ground tissue oxidation capability and rhizoplane pH levels during both light exposure of the leaf canopy and elevated temperature, where the temperature-mediated stimuli of biogeochemical processes seemed to predominate. Low rhizosphere pH microenvironments appeared to correlate with plant-derived oxic microzones stimulating local sulphide oxidation and thus driving local proton generation, although the rhizoplane pH levels generally where much higher than the bulk sediment pH. Our data show that Z. marina can actively alter its rhizosphere pH microenvironment alleviating the local H2 S toxicity and enhancing nutrient availability in the adjacent sediment via geochemical speciation shift. © 2016 John Wiley & Sons Ltd.

  12. Phenylethanoid glycosides of Pedicularis muscicola Maxim ameliorate high altitude-induced memory impairment.

    PubMed

    Zhou, Baozhu; Li, Maoxing; Cao, Xinyuan; Zhang, Quanlong; Liu, Yantong; Ma, Qiang; Qiu, Yan; Luan, Fei; Wang, Xianmin

    2016-04-01

    Exposure to hypobaric hypoxia causes oxidative stress, neuronal degeneration and apoptosis that leads to memory impairment. Though oxidative stress contributes to neuronal degeneration and apoptosis in hypobaric hypoxia, the ability for phenylethanoid glycosides of Pedicularis muscicola Maxim (PhGs) to reverse high altitude memory impairment has not been studied. Rats were supplemented with PhGs orally for a week. After the fourth day of drug administration, rats were exposed to a 7500 m altitude simulation in a specially designed animal decompression chamber for 3 days. Spatial memory was assessed by the 8-arm radial maze test before and after exposure to hypobaric hypoxia. Histological assessment of neuronal degeneration was performed by hematoxylin-eosin (HE) staining. Changes in oxidative stress markers and changes in the expression of the apoptotic marker, caspase-3, were assessed in the hippocampus. Our results demonstrated that after exposure to hypobaric hypoxia, PhGs ameliorated high altitude memory impairment, as shown by the decreased values obtained for reference memory error (RME), working memory error (WME), and total error (TE). Meanwhile, administration of PhGs decreased hippocampal reactive oxygen species levels and consequent lipid peroxidation by elevating reduced glutathione levels and enhancing the free radical scavenging enzyme system. There was also a decrease in the number of pyknotic neurons and a reduction in caspase-3 expression in the hippocampus. These findings suggest that PhGs may be used therapeutically to ameliorate high altitude memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of pH on the production of phosphate and pyrophosphate by matrix vesicles' biomimetics.

    PubMed

    Simão, Ana Maria S; Bolean, Maytê; Hoylaerts, Marc F; Millán, José Luis; Ciancaglini, Pietro

    2013-09-01

    During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (PPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP, and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph containing 1 mM ATP as substrate and amorphous calcium phosphate or calcium-phosphate-phosphatidylserine complexes as nucleators. Propagation of mineralization was significantly more efficient at pH 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP, and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization.

  14. An alkaline follicular fluid fraction induces capacitation and limited release of oviduct epithelium-bound stallion sperm.

    PubMed

    Leemans, Bart; Gadella, Bart M; Stout, Tom A E; Nelis, Hilde; Hoogewijs, Maarten; Van Soom, Ann

    2015-09-01

    Induction of hyperactivated motility is considered essential for triggering the release of oviduct-bound mammalian spermatozoa in preparation for fertilization. In this study, oviduct-bound stallion spermatozoa were exposed for 2 h to: i) pre-ovulatory and ii) post-ovulatory oviductal fluid; iii) 100% and iv) 10% follicular fluid (FF); v) cumulus cells, vi) mature equine oocytes, vii) capacitating and viii) non-capacitating medium. None of these triggered sperm release or hyperactivated motility. Interestingly, native FF was detrimental to sperm viability, an effect that was negated by heat inactivation, charcoal treatment and 30 kDa filtration alone or in combination. Moreover, sperm suspensions exposed to treated FF at pH 7.9 but not pH 7.4 showed Ca(2+)-dependent hypermotility. Fluo-4 AM staining of sperm showed elevated cytoplasmic Ca(2+) in hyperactivated stallion spermatozoa exposed to treated FF at pH 7.9 compared to a modest response in defined capacitating conditions at pH 7.9 and no response in treated FF at pH 7.4. Moreover, 1 h incubation in alkaline, treated FF induced protein tyrosine phosphorylation in 20% of spermatozoa. None of the conditions tested induced widespread release of sperm pre-bound to oviduct epithelium. However, the hyperactivating conditions did induce release of 70-120 spermatozoa per oviduct explant, of which 48% showed protein tyrosine phosphorylation and all were acrosome-intact, but capable of acrosomal exocytosis in response to calcium ionophore. We conclude that, in the presence of elevated pH and extracellular Ca(2+), a heat-resistant, hydrophilic, <30 kDa component of FF can trigger protein tyrosine phosphorylation, elevated cytoplasmic Ca(2+) and hyperactivated motility in stallion sperm, but infrequent release of sperm pre-bound to oviduct epithelium. © 2015 Society for Reproduction and Fertility.

  15. Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila.

    PubMed

    Veenendaal, Harm R; Brouwer-Hanzens, Anke J; van der Kooij, Dick

    2017-10-15

    Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r 2  = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China.

    PubMed

    Xu, Yuefeng; Li, Yonghua; Li, Hairong; Wang, Li; Liao, Xiaoyong; Wang, Jing; Kong, Chang

    2018-08-15

    Selenium (Se) is an essential trace element for humans. In order to investigate how soil Se is influenced by topography and soil properties, we selected Yongjia County, an area with mountainous topography, as a study area. This study used cultivated soil data to comprehensively analyze the effects of topography and soil properties on Se mobility and bioavailability and to identify the key factors influencing Se distribution in the environment. Factors considered in this study were elevation, slope, topographic wetness index, the coefficient of weathering and eluviation, pH, organic matter, and Fe 2 O 3 . The concentration of total soil Se (0.382±0.123mgkg -1 ) was far higher than the background value of soil in China, and 98% of the soil samples were classified as having moderate Se levels (>0.175mgkg -1 ), indicating Yongjia County is a Se-rich region in China. Phosphate extracted Se accounted for an average of 9% of the total Se and was significantly associated with soil total Se, Fe 2 O 3 , pH, and the coefficient of weathering and eluviation. Fe 2 O 3 primarily controlled Se adsorption, fixation, and availability in soil. Under the geo-environmental conditions in the study area, the total Se in the soil increased first and then decreased with increases in elevation, slope, and the topographic wetness index, and the phosphate extracted Se showed similar patterns except for the elevation. The findings showed that topographical attributes and soil physicochemical properties synthetically influenced the distribution and bioavailability of Se in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Baseline groundwater quality from 34 wells in Wayne County, Pennsylvania, 2011 and 2013

    USGS Publications Warehouse

    Sloto, Ronald A.

    2014-01-01

    Differences in groundwater chemistry were related to pH. Water with a pH greater than 7.6 generally had low dissolved oxygen concentrations, indicating reducing conditions in the aquifer. These high pH waters also had relatively elevated concentrations of methane, arsenic, boron, bromide, fluoride, lithium, and sodium but low concentrations of copper, nickel, and zinc. Water samples with a pH greater than 7.8 had methane concentrations equal to or greater than 0.04 mg/L.

  18. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    USGS Publications Warehouse

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic concentrations were higher than the Health Advisory level of 2 µg/L in 27 of 89 samples (30 percent). Total iron concentrations exceeded the secondary maximum contaminant level (SMCL) of 300 µg/L in 9 of 89 samples (10 percent). The pH ranged from 5.4 to 9.3 and did not meet the SMCL range of greater than 6.5 to less than 8.5 in 27 samples (30 percent); 22 samples had pH values less than 6.5, and 5 samples had pH values greater than 8.5. Total coliform bacteria were detected in 22 of 89 samples (25 percent); Escherichia coli were detected in only 2 of those 22 samples. Radon-222 activities ranged from 25 to 7,400 picocuries per liter (pCi/L), with a median of 2,120 pCi/L, and exceeded the proposed drinking-water standard of 300 pCi/L in 86 of 89 samples (97 percent); radon-222 activities were higher than the alternative proposed standard of 4,000 pCi/L in 12 of 89 samples (13.5 percent).Water from 8 of the 89 wells (9 percent) had concentrations of methane greater than the reporting level of 0.24 milligrams per liter (mg/L) with the detectable methane concentrations ranging from 0.74 to 9.6 mg/L. Of 16 replicate samples submitted to another laboratory with a lower reporting level of 0.0002 mg/L, 15 samples had detectable methane concentrations that ranged from 0.0011 to 9.7 mg/L. Of these 15 samples, low levels of ethane (0.00032 to 0.0017 mg/L) were detected in 6 of 7 samples with methane concentrations greater than 0.75 mg/L. The isotopic composition of methane in 6 of 8 samples with sufficient dissolved methane (about 1 mg/L) for isotopic analysis is consistent with a predominantly thermogenic methane source (sample carbon isotopic ratio δ13CCH4 values ranging from -56.36 to -45.97 parts per thousand (‰) and hydrogen isotopic ratio δDCH4 values ranging from -233.1 to -141.1 ‰). However, the low levels of ethane relative to methane indicate that the methane may be of microbial origin and subsequently underwent oxidation. Isotopic compositions indicated a possibly mixed thermogenic and microbial source (carbon dioxide reduction process) for the methane in 1 of the 8 samples (δ13CCH4 of -63.72 and δDCH4 of -192.3 ‰) and potential oxidation of microbial and (or) thermogenic methane in the remaining sample (δ13CCH4 of -46.56 and δDCH4 of -79.7 ‰).Groundwater samples with relatively elevated methane concentrations (near or greater than 1 mg/L) had a chemical composition that differed in some respects (pH, selected major ions, and inorganic trace constituents) from groundwater with relatively low methane concentrations (less than 0.75 mg/L). The seven well-water samples with the highest methane concentrations (from about 1 to 9.6 mg/L) also had among the highest pH values (8.1 to 9.3, respectively) and the highest concentrations of sodium, lithium, boron, fluoride, arsenic, and bromide. Relatively elevated concentrations of some other constituents, such as barium, strontium, and chloride, commonly were present in, but not limited to, those well-water samples with elevated methane.Groundwater samples with the highest methane concentrations had chloride/bromide ratios that indicate mixing with a small amount of brine (0.02 percent or less, by volume) similar in composition to that reported for gas and oil well brines in Pennsylvania. Most other samples with low methane concentrations (less than about 1 mg/L) had chloride/bromide ratios that indicate predominantly man-made sources of chloride, such as road salt, septic systems, and (or) animal waste. Although naturally occurring brines may originate from deeper parts of the aquifer system, the man-made sources are likely to affect shallow groundwater.Geochemical modeling showed that the water chemistry of samples with elevated pH, sodium, lithium, bromide, and alkalinity could result from dissolution of calcite (calcium carbonate) combined with cation exchange and mixing with a small amount of brine. Through cation exchange reactions (which are equivalent to processes in a water softener) calcium ions released by calcite dissolution are exchanged for sodium ions on clay minerals. The spatial distribution of groundwater compositions generally shows that (1) relatively dilute, slightly acidic, oxygenated, calcium-carbonate type waters tend to occur in the uplands along the western border of Wayne County; (2) waters of near neutral pH with the highest amounts of hardness (calcium and magnesium) generally occur in areas of intermediate altitudes; and (3) waters with pH values greater than 8, low oxygen concentrations, and the highest arsenic, sodium, lithium, bromide, and methane concentrations can occur in deep wells in uplands but most frequently occur in stream valleys, especially at low elevations (less than about 1,200 ft above North American Vertical Datum of 1988) where groundwater may be discharging regionally, such as to the Delaware River. Thus, the baseline assessment of groundwater quality in Wayne County prior to gas-well development shows that shallow (less than about 1,000 ft deep) groundwater is generally of good quality, but methane and some constituents present in high concentrations in brine (and produced waters from gas and oil wells) may be present at low to moderate concentrations in some parts of Wayne County.

  19. Effects of pH on the Production of Phosphate and Pyrophosphate by Matrix Vesicles' Biomimetics

    PubMed Central

    Simão, Ana Maria S.; Bolean, Maytê; Hoylaerts, Marc F.; Millán, José Luis; Ciancaglini, Pietro

    2013-01-01

    During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (ePPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/ phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine (DPPC) liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP, at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph (SCL) containing 1 mM ATP as substrate and amorphous calcium phosphate (ACP) or calciumphosphate- phosphatidylserine complexes (PS-CPLX) as nucleators. Propagation of mineralization was significantly more efficient at pHs 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization. PMID:23942722

  20. Supraesophageal Reflux: Correlation of Position and Occurrence of Acid Reflux-Effect of Head-of-Bed Elevation on Supine Reflux.

    PubMed

    Scott, David R; Simon, Ronald A

    2015-01-01

    Supraesophageal reflux of gastric contents can contribute to perennial nasopharyngitis, cough, and asthma. However, effective treatment strategies for supraesophageal reflux disease (SERD) remain inadequately defined. The purpose of this study is to assess the prevalence and timing of SERD and to investigate the efficacy of head-of-bed elevation in its treatment. A retrospective chart review of patients seen at Scripps Clinic Division of Allergy, Asthma and Immunology was performed who had undergone overnight nasopharyngeal pH monitoring with a commercially available nasopharyngeal pH-monitoring device, Dx-pH Measurement System from Restech, San Diego, Calif. Subjects with reflux were classified based on the position of reflux as either supine only, upright only, or both supine and upright. In a subset of subjects with supine-only reflux, pH monitoring was compared before and after elevating the head of bed 6 inches. Adequate nasopharyngeal pH-monitoring data were obtained for 235 patients. Reflux was detected in 113 (48%) patients. The pattern of reflux observed was 62 (55%) supine only, 4 (4%) upright only, and 47 (42%) upright and supine. Sequential overnight nasopharyngeal pH monitoring before and after head-of-bed elevation was obtained in 13 individuals with supine-only reflux. Ten subjects demonstrated significant improvement, 8 of whom demonstrated complete resolution of supine reflux with 6 inches of head-of-bed elevation. This study provides new evidence that SERD frequently occurs in the supine position and that 6 inches of head-of-bed elevation is effective in reducing supine SERD. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. PubMed Central

    Clerbaux, T; Serteyn, D; Willems, E; Brasseur, L

    1986-01-01

    The equine blood oxyhemoglobin dissociation curve has been traced in its entirety in standard conditions and the effects of temperature, pH and 2,3-diphosphoglycerate on this curve have been measured. When compared to that of human blood, the curve showed a higher oxygen affinity of hemoglobin (23.8 +/- 0.8 versus 26.6 mm Hg). The effect of the pH, expressed by d log P50/dpH, was found to be identical in man and horse (-0.47). The effect of temperature, however, expressed by d log P50/dT, proved to be lower in the horse (0.016 versus 0.024). The P50 showed an increase of 1 mm Hg each time 2,3-diphosphoglycerate was experiencing an elevation of 4 mumol/gHb in the horse. The results obtained from this experiment are intended for the replacement of the values related to the human blood which have been found to be somewhat inadequate for the horse blood, when the data of blood gases are given in algorithms. PMID:3756672

  2. Impacts of Near-Future Ocean Acidification and Warming on the Shell Mechanical and Geochemical Properties of Gastropods from Intertidal to Subtidal Zones.

    PubMed

    Leung, Jonathan Y S; Connell, Sean D; Nagelkerken, Ivan; Russell, Bayden D

    2017-11-07

    Many marine organisms produce calcareous shells as the key structure for defense, but the functionality of shells may be compromised by ocean acidification and warming. Nevertheless, calcifying organisms may adaptively modify their shell properties in response to these impacts. Here, we examined how reduced pH and elevated temperature affect shell mechanical and geochemical properties of common grazing gastropods from intertidal to subtidal zones. Given the greater environmental fluctuations in the intertidal zone, we hypothesized that intertidal gastropods would exhibit more plastic responses in shell properties than subtidal gastropods. Overall, three out of five subtidal gastropods produced softer shells at elevated temperature, while intertidal gastropods maintained their shell hardness at both elevated pCO 2 (i.e., reduced pH) and temperature. Regardless of pH and temperature, degree of crystallization was maintained (except one subtidal gastropod) and carbonate polymorph remained unchanged in all tested species. One intertidal gastropod produced less soluble shells (e.g., higher calcite/aragonite) in response to reduced pH. In contrast, subtidal gastropods produced only aragonite which has higher solubility than calcite. Overall, subtidal gastropods are expected to be more susceptible than intertidal gastropods to shell dissolution and physical damage under future seawater conditions. The increased vulnerability to shell dissolution and predation could have serious repercussions for their survival and ecological contributions in the future subtidal environment.

  3. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata.

    PubMed

    Li, Shiguo; Huang, Jingliang; Liu, Chuang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-02-02

    Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.

  4. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi.

    PubMed

    Bach, Lennart T; Mackinder, Luke C M; Schulz, Kai G; Wheeler, Glen; Schroeder, Declan C; Brownlee, Colin; Riebesell, Ulf

    2013-07-01

    Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2 . However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2 , bicarbonate, carbonate and protons) on the physiological responses to elevated CO2 . Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2 . Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Mobilization of natural colloids from an iron oxide-coated sand aquifer--Effect of pH and ionic strength

    USGS Publications Warehouse

    Bunn, Rebecca A.; Magelky, Robin D.; Ryan, Joseph N.; Elimelech, Menachem

    2002-01-01

    Field and laboratory column experiments were performed to assess the effect of elevated pH and reduced ionic strength on the mobilization of natural colloids in a ferric oxyhydroxide-coated aquifer sediment. The field experiments were conducted as natural gradient injections of groundwater amended by sodium hydroxide additions. The laboratory experiments were conducted in columns of undisturbed, oriented sediments and disturbed, disoriented sediments. In the field, the breakthrough of released colloids coincided with the pH pulse breakthrough and lagged the bromide tracer breakthrough. The breakthrough behavior suggested that the progress of the elevated pH front controlled the transport of the mobilized colloids. In the laboratory, about twice as much colloid release occurred in the disturbed sediments as in the undisturbed sediments. The field and laboratory experiments both showed that the total mass of colloid release increased with increasing pH until the concurrent increase in ionic strength limited release. A decrease in ionic strength did not mobilize significant amounts of colloids in the field. The amount of colloids released normalized to the mass of the sediments was similar for the field and the undisturbed laboratory experiments.

  6. Precipitation of CaCO3 due to the Uptake of CO2 in Aqueous Solutions - Mechanisms and Rates

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Purgstaller, B.; Rinder, T.; Niedermayr, A.

    2012-12-01

    In natural and man-made environments the exchange of CO2 between aqueous solutions and the atmosphere frequently induces precipitation of CaCO3 polymorphs. Liberation of gaseous CO2 is well known to induce carbonate formation and extensively studied. In contrast significant gaps of knowledge exist with respect to the combined CO2 uptake and CaCO3 formation, although it is known to be highly valid for many natural and man-made surroundings causing e.g. travertine and scaling in analogy to CO2 liberation. Recently CO2 uptake is also discussed for biomineralization issues and debated for CO2 sequestration by using alkaline residue materials. In the present study CO2 uptake and CaCO3 precipitation mechanisms and rates were experimentally studied by diffusion of CO2 through a polyethylene membrane from an inner to an outer solution containing carbonic acid and CaCl2 (10 mM), respectively. The pH of the outer solution was kept constant between 8.3 and 11.5 by pH stat. technique (25°C). At a critical Ion Activity Product (IAP) CaCO3 is formed in the outer solution. The NaOH titration curve and Ca2+ concentrations reflect CO2 uptake and CaCO3 precipitation rates. To discover the impact of a drift in pH due to CO2 uptake on CaCO3 precipitation hydrogeochemical modeling was applied. XRD, (micro)Raman pattern and SEM imaging reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH > 10 vaterite is additionally formed. However at a given pH the formation of individual CaCO3 polymorphs strongly depends on the CO2 uptake rate (adjusted by membrane thickness), which controls carbonate accumulation in the solution. At elevated pH of the outer solution the uptake rate of CO2 is significantly higher and less time for nucleation of CaCO3 is required compared to lower pH. Surprisingly at the total experimental time of ≈ 20 h the amount of precipitated CaCO3 is similar for all experiments. This can be explained by significant higher CaCO3 precipitation rates at low versus high pH if once a critical IAP is reached. If a drift in pH is permitted the internal Pco2 value can be used as a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of IAP with a threshold value of 10-6.15 atm at 25°C (pH ≈ 11). The obtained relationships for CaCO3 formation through CO2 uptake are discussed for selected alkaline environments.

  7. Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells.

    PubMed

    Guha, Sonia; Liu, Ji; Baltazar, Gabe; Laties, Alan M; Mitchell, Claire H

    2014-01-01

    Healthful cell maintenance requires the efficient degradative processing and removal of waste material. Retinal pigmented epithelial (RPE) cells have the onerous task of degrading both internal cellular debris generated through autophagy as well as phagocytosed photoreceptor outer segments. We propose that the inadequate processing material with the resulting accumulation of cellular waste contributes to the downstream pathologies characterized as age-related macular degeneration (AMD). The lysosomal enzymes responsible for clearance function optimally over a narrow range of acidic pH values; elevation of lysosomal pH by compounds like chloroquine or A2E can impair degradative enzyme activity and lead to a lipofuscin-like autofluorescence. Restoring acidity to the lysosomes of RPE cells can enhance activity of multiple degradative enzymes and is therefore a logical target in early AMD. We have identified several approaches to reacidify lysosomes of compromised RPE cells; stimulation of beta-adrenergic, A2A adenosine and D5 dopamine receptors each lowers lysosomal pH and improves degradation of outer segments. Activation of the CFTR chloride channel also reacidifies lysosomes and increases degradation. These approaches also restore the lysosomal pH of RPE cells from aged ABCA4(-/-) mice with chronically high levels of A2E, suggesting that functional signaling pathways to reacidify lysosomes are retained in aged cells like those in patients with AMD. Acidic nanoparticles transported to RPE lysosomes also lower pH and improve degradation of outer segments. In summary, the ability of diverse approaches to lower lysosomal pH and enhance outer segment degradation support the proposal that lysosomal acidification can prevent the accumulation of lipofuscin-like material in RPE cells.

  8. High temperature hydrothermal vent fluids in Yellowstone Lake: Observations and insights from in-situ pH and redox measurements

    NASA Astrophysics Data System (ADS)

    Tan, Chunyang; Cino, Christie D.; Ding, Kang; Seyfried, William E.

    2017-09-01

    ROV investigation of hydrothermal fluids issuing from vents on the floor of Yellowstone lake revealed temperatures in excess of 170 °C - the highest temperature yet reported for vent fluids within Yellowstone National Park (YNP). The study site is east of Stevenson Island at depth of approximately 100-125 m. In-situ pH and redox measurements of vent fluids were made using solid state sensors designed to sustain the elevated temperatures and pressures. YSZ membrane electrode with Ag/Ag2O internal element and internal pressure balanced Ag/AgCl reference electrode were used to measure pH, while a platinum electrode provided redox constraints. Lab verification of the pH sensor confirmed excellent agreement with Nernst law predictions, especially at temperatures in excess of 120 °C. In-situ pH values of between 4.2 and 4.5 were measured for the vent fluids at temperatures of 120 to 150 °C. The slightly acidic vent fluids are likely caused by CO2 enrichment in association with magmatic degassing effects that occur throughout YNP. This is consistent with results of simple model calculations and direct observation of CO2 bubbles in the immediate vicinity of the lake floor vents. Simultaneous redox measurements indicated moderate to highly reducing conditions (- 0.2 to - 0.3 V). As typical of measurements of this kind, internal and external redox disequilibria likely preclude unambiguous determination of redox controlling reactions. Redox disequilibria, however, can be expected to drive microbial metabolism and diversity in the near vent environment. Thus, the combination of in-situ pH and redox sensor deployments may ultimately provide the requisite framework to better understand the microbiology of the newly discovered hot vents on Yellowstone lake floor.

  9. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  10. Accessibility of cellulose: Structural changes and their reversibility in aqueous media.

    PubMed

    Pönni, Raili; Kontturi, Eero; Vuorinen, Tapani

    2013-04-02

    During various processing treatments, the accessibility of cellulose in cellulosic fibers reduces, which is often interpreted as cellulose microfibril aggregation. This affects the reactivity of cellulose in further processing to novel cellulosic products such as nanocellulose. In this study, the effect of aqueous treatments at elevated temperatures and various pH on accessibility of an oxygen delignified eucalyptus kraft pulp was evaluated by using deuteration combined with Fourier-transform infrared (FT-IR) spectroscopy and water retention value (WRV) test. Acidic treatments reduced WRV and caused irreversible deuteration of the pulp. However, alkaline treatments increased WRV and caused reversible deuteration of the pulp. Both deuteration and reprotonation of the deuterated pulp followed the same slow, first-order dynamics. This led us to propose that incubation of alkaline cellulosic pulp suspensions at elevated temperatures does not only lead to reduction in accessibility but also to a dynamic interconversion between accessible and inaccessible regions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components.

    PubMed

    Maharana, Dusmant; Das, Priya Brata; Verlecar, Xivanand N; Pise, Navnath M; Gauns, Manguesh

    2015-12-01

    Oxidative stress parameters in relation to temperature and other factors have been analysed in Hypnea musciformis, the red seaweed from Anjuna beach, Goa, with an aim to understand its susceptibility to the changing seasons. The results indicate that elevated temperature, sunshine and dessication during peak summer in May enhanced the activity of lipid peroxide, hydrogen peroxide and antioxidants such as catalase, glutathione and ascorbic acid. Statistical tests using multivariate analysis of variance and correlation analysis showed that oxidative stress and antioxidants maintain significant relation with temperature, salinity, sunshine and pH at an individual or interactive level. The dissolved nitrates, phosphates and biological oxygen demand in ambient waters and the trace metals in seaweeds maintained sufficiently low values to provide any indication that could exert contaminant oxidative stress responses. The present field studies suggest that elevated antioxidant content in H. musciformis offer sufficient relief to sustain against harsh environmental stresses for its colonization in the rocky intertidal zone.

  12. Estimation of the IC to CG Ratio Using JEM-GLIMS and Ground-based Lightning Network Data

    NASA Astrophysics Data System (ADS)

    Bandholnopparat, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.

    2017-12-01

    The ratio between intracloud (IC) discharge and cloud-to-ground (CG) discharge, which is denoted by Z, is the important parameter for the studies on the climatological differences of thunderstorm structures and for the quantitative evaluation of lightning contributions to the global electric circuit. However, the latitudinal, regional, and seasonal dependences of Z-value are not fully clarified. The purposes of this study are (i) to develop new methods to identify IC and CG discharges using optical data obtained by the Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) from space and ground-based lightning data, (ii) to estimate Z-value and its latitudinal, regional, and seasonal dependences. As a first step, we compared the JEM-GLIMS data to the ground-based lightning data obtained by JLDN, NLDN, WWLLN, and GEON in order to distinguish the lightning discharge type detected by JEM-GLIMS. As a next step, we have calculated intensity ratios between the blue and red PH channels, that is, PH2(337 nm)/PH3(762 nm), PH5(316 nm)/PH3, PH6(392 nm)/PH3, PH2/PH4(599-900 nm), PH5/PH4, and PH6/PH4 for each lightning event. From these analyses, it is found that 447 and 454 of 8355 lightning events were identified to be CG and IC discharges, respectively. It is also found that the PH intensity ratio of IC discharges is clearly higher than that of CG discharges. In addition, the difference of the PH2/PH3, PH2/PH4, and PH6/PH4 ratio between IC and CG cases is relatively large, which means these three ratios are the useful proxy to classify the discharge types for other 7454 lightning events. Finally, the estimated Z-value varies from 0.18 - 0.84 from the equator to the higher latitude. The decrease of the Z-value from the equator to the higher latitude is confirmed both in the northern and the southern hemispheres. Although this latitudinal dependence of the Z-value is similar to previous studies, i.e., Boccippio et al. (2001), the estimated absolute Z-value is smaller than that in previous studies. The reason of the smaller absolute Z-value may be because JEM-GLIMS used the high threshold for the event triggering and missed many lightning events having lower optical energies. At the presentation, we will show the regional and seasonal dependences of the Z-value in detail.

  13. Electrophoretic Study of the SnO2/Aqueous Solution Interface up to 260 degrees C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Santiago, V; Fedkin, Mark V.; Wesolowski, David J

    2009-01-01

    An electrophoresis cell developed in our laboratory was utilized to determine the zeta potential at the SnO{sub 2} (cassiterite)/aqueous solution (10{sup -3} mol kg{sup -1} NaCl) interface over the temperature range from 25 to 260 C. Experimental techniques and methods for the calculation of zeta potential at elevated temperature are described. From the obtained zeta potential data as a function of pH, the isoelectric points (IEPs) of SnO{sub 2} were obtained for the first time. From these IEP values, the standard thermodynamic functions were calculated for the protonation-deprotonation equilibrium at the SnO{sub 2} surface, using the 1-pK surface complexation model.more » It was found that the IEP values for SnO{sub 2} decrease with increasing temperature, and this behavior is compared to the predicted values by the multisite complexation (MUSIC) model and other semitheoretical treatments, and were found to be in excellent agreement.« less

  14. Preformulation studies of EFdA, a novel nucleoside reverse transcriptase inhibitor for HIV prevention

    PubMed Central

    Zhang, Wei; Parniak, Michael A.; Mitsuya, Hiroaki; Sarafianos, Stefan G.; Graebing, Phillip W.; Rohan, Lisa C.

    2014-01-01

    4′-Ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) is a novel nucleoside analog of great interest because of its superior activity against wild-type and multidrug-resistant HIV-1 strains, and favorable safety profiles in vitro and in vivo. The aim of this work was to provide preformulation information of EFdA important for delivery system development. A simple, accurate and specific reverse-phase high performance liquid chromatographic (RP-HPLC) method with UV detection was developed for quantification of EFdA. In addition, physicochemical characterizations including pH solubility profile, octanol/water partition coefficient (Log Po/w), DSC analysis, field emission scanning electron microscopy, and stability studies under various conditions were conducted. EFdA existed in planar or flake shape, with a melting point of ~130 °C, and had a pH dependent solubility. The log Po/w value of EFdA was −1.19. The compound was stable upon exposure to pH levels from 3 to 9 and showed good stability at elevated temperature (65 °C). In vitro cytotoxicity assessments were performed in two different epithelial cell lines. In cell-based studies, the EFdA selectivity index (50% cytotoxic concentration [CC50] values/50% effective concentration [EC50]) was found to be greater than 1 × 103. Permeability studies using cell- and tissue-based models showed that EFdA had an apparent permeability coefficient (Papp) <1 × 10−6cm/s and that the paracelluar pathway was the dominant transport route for EFdA. Overall, EFdA possesses favorable characteristics for further formulation development. PMID:23841536

  15. Preformulation studies of EFdA, a novel nucleoside reverse transcriptase inhibitor for HIV prevention.

    PubMed

    Zhang, Wei; Parniak, Michael A; Mitsuya, Hiroaki; Sarafianos, Stefan G; Graebing, Phillip W; Rohan, Lisa C

    2014-08-01

    4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a novel nucleoside analog of great interest because of its superior activity against wild-type and multidrug-resistant HIV-1 strains, and favorable safety profiles in vitro and in vivo. The aim of this work was to provide preformulation information of EFdA important for delivery system development. A simple, accurate and specific reverse-phase high performance liquid chromatographic (RP-HPLC) method with UV detection was developed for quantification of EFdA. In addition, physicochemical characterizations including pH solubility profile, octanol/water partition coefficient (Log Po/w), DSC analysis, field emission scanning electron microscopy, and stability studies under various conditions were conducted. EFdA existed in planar or flake shape, with a melting point of ∼130 °C, and had a pH dependent solubility. The log Po/w value of EFdA was -1.19. The compound was stable upon exposure to pH levels from 3 to 9 and showed good stability at elevated temperature (65 °C). In vitro cytotoxicity assessments were performed in two different epithelial cell lines. In cell-based studies, the EFdA selectivity index (50% cytotoxic concentration [CC50] values/50% effective concentration [EC50]) was found to be greater than 1 × 10(3). Permeability studies using cell- and tissue-based models showed that EFdA had an apparent permeability coefficient (Papp) <1 × 10(-6)cm/s and that the paracelluar pathway was the dominant transport route for EFdA. Overall, EFdA possesses favorable characteristics for further formulation development.

  16. Leaching of DOC, DN, and inorganic constituents from scrap tires.

    PubMed

    Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju

    2015-11-01

    One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Yogurt made from milk heated at different pH values.

    PubMed

    Ozcan, Tulay; Horne, David S; Lucey, John A

    2015-10-01

    Milk for yogurt manufacture is subjected to high heat treatment to denature whey proteins. Low milk pH values (≤ 6.5) at heating result in most denatured whey proteins becoming associated with casein micelles, whereas high milk pH values (≥ 7.0) at heating result in the formation of mostly soluble (nonmicellar) denatured whey protein complexes. There are conflicting reports on the relative importance of soluble and casein-bound whey protein aggregates on the properties of acid gels. Prior studies investigating the effect of pH of milk at heating used model gels in which milk was acidified by glucono-δ-lactone; in this study, we prepared yogurt gels using commercial starter cultures. Model acid gels can have very different texture and physical properties from those made by fermentation with starter cultures. In this study, we investigated the effects of different pH values of milk at heating on the rheological, light backscatter, and microstructural properties of yogurt gels. Reconstituted skim milk was adjusted to pH values 6.2, 6.7, and 7.2 and heated at 85°C for 30 min. A portion of the heated milk samples was readjusted back to pH 6.7 after heating. Milks were inoculated with 3% (wt/wt) yogurt starter culture and incubated at 40°C until pH 4.6. Gel formation was monitored using dynamic oscillatory rheology, and parameters measured included the storage modulus (G') and loss tangent (LT) values. Light-backscattering properties, such as the backscatter ratio (R) and the first derivative of light backscatter ratio (R'), were also monitored during fermentation. Fluorescence microscopy was used to observe gel microstructure. The G' values at pH 4.6 were highest in gels made from milk heated at pH 6.7 and lowest in milk heated at pH 6.2, with or without pH adjustment after heating. The G' values at pH 4.6 were lower in samples after adjustment back to pH 6.7 after heating. No maximum in the LT parameter was observed during gelation for yogurts made from milk heated at pH 6.2; a maximum in LT was observed at pH ~4.8 for samples heated at pH 6.7 or 7.2, with or without pH adjustment after heating. Higher R-values were observed with an increase in pH of heating, with or without pH adjustment after heating. The sample heated at pH 6.2 had only one major peak in its R' profile during acidification, whereas samples heated at pH 6.7 and 7.2 had 2 large peaks. The lack of a maximum in LT parameter and the presence of a single peak in the R' profile for the samples heated at pH 6.2 were likely due to the partial solubilization of insoluble calcium phosphate when milk was acidified to this lower pH value. No clear differences were observed in the microstructures of gels between the different treatments. This study indicates that heating milk at the natural pH (~6.7) created an optimum balance of casein-bound and soluble denatured whey proteins, which resulted in yogurt with the highest gel stiffness. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Ocean acidification and the δ15N record of Paleozoic epeiric seas

    NASA Astrophysics Data System (ADS)

    Tuite, M. L., Jr.; Williford, K. H.

    2017-12-01

    In addition to its role as a primary driver of global climate, atmospheric CO2 influences the pH of seawater which is an important factor in mediating biogeochemical cycles. Variations in the pH of seawater on geological timescales have been correlated with broad impacts on marine ecosystems and biogeochemical processes including evolutionary turnover and mass extinction. Atmospheric CO2 declined dramatically during the mid-Paleozoic, coincident with the emergence of terrestrial forests and concomitant development of a substantial soil carbon reservoir and increased silicate weathering. Global greenhouse conditions that prevailed at the Late Devonian Frasnian/Famennian boundary gave way to temperate latitude glaciation at the end of the Famennian. In a recent review of icehouse-greenhouse variations in marine nitrogen biogeochemistry through the Phanerozoic (Algeo et al. 2014), the authors observed a strong correlation between sediment δ15N and first order climate cycles with a trend toward lower values during greenhouse periods and higher values during icehouse periods. Based upon modeling results, the shift in sediment δ15N was ascribed to a change in the locus of denitrification from sediments in warm climates to the water column during cooler periods driven primarily by eustatic sea level change as glacial ice mass waxed and waned. Sediment δ15N is a useful proxy for interpreting N biogeochemistry in marine systems because it provides an integrated record of the microbially-mediated redox reactions that led to that δ15N value. We propose that the elevated CO2 that drove the greenhouse climate in the early Famennian also resulted in the acidification of seawater that precluded nitrification, yielding an ammonium-dominated surface ocean and low sediment δ15N. As O2 climbed and seawater pH responded to diminished CO2, we propose that nitrification rates increased resulting in a nitrate-dominated system and sediment δ15N values that approach modern values. In support of our argument, we present stable isotope, redox, and compositional data from a core that spans the transition from the high CO2 greenhouse climate near the F/F boundary to the lower CO2 climate in the latest Devonian.

  19. Short term exposure to elevated pCO2 and hypoxia affects the cellular homeostasis of grass shrimp, Palaemonetes pugio

    EPA Science Inventory

    Estuarine organisms are adapted to frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels. The high productivity of an estuary contributes to large changes in environmental conditions, with organismal respiration enhancing hypoxic zones, and elevating pCO...

  20. Characterization of high elevation central Appalachian wetlands

    Treesearch

    K.E. Francl; W.M. Ford; S.B. and Castleberry

    2004-01-01

    We characterized 20 high elevation wetlands in the central Appalachian Mountains in West Virginia and Maryland, in terms of vegetation, soils, hydrology, and geology. Plant species were distributed along soil chemical (pH, conductivity) and physical (organic matter depth) gradients across sites. Topography and geology appear to explain differences among these wetlands...

  1. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China

    PubMed Central

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Xue, Yadong; Deng, Ye; Li, Hui; Zhou, Jizhong; Li, Diqiang

    2015-01-01

    Understanding biological diversity elevational pattern and the driver factors are indispensable to develop the ecological theories. Elevational gradient may minimize the impact of environmental factors and is the ideal places to study soil microbial elevational patterns. In this study, we selected four typical vegetation types from 1000 to 2800 m above the sea level on the northern slope of Shennongjia Mountain in central China, and analysed the soil bacterial community composition, elevational patterns and the relationship between soil bacterial diversity and environmental factors by using the 16S rRNA Illumina sequencing and multivariate statistical analysis. The results revealed that the dominant bacterial phyla were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Verrucomicrobia, which accounted for over 75% of the bacterial sequences obtained from tested samples, and the soil bacterial operational taxonomic unit (OTU) richness was a significant monotonous decreasing (P < 0.01) trend with the elevational increasing. The similarity of soil bacterial population composition decreased significantly (P < 0.01) with elevational distance increased as measured by the Jaccard and Bray–Curtis index. Canonical correspondence analysis and Mantel test analysis indicated that plant diversity and soil pH were significantly correlated (P < 0.01) with the soil bacterial community. Therefore, the soil bacterial diversity on Shennongjia Mountain had a significant and different elevational pattern, and plant diversity and soil pH may be the key factors in shaping the soil bacterial spatial pattern. PMID:26032124

  2. Destabilization of emulsions by natural minerals.

    PubMed

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Growth and blood chemistry of ducklings reared on acidified wetlands

    USGS Publications Warehouse

    Rattner, B.A.; Haramis, G.; Linder, G.; Chu, D.

    1985-01-01

    Acid deposition is one factor that may be responsible for the decline of some waterfowl populations. Growth and physiological condition were monitored in captive-reared black ducks (Anas rubripes) exposed for 10-day trials (day 11-20 of life) on control (pH 6.8) and acidified (pH 5.0) man-made emergent wetlands. Impaired growth (body weight, culmen and tarsus length) and increased mortality (50%) were apparent in broods (hen + 4 ducklings) reared on acidified wetIands. Ducklings exbibiting poor growth had reduced hematocrit, plasma protein and cholesterol levels. This subset of birds had elevated plasma uric acid concentration and creatine kinase activity (perhaps due to enhanced protein and nucleotide catabolism). and elevated pIasma K+ levels. Based upon overt appearance, growth and blood chemistry, ducklings exposed to acidified wetlands were concluded to be in poorer condittion than those exposed on circumneutral pH wetlands.

  4. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values attained at very low metal loading conditions are compared to existing literature data. Overall, experimental data suggest that the tetravalent transition metal/-actinide-humic acid complexation is important over a wide range of pH values, including mildly acidic conditions, and thus, these complexes should be included in speciation models.

  5. Digestion products of the PH20 hyaluronidase inhibit remyelination.

    PubMed

    Preston, Marnie; Gong, Xi; Su, Weiping; Matsumoto, Steven G; Banine, Fatima; Winkler, Clayton; Foster, Scott; Xing, Rubing; Struve, Jaime; Dean, Justin; Baggenstoss, Bruce; Weigel, Paul H; Montine, Thomas J; Back, Stephen A; Sherman, Larry S

    2013-02-01

    Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation. Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo. OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases, including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions. We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions. Copyright © 2012 American Neurological Association.

  6. Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 degrees C.

    PubMed Central

    Boehm, M F; Bada, J L

    1984-01-01

    The racemization half-lives (i.e., the time required to reach a D/L = 0.33) at pH 6.8 for aspartic acid and phenylalanine in the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester) were determined to be 13 and 23 hours, respectively, at 100 degrees C. Racemization at this pH does not occur in aspartame but rather in its diketopiperazine decomposition product. Our results indicate that the use of aspartame to sweeten neutral pH foods and beverages that are then heated at elevated temperature could generate D-aspartic acid and D-phenylalanine. The nutritive consequences of these D-amino acids in the human diet are not well established, and thus aspartame should probably not be used as a sweetener when the exposure of neutral pH foods and beverages to elevated temperatures is required. At pH 4, a typical pH of most foods and beverages that might be sweetened with aspartame, the half-lives are 47 hours for aspartic acid and 1200 hours for phenylalanine at 100 degrees C. Racemization at pH 4 takes place in aspartame itself. Although the racemization rates at pH 4 are slow and no appreciable racemization of aspartic acid and phenylalanine should occur during the normal use of aspartame, some food and beverage components could conceivably act as catalysts. Additional studies are required to evaluate whether the use of aspartame as a sugar substitute might not in turn result in an increased human consumption of D-aspartic acid and D-phenylalanine. PMID:6591191

  7. Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system.

    PubMed

    Barrio-Parra, F; Elío, J; De Miguel, E; García-González, J E; Izquierdo, M; Álvarez, R

    2018-04-01

    A total of 74 samples of soil, sediment, industrial sludge, and surface water were collected in a Mediterranean estuarine system in order to assess the potential ecological impact of elevated concentrations of Co and Mn associated with a Terephthalic (PTA) and Isophthalic (PIPA) acids production plant. Samples were analyzed for elemental composition (37 elements), pH, redox potential, organic carbon, and CaCO 3 content, and a group of 16 selected samples were additionally subjected to a Tessier sequential extraction. Co and Mn soil concentrations were significantly higher inside the industrial facility and around its perimeter than in background samples, and maximum dissolved Co and Mn concentrations were found in a creek near the plant's discharge point, reaching values 17,700 and 156 times higher than their respective background concentrations. The ecological risk was evaluated as a function of Co and Mn fractionation and bioavailability which were controlled by the environmental conditions generated by the advance of seawater into the estuarine system during high tide. Co appeared to precipitate near the river mouth due to the pH increase produced by the influence of seawater intrusion, reaching hazardous concentrations in sediments. In terms of their bioavailability and the corresponding risk assessment code, both Co and Mn present sediment concentrations that result in medium to high ecological risk whereas water concentrations of both elements reach values that more than double their corresponding Secondary Acute Values.

  8. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  9. Impact of elevated CO2 on shellfish calcification

    NASA Astrophysics Data System (ADS)

    Gazeau, Frédéric; Quiblier, Christophe; Jansen, Jeroen M.; Gattuso, Jean-Pierre; Middelburg, Jack J.; Heip, Carlo H. R.

    2007-04-01

    Ocean acidification resulting from human emissions of carbon dioxide has already lowered and will further lower surface ocean pH. The consequent decrease in calcium carbonate saturation potentially threatens calcareous marine organisms. Here, we demonstrate that the calcification rates of the edible mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas) decline linearly with increasing pCO2. Mussel and oyster calcification may decrease by 25 and 10%, respectively, by the end of the century, following the IPCC IS92a scenario (~740 ppmv in 2100). Moreover, mussels dissolve at pCO2 values exceeding a threshold value of ~1800 ppmv. As these two species are important ecosystem engineers in coastal ecosystems and represent a large part of worldwide aquaculture production, the predicted decrease of calcification in response to ocean acidification will probably have an impact on coastal biodiversity and ecosystem functioning as well as potentially lead to significant economic loss.

  10. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau.

    PubMed

    Zhao, Kang; Kong, Weidong; Khan, Ajmal; Liu, Jinbo; Guo, Guangxia; Muhanmmad, Said; Zhang, Xianzhou; Dong, Xiaobin

    2017-09-01

    Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.

  11. Antacids and dietary supplements with an influence on the gastric pH increase the risk for food sensitization

    PubMed Central

    Pali-Schöll, I.; Herzog, R.; Wallmann, J.; Szalai, K.; Brunner, R.; Lukschal, A.; Karagiannis, P.; Diesner, S. C.; Jensen-Jarolim, E.

    2010-01-01

    Summary Background Elevation of the gastric pH increases the risk for sensitization against food allergens by hindering protein breakdown. This can be caused by acid-suppressing medication like sucralphate, H2-receptor blockers and proton pump inhibitors, as shown in recent murine experimental and human observational studies. Objective The aim of the present study was to assess the sensitization capacity of the dietary supplement base powder and of over-the-counter antacids. Methods Changes of the pH as well as of protein digestion due to base powder or antacids were measured in vitro. To examine the in vivo influence, BALB/c mice were fed codfish extract with one of the acid-suppressing substances. Read-out of antibody levels in the sera, of cytokine levels of stimulated splenocytes and of intradermal skin tests was performed. Results The pH of hydrochloric acid was substantially increased in vitro by base powder as well as antacids in a time- and dose-dependent manner. This elevation hindered the digestion of codfish proteins in vitro. A significant increase in codfish-specific IgE antibodies was found in the groups fed codfish combined with Rennie® Antacidum or with base powder; the latter also showed significantly elevated IgG1 and IgG2a levels. The induction of an anaphylactic immune response was proven by positive results in intradermal skin tests. Conclusions Antacids and dietary supplements influencing the gastric pH increase the risk for sensitization against allergenic food proteins. As these substances are commonly used in the general population without consulting a physician, our data may have a major practical and clinical impact. PMID:20214670

  12. Tidally driven water column hydro-geochemistry in a remediating acidic wetland

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Keene, Annabelle F.; Bush, Richard T.; Sullivan, Leigh A.; Wong, Vanessa N. L.

    2011-10-01

    SummaryManaged tidal inundation is a newly evolved technique for remediating coastal acid sulphate soil (CASS) wetlands. However, there remains considerable uncertainty regarding the hydro-geochemical pathways and spatiotemporal dynamics of residual H + and metal(loid) mobilisation into the tidal fringe surface waters of these uniquely iron-rich landscapes. Here, we examine the hydrology and water column chemistry across the intertidal slope of a remediating CASS wetland during several tide cycles. There was extreme spatial and temporal dynamism in water column chemistry, with pH fluctuating by ˜3 units (˜3.5-6.5) during a single tide cycle. Acute acidity was spatially confined to the upper intertidal slope, reflecting surface sediment properties, and tidal overtopping is an important pathway for mobilisation of residual H + and Al 3+ to the water column. Marine derived HCO3- was depleted from surface waters migrating across the intertidal slope and a strong gradient in HCO3- was observed from the tidal fringe to the adjacent tributary channel and nearby estuary. Tidal forcing generated oscillating hydraulic gradients in the shallow fringing aquifer, favouring ebb-tide seepage and driving rapid, heterogeneous advection of groundwater on the lower intertidal slope via surface connected macropores. A combination of diffusive and advective flux across the sediment-water interface led to persistent, elevated surface water Fe 2+ (˜10-1000 μM). The geochemical processes associated with Fe 2+ mobilisation displayed distinct spatial zonation, with low pH, proton-promoted desorption occurring on the upper intertidal slope, whilst circum-neutral pH, Fe(III)-reducing processes dominated the lower intertidal slope. Arsenic was also mobilised into surface waters on the lower intertidal slope under moderate pH (˜6.0) conditions and was strongly positively correlated with Fe 2+. Saturation index values for aragonite were substantially depressed (-1 to -5) and significantly negatively correlated with elevation, thereby presenting a barrier to re-colonisation of the upper intertidal slope by calcifying benthic organisms. These findings highlight the spatially complex hydrological and geochemical controls on surface water quality that can occur in tidally inundated acid sulphate soil environments.

  13. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

    NASA Astrophysics Data System (ADS)

    Orsi, A.; Kongstein, O. E.; Hamilton, P. J.; Oedegaard, A.; Svenum, I. H.; Cooke, K.

    2015-07-01

    Stainless steel bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) have good manufacturability, durability and low costs, but inadequate corrosion resistance and elevated interfacial contact resistance (ICR) in the fuel cell environment. Thin film coatings of titanium nitride (TiN) of 1 μm in thickness, were deposited by means of physical vapour deposition (PVD) process on to stainless steel (SS) 316L substrates and were evaluated, in a series of tests, for their level of corrosion protection and ICR. In the ex-situ corrosion tests, variables such as applied potential, experimental duration and pH of the sulphate electrolyte at 80 °C were altered. The ICR values were found to increase after exposure to greater applied potentials and electrolytes of a higher pH. In terms of experimental duration, the ICR increased most rapidly at the beginning of each experiment. It was also found that the oxidation of TiN was accelerated after exposure to electrolytes of a higher pH. When coated BPPs were incorporated into an accelerated fuel cell test, the degradation of the fuel cell cathode resembled the plates that were tested at the highest anodic potential (1.4 VSHE).

  14. Stepwise high-throughput virtual screening of Rho kinase inhibitors from natural product library and potential therapeutics for pulmonary hypertension.

    PubMed

    Su, Hao; Yan, Ji; Xu, Jian; Fan, Xi-Zhen; Sun, Xian-Lin; Chen, Kang-Yu

    2015-08-01

    Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling. The activation of RhoA/Rho-kinase (ROCK) pathway plays a central role in the pathologic progression of PH and thus the Rho kinase, an essential effector of the ROCK pathway, is considered as a potential therapeutic target to attenuate PH. In the current study, a synthetic pipeline is used to discover new potent Rho inhibitors from various natural products. In the pipeline, the stepwise high-throughput virtual screening, quantitative structure-activity relationship (QSAR)-based rescoring, and kinase assay were integrated. The screening was performed against a structurally diverse, drug-like natural product library, from which six identified compounds were tested to determine their inhibitory potencies agonist Rho by using a standard kinase assay protocol. With this scheme, we successfully identified two potent Rho inhibitors, namely phloretin and baicalein, with activity values of IC50 = 0.22 and 0.95 μM, respectively. Structural examination suggested that complicated networks of non-bonded interactions such as hydrogen bonding, hydrophobic forces, and van der Waals contacts across the complex interfaces of Rho kinase are formed with the screened compounds.

  15. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    PubMed

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  16. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    NASA Astrophysics Data System (ADS)

    Yu, Run-lan; Liu, Jing; Tan, Jian-xi; Zeng, Wei-min; Shi, Li-juan; Gu, Guo-hua; Qin, Wen-qing; Qiu, Guan-zhou

    2014-04-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  17. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation

    DOE PAGES

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Coyle, Kaitlin P.; ...

    2016-10-04

    We present the majority of terrestrial plant roots are colonized by arbuscular mycorrhizal (AM) fungi that, in exchange for carbon, provide plants with enhanced nutrient uptake — most notably inorganic phosphate (P i). To mediate the uptake of Pi from the soil, AM fungi possess high affinity inorganic phosphate transporters (PTs). Under laboratory conditions, P i concentrations have been shown to regulate AM fungal-specific PT gene expression. The relationship between PT expression and P i in the field remains unexplored. Here we quantify AM fungal-specific PTs from maple tree roots in situ. In an effort to limit edaphic parameters, rootmore » samples were collected from manipulated forested plots that had elevated soil P i availability, either through direct P i application or elevating pH to lower exchangeable aluminum. The aim of the study was to examine AM fungal-specific PT gene expression both prior to and following soil P i amendment; however, a direct correlation between soil P i concentration and PT gene expression was not observed. PT transcripts were detected to a greater extent under elevated pH and, while our results are confounded by an overall low detection of PT genes (23 % of all samples collected), our findings raise interesting questions regarding the role of soil pH on PT function. In conclusion, our study is a first step in understanding how edaphic properties influence PT expression and plant P acquisition in mature tree roots.« less

  18. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Coyle, Kaitlin P.

    We present the majority of terrestrial plant roots are colonized by arbuscular mycorrhizal (AM) fungi that, in exchange for carbon, provide plants with enhanced nutrient uptake — most notably inorganic phosphate (P i). To mediate the uptake of Pi from the soil, AM fungi possess high affinity inorganic phosphate transporters (PTs). Under laboratory conditions, P i concentrations have been shown to regulate AM fungal-specific PT gene expression. The relationship between PT expression and P i in the field remains unexplored. Here we quantify AM fungal-specific PTs from maple tree roots in situ. In an effort to limit edaphic parameters, rootmore » samples were collected from manipulated forested plots that had elevated soil P i availability, either through direct P i application or elevating pH to lower exchangeable aluminum. The aim of the study was to examine AM fungal-specific PT gene expression both prior to and following soil P i amendment; however, a direct correlation between soil P i concentration and PT gene expression was not observed. PT transcripts were detected to a greater extent under elevated pH and, while our results are confounded by an overall low detection of PT genes (23 % of all samples collected), our findings raise interesting questions regarding the role of soil pH on PT function. In conclusion, our study is a first step in understanding how edaphic properties influence PT expression and plant P acquisition in mature tree roots.« less

  19. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster.

    PubMed

    Ko, Ginger W K; Dineshram, R; Campanati, Camilla; Chan, Vera B S; Havenhand, Jon; Thiyagarajan, Vengatesen

    2014-09-02

    Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

  20. Habitat suitability index model for brook trout in streams of the Southern Blue Ridge Province: Surrogate variables, model evaluation, and suggested improvements

    USGS Publications Warehouse

    Schmitt, C.J.; Lemly, A.D.; Winger, P.V.

    1993-01-01

    Data from several sources were collated and analyzed by correlation, regression, and principal components analysis to define surrrogate variables for use in the brook trout (Salvelinus fontinalis) habitat suitability index (HSI) model, and to evaluate the applicability of the model for assessing habitat in high elevation streams of the southern Blue Ridge Province (SBRP). In all data sets examined, pH and alkalinity were highly correlated, and both declined with increasing elevation; however, the magnitude of the decline varied with underlying rock formations and other factors, thereby restricting the utility of elevation as a surrogate for pH. In the data sets that contained biological information, brook trout abundance (as biomass, density, or both) tended to increase with elevation and decrease with the abundance of rainbow trout (Oncorhynchus mykiss), and was not significantly correlated (P >0.05) with the abundance of most benthic macroinvertebrate taxa normally construed as important in the diet of brook trout. Using multiple linear regression, the authors formulated an alternative HSI model A? based on point estimates of gradient, pH, elevation, stream width, and rainbow trout density A? which explained 40 to 50 percent of the variance in brook trout density in 256 stream reaches. Although logically developed, the present U.S. Fish and Wildlife Service HSI model, proposed in 1982, seems deficient in several areas, especially when applied to SBRP streams. The authors recommend that the water quality component in the model be updated and reevaluated, focusing on the differential sensitivities of each life stage, the stochastic nature of the water quality variables, and the possible existence of habitat requirements that differ among brook trout strains.

  1. A Comparison of Coral and Mollusk Calcification Strategies Under Future Ocean Acidification Scenarios

    NASA Astrophysics Data System (ADS)

    Cameron, L.; Reymond, C.; Westfield, I. T.; Mueller-Lundin, F.; Fink, A.; Hardenberg, S.; Westphal, H.; de Beer, D.; Ries, J. B.

    2016-12-01

    Here, we contrast the calcification dynamics of the coral Stylophora pistillata and the scallop Pecten maximus under future ocean acidification scenarios. Specimens were cultured in fully crossed pCO2 (400, 1000, 3000 matm) and temperature (28, 31 °C for corals; 9, 12 °C for scallops) treatments. Net calcification rates were determined from changes in the organisms' buoyant weights between the beginning and end of the experiment. After one month of exposure, proton-sensitive microelectrodes were used to measure pH at the calcification site of both corals and scallops. Net calcification rates of S. pistillata increased linearly with increasing pCO2 at 28 °C, but were near zero in all pCO2 treatments at 31 °C. Under each pCO2 treatment, net calcification rates of S. pistillata were significantly greater at 28 °C than at 31 °C. Net calcification rates of P. maximus decreased linearly with increasing pCO2 at 12 °C, but showed no significant trend with pCO2 at 9 °C. Net calcification rates of P. maximus under each pCO2 were significantly greater at 12 °C than at 9 °C. Microelectrode measurements revealed that regulation of calcification site pH differed substantially between the investigated coral and scallop. The coral exhibited calcifying fluid pH that was elevated relative to seawater pH by 0.3 - 0.5 units under all pCO2 conditions at 28 °C, and by 0.1 - 0.3 under all pCO2 conditions at 31 °C. In contrast, the scallop exhibited extrapallial fluid pH fixed at 7.8 - 8.2 pH units under 400 and 1000 matm pCO2 at both 9 and 12 °C. At 3000 matm pCO2, extrapallial fluid pH decreased to between 7.1 and 7.3 under both temperatures. These results suggest that the investigated coral calcifies more quickly under higher pCO2 by elevating pH of its calcifying fluid, thereby converting the increased DIC to carbonate ions for calcification. However, this ability appears to be impaired under substantially elevated temperatures (31 °C), resulting in conditions unfavorable for calcification. The scallop, in contrast, maintained its extrapallial fluid pH at a relatively constant seawater pH (7.8 - 8.2) under both 400 and 1000 matm pCO2, maintaining conditions favorable for calcification. At 3000 matm pCO2, the scallop appears to lose control of its extrapallial fluid pH, resulting in a substantial pH decline that is unsupportive of calcification.

  2. Birth asphyxia measured by the pH value of the umbilical cord blood may predict an increased risk of attention deficit hyperactivity disorder.

    PubMed

    Mikkelsen, Susanne Hvolgaard; Olsen, Jørn; Bech, Bodil Hammer; Wu, Chunsen; Liew, Zeyan; Gissler, Mika; Obel, Carsten; Arah, Onyebuchi

    2017-06-01

    Although birth asphyxia is a major risk factor for neonatal and childhood morbidity and mortality, it has not been investigated much in relation to attention deficit hyperactivity disorder (ADHD). We examined whether birth asphyxia measured by the pH of the blood in the umbilical artery cord was associated with childhood ADHD. A population-based cohort of 295 687 children born in Finland between 1991 and 2002 was followed until December 31, 2007. ADHD was identified by the International Classification of Diseases, 10th edition, as a diagnosis of hyperkinetic disorder. We examined the risk of ADHD with varying pH values using Cox regression, taking time trends into consideration. When compared to the reference group, a pH value below 7.10 was significantly associated with an increased risk of ADHD. The strongest risks were observed among children with a pH value <7.15 and a gestational age of <32 weeks. The pH value did not contribute much to the risk among children with an Apgar score of 0-3. Birth asphyxia, defined by low pH value, may predict an increased risk of ADHD in childhood. The association between the pH value and ADHD was homogenous when stratified by gestational age and the Apgar score. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  3. Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis.

    PubMed

    Rayner, Simon; Bruhn, Sören; Vallhov, Helen; Andersson, Anna; Billmyre, R Blake; Scheynius, Annika

    2017-01-04

    Malassezia is the dominant fungus in the human skin mycobiome and is associated with common skin disorders including atopic eczema (AE)/dermatitis. Recently, it was found that Malassezia sympodialis secretes nanosized exosome-like vesicles, designated MalaEx, that carry allergens and can induce inflammatory cytokine responses. Extracellular vesicles from different cell-types including fungi have been found to deliver functional RNAs to recipient cells. In this study we assessed the presence of small RNAs in MalaEx and addressed if the levels of these RNAs differ when M. sympodialis is cultured at normal human skin pH versus the elevated pH present on the skin of patients with AE. The total number and the protein concentration of the released MalaEx harvested after 48 h culture did not differ significantly between the two pH conditions nor did the size of the vesicles. From small RNA sequence data, we identified a set of reads with well-defined start and stop positions, in a length range of 16 to 22 nucleotides consistently present in the MalaEx. The levels of small RNAs were not significantly differentially expressed between the two different pH conditions indicating that they are not influenced by the elevated pH level observed on the AE skin.

  4. Failure of nasogastric omeprazole suspension in pediatric intensive care patients.

    PubMed

    Haizlip, Julie A; Lugo, Ralph A; Cash, Jared J; Vernon, Donald D

    2005-03-01

    To determine the efficacy of nasogastric administration of omeprazole suspension in raising the gastric pH >4 in critically ill pediatric patients and to determine the most appropriate dosing regimen for this indication. Open-label pharmacodynamic study. Twenty-six bed tertiary-care pediatric intensive care unit. Mechanically ventilated children aged 1-18 yrs with an additional risk factor for stress ulcer formation. Continuous gastric pH monitoring was performed during administration and dose titration of omeprazole suspension to achieve the goal of gastric pH >4 for greater than 75% of the dosing interval. Data were collected from 18 patients. Subjects were categorized based on the pharmacologic response to nasogastric administration of 1 mg/kg omeprazole suspension (maximum 20 mg) as rapid (n = 9), late (n = 5), and nonresponders (n = 4). Rapid responders required 0.72 mg/kg per day omeprazole suspension to achieve adequate gastric pH elevation for stress ulcer prophylaxis. Late responders required 1.58 mg/kg per day. Nonresponders did not achieve adequate elevation of gastric pH for stress ulcer prophylaxis. Nasogastric administration of omeprazole suspension has variable efficacy in critically ill pediatric patients. Half of the studied subjects either required significant dose titrations to achieve gastric acid suppression or did not respond to nasogastric administration of omeprazole suspension.

  5. Effect of pH on rheotaxis of bull sperm using microfluidics.

    PubMed

    El-Sherry, T M; Abdel-Ghani, M A; Abou-Khalil, N S; Elsayed, M; Abdelgawad, M

    2017-10-01

    The aim of the present research is to study the effect of pH values on the sperm rheotaxis properties. Semen collected from bulls was diluted with SOF medium (1:10). pH of the medium was adjusted using a digital pH meter to the following pH values: 6.0, 6.2, 6.4, 6.4, 6.8, 7.0. All kinetic parameters of sperm (n = 3,385) were determined through a computer-assisted sperm analysis (CASA) system using microfluidic devices with controlled flow velocity. The following parameters were determined: total motility (TM%), positive rheotaxis (PR%), straightline velocity (VSL, μm/s), average path velocity (VAP, μm/s), linearity (LIN, as VSL/VCL, %), beat cross-frequency (BCF, Hz) and curvilinear velocity (VCL, μm/s). Nitric oxide, calcium and potassium were estimated in semen at different pH values. To confirm the effect of nitric oxide and K + , we used sodium nitroprusside (an NO donor) and KCL as (a K + donor) to see their effect on sperm PR%. The results showed no difference in TM% at pH (6-7). The PR% was the lowest at pH 6 and 7. The best parameters for the PR% were at pH 6.4-6.6. The concentration of Ca +2 did not change at different pH values. The mean NO values decreased with the increase of pH; however, the mean values of K + increased with the increase of pH. Addition of high concentration of NO and K + to the semen media at fixed pH level had a negative effect on TM% and PR%. In conclusion, the bull sperm had the best rheotaxis properties at pH 6.4-6.6 and sensitive to the change of seminal NO and K + . © 2017 Blackwell Verlag GmbH.

  6. Calibration of diatom-pH-alkalinity methodology for the interpretation of the sedimentary record in Emerald Lake Integrated watershed study. Final report, 6 May 1985-10 October 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, R.W.

    1986-10-10

    The present study was designed to establish quantitative relationships between lake air-equilibrated pH, alkalinity, and diatoms occurring in the surface sediments in high-elevation Sierra Nevada Lakes. These relationships provided the necessary information to develop predictive equations relating lake pH to the composition of surface-sediment diatom assemblages in 27 study lakes. Using the Hustedt diatom pH classification system, Index B of Renberg and Hellberg, and multiple linear regression analysis, two equations were developed which predict lake pH from the relative abundance of sediment diatoms occurring in each of four diatom pH groupings.

  7. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.

    PubMed

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.

  8. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand

    PubMed Central

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity. PMID:28421053

  9. Effects of an acidic environment on coagulation dynamics.

    PubMed

    Gissel, M; Brummel-Ziedins, K E; Butenas, S; Pusateri, A E; Mann, K G; Orfeo, T

    2016-10-01

    Essentials Acidosis, an outcome of traumatic injury, has been linked to impaired procoagulant efficiency. In vitro model systems were used to assess coagulation dynamics at pH 7.4 and 7.0. Clot formation dynamics are slightly enhanced at pH 7.0 in blood ex vivo. Acidosis induced decreases in antithrombin efficacy offset impairments in procoagulant activity. Background Disruption of hydrogen ion homeostasis is a consequence of traumatic injury often associated with clinical coagulopathy. Mechanisms by which acidification of the blood leads to aberrant coagulation require further elucidation. Objective To examine the effects of acidified conditions on coagulation dynamics using in vitro models of increasing complexity. Methods Coagulation dynamics were assessed at pH 7.4 and 7.0 as follows: (i) tissue factor (TF)-initiated coagulation proteome mixtures (±factor [F]XI, ±fibrinogen/FXIII), with reaction progress monitored as thrombin generation or fibrin formation; (ii) enzyme/inhibitor reactions; and (iii) TF-dependent or independent clot dynamics in contact pathway-inhibited blood via viscoelastometry. Results Rate constants for antithrombin inhibition of FXa and thrombin were reduced by ~ 25-30% at pH 7.0. At pH 7.0 (+FXI), TF-initiated thrombin generation showed a 20% increase in maximum thrombin levels and diminished thrombin clearance rates. Viscoelastic analyses showed a 25% increase in clot time and a 25% reduction in maximum clot firmness (MCF). A similar MCF reduction was observed at pH 7.0 when fibrinogen/FXIII were reacted with thrombin. In contrast, in contact pathway-inhibited blood (n = 6) at pH 7.0, MCF values were elevated 6% (95% confidence interval [CI]: 1%-11%) in TF-initiated blood and 15% (95% CI: 1%- 29%) in the absence of TF. Clot times at pH 7.0 decreased 32% (95% CI: 15%-49%) in TF-initiated blood and 51% (95% CI: 35%-68%) in the absence of TF. Conclusions Despite reported decreased procoagulant catalysis at pH 7.0, clot formation dynamics are slightly enhanced in blood ex vivo and suppression of thrombin generation is not observed. A decrease in antithrombin reactivity is one potential mechanism contributing to these outcomes. © 2016 International Society on Thrombosis and Haemostasis.

  10. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-08-11

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks.

  11. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells.

    PubMed

    Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua

    2017-01-01

    It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Estimation of neonatal outcome artery pH value according to CTG interpretation of the last 60 min before delivery: a retrospective study. Can the outcome pH value be predicted?

    PubMed

    Kundu, S; Kuehnle, E; Schippert, C; von Ehr, J; Hillemanns, P; Staboulidou, Ismini

    2017-11-01

    The aim of this study was to analyze whether the umbilical artery pH value can be estimated throughout CTG assessment 60 min prior to delivery and if the estimated umbilical artery pH value correlates with the actual one. This includes analysis of correlation between CTG trace classification and actual umbilical artery pH value. Intra-and interobserver agreement and the impact of professional experience on visual analysis of fetal heart rate tracing were evaluated. This was a retrospective study. 300 CTG records of the last 60 min before delivery were picked randomly from the computer database with the following inclusion criteria; singleton pregnancy >37 weeks, no fetal anomalies, vaginal delivery either spontaneous or instrumental-assisted. Five obstetricians and two midwives of different professional experience classified 300 CTG traces according to the FIGO criteria and estimated the postnatal umbilical artery pH. The results showed a significant difference (p < 0.05) in estimated and actual pH value, independent of professional experience. Analysis and correlation of CTG assessment and actual umbilical artery pH value showed significantly (p < 0.05) diverging results. Intra- and interobserver variability was high. Intraobserver variability was significantly higher for the resident (p = 0.001). No significant differences were detected regarding interobserver variability. An estimation of the pH value and consequently of neonatal outcome on the basis of a present CTG seems to be difficult. Therefore, not only CTG training but also clinical experience and the collaboration and consultation within the whole team is important.

  13. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  14. Role of the floodplain lakes in the methylmercury distribution and exchanges with the Amazon River, Brazil.

    PubMed

    Maia, Poliana Dutra; Maurice, Laurence; Tessier, Emmanuel; Amouroux, David; Cossa, Daniel; Moreira-Turcq, Patricia; Etcheber, Henri

    2018-06-01

    Seasonal variability of dissolved and particulate methylmercury (F-MeHg, P-MeHg) concentrations was studied in the waters of the Amazon River and its associated Curuai floodplain during hydrological year 2005-2006, to understand the MeHg exchanges between these aquatic systems. In the oxic white water lakes, with neutral pH, high F-MeHg and P-MeHg concentrations were measured during the rising water stage (0.70±0.37pmol/L, n=26) and flood peak (14.19±9.32pmol/g, n=7) respectively, when the Amazon River water discharge into the lakes was at its maximum. The lowest mean values were reported during the dry season (0.18±0.07pmol/L F-MeHg, n=10 and 1.35±1.24pmol/g P-MeHg, n=8), when water and suspended sediments were outflowing from the lakes into the River. In these lakes, the MeHg concentrations were associated to the aluminium and organic carbon/nitrogen changes. In the black water lakes, with acidic pH and reducing conditions, elevated MeHg concentrations were recorded (0.58±0.32pmol/L F-MeHg, n=16 and 19.82±15.13pmol/g P-MeHg, n=6), and correlated with the organic carbon and manganese concentrations. Elevated values of MeHg partition coefficient (4.87

  15. Microsensor studies on Padina from a natural CO2 seep: implications of morphology on acclimation to low pH.

    PubMed

    Hofmann, Laurie C; Fink, Artur; Bischof, Kai; de Beer, Dirk

    2015-12-01

    Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME ) was higher than the external seawater (pHSW ) at all pHSW levels investigated, and the difference (i.e., pHME - pHSW ) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg ) inside the microenvironment increased with decreasing pHSW , but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3 (-) ions during dissolved inorganic carbon uptake at the higher pHSW . In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW . © 2015 Phycological Society of America.

  16. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation

    NASA Astrophysics Data System (ADS)

    McCulloch, Malcolm; Trotter, Julie; Montagna, Paolo; Falter, Jim; Dunbar, Robert; Freiwald, André; Försterra, Günter; López Correa, Matthias; Maier, Cornelia; Rüggeberg, Andres; Taviani, Marco

    2012-06-01

    The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high δ11B compositions ranging from 23.2‰ to 28.7‰. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pHcf), being elevated by ˜0.6-0.8 units (ΔpH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower δ11B composition of 15.5‰, with a corresponding lower ΔpH value of ˜0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation. The solitary coral D. dianthus was sampled over a wide range of seawater pHT and shows an approximate linear correlation with ΔpHDesmo = 6.43 - 0.71pHT (r2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where ΔpHDesmo = 1.09 - 0.14Ωarag (r2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pHcf, and consequently Ωcf, of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+-ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (δ11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium. We also show that the relatively strong up-regulation of pH and consequent elevation of the internal carbonate saturation state (Ωcf ˜8.5 to ˜13) at the site of calcification by cold-water corals, facilitates calcification at or in some cases below the aragonite saturation horizon, providing a greater ability to adapt to the already low and now decreasing carbonate ion concentrations. Although providing greater resilience to the effects of ocean acidification and enhancing rates of calcification with increasing temperature, the process of internal pHcf up-regulation has an associated energetic cost, and therefore growth-rate cost, of ˜10% per 0.1 pH unit decrease in seawater pHT. Furthermore, as the aragonite saturation horizon shoals with rapidly increasing pCO2 and Ωarag < 1, increased dissolution of the exposed skeleton will ultimately limit their survival in the deep oceans.

  17. Validation of a portable, waterproof blood pH analyser for elasmobranchs.

    PubMed

    Talwar, Brendan; Bouyoucos, Ian A; Shipley, Oliver; Rummer, Jodie L; Mandelman, John W; Brooks, Edward J; Grubbs, R Dean

    2017-01-01

    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish ( Squalus cubensis ) and lemon shark ( Negaprion brevirostris ). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30°C; lemon sharks: 7.0-7.45 pH 25-31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal.

  18. Precipitation chemistry of Lhasa and other remote towns, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, David D.; Peart, Mervyn; Jim, C. Y.; He, Y. Q.; Li, B. S.; Chen, J. A.

    Precipitation event samples during 1987-1988 field expedition periods and 1997, 1998, 1999 and 2000 have been collected at Lhasa, Dingri, Dangxiong and Amdo, Tibet. The sampling and analysis were based on WMO recommendations for a background network with some modifications according to local conditions and environmental characteristics. The following precipitation constituents and related parameters were measured: pH, conductivity, CO 2 partial pressure, total suspended particles, and the content of K +, Na +, Ca 2+, Mg 2+, Fe, Mn, NH 4+, Cl -, NO 2-, NO 3-, SO42- Br-, HCO 3- and HPO 42-. Some atmospheric dust samples have also been collected. Over 300 precipitation events have been measured for pH and conductivity. Among these, 60 have been analysed for their chemical components. The results show that Lhasa's precipitation events were constantly alkaline with weighted averages of pH 8.36 in the 1987-1988 period, and 7.5 for 1997 to 1999. Only one event was weakly acidic during 1997-1999. Although CO 2 partial pressure, a major producer of acidity in natural water on the Plateau, falls with increasing elevation, the lowest measured CO 2 partial pressure can only raise pH value by 0.1 units in the sampling areas. Chemical analysis indicates that the major contributor to alkaline precipitation is the continental dust, which is rich in calcium. The analysis also shows that Tibet is still one of the cleanest areas in the world with little air pollution. However, the decline of pH from the 1980s to 1990s, which was reflected by an increase of NO 3- and SO 42- in precipitation, alerts us to the urgency of environmental protection in this fragile paradise.

  19. Feasibility of infectious prion digestion using mild conditions and commercial subtilisin.

    PubMed

    Pilon, John L; Nash, Paul B; Arver, Terry; Hoglund, Don; Vercauteren, Kurt C

    2009-10-01

    Two serine protease enzymes, subtilisin 309 and subtilisin 309-v, were used to digest brain homogenates containing high levels of prion infectivity using mildly alkaline conditions to investigate prion decontamination methods. To establish that PrP(res) infectivity was eliminated, we utilized the Rocky Mountain Laboratory (RML) mouse-adapted scrapie model system for bioassay. Only one digestion condition (subtilisin 309 at 138mAU/ml, 55 degrees C and 14h digestion time pH 7.9) was considered to be highly relevant statistically (P<0.001) compared to control, with 52% of challenged mice surviving until the end of the study period. In contrast, treatment of PrP(res) by autoclaving at 134 degrees C or treatment with hypochlorite at a concentration of 20,000 ppm completely protected mice from prionosis. Further, in vitro assays suggest that potential proteolytic based PrP(res) decontamination methods must use high enzyme concentration, pH values >9.0, and elevated temperatures to be a safely efficacious, thereby limiting applicability on delicate surgical instruments and use in the environment.

  20. Effect of number and washing solutions on functional properties of surimi-like material from duck meat.

    PubMed

    Ramadhan, Kurnia; Huda, Nurul; Ahmad, Ruzita

    2014-02-01

    Duck meat is less utilized than other meats in processed products because of limitations of its functional properties, including lower water holding capacity, emulsion stability, and higher cooking loss compared with chicken meat. These limitations could be improved using surimi technology, which consists of washing and concentrating myofibrillar protein. In this study, surimi-like materials were made from duck meat using two or three washings with different solutions (tap water, sodium chloride, sodium bicarbonate, and sodium phosphate buffer). Better improvement of the meat's functional properties was obtained with three washings versus two washings. Washing with tap water achieved the highest gel strength; moderate elevation of water holding capacity, pH, lightness, and whiteness; and left a small amount of fat. Washing with sodium bicarbonate solution generated the highest water holding capacity and pH and high lightness and whiteness values, but it resulted in the lowest gel strength. Processing duck meat into surimi-like material improves its functional properties, thereby making it possible to use duck meat in processed products.

  1. Effect of halide ions on the photodegradation of ibuprofen in aqueous environments.

    PubMed

    Li, Fuhua; Kong, Qingqing; Chen, Ping; Chen, Min; Liu, Guoguang; Lv, Wenying; Yao, Kun

    2017-01-01

    Typically contained within ambient surface waters and certain industrial wastewaters, are plentiful halide ions, which possess varying degrees of photosensitivity. The effects of halide ions on the photodegradation of ibuprofen (IBP) were investigated under UV irradiation using a 500 W mercury lamp as a light source. Studies of the mechanism of halide ions were inclusive of both their light shielding effects and quenching experiments. The results indicated that chloride ion has a slight inhibition against IBP photodegradation under neutral condition, and significant inhibition is observed with bromide ions and iodide ions. In addition to the observed increased rate of IBP photodegradation in conjunction with elevated pH in solution, the inhibitory effect of halide ions was different. When the pH value of the IBP solution was 5, chloride ions were seen to facilitate the photodegradation of IBP. Halide ions can inhibit IBP photodegradation by means of a light attenuation effect. All of the halide ions significantly facilitated the generation of 1 O 2 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Translating bacterial detection by DNAzymes into a litmus test.

    PubMed

    Tram, Kha; Kanda, Pushpinder; Salena, Bruno J; Huan, Shuangyan; Li, Yingfu

    2014-11-17

    Microbial pathogens pose serious threats to public health and safety, and results in millions of illnesses and deaths as well as huge economic losses annually. Laborious and expensive pathogen tests often represent a significant hindrance to implementing effective front-line preventative care, particularly in resource-limited regions. Thus, there is a significant need to develop low-cost and easy-to-use methods for pathogen detection. Herein, we present a simple and inexpensive litmus test for bacterial detection. The method takes advantage of a bacteria-specific RNA-cleaving DNAzyme probe as the molecular recognition element and the ability of urease to hydrolyze urea and elevate the pH value of the test solution. By coupling urease to the DNAzyme on magnetic beads, the detection of bacteria is translated into a pH increase, which can be readily detected using a litmus dye or pH paper. The simplicity, low cost, and broad adaptability make this litmus test attractive for field applications, particularly in the developing world. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Source of Sustained Voltage Difference between the Xylem of a Potted Ficus benjamina Tree and Its Soil

    PubMed Central

    Love, Christopher J.; Zhang, Shuguang; Mershin, Andreas

    2008-01-01

    It has long been known that there is a sustained electrical potential (voltage) difference between the xylem of many plants and their surrounding soil, but the mechanism behind this voltage has remained controversial. After eliminating any extraneous capacitive or inductive couplings and ground-mediated electric current flows, we have measured sustained differences of 50–200 mV between the xylem region of a Faraday-caged, intact, potted Ficus benjamina tree and its soil, as well as between its cut branches and soils and ionic solutions standardized to various pH values. Using identical platinum electrodes, no correlation between the voltage and time of day, illumination, sap flow, electrode elevation, or ionic composition of soil was found, suggesting no direct connection to simple dissimilar-metal redox reactions or transpirational activity. Instead, a clear relationship between the voltage polarity and magnitude and the pH difference between xylem and soil was observed. We attribute these sustained voltages to a biological concentration cell likely set up by the homeostatic mechanisms of the tree. Potential applications of this finding are briefly explored. PMID:18698415

  4. Potential ecotoxicological effects of elevated bicarbonate ion concentrations on marine organisms.

    PubMed

    Gim, Byeong-Mo; Hong, Seongjin; Lee, Jung-Suk; Kim, Nam-Hyun; Kwon, Eun-Mi; Gil, Joon-Woo; Lim, Hyun-Hwa; Jeon, Eui-Chan; Khim, Jong Seong

    2018-05-25

    Recently, a novel method for carbon capture and storage has been proposed, which converts gaseous CO 2 into aqueous bicarbonate ions (HCO 3 - ), allowing it to be deposited into the ocean. This alkalinization method could be used to dispose large amounts of CO 2 without acidifying seawater pH, but there is no information on the potential adverse effects of consequently elevated HCO 3 - concentrations on marine organisms. In this study, we evaluated the ecotoxicological effects of elevated concentrations of dissolved inorganic carbon (DIC) (max 193 mM) on 10 marine organisms. We found species-specific ecotoxicological effects of elevated DIC on marine organisms, with EC50-DIC (causing 50% inhibition) of 11-85 mM. The tentative criteria for protecting 80% of individuals of marine organisms are suggested to be pH 7.8 and 11 mM DIC, based on acidification data previously documented and alkalinization data newly obtained from this study. Overall, the results of this study are useful for providing baseline information on ecotoxicological effects of elevated DIC on marine organisms. More complementary studies are needed on the alkalinization method to determine DIC effects on seawater chemistry and marine organisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Physiological tolerances of juvenile robust redhorse, Moxostoma robustum: Conservation implications for an imperiled species

    USGS Publications Warehouse

    Walsh, S.J.; Haney, D.C.; Timmerman, C.M.; Dorazio, R.M.

    1998-01-01

    The robust redhorse, Moxostoma robustum (Teleostei: Catostomidae), is an imperiled sucker native to large rivers of the Atlantic slope of the southeastern United States. Juvenile M. robustum were tested for tolerances to temperature, salinity, pH, and hypoxia in order to evaluate basic early life-history requirements. Static (acute) tests resulted in estimates of mean lower temperature tolerances (5.3-19.4 ??C) that varied with prior thermal acclimation and indicated no apparent difference in tolerance among fish 30, 60, and 90 days old. Fish acclimated to 20 ??C and 30 ??C had significantly different mean critical thermal maxima (34.9 ??C and 37.2 ??C, respectively) and exhibited pronounced increased opercular ventilation rates with elevated temperatures. Fish exposed to acute and chronic increases in salinity showed unusual patterns of mortality above the isosmotic point (9 ppt) that reflected possible differences in body mass and prior acclimation conditions (i.e., water ionic composition); small fish and those held in soft water were the least tolerant of increased salinity. Abrupt exposure to extreme pH values resulted in greater than 50% mortality at pH values below 4.3 and above 9.5 within a 96-hour period. Fish exposed to progressive hypoxia utilized aquatic surface respiration at a mean oxygen concentration of 0.72-0.80 mg O2 l-1 (20 ??C and 30 ??C acclimated fish, respectively), and lost equilibrium at 0.54-.57 mg O2 l-1. Juvenile M. robustum are moderately tolerant of a wide range of ambient physicochemical parameters, but further research is needed to determine how both abiotic and biotic factors have contributed to population decline and extirpation of this species.

  6. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge

    PubMed Central

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.

    2010-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  7. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    NASA Astrophysics Data System (ADS)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-12-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.

  8. Assessment of the impacts of pit latrines on groundwater quality in rural areas: A case study from Marondera district, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Dzwairo, Bloodless; Hoko, Zvikomborero; Love, David; Guzha, Edward

    In resource-poor and low-population-density areas, on-site sanitation is preferred to off-site sanitation and groundwater is the main source of water for domestic uses. Groundwater pollution potential from on-site sanitation in such areas conflicts with Integrated Water Resources Management (IWRM) principles that advocate for sustainable use of water resources. Given the widespread use of groundwater for domestic purposes in rural areas, maintaining groundwater quality is a critical livelihood intervention. This study assessed impacts of pit latrines on groundwater quality in Kamangira village, Marondera district, Zimbabwe. Groundwater samples from 14 monitoring boreholes and 3 shallow wells were analysed during 6 sampling campaigns, from February 2005 to May 2005. Parameters analysed were total and faecal coliforms, NH4+-N, NO3--N, conductivity, turbidity and pH, both for boreholes and shallow wells. Total and faecal coliforms both ranged 0-TNTC (too-numerous-to-count), 78% of results meeting the 0 CFU/100 ml WHO guidelines value. NH4+-N range was 0-2.0 mg/l, with 99% of results falling below the 1.5 mg/l WHO recommended value. NO3--N range was 0.0-6.7 mg/l, within 10 mg/l WHO guidelines value. The range for conductivity values was 46-370 μS/cm while the pH range was 6.8-7.9. There are no WHO guideline values for these two parameters. Turbidity ranged from 1 NTU to 45 NTU, 59% of results meeting the 5 NTU WHO guidelines limit. Depth from the ground surface to the water table for the period February 2005 to May 2005 was determined for all sampling points using a tape measure. The drop in water table averaged from 1.1 m to 1.9 m and these values were obtained by subtracting water table elevations from absolute ground surface elevation. Soil from the monitoring boreholes was classified as sandy. The soil infiltration layer was taken as the layer between the pit latrine bottom and the water table. It averaged from 1.3 m to 1.7 m above the water table for two latrines and 2-3.2 m below it for one pit latrine. A questionnaire survey revealed the prevalence of diarrhoea and structural failure of latrines. Results indicated that pit latrines were microbiologically impacting on groundwater quality up to 25 m lateral distance. Nitrogen values were of no immediate threat to health. The shallow water table increased pollution potential from pit latrines. Raised and lined pit latrines and other low-cost technologies should be considered to minimize potential of groundwater pollution.

  9. The Simultaneous Determination of Muscle Cell pH Using a Weak Acid and Weak Base

    PubMed Central

    Adler, Sheldon

    1972-01-01

    Should significant pH heterogeneity exist within cells then the simultaneous calculation of intracellular pH from the distribution of a weak acid will give a value closest to the highest pH in the system, whereas calculation from the distribution of a weak base will give a value closer to the lowest pH. These two values should then differ significantly. Intact rat diaphragms were exposed in vitro to varying bicarbonate concentrations (pure metabolic) and CO2 tensions (pure respiratory), and steady-state cell pH was measured simultaneously either by distribution of the weak acid 5,5-dimethyloxazolidine-2,4-dione-14C (pH DMO) or by distribution of the weak base nicotine-14C (pH nicotine). The latter compound was found suitable to measure cell pH since it was neither metabolized nor bound by rat diaphragms. At an external pH of 7.40, pH DMO was 7.17 while pH nicotine was 6.69—a pH difference of 0.48 pH units (P < 0.001). In either respiratory or metabolic alkalosis both DMO and pH nicotine rose so that differences between them remained essentially constant. Metabolic acidosis induced a decrease in both values though they fell more slowly than did extracellular pH. In contradistinction, in respiratory acidosis, decreasing extracellular pH from 7.40 to 6.80 resulted in 0.35 pH unit drop in pH DMO while pH nicotine remained constant. In every experiment, under all external conditions, pH DMO exceeded pH nicotine. These results indicate that there is significant pH heterogeneity within diaphragm muscle, but the degree of heterogeneity may vary under different external conditions. The metabolic implications of these findings are discussed. In addition, the data show that true overall cell pH is between 6.69 and 7.17—a full pH higher than would be expected from thermodynamic considerations alone. This implies the presence of active processes to maintain cell pH. PMID:5009113

  10. Effects of reactive oxygen species levels in prepared culture media on embryo development: a comparison of two media.

    PubMed

    Shih, Ying-Fu; Lee, Tsung-Hsien; Liu, Chung-Hsien; Tsao, Hui-Mei; Huang, Chun-Chia; Lee, Maw-Sheng

    2014-12-01

    This study determined the correlation between the levels of reactive oxygen species (ROS) in prepared culture media and the early development of human embryos. This was an autocontrolled comparison study. A total of 159 patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment were recruited in this study. The pH values, osmolarity pressures, and ROS levels of 15 batches of two culture media were measured. Sibling oocytes or embryos from individual patients were randomly assigned to two culture groups with Quinn's Advantage Cleavage and Blastocyst media (QAC/QAB) or GIII series cleavage and blastocyst media (G1.3/G2.3). The difference between the two culture groups was analyzed using one-sample t test. The QAC/QAB and G1.3/G2.3 media exhibited similar pH values and osmolarity pressures. However, the prepared QAC/QAB media were characterized to contain lower amounts of ROS than the G1.3/G2.3 media. Furthermore, the blastocysts that developed under the QAC/QAB media were morphologically superior to those that developed under the G1.3/G2.3 media. The elevated ROS levels in culture media were associated with poor development of blastocyst-stage embryos. Measurement of ROS levels may be a valuable process for medium selection or modification. Copyright © 2014. Published by Elsevier B.V.

  11. [Effects of ethanol extract of Rhizome Pinelliae Preparata on intracellular pH value of human gastric adenocarcinoma cells].

    PubMed

    Zhang, Ci-an; Wu, Feng; Mao, Zhu-jun; Wei, Zhen; Li, Yong-jin; Wei, Pin-kang

    2011-08-01

    To observe the effects of ethanol extract of Rhizome Pinelliae Preparata on the intracellular pH value of human gastric cancer SGC7901 cells. After coculturing SGC7901 cells with ethanol extract of Rhizome Pinelliae Preparata (1, 0.5, 0.25 and 0.125 mg/mL), cell viability was evaluated by chromatometry with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. Intracellular pH value of SGC7901 cells was measured in the monolayer by using the pH-sensitive fluorescent probe 2,7-bis-(2-carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester. The extracellular pH value of culture medium was measured by a pH211 Calibration Check Microprocessor pH Meter. Half-inhibitory concentration (IC(50)) of ethanol extract culture to SGC7901 cells was decided by the MTT method and expressions of vacuolar-H(+)-ATPase (V-ATPase) and Na(+)/H(+) exchanger isoform 1 (NHE1) mRNAs were examined by the method of fluorescence quantitative-polymerase chain reaction after 72 h of drug treatment. Ethanol extract of Rhizome Pinelliae Preparata at different concentrations significantly inhibited the proliferation of SGC7901 cells, lowered the intracellular pH values and heightened the extracellular pH values. The IC(50) of 72 h culture was 0.5mg/mL and it inhibited the expressions of V-ATPase and NHE1 mRNAs. Ethanol extract of Rhizome Pinelliae Preparata can lower down the intracellular pH value of SGC7901 cells. The mechanism may be related to inhibiting the expressions of V-ATPase and NHE1 mRNAs.

  12. Galápagos coral reef persistence after ENSO warming across an acidification gradient

    NASA Astrophysics Data System (ADS)

    Manzello, D.; Enochs, I.; Bruckner, A.; Renaud, P.; Kolodziej, G.; Budd, D. A.; Carlton, R.; Glynn, P.

    2016-02-01

    Anthropogenic CO2 is causing warming and ocean acidification. Coral reefs are being severely impacted, yet confusion lingers regarding how reefs will respond to these stressors over this century. Since the 1982-1983 El Niño-Southern Oscillation warming event, the persistence of reefs around the Galápagos Islands has differed across an acidification gradient. Reefs disappeared where pH < 8.0 and aragonite saturation state (Ωarag) ≤ 3 and have not recovered, whereas one reef has persisted where pH > 8.0 and Ωarag > 3. Where upwelling is greatest, calcification by massive Porites is higher than predicted by a published relationship with temperature despite high CO2, possibly due to elevated nutrients. However, skeletal P/Ca, a proxy for phosphate exposure, negatively correlates with density (R = - 0.822, p < 0.0001). We propose that elevated nutrients have the potential to exacerbate acidification by depressing coral skeletal densities and further increasing bioerosion already accelerated by low pH.

  13. Correlation between ultrafiltration rate and phase angle measured by BIA in chronic kidney disease patients on regular hemodialysis

    NASA Astrophysics Data System (ADS)

    Nasution, B. R.; Lubis, A. R.

    2018-03-01

    Chronic Kidney Disease (CKD) patients with regular hemodialysis have high rates of morbidity and mortality that may be related to the hemodynamic effects of rapid UFR and low PhA value. In this study, we investigated whether high UFR is associated with a low value of PhA thus indirectly affect the risk of morbidity and mortality. UFR and Bioelectrical Impedance Analysis (BIA) examination on 92 subjects were recorded shortly after HD and analyzed by using Pearson correlation test. Multivariate analysis was also conducted to identify several factors that can affect the value of Phase angle. The number of HD regular CKD patients with PhA<4 based on the division of the UFR (cc/kg/h) <10, 10-13, ≥ 13, respectively were3, 10 and 6, whereas patients with ≥ 4 PhA <10, 10-13, ≥ 13respectively were 60, 11, and 2. The results showed a significant relationship between UFR with PhA. In CKD patients with regular HD, UFR has aninverse relationship with the value of PhA. After multivariate analysis, the UFR and the etiology of HD are still significantly affect the value of PhA. UFR optimal value in patients with CKD with regular HD is <10 cc/kg/h.

  14. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  15. Continuous measurement of reticuloruminal pH values in dairy cows during the transition period from barn to pasture feeding using an indwelling wireless data transmitting unit.

    PubMed

    Gasteiner, J; Horn, M; Steinwidder, A

    2015-04-01

    This study was performed to investigate the effect of the transition from barn feeding to pasture on the pattern of reticuloruminal pH values in 8 multiparous dairy cows. A indwelling wireless data transmitting system for pH measurement was given to 8 multiparous cows orally. Reticuloruminal pH values were measured every 600 s over a period of 42 days. After 7 days of barn feeding (period 1), all of the animals were pastured with increasing grazing times from 2 to 7 h/day over 7 days (period 2). From day 15 to day 21 (period 3), the cows spent 7 h/day on pasture. Beginning on day 22, the animals had 20 h/day access to pasture (day and night grazing). To study reticuloruminal adaptation to pasture feeding, the phase of day and night grazing was subdivided into another 3 weekly periods (periods 4-6). Despite a mild transition period from barn feeding to pasture, significant effects on reticuloruminal pH values were observed. During barn feeding, the mean reticuloruminal pH value for all of the cows was 6.44 ± 0.14, and the pH values decreased significantly (p < 0.001) during period 2 and 3 to 6.24 ± 0.17 and 6.21 ± 0.19 respectively. During periods 4, 5 and 6, the reticuloruminal pH values increased again (pH 6.25 ± 0.22; pH 6.31 ± 0.17; pH 6.37 ± 0.16). Our results showed that the animals had significantly lowered reticuloruminal pH during the periods of feed transition from barn to pasture feeding. Despite these significant changes, the decrease was not harmful, as indicated by data of feed intake and milk production. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  16. Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.

    PubMed

    Kurola, Jukka M; Arnold, Mona; Kontro, Merja H; Talves, Matti; Romantschuk, Martin

    2010-05-01

    In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000oum(-3) of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Enzymatic Processes to Unlock the Lignin Value

    PubMed Central

    Hämäläinen, Veera; Grönroos, Toni; Suonpää, Anu; Heikkilä, Matti Wilhem; Romein, Bastiaan; Ihalainen, Petri; Malandra, Sara; Birikh, Klara R.

    2018-01-01

    Main hurdles of lignin valorization are its diverse chemical composition, recalcitrance, and poor solubility due to high-molecular weight and branched structure. Controlled fragmentation of lignin could lead to its use in higher value products such as binders, coatings, fillers, etc. Oxidative enzymes (i.e., laccases and peroxidases) have long been proposed as a potentially promising tool in lignin depolymerization. However, their application was limited to ambient pH, where lignin is poorly soluble in water. A Finnish biotechnology company, MetGen Oy, that designs and supplies industrial enzymes, has developed and brought to market several lignin oxidizing enzymes, including an extremely alkaline lignin oxidase MetZyme® LIGNO™, a genetically engineered laccase of bacterial origin. This enzyme can function at pH values as high as 10–11 and at elevated temperatures, addressing lignin at its soluble state. In this article, main characteristics of this enzyme as well as its action on bulk lignin coming from an industrial process are demonstrated. Lignin modification by MetZyme® LIGNO™ was characterized by size exclusion chromatography, UV spectroscopy, and dynamic light scattering for monitoring particle size of solubilized lignin. Under highly alkaline conditions, laccase treatment not only decreased molecular weight of lignin but also increased its solubility in water and altered its dispersion properties. Importantly, organic solvent-free soluble lignin fragmentation allowed for robust industrially relevant membrane separation technologies to be applicable for product fractionation. These enzyme-based solutions open new opportunities for biorefinery lignin valorization thus paving the way for economically viable biorefinery business. PMID:29623274

  18. Sampling and storage of blood for pH and blood gas analysis.

    PubMed

    Haskins, S C

    1977-02-15

    Techniques used in sampling and storage of a blood sample for pH and gas measurements can have an important effect on the measured values. Observation of these techniques and principles will minimize in vitro alteration of the pH and blood gas values. To consider that a significant change has occurred in a pH or blood gas measurement from previous values, the change must exceed 0.015 for pH, 3 mm Hg for PCO2, 5 mm Hg for PO2, and 2 mEq/L for [HCO-3] or base excess/deficit. In vitro dilution of the blood sample with anticoagulant should be avoided because it will alter the measured PCO2 and base excess/deficit values. Arterial samples should be collected for meaningful pH and blood gas values. Central venous and free-flowing capillary blood can be used for screening procedures in normal patients but are subject to considerable error. A blood sample can be stored for up to 30 minutes at room temperature without significant change in acid-base values but only up to 12 minutes before significant changes occur in PO2. A blood sample can be stored for up to 3.5 hours in an ice-water bath without significant change in pH and for 6 hours without significant change in PCO2 or PO2. Variations of body temperatures from normal will cause a measurable change in pH and blood gas values when the blood is exposed to the normal water bath temperatures of the analyzer.

  19. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.

  20. Validation of a portable, waterproof blood pH analyser for elasmobranchs

    PubMed Central

    Bouyoucos, Ian A.; Shipley, Oliver; Rummer, Jodie L.; Mandelman, John W.; Brooks, Edward J.; Grubbs, R. Dean

    2017-01-01

    Abstract Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8–7.1 pH 24–30°C; lemon sharks: 7.0–7.45 pH 25–31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal. PMID:28616238

  1. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization.

    PubMed

    Achmon, Yigal; Harrold, Duff R; Claypool, Joshua T; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2016-02-01

    Pomaces from tomato paste and wine production are the most abundant fruit processing residues in California. These residues were examined as soil amendments for solarization to promote conditions conducive to soil disinfestation (biosolarization). Simulated biosolarization studies were performed in both aerobic and anaerobic soil environments and soil temperature elevation, pH, and evolution of CO2, H2 and CH4 gases were measured as metrics of soil microbial activity. Tomato pomace amendment induced conditions associated with soil pest inactivation, including elevation of soil temperature by up to 2°C for a duration of 4days under aerobic conditions and a reduction of soil pH from 6.5 to 4.68 under anaerobic conditions. White wine grape pomace amendment showed similar trends but to a lesser extent. Red wine grape pomace was generally less suitable for biosolarization due to significantly lower soil temperature elevations, reduced acidification relative to the other pomaces and induction of methanogenesis in the soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A survey of water activity and pH values in fresh pasta packed under modified atmosphere manufactured in Argentina and Uruguay.

    PubMed

    Schebor, C; Chirife, J

    2000-07-01

    The water activity (a(w)) and pH values of commercially available filled fresh pasta and gnocchi packed under modified atmosphere and manufactured in Argentina and Uruguay were examined. The retail survey included 58 samples (several brands) of filled pasta and 11 samples of gnocchi. Fillings consisted of different combinations of cheese (various types), beef, ricotta, ham, chicken, and spinach. The survey revealed that the a(w) values of the 58 samples of filled pasta ranged from 0.916 to 0.973, and their pH values ranged from 5.2 to 7.0. The a(w) of gnocchi was consistently higher and ranged from 0.936 to 0.983, with pH values from 4.8 to 6.4. Some samples of filled pasta and most gnocchi samples were found to have a(w) and pH values that would support growth of spores of Clostridium botulinum, if present, under conditions of temperature abuse (i.e., 30 degrees C).

  3. Physiological characterisation of a pH- and calcium-dependent sodium uptake mechanism in the freshwater crustacean, Daphnia magna.

    PubMed

    Glover, Chris N; Wood, Chris M

    2005-03-01

    Daphnia are highly sensitive to sodium metabolism disruption caused by aquatic acidification and ionoregulatory toxicants, due to their finely balanced ion homeostasis. Nine different water chemistries of varying pH (4, 6 and 8) and calcium concentration (0, 0.5 and 1 mmol l(-1)) were used to delineate the mechanism of sodium influx in Daphnia magna. Lowering water pH severely inhibited sodium influx when calcium concentration was high, but transport kinetic analysis revealed a stimulated sodium influx capacity (J(max)) when calcium was absent. At low pH increasing water calcium levels decreased J(max) and raised K(m) (decreased sodium influx affinity), while at high pH the opposite pattern was observed (elevated J(max) and reduced K(m)). These effects on sodium influx were mirrored by changes in whole body sodium levels. Further examination of the effect of calcium on sodium influx showed a severe inhibition of sodium uptake by 100 micromol l(-1) calcium gluconate at both low (50 micromol l(-1)) and high (1000 micromol l(-1)) sodium concentrations. At high sodium concentrations, stimulated sodium influx was noted with elevated calcium levels. These results, in addition to data showing amiloride inhibition of sodium influx (K(i)=180 micromol l(-1)), suggest a mechanism of sodium influx in Daphnia magna that involves the electrogenic 2Na(+)/1H(+) exchanger.

  4. Coagulation Changes to Systemic Acidosis and Bicarbonate Correction in Swine

    DTIC Science & Technology

    2011-11-01

    carbonate. Total experiment time and time between Base - line, Acidosis, and Acidosis-Corrected varied from pig to pig. y axis describes the pH of the swine...Infusion of HCl reduced arterial pH from 7.4 to 7.1 and also reduced HCO3 , base excess (BE), and PaCO2 (Acidosis, Table 1). In this group, bicarbonate...a decrease in respiration successfully lowered arterial pH to 7.1 ( Acido - sis, Table 2) and significantly elevated PaCO2 and HCO3 and lowered PaO2

  5. Relative importance of habitat filtering and limiting similarity on species assemblages of alpine and subalpine plant communities.

    PubMed

    Takahashi, Koichi; Tanaka, Saeka

    2016-11-01

    This study examined how habitat filtering and limiting similarity affect species assemblages of alpine and subalpine plant communities along a slope gradient on Mt. Norikura in central Japan. Plant traits (plant height, individual leaf area, specific leaf area (SLA), leaf linearity, leaf nitrogen and chlorophyll concentrations) and abiotic environmental factors (elevation, slope inclination, ground surface texture, soil water, soil pH, soil nutrient concentrations of NH 4 -N and NO 3 -N) were examined. The metrics of variance, range, kurtosis and the standard deviation of neighbor distance divided by the range of traits present (SDNDr) were calculated for each plant trait to measure trait distribution patterns. Limiting similarity was detected only for chlorophyll concentration. By contrast, habitat filtering was detected for individual leaf area, SLA, leaf linearity, chlorophyll concentration. Abiotic environmental factors were summarized by the principal component analysis (PCA). The first PCA axis positively correlated with elevation and soil pH, and negatively correlated with sand cover, soil water, NH 4 -N and NO 3 -N concentrations. High values of the first PCA axis represent the wind-exposed upper slope with lower soil moisture and nutrient availabilities. Plant traits changed along the first PCA axis. Leaf area, SLA and chlorophyll concentration decreased, and leaf linearity increased with the first PCA axis. This study showed that the species assemblage of alpine and subalpine plants was determined mainly by habitat filtering, indicating that abiotic environmental factors are more important for species assemblage than interspecific competition. Therefore, only species adapting to abiotic environments can distribute to these environments.

  6. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction

    NASA Astrophysics Data System (ADS)

    Wu, Ya; Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    Understanding uranium (U) mobility is vital to minimizing its concentrations in potential drinking water sources. In this study, we report spatial-seasonal variations in U speciation and concentrations in a multi-aquifer system under the impact of Sanggan River in Datong basin, northern China. Hydrochemical and H, O, Sr isotopic data, thermodynamic calculations, and geochemical modeling are used to investigate the mechanisms of surface water-groundwater mixing-induced mobilization and natural attenuation of U. In the study site, groundwater U concentrations are up to 30.2 μg/L, and exhibit strong spatial-seasonal variations that are related to pH and Eh values, as well as dissolved Ca2+, HCO3-, and Fe(III) concentrations. For the alkaline aquifers of this site (pH 7.02-8.44), U mobilization is due to the formation and desorption of Ca2UO2(CO3)30 and CaUO2(CO3)32- caused by groundwater Ca2+ elevation via mineral weathering and Na-Ca exchange, incorporated U(VI) release from calcite, and U(IV) oxidation by Fe(OH)3. U immobilization is linked to the adsorption of CaUO2(CO3)32- and UO2(CO3)34- shifted from Ca2UO2(CO3)30 because of HCO3- elevation and Ca2+ depletion, U(VI) co-precipitation with calcite, and U(VI) reduction by adsorbed Fe2+ and FeS. Those results are of great significance for the groundwater resource management of this and similar other surface water-groundwater interaction zones.

  7. [Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years].

    PubMed

    Guo, Zhi-Xing; Wang, Jing; Chai, Min; Chen, Ze-Peng; Zhan, Zhen-Shou; Zheng, Wu-Ping; Wei, Xiu-Guo

    2011-02-01

    Based on the 1980s' soil inventory data and the 2002-2007 soil pH data of Guangdong Province, the spatiotemporal variation of soil pH in the Province in past 30 years was studied. In the study period, the spatial distribution pattern of soil pH in the Province had less change (mainly acidic), except that in Pearl River Delta and parts of Qingyuan and Shaoguan (weak alkaline). The overall variation of soil pH was represented as acidification, with the average pH value changed from 5.70 to 5.44. Among the soil types in the Province, alluvial soil had an increased pH, lateritic red soil, paddy soil, and red soil had a large decrement of pH value, and lime soil was most obvious in the decrease of pH value and its area percentage. The soil acidification was mainly induced by soil characteristics, some natural factors such as acid rain, and human factors such as unreasonable fertilization and urbanization. In addition, industrialization and mining increased the soil pH in some areas.

  8. Effect of marination on CIE L* and pH values of chicken breast pectoralis major with different color lightness

    USDA-ARS?s Scientific Manuscript database

    Color lightness (CIE L* values) and pH are widely used as quality indicators for raw poultry breast fillets (pectoralis major). The objective of this study was to evaluate the effects of vacuum-tumbling marination on L* and pH values of raw chicken breast meat with different color lightness. Early d...

  9. Effect of marination on CIE L* and pH values of chicken breast pectoralis major with different color lightness

    USDA-ARS?s Scientific Manuscript database

    Color lightness (CIE L* values) and pH are widely used as quality indicators for raw poultry breast fillets (pectoralis major). The objective of this study was to evaluate the effects of vacuum-tumbling marination on L* and pH values of raw chicken breast meat with different color lightness. Early ...

  10. Value of bacterial culture of vaginal swabs in diagnosis of vaginal infections.

    PubMed

    Nenadić, Dane; Pavlović, Miloš D

    2015-06-01

    Vaginal and cervical swab culture is still very common procedure in our country's everyday practice whereas simple and rapid diagnostic methods have been very rarely used. The aim of this study was to show that the employment of simple and rapid diagnostic tools [vaginal fluid wet mount microscopy (VFWMM), vaginal pH and potassium hydroxide (KOH) test] offers better assessment of vaginal environment than standard microbiologic culture commonly used in Serbia. This prospective study included 505 asymptomatic pregnant women undergoing VFWMM, test with 10% KOH, determination of vaginal pH and standard culture of cervicovaginal swabs. Combining findings from the procedures was used to make diagnoses of bacterial vaginosis (BV) and vaginitis. In addition, the number of polymorphonuclear leukocytes (PMN) was determined in each sample and analyzed along with other findings. Infections with Candida albicans and Trichomonas vaginalis were confirmed or excluded by microscopic examination. In 36 (6%) patients cervicovaginal swab cultures retrieved several aerobes and facultative anaerobes, whereas in 52 (11%) women Candida albicans was isolated. Based on VFWMM findings and clinical criteria 96 (19%) women had BV, 19 (4%) vaginitis, and 72 (14%) candidiasis. Of 115 women with BV and vaginitis, pH 4.5 was found in 5, and of 390 with normal findings 83 (21%) had vaginal pH 4.5. Elevated numbers of PMN were found in 154 (30%) women--in 83 (54%) of them VFWMM was normal. Specificity and sensitivity of KOH test and vaginal pH determination in defining pathological vaginal flora were 95% and 81%, and 79% and 91%, respectively. Cervicovaginal swab culture is expensive but almost non-informative test in clinical practice. The use of simpler and rapid methods as vaginal fluid wet mount microscopy, KOH test and vaginal pH offers better results in diagnosis, and probably in the treatment and prevention of sequels of vaginal infections.

  11. Effects of pH values of hydrogen peroxide bleaching agents on enamel surface properties.

    PubMed

    Xu, B; Li, Q; Wang, Y

    2011-01-01

    This study investigated the influence of pH values of bleaching agents on the properties of the enamel surface. Sixty freshly extracted premolars were embedded in epoxy resin and mesiodistally sectioned through the buccal aspect into two parts. The sectioned slabs were distributed among six groups (n=10) and treated using different solutions. Group HCl was treated with HCl solution (pH=3.0) and served as a positive control. Group DW, stored in distilled water (pH=7.0), served as a negative control. Four treatment groups were treated using 30% hydrogen peroxide solutions with different pH values: group HP3 (pH=3.0), group HP5 (pH=5.0), group HP7 (pH=7.0), and group HP8 (pH=8.0). The buccal slabs were subjected to spectrophotometric evaluations. Scanning electron microscopy investigation and Micro-Raman spectroscopy were used to evaluate enamel surface morphological and chemical composition alterations. pH value has a significant influence on the color changes after bleaching (p<0.001). Tukey's multiple comparisons revealed that the order of color changes was HP8, HP7>HP5, HP3>HCl>DW. No obvious morphological alterations were detected on the enamel surface in groups DW, HP7, and HP8. The enamel surface of groups HCl and HP3 showed significant alterations with an erosion appearance. No obvious chemical composition changes were detected with respect to Micro-Raman analysis. Within the limitations of this study, it was concluded that no obvious morphological or chemical composition alterations of enamel surface were detected in the neutral or alkaline bleaching solutions. Bleaching solutions with lower pH values could result in more significant erosion of enamel, which represented a slight whitening effect.

  12. Effect of artificial saliva with different pH levels on the cytotoxicity of soft denture lining materials.

    PubMed

    Akay, Canan; Tanış, Merve Ç; Sevim, Handan

    2017-10-13

    The aim of this study was to evaluate the cytotoxic effects of 9 different soft denture liners on the viability of L-929 mouse fibroblast cells at different incubation periods by storing them in artificial saliva (AS) with different pH levels. 96 disk samples from each lining material were prepared and divided into 4 groups: GI: No treatment; GII: Stored in artificial saliva with pH 3 for 21 days; Group III: Stored in artificial saliva with pH 7 for 21 days; and Group IV: Stored in artificial saliva with pH 14 for 21 days. The cytotoxicity of the extracts to cultured mouse fibroblasts (L-929) was measured by MTT (tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-dipHnyltetrazolium bromide) assay. Data were analyzed using 1-way analysis of variation (ANOVA). It was found that for the pH 3 values of New Truliner, Trusoft, Mollosil Plus, Dentusil, TDV, and HydroCast®; for the pH 7 values of Ufi Gel P and Elite plus; and for the pH 14 values of HydroCast®, there was a noncytotoxic effect during both the 24-hour and 48-hour incubation periods. In the control group 48-hour incubation period, HydroCast®, TDV, Mollosil, 24-hour incubation period Elite plus, for pH 3 values; Elite Plus 24-hour incubation period, for pH 7 values Trusoft 48-hour incubation period there was a moderately cytotoxic effect. This in vitro study revealed that storage in artificial saliva with different pH levels can affect the cytotoxicity of soft lining materials.

  13. The comparability of oxalate excretion and oxalate:creatinine ratio in the investigation of primary hyperoxaluria: review of data from a referral centre.

    PubMed

    Clifford-Mobley, Oliver; Tims, Christopher; Rumsby, Gill

    2015-01-01

    Urine oxalate measurement is an important investigation in the evaluation of renal stone disease. Primary hyperoxaluria (PH) is a rare inherited metabolic disease characterised by persistently elevated urine oxalate, but the diagnosis may be missed in adults until renal failure has developed. Urine oxalate results were reviewed to compare oxalate:creatinine ratio and oxalate excretion, and to estimate the potential numbers of undiagnosed PH. Urine oxalate results from August 2011 to April 2013 were reviewed. Oxalate excretion and oxalate:creatinine ratio were evaluated for 24 h collections and ratio alone for spot urine samples. Oxalate:creatinine ratio and oxalate excretion were moderately correlated (R=0.63) in 24-h urine collections from patients aged 18 years and above. Sex-related differences were found requiring implementation of male and female reference ranges for oxalate:creatinine ratio. Of samples with both ratio and excretion above the reference range, 7% came from patients with confirmed PH. There were 24 patients with grossly elevated urine oxalate who had not been evaluated for PH. Oxalate:creatinine ratio and oxalate excretion were discordant in many patients, which is likely to be a result of intra-individual variation in creatinine output and imprecision in the collection itself. Some PH patients had urine oxalate within the reference range on occasion, and therefore it is not possible to exclude PH on the finding of a single normal result. A significant number of individuals had urine oxalate results well above the reference range who potentially have undiagnosed PH and are consequently at risk of renal failure. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    PubMed

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. © 2014 Wiley Periodicals, Inc.

  15. Effect of ocean acidification on otolith development in larvae of a tropical marine fish

    NASA Astrophysics Data System (ADS)

    Munday, P. L.; Hernaman, V.; Dixson, D. L.; Thorrold, S. R.

    2011-03-01

    Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated pCO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: pH 8.15 and 404 μatm CO2; intermediate: pH 7.8 and 1050 μatm CO2; extreme: pH 7.6 and 1721 μatm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 μatm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 μatm CO2) otolith area and maximum length were larger than controls, although no other traits were affected. Our results support the hypothesis that pH regulation in the otolith endolymph of fish exposed to elevated pCO2 can lead to increased precipitation of CaCO3 in otoliths of larval fish, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.

  16. Effect of ocean acidification on otolith development in larvae of a tropical marine fish

    NASA Astrophysics Data System (ADS)

    Munday, P. L.; Hernaman, V.; Dixson, D. L.; Thorrold, S. R.

    2011-06-01

    Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated CO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: ~pH 8.15 and 404 μatm CO2; intermediate: pH 7.8 and 1050 μatm CO2; extreme: pH 7.6 and 1721 μatm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 μatm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 μatm CO2) otolith area and maximum length were larger than controls, although no other traits were significantly affected. Our results support the hypothesis that pH regulation in the otolith endolymph can lead to increased precipitation of CaCO3 in otoliths of larval fish exposed to elevated CO2, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.

  17. Effects of Co-Varying Diel-Cycling Hypoxia and pH on Growth in the Juvenile Eastern Oyster, Crassostrea virginica

    PubMed Central

    Keppel, Andrew G.; Breitburg, Denise L.; Burrell, Rebecca B.

    2016-01-01

    Shallow water provides important habitat for many species, but also exposes these organisms to daily fluctuations in dissolved oxygen (DO) and pH caused by cycles in the balance between photosynthesis and respiration that can contribute to repeated, brief periods of hypoxia and low pH (caused by elevated pCO2). The amplitude of these cycles, and the severity and duration of hypoxia and hypercapnia that result, can be increased by eutrophication, and are predicted to worsen with climate change. We conducted laboratory experiments to test the effects of both diel-cycling and constant low DO and pH (elevated pCO2) on growth of the juvenile eastern oyster (Crassostrea virginica), an economically and ecologically important estuarine species. Severe diel-cycling hypoxia (to 0.5 mg O2 L-1) reduced shell growth in juvenile oysters, as did constant hypoxia (1.2 and 2.0 mg O2 L-1), although effects varied among experiments, oyster ages, and exposure durations. Diel-cycling pH reduced growth only in experiments in which calcite saturation state cycled to ≤0.10 and only during the initial weeks of these experiments. In other cases, cycling pH sometimes led to increased growth rates. Comparisons of treatment effects across multiple weeks of exposure, and during a longer post-experiment field deployment, indicated that juvenile oysters can acclimate to, and in some cases compensate for initial reductions in growth. As a result, some ecosystem services dependent on juvenile oyster growth rates may be preserved even under severe cycling hypoxia and pH. PMID:27548256

  18. Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis.

    PubMed

    Ramírez-García, Gonzalo; Oluwole, David O; Nxele, Siphesihle Robin; d'Orlyé, Fanny; Nyokong, Tebello; Bedioui, Fethi; Varenne, Anne

    2017-02-01

    In this work, we characterized different phtalocyanine-capped core/shell/shell quantum dots (QDs) in terms of stability, ζ-potential, and size at various pH and ionic strengths, by means of capillary electrophoresis (CE), and compared these results to the ones obtained by laser Doppler electrophoresis (LDE) and dynamic light scattering (DLS). The effect of the phthalocyanine metallic center (Zn, Al, or In), the number (one or four), and nature of substituents (carboxyphenoxy- or sulfonated-) of functionalization on the phthalocyanine physicochemical properties were evaluated. Whereas QDs capped with zinc mono-carboxyphenoxy-phtalocyanine (ZnMCPPc-QDs) remained aggregated in the whole analyzed pH range, even at low ionic strength, QDs capped with zinc tetracarboxyphenoxy phtalocyanine (ZnTPPc-QDs) were easily dispersed in buffers at pH equal to or higher than 7.4. QDs capped with aluminum tetrasulfonated phthalocyanine (AlTSPPc-QDs) and indium tetracarboxyphenoxy phthalocyanines (InTCPPc-QDs) were stable in aqueous suspension only at pH higher than 9.0 due to the presence of functional groups bound to the metallic center of the phthalocyanine. The ζ-potential values determined by CE for all the samples decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiological relevant solutions and thereby, its usefulness for improving their design and applications for photodynamic therapy. Graphical Abstract Schematic illustration of the phthalocyanine capped QDs nanoconjugates and the capillary electrophoresis methods applied for size and ζ-potential characterization.

  19. Phytotoxicity of floodplain soils contaminated with trace metals along the clark fork river, Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, United States

    USGS Publications Warehouse

    Rader, B.R.; Nimmo, D.W.R.; Chapman, P.L.

    1997-01-01

    Concentrations of metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA, have exceeded maximum background concentrations in the United States for most metals tested. As a result of mining and smelting activities, portions of the Deer Lodge Valley, including the Grant-Kohrs Ranch, have received National Priority List Designation under the Comprehensive Environmental Response, Compensation and Liability Act. Using a series of plant germination tests, pH measurements, and metal analyses, this study investigated the toxicity of soils from floodplain 'slicken' areas, bare spots devoid of vegetation, along the Clark Fork River. The slicken soils collected from the Grant-Kohrs Ranch were toxic to all four plant species tested. The most sensitive endpoint in the germination tests was root length and the least sensitive was emergence. Considering emergence, the most sensitive species was the resident grass species Agrostis gigantea. The sensitivities were reversed when root lengths were examined, with Echinochloa crusgalli showing the greatest sensitivity. Both elevated concentrations of metals and low pH were necessary to produce an acutely phytotoxic response in laboratory seed germination tests using slicken soils. Moreover, pH values on the Grant-Kohrs Ranch appear to be a better predictor of acutely phytotoxic conditions than total metal levels.

  20. Uranium fate in wetland mesocosms: Effects of plants at two ...

    EPA Pesticide Factsheets

    Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed sediments were an order of magnitude greater than concentrations in root excluded sediments. Micro X-ray absorption near-edge structure (µ-XANES) spectroscopy indicated that U was associated with the plant roots primarily as U(VI) or U(V), with limited evidence of U(IV). Micro X-ray fluorescence (µ-XRF) of plant roots suggested that for high iron loading at circumneutral pH, U was co-located with Fe, perhaps co-precipitated with root Fe plaques, while for low iron loading at a pH of ~4 the correlation between U and Fe was not significant, consistent with previous observations of U associated with organic matter. Quantitative PCR analyses indicated that the root exposed sediments also contained elevated numbers of Geobacter spp., which are likely associated with enhanced iron cycling, but may also reduce mobile U(VI) to less mobile U(IV) species. There are significant uncertainties regarding the environmental fate of uranium (U) and efforts to minimize U exposures require understanding of its mobility in environmental systems. Much research has focused on sequestering U as solids within groundwater aquifers, where localized risks can be controlled.1 Subsurface sequestration limits t

  1. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    PubMed

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-08

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  2. Effect of pH on the rheological and structural properties of gels of water-washed chicken-breast muscle at physiological ionic strength.

    PubMed

    Feng, Y; Hultin, H O

    2001-08-01

    Adjustment of pH from 6.4 to neutrality improved gelling ability and water-holding capacity of twice water-washed, minced chicken-breast muscle significantly at physiological ionic strength, at which the majority of the myofibrillar proteins, including myosin, are not soluble. A strain value of 2.2 was obtained at neutral pH. Myofibrils were the main components of the gel network at both pH 6.4 and 7.0; however, the myofibrillar distribution varied with the pH value. At pH 6.4, myofibrils formed a network of localized aggregates leaving large voids between, whereas at neutral pH, an evenly distributed network of myofibrils was formed. In addition, at neutral pH, a network of fine strands was found within the network of myofibrils. The network was much less developed at pH 6.4. The thin and thick filaments within each myofibrillar structure were disorganized at both pH values. The intramyofibrillar spaces were larger at neutral pH than at pH 6.4. It was proposed that adjustment of pH to neutrality increased electrostatic repulsion leading to a more even distribution of the myofibrillar proteins, a key factor responsible for the improved gel strength and water-holding capacity.

  3. Phytolacca americana from contaminated and noncontaminated soils of South Korea: Effects of elevated temperature, CO2 and simulated acid rain on plant growth response

    USGS Publications Warehouse

    Kim, Y.-O.; Rodriguez, R.J.; Lee, E.J.; Redman, R.S.

    2008-01-01

    Chemical analyses performed on the invasive weed Phytolacca americana (pokeweed) growing in industrially contaminated (Ulsan) and noncontaminated (Suwon) sites in South Korea indicated that the levels of phenolic compounds and various elements that include some heavy metals (Al, As, B, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were statistically higher in Ulsan soils compared to Suwon soils with Al being the highest (>1,116 mg/l compared to 432 mg/l). Analysis of metals and nutrients (K, Na, Ca, Mg, Cl, NH4, N, P, S) in plant tissues indicated that accumulation occurred dominantly in plant leaves with Al levels being 33.8 times higher in Ulsan plants (PaU) compared to Suwon plants (PaS). The ability of PaU and PaS to tolerate stress was evaluated under controlled conditions by varying atmospheric CO2 and temperature and soil pH. When grown in pH 6.4 soils, the highest growth rate of PaU and PaS plants occurred at elevated (30??C) and non-elevated (25??C) temperatures, respectively. Both PaU and PaS plants showed the highest and lowest growth rates when exposed to atmospheric CO2 levels of 360 and 650 ppm, respectively. The impact of soil pH (2-6.4) on seed germination rates, plant growth, chlorophyll content, and the accumulation of phenolics were measured to assess the effects of industrial pollution and global-warming-related stresses on plants. The highest seed germination rate and chlorophyll content occurred at pH 2.0 for both PaU and PaS plants. Increased pH from 2-5 correlated to increased phenolic compounds and decreased chlorophyll content. However, at pH 6.4, a marked decrease in phenolic compounds, was observed and chlorophyll content increased. These results suggest that although plants from Ulsan and Suwon sites are the same species, they differ in the ability to deal with various stresses. ?? 2008 Springer Science+Business Media, LLC.

  4. Reverse right ventricular structural and extracellular matrix remodeling by estrogen in severe pulmonary hypertension

    PubMed Central

    Nadadur, Rangarajan D.; Umar, Soban; Wong, Gabriel; Eghbali, Mansour; Iorga, Andrea; Matori, Humann; Partow-Navid, Rod

    2012-01-01

    Chronic pulmonary hypertension (PH) leads to right-ventricular failure (RVF) characterized by RV remodeling. Ventricular remodeling is emerging as an important process during heart failure and recovery. Remodeling in RVF induced by PH is not fully understood. Recently we discovered that estrogen (E2) therapy can rescue severe preexisting PH. Here, we focused on whether E2 (42.5 μg·kg−1·day−1, 10 days) can reverse adverse RV structural and extracellular matrix (ECM) remodeling induced by PH using monocrotaline (MCT, 60 mg/kg). RV fibrosis was evident in RVF males. Intact females developed less severe RV remodeling compared with males and ovariectomized (OVX) females. Novel ECM-degrading disintegrin-metalloproteinases ADAM15 and ADAM17 transcripts were elevated ∼2-fold in all RVF animals. E2 therapy reversed RV remodeling in all groups. In vitro, E2 directly inhibited ANG II-induced expression of fibrosis markers as well as the metalloproteinases in cultured cardiac fibroblasts. Estrogen receptor-β agonist diarylpropionitrile (DPN) but not estrogen receptor-α agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was as effective as E2 in inhibiting expression of these genes. Expression of ECM-interacting cardiac fetal-gene osteopontin (OPN) also increased ∼9-fold in RVF males. Intact females were partially protected from OPN upregulation (∼2-fold) but OVX females were not. E2 reversed OPN upregulation in all groups. Upregulation of OPN was also reversed in vitro by E2. Plasma OPN was elevated in RVF (∼1.5-fold) and decreased to control levels in the E2 group. RVF resulted in elevated Akt phosphorylation, but not ERK, in the RV, and E2 therapy restored Akt phosphorylation. In conclusion, E2 therapy reverses adverse RV remodeling associated with PH by reversing fibrosis and upregulation of novel ECM enzymes ADAM15, ADAM17, and OPN. These effects are likely mediated through estrogen receptor-β. PMID:22628376

  5. Calcium phosphate formation due to pH-induced adsorption/precipitation switching along salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-07-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation along salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a P-unenriched site. To improve analytical specificity, octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite; CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Sediment pH primarily affected P fractions across ecosystems and independent of the P status. Increasing pH caused a pronounced downstream transition from adsorbed Al/Fe-P to mineral Ca-P. Downstream decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. This marked upstream-to-downstream switch occurred at near-neutral sediment pH and was enhanced by increased P loads. Accordingly, the site comparison indicated two location-dependent accumulation mechanisms at the P-enriched site, which mainly resulted in elevated Al/Fe-P at pH < 6.6 (upstream; adsorption) and elevated Ca-P at pH > 6.6 (downstream; precipitation). Enhanced Ca-P precipitation by increased loads was also evident from disproportional accumulation of metastable Ca-P (Ca-PMmeta). The average Ca-Pmeta concentration was six-fold, whereas total Ca-P was only twofold higher at the P-enriched site compared to the P-unenriched site. Species concentrations showed that these largely elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP due to decreasing acidity from land to the sea. Formation of OCP and CFAP results in P retention in coastal zones, which may lead to substantial inorganic P accumulation by anthropogenic P input in near-shore sediments.

  6. Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Sileno, A. P.; deMeireles, J. C.; Dua, R.; Pimplaskar, H. K.; Xia, W. J.; Marinaro, J.; Langenback, E.; Matos, F. J.; Putcha, L.; hide

    2000-01-01

    PURPOSE: The present study was conducted to evaluate the effects of formulation pH and dose on nasal absorption of scopolamine hydrobromide, the single most effective drug available for the prevention of nausea and vomiting induced by motion sickness. METHODS: Human subjects received scopolamine nasally at a dose of 0.2 mg/0.05 mL or 0.4 mg/0.10 mL, blood samples were collected at different time points, and plasma scopolamine concentrations were determined by LC-MS/MS. RESULTS: Following administration of a 0.2 mg dose, the average Cmax values were found to be 262+/-118, 419+/-161, and 488+/-331 pg/ mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At the 0.4 mg dose the average Cmax values were found to be 503+/-199, 933+/-449, and 1,308+/-473 pg/mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At a 0.2 mg dose, the AUC values were found to be 23,208+/-6,824, 29,145+/-9,225, and 25,721+/-5,294 pg x min/mL for formulation pH 4.0, 7.0, and 9.0, respectively. At a 0.4 mg dose, the average AUC value was found to be high for pH 9.0 formulation (70,740+/-29,381 pg x min/mL) as compared to those of pH 4.0 (59,573+/-13,700 pg x min/mL) and pH 7.0 (55,298+/-17,305 pg x min/mL) formulations. Both the Cmax and AUC values were almost doubled with doubling the dose. On the other hand, the average Tmax, values decreased linearly with a decrease in formulation pH at both doses. For example, at a 0.4 mg dose, the average Tmax values were 26.7+/-5.8, 15.0+/-10.0, and 8.8+/-2.5 minutes at formulation pH 4.0, 7.0, and 9.0, respectively. CONCLUSIONS: Nasal absorption of scopolamine hydrobromide in human subjects increased substantially with increases in formulation pH and dose.

  7. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.

  8. The influence of pH on biotite dissolution and alteration kinetics at low temperature

    USGS Publications Warehouse

    Acker, James G.; Bricker, O.P.

    1992-01-01

    Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

  9. Two-stage anaerobic digestion of sugar beet silage: The effect of the pH-value on process parameters and process efficiency.

    PubMed

    Kumanowska, Elzbieta; Uruñuela Saldaña, Mariana; Zielonka, Simon; Oechsner, Hans

    2017-12-01

    The study investigated the influence of the target pH-values 4.5, 5, 5.5 and 6 in the acidification reactor on process parameters, such as substrate-specific methane yield and the intermediates, in the two-stage anaerobic digestion of sugar beet silage. The total specific methane yield (Nlkg -1 CODd -1 ) increased with an increase in the pH (pH 4.5: 140.58±70.08, pH 5: 181.21±55.71, pH 5.5: 218.32±51.01, pH 6: 256.47±28.78). The pH-value also had an effect on the dominant intermediate in hydrolysate. At the pH-value of 4.5, almost no acidification and microbial activity was observed. At pH 5 and 5.5, butyric acid production dominated, guided by H 2 production. At pH 6 acetic acid was the main product. The absence of H 2 and the highest SMY makes it favorable under practical aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Li, Huilin; Men, Dandan; Sun, Yiqiang; Zhang, Tao; Hang, Lifeng; Liu, Dilong; Li, Cuncheng; Cai, Weiping; Li, Yue

    2017-10-01

    Uniform Au nanoparticle (NP)/poly (acrylamide-co-acrylic acid) [P(AAm-co-AA)] hydrogel microbeads were successfully prepared using droplet microfluidics technology. The microbeads exhibited a good stimuli-responsive behavior to pH value. Particularly in the pH value ranging from pH 2-pH 9, the composite microbead sizes gradually increased along with the increase of pH value. The homogeneous Au NPs, which were encapsulated in the P(AAm-co-AA) hydrogel microbeads, could transform the volume changes of hydrogel into optical signals by a tested single microbead with a microspectrometre system. The glucose was translated into gluconic acid by glucose oxidase. Thus, the Au NP/P(AAm-co-AA) hydrogel microbeads were used for detecting glucose based on pH effects on the composite microbeads. For this, the single Au NP/P(AAm-co-AA) hydrogel microbead could act as a good pH- or glucose-visualizing sensor.

  11. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    PubMed

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  12. Effect of pH on whitening efficacy of 35% hydrogen peroxide and enamel microhardness.

    PubMed

    Jurema, Ana Luiza Barbosa; de Souza, Mauricio Yugo; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler; Caneppele, Taciana Marco Ferraz

    2018-03-01

    This study aimed to evaluate the effect of 35% hydrogen peroxide at different pH values and the degree of tooth staining on whitening efficacy and enamel microhardness. 90 enamel-dentin specimens were obtained from bovine incisors. They were randomly divided into 2 groups (n = 45), 1 group was immersed in a staining broth for 14 days, and another group was not stained and kept in distilled water at 37°C. Twenty-four hours after the staining procedure, each group was distributed into 3 subgroups that were whitened by 35% hydrogen peroxide with different pH values (5, 7, and 8.4) for 30 minutes. The color was measured at baseline and 7 days after whitening. Microhardness was measured at baseline, immediate, 24 hours, and 1 month after the whitening procedure. Data were submitted to 2-way analysis of variance (ANOVA) and the Tukey test for multiple comparisons for color analysis. Repeated measures ANOVA and the Tukey test were used to analyze microhardness data. The color change of the stained groups (ΔE 00  = 4.6) was significantly higher than that of the nonstained groups (ΔE 00  = 3.7). Microhardness value decreased significantly immediately after whitening for all subgroups and did not return to initial values. For each measurement time, microhardness was not significantly different among subgroups with different pH values. Despite the effectiveness of 35% hydrogen peroxide, changes on gel pH did not affect the whitening efficacy, and the enamel was superficially demineralized, regardless of pH values. Independently of the pH value of whitening gel, enamel undergoes superficial demineralization and with a reduction in superficial microhardness that does not return to the initial values. However, using hydrogen peroxide with different pH values does not alter the whitening effect. © 2018 Wiley Periodicals, Inc.

  13. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  14. Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts.

    PubMed

    Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan

    2015-10-01

    The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value < 0.003, p-value < 0.0002) compared to pH 7 and 8 (p-value > 0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap(®) System.

    PubMed

    Koziolek, Mirko; Grimm, Michael; Becker, Dieter; Iordanov, Ventzeslav; Zou, Hans; Shimizu, Jeff; Wanke, Christoph; Garbacz, Grzegorz; Weitschies, Werner

    2015-09-01

    Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification.

    PubMed

    Webster, N S; Negri, A P; Botté, E S; Laffy, P W; Flores, F; Noonan, S; Schmidt, C; Uthicke, S

    2016-01-13

    Key calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO2/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO2 479-499 μatm) and pH 7.9 (pCO2 738-835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO2 conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.

  17. [Significance of identification of fungi in gastric juice of patients with artificial airway in intensive care unit].

    PubMed

    Feng, Yong-wen; Wu, Ming; Li, Ying; Zeng, Jing-jing; Li, Ming-li; He, Yun; Li, Dan-hui; Cui, Man-li

    2012-02-01

    To investigate the direct relationship and significance between the pH value of gastric juice and positive fungi in culture critical patients with artificial airway in intensive care unit (ICU) by analyzing and identifying the type of fungi and their sensitivity to antifungal therapy. A prospective study was conducted.One hundred and sixty patients (between December, 2008 and October, 2011) with artificial airway lasting longer than 48 hours were studied in the ICU at the First Affiliated Hospital of Shenzhen University. The gastric juice specimens were collected through a nasogastric tube, their pH values were measured using precise litmus paper. These samples were divided into six groups according to their pH values: pH ≤ 2.0, pH 2.1-3.0, pH 3.1-4.0, pH 4.1-5.0, pH 5.1-6.0 and pH 6.1-7.0, and then fungi were cultured in these specimens with different pH values. Susceptibility of different fungicide drugs were also investigated. The susceptibility of fungi to gastric juice with different pH values was also investigated. The relationship between 28-day survival rate and the presence of fungi in gastric juice was analyzed in order to analyze the relationship of the presence of fungi in gastric juice and clinical outcome. (1) No fungal growth was found in the gastric juice with pH value lower than 4.0, and the positive rate of fungal culture was significantly increased when the pH value of gastric juice raised. (2) The positive rate of fungal growth was 27.9% (55/197), in which, the positive rate of Candida and non-Candida fungi was 38.2% (21/55) and 61.8% (34/55) respectively, and the difference was significant statistically [χ(2) = 4.16, P < 0.05]. (3) The fungal positive rate was 40.0% (22/55) and 60.0% (33/55) respectively, in survivors (102 cases) and non-survivors (58 cases). The percentage of Candida infection and non-Candida infection was 54.5% (12/22) and 45.5% (10/22) respectively, in survivors, and it was 27.3% (9/33) and 72.7% (24/33), respectively, in non-survivors. The rate of resistance of Candida and non-Candida fungi was 4.7%-14.3% (mean 10.1%) and 0-60% (mean 28.5%) respectively. Positive fungus culture rate was higher in critical patients with artificial airway and higher gastric juice pH values. Non-Candida fungi were mainly found in gastric juice with increasing resistance rate. Candida was more commonly found in survivors, and non-Candida fungi were more commonly found in non-survivors.

  18. Near-infrared noninvasive spectroscopic determination of pH

    DOEpatents

    Alam, Mary K.; Robinson, Mark R.

    1998-08-11

    Methods and apparatus for, preferably, determining noninvasively and in vitro pH in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 1000 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of pH. The determination of pH is made by using measured intensities at wavelengths that exhibit change in absorbance due to histidine titration. Histidine absorbance changes are due to titration by hydrogen ions. The determination of the unknown pH values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. The determined pH values are within the physiological ranges observed in blood containing tissue. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  19. Laboratory investigation of the potential influence of CO2 migration on trace element release from natural aquifer sediments

    NASA Astrophysics Data System (ADS)

    Lebel, J.; Hakala, A.; Keating, E. H.; Allen, D. E.

    2010-12-01

    Successful geologic CO2 sequestration requires that risk management practices include efforts to ensure the protection of groundwater resources. In order to determine the level of detail necessary for predictive reactive transport inputs, we focused on CO2-water-rock reactions at a particular natural analog site for CO2 release (Chimayo, NM, USA) that currently is the focus of a broader reactive transport modeling study. At the Chimayo natural analog site, fluids with elevated total dissolved solids (TDS) and CO2 are being released into a shallow aquifer along a series of faults. Although many areas of the shallow aquifer contain elevated TDS and CO2, some areas remain unaffected. The purpose of our study is to investigate whether laboratory-based reactions between CO2, synthetic groundwater (both high and low TDS), and Chimayo aquifer sediments can be used to interpret the geochemical processes that are responsible for elevated metal concentrations in the high-TDS, high-CO2 Chimayo groundwaters. Sediment samples were collected from an outcrop from the Chimayo aquifer (Tesuque Formation, Santa Fe Group). The samples were ground and size fractionated to <60 mesh. Two synthetic groundwater solutions were created based on the major ion chemistries from previous studies of well samples: synthetic Na-HCO3 “background” water and synthetic Na-Ca-Cl “saline” water. Four reactor vessels were constructed to examine CO2-water-rock reactions for two natural sediment samples; for each sample, one reaction contained the background water, and the other contained the saline water. The reactors were continuously sparged with CO2 at a pressure of 1 atm for 14 days, and the reactor vessels were sampled at 6 different time intervals. As expected, the reactors sparged with CO2 showed a pH decrease (ranging from 5.66-6.06); in control reactions without CO2 the pH stayed relatively high and similar to field-measured pH values of low-CO2 Chimayo waters (7.25-8.65). The refractive index (RI) of the reacted fluids, used as a proxy for salinity changes during the reaction, showed no significant change over the course of the experiment indicating that CO2-water-rock reaction alone will not significantly increase groundwater TDS values at Chimayo. Preliminary analysis for similar CO2-water-rock reactions with Chimayo sediments show that, within 16 hours, Mg, Ca, K, Ba, Zn, Mn, P, Sr and U are preferentially released into solution when CO2 reacts with Chimayo sediments in the presence of low-TDS groundwater. All of these elements are associated with the carbonate mineral fraction, as determined through prior sequential extraction work. Our results show that rapid pH changes can be expected when CO2 is introduced into a shallow clay and sand-rich aquifer system, and that a variety of elements associated with the carbonate mineral fraction can be important to consider in the context of groundwater quality (e.g., Ba, U). Future risk assessment efforts will require an understanding of the trace element content of the CO2-reactive mineral fraction in groundwater aquifers adjacent to potential geologic sequestration sites.

  20. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  1. Research on dispose of wastewater from printing and dyeing by CWF combined with Iron-carbon Microelectrolysis

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ye, Tingjin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The carboxymethylchitosan cladding coal ash (CWF) was oxidized by the high temperature using coal ash and sodium carboxymethyl chitosan as raw and processed material for treatment of simulated and actual printing and dyeing wastewater over iron-carbon micro-electrolysis. The results on pH and CWF dosage for effluent dispose were evaluated by the decolorization rate, COD removal efficiency and turbidity removal rate. The experimental results indicated that the decolorization rate was first augmented and then declined with the increase of pH, and attained a peak value when pH was at 5-6. The COD removal efficiency augmented with the augmented of pH, and attained a peak value when pH was 6-7. The turbidity removal rate was first increases and afterwards decreases with the augment of pH, and attained a peak value when pH was at 5-6. Furthermore, the optimum pH for the treatment of simulated dyeing wastewater was 6 over iron-carbon micro-electrolysis, which indicated that the appropriate pH can promote the degradation of wastewater.

  2. Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH

    PubMed Central

    Crichton, Robert R.; Bryce, Charles F. A.

    1973-01-01

    1. The dissociation of horse spleen apoferritin as a function of pH was analysed by sedimentation-velocity techniques. The oligomer is stable in the range pH2.8–10.6. Between pH2.8 and 1.6 and 10.6 and 13.0 both oligomer and subunits can be detected. At pH values between 1.6 and 1.0 the subunit is the only species observed, although below pH1.0 aggregation of the subunits to a particle sedimenting much faster than the oligomer occurs. 2. When apoferritin is first dissociated into subunits at low pH values and then dialysed into buffers of pH1.5–5.0, the subunit reassociates to oligomer in the pH range 3.1–4.3. 3. U.v.-difference spectroscopy was used to study conformational changes occurring during the dissociation process. The difference spectrum in acid can be accounted for by the transfer of four to five tyrosine residues/subunit from the interior of the protein into the solvent. This process is reversed on reassociation, but shows the same hysteresis as found by sedimentation techniques. The difference spectrum in alkali is more complex, but is consistent with the deprotonation of tyrosine residues, which appear to have rather high pK values. 4. In addition to the involvement of tyrosine residues in the conformational change at low pH values, spectral evidence is presented that one tryptophan residue/subunit also changes its environment before dissociation and subsequent to reassociation. 5. Analysis of the dissociation and reassociation of apoferritin at low pH values suggests that this is a co-operative process involving protonation and deprotonation of at least two carboxyl functions of rather low intrinsic pK. The dissociation at alkaline pH values does not appear to be co-operative. 6. Of the five tyrosine residues/subunit only one can be nitrated with tetranitromethane. Guanidination of lysine residues results in the modification of seven out of a total of nine residues/subunit. Nine out of the ten arginine residues/subunit react with cyclohexanedione. PMID:4737425

  3. Impact of preacidification of milk and fermentation time on the properties of yogurt.

    PubMed

    Peng, Y; Horne, D S; Lucey, J A

    2009-07-01

    Casein interactions play an important role in the textural properties of yogurt. The objective of this study was to investigate how the concentration of insoluble calcium phosphate (CCP) that is associated with casein particles and the length of fermentation time influence properties of yogurt gels. A central composite experimental design was used. The initial milk pH was varied by preacidification with glucono-delta-lactone (GDL), and fermentation time (time to reach pH 4.6 from the initial pH) was altered by varying the inoculum level. We hypothesized that by varying the initial milk pH value, the amount of CCP would be modified and that by varying the length of the fermentation time we would influence the rate and extent of solubilization of CCP during any subsequent gelation process. We believe that both of these factors could influence casein interactions and thereby alter gel properties. Milks were preacidified to pH values from 6.55 to 5.65 at 40 degrees C using GDL and equilibrated for 4 h before inoculation. Fermentation time was varied from 250 to 500 min by adding various amounts of culture at 40 degrees C. Gelation properties were monitored using dynamic oscillatory rheology, and microstructure was studied using fluorescence microscopy. Whey separation and permeability were analyzed at pH 4.6. The preacidification pH value significantly affected the solubilization of CCP. Storage modulus values at pH 4.6 were positively influenced by the preacidification pH value and negatively affected by fermentation time. The value for the loss tangent maximum during gelation was positively affected by the preacidification pH value. Fermentation time positively affected whey separation and significantly influenced the rate of CCP dissolution during fermentation, as CCP dissolution was a slow process. Longer fermentation times resulted in greater loss of CCP at the pH of gelation. At the end of fermentation (pH approximately 4.6), virtually all CCP was dissolved. Preacidification of milk increased the solubilization of CCP, increased the early loss of CCP crosslinks, and produced weak gels. Long fermentation times allowed more time for solubilization of CCP during the critical gelation stage of the process and increased the possibility of greater casein rearrangements; both could have contributed to the increase in whey separation.

  4. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites.

    PubMed

    Lamare, Miles D; Liddy, Michelle; Uthicke, Sven

    2016-11-30

    Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO 2 and ambient pCO 2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH (T) = 7.89-7.92), larvae developing in elevated pCO 2 vent conditions (pH (T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response. © 2016 The Author(s).

  5. Concentration of heavy metals in drinking water of different localities in district east Karachi.

    PubMed

    Jaleel, M A; Noreen, R; Baseer, A

    2001-01-01

    Several heavy metals are present in drinking water that play important roles in the body provided their level remains within the specified range recommended by WHO. But now due to the industrialization and rapid urbanization, the problems of pollution have surfaced. This study was designed to ascertain the contents of some heavy metals and then their variations if any in drinking water in different localities of district East of Karachi, Pakistan. Drinking water samples were collected from different sources and localities of district East of Karachi. The concentration of the heavy metals i.e. Lead, Arsenic, Copper, Iron, Mercury, Chromium, Manganese, Nickel, Cadmium and Zinc were determined by Atomic Absorption Spectrophotometry. PH was estimated by pH meter. Total dissolved solids (TDS) were calculated by formula. These concentrations of heavy metals, pH and TDS were compared with the standards set by WHO. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water (Piped water, Hand pump water and Tanker water supply). Chromium was found to be raised in hand pump water. Arsenic and Mercury were not detected in any source of water. Copper, iron, manganese, cadmium and zinc were found to be within the safe limits in all the three sources of water. pH was found to be within the range of WHO recommended level in all the three sources of water. TDS was found to be elevated in hand pump water and tanker water. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water in district East of Karachi.

  6. Novel putative pharmacological therapies to protect the right ventricle in pulmonary hypertension: a review of current literature

    PubMed Central

    Schulz, Rainer; Sliwa, Karen; Schermuly, Ralph Theo; Lecour, Sandrine

    2017-01-01

    Pulmonary hypertension (PH) is defined by elevated mean pulmonary artery pressure following the pathological remodelling of small pulmonary arteries. An increase in right ventricular (RV) afterload results in RV hypertrophy and RV failure. The pathophysiology of PH, and RV remodelling in particular, is not well understood, thus explaining, at least in part, why current PH therapies have a limited effect. Existing therapies mostly target the pulmonary circulation. Because the remodelled RV fails to support normal cardiac function, patients eventually succumb from RV failure. Developing novel therapies that directly target the function of the RV may therefore benefit patients with PH. In the past decade, several promising studies have investigated novel cardioprotective strategies in experimental models of PH. This review aims to comprehensively discuss and highlight these novel experimental approaches to confer, in the long‐term, greater health benefit in patients with PH. PMID:28099680

  7. A method for calibrating pH meters using standard solutions with low electrical conductivity

    NASA Astrophysics Data System (ADS)

    Rodionov, A. K.

    2011-07-01

    A procedure for obtaining standard solutions with low electrical conductivity that reproduce pH values both in acid and alkali regions is proposed. Estimates of the maximal possible error of reproducing the pH values of these solutions are obtained.

  8. PH-sensitive dispersion of carbon nanotubes by myoglobin

    NASA Astrophysics Data System (ADS)

    Nie, Haiyu; Shen, Ganni; Sun, Junlin; Zhang, Tao

    2017-03-01

    A facile and effective method of dispersion of double-walled carbon nanotubes (DWNTs) was developed. At appropriate pH value and sonication, myoglobin helps the solubilization of DWNTs. The product is a pH-sensitive dispersion, which remains in a highly dispersed state at pH<3.0 and pH>10.0. This approach can be used to disperse DWNTs in scale. A reversible conversion of the highly dispersed state to the aggregated state could be observed by changing the pH value. This feature holds great promise for the development of pH sensors.

  9. Holocene soil pH changes and East Asian summer monsoon evolution derived from loess brGDGTs in the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Sun, Q.; Zhao, H.

    2017-12-01

    GDGTs-based proxies have been used successfully to reconstruct paleo-temperature from loess-paleosol sequences during the past few years. However, the pH variations of loess sediments derived from GDGTs covering the geological history remain poorly constrained. Here we present two pH records spanning the last 12 ka (1ka=1000years) based on the modified cyclization ratio index (CBT') of the branched GDGTs using regional CBT'-pH empirical relationship from two well-dated loess-paleosol sections (YWY14 and SHD09) in the northeastern Tibetan Plateau. The results indicate that a slightly alkaline condition occurred during 12 8.5 ka with pH values ranging from 6.98 to 7.24, then CBT'-derived pH decreased from 8.5 to 6.5 ka with values from 7.19 to 6.49 and gradually increased thereafter. The reconstructed pH values from topmost samples can be well compared with instrumental pH values of the surrounding surface soil. The lowest intervals of CBT'-derived pH values during the mid-Holocene in our records are consistent with the results of highest tree pollen percentage from the adjacent lake sediments and regional weakest aeolian activities, which reveals that the moisture maximum during that period, but conflicted with previous results of the wettest early-Holocene inferred from speleothem or ostracod shell oxygen isotope (δ18O) values. Taking together, we conclude that Holocene humidity evolution (wettest middle Holocene) in response to the East Asian summer monsoon (EASM) changes exerts important control on pH variations of loess deposits in northeastern Tibetan Plateau. CBT'-derived pH variations can be potentially used as an indicator of EASM evolution reconstructions. In addition, we argue that speleothem or ostracod shell δ18O records are essentially a signal of the isotopic composition of precipitations rather than EASM intensity.

  10. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    NASA Astrophysics Data System (ADS)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  11. Probing the inhibitory potency of epigallocatechin gallate against human γB-crystallin aggregation: Spectroscopic, microscopic and simulation studies

    NASA Astrophysics Data System (ADS)

    Chaudhury, Susmitnarayan; Dutta, Anirudha; Bag, Sudipta; Biswas, Pranandita; Das, Amit Kumar; Dasgupta, Swagata

    2018-03-01

    Aggregation of human ocular lens proteins, the crystallins is believed to be one of the key reasons for age-onset cataract. Previous studies have shown that human γD-crystallin forms amyloid like fibres under conditions of low pH and elevated temperature. In this article, we have investigated the aggregation propensity of human γB-crystallin in absence and presence of epigallocatechin gallate (EGCG), in vitro, when exposed to stressful conditions. We have used different spectroscopic and microscopic techniques to elucidate the inhibitory effect of EGCG towards aggregation. The experimental results have been substantiated by molecular dynamics simulation studies. We have shown that EGCG possesses inhibitory potency against the aggregation of human γB-crystallin at low pH and elevated temperature.

  12. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.

    PubMed

    Hong, Haizheng; Shen, Rong; Zhang, Futing; Wen, Zuozhu; Chang, Siwei; Lin, Wenfang; Kranz, Sven A; Luo, Ya-Wei; Kao, Shuh-Ji; Morel, François M M; Shi, Dalin

    2017-05-05

    Acidification of seawater caused by anthropogenic carbon dioxide (CO 2 ) is anticipated to influence the growth of dinitrogen (N 2 )-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N 2 -fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO 2 Acidification resulted in low cytosolic pH and reduced N 2 -fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification. Copyright © 2017, American Association for the Advancement of Science.

  13. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    PubMed

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  14. Diurnal and seasonal variations of pH for a year in the western subarctic North Pacific observed by using a hybrid pH sensor

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshiyuki; Fujiki, Tetsuichi; Kimoto, Katsunori; Miwa, Tetsuya

    2017-04-01

    Ocean acidification has many far reaching impacts on plankton community in the ocean. There is great need of quality instrumentation to assess and monitor the changing seawater pH. To meet the need, we have developed the in situ high accurate pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring to participate the Wendy Schmidt Ocean health XPRIZE. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS is correcting the value of the potentiometric pH (measuring frequently) by the value of the spectrophotometric pH (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the HpHS can measure accurately the value of pH over a long period of time with low power consumption. In order to understand the seasonal and inter-annual variabilities of biogeochemical cycles and ecosystems, ship-based studies have been carried out since 1997 at time-series station K2 (47oN, 160oE) in the subarctic western North Pacific, which is a region with progression of ocean acidification. However, the ship-based studies of the open ocean have been limited in their ability to conduct high-frequency observations for understanding the biogeochemical cycles and ecosystems. To overcome the problem, we developed a hybrid profiling buoy system. The HpHS was attached to a remote automatic water sampler (200m) in the buoy system in July 2015. We recovered the buoy system in June 2016 and succeeded in observing seawater pH every four hours for a year. Here, we show an overview of the diurnal and seasonal variations of pH for a year at station K2. In addition, we examine a relationship between the pH variations and marine calcifiers recovered by the sediment trap during the same period.

  15. Capsaicin pre- and post-treatment on rat monocrotaline pneumotoxicity.

    PubMed

    Katzman, N J; Lai, Y L

    2000-12-31

    Monocrotaline (MCT) produces respiratory dysfunction, pulmonary hypertension (PH), and right ventricular hypertrophy (RVH) in rats. Tachykinins, such as substance P (SP) and neurokinin A (NKA), may mediate these effects. The purpose of this study was to investigate the length of tachykinin depletion (via capsaicin treatment) is needed to prevent (or attenuate) PH and/or RVH. Six groups of rats were injected subcutaneously with saline (3 ml/kg); capsaicin followed by saline or MCT (60 mg/kg); or MCT followed 7, 11, or 14 days later by capsaicin. Capsaicin (cumulative dose, 500 mg/kg) was given over a period of 4-5 days. Respiratory function, pulmonary vascular parameters, lung tachykinin levels, and tracheal neutral endopeptidase (NEP) activity were measured 21 days after MCT or saline injection. Capsaicin significantly decreased lung levels of SP but not NKA. Both capsaicin pretreatment and posttreatment blocked the following MCT-induced alterations: increases in lung SP and airway constriction; decreases in tracheal NEP activity and dynamic respiratory compliance. Administration of capsaicin before or 7 days after MCT blocked MCT-induced PH and RVH. The above data suggest that the early tachykinin-mediated airway dysfunction requires only transient elevated tachykinins, while progression of late tachykinin-mediated effects (PH and RVH) requires elevated tachykinins for more than one week.

  16. Alteration of Oceanic Nitrification Under Elevated Carbon Dioxide Concentrations

    NASA Astrophysics Data System (ADS)

    Beman, J.; Chow, C. E.; Popp, B. N.; Fuhrman, J. A.; Feng, Y.; Hutchins, D. A.

    2008-12-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing exponentially and expected to double by the year 2100. Dissolution of excess CO2 in the upper ocean reduces pH, alters carbonate chemistry, and also represents a potential resource for autotrophic organisms that convert inorganic carbon into biomass--including a broad spectrum of marine microbes. These bacteria and archaea drive global biogeochemical cycles of carbon and nitrogen and constitute the vast majority of biomass in the sea, yet their responses to reduced pH and increased pCO2 remain largely undocumented. Here we show that elevated pCO2 may sharply reduce nitrification rates and populations of nitrifying microorganisms in the ocean. Multiple experiments were performed in the Sargasso Sea and the Southern California Bight under glacial maximum (193 ppm), present day (390 ppm), and projected (750 ppm) pCO2 concentrations, over time scales from hours to multiple days, and at depths of 45 m to 240 m. Measurement of nitrification rates using isotopically-labeled nitrogen showed 2-5 fold reduction under elevated pCO2--as well as an increase under glacial maximum pCO2. Marine Crenarchaeota are likely involved in nitrification as ammonia-oxidizing archaea (AOA) and are among the most abundant microbial groups in the ocean, yet this group decreased by 40-80% under increased pCO2, based on quantification of both 16S rRNA and ammonia monooxygenase (amoA) gene copies. Crenarchaeota also steadily declined over the course of multiple days under elevated pCO2, whereas ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were more variable in their responses or were not detected. These findings suggest that projected increases in pCO2 and subsequent decreases in pH may strongly influence marine biogeochemistry and microbial community structure in the sea.

  17. Phase angle assessment by bioelectrical impedance analysis and its predictive value for malnutrition risk in hospitalized geriatric patients.

    PubMed

    Varan, Hacer Dogan; Bolayir, Basak; Kara, Ozgur; Arik, Gunes; Kizilarslanoglu, Muhammet Cemal; Kilic, Mustafa Kemal; Sumer, Fatih; Kuyumcu, Mehmet Emin; Yesil, Yusuf; Yavuz, Burcu Balam; Halil, Meltem; Cankurtaran, Mustafa

    2016-12-01

    Phase angle (PhA) value determined by bioelectrical impedance analysis (BIA) is an indicator of cell membrane damage and body cell mass. Recent studies have shown that low PhA value is associated with increased nutritional risk in various group of patients. However, there have been only a few studies performed globally assessing the relationship between nutritional risk and PhA in hospitalized geriatric patients. The aim of the study is to evaluate the predictive value of the PhA for malnutrition risk in hospitalized geriatric patients. One hundred and twenty-two hospitalized geriatric patients were included in this cross-sectional study. Comprehensive geriatric assessment tests and BIA measurements were performed within the first 48 h after admission. Nutritional risk state of the patients was determined with NRS-2002. Phase angle values of the patients with malnutrition risk were compared with the patients that did not have the same risk. The independent variables for predicting malnutrition risk were determined. SPSS version 15 was utilized for the statistical analyzes. The patients with malnutrition risk had significantly lower phase angle values than the patients without malnutrition risk (p = 0.003). ROC curve analysis suggested that the optimum PhA cut-off point for malnutrition risk was 4.7° with 79.6 % sensitivity, 64.6 % specificity, 73.9 % positive predictive value, and 73.9 % negative predictive value. BMI, prealbumin, PhA, and Mini Mental State Examination Test scores were the independent variables for predicting malnutrition risk. PhA can be a useful, independent indicator for predicting malnutrition risk in hospitalized geriatric patients.

  18. Axillary pH and influence of deodorants.

    PubMed

    Stenzaly-Achtert, S.; Schölermann, A.; Schreiber, J.; Diec, K. H.; Rippke, F.; Bielfeldt, S.

    2000-05-01

    BACKGROUND/AIMS: In moist intertriginous regions, such as the armpit, the pH value is physiologically higher than in other skin regions. The regulation of the axillary pH-value was examined in an open study with 48 subjects in three groups with n=16 each. METHODS: In the first 10 days (run-in) the subjects received a standard treatment in the axilla with shaving, cleansing and application of a pH-neutral deodorant. This was followed by a 5 day treatment period with the three test products (pH5 Eucerin(R) Deodorant Roll-on, Deodorant Balsam Spray, Deodorant Cream). The study was concluded by a wash-out period with procedures identical to the run-in phase. The pH was measured with a calibrated pH-meter. RESULTS: A significant pH reduction was shown during the treatment period when compared to the run-in phase. The Deodorant Roll-on induced a reduction of the mean pH values from 6.1 to 5.3, the Deodorant Balsam Spray from 6.5 to 5.7 and the Deodorant Cream from 6.2 to 5.3. During the wash-out period all pH values returned to baseline. CONCLUSION: All of the deodorants tested demonstrated a significant reduction in axillary pH. There is evidence that a high skin pH promotes the growth of several microorganisms that produce malodor. Therefore, the regulation of pH may contribute to the deodorant efficacy of the test products.

  19. Effect of pH and lactose concentration on solvent production from whey permeate using Clostridium acetobutylicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ennis, B.M.; Maddox, I.S.

    1987-02-20

    A study was performed to optimize the production of solvents from whey permeate in batch fermentation using Clostridium acetobutylicum P262. Fermentations performed at relatively low pH values resulted in high solvent yields and productivities, but lactose utilization was incomplete. At higher pH values, lactose-utilization was improved but acid production dominated over solvent production. When operating at the higher pH values, an increase in the initial lactose concentration of the whey permeate resulted in lower rates of lactose utilization, and this was accompanied by increased solvent production and decreased acid production. Analysis of data from several experiments revealed a strong inversemore » relationship between solvent yield and lactose utilization rate. Thus, conditions which minimize the lactose utilization rate such as low culture pH values or high initial lactose concentrations, favor solventogenesis at the expense of acid production. 12 references.« less

  20. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  1. An extension of ASM2d including pH calculation.

    PubMed

    Serralta, J; Ferrer, J; Borrás, L; Seco, A

    2004-11-01

    This paper presents an extension of the Activated Sludge Model No. 2d (ASM2d) including a chemical model able to calculate the pH value in biological processes. The developed chemical model incorporates the complete set of chemical species affecting the pH value to ASM2d describing non-equilibrium biochemical processes. It considers the system formed by one aqueous phase, in which biochemical processes take place, and one gaseous phase, and is based on the assumptions of instantaneous chemical equilibrium under liquid phase and kinetically governed mass transport between the liquid and gas phase. The ASM2d enlargement comprises the addition of every component affecting the pH value and an ion-balance for the calculation of the pH value and the dissociation species. The significant pH variations observed in a sequencing batch reactor operated for enhanced biological phosphorus removal were used to verify the capability of the extended model for predicting the dynamics of pH jointly with concentrations of acetic acid and phosphate. A pH inhibition function for polyphosphate accumulating bacteria has also been included in the model to simulate the behaviour observed. Experimental data obtained in four different experiments (with different sludge retention time and influent phosphorus concentrations) were accurately reproduced.

  2. Nitrogen deposition along an elevation gradient in Taiwan

    NASA Astrophysics Data System (ADS)

    Li, Chia-Yi; Cheng, Chih-Hsin

    2017-04-01

    Taiwan is one of the areas that has high nitrogen deposition. The deposition of nitrogen, however, is not homogeneous, but rather is heterogeneous with high spatial and temporal variation. In this study, we evaluated nitrogen deposition along an elevation gradient ranged from 100 m which was closest to the agricultural and industrial areas to 1800 m which was located in the mid-elevation mountainous areas to identify how elevation affects nitrogen deposition under an annual determination. Bulk precipitation was collected using the funnel apparatus mounted on a post 1.5 m above ground level in each study site (n=7), and collected weekly or every other weekly depending on the frequency of rainfall events. Cations (K+, Na+, Ca+2, Mg+2, and NH4+), anions (F-, Cl-, SO4-2, and NO3-), pH and electric conductance (EC) of precipitation water were analyzed. The results indicated a significant trend along the elevation gradient. Volume-weighted mean concentration (μg L-1) and deposition amounts (kg ha-1) of based cations, anions, NH4+, pH and EC decreased with the elevation, whereas hydrogen ion increased with elevation. The mean ratio of NH4+-N/NO3-N for all study sites was 2.87 and no clear elevation trend existed. However, a relatively high ratio of NH4+-N/NO3-N was found in the sites with elevation less than 500 m during the periods between March and May, suggesting the seasonal agricultural input in these sites. Deposition of NH4+-N, NO3-N, and total inorganic N were 12 - 25, 4 - 10, and 16 - 37 kg N ha-1, respectively, during the period from January 2016 to August 2016. Higher nitrogen deposition is expected for the whole 2016 year. High nitrogen deposition poses an ecological threat in Taiwan and more research is warranted to understand how nitrogen deposition could be detrimental to environment.

  3. Effect of pH and glucose on cultured human peritoneal mesothelial cells.

    PubMed

    Shao, J C; Yorioka, N; Nishida, Y; Yamakido, M

    1999-08-01

    We investigated the effects of various pH and glucose concentrations on the growth of human peritoneal mesothelial cells and on coagulation and fibrinolytic factors. Cells were cultured at various pH values in Ham's F-12 medium containing 1.0% foetal calf serum and supplemented with D-glucose or D-mannitol at various concentrations. After 4-48 h, cell proliferation and 3H-thymidine incorporation were determined. Coagulation and fibrinolytic factors were measured after 48 h. Glucose caused concentration-dependent inhibition of cell growth at all pH values, but the deleterious effect of low pH on cell proliferation was faster and stronger than that of high glucose. At a similar osmolality, mannitol caused less inhibition of cell proliferation than glucose. There was a glucose concentration-dependent increase of thrombin-antithrombin III complex production at all pH values. At pH 5.2, tissue-type plasminogen activator production was far lower than at higher pH values, and production of the plasminogen activator inhibitor showed a glucose concentration-dependent increase. At pH 6.5 or 7.3, however, the plasminogen activator inhibitor production decreased and tissue-type plasminogen activator production increased in a glucose concentration-dependent manner. Low pH and/or high glucose culture medium had an inhibitory effect on peritoneal mesothelial cells, with the effect of high glucose being partially related to hyperosmolality. These cells may modulate peritoneal coagulant and fibrinolytic activity, with the balance between coagulation and fibrinolysis being disturbed by low pH and/or high glucose.

  4. Measurements of pH and redox potential distributions in TNT-contaminated plant-soil systems using microelectrode techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, H.; Zhang, T.C.

    1997-12-31

    The pH and redox potential profiles in TNT-contaminated soils with and without plants were investigated using microelectrode techniques. The new pH cocktail and double-barreled structure greatly improved the performance of the pH microelectrode. For soil without plants, there is almost no pH difference at different locations with different heights; while for the TNT-contaminated soils with plants there exist pH profiles. The soil immediately near the root of the plant has the lowest pH value. The pH value increases as the distance between the measuring point and the plant roots increases. The pH gradient (the increased pH value over the unitmore » distance) decreases with an increase of the distance between the measuring point and the plant roots. These results show that the plant presence can greatly affect the pH distribution. In vegetated soil, the redox potentials in the layer nearest the plant roots are higher than those in the bulk soil without plants. The redox potentials in the central part of the plant are lower than those in the soil around the plant and soil without the plant. The redox potentials in the soil without plants decrease with an increase of depth.« less

  5. Uranium Adsorption on Ferrihydrite - Effects of Phosphate and Humic Acid

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Waite, T.D.

    1996-01-01

    Uranium adsorption on ferrihydrite was studied as a function of pH in systems equilibrated with air, in the presence and absence of added phosphate and humic acid (HA). The objective was to determine the influence of PO43- and HA on uranium uptake. Below pH 7, the sorption of UO22+ typically increases with increasing pH (the 'low pH sorption edge'), with a sharp decrease in sorption above this pH value (the 'high pH edge'). The presence of ??PO43- of 10-4 mol/L moved the low pH edge to the left by approximately 0.8 pH units. The PO43- was strongly bound by the ferrihydrite surface, and the increased uptake of U was attributed to the formation of ternary surface complexes involving both UO22+ and PO43-. The addition of HA (9 mg/L) increased U uptake at pH values below 7, with little effect at higher pH values. The positions of the pH edges were also affected by the ionic strength and total U content. These experiments show that sorption interactions involving PO43 and HA must be considered in order to model the behavior of U in natural systems, in which these components are often present.

  6. The Critical Importance of Urinary Concentrating Ability in the Generation of Urinary Carbon Dioxide Tension

    PubMed Central

    Arruda, Jose A. L.; Nascimento, Luiz; Mehta, Pradeep K.; Rademacher, Donald R.; Sehy, John T.; Westenfelder, Christof; Kurtzman, Neil A.

    1977-01-01

    Measurement of urine to blood (U-B) carbon dioxide tension (PCO2) gradient during alkalinization of the urine has been suggested to assess distal H+ secretion. A fact that has not been considered in previous studies dealing with urinary PCO2 is that dissolution of HCO3 in water results in elevation of PCO2 which is directly proportional to the HCO3 concentration. To investigate the interrelationship of urinary HCO3 and urinary acidification, we measured U-B PCO2 in (a) the presence of enhanced H+ secretion and decreased concentrating ability i.e., chronic renal failure (CRF), (b) animals with normal H+ secretion and decreased concentrating ability, Brattleboro (BB) rats, and (c) the presence of both impaired H+ secretion and concentrating ability (LiCl treatment and after release of unilateral ureteral obstruction). At moderately elevated plasma HCO3 levels (30-40 meq/liter), normal rats achieved a highly alkaline urine (urine pH > 7.8) and raised urine HCO3 concentration and U-B PCO2. At similar plasma HCO3 levels, BB rats had a much higher fractional water excretion and failed to raise urine pH, urine HCO3 concentration, and U-B PCO2 normally. At a very high plasma HCO3 (>50 meq/liter), BB rats raised urine pH, urine HCO3 concentration, and U-B PCO2 to the same levels seen in normals. CRF rats failed to raise urine pH, urine HCO3, and U-B PCO2 normally at moderately elevated plasma HCO3 levels; at very high plasma HCO3 levels, CRF rats achieved a highly alkaline urine but failed to raise U-B PCO2. Dogs and patients with CRF were also unable to raise urine pH, urine HCO3 concentration, and U-B PCO2 normally at moderately elevated plasma HCO3 levels. In rats, dogs, and man, U-B PCO2 was directly related to urine HCO3 concentration and inversely related to fractional water excretion. At moderately elevated plasma HCO3 levels, animals with a distal acidification defect failed to raise U-B PCO2; increasing the plasma HCO3 to very high levels resulted in a significant increase in urine HCO3 concentration and U-B PCO2. The observed urinary PCO2 was very close to the PCO2 which would be expected by simple dissolution of a comparable amount of HCO3 in water. These data demonstrate that, in highly alkaline urine, urinary PCO2 is largely determined by concentration of urinary HCO3 and cannot be used as solely indicating distal H+ secretion. PMID:893680

  7. pH value promotes growth of Staphylococcus epidermidis in platelet concentrates.

    PubMed

    Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2008-05-01

    The platelet (PLT) storage lesion is characterized metabolically by a pH value associated with lactic acid generation. PLT storage conditions support the growth of Staphylococcus epidermidis, the most common organism implicated in bacterial contamination of PLT concentrates (PCs). Here, different factors that influence bacterial growth in PCs are discussed and the relation between pH values of PCs and citrate plasma (CP) is studied, with emphasis on bacterial proliferation. The PLT lesion with regard to pH decrease and lactic acid production was monitored during storage and correlated to bacterial proliferation properties. A total of 115 coagulase-negative staphylococci, especially S. epidermidis isolates, were characterized for their proliferation in different blood components (CP, buffy coat-derived, and apheresis PCs). Furthermore, the influence of donor-specific, product-specific, species-specific, and strain-specific factors on bacterial proliferation was investigated. PCs showed a lower pH value in comparison to plasma during storage. Bacterial proliferation in PCs and the failure to grow in CP were determined with all organisms tested. No correlation to donor-specific, species-specific, or strain-specific factors was observed. Lowering the pH of CP resulted in bacterial proliferation, whereas a pH increase in the PC unit inhibited the proliferation of S. epidermidis. With emphasis on bacterial proliferation, the significant difference between PC and CP is the presence of metabolizing PLTs. The pH values of stored PLTs, but not those of stored plasma, support the growth of S. epidermidis.

  8. Colloidal approach to dispersion and enhanced deaggregation of aqueous ferrite suspensions

    NASA Astrophysics Data System (ADS)

    Mandanas, Michael Patrick M.

    The role of solution and surface chemistry on deaggregation of calcined ferrites during attrition (stirred-media) milling of aqueous suspensions were investigated. Suspensions of commercially calcined Fe2O 3 powder (d50 ˜ 5.0 mum) were milled at different solid loadings and suspension pH. The drift of suspension pH, from pH 2.5 to pH 7.0, during solid loading experiments accounted for the observed reagglomeration with milling time. The observed deaggregation rates during pH stat milling, in the acidic region, can be related to (i) elevated solubility and (ii) enhanced dispersion via surface charge. Proton adsorption density during pH stat milling at different pH values is also comparable to existing potentiometric titration plots and can be related to deaggregation rates. A passivation-dispersion approach for dispersing manganese zinc ferrite (MnxZn(1 - x)Fe2O4) powder is presented. Addition of oxalic acid can help control dissolution reactions from particle surfaces and is subsequently dispersed with polyethyleneimine (PEI). Fully dissociated oxalic acid (pK1 = 1.2, pK2 = 4.3) solutions reacted with MnxZn(1 - x)Fe 2O4 leads to the formation of a uniform negative charge on the particle surface, resulting from the sparingly soluble salt formed on the surface. The resulting rheological data for passivation/dispersion of relatively high solid MnxZn(1 - x)Fe2O 4 suspensions (˜80 w/o, (˜40 v/o)) demonstrate improved colloid stability with improved rheological properties. Using the passivation dispersion scheme developed, deaggregation of commercially calcined MnxZn(1 - x)Fe2O4 powders during attrition milling was investigated. Reagglomeration is apparent when using a typical treatment, 2 w/w of a sulfonated based naphthalene condensate, during deaggregation of the calcined MnxZn(1 - x)Fe 2O4. However, is not observed for select oxalate/PEI treatments. The determined ideal treatment is 2 w/w oxalate and 3 w/w PEI based on the particle size and rheological characteristics of the suspensions during milling. (Abstract shortened by UMI.)

  9. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, H.L.; Sopher, D.W.

    1983-05-09

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100/sup 0/C and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  10. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, Helena L.; Sopher, David W.

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  11. PH Tester Gauge Repeatability and Reproducibility Study for WO3 Nanostructure Hydrothermal Growth Process

    NASA Astrophysics Data System (ADS)

    Abd Rashid, Amirul; Hayati Saad, Nor; Bien Chia Sheng, Daniel; Yee, Lee Wai

    2014-06-01

    PH value is one of the important variables for tungsten trioxide (WO3) nanostructure hydrothermal synthesis process. The morphology of the synthesized nanostructure can be properly controlled by measuring and controlling the pH value of the solution used in this facile synthesis route. Therefore, it is very crucial to ensure the gauge used for pH measurement is reliable in order to achieve the expected result. In this study, gauge repeatability and reproducibility (GR&R) method was used to assess the repeatability and reproducibility of the pH tester. Based on ANOVA method, the design of experimental metrics as well as the result of the experiment was analyzed using Minitab software. It was found that the initial GR&R value for the tester was at 17.55 % which considered as acceptable. To further improve the GR&R level, a new pH measuring procedure was introduced. With the new procedure, the GR&R value was able to be reduced to 2.05%, which means the tester is statistically very ideal to measure the pH of the solution prepared for WO3 hydrothermal synthesis process.

  12. pH-Signaling Transcription Factor AopacC Regulates Ochratoxin A Biosynthesis in Aspergillus ochraceus.

    PubMed

    Wang, Yan; Liu, Fei; Wang, Liuqing; Wang, Qi; Selvaraj, Jonathan Nimal; Zhao, Yueju; Wang, Yun; Xing, Fuguo; Liu, Yang

    2018-05-02

    In Aspergillus and Penicillium species, an essential pH-response transcription factor pacC is involved in growth, pathogenicity, and toxigenicity. To investigate the connection between ochratoxin A (OTA) biosynthesis and ambient pH, the AopacC in Aspergillus ochraceus was functionally characterized using a loss-of-function mutant. The mycelium growth was inhibited under pH 4.5 and 10.0, while the sporulation increased under alkaline condition. A reduction of mycelium growth and an elevation of sporulation was observed in Δ AopacC mutant. Compared to neutral condition, OTA contents were respectively reduced by 71.6 and 79.8% under acidic and alkaline conditions. The expression of AopacC increased with the elevated pH, and deleting AopacC dramatically decreased OTA production and biosynthetic genes Aopks expression. Additionally, the Δ AopacC mutant exhibited attenuated infection ability toward pear fruits. These results suggest that AopacC is an alkaline-induced regulator responsible for growth and OTA biosynthesis in A. ochraceus and this regulatory mechanism might be pH-dependent.

  13. Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification.

    PubMed

    Huang, Bin; Chi, Guangyu; Chen, Xin; Shi, Yi

    2011-11-01

    The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO(3)-Nl(-1)) in drinking water. The use of acetic acid as substrate provided sufficient internal carbon dioxide to completely eliminate the need of external pH adjustment for HD, but simultaneously created vertically heterogenized pH varying from 4.8 to 7.8 in the HD reactor. After 5-week acclimation, the HD reactor developed a moderate nitrate removal capacity with about one third of nitrate removal occurring in the acidic zone (pH 4.8-6.2). To increase the treatment reliability, acetic acid-supported HD was operated under 10% carbon limitation to remove >85% of nitrate, and ferrous sulfide-based AD was supplementally operated to remove residual nitrate and formed nitrite without excess of soluble organic carbon, nitrite or sulfate in the final effluent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Bone characteristics and metal concentrations in white suckers (Catostomus commersoni) from one neutral and three acidified lakes in Maine

    USGS Publications Warehouse

    Hamilton, Steven J.; Haines, Terry A.

    1989-01-01

    The bone characteristics of white suckers, Catostomus commersoni, from four lakes in Maine were studied in relation to lake water quality and metal concentrations in fish. Green Lake had a neutral pH, high buffering capacity, and low aluminum concentrations, whereas the other three lakes had low pH, low buffering capacity, and elevated aluminum concentrations. The concentrations of aluminum in white suckers did not differ among the four lakes, but concentrations of cadmium, lead, and mercury were greater in fish from the three low-pH lakes. The vertebrae were weaker and more flexible in fish from the low-pH lakes than in those from neutral-pH Green Lake. The inferior mechanical properties of bone in fish from the low-pH lakes were probably a result of the significantly lower proline concentrations in collagen. Low pH of lake water or elevated whole-body concentrations of cadmium, lead, and mercury, either individually or combined, could have caused the inferior mechanical properties of bone of white suckers from the low-pH lakes.

  15. Tailoring the structure of biphasic calcium phosphate via synthesis procedure

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-12-01

    Nano calcium phosphate ceramics (CaPC) were synthesized using simple co-precipitation method at different preparation conditions. The selected Ca/P ratio with a variation of pH value lead to formation of dicalcium phosphate dihydrate (DCPD) at pH 5 and 6 while, hydroxyapatite (HAP) nano particles were formed at pH 9 and 12 at room temperature. The crystallite size was in the range of 15-55 nm depending on the obtained crystalline phase. The study displayed variation of decomposition depending on the annealing temperature. The significant note is the different transformation trend of each phase depending on the starting pH value. The HRTEM illustrated that the DCPD phase was formed as fibers with diameter around 4-6 nm, while HAP was formed in rod shape. The aspect ratio decreased from 6.6 at pH 9 to 4 at pH 12 which refer to the great influence of pH value on the morphology of calcium phosphates.

  16. Structure and optical properties of ZnO produced from microwave hydrothermal hydrolysis of tris(ethylenediamine)zinc nitrate complex

    NASA Astrophysics Data System (ADS)

    Mostafa, Nasser Y.; Heiba, Zein K.; Ibrahim, Mohamed M.

    2015-01-01

    ZnO powders were synthesized using a solution microwave hydrothermal hydrolysis process and tris(ethylenediamine)zinc nitrate {[Zn(en)3](NO3)2} (en = ethylenediamine) as a precursor. Hydrolysis of the precursor complex at different pH produced zinc oxide with a diversity of well-defined morphologies. The effect of hydrolysis pH values on the structural and optical properties has been explored using XRD, SEM, and UV-visible diffuse reflectance spectroscopy (DRS). At pH = 7.0, randomly dispersed rods were formed. Whereas flower-like morphologies were obtained by treating the complex precursor in water at pH = 10.0 and 12.0. The ZnO4 tetrahedrons are greatly affected by the pH value. The band gap decreased sharply with increasing the pH value from 7.0 to 10.0, then slightly decreased with further increasing the pH to 12.0. The relationship between band gap and both structure and surface defects of the samples is also discussed.

  17. Comparative kinetic and energetic modelling of phyllosemiquinone oxidation in Photosystem I.

    PubMed

    Santabarbara, Stefano; Zucchelli, Giuseppe

    2016-04-14

    The oxidation kinetics of phyllo(semi)quinone (PhQ), which acts as an electron transfer (ET) intermediate in the Photosystem I reaction centre, are described by a minimum of two exponential phases, characterised by lifetimes in the 10-30 ns and 150-300 ns ranges. The fastest phase is considered to be dominated by the oxidation of the PhQ molecule coordinated by the PsaB reaction centre subunit (PhQB), and the slowest phase is dominated by the oxidation of the PsaA coordinated PhQ (PhQA). Testing different energetic schemes within a unified theory-based kinetic modelling approach provides reliable limit-values for some of the physical-chemical parameters controlling these ET reactions: (i) the value of ΔG(0) associated with PhQA oxidation is smaller than ∼+30 meV; (ii) the value of the total reorganisation energy (λt) likely exceeds 0.7 eV; (iii) different mean nuclear modes are coupled to PhQB and PhQA oxidation, the former being larger, and both being ≥100 cm(-1).

  18. Effect of pH value of probe molecule on the graphene oxide-based surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Cui, Shao-li; Du, Xiao-qing; Zeng, Chao; Li, Lu; Bao, Jun

    2017-06-01

    The dependence of graphene oxide (GO)-based surface enhanced Raman scattering (SERS) on the pH value of probe molecule was investigated. Water-soluble copper phthalocyanine (TSCuPc) was used as probe molecule and its pH value was adjusted with HCl and NaOH solution. The Raman spectra of TSCuPc with pH equaling 3, 8, and 11 on GO base were tested, respectively. The results show that both Raman enhanced intensity and full width at half maximum (FWHM) of characteristic peaks vary with the pH value of TSCuPc. It is shown that there is no obvious spectral widening of TSCuPc characteristic peaks when TSCuPc is neutral or acidic, and the chemical enhancement intensity of neutral TSCuPc on GO is biggest. In contrast, when TSCuPc is alkaline, the characteristic Raman peaks between 1350 and 1600 cm-1 of TSCuPc on GO are much wider and the intensities of characteristic peaks decrease considerably. The reasons for the pH dependence of GO-based Raman spectra were explored by comparing the wettability of molecule droplet on GO and the absorbance of different pH-adjusted TSCuPc films. It is found that the effect of molecule's pH value on SERS can be contributed to the differences of concentration and distributions on GO surface for varied pH-treated molecule.

  19. Developmental Effects of Ocean Acidification Conditions and Elevated Temperature on Homarus Americanus Larvae

    NASA Astrophysics Data System (ADS)

    Mcveigh, H.; Waller, J. D.

    2016-02-01

    The Gulf of Maine is experiencing a rapid warming in sea surface temperature and a marked decrease in pH. This study aimed to quantify the impact of elevated temperature and acidification on the larval development of the iconic American lobster (Homarus americanus). Experimental conditions were reflective of current and IPCC predicted levels of temperature and pCO2 to be reached by the end of the century. Larvae were measured for growth (carapace length), development time, and survivorship over the larval duration. Treatments of elevated temperatures experienced decreased development time across the larval stages of H. americanus. Consequently mortality increased at a significantly higher rate under elevated temperature. An increase in larval mortality may decrease recruitment to the commercial fishery, thus impacting the most valuable single species in the state of Maine. Furthermore, experimental pCO2 treatments yielded a significantly decreased development time between larval stages II and III, yet did not have a significant impact on carapace length or mortality. This study indicates that warmer temperatures may have a greater influence than decreased pH on larval development and survival. Determining how this species may respond to changing climactic conditions will better inform the sustainability efforts of such a critical marine fishery.

  20. Design of PH sensor signal acquisition and display system

    NASA Astrophysics Data System (ADS)

    Qian, Huifa; Zhang, Quanzhu; Deng, Yonghong

    2017-06-01

    With the continuous development of sensor manufacturing technology, how to better deal with the signal is particularly important. PH value of the sensor voltage generated by the signal as a signal, through the MCU acquisition A / D conversion, and ultimately through the digital display of its PH value. The system uses hardware and software to achieve the results obtained with the high-precision PH meter to strive to improve the accuracy and reduce error.

  1. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response

    PubMed Central

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O.; Sokolova, Inna M.; Bock, Christian

    2010-01-01

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated Pco2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and Peco2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO− 3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperaturedependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks. PMID:20948910

  2. Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2

    PubMed Central

    2012-01-01

    Introduction Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. Results For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. Conclusion The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2. PMID:23075125

  3. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  4. Studies on the Effects of Certain Soil Properties on the Biodegradation of Oils Determined by the Manometric Respirometric Method

    PubMed Central

    Kaakinen, Juhani; Vähäoja, Pekka; Kuokkanen, Toivo; Roppola, Katri

    2007-01-01

    The biodegradability of certain biofuels was studied in the case of forest soils using the manometric respirometric technique, which was proved to be very suitable for untreated, fertilized as well as pH adjusted soils. Experiments carried out in infertile sandy forest soil gave a BOD/ThOD value of 45.1% for a typical model substance, that is, sodium benzoate after a period of 30 days and mineral addition improved the BOD/ThOD value to a value of 76.2%. Rapeseed oil-based chain oil almost did not biodegrade at all in 30 days in nonprocessed soil, and when pH was adjusted to 8.0, the BOD/ThOD value increased slightly to a value of 7.4%. Mineral addition improved the BOD/ThOD value on average to 43.2% after 30 days. The combined mineral addition and pH adjustment together increased the BOD/ThOD value to 75.8% in 30 days. The observations were similar with a rapeseed oil-based lubricating oil: after 30 days, the BOD/ThOD value increased from 5.9% to an average value of 51.9%, when the pH and mineral concentrations of the soil were optimized. The mineral addition and pH adjustment also improved the precision of the measurements significantly. PMID:18273392

  5. Heavy Metal Resistant, Alkalitolerant Bacteria Isolated From Serpentinizing Springs in the Zambales Ophiolite, Philippines

    NASA Astrophysics Data System (ADS)

    Vallalar, B.; Meyer-Dombard, D. R.; Cardace, D.; Arcilla, C. A.

    2016-12-01

    Serpentinization involves hydrologic alteration of ultramafic mantle rocks containing olivine and pyroxene to produce serpentine minerals. The fluids resulting from this reaction are reduced, extremely depleted in dissolved inorganic carbon, and are highly alkaline with pH values typically exceeding 10. Major byproducts of the serpentinizing reaction include iron oxides, hydrogen, methane, and small amounts of organic molecules that provide chemosynthetic energy for subsurface microbial communities. In addition, weathering of serpentine rocks often produces fluids and sediments that have elevated concentrations of various toxic heavy metals such as chromium, nickel, cobalt, copper, and zinc. Thus, microorganisms inhabiting these unique ecological niches must be adapted to a variety of physicochemical extremes. The purpose of this study is to isolate bacteria that are capable of withstanding extremely high concentrations of multiple heavy metals from serpentine fluid-associated sediments. Fluid and sediment samples for microbial culturing were collected from Manleluag Spring National Park located on the island of Luzon, Philippines. The area is part of the Zambales ophiolite range, and hosts several serpentinizing fluid seeps. Fluid emanating from the source pool of the spring, designated Manleluag 2 (ML2), has a pH of 10.83 and temperature of 34.4 °C. Luria-Bertani agar medium was supplemented with varying concentrations of five trace elements - Cu, Cr, Co, Ni, and Zn. Environmental samples were spread on each of these media and colony forming units were subsequently chosen for isolation. In all, over 20 isolates were obtained from media with concentrations ranging from 25 mg/L - 400 mg/L of each metal. Taxonomic identity of each isolate was determined using 16S rRNA gene sequences. The isolates were then tested for tolerance to alkaline conditions by altering LB medium to pH values of 8, 9, 10, 11, and 12. The majority of strains exhibit growth at the highest pH tested, demonstrating that alkalitolerant, highly metal resistant organisms are found in this serpentinizing system. These organisms are of great interest as they may be exploited for bioremediation, enzyme production, and other biotechnological applications.

  6. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for all enzymes measured. Phosphatase enzymes did not respond to our treatments and were generally greatest in the unglaciated soils, particularly in winter and spring. Enzyme stoichiometric relationships revealed that soil microbial populations in the glaciated site were consistently less P and N-limited than unglaciated sites but this difference was less pronounced during the growing season. The trajectory of nutrient limitation in response to soil pH and P availability was highly variable, but we observed that enzyme ratios in the early summer were particularly shifted relative to other seasons suggesting that both sites were increasingly P and N-limited during this period. Overall, our results suggest that ecosystem and microbial responses to soil pH and P availability vary with both season and site history and that more spatially and temporally explicit observations are needed to improve our understanding of ecosystem acidification, nutrient limitation, and the cost-benefit relationships of microbial investments in extracellular enzymes.

  7. A renaissance of soaps? - How to make clear and stable solutions at neutral pH and room temperature.

    PubMed

    Wolfrum, Stefan; Marcus, Julien; Touraud, Didier; Kunz, Werner

    2016-10-01

    Soaps are the oldest and perhaps most natural surfactants. However, they lost much of their importance since "technical surfactants", usually based on sulfates or sulfonates, have been developed over the last fifty years. Indeed, soaps are pH- and salt-sensitive and they are irritant, especially to the eyes. In food emulsions, although authorized, they have a bad taste, and long-chain saturated soaps have a high Krafft temperature. We believe that most or perhaps all of these problems can be solved with modern formulation approaches. We start this paper with a short overview of our present knowledge of soaps and soap formulations. Then we focus on the problem of the lacking soap solubility at neutral pH values. For example, it is well known that with the food emulsifier sodium oleate (NaOl), clear and stable aqueous solutions can only be obtained at pH values higher than 10. A decrease in the pH value leads to turbid and unstable solutions. This effect is not compatible with the formulation of aqueous stable and drinkable formulations with neutral or even acidic pH values. However, the pH value/phase behavior of aqueous soap solutions can be altered by the addition of other surfactants. Such a surfactant can be Rebaudioside A (RebA), a steviol glycoside from the plant Stevia rebaudiana which is used as a natural food sweetener. In a recent paper, we showed the influence of RebA on the apKa value of sodium oleate in a beverage microemulsion and on its clearing temperature. In the present paper, we report on the effect of the edible bio-surfactant RebA, on the macroscopic and microscopic phase behavior of simple aqueous sodium oleate solutions at varying pH values. The macroscopic phase behavior is investigated by visual observation and turbidity measurements. The microscopic phase behavior is analyzed by acid-base titration curves, phase-contrast and electron microscopy. It turned out that even at neutral pH, aqueous NaOl/RebA solutions can be completely clear and stable for more than 50days at room temperature. This is for the first time that a long chain soap could be really solubilized in water at neutral pH at room temperature. At last, these findings were applied to prepare stable, highly translucent and drinkable aqueous solutions of omega-3-fatty acids at a pH value of 7.5. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  9. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  10. Phytoplankton and nutrient dynamics in Winyah Bay, SC.

    NASA Astrophysics Data System (ADS)

    Boneillo, G. E.; Brooks, S. S.; Brown, S. L.; Woodford, K. M.; Wright, C. R.

    2016-02-01

    Winyah Bay is a coastal plain estuary located in South Carolina that has been classified for a moderate risk of Eutrophication by NOAA. Winyah Bay receives freshwater input from four rivers, the Waccamaw, Sampit, Black, and Pee Dee Rivers. The Waccamaw, Sampit and Black River are blackwater systems that discharge elevated amounts of colored dissolved organic matter. During the summer and fall of 2015, bioassay experiments were performed to simultaneously examine both light and nutrient (nitrogen & phosphate) limitation throughout Winyah Bay. Sampling stations near the mouth of the Waccamaw and Sampit Rivers showed that phytoplankton were light limited in the late summer instead of nutrient limited. These stations were located in the industrialized area of the bay and typically had the highest nutrient concentrations and highest turbidity, with Secchi depths typically less than 0.5 meters. Results indicated that phytoplankton may be nitrogen limited near the mouth of Winyah Bay, where nutrient concentrations and turbidity were observed to be lower than locations further upstream. There was also an observed dissolved oxygen and pH gradient during the summer of 2015. Dissolved oxygen levels less than 4.0 mg/L were routinely observed near the industrialized head of the estuary and corresponded with lower pH values.

  11. Suppressing bullfrog larvae with carbon dioxide

    USGS Publications Warehouse

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  12. Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgaris.

    PubMed

    Xia, Bin; Sui, Qi; Sun, Xuemei; Han, Qian; Chen, Bijuan; Zhu, Lin; Qu, Keming

    2018-03-15

    Concerns about the environmental effects of engineered nanoparticles (NPs) on marine ecosystems are increasing. Meanwhile, ocean acidification (OA) has become a global environmental problem. However, the combined effects of NPs and OA on marine organisms are still not well understood. In this study, we investigated the effects of OA (pH values of 7.77 and 7.47) on the bioavailability and toxicity of TiO 2 NPs to the marine microalga Chlorella vulgaris. The results showed that OA enhanced the growth inhibition of algal cells caused by TiO 2 NPs. We observed synergistic interactive effects of pH and TiO 2 NPs on oxidative stress, indicating that OA significantly increased the oxidative damage of TiO 2 NPs on the algal cells. Importantly, the elevated toxicity of TiO 2 NPs associated with OA could be explained by the enhanced internalization of NPs in algal cells, which was attributed to the slighter aggregation and more suspended particles in acidified seawater. Overall, these findings provide useful information on marine environmental risk assessments of NPs under near future OA conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Effects of algae and kaolinite particles on the survival of bacteriophage MS2].

    PubMed

    He, Qiang; Wu, Qing-Qing; Ma, Hong-Fang; Zhou, Zhen-Ming; Yuan, Bao-Ling

    2014-08-01

    In this study, Bacteriophage MS2, Kaolinite and Microcystis aeruginosa were selected as model materials for human enteric viruses, inorganic and organic particles, respectively. The influence of the inorganic (Kaolinite) or organic (Microcystis aeruginosa) particles on the survival of MS2 at different conditions, such as particles concentration, pH, ion concentration and natural organic matter (NOM) were studied. The results showed that Kaolinite had no effect on the survival of phage MS2 except that apparent survival of MS2 increased 1 logarithm in higher hardness water. Microcystis aeruginosa addition reduced 1 logarithm of MS2 survival. However, when the pH value was greater than 4.0 or the concentration of Microcystis aeruginosa was less than 1.0 x 10(6) cells x L(-1), Microcystis aeruginosa addition had no influence on the survival of MS2. In higher hardness water, Microcystis aeruginosa protected MS2 viruses and then increased the survival of MS2. In drinking water, resource containing higher concentration of particles, the survival ability of virus would be enhanced with the increase of the hardness and then elevated the risks of drinking water safety.

  14. Anoxia and Acidosis Tolerance of the Heart in an Air-Breathing Fish (Pangasianodon hypophthalmus).

    PubMed

    Joyce, William; Gesser, Hans; Bayley, Mark; Wang, Tobias

    2015-01-01

    Air breathing has evolved repeatedly in fishes and may protect the heart during stress. We investigated myocardial performance in the air-breathing catfish Pangasianodon hypophthalmus, a species that can withstand prolonged exposure to severe hypoxia and acidosis. Isometric ventricular preparations were exposed to anoxia, lactic acidosis, hypercapnic acidosis, and combinations of these treatments. Ventricular preparations were remarkably tolerant to anoxia, exhibiting an inotropic reduction of only 40%, which fully recovered during reoxygenation. Myocardial anoxia tolerance was unaffected by physiologically relevant elevations of bicarbonate concentration, in contrast to previous results in other fishes. Both lactic acidosis (5 mM; pH 7.10) and hypercapnic acidosis (10% CO2; pH 6.70) elicited a biphasic response, with an initial and transient decrease in force followed by overcompensation above control values. Spongy myocardial preparations were significantly more tolerant to hypercapnic acidosis than compact myocardial preparations. While ventricular preparations were tolerant to the isolated effects of anoxia and acidosis, their combination severely impaired myocardial performance and contraction kinetics. This suggests that air breathing may be a particularly important myocardial oxygen source during combined anoxia and acidosis, which may occur during exercise or environmental stress.

  15. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    PubMed

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  16. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  17. Intensive cytokine induction in pandemic H1N1 influenza virus infection accompanied by robust production of IL-10 and IL-6.

    PubMed

    Yu, Xuelian; Zhang, Xi; Zhao, Baihui; Wang, Jiayu; Zhu, Zhaokui; Teng, Zheng; Shao, Junjie; Shen, Jiaren; Gao, Ye; Yuan, Zhengan; Wu, Fan

    2011-01-01

    The innate immune system is the first line of defense against viruses by inducing expression of cytokines and chemokines. Many pandemic influenza H1N1 virus [P(H1N1)] infected severe cases occur in young adults under 18 years old who were rarely seriously affected by seasonal influenza. Results regarding host cytokine profiles of P(H1N1) are ambivalent. In the present study we investigated host cytokine profiles in P(H1N1) patients and identified cytokines related to disease severity. We retrieved 77, 59, 26 and 26 sera samples from P(H1N1) and non-flu influenza like illness (non-ILIs) cases with mild symptoms (mild patients), P(H1N1) vaccinees and healthy individuals, respectively. Nine and 16 sera were from hospitalized P(H1N1) and non-ILIs patients with severe symptoms (severe patients). Cytokines of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α were assayed by cytokine bead array, IL-17 and IL-23 measured with ELISA. Mild P(H1N1) patients produced significantly elevated IL-2, IL-12, IFN-γ, IL-6, TNF-α, IL-5, IL-10, IL-17 and IL-23 versus to healthy controls. While an overwhelming IL-6 and IL-10 production were observed in severe P(H1N1) patients. Higher IL-10 secretion in P(H1N1) vaccinees confirmed our observation that highly increased level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression. A comprehensive innate immune response was activated at the early stage of P(H1N1) infection with a combine Th1/Th2/Th3 cytokines production. As disease progression, a systemic production of IL-6 and IL-10 were observed in severe P(H1N1) patients. Further analysis found a strong correlation between IL-6 and IL-10 production in the severe P(H1N1) patients. IL-6 may be served as a mediator to induce IL-10 production. Highly elevated level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression, but the underlying mechanism awaits further detailed investigations.

  18. Intensive Cytokine induction in Pandemic H1N1 Influenza Virus Infection Accompanied by Robust Production of IL-10 and IL-6

    PubMed Central

    Yu, Xuelian; Zhang, Xi; Zhao, Baihui; Wang, Jiayu; Zhu, Zhaokui; Teng, Zheng; Shao, Junjie; Shen, Jiaren; Gao, Ye; Yuan, Zhengan; Wu, Fan

    2011-01-01

    Background The innate immune system is the first line of defense against viruses by inducing expression of cytokines and chemokines. Many pandemic influenza H1N1 virus [P(H1N1)] infected severe cases occur in young adults under 18 years old who were rarely seriously affected by seasonal influenza. Results regarding host cytokine profiles of P(H1N1) are ambivalent. In the present study we investigated host cytokine profiles in P(H1N1) patients and identified cytokines related to disease severity. Methods and Principal Findings We retrieved 77, 59, 26 and 26 sera samples from P(H1N1) and non-flu influenza like illness (non-ILIs) cases with mild symptoms (mild patients), P(H1N1) vaccinees and healthy individuals, respectively. Nine and 16 sera were from hospitalized P(H1N1) and non-ILIs patients with severe symptoms (severe patients). Cytokines of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α were assayed by cytokine bead array, IL-17 and IL-23 measured with ELISA. Mild P(H1N1) patients produced significantly elevated IL-2, IL-12, IFN-γ, IL-6, TNF-α, IL-5, IL-10, IL-17 and IL-23 versus to healthy controls. While an overwhelming IL-6 and IL-10 production were observed in severe P(H1N1) patients. Higher IL-10 secretion in P(H1N1) vaccinees confirmed our observation that highly increased level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression. Conclusion and Significance A comprehensive innate immune response was activated at the early stage of P(H1N1) infection with a combine Th1/Th2/Th3 cytokines production. As disease progression, a systemic production of IL-6 and IL-10 were observed in severe P(H1N1) patients. Further analysis found a strong correlation between IL-6 and IL-10 production in the severe P(H1N1) patients. IL-6 may be served as a mediator to induce IL-10 production. Highly elevated level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression, but the underlying mechanism awaits further detailed investigations. PMID:22174866

  19. African-Americans, Hispanic Americans, and non-Hispanic whites without GERD or reflux symptoms have equivalent 24-h pH esophageal acid exposure.

    PubMed

    Vega, Kenneth J; Langford, Tracy; Palacio, Carlos; Watts, Janet; Jamal, M Mazen

    2013-12-01

    Ambulatory esophageal pH monitoring is, currently, the recommended diagnostic exam for gastroesophageal reflux disease. Data are currently available for African-American (AA) and non-Hispanic white (nHw) volunteers among United States ethnic groups. The purpose of this study was to obtain normal values of 24-h esophageal pH by monitoring healthy adult Hispanic American (HA) volunteers and to compare these with values obtained from healthy AA and nHw volunteers to determine if ethnic variation exists in 24-h esophageal pH. 24-h Dual esophageal pH monitoring was performed for healthy AA, HA, and nHw. Values for total number of reflux episodes, episodes longer than 5 min, total reflux time, and longest reflux episode in the proximal and/or distal esophagus were obtained for all groups. Differences between groups were considered significant if p<0.05. One-hundred and thirty-six subjects volunteered and completed 24-h pH testing. Fifty-three were AA, 25 HA, and 58 nHw, with males accounting for 52, 47, and 47%, respectively, of each group. AA were older than nHw only and nHw had a lower body mass index than both AA and HA. Shorter study duration was observed for HA than for AA and nHw. No difference was observed between ethnic groups for any measured pH data in the proximal or distal esophagus. No difference exists in values obtained during esophageal pH monitoring among healthy AA, HA, and nHw. This indicates that currently accepted normal values of ambulatory esophageal pH monitoring can be used for all major United States ethnic groups without compromising diagnostic accuracy.

  20. Computational Investigation of the pH Dependence of Loop Flexibility and Catalytic Function in Glycoside Hydrolases*

    PubMed Central

    Bu, Lintao; Crowley, Michael F.; Himmel, Michael E.; Beckham, Gregg T.

    2013-01-01

    Cellulase enzymes cleave glycosidic bonds in cellulose to produce cellobiose via either retaining or inverting hydrolysis mechanisms, which are significantly pH-dependent. Many fungal cellulases function optimally at pH ∼5, and their activities decrease dramatically at higher or lower pH. To understand the molecular-level implications of pH in cellulase structure, we use a hybrid, solvent-based, constant pH molecular dynamics method combined with pH-based replica exchange to determine the pKa values of titratable residues of a glycoside hydrolase (GH) family 6 cellobiohydrolase (Cel6A) and a GH family 7 cellobiohydrolase (Cel7A) from the fungus Hypocrea jecorina. For both enzymes, we demonstrate that a bound substrate significantly affects the pKa values of the acid residues at the catalytic center. The calculated pKa values of catalytic residues confirm their proposed roles from structural studies and are consistent with the experimentally measured apparent pKa values. Additionally, GHs are known to impart a strained pucker conformation in carbohydrate substrates in active sites for catalysis, and results from free energy calculations combined with constant pH molecular dynamics suggest that the correct ring pucker is stable near the optimal pH for both Cel6A and Cel7A. Much longer molecular dynamics simulations of Cel6A and Cel7A with fixed protonation states based on the calculated pKa values suggest that pH affects the flexibility of tunnel loops, which likely affects processivity and substrate complexation. Taken together, this work demonstrates several molecular-level effects of pH on GH enzymes important for cellulose turnover in the biosphere and relevant to biomass conversion processes. PMID:23504310

  1. Hypoxia-induced mitogenic factor (FIZZ1/RELMα) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension

    PubMed Central

    Takimoto, Eiki; Zhang, Ailan; Weiner, Noah C.; Meuchel, Lucas W.; Berger, Alan E.; Cheadle, Chris; Johns, Roger A.

    2014-01-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure that leads to progressive right heart failure and ultimately death. Injury to endothelium and consequent wound repair cascades have been suggested to trigger pulmonary vascular remodeling, such as that observed during PH. The relationship between injury to endothelium and disease pathogenesis in this disorder remains poorly understood. We and others have shown that, in mice, hypoxia-induced mitogenic factor (HIMF, also known as FIZZ1 or RELMα) plays a critical role in the pathogenesis of lung inflammation and the development of PH. In this study, we dissected the mechanism by which HIMF and its human homolog resistin (hRETN) induce pulmonary endothelial cell (EC) apoptosis and subsequent lung inflammation-mediated PH, which exhibits many of the hallmarks of the human disease. Systemic administration of HIMF caused increases in EC apoptosis and interleukin (IL)-4-dependent vascular inflammatory marker expression in mouse lung during the early inflammation phase. In vitro, HIMF, hRETN, and IL-4 activated pulmonary microvascular ECs (PMVECs) by increasing angiopoietin-2 expression and induced PMVEC apoptosis. In addition, the conditioned medium from hRETN-treated ECs had elevated levels of endothelin-1 and caused significant increases in pulmonary vascular smooth muscle cell proliferation. Last, HIMF treatment caused development of PH that was characterized by pulmonary vascular remodeling and right heart failure in wild-type mice but not in IL-4 knockout mice. These data suggest that HIMF contributes to activation of vascular inflammation at least in part by inducing EC apoptosis in the lung. These events lead to subsequent PH. PMID:24793164

  2. Effect of Consuming Tea with Stevia on Salivary pH - An In Vivo Randomised Controlled Trial.

    PubMed

    Pallepati, Akhil; Yavagal, Puja; Veeresh, D J

    To assess the effect of consuming tea with stevia on salivary pH. This randomised controlled trial employed a Latin square design. Twenty-four male students aged 20-23 years were randomly allocated to 4 different groups, 3 experimental with tea sweetened by sucrose, jaggery or stevia, and one unsweetened control. Salivary pH assessments were performed at baseline and 1 min, 20 and 60 min after consumption of the respective tea. One-way ANOVA and repeated measures ANOVA followed by Tukey's post-hoc tests were employed to analyse the data. One minute after tea consumption, the salivary pH of the sucrose group significantly decreased compared to the stevia group (p = 0.01). There was a significant difference between baseline mean salivary pH and post-interventional mean salivary pH values at all time intervals in the tea + sucrose, tea + jaggery, and plain tea groups (p < 0.01). One hour after consumption of tea, the salivary pH values reached the baseline pH in stevia and plain tea groups, but it remained lower in the sucrose and jaggery groups. The results of the present study, in which the salivary pH values returned to baseline pH 1 h after drinking stevia-sweetened tea, suggest stevia's potential as a non-cariogenic sweetener.

  3. Quantitative Chemical Exchange Saturation Transfer MRI of Intervertebral Disc in a Porcine Model

    PubMed Central

    Zhou, Zhengwei; Bez, Maxim; Tawackoli, Wafa; Giaconi, Joseph; Sheyn, Dmitriy; de Mel, Sandra; Maya, Marcel M.; Pressman, Barry D.; Gazit, Zulma; Pelled, Gadi; Gazit, Dan; Li, Debiao

    2017-01-01

    Purpose Previous studies have associated low pH in interver-tebral discs (IVDs) with discogenic back pain. The purpose of this study was to determine whether quantitative CEST (qCEST) MRI can be used to detect pH changes in IVDs in vivo. Methods The exchange rate ksw between glycosaminoglycan (GAG) protons and water protons was determined from qCEST analysis. Its dependence on pH value was investigated in GAG phantoms with varying pH and concentrations. The relationship between ksw and pH was studied further in vivo in a porcine model on a 3T MR scanner and validated using a pH meter. Sodium lactate was injected into the IVDs to induce various pH values within the discs ranging from 5 to 7. Results Phantom and animal results revealed that ksw measured using qCEST MRI is highly correlated with pH level. In the animal studies, the relationship can be described as ksw =9.2 × 106 × 10−pH + 196.9, R2 = 0.7883. Conclusion The exchange rate between GAG and water protons determined from qCEST MRI is closely correlated with pH value. This technique has the potential to noninvasively measure pH in the IVDs of patients with discogenic pain. PMID:27670140

  4. Effects of different annealing atmospheres on the properties of cadmium sulfide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yücel, E., E-mail: dr.ersinyucel@gmail.com; Kahraman, S.; Güder, H.S.

    2015-08-15

    Graphical abstract: The effects of different annealing atmospheres (air and sulfur) on the structural, morphological and optical properties of CdS thin films were studied at three different pH values. - Highlights: • Compactness and smoothness of the films were enhanced after sulfur annealing. • Micro-strain values of some films were improved after sulfur annealing. • Dislocation density values of some films were improved after sulfur annealing. • Band gap values of the films were improved after sulfur annealing. - Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by using chemical bath deposition (CBD) technique. The effects ofmore » different annealing atmospheres (air and sulfur) on the structural, morphological and optical properties of CdS thin films were studied at three different pH values. Compactness and smoothness of the films (especially for pH 10.5 and 11) enhanced after sulfur annealing. pH value of the precursor solution remarkably affected the roughness, uniformity and particle sizes of the films. Based on the analysis of X-ray diffraction (XRD) patterns of the films, micro-strain and dislocation density values of the sulfur-annealed films (pH 10.5 and 11) were found to be lower than those of air-annealed films. Air-annealed films (pH 10.5, 11 and 11.5) exhibited higher transmittance than sulfur-annealed films in the wavelength region of 550–800 nm. Optical band gap values of the films were found between 2.31 eV and 2.36 eV.« less

  5. Secondary elements of blood pH variation can influence the effort effectiveness based on adaptive changes within a group of elite athletes.

    PubMed

    Martin, Ştefan Adrian; Tomescu, Valeriu; Voidăzan, Septimiu

    2016-01-01

    pH is the direct indicator of the body reaction following the activities performed. Establishing precise correlations between pH and blood biochemical parameters might support the balancing of values during periods of marked physical activity. We conducted a case study in a group of elite rowers. Twelve athletes were included in the study. Monitoring was carried out by collecting biological samples several times a day: in the morning, 80 minutes pre-workout, 12 hours after the last physical effort performed, at two different times, 10 days apart. Determinations were aimed at adapting the reported biochemical parameters depending on the effort performed. The following parameters were monitored: pH, HCO3, pCO2, pO2, BE, SBE, SBC, Ca++, Mg++, LDH, GPT, T-Pro, and Alb. The mean value of pH found in athletes was 7.41±0.024. The value obtained was significantly correlated to biochemical parameters such as BE (2.32±1.79), SBC (1.67±1.45), SBE (2.70±1.75). However, bicarbonate (HCO3) was statistically significantly related with SBE, SBC, SBE, and pO2, but did not present a strong association with the pH value (p=0.094). However, values such as Alb, Ca++, LDH, BE, SBC are related to pH value as a result of variations in the data submitted. The processed data evidence the fact that blood pH, in this case, is significantly influenced by a number of indices that correlate energy system activity, individual adaptation to effort, and the recovery process. The parameters under investigation (SBE, SBC, SBE, CPK, LDH) are associated with pH changes that could confirm the recovery efficiency of the athlete, along with a possible metabolic acidosis/alkalosis.

  6. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA.

  7. Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment.

    PubMed

    Rasool, Atta; Xiao, Tangfu; Baig, Zenab Tariq; Masood, Sajid; Mostofa, Khan M G; Iqbal, Muhammad

    2015-12-01

    The present study discusses elevated groundwater arsenic (As) and fluoride (F(-)) concentrations in Mailsi, Punjab, Pakistan, and links these elevated concentrations to health risks for the local residents. The results indicate that groundwater samples of two areas of Mailsi, Punjab were severely contaminated with As (5.9-507 ppb) and F(-) (5.5-29.6 ppm), as these values exceeded the permissible limits of World Health Organization (10 ppb for As and 1.5 ppm for F(-)). The groundwater samples were categorized by redox state. The major process controlling the As levels in groundwater was the adsorption of As onto PO4 (3-) at high pH. High alkalinity and low Ca(2+) and Mg(2+) concentrations promoted the higher F(-) and As concentrations in the groundwater. A positive correlation was observed between F(-) and As concentrations (r = 0.37; n = 52) and other major ions found in the groundwater of the studied area. The mineral saturation indices calculated by PHREEQC 2.1 suggested that a majority of samples were oversaturated with calcite and fluorite, leading to the dissolution of fluoride minerals at alkaline pH. Local inhabitants exhibited arsenicosis and fluorosis after exposure to environmental concentration doses of As and F(-). Estimated daily intake (EDI) and target hazard quotient (THQ) highlighted the risk factors borne by local residents. Multivariate statistical analysis further revealed that both geologic origins and anthropogenic activities contributed to As and F(-) contamination in the groundwater. We propose that pollutants originate, in part, from coal combusted at brick factories, and agricultural activities. Once generated, these pollutants were mobilized by the alkaline nature of the groundwater.

  8. Methane production and consumption in an active volcanic environment of Southern Italy.

    PubMed

    Castaldi, Simona; Tedesco, Dario

    2005-01-01

    Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.

  9. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix.

    PubMed

    el-Ghannam, A; Ducheyne, P; Shapiro, I M

    1997-02-01

    The objective of the study was to examine the effect of alkali ion release, pH control and buffer capacity on the expression of the osteoblastic phenotype. In addition we determined the importance of modifications of the surface of porous bioactive glass (BG) on the activity of rat calvaria osteoblasts in vitro. We found that at a low tissue culture medium (TCM) volume to BG surface area (Vol/SA) ratio, the products of glass corrosion elevated the pH of the TCM to a value that adversely affected cellular activity; thus, the matrix synthesized by the cells was non-mineralized. On the other hand, when the Vol/SA was high and the buffer capacity of the medium was not exceeded, the cells generated a mineralized extracellular matrix. Addressing the second issue, we observed that modification of the composition of the BG surface markedly influenced osteoblast activity. BG that was coated with either a calcium phosphate-rich layer only or a serum protein layer changed the phenotypic characteristics of the osteoblasts. The presence of either of these surfaces lowered the alkaline phosphatase activity of the attached cells; this finding indicated that the osteoblast phenotype was not conserved. However, when the BG was coated with a bilayer of calcium phosphate and serum proteins, the alkaline phosphatase (AP) activity was elevated and the extracellular matrix contained characteristic bone markers. Our findings indicate that the calcium phosphate-rich layer promotes adsorption and concentration of proteins from the TCM, and it is utilized by the osteoblasts to form the mineralized extracellular matrix.

  10. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    NASA Astrophysics Data System (ADS)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  11. Functional and rheological properties of proteins in frozen turkey breast meat with different ultimate pH.

    PubMed

    Chan, J T Y; Omana, D A; Betti, M

    2011-05-01

    Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.

  12. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-12-01

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl-]/[OH-] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

  13. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete.

    PubMed

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-12-17

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl(-)]/[OH(-)] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

  14. Comprehensive Functional Assessment of Right-Sided Heart Using Speckle Tracking Strain for Patients with Pulmonary Hypertension.

    PubMed

    Fukuda, Yuko; Tanaka, Hidekazu; Ryo-Koriyama, Keiko; Motoji, Yoshiki; Sano, Hiroyuki; Shimoura, Hiroyuki; Ooka, Junichi; Toki, Hiromi; Sawa, Takuma; Mochizuki, Yasuhide; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-Ichi

    2016-07-01

    Right ventricular (RV) systolic function is one of the most important determinants of outcome for pulmonary hypertension (PH) patients, but the factors influencing prognosis vary widely. Elevated right atrial (RA) pressure is reported to be one of these prognostic factors, but its functional importance has scarcely been assessed. Eighty-two PH patients, all of whom underwent echocardiography and right heart catheterization, were recruited. RV function was assessed by two-dimensional speckle tracking longitudinal strain from RV-focused apical four-chamber view and calculated by averaging the three regional peak strains from the RV free wall (RV-free). RA function was determined as the sum of three peak strain values comprising reservoir, conduit, and contractile function (sum of RA strain). Sum of RA strain correlated significantly with hemodynamic parameters such as mean right atrial pressure (r = -0.35, P = 0.002) and end-diastolic RV pressure (r = -0.29, P = 0.008). Patients with sum of RA strain ≥30.2% experienced more favorable outcomes than those with sum of RA strain <30.2% (log-rank P = 0.001). Furthermore, patients with impaired RV systolic function (RV-free <20%) and RA function (sum of RA strain <30.2%) showed the worst outcome (P = 0.001). A sequential Cox model based on clinical variables (χ(2) = 5.8) was improved by addition of RV-free (χ(2) = 8.7; P < 0.05) and further improved by addition of sum of RA strain (χ(2) = 12.0; P < 0.01). Right atrial strain appears to be a valuable additive factor for predicting outcomes for PH patients, and comprehensive functional assessment of right-sided heart using speckle tracking strain may have potential clinical implications for better management of PH patients. © 2016, Wiley Periodicals, Inc.

  15. The ratio of (18)F-FDG activity uptake between the right and left ventricle in patients with pulmonary hypertension correlates with the right ventricular function.

    PubMed

    Yang, Tao; Wang, Lei; Xiong, Chang-Ming; He, Jian-Guo; Zhang, Yan; Gu, Qing; Zhao, Zhi-Hui; Ni, Xin-Hai; Fang, Wei; Liu, Zhi-Hong

    2014-05-01

    It is known that patients with pulmonary hypertension (PH) can have elevated F-FDG uptake in the right ventricle (RV) on PET imaging. This study was designed to assess possible relationship between FDG uptake of ventricles and the function/hemodynamics of the RV in patients with PH. Thirty-eight patients with PH underwent FDG PET imaging in both fasting and glucose-loading conditions. The standard uptake value (SUVs) corrected for partial volume effect in both RV and left ventricle (LV) were measured. The ratio of FDG uptake between RV to LV (SUVR/L) was calculated. Right heart catheterization and cardiac magnetic resonance (CMR) were performed in all patients within 1 week. The FDG uptake levels by the ventricles were compared with the result form the right heart catheterization and CMR. The SUV of RV (SUVR) and SUV of LV were significantly higher in glucose-loading condition than in fasting condition. In both fasting and glucose-loading conditions, SUVR and SUVR/L showed reverse correlation with right ventricular ejection fraction derived from CMR. In addition, in both fasting and glucose-loading conditions, SUVR and SUVR/L showed positive correlations with pulmonary vascular resistance. However, only SUVR/L in glucose-loading condition could independently predict right ventricular ejection fraction after adjusted for age, body mass index, sex, mean right atrial pressure, mean pulmonary arterial pressure, and pulmonary vascular resistance (P = 0.048). The FDG uptake of RV increases with decreased right ventricular function in patients with PH. Increased FDG uptake ratio between RV and LV might be useful to assess the right ventricular function.

  16. Effect of resistant starch on the intestinal health of old dogs: fermentation products and histological features of the intestinal mucosa.

    PubMed

    Peixoto, M C; Ribeiro, É M; Maria, A P J; Loureiro, B A; di Santo, L G; Putarov, T C; Yoshitoshi, F N; Pereira, G T; Sá, L R M; Carciofi, A C

    2018-02-01

    The effects of resistant starch (RS) intake on nutrient digestibility, microbial fermentation products, faecal IgA, faecal pH, and histological features of the intestinal mucosa of old dogs were evaluated. The same formulation was extruded in two different conditions: one to obtain elevated starch cooking degree with low RS content (0.21%) and the other lower starch cooking with high RS content (1.46%). Eight geriatric Beagles (11.5 ± 0.38 years old) were fed each diet for 61 days in a crossover design. Food intake, nutrient digestibility, fermentation products, faecal pH, and faecal IgA were examined via variance analysis. Histological results of intestinal biopsies were assessed via Wilcoxon test for paired data. The morphometric characteristics of large intestine crypts were evaluated via paired t tests (p < .05). Protein, fat, and energy digestibilities were higher for the low-RS diet (p < .05). Dogs receiving the high-RS diet had lower faecal pH and higher values for propionate, butyrate, total volatile fatty acids, and lactate (p < .05). No differences between diets were found in the histological parameters of the gut mucosa, and only a tendency for deeper crypts in the descending colon was observed for dogs fed the high-RS diet (p = .083). The intake of a corn-based kibble diet manufactured with coarse ground raw material and low starch gelatinization to obtain 1.4% of RS affected microbial fermentation products and faecal pH and tended to increase crypt depth in the descending colon of old dogs. © 2017 Blackwell Verlag GmbH.

  17. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time.

    PubMed

    Ben-Arfa, Basam A E; Salvado, Isabel M Miranda; Ferreira, José M F; Pullar, Robert C

    2017-01-01

    We have developed an innovative, rapid sol-gel method of producing hydroxyapatite nanopowders that avoids the conventional lengthy ageing and drying processes (over a week), being 200 times quicker in comparison to conventional aqueous sol-gel preparation, and 50 times quicker than ethanol based sol-gel synthesis. Two different sets of experimental conditions, in terms of pH value (5.5 and 7.5), synthesis temperature (45 and 90°C), drying temperature (60 and 80°C) and calcination temperature (400 and 700°C) were explored. The products were characterised by X-ray diffraction (XRD) Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and specific surface area (SSA) measurements. Pure hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) was obtained for the powders synthesised at pH7.5 and calcined at 400°C, while biphasic mixtures of HAp/β-tricalcium phosphate (β-Ca 3 (PO 4 ) 2 , TCP) were produced at pH5.5 and (pH7.5 at elevated temperature). The novel rapid drying was up to 200 times faster than conventional drying, only needing 1h with no prior ageing step, and favoured the formation of smaller/finer nanopowders, while producing pure HAp or phase mixtures virtually identical to those obtained from the slow conventional drying method, despite the absence of a slow ageing process. The products of this novel rapid process were actually shown to have smaller crystallite sizes and larger SSA, which should result in increased bioactivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Glyphosate Inhibition of 5-Enolpyruvylshikimate 3-Phosphate Synthase from Suspension-Cultured Cells of Nicotiana silvestris.

    PubMed

    Rubin, J L; Gaines, C G; Jensen, R A

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg. et Comes with glyphosate (N-[phosphonomethyl]glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK(a) values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO(-)CH(2)NH(2) (+)CH(2)PO(3) (2-), and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K(i) = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K(i)' = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an [enzyme:shikimate-3-P] complex and ultimately forms the dead-end complex of [enzyme:shikimate-3-P:glyphosate].

  19. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode.

    PubMed

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recente pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered na inaccurate result. A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH.

  20. Determination of Acidity in Donor Milk.

    PubMed

    Escuder-Vieco, Diana; Vázquez-Román, Sara; Sánchez-Pallás, Juan; Ureta-Velasco, Noelia; Mosqueda-Peña, Rocío; Pallás-Alonso, Carmen Rosa

    2016-11-01

    There is no uniformity among milk banks on milk acceptance criteria. The acidity obtained by the Dornic titration technique is a widely used quality control in donor milk. However, there are no comparative data with other acidity-measuring techniques, such as the pH meter. The objective of this study was to assess the correlation between the Dornic technique and the pH measure to determine the pH cutoff corresponding to the Dornic degree limit value used as a reference for donor milk quality control. Fifty-two human milk samples were obtained from 48 donors. Acidity was measured using the Dornic method and pH meter in triplicate. Statistical data analysis to estimate significant correlations between variables was carried out. The Dornic acidity value that led to rejecting donor milk was ≥ 8 Dornic degrees (°D). In the evaluated sample size, Dornic acidity measure and pH values showed a statistically significant negative correlation (τ = -0.780; P = .000). A pH value of 6.57 corresponds to 8°D and of 7.12 to 4°D. Donor milk with a pH over 6.57 may be accepted for subsequent processing in the milk bank. Moreover, the pH measurement seems to be more useful due to certain advantages over the Dornic method, such as objectivity, accuracy, standardization, the lack of chemical reagents required, and the fact that it does not destroy the milk sample.

  1. Observations on the influence of water and soil pH on the persistence of insecticides.

    PubMed

    Chapman, R A; Cole, C M

    1982-01-01

    The pH-disappearance rate profiles were determined at ca. 25 degrees C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water-ethanol (99:1 v/v). Half-lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (greater than 1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1-2 days for trichlorfon and oxamyl to greater than 1 year for fensulfothion and cypermethrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.

  2. Evaluation of red cell distribution width in dogs with pulmonary hypertension.

    PubMed

    Swann, James W; Sudunagunta, Siddharth; Covey, Heather L; English, Kate; Hendricks, Anke; Connolly, David J

    2014-12-01

    To compare red cell distribution width (RDW) between dogs with different causes of pulmonary hypertension (PH) and a control dog population to determine whether RDW was correlated with severity of PH as measured by echocardiography. A further aim was to determine the prognostic significance of increased RDW for dogs with PH. Forty-four client-owned dogs with PH and 79 control dogs presented to a single tertiary referral institution. Signalment, clinical pathological and echocardiographic data were obtained retrospectively from the medical records of dogs with PH, and RDW measured on a Cell-Dyn 3500 was compared between dogs with pre- and post-capillary PH and a control population. Referring veterinary surgeons were contacted for follow-up information and Kaplan-Meier analysis was conducted to investigate differences in survival time between affected dogs with different RDW values. The RDW was significantly greater in dogs with pre-capillary PH compared to control dogs. There was no difference in median survival times between dogs with PH divided according to RDW values. The RDW was positively correlated with mean corpuscular volume and haematocrit in dogs with PH, but did not correlate with echocardiographic variables. An association was found between dogs with PH and increased RDW; however there was considerable overlap in values between control dogs and dogs with PH. The RDW was not associated with survival in this study. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method.

    PubMed

    García-Bordejé, E; Víctor-Román, S; Sanahuja-Parejo, O; Benito, A M; Maser, W K

    2018-02-15

    Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH 3 addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.

  4. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: Implications for δ 11B vital effects and paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2010-03-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ 11B has some limitations such as the knowledge of the fractionation factor ( α4-3) between boric acid and the borate ion and the amplitude of "vital effects" on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 ( Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ 11B (Δ 11B) for each seawater pH. This Δ 11B is linearly correlated with the culture seawater pH with a slope of -13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ 11B sw through time. It may also be independent of the p KB (the dissociation constant of boric acid) value. Therefore, Δ 11B in foraminifera can potentially reconstruct paleo-pH of seawater.

  5. Electrohydrodynamic properties of succinoglycan as probed by fluorescence correlation spectroscopy, potentiometric titration and capillary electrophoresis.

    PubMed

    Duval, Jérôme F L; Slaveykova, Vera I; Hosse, Monika; Buffle, Jacques; Wilkinson, Kevin J

    2006-10-01

    The electrostatic, hydrodynamic and conformational properties of aqueous solutions of succinoglycan have been analyzed by fluorescence correlation spectroscopy (FCS), proton titration, and capillary electrophoresis (CE) over a large range of pH values and electrolyte (NaCl) concentrations. Using the theoretical formalism developed previously for the electrokinetic properties of soft, permeable particles, a quantitative analysis for the electro-hydrodynamics of succinoglycan is performed by taking into account, in a self-consistent manner, the measured values of the diffusion coefficients, electric charge densities, and electrophoretic mobilities. For that purpose, two limiting conformations for the polysaccharide in solution are tested, i.e. succinoglycan behaves as (i) a spherical, random coil polymer or (ii) a rodlike particle with charged lateral chains. The results show that satisfactory modeling of the titration data for ionic strengths larger than 50 mM can be accomplished using both geometries over the entire range of pH values. Electrophoretic mobilities measured for sufficiently large pH values (pH > 5-6) are in line with predictions based on either model. The best manner to discriminate between these two conceptual models is briefly discussed. For low pH values (pH < 5), both models indicate aggregation, resulting in an increase of the hydrodynamic permeability and a decrease of the diffusion coefficient.

  6. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no significant effect on the thermal tolerance of E. coli (P > 0.01). The data from this study will be useful for establishing critical limits for safe thermal processing of pH-controlled juices and similar products.

  7. Soybean glycinin subunits: Characterization of physicochemical and adhesion properties.

    PubMed

    Mo, Xiaoqun; Zhong, Zhikai; Wang, Donghai; Sun, Xiuzhi

    2006-10-04

    Soybean proteins have shown great potential for applications as renewable and environmentally friendly adhesives. The objective of this work was to study physicochemical and adhesion properties of soy glycinin subunits. Soybean glycinin was extracted from soybean flour and then fractionated into acidic and basic subunits with an estimated purity of 90 and 85%, respectively. Amino acid composition of glycinin subunits was determined. The high hydrophobic amino acid content is a major contributor to the solubility behavior and water resistance of the basic subunits. Acidic subunits and glycinin had similar solubility profiles, showing more than 80% solubility at pH 2.0-4.0 or 6.5-12.0, whereas basic subunits had considerably lower solubility with the minimum at pH 4.5-8.0. Thermal analysis using a differential scanning calorimeter suggested that basic subunits form new oligomeric structures with higher thermal stability than glycinin but no highly ordered structures present in isolated acidic subunits. The wet strength of basic subunits was 160% more than that of acidic subunits prepared at their respective isoelectric points (pI) and cured at 130 degrees C. Both pH and the curing temperature significantly affected adhesive performance. High-adhesion water resistance was usually observed for adhesives from protein prepared at their pI values and cured at elevated temperatures. Basic subunits are responsible for the water resistance of glycinin and are a good starting material for the development of water-resistant adhesives.

  8. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents.

    PubMed

    Rivera-Utrilla, José; Gómez-Pacheco, Carla V; Sánchez-Polo, Manuel; López-Peñalver, Jesús J; Ocampo-Pérez, Raúl

    2013-12-15

    The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0 mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Phytotoxicity of floodplain soils contaminated with trace metals along the Clark Fork River, Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, B.R.; Nimmo, D.W.R.; Chapman, P.L.

    1997-07-01

    Concentrations of metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA, have exceeded maximum background concentrations in the United States for most metals tested. As a result of mining and smelting activities, portions of the Deer Lodge Valley, including the Grant-Kohrs Ranch, have received National Priority List Designation under the Comprehensive Environmental Response, Compensation and Liability Act. Using a series of plant germination tests, pH measurements, and metal analyses, this study investigated the toxicity of soils from floodplain slicken areas, bare spots devoid ofmore » vegetation, along the Clark Fork River. The slicken soils collected from the Grant-Kohrs Ranch were toxic to all four plant species tested. The most sensitive endpoint in the germination tests was root length and the least sensitive was emergence. Considering emergence, the most sensitive species was the resident grass species Agrostis gigantea. The sensitivities were reversed when root lengths were examined, with Echinochloa crusgalli showing the greatest sensitivity. Both elevated concentrations of metals and low pH were necessary to produce an acutely phytotoxic response in laboratory seed germination tests using slicken soils. Moreover, pH values on the Grant-Kohrs Ranch appear to be a better predictor of acutely phytotoxic conditions than total metal levels.« less

  10. Pulmonary Hypertension After Heart Transplantation in Patients Bridged with the Total Artificial Heart.

    PubMed

    Shah, Rachit; Patel, Dhavalkumar B; Mankad, Anit K; Rennyson, Stephen L; Tang, Daniel G; Quader, Mohammed A; Smallfield, Melissa C; Kasirajan, Vigneshwar; Shah, Keyur B

    2016-01-01

    Pulmonary hypertension (PH) among heart transplant recipients is associated with an increased risk of mortality. Pulmonary hemodynamics improves after left ventricular assist device (LVAD) implantation; however, the impact of PH before total artificial heart (TAH) implantation on posttransplant hemodynamics and survival is unknown. This is a single center retrospective study aimed to evaluate the impact of TAH implantation on posttransplant hemodynamics and mortality in two groups stratified according to severity of PH: high (≥3 Woods units [WU]) and low (<3 WU) baseline pulmonary vascular resistance (PVR). Hemodynamic data were obtained from right heart catheterization performed at baseline (before TAH) and posttransplant at 1 and 12 months. Patients in the high PVR group (n = 12) experienced improvement in PVR (baseline = 4.31 ± 0.7; 1-month = 1.69 ± 0.7, p < 0.001; 12-month = 48 ± 0.9, p < 0.001) and transpulmonary gradient (baseline = 15.8 ± 3.3; 1-month = 11.57 ± 5.0, p = 0.07; 12-month = 8.50 ± 4.0, p = 0.008) after transplantation, reaching similar values as the low PVR group at 12 months. The filling pressures improved in the high PVR group after heart transplantation (HT), but remained elevated. There was no significant difference in survival between the two groups at 12 months follow-up. Patients with high PVR who are bridged to transplant with TAH had improvement in PVR at 12 months after transplant, and the degree of PVR did not impact posttransplant survival.

  11. Dynamics of a vertical-flow windrow vermicomposting system.

    PubMed

    Hanc, Ales; Castkova, Tereza; Kuzel, Stanislav; Cajthaml, Tomas

    2017-11-01

    Large-scale vermicomposting under outdoor conditions may differ from small-scale procedures in the laboratory. The present study evaluated changes in selected properties of a large-scale vertical-flow windrow vermicomposting system with continuous feeding with household biowaste. The windrow profile was divided into five layers of differing thickness and age after more than 12 months of vermicomposting. The top layer (0-30 cm, age <3 months) was characterised by partially decomposed organic matter with a high pH value and an elevated carbon/nitrogen (C/N) ratio. The earthworm biomass was 15 g kg -1 with a population density of 125 earthworms per kilogram predominantly found in clusters. The greatest amount of fungi (3.5 µg g -1 dw) and bacteria (62 µg g -1 dw) (expressed as phospholipid fatty acid analysis) was found in this layer. Thus, the top layer could be used for an additional cycle of windrow vermicomposting and for the preparation of aqueous extracts to protect plants against diseases. The lower layers (graduated by 30 cm and by 3 months of age) were mature as reflected by the low content of ammonia nitrogen, ratio of ammonia to nitrate nitrogen and dissolved organic carbon, and high ion-exchange capacity and its ratio to carbon. These layers were characterised by elevated values for electrical conductivity, total content of nutrients, available magnesium content, and a relatively large bacterial/fungal ratio. On the basis of the observed properties, the bottom layers were predetermined as effective fertilisers.

  12. Inositol phosphates influence the membrane bound Ca/sup 2 +//Mg/sup 2 +/ stimulated ATPase from human erythrocyte membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kester, M.; Ekholm, J.; Kumar, R.

    1986-03-01

    The modulation by exogenous inositol phosphates of the membrane Ca/sup 2 +//Mg/sup 2 +/ ATPase from saponin/EGTA lysed human erythrocytes was determined in a buffer (pH 7.6) containing histidine, 80 mM, MgCl/sub 2/, 3.3 mM, NaCl, 74 mM, KCl, 30 mM, Na/sub 2/ATP, 2.3 mM, ouabain, 0.83 mM, with variable amounts of CaCl/sub 2/ and EGTA. The ATPase assay was linear with time at 44/sup 0/C. The inositol phosphates were commercially obtained and were also prepared from /sup 32/P labeled rabbit platelet inositol phospholipids. Inositol triphosphate (IP/sub 3/) elevated the Ca/sup 2 +//Mg/sup 2 +/ ATPase activity over basal levelsmore » in a dose, time, and calcium dependent manner and were increased up to 85% of control values. Activities for the Na/sup +//K/sup +/-ATPase and a Mg/sup 2 +/ ATPase were not effected by IP/sub 3/. Ca/sup 2 +//Mg/sup 2 +/APTase activity with IP/sub 2/ or IP/sub 3/ could be synergistically elevated with calmodulin addition. The activation of the ATPase with IP/sub 3/ was calcium dependent in a range from .001 to .02 mM. The apparent Km and Vmax values were determined for IP/sub 3/ stimulated Ca/sup 2 +//Mg/sup 2 +/ ATPase.« less

  13. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values.

    PubMed

    Cheng, Weixiao; Chen, Hong; Yan, ShuHai; Su, Jianqiang

    2014-09-01

    Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.

  14. Questa baseline and pre-mining ground-water quality investigation. 12. Geochemical and reactive-transport modeling based on tracer injection-synoptic sampling studies for the Red River, New Mexico, 2001-2002

    USGS Publications Warehouse

    Ball, James W.; Runkel, Robert L.; Nordstrom, D. Kirk

    2005-01-01

    Reactive-transport processes in the Red River, downstream from the town of Red River in north-central New Mexico, were simulated using the OTEQ reactive-transport model. The simulations were calibrated using physical and chemical data from synoptic studies conducted during low-flow conditions in August 2001 and during March/April 2002. Discharge over the 20-km reach from the town of Red River to the USGS streamflow-gaging station near the town of Questa ranged from 395 to 1,180 L/s during the 2001 tracer and from 234 to 421 L/s during the 2002 tracer. The pH of the Red River ranged from 7.4 to 8.5 during the 2001 tracer and from 7.1 to 8.7 during the 2002 tracer, and seep and tributary samples had pH values of 2.8 to 9.0 during the 2001 tracer and 3.8 to 7.2 during the 2002 tracer. Mass-loading calculations allowed identification of several specific locations where elevated concentrations of potential contaminants entered the Red River . These locations, characterized by features on the north side of the Red River that are known to be sources of low-pH water containing elevated metal and sulfate concentrations, are: the initial 2.4 km of the study reach, including Bitter Creek, the stream section from 6.2 to 7.8 km, encompassing La Bobita well and the Hansen debris fan, Sulphur Gulch, at about 10.5 km, the area near Portal Springs, from 12.2 to 12.6 km, and the largest contributors of mass loading, the 13.7 to 13.9 km stream section near Cabin Springs and the 14.7 to 17.5 km stream section from Shaft Spring to Thunder Bridge, Goathill Gulch, and Capulin Canyon. Speciation and saturation index calculations indicated that although solubility limits the concentration of aluminum above pH 5.0, at pH values above 7 and aluminum concentrations below 0.3 mg/L inorganic speciation and mineral solubility controls no longer dominate and aluminum-organic complexing may occur. The August 2001 reactive-transport simulations included dissolved iron(II) oxidation, constrained using measured concentrations of dissolved iron(II) and dissolved iron(total). Both simulations included precipitation of amorphous Al(OH)3 and hydrous ferric oxide as Fe(OH)3, and sorption of copper and zinc to the precipitated hydrous ferric oxide. Simulations revealed that hydrogen, iron, aluminum, copper, and zinc were non-conservative and that mineral precipitation can account for iron and aluminum concentrations. Copper and zinc concentrations can be accounted for by simulating their sorption to hydrous ferric oxide forming in the water column of the Red River , although hydrous manganese oxides also may be important sorption substrates.

  15. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats.

    PubMed

    Abou-Donia, Mohamed B; El-Masry, Eman M; Abdel-Rahman, Ali A; McLendon, Roger E; Schiffman, Susan S

    2008-01-01

    Splenda is comprised of the high-potency artificial sweetener sucralose (1.1%) and the fillers maltodextrin and glucose. Splenda was administered by oral gavage at 100, 300, 500, or 1000 mg/kg to male Sprague-Dawley rats for 12-wk, during which fecal samples were collected weekly for bacterial analysis and measurement of fecal pH. After 12-wk, half of the animals from each treatment group were sacrificed to determine the intestinal expression of the membrane efflux transporter P-glycoprotein (P-gp) and the cytochrome P-450 (CYP) metabolism system by Western blot. The remaining animals were allowed to recover for an additional 12-wk, and further assessments of fecal microflora, fecal pH, and expression of P-gp and CYP were determined. At the end of the 12-wk treatment period, the numbers of total anaerobes, bifidobacteria, lactobacilli, Bacteroides, clostridia, and total aerobic bacteria were significantly decreased; however, there was no significant treatment effect on enterobacteria. Splenda also increased fecal pH and enhanced the expression of P-gp by 2.43-fold, CYP3A4 by 2.51-fold, and CYP2D1 by 3.49-fold. Following the 12-wk recovery period, only the total anaerobes and bifidobacteria remained significantly depressed, whereas pH values, P-gp, and CYP3A4 and CYP2D1 remained elevated. These changes occurred at Splenda dosages that contained sucralose at 1.1-11 mg/kg (the US FDA Acceptable Daily Intake for sucralose is 5 mg/kg). Evidence indicates that a 12-wk administration of Splenda exerted numerous adverse effects, including (1) reduction in beneficial fecal microflora, (2) increased fecal pH, and (3) enhanced expression levels of P-gp, CYP3A4, and CYP2D1, which are known to limit the bioavailability of orally administered drugs.

  16. Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires.

    PubMed

    Hobbelink, Marieke G; He, Yan; Xu, Jia; Xie, Huixu; Stoll, Richard; Ye, Qingsong

    2015-01-01

    The aim of this study was to investigate the corrosive behaviour of stainless steel archwires in a more clinically relevant way by bending and exposing to various pH. One hundred and twenty pieces of rectangular stainless steel wires (0.43 × 0.64 mm) were randomly assigned into four groups. In each group, there were 15 pieces of bent wires and 15 straight ones. Prior to measurements of the wires, as individual experimental groups (group 1, 2, and 3), the wires were exposed to artificial saliva for 4 weeks at pH 5.6, 6.6, and 7.6, respectively. A control group of wires (group 4) remained in air for the same period of time before sent for measurements. Surface roughness (Ra-value) was measured by a profilometer. Young's modulus and maximum force were determined by a four-point flexural test apparatus. Scanning electron microscopy was used to observe the surface morphology of straight wire. Differences between groups were examined using a two-way analysis of variance (ANOVA). Mean surface roughness values, flexural Young's moduli, and maximum force values of bent wires are significantly different from those of the straight wires, which was the main effect of wire bending, ignoring the influence of pH. A significant effect was found between Ra-values regarding the main effect of pH, ignoring the influence of shape. There was a significant interaction effect of bending and pH on flexural Young's moduli of stainless steel archwires, while pH did not show much impact on the maximum force values of those stainless steel wires. Bigger surface irregularities were seen on SEM images of straight wires immersed in artificial saliva at pH 5.6 compared to artificial saliva at other pH values. Surface depth (Rz) was more sensitive than Ra in revealing surface roughness, both measured from 3D reconstructed SEM images. Ra showed a comparable result of surface roughness to Ra-value measured by the profilometer. Bending has a significant influence on surface roughness and mechanical properties of rectangular SS archwires. pH plays a synergistic effect on the change of mechanical properties of stainless steel (SS) wires along with wire bending.

  17. Effect of dextran and dextran sulfate on the structural and rheological properties of model acid milk gels.

    PubMed

    Pachekrepapol, U; Horne, D S; Lucey, J A

    2015-05-01

    Various types of polysaccharides are widely used in cultured dairy products. However, the interaction mechanisms, between milk proteins and these polysaccharides, are not entirely clear. To explore the interactions between uncharged and charged polysaccharides and the caseins, we used a model acid-milk-gel system, which allowed acidification to occur separately from gelation. The effect of adding uncharged dextran (DX; molecular weight ~2.0×10(6) Da) and negatively charged dextran sulfate (DS; molecular weight ~1.4×10(6) Da) to model acid milk gels was studied. Two concentrations (0.075 and 0.5%, wt/wt) of DX or DS were added to cold milk (~0°C) that had been acidified to pH values 4.4, 4.6, 4.8, or 4.9. Acidified milks containing DX or DS were then quiescently heated at the rate of 0.5°C/min to 30°C, which induced gelation, and gels were then held at 30°C for 17 h to facilitate gel development. Dynamic small-amplitude-oscillation rheology and large-deformation (shear) tests were performed. Microstructure of gels was examined by fluorescence microscopy. Gels made with a high concentration of DX gelled at a lower temperature, but after 17 h at 30°C, these gels exhibited lower storage moduli and lower yield-stress values. At pH 4.8 or 4.9 (pH values greater than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in lower gelation temperature. At pH 4.4 (pH values less than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in gels with very high stiffness values. Gels made at pH 4.8 or 4.9 with both concentrations of DS had much lower stiffness and yield-stress values than control gels. Microstructural analysis indicated that gels made at pH 4.4 with the addition of 0.5% DX exhibited large protein strands and pores, whereas gels made with 0.075% DX or the control gels had a finer protein matrix. At higher pH values (>4.4), gels made with 0.5% DX had a finer structure. At all pH values, gels made with 0.5% DS exhibited larger pores than the control gels. This study demonstrated that low concentrations of uncharged DX did not significantly affect the rheological properties of model acid milk gels; high concentrations of DX resulted in earlier gelation, possibly caused by depletion-induced attractions between casein particles, which altered the microstructure and created weaker gels. At pH values <4.6, negatively charged DS produced stiff casein gels, which might be due to attractive crosslinking by electrostatic interactions between DS and caseins at pH values below the isoelectric pH of casein (i.e., positively charged casein regions interacted with negatively charged DS molecules). Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Soil pH on mobility of imazaquin in oxisols with positive balance of charges.

    PubMed

    Regitano, Jussara B; da Rocha, Wadson S D; Alleoni, Luís R F

    2005-05-18

    The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.

  19. Comparison of pH and refractometry index with calcium concentrations in preparturient mammary gland secretions of mares.

    PubMed

    Korosue, Kenji; Murase, Harutaka; Sato, Fumio; Ishimaru, Mutsuki; Kotoyori, Yasumitsu; Tsujimura, Koji; Nambo, Yasuo

    2013-01-15

    To test the usefulness of measuring pH and refractometry index, compared with measuring calcium carbonate concentration, of preparturient mammary gland secretions for predicting parturition in mares. Evaluation study. 27 pregnant Thoroughbred mares. Preparturient mammary gland secretion samples were obtained once or twice daily 10 days prior to foaling until parturition. The samples were analyzed for calcium carbonate concentration with a water hardness kit (151 samples), pH with pH test paper (222 samples), and refractometry index with a Brix refractometer (214 samples). The sensitivity, specificity, and positive and negative predictive values for each test were calculated for evaluation of predicting parturition. The PPV within 72 hours and the NPV within 24 hours for calcium carbonate concentration determination (standard value set to 400 μg/g) were 93.8% and 98.3%, respectively. The PPV within 72 hours and the NPV within 24 hours for the pH test (standard value set at 6.4) were 97.9% and 99.4%, respectively. The PPV within 72 hours and the NPV within 24 hours for the Brix test (standard value set to 20%) were 73.2% and 96.5%, respectively. Results suggested that the pH test with the standard value set at a pH of 6.4 would be useful in the management of preparturient mares by predicting when mares are not ready to foal. This was accomplished with equal effectiveness of measuring calcium carbonate concentration with a water hardness kit.

  20. Neuroinflammation in pulmonary hypertension: concept, facts, and relevance.

    PubMed

    Hilzendeger, Aline M; Shenoy, Vinayak; Raizada, Mohan K; Katovich, Michael J

    2014-09-01

    Pulmonary hypertension (PH) is a progressive lung disease characterized by elevated pressure in the lung vasculature, resulting in right-sided heart failure and premature death. The pathogenesis of PH is complex and multifactorial, involving a dysregulated autonomic nervous system and immune response. Inflammatory mechanisms have been linked to the development and progression of PH; however, these are usually restricted to systemic and/or local lung tissue. Inflammation within the CNS, often referred to as neuroinflammation involves activation of the microglia, the innate immune cells that are found specifically in the brain and spinal cord. Microglial activation results in the release of several cytokines and chemokines that trigger neuroinflammation, and has been implicated in the pathogenesis of several disease conditions such as Alzheimer's, Parkinson's, hypertension, atherosclerosis, and metabolic disorders. In this review, we introduce the concept of neuroinflammation in the context of PH, and discuss possible strategies that could be developed for PH therapy based on this concept.

  1. Effects of Ocean Acidification and Flow on Oxygen and pH Conditions of Developing Squid (Doryteuthis pealeii) Egg Cases

    NASA Astrophysics Data System (ADS)

    Panyi, A.; Long, M. H.; Mooney, T. A.

    2016-02-01

    While young animals found future cohorts and populations, these early life stages are often particularly susceptible to conditions of the local environment in which they develop. The oxygen and pH of this critical developmental environment is likely impacted by the nearby physical conditions and the animals own respirations. Yet, in nearly all cases, this microenvironment is unknown, limiting our understanding of animal tolerances to current and future OA and hypoxic conditions. This study investigated the oxygen and pH environment adjacent to and within the egg cases of a keystone species, the longfin squid, Doryteuthis pealeii, under ambient and elevated CO2 (400 and 2200 ppm), and across differing water flow rates (0, 1, and 10 cm/s) using microprobes. Under both CO2 treatments, oxygen and pH in the egg case centers dropped dramatically across development to levels generally considered metabolically stressful even for adults. In the ambient CO2 trial, oxygen concentrations reached a minimum of 4.351 µmol/L, and pH reached a minimum of 7.36. In the elevated CO2 trial, oxygen concentrations reached a minimum of 9.910 µmol/L, and pH reached a minimum of 6.79. Flow appeared to alleviate these conditions, with highest O2 concentrations in the egg cases exposed to 10 cm/s flow in both CO2 trials, across all age classes measured. Surprisingly, all tested egg cases successfully hatched, demonstrating that developing D. pealeii embryos have a strong tolerance for low oxygen and pH, but there were more unsuccessful embryos counted in the 0 and 1 cm/s flow conditions. Further climate change could place young, keystone squid outside of their physiological limits, but water flow may play a key role in mitigating developmental stress to egg case bound embryos by increasing available oxygen.

  2. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae

    PubMed Central

    Waldbusser, George G.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Schrader, Paul; Brunner, Elizabeth L.; Gray, Matthew W.; Miller, Cale A.; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world’s oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by saturation state. PMID:26061095

  3. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    PubMed

    Waldbusser, George G; Hales, Burke; Langdon, Chris J; Haley, Brian A; Schrader, Paul; Brunner, Elizabeth L; Gray, Matthew W; Miller, Cale A; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by saturation state.

  4. Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate-rich beetroot juice in young healthy adults reduces salivary pH.

    PubMed

    Hohensinn, Barbara; Haselgrübler, Renate; Müller, Ulrike; Stadlbauer, Verena; Lanzerstorfer, Peter; Lirk, Gerald; Höglinger, Otmar; Weghuber, Julian

    2016-11-30

    Dietary inorganic nitrate (NO 3 - ) and its reduced forms nitrite (NO 2 - ) and nitric oxide (NO), respectively, are of critical importance for host defense in the oral cavity. High concentrations of salivary nitrate are linked to a lower prevalence of caries due to growth inhibition of cariogenic bacteria. In-vitro studies suggest that the formation of antimicrobial NO results in an increase of the pH preventing erosion of tooth enamel. The purpose of this study was to prove this effect in-vivo. In a randomized clinical study with 46 subjects we investigated whether NO 3 - rich beetroot juice exhibits a protective effect against caries by an increase of salivary pH. Our results show that, in comparison to a placebo group, consumption of beetroot juice that contains 4000 mg/L NO 3 - results in elevated levels of salivary NO 2 - , nitrite NO 3 - , and NO. Furthermore, we determined an increase of the mean pH of saliva from 7.0 to 7.5, confirming the anti-cariogenic effect of the used NO 3 - -rich beetroot juice. Taken together, we have found that NO 3 - -rich beetroot juice holds potential effects against dental caries by preventing acidification of human saliva. C-87-15 (Ethics Commissions of Upper Austria). Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Pre-exposure to simultaneous, but not individual, climate change stressors limits acclimation capacity of Irukandji jellyfish polyps to predicted climate scenarios

    NASA Astrophysics Data System (ADS)

    Klein, Shannon G.; Pitt, Kylie A.; Carroll, Anthony R.

    2017-09-01

    Researchers have investigated the immediate effects of end-of-century climate change scenarios on many marine species, yet it remains unclear whether we can reliably predict how marine species may respond to future conditions because biota may become either more or less resistant over time. Here, we examined the role of pre-exposure to elevated temperature and reduced pH in mitigating the potential negative effects of future ocean conditions on polyps of a dangerous Irukandji jellyfish Alatina alata. We pre-exposed polyps to elevated temperature (28 °C) and reduced pH (7.6), in a full factorial experiment that ran for 14 d. We secondarily exposed original polyps and their daughter polyps to either current (pH 8.0, 25 °C) or future conditions (pH 7.6, 28 °C) for a further 34 d to assess potential phenotypic plastic responses and whether asexual offspring could benefit from parental pre-exposure. Polyp fitness was characterised as asexual reproduction, respiration, feeding, and protein concentrations. Pre-exposure to elevated temperature alone partially mitigated the negative effects of future conditions on polyp fitness, while pre-exposure to reduced pH in isolation completely mitigated the negative effects of future conditions on polyp fitness. Pre-exposure to the dual stressors, however, reduced fitness under future conditions relative to those in the control treatment. Under future conditions, polyps had higher respiration rates regardless of the conditions they were pre-exposed to, suggesting that metabolic rates will be higher under future conditions. Parent and daughter polyps responded similarly to the various treatments tested, demonstrating that parental pre-exposure did not confer any benefit to asexual offspring under future conditions. Importantly, we demonstrate that while pre-exposure to the stressors individually may allow Irukandji polyps to acclimate over short timescales, the stressors are unlikely to occur in isolation in the long term, and thus, warming and acidification in parallel may prevent polyp populations from acclimating to future ocean conditions.

  6. Muscle Microvascular Blood Flow, Oxygenation, pH, and Perfusion Pressure Decrease in Simulated Acute Compartment Syndrome.

    PubMed

    Challa, Sravya T; Hargens, Alan R; Uzosike, Amarachi; Macias, Brandon R

    2017-09-06

    The current gold standard for diagnosing acute compartment syndrome (ACS) is an assessment of clinical signs, invasive measurement of intramuscular pressure (IMP), and measurement of local perfusion pressure. However, IMP measurements have several shortcomings, including pain, risk of infection, risk of technique error, plugging of the catheter tip, lack of consensus on the diagnostic pressure threshold, and lack of specificity and sensitivity. The objective of this study was to evaluate muscle hemodynamics, oxygenation, and pH as diagnostic parameters in a human model of ACS. We hypothesized that as IMP increases, muscle microvascular blood flow, oxygenation, and pH decrease in the anterior compartment of a leg at heart level and that they decrease significantly more when the leg is elevated further. An external pneumatic leg pressure chamber, combined with a venous stasis thigh cuff, was used to increase IMP and simulate ACS. Eight healthy subjects (5 males and 3 females; mean age, 26 years) had photoplethysmography and near-infrared spectroscopy-pH sensors placed over the middle aspect of the tibialis anterior muscle of the right (experimental) and left (control) legs. Leg chamber pressure conditions (40, 50, and 60 mm Hg) were applied in a randomized order after baseline measurements were taken. Data were collected continuously for each 11-minute pressure condition, with an 11-minute recovery period after each condition, and the average of the last 6 minutes was used for data analyses. The same protocol was repeated with each subject's legs elevated 12 cm above heart level. Data were analyzed using repeated-measures analysis of variance (ANOVA). As IMP increased, muscle microvascular blood flow (p = 0.01), oxygenation (p < 0.001), and pH (p < 0.001) all decreased significantly in the experimental leg compared with the control leg. At all IMP levels, leg elevation significantly decreased muscle oxygenation (p = 0.013) and perfusion pressure (p = 0.03) compared with the control leg at heart level. These results indicate that muscle microvascular blood flow, oxygenation, pH, and perfusion pressure decrease significantly as IMP increases in a human model of ACS. This study identifies hemodynamic and metabolic parameters as potential noninvasive diagnostic tools for ACS.

  7. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra.

    PubMed

    Nikolaidis, Athanasios; Andreadis, Marios; Moschakis, Thomas

    2017-10-01

    A newly developed method of analysis of difference-UV spectra was successfully implemented in the study of the effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate. It was found that whey proteins exhibit their highest stability against heat denaturation at pH 3.75. At very low pH values, i.e. 2.5, they exhibited considerable cold denaturation, while after heating at this pH value, the supplementary heat denaturation rate was lower compared to that at neutral pH. The highest heat denaturation rates were observed at pH values higher than neutral. High power sonication on whey proteins, previously heated at 90°C for 30min, resulted in a rather small reduction of the fraction of the heat denatured protein aggregates. Finally, when ethanol was used as a cosolvent in the concentration range 20-50%, a sharp increase in the degree of denaturation, compared to the native protein solution, was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Processed dairy beverages pH evaluation: consequences of temperature variation.

    PubMed

    Ferreira, Fabiana Vargas; Pozzobon, Roselaine Terezinha

    2009-01-01

    This study assessed the pH from processed dairy beverages as well as eventual consequences deriving from different ingestion temperatures. 50 adults who accompanied children attended to at the Dentistry School were randomly selected and they answered a questionnaire on beverages. The beverages were divided into 4 groups: yogurt (GI) fermented milk (GII), chocolate-based products (GIII) and fermented dairy beverages (GIV). They were asked which type, flavor and temperature. The most popular beverages were selected, and these made up the sample. A pH meter Quimis 400A device was used to verify pH. The average pH from each beverage was calculated and submitted to statistical analysis (Variance and Tukey test with a 5% significance level). for groups I, II and III beverages, type x temperature interaction was significant, showing the pH averages were influenced by temperature variation. At iced temperatures, they presented lower pH values, which were considered statistically significant when compared to the values found for the same beverages at room temperature. All dairy beverages, with the exception of the chocolate-based type presented pH below critical level for enamel and present corrosive potential; as to ingestion temperature, iced temperature influenced pH reducing its values, in vitro.

  9. Microelectrode characterization of coral daytime interior pH and carbonate chemistry.

    PubMed

    Cai, Wei-Jun; Ma, Yuening; Hopkinson, Brian M; Grottoli, Andréa G; Warner, Mark E; Ding, Qian; Hu, Xinping; Yuan, Xiangchen; Schoepf, Verena; Xu, Hui; Han, Chenhua; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Matsui, Yohei; Baumann, Justin H; Levas, Stephen; Ying, Ye; Wang, Yongchen

    2016-04-04

    Reliably predicting how coral calcification may respond to ocean acidification and warming depends on our understanding of coral calcification mechanisms. However, the concentration and speciation of dissolved inorganic carbon (DIC) inside corals remain unclear, as only pH has been measured while a necessary second parameter to constrain carbonate chemistry has been missing. Here we report the first carbonate ion concentration ([CO3(2-)]) measurements together with pH inside corals during the light period. We observe sharp increases in [CO3(2-)] and pH from the gastric cavity to the calcifying fluid, confirming the existence of a proton (H(+)) pumping mechanism. We also show that corals can achieve a high aragonite saturation state (Ωarag) in the calcifying fluid by elevating pH while at the same time keeping [DIC] low. Such a mechanism may require less H(+)-pumping and energy for upregulating pH compared with the high [DIC] scenario and thus may allow corals to be more resistant to climate change related stressors.

  10. Antioxidant Property Enhancement of Sweet Potato Flour under Simulated Gastrointestinal pH

    PubMed Central

    Chan, Kim Wei; Khong, Nicholas M. H.; Iqbal, Shahid; Umar, Imam Mustapha; Ismail, Maznah

    2012-01-01

    Sweet potato is known to be rich in healthful antioxidants, but the stability of its antioxidant properties under gastrointestinal pH is very much unknown. Hence, this study aimed to evaluate the changes in antioxidant properties (total contents of phenolics and flavonoids as well as antioxidant activity) of sweet potato flour (SPF) under simulated gastrointestinal pH conditions. It was found that the yield of SPF crude phenolic extract increased from 0.29 to 3.22 g/100 g SPF upon subjection to gastrointestinal pH conditions (p < 0.05). Also elevated significantly were the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of SPF (p < 0.05). In summary, the antioxidant properties of SPF were enhanced under gastrointestinal pH conditions, suggesting that SPF might possess a considerable amount of bound phenolic and other antioxidative compounds. The antioxidant properties of SPF are largely influenced by pH and thus might be enhanced during the in vivo digestive process. PMID:22942747

  11. RESPONSES OF CELLS TO pH CHANGES IN THE MEDIUM

    PubMed Central

    Taylor, A. Cecil

    1962-01-01

    Studies were made with time-lapse motion pictures of the reactions of cells in culture to changes in their environment. The concentrations of H+, HCO3 -and CO2 in the medium were altered in such a way that each, in turn, could be maintained constant while the others were varied. Observations were made on the shape of the cells, their activity, and their relation to the substratum. Characteristic reversible changes in the cells were observed whenever environmental pH was altered. Elevation of the pH accelerated cell movements and caused contraction of the cytoplasm, while lowering of the pH retarded and eventually stopped all cell activity, causing apparent gelation of the protoplasm. These responses did not occur when HCO3 - and CO2 were varied without changing the pH. It is suggested that local pH changes in the micro-environment of a cell's surface may be a significant factor in controlling cell behavior in culture and in vivo. PMID:13993539

  12. The pH dependent Raman spectroscopic study of caffeine

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  13. Capsule Design for Blue Light Therapy against Helicobacter pylori.

    PubMed

    Li, Zhangyong; Ren, Binbin; Tan, Haiyan; Liu, Shengrong; Wang, Wei; Pang, Yu; Lin, Jinzhao; Zeng, Chen

    2016-01-01

    A photo-medical capsule that emits blue light for Helicobacter pylori treatment was described in this paper. The system consists of modules for pH sensing and measuring, light-emitting diode driver circuit, radio communication and microcontroller, and power management. The system can differentiate locations by monitoring the pH values of the gastrointestinal tract, and turn on and off the blue light according to the preset range of pH values. Our experimental tests show that the capsule can operate in the effective light therapy mode for more than 32 minutes and the wireless communication module can reliably transmit the measured pH value to a receiver located outside the body.

  14. Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.

    PubMed

    Wood, C M; Milligan, C L; Walsh, P J

    1999-08-01

    Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.

  15. Consumption of baked nuts or seeds reduces dental plaque acidogenicity after sucrose challenge.

    PubMed

    Wang, Xiaoling; Cheng, Chuoyue; Ge, Chunling; Wang, Bing; Gan, Ye-Hua

    2016-06-01

    To assess the acidogenic potential of eight different types of baked nuts or seeds eaten alone and after a sucrose challenge using in-dwelling electrode telemetry. Six participants wearing a mandibular partial prosthesis incorporated with a miniature glass pH electrode were enrolled. The plaque pH was measured after 5 or 6 days of plaque accumulation. To establish a control, the subjects were instructed to rinse with sucrose, without any subsequent treatment, at the first visit. At each subsequent test visit, the subjects were asked to chew sugar free xylitol gum or consume 10 g of baked (180 degrees C, 5 minutes) peanuts, walnuts, pistachios, cashews, almonds, sunflower seeds, pumpkin seeds, or watermelon seeds alone and 10 minutes after a sucrose rinse. The minimum plaque pH value and area of plaque pH curve under 5.7 (AUC5.7) during and after nut/seed consumption or gum chewing alone, the plaque pH value at 10 minutes after the sucrose rinse, the time required for the pH to return to >5.7 and AUC5.7 after the sucrose rinse with or without nut/seed consumption or gum chewing were calculated from the telemetric curves. The sucrose rinse induced a rapid decrease in the plaque pH to 4.32 +/- 0.17 at 10 minutes; this value remained below 5.7 for the measurement period. The AUC5.7 values were 34.58 +/- 7.27 and 63.55 +/- 15.17 for 40 and 60 minutes after the sucrose challenge, respectively. With the exception of cashews and pumpkin seeds (minimum pH, 5.42 and 5.63 respectively), the nuts or seeds did not decrease the plaque pH to below 5.7 when consumed alone, with the AUC5.7 values during and after consumption (total 40 minutes) ranging from 0.24 to 2.5 (8.44 for cashews), which were significantly lower than those after the sucrose challenge. Furthermore, nut/seed consumption or gum chewing after the sucrose challenge significantly reversed the sucrose-induced decrease in the plaque pH, and the time required for the pH to return to >5.7 and the AUC5.7 values for 60 minutes after the sucrose challenge were much less than that of the sucrose challenge without subsequent interference.

  16. Characterization of callase (β-1,3-D-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum.

    PubMed

    Winiarczyk, Krystyna; Jaroszuk-Ściseł, Jolanta; Kupisz, Kamila

    2012-06-01

    We examined callase activity in anthers of sterile Allium sativum (garlic) and fertile Allium atropurpureum. In A. sativum, a species that produces sterile pollen and propagates only vegetatively, callase was extracted from the thick walls of A. sativum microspore tetrads exhibited maximum activity at pH 4.8, and the corresponding in vivo values ranged from 4.5 to 5.0. Once microspores were released, in vitro callase activity peaked at three distinct pH values, reflecting the presence of three callase isoforms. One isoform, which was previously identified in the tetrad stage, displayed maximum activity at pH 4.8, and the remaining two isoforms, which were novel, were most active at pH 6.0 and 7.3. The corresponding in vivo values ranged from pH 4.75 to 6.0. In contrast, in A. atropurpureum, a sexually propagating species, three callase isoforms, active at pH 4.8-5.2, 6.1, and 7.3, were identified in samples of microsporangia that had released their microspores. The corresponding in vivo value for this plant was 5.9. The callose wall persists around A. sativum meiotic cells, whereas only one callase isoform, with an optimum activity of pH 4.8, is active in the acidic environment of the microsporangium. However, this isoform is degraded when the pH rises to 6.0 and two other callase isoforms, maximally active at pH 6.0 and 7.3, appear. Thus, factors that alter the pH of the microsporangium may indirectly affect the male gametophyte development by modulating the activity of callase and thereby regulating the degradation of the callose wall.

  17. The effect of antacid on salivary pH in patients with and without dental erosion after multiple acid challenges.

    PubMed

    Dhuhair, Sarah; Dennison, Joseph B; Yaman, Peter; Neiva, Gisele F

    2015-04-01

    To evaluate the effect of antacid swish in the salivary pH values and to monitor the pH changes in subjects with and without dental erosion after multiple acid challenge tests. 20 subjects with tooth erosion were matched in age and gender with 20 healthy controls according to specific inclusion/exclusion criteria. Baseline measures were taken of salivary pH, buffering capacity and salivary flow rate using the Saliva Check System. Subjects swished with Diet Pepsi three times at 10-minute intervals. Changes in pH were monitored using a digital pH meter at 0-, 5-, and 10- minute intervals and at every 5 minutes after the third swish until pH resumed baseline value or 45 minutes relapse. Swishing regimen was repeated on a second visit, followed by swishing with sugar-free liquid antacid (Mylanta Supreme). Recovery times were also recorded. Data was analyzed using independent t-tests, repeated measures ANOVA, and Fisher's exact test (α= 0.05). Baseline buffering capacity and flow rate were not significantly different between groups (P= 0.542; P= 0.2831, respectively). Baseline salivary pH values were similar between groups (P= 0.721). No significant differences in salivary pH values were found between erosion and non-erosion groups in response to multiple acid challenges (P= 0.695) or antacid neutralization (P= 0.861). Analysis of salivary pH recovery time revealed no significant differences between groups after acid challenges (P= 0.091) or after the use of antacid (P= 0.118). There was a highly significant difference in the survival curves of the two groups on Day 2, with the non-erosion group resolving significantly faster than the erosion group (P= 0.0086).

  18. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  19. Effects of radiotherapy on parotid salivary sialochemistry in head and neck cancer patients.

    PubMed

    Gupta, S C; Singla, Alok; Singh, Mangal; Thaliath, B Paul; Geeta, Jaiswal

    2009-12-01

    To determine the effects of high dose irradiation on parotid salivary sodium and pH concentration at subsequent duration of 1.5, 3 and 6 months following radiotherapy. Eighty parotid glands of head and neck cancer patients were irradiated with mean dose of 66 Gy. The stimulated parotid flow (PF) was collected by a cannulation of Stenson's duct followed by analysis of sodium (PF sodium) by Easylyte Sodium/Potassium auto analyzer and pH by litmus narrow band pH paper. A steep elevation of PF sodium was found in post-RT period after 1.5 months of starting RT followed by gradual increase up to 6 months and pH changed towards acidity. A high dose of 66 Gy causes irreversible damage to parotid salivary duct system.

  20. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    PubMed

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pH<7), 2 municipal (or "tap") waters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  1. Neutralizing salivary pH by mouthwashes after an acidic challenge.

    PubMed

    Dehghan, Mojdeh; Tantbirojn, Daranee; Kymer-Davis, Emily; Stewart, Colette W; Zhang, Yanhui H; Versluis, Antheunis; Garcia-Godoy, Franklin

    2017-05-01

    The aim of the present study was to test the neutralizing effect of mouthwashes on salivary pH after an acidic challenge. Twelve participants were recruited for three visits, one morning per week. Resting saliva was collected at baseline and after 2-min swishing with 20 mL orange juice as an acidic challenge. Participants then rinsed their mouth for 30 s with 20 mL water (control), an over-the-counter mouthwash (Listerine), or a two-step mouthwash, randomly assigned for each visit. Saliva was collected immediately, 15, and 45 min after rinsing. The pH values of the collected saliva were measured and analyzed with anova, followed by Student-Newman-Keuls post-hoc test (significance level: 0.05). Orange juice significantly lowered salivary pH. Immediately after rinsing, Listerine and water brought pH back to baseline values, with the pH significantly higher in the Listerine group. The two-step mouthwash raised pH significantly higher than Listerine and water, and higher than the baseline value. Salivary pH returned to baseline and was not significantly different among groups at 15 and 45 min post-rinsing. Mouth rinsing after an acidic challenge increased salivary pH. The tested mouthwashes raised pH higher than water. Mouthwashes with a neutralizing effect can potentially reduce tooth erosion from acid exposure. © 2015 Wiley Publishing Asia Pty Ltd.

  2. Safety of tomatillos and products containing tomatillos canned by the water-bath canning method.

    PubMed

    McKee, L H; Remmenga, M D; Bock, M A

    1998-01-01

    Three studies were conducted to evaluate the safety of tomatillos and products containing tomatillos canned by the water-bath processing method. In the first study, plain tomatillos were processed for 25, 37.5, 50 and 62.5 min. In the second study, five tomatillo/onion combinations were prepared while five tomatillo/green chile combinations were prepared in the third study. pH evaluations were conducted to determine safety in all studies using pH 4.2 as the cut-off value. No differences in the pH of plain tomatillos were detected due to processing time. All jars of plain tomatillos had pH values below 4.1. All combinations of tomatillos/onions and tomatillos/green chile containing more than 50% tomatillo had pH values below the 4.2 cut-off value. Results of the three studies indicate (1) acidification of plain tomatillos is probably unnecessary for canning by the water-bath processing method and (2) combinations of acidic tomatillos and low-acid onions or green chile must contain more than 50% tomatillos to have a pH low enough for safe water-bath processing.

  3. Influence of pH, benzoic acid, glutathione, EDTA, 4-hexylresorcinol, and sodium chloride on the pressure inactivation kinetics of mushroom polyphenol oxidase.

    PubMed

    Weemaes, C A; Ludikhuyze, L R; Van den Broeck, I; Hendrickx, M E

    1999-09-01

    Pressure inactivation of mushroom PPO was studied for pH values ranging from 4 to 8, and the effect of some antibrowning agents on the pressure stability of mushroom PPO at pH 6.5 was evaluated. pH reduction below 6.5 resulted in a lowered inactivation threshold pressure and an increase of the absolute value of the activation volume (or a decrease of the z(p) value), the latter two parameters reflecting the pressure dependency of the inactivation rate constant. An increase in pH from 6.5 to 8, on the other hand, did only marginally affect the pressure stability of the enzyme. Mushroom PPO at pH 6.5 was markedly sensitized toward pressure by the presence of 2.5 mM 4-hexylresorcinol and slightly stabilized by the presence of 5 mM EDTA. The presence of 5 mM glutathione, sodium chloride, or benzoic acid caused no significant alteration of the enzyme pressure stability. Only in the presence of 4-hexylresorcinol, significant changes of the activation volume and z(p) value were noticed.

  4. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    NASA Astrophysics Data System (ADS)

    Kotas, Petr; Šantrůčková, Hana; Elster, Josef; Kaštovská, Eva

    2018-03-01

    The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  5. Contrasting impacts of ocean acidification and warming on the molecular responses of CO2-resilient oysters.

    PubMed

    Goncalves, Priscila; Thompson, Emma L; Raftos, David A

    2017-06-02

    This study characterises the molecular processes altered by both elevated CO 2 and increasing temperature in oysters. Differences in resilience of marine organisms against the environmental stressors associated with climate change will have significant implications for the sustainability of coastal ecosystems worldwide. Some evidence suggests that climate change resilience can differ between populations within a species. B2 oysters represent a unique genetic resource because of their capacity to better withstand the impacts of elevated CO 2 at the physiological level, compared to non-selected oysters from the same species (Saccostrea glomerata). Here, we used proteomic and transcriptomic analysis of gill tissue to evaluate whether the differential response of B2 oysters to elevated CO 2 also extends to increased temperature. Substantial and distinctive effects on protein concentrations and gene expression were evident among B2 oysters responding to elevated CO 2 or elevated temperature. The combination of both stressors also altered oyster gill proteomes and gene expression. However, the impacts of elevated CO 2 and temperature were not additive or synergistic, and may be antagonistic. The data suggest that the simultaneous exposure of CO 2 -resilient oysters to near-future projected ocean pH and temperature results in complex changes in molecular processes in order to prevent stress-induced cellular damage. The differential response of B2 oysters to the combined stressors also indicates that the addition of thermal stress may impair the resilience of these oysters to decreased pH. Overall, this study reveals the intracellular mechanisms that might enable marine calcifiers to endure the emergent, adverse seawater conditions resulting from climate change.

  6. Transient kinetic studies of pH-dependent hydrolyses by exo-type carboxypeptidase P on a 27-MHz quartz crystal microbalance.

    PubMed

    Furusawa, Hiroyuki; Takano, Hiroki; Okahata, Yoshio

    2008-02-15

    pH-Dependent kinetic parameters (k(on), k(off), and k(cat)) of protein (myoglobin) hydrolyses catalyzed by exo-enzyme (carboxypeptidase P, CPP) were obtained by using a protein-immobilized quartz crystal microbalance (QCM) in acidic aqueous solutions. The formation of the enzyme-substrate (ES) complex (k(on)), the decay of the ES complex (k(off)), and the formation of the product (k(cat)) could be analyzed by transient kinetics as mass changes on the QCM plate. The Kd (k(off)/k(on)) value was different from the Michaelis constant Km calculated from (k(off) + k(cat))/k(on) due to k(cat) > k(off). The rate-determining step was the binding step (k(on), and the catalytic rate k(cat) was faster than other k(on) and k(off) values. In the range of pH 2.5-5.0, values of k(on) gradually increased with decreasing pH showing a maximum at pH 3.7, values of k(off) were independent of pH, and k(cat) increased gradually with decreasing pH. As a result, the apparent rate constant (k(cat)/Km) showed a maximum at pH 3.7 and gradually increased with decreasing pH. The optimum pH at 3.7 of k(on) is explained by the optimum binding ability of CPP to the COOH terminus of the substrate with hydrogen bonds. The increase of k(cat) at the lower pH correlated with the decrease of alpha-helix contents of the myoglobin substrate on the QCM.

  7. Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Zhouyang; Runge, Troy

    This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less

  8. Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals

    DOE PAGES

    Xiang, Zhouyang; Runge, Troy

    2015-07-21

    This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less

  9. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  10. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  11. Sub-optimal pH Preadaptation Improves the Survival of Lactobacillus plantarum Strains and the Malic Acid Consumption in Wine-Like Medium

    PubMed Central

    Succi, Mariantonietta; Pannella, Gianfranco; Tremonte, Patrizio; Tipaldi, Luca; Coppola, Raffaele; Iorizzo, Massimo; Lombardi, Silvia Jane; Sorrentino, Elena

    2017-01-01

    Forty-two oenological strains of Lb. plantarum were assessed for their response to ethanol and pH values generally encountered in wines. Strains showed a higher variability in the survival when exposed to low pH (3.5 or 3.0) than when exposed to ethanol (10 or 14%). The study allowed to individuate the highest ethanol concentration (8%) and the lowest pH value (4.0) for the growth of strains, even if the maximum specific growth rate (μmax) resulted significantly reduced by these conditions. Two strains (GT1 and LT11) preadapted to 2% ethanol and cultured up to 14% of ethanol showed a higher growth than those non-preadapted when they were cultivated at 8% of ethanol. The evaluation of the same strains preadapted to low pH values (5.0 and 4.0) and then grown at pH 3.5 or 3.0 showed only for GT1 a sensitive μmax increment when it was cultivated in MRS at pH 3 after a preadaptation to pH 5.0. The survival of GT1 and LT11 was evaluated in Ringer's solution at 14% ethanol after a long-term adaptation in MRS with 2% ethanol or in MRS with 2% ethanol acidified at pH 5.0 (both conditions, BC). Analogously, the survival was evaluated at pH 3.5 after a long-term adaptation in MRS at pH 5.0 or in MRS BC. The impact of the physiologic state (exponential phase vs stationary phase) on the survival was also evaluated. Preadapted cells showed the same behavior of non-preadapted cells only when cultures were recovered in the stationary phase. Mathematical functions were individuated for the description of the survival of GT1 and LT11 in MRS at 14% ethanol or at pH 3.5. Finally, a synthetic wine (SW) was used to assess the behavior of Lb. plantarum GT1 and LT11 preadapted in MRS at 2% ethanol or at pH 5.0 or in BC. Only GT1 preadapted to pH 5.0 and collected in the stationary phase showed constant values of microbial counts after incubation for 15 days at 20°C. In addition, after 15 days the L-malic acid resulted completely degraded and the pH value increased of about 0.3 units. PMID:28382030

  12. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the Hot Acidities were comparable for fresh and most aged samples. A meaningful "net" acidity can be determined from a measured Hot Acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. The use of net alkalinity = (Alkalinitymeasured - Hot Aciditymeasured) to design mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity. © 2014 International Society for Diseases of the Esophagus.

  14. A Quantitative Review and Meta-Models of the Variability and Factors Affecting Oral Drug Absorption-Part I: Gastrointestinal pH.

    PubMed

    Abuhelwa, Ahmad Y; Foster, David J R; Upton, Richard N

    2016-09-01

    This study aimed to conduct a quantitative meta-analysis for the values of, and variability in, gastrointestinal (GI) pH in the different GI segments; characterize the effect of food on the values and variability in these parameters; and present quantitative meta-models of distributions of GI pH to help inform models of oral drug absorption. The literature was systemically reviewed for the values of, and the variability in, GI pH under fed and fasted conditions. The GI tract was categorized into the following 10 distinct regions: stomach (proximal, mid-distal), duodenum (proximal, mid-distal), jejunum and ileum (proximal, mid, and distal small intestine), and colon (ascending, transverse, and descending colon). Meta-analysis used the "metafor" package of the R language. The time course of postprandial stomach pH was modeled using NONMEM. Food significantly influenced the estimated meta-mean stomach and duodenal pH but had no significant influence on small intestinal and colonic pH. The time course of postprandial pH was described using an exponential model. Increased meal caloric content increased the extent and duration of postprandial gastric pH buffering. The different parts of the small intestine had significantly different pH. Colonic pH was significantly different for descending but not for ascending and transverse colon. Knowledge of GI pH is important for the formulation design of the pH-dependent dosage forms and in understanding the dissolution and absorption of orally administered drugs. The meta-models of GI pH may also be used as part of semi-physiological pharmacokinetic models to characterize the effect of GI pH on the in vivo drug release and pharmacokinetics.

  15. Application of the Oxidation-Reduction Potential (ORP) for Pre-grading Tuna Freshness On-board

    NASA Astrophysics Data System (ADS)

    Cheevaporanapivat, Mongkol; Sakai, Hisaharu; Mine, Yuuji; Watanabe, Manabu; Suzuki, Toru

    Application of ORP as a rapid indicator for grading tuna's freshness on the ship was studied. The long line trawling process was used for catching the sample tuna in the South Pacific Ocean. All captured sample tuna were weighed, gender identified and investigated for their mortality, then measured ORP and K value. Three species of tuna were caught: blue marlin (Makaira mazara), yellow fin tuna (Thunnus albacares), and swordfish (Xiphia gladius). Most of the fish captured were male and they had been dead after picking onboard. The measured ORP values of blue marlin varied in the range of 0.295-0.362 Volt, with pH between 5.35-5.84. Both ORP and pH of swordfish was similar to that of blue marlin. But for yellow fin tuna, the ORP value was about the same as blue marlin while its pH was significantly higher. ORP value in all species tended to increase with pH of the fish meat decrease. It is interesting that ORP value of tuna increased in correlation with K value. These results suggested that ORP and pH change, which are measured in the short time, are the effective indicators for grading tuna's freshness on-board.

  16. Investigating controls on boron isotope ratios in shallow marine carbonates

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.

    2017-01-01

    The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives. In addition, variability in δ11B based pH estimates provides additional support for the idea that photosynthetic CO2 uptake plays a significant role in driving carbonate precipitation in a wide range of shallow water carbonates.

  17. Effect of pH on compressive strength of some modification of mineral trioxide aggregate

    PubMed Central

    Saghiri, Mohammad A.; Garcia-Godoy, Franklin; Asatourian, Armen; Lotfi, Mehrdad; Khezri-Boukani, Kaveh

    2013-01-01

    Objectives: Recently, it was shown that NanoMTA improved the setting time and promoted a better hydration process which prevents washout and the dislodgment of this novel biomaterial in comparison with WTMA. This study analyzed the compressive strength of ProRoot WMTA (Dentsply), a NanoWMTA (Kamal Asgar Research Center), and Bioaggregate (Innovative Bioceramix) after its exposure to a range of environmental pH conditions during hydration. Study Design: After mixing the cements under aseptic condition and based on the manufacturers` recommendations, the cements were condensed with moderate force using plugger into 9 × 6 mm split molds. Each type of cement was then randomly divided into three groups (n=10). Specimens were exposed to environments with pH values of 4.4, 7.4, or 10.4 for 3 days. Cement pellets were compressed by using an Instron testing machine. Values were recorded and compared. Data were analyzed by using one-way analysis of variance and a post hoc Tukey’s test. Results: After 3 days, the samples were solid when probed with an explorer before removing them from the molds. The greatest mean compressive strength 133.19±11.14 MPa was observed after exposure to a pH value of 10.4 for NanoWMTA. The values decreased to 111.41±8.26 MPa after exposure to a pH value of 4.4. Increasing of pH had a significant effect on the compressive strength of the groups (p<0.001). The mean compressive strength for the NanoWMTA was statistically higher than for ProRoot WMTA and Bioaggregate (p<0.001). Moreover, increasing of pH values had a significant effect on compressive strength of the experimental groups (p<0.001). Conclusion: The compressive strength of NanoWMTA was significantly higher than WMTA and Bioaggregate; the more acidic the environmental pH, the lower was the compressive strength. Key words:Compressive strength, mineral trioxide aggregate, Nano. PMID:23722137

  18. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    PubMed

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Functional photoacoustic microscopy of pH

    NASA Astrophysics Data System (ADS)

    Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

  20. Pulmonary hypertension in chronic obstructive pulmonary disease and interstitial lung diseases.

    PubMed

    Weitzenblum, Emmanuel; Chaouat, Ari; Canuet, Matthieu; Kessler, Romain

    2009-08-01

    Pulmonary hypertension (PH) is a common complication of chronic respiratory diseases and particularly of chronic obstructive pulmonary disease (COPD) and interstitial lung diseases (ILD). Owing to its frequency COPD is by far the most common cause of PH. It is generally a mild to moderate PH, pulmonary artery mean pressure (PAP) usually ranging between 20 and 25 mm Hg, but PH may worsen during exercise, sleep, and particularly during exacerbations of the disease. These acute increases in PAP may lead to the development of right heart failure. A small proportion of COPD patients may present "disproportionate" PH defined by a resting PAP >35 to 40 mm Hg. The prognosis is particularly poor in these patients. PH is relatively frequent in advanced ILD and particularly in idiopathic pulmonary fibrosis. As in COPD the diagnosis is suggested by Doppler echocardiography, but the confirmation still requires right heart catheterization. As in COPD, functional (alveolar hypoxia) and morphological factors (vascular remodeling, destruction of the pulmonary parenchyma) explain the elevation of pulmonary vascular resistance that leads to PH. Also as in COPD PH is most often mild to moderate. In ILD the presence of PH predicts a poor prognosis. The treatment of PH relies on long-term oxygen therapy. "New" vasodilator drugs have rarely been used in COPD and ILD patients exhibiting severe PH. In advanced ILD the presence of PH is a supplemental argument for considering lung transplantation.

  1. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH.

    PubMed

    Algiert-Zielińska, Barbara; Batory, Mirella; Skubalski, Janusz; Rotsztejn, Helena

    2017-11-01

    The epidermis is an epidermal barrier which accumulates lipid substances and participates in skin moisturizing. An evaluation of the epidermal barrier efficiency can be made, among others, by the measurement of the following values: the lipid coat, the transepidermal water loss (TEWL) index, and pH. The study involved 50 Caucasian, healthy women aged 19-35 years (mean 20.56). Measurements were made using Courage & Khazaka Multi Probe Adapter MPA 580: Tewameter TM 300, pH-Meter PH 905, Sebumeter SM 815. The areas of measurements included forehead, nose, left cheek, right cheek, chin, and thigh. In the T-zone, the lipid coat was in the range between 0 and 270 μg/cm 2 (mean 128 μg/cm 2 ), TEWL between 1 and 55 g/m 2 /h (mean 11.1 g/m 2 /h), and pH 4.0-5.6 (mean 5.39). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL greater than 30 g/m 2 /h and less acidic pH of 5.6-9.0. In the U-zone the range of lipid coat was up to 200 μg/cm 2 (mean 65.2 μg/cm 2 ), the skin pH remained 4.0-5.6 (mean 5.47), and TEWL was in the range between 1 and 20 g/m 2 /h (mean 8.7 g/m 2 /h). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL between 1 and 20 g/m 2 /h and less acidic pH of 5.6-9.0. High values of the lipid coat between 180 and 200 μg/cm 2 were connected with TEWL of 1-15 g/m 2 /h. On the skin of the thigh, we observed a very thin lipid coat - 35 μg/cm 2 (mean 5.6 μg/cm 2 ), pH (mean 5.37), and TEWL (mean 8.5 g/m 2 /h) were considered by us to be within regular limits. In the T-zone, a thinner lipid coat resulted in relatively high TEWL and pH levels changing toward alkaline. In the U-zone, thinner lipid coat was accompanied by lower TEWL and pH changing toward alkaline. We also observed that lower values of lipid coat up to 100 μg/cm 2 were associated with higher pH values ranging toward the basic character pH 5.6-9.0). © 2017 The International Society of Dermatology.

  2. Efficacy and Safety of a Pharmaco-Invasive Strategy With Half-Dose Alteplase Versus Primary Angioplasty in ST-Segment-Elevation Myocardial Infarction: EARLY-MYO Trial (Early Routine Catheterization After Alteplase Fibrinolysis Versus Primary PCI in Acute ST-Segment-Elevation Myocardial Infarction).

    PubMed

    Pu, Jun; Ding, Song; Ge, Heng; Han, Yaling; Guo, Jinchen; Lin, Rong; Su, Xi; Zhang, Heng; Chen, Lianglong; He, Ben

    2017-10-17

    Timely primary percutaneous coronary intervention (PPCI) cannot be offered to all patients with ST-segment-elevation myocardial infarction (STEMI). Pharmaco-invasive (PhI) strategy has been proposed as a valuable alternative for eligible patients with STEMI. We conducted a randomized study to compare the efficacy and safety of a PhI strategy with half-dose fibrinolytic regimen versus PPCI in patients with STEMI. The EARLY-MYO trial (Early Routine Catheterization After Alteplase Fibrinolysis Versus Primary PCI in Acute ST-Segment-Elevation Myocardial Infarction) was an investigator-initiated, prospective, multicenter, randomized, noninferiority trial comparing a PhI strategy with half-dose alteplase versus PPCI in patients with STEMI 18 to 75 years of age presenting ≤6 hours after symptom onset but with an expected PCI-related delay. The primary end point of the study was complete epicardial and myocardial reperfusion after PCI, defined as thrombolysis in myocardial infarction flow grade 3, thrombolysis in myocardial infarction myocardial perfusion grade 3, and ST-segment resolution ≥70%. We also measured infarct size and left ventricular ejection fraction with cardiac magnetic resonance and recorded 30-day clinical and safety outcomes. A total of 344 patients from 7 centers were randomized to PhI (n=171) or PPCI (n=173). PhI was noninferior (and even superior) to PPCI for the primary end point (34.2% versus 22.8%, P noninferiority <0.05, P superiority =0.022), with no significant differences in the frequency of the individual components of the combined end point: thrombolysis in myocardial infarction flow 3 (91.3% versus 89.2%, P =0.580), thrombolysis in myocardial infarction myocardial perfusion grade 3 (65.8% versus 62.9%, P =0.730), and ST-segment resolution ≥70% (50.9% versus 45.5%, P =0.377). Infarct size (23.3%±11.3% versus 25.8%±13.7%, P =0.101) and left ventricular ejection fraction (52.2%±11.0% versus 51.4%±12.0%, P =0.562) were similar in both groups. No significant differences occurred in 30-day rates of total death (0.6% versus 1.2%, P =1.0), reinfarction (0.6% versus 0.6%, P =1.0), heart failure (13.5% versus 16.2%, P =0.545), major bleeding events (0.6% versus 0%, P =0.497), or intracranial hemorrhage (0% versus 0%), but minor bleeding (26.9% versus 11.0%, P <0.001) was observed more often in the PhI group. For patients with STEMI presenting ≤6 hours after symptom onset and with an expected PCI-related delay, a PhI strategy with half-dose alteplase and timely PCI offers more complete epicardial and myocardial reperfusion when compared with PPCI. Adequately powered trials with this reperfusion strategy to assess clinical and safety outcomes are warranted. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01930682. © 2017 American Heart Association, Inc.

  3. Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice

    PubMed Central

    Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Chen, Su-Ren; Deng, Shou-Long; Jin, Cheng; Zhang, Yan; Wang, Xiu-Xia; Zhou, Chen-Xi; Liu, Yi-Xun

    2016-01-01

    ABSTRACT Increases in the aneuploidy rate caused by the deterioration of cohesion with increasing maternal age have been well documented. However, the molecular mechanism for the loss of cohesion in aged oocytes remains unknown. In this study, we found that intracellular pH (pHi) was elevated in aged oocytes, which might disturb the structure of the cohesin ring to induce aneuploidy. We observed for the first time that full-grown germinal vesicle (GV) oocytes displayed an increase in pHi with advancing age in CD1 mice. Furthermore, during the in vitro oocyte maturation process, the pHi was maintained at a high level, up to ∼7.6, in 12-month-old mice. Normal pHi is necessary to maintain protein localization and function. Thus, we put forward a hypothesis that the elevated oocyte pHi might be related to the loss of cohesion and the increased aneuploidy in aged mice. Through the in vitro alkalinization treatment of young oocytes, we observed that the increased pHi caused an increase in the aneuploidy rate and the sister inter-kinetochore (iKT) distance associated with the strength of cohesion and caused a decline in the cohesin subunit SMC3 protein level. Young oocytes with elevated pHi exhibited substantially the increase in chromosome misalignment. PMID:27472084

  4. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor

    PubMed Central

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M.; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N.

    2016-01-01

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions. PMID:27338381

  5. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor.

    PubMed

    Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N

    2016-06-07

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  6. Analysis of stable isotope ratios (δ18O and δ2H) in precipitation of the Verde River watershed, Arizona 2003 through 2014

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.

    2016-04-25

    Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.

  7. The effect of CPAP treatment on venous lactate and arterial blood gas among obstructive sleep apnea syndrome patients.

    PubMed

    Lin, Ting; Huang, Jie-Feng; Lin, Qi-Chang; Chen, Gong-Ping; Wang, Bi-Ying; Zhao, Jian-Ming; Qi, Jia-Chao

    2017-05-01

    The aim of this observational study was to investigate the influence of continuous positive airway pressure (CPAP) on arterial blood gas and venous lactate, markers of tissue hypoxia, among obstructive sleep apnea syndrome (OSAS) patients, and determine the risk factor of serum lactate and hydrogen ion concentration (PH) in OSAS patients. One-hundred and nine patients with newly diagnosed OSAS were enrolled in the study. All individuals were treated with CPAP for one night. Venous lactate and arterial blood gas were gathered from all subjects in the morning at the end of polysomnography and the next morning after CPAP treatment. Of the 109 selected subjects, the average lactate level was 2.23 ± 0.59 mmol/L, and the mean PH, PaO 2 , and PaCO 2 were 7.380 ± 0.23, 88.14 ± 17.83 mmHg, and 38.70 ± 4.28 mmHg, respectively. Compared to baseline, lactic acid significantly decreased (2.10 ± 0.50 mmol/L, p = 0.03), while PH increased (7.388 ± 0.27, p < 0.05) after CPAP treatment. In addition, neck circumference and the polysomnographic parameters, including apnea-hypopnea index, oxygen desaturation index (ODI), mean oxygen saturation (SpO 2 ), and the percentage of sleep time with SpO 2 <90 % (TS90 %), positively correlated with lactate, while age correlated negatively with lactate (all p < 0.05). Significantly positive associations were found between age, neck circumference, and PH; furthermore, a negative correlation was found between ODI and PH. Finally, after adjusting for confounding factors, TS90 % was the major contributing predictor for elevated lactate (p < 0.05), and age was a predictor for an increase in PH (p < 0.05). The results indicated that CPAP treatment could reduce serum lactate and increase PH in OSAS patients and might alleviate acid-base balance disorders in OSAS. Furthermore, TS90 % was a risk factor for elevated lactate, and age was independently associated with PH.

  8. Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona

    USGS Publications Warehouse

    Stollenwerk, Kenneth G.

    1994-01-01

    Acidic water from a copper-mining area has contaminated an alluvial aquifer and stream near Globe, Arizona. The most contaminated groundwater has a pH of 3.3, and contains about 100 mmol/1 SO4, 50 mmol/1 Fe, 11 mmol/1 Al and 3 mmol/1 Cu. Reactions between alluvium and acidic groundwater were first evaluated in laboratory column experiments. A geochemical model was developed and used in the equilibrium speciation program, MINTEQA2, to simulate breakthrough curves for different constituents from the column. The geochemical model was then used to simulate the measured changes in concentration of aqueous constituents along a flow path in the aquifer.The pH was predominantly controlled by reaction with carbonate minerals. Where carbonates had been dissolved, adsorption of H+ by iron oxides was used to simulate pH. Acidic groundwater contained little or no dissolved oxygen, and most aqueous Fe was present as Fe(II). In the anoxic core of the plume, Fe(II) was oxidized by MnO2 to Fe(III), which then precipitated as Fe(OH)3. Attenuation of aqueous Cu, Co, Mn, Ni and Zn was a function of pH and could be quantitatively modeled with the diffuse-layer, surface complexation model in MINTEQA2. Aluminum precipitated as amorphous Al(OH)3 at pH < 4.7 and as AlOHSO4 at pH < 4.7. Aqueous Ca and SO4were close to equilibrium with gypsum.After the alluvium in the column had reached equilibrium with acidic groundwater, uncontaminated groundwater was eluted through the column to evaluate the effect of reactants on groundwater remediation. The concentration of Fe, Mn, Cu, Co, Ni and Zn rapidly decreased to the detection limits within a few pore volumes. All of the gypsum that had precipitated initially redissolved, resulting in elevated Ca and SO4concentrations for about 5 pore volumes. Aluminum and pH exhibited the most potential for continued adverse effects on groundwater quality. As H+ desorbed from Fe(OH)3, pH remained below 4.5 for more than 20 pore volumes, resulting in dissolution of AlOHSO4 and elevated aqueous Al.

  9. Natural Oxidation of Bromide to Bromine in Evaporated Dead Sea Brines

    NASA Astrophysics Data System (ADS)

    Gavrieli, Ittai; Golan, Rotem; Lazar, Boaz; Baer, Gidi; Zakon, Yevgeni; Ganor, Jiwchar

    2016-04-01

    Highly evaporated Dead Sea brines are found in isolated sinkholes along the Dead Sea. Many of these brines reach densities of over 1.3 kg/L and pH<5 and are the product of evaporation of Dead Sea brine that drain into the sinkholes. The low pH and the reddish to brownish hue of these brines were an enigma until recently. Despite the rather high total alkalinity (TA) of the Dead Sea (3.826 mmol/kg) the pH of the Dead Sea brine is known to be slightly acidic with a value of ~6.3. In comparison, seawater with the same alkalinity would have a pH value well above 8.3, meaning that H+ activity is 100 fold lower than that of Dead Sea brine. In the present work we assess the apparent dissociation constant value of boric acid (K`B) for the Dead Sea brine and use it to explain the brine's low pH value. We then show that pH decreases further as the brine evaporates and salinity increases. Finally we explain the reddish hue of the hypersaline brines in the sinkholes as due to the presence of dissolved bromine. The latter is the product of oxidation of dissolved bromide, a process that is enabled by the low pH of the hypersaline brines and their high bromide concentration.

  10. Atomic Physics with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. III; Oscillator Strengths for Neutral Carbon

    NASA Technical Reports Server (NTRS)

    Zsargo, J.; Federman, S. R.; Cardelli, Jason A.

    1997-01-01

    High quality spectra of interstellar absorption from C I toward beta(sup 1) S(sub co), rho O(sub ph) A, and chi O(sub ph) were obtained with the Goddard High Resolution Spectrograph on HST. Many weak lines were detected within the observed wavelength intervals: 1150-1200 A for beta(sup 1) S(sub co) and 1250-1290 A for rho O(sub ph) A and chi O(sub ph). Curve-of-growth analyses were performed in order to extract accurate column densities and Doppler parameters from lines with precise laboratory-based f-values. These column densities and b-values were used to obtain a self-consistent set of f-values for all the observed C I lines. A particularly important constraint was the need to reproduce data for more than one line of sight. For about 50% of the lines, the derived f-values differ appreciably from the values quoted by Morton.

  11. Effect of pH and nitrite concentration on nitrite oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J

    2011-10-01

    The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models

    NASA Astrophysics Data System (ADS)

    Song, Shaojie; Gao, Meng; Xu, Weiqi; Shao, Jingyuan; Shi, Guoliang; Wang, Shuxiao; Wang, Yuxuan; Sun, Yele; McElroy, Michael B.

    2018-05-01

    pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between -2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption) resulted from coding errors in the model, which have been identified and fixed in this study.

  13. Pnicogen bonds between X═PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases.

    PubMed

    Alkorta, Ibon; Sánchez-Sanz, Goar; Elguero, José; Del Bene, Janet E

    2014-02-27

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the pnicogen bonded complexes formed between the acids O═PH3, S═PH3, HN═PH3, and H2C═PH3 and the bases NH3, NCH, N2, PH3, and PCH. All nitrogen and phosphorus bases form complexes in which the bases are lone pair electron donors. The binding energies of complexes involving the stronger bases NH3, NCH, and PH3 differentiate among the acids, but the binding energies of complexes with the weaker bases do not. These complexes are stabilized by charge transfer from the lone pair orbital of N or P to the σ*P═A orbital of X═PH3, where A is the atom of X directly bonded to P. PCH also forms complexes with the X═PH3 acids as a π electron donor to the σ*P═A orbital. The binding energies and the charge-transfer energies of the π complexes are greater than those of the complexes in which PCH is a lone pair donor. Whether the positive charge on P increases, decreases, or remains the same upon complex formation, the chemical shieldings of (31)P decrease in the complexes relative to the corresponding monomers. (1p)J(P-N) and (1p)J(P-P) values correlate best with the corresponding P-N and P-P distances as a function of the nature of the base. (1)J(P-A) values do not correlate with P-A distances. Rather, the absolute values of (1)J(P-O), (1)J(P-S), and (1)J(P-N) decrease upon complexation. Decreasing (1)J(P-A) values correlate linearly with increasing complex binding energies. In contrast, (1)J(P-C) values increase upon complexation and correlate linearly with increasing binding energies.

  14. Chemical and Hydrologic Data From the Cement Creek and Upper Animas River Confluence and Mixing Zone, Silverton, Colorado, September 1997

    USGS Publications Warehouse

    Schemel, Laurence E.; Cox, Marisa H.

    2007-01-01

    Cement Creek, an acidic tributary, discharges into the circum-neutral Animas River (pH>7) in Silverton, Colorado located in the high-elevation San Juan Mountains. Mixing of Animas River water with acidic metal rich Cement Creek water raises water pH and produces metal precipitates. This report presents selected anion, cation, chloride, and sulfate data along with hydrologic data highlighting the mixing of these streams during the low-flow period in late summer 1997.

  15. Synthesis of illite-smectite from smectite at earth surface temperatures and high pH

    USGS Publications Warehouse

    Eberl, D.D.; Velde, Bruce; McCormick, T.C.

    1993-01-01

    It is well known that illite-smectite can form from smectite at elevated temperatures in natural and experimental systems. However, the conversion of smectite to illite-smectite is also found in some natural systems that have never been heated. The present experiments show that illite layers can form from smectite by chemical reaction at 35° and 60°C at high solution pH. The rate of this reaction is accelerated by wetting and drying.

  16. Addition of sodium bicarbonate to complete pelleted diets fed to dairy calves.

    PubMed

    Wheeler, T B; Wangsness, P J; Muller, L D; Griel, L C

    1980-11-01

    During two trials, 35 and 27 Holstein calves were fed ad libitum complete, pelleted diets containing either 35% alfalfa (Trial 1) or 35% grass (Trial 2) hay from birth to 12 wk of age. Calves in Trial 1 were fed one of the following diets: control, control + 3.5% sodium chloride, or control + 5% sodium bicarbonate. In Trial 2, diets were: control, control + 5% sodium bicarbonate, or control + 5% sodium bicarbonate + loose, chopped grass hay. Intake of dry matter, gain in body weight, ruminal pH, or fecal starch did not differ. Calves fed sodium bicarbonate in Trial 1 but not 2 had a reduced feed efficiency compared with control and supplemented diets. In Trial 1 added sodium bicarbonate did not alter intake or digestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water intake in Trial 2. Incidence of free-gas bloat was higher in calves fed sodium bicarbonate in both trials. Addition of sodium bicarbonate to complete pelleted diets containing 35% alfalfa or 35% grass hay appeared to have no benefit for young, growing dairy calves in performance and health.

  17. Authigenic apatite and octacalcium phosphate formation due to adsorption-precipitation switching across estuarine salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2015-02-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain largely unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation across salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a low P site. Octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite, CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Gradients in sediment pH strongly affected P fractions across ecosystems and independent of the site-specific total P status. We found a pronounced switch from adsorbed Al/Fe-P to mineral Ca-P with decreasing acidity from land to sea. This switch occurred at near-neutral sediment pH and has possibly been enhanced by redox-driven phosphate desorption from iron oxyhydroxides. The seaward decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. Correspondingly, two location-dependent accumulation mechanisms occurred at the high P site due to the switch, leading to elevated Al/Fe-P at pH < 6.6 (landward; adsorption) and elevated Ca-P at pH > 6.6 (seaward; precipitation). Enhanced Ca-P precipitation by increased P loads was also evident from disproportional accumulation of metastable Ca-P (Ca-Pmeta) at the high P site. Here, sediments contained on average 6-fold higher Ca-Pmeta levels compared with the low P site, although these sediments contained only 2-fold more total Ca-P than the low P sediments. Phosphorus species distributions indicated that these elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP in nearshore areas. Formation of CFAP as well as its precursor, OCP, results in P retention in coastal zones and can thus lead to substantial inorganic P accumulation in response to anthropogenic P input.

  18. Stratum corneum hydration and skin surface pH in patients with atopic dermatitis.

    PubMed

    Knor, Tanja; Meholjić-Fetahović, Ajša; Mehmedagić, Aida

    2011-01-01

    Atopic dermatitis (AD) is a chronically relapsing skin disease with genetic predisposition, which occurs most frequently in preschool children. It is considered that dryness and pruritus, which are always present in AD, are in correlation with degradation of the skin barrier function. Measurement of hydration and pH value of the stratum corneum is one of the noninvasive methods for evaluation of skin barrier function. The aim of the study was to assess skin barrier function by measuring stratum corneum hydration and skin surface pH of the skin with lesions, perilesional skin and uninvolved skin in AD patients, and skin in a healthy control group. Forty-two patients were included in the study: 21 young and adult AD patients and 21 age-matched healthy controls. Capacitance, which is correlated with hydration of stratum corneum and skin surface pH were measured on the forearm in the above areas by SM810/CM820/pH900 combined units (Courage AND Khazaka, Germany). The mean value of water capacitance measured in AD patients was 44.1 ± 11.6 AU (arbitrary units) on the lesions, 60.2 ± 12.4 AU on perilesional skin and 67.2 ± 8.8 AU on uninvolved skin. In healthy controls, the mean value was 74.1 ± 9.2 AU. The mean pH value measured in AD patients was 6.13 ± 0.52 on the lesions, 5.80 ± 0.41 on perilesional skin, and 5.54 ± 0.49 on uninvolved skin. In control group, the mean pH of the skin surface was 5.24 ± 0.40. The values of both parameters measured on lesional skin were significantly different (capacitance decreased and pH increased) from the values recorded on perilesional skin and uninvolved skin. The same held for the relation between perilesional and uninvolved skin. According to study results, the uninvolved skin of AD patients had significantly worse values of the measured parameters as compared with control group. The results of this study suggested the skin barrier function to be degraded in AD patients, which is specifically expressed in lesional skin.

  19. Influence of the water molecules near surface of viral protein on virus activation process

    NASA Astrophysics Data System (ADS)

    Shepelenko, S. O.; Salnikov, A. S.; Rak, S. V.; Goncharova, E. P.; Ryzhikov, A. B.

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for influenza virus strains suggests that the proposed model of the interaction between water molecules and influenza virus envelope proteins has a high prediction efficiency.

  20. The pathophysiology of pulmonary hypertension in left heart disease.

    PubMed

    Breitling, Siegfried; Ravindran, Krishnan; Goldenberg, Neil M; Kuebler, Wolfgang M

    2015-11-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics. Copyright © 2015 the American Physiological Society.

  1. Effect of sampling location on L* values and pH measurements and their relationship in broiler breast fillets

    USDA-ARS?s Scientific Manuscript database

    Lightness (CIELAB L*) and pH values are the most widely measured quality indicators for broiler breast fillets (pectoralis major). Measurement of L* values with a spectrophotometer can be done through Specular Component Included (SCI) or Specular Component Excluded (SCE) modes. The intra-fillet loca...

  2. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains.

    PubMed

    Zhou, Jie; Zhang, Limin; Tian, Yang

    2016-02-16

    To develop in vivo monitoring meter for pH measurements is still the bottleneck for understanding the role of pH plays in the brain diseases. In this work, a selective and sensitive electrochemical pH meter was developed for real-time ratiometric monitoring of pH in different regions of rat brains upon ischemia. First, 1,2-naphthoquinone (1,2-NQ) was employed and optimized as a selective pH recognition element to establish a 2H(+)/2e(-) approach over a wide range of pH from 5.8 to 8.0. The pH meter demonstrated remarkable selectivity toward pH detection against metal ions, amino acids, reactive oxygen species, and other biological species in the brain. Meanwhile, an inner reference, 6-(ferrocenyl)hexanethiol (FcHT), was selected as a built-in correction to avoid the environmental effect through coimmobilization with 1,2-NQ. In addition, three-dimensional gold nanoleaves were electrodeposited onto the electrode surface to amplify the signal by ∼4.0-fold and the measurement was achieved down to 0.07 pH. Finally, combined with the microelectrode technique, the microelectrochemical pH meter was directly implanted into brain regions including the striatum, hippocampus, and cortex and successfully applied in real-time monitoring of pH values in these regions of brain followed by global cerebral ischemia. The results demonstrated that pH values were estimated to 7.21 ± 0.05, 7.13 ± 0.09, and 7.27 ± 0.06 in the striatum, hippocampus, and cortex in the rat brains, respectively, in normal conditions. However, pH decreased to 6.75 ± 0.07 and 6.52 ± 0.03 in the striatum and hippocampus, upon global cerebral ischemia, while a negligible pH change was obtained in the cortex.

  3. Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis.

    PubMed

    Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval

    2015-03-05

    ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Spectral investigation of somatotropin for different pH values

    NASA Astrophysics Data System (ADS)

    Otero de Joshi, Virginia; Gil, Herminia; Contreras, Silvia; Joshi, Narahari V.; Hernandez, Luis

    1996-04-01

    Spectral investigations of absorbance in deep ultra-violet region (from 200 nm to 350 nm) of (STM) was carried out for different pH values. On the high energy side the peak is located at 195 nm which is generally attributed to peptide bonds. This peak, as expected, does not show any shift with pH value (4.3 to 10.8). A rather broad peak is spread in the region from 200 nm to 240 nm which could be the superposition of the peaks corresponding to the absorption due to (alpha) helix and (beta) structure. This peak shows a red shift as pH value increases. The same hormone was glycated by a conventional method and the process was estimated with the absorption spectra. The results are discussed in the light of nonenzymatic glycation. It was found that glycation mucus somatotropin resistant towards the denaturation process.

  5. Geochemical characterization of groundwater discharging from springs north of the Grand Canyon, Arizona, 2009–2016

    USGS Publications Warehouse

    Beisner, Kimberly R.; Tillman, Fred D.; Anderson, Jessica R.; Antweiler, Ronald C.; Bills, Donald J.

    2017-08-01

    A geochemical study was conducted on 37 springs discharging from the Toroweap Formation, Coconino Sandstone, Hermit Formation, Supai Group, and Redwall Limestone north of the Grand Canyon near areas of breccia-pipe uranium mining. Baseline concentrations were established for the elements As, B, Li, Se, SiO2, Sr, Tl, U, and V. Three springs exceeded U.S. Environmental Protection Agency drinking water standards: Fence Spring for arsenic, Pigeon Spring for selenium and uranium, and Willow (Hack) Spring for selenium. The majority of the spring sites had uranium values of less than 10 micrograms per liter (μg/L), but six springs discharging from all of the geologic units studied that are located stratigraphically above the Redwall Limestone had uranium values greater than 10 μg/L (Cottonwood [Tuckup], Grama, Pigeon, Rock, and Willow [Hack and Snake Gulch] Springs). The geochemical characteristics of these six springs with elevated uranium include Ca-Mg-SO4 water type, circumneutral pH, high specific conductance, correlation and multivariate associations between U, Mo, Sr, Se, Li, and Zn, low 87Sr/86Sr, low 234U/238U activity ratios (1.34–2.31), detectable tritium, and carbon isotopic interpretation indicating they may be a mixture of modern and pre-modern waters. Similar geochemical compositions of spring waters having elevated uranium concentrations are observed at sites located both near and away from sites of uranium-mining activities in the present study. Therefore, mining does not appear to explain the presence of elevated uranium concentrations in groundwater at the six springs noted above. The elevated uranium at the six previously mentioned springs may be influenced by iron mineralization associated with mineralized breccia pipe deposits. Six springs discharging from the Coconino Sandstone (Upper Jumpup, Little, Horse, and Slide Springs) and Redwall Limestone (Kanab and Side Canyon Springs) contained water with corrected radiocarbon ages as much as 9,300 years old. Of the springs discharging water with radiocarbon age, Kanab and Side Canyon Springs contain tritium of more than 1.3 picocuries per liter (pCi/L), indicating they may contain a component of modern water recharged after 1952. Springs containing high values of tritium (greater than 5.1 pCi/L), which may suggest a significant component of modern water, include Willow (Hack), Saddle Horse, Cottonwood (Tuckup), Hotel, Bitter, Unknown, Hole in the Wall, and Hanging Springs. Fence and Rider Springs, located on the eastern end of the study area near the Colorado River, have distinctly different geochemical compositions compared to the other springs of the study. Additionally, water from Fence Spring has the highest 87Sr/86Sr for samples analyzed from this study with a value greater than those known in sedimentary rocks from the region. Strontium isotope data likely indicate that water discharging at Fence Spring has interacted with Precambrian basement rocks. Rider Spring had the most depleted values of stable O and H isotopes indicating that recharge, if recent, occurred at higher elevations or was recharged during earlier, cooler-climate conditions.

  6. [Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis].

    PubMed

    Lai, Bo; Qin, Hong-Ke; Zhou, Yue-Xi; Song, Yu-Dong; Cheng, Jia-Yun; Sun, Li-Dong

    2011-04-01

    Wastewater from the condensation and drying section of acrylonitrile-butadiene-styrene (ABS) resin plant was pretreated by the microelectrolysis, and the effect of the influent pH value on the pollution removal efficiency of the microelectrolysis was mainly studied. In order to study the electrochemical action of the microelectrolysis for the degradation of toxic refractory organic pollutants, two control experiments of activated carbon and iron were set up. The results showed that the TOC removal efficiencies were all fluctuated between 40% and 60% under the condition of different influent pH values. The microelectrolysis can decompose and transform the toxic refractory organic pollutants and increase the BOD5/COD ratio from 0.32 to 0.60, which increased the biodegradability of ABS resin wastewater significantly. When the pH value of influent was 4.0, the BOD5/COD ratio of effluent reached 0.71. The result of UV-vis spectra indicates that the removal efficiency of the organic nitrile was the highest with influent pH was 4.0. Therefore, the best influent pH value of microelectrolysis was 4.0.

  7. Effect of sonication on the colloidal stability of iron oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2015-04-24

    Colloidal stability of superparamagnetic iron oxide nanoparticles’ (SPION) suspensions, ultrasonically irradiated at various pH was studied. Electrophoresis measurement of the sonicated SPION showed that the shock waves and other unique conditions generated from the acoustic cavitation process (formation, growth and collapse of bubbles) affect the zeta potential value of the suspension. In this work, stabled colloidal suspensions of SPION were prepared and their pH is varied between 3 and 5. Prior to ultrasonic irradiation of the suspensions, their initial zeta potential values were determined. After ultrasonic irradiation of the suspensions, we observed that the sonication process interacts with colloidal stabilitymore » of the nanoparticles. The results demonstrated that only suspensions with pH less 4 were found stable and able to retain more than 90% of its initial zeta potential value. However, at pH greater than 4, the suspensions were found unstable. The result implies that good zeta potential value of SPION can be sustained in sonochemical process as long as the pH of the mixture is kept below 4.« less

  8. Stable and selective self-assembly of α-lipoic acid on Ge(001) for biomolecule immobilization

    NASA Astrophysics Data System (ADS)

    Kazmierczak, M.; Flesch, J.; Mitzloff, J.; Capellini, G.; Klesse, W. M.; Skibitzki, O.; You, C.; Bettenhausen, M.; Witzigmann, B.; Piehler, J.; Schroeder, T.; Guha, S.

    2018-05-01

    We demonstrate a novel method for the stable and selective surface functionalization of germanium (Ge) embedded in silicon dioxide. The Ge(001) surface is functionalized using α-lipoic acid (ALA), which can potentially be utilized for the immobilization of a wide range of biomolecules. We present a detailed pH-dependence study to establish the effect of the incubation pH value on the adsorption layer of the ALA molecules. A threshold pH value for functionalization is identified, dividing the examined pH range into two regions. Below a pH value of 7, the formation of a disordered ALA multilayer is observed, whereas a stable well-ordered ALA mono- to bi-layer on Ge(001) is achieved at higher pH values. Furthermore, we analyze the stability of the ALA layer under ambient conditions, revealing the most stable functionalized Ge(001) surface to effectively resist oxidation for up to one week. Our established functionalization method paves the way towards the successful immobilization of biomolecules in future Ge-based biosensors.

  9. Effect of pH on particles size and gas sensing properties of In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Anand, Kanica; Thangaraj, Rengasamy; Singh, Ravi Chand

    2016-05-01

    In this work, indium oxide (In2O3) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In2O3 nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In2O3 nanoparticles. FESEM results indicate the formation of nearly spherical shape In2O3 nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensors and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In2O3 nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).

  10. Study of Vis/NIR spectroscopy measurement on acidity of yogurt

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    A fast measurement of pH of yogurt using Vis/NIR-spectroscopy techniques was established in order to measuring the acidity of yogurt rapidly. 27 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The pH of yogurt on positions scanned by spectrum was measured by a pH meter. The mathematical model between pH and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS) by using Unscramble V9.2. Then 25 unknown samples from 5 different brands were predicted based on the mathematical model. The result shows that The correlation coefficient of pH based on PLS model is more than 0.890, and standard error of calibration (SEC) is 0.037, standard error of prediction (SEP) is 0.043. Through predicting the pH of 25 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0918. The results show the good to excellent prediction performances. The Vis/NIR spectroscopy technique had a significant greater accuracy for determining the value of pH. It was concluded that the VisINIRS measurement technique can be used to measure pH of yogurt fast and accurately, and a new method for the measurement of pH of yogurt was established.

  11. Ocean acidification affects prey detection by a predatory reef fish.

    PubMed

    Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I

    2011-01-01

    Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  12. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis

    PubMed Central

    Boikov, Dina A.; James, Kenneth D.; Bartizal, Ken; Sobel, Jack D.

    2017-01-01

    Background: The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. Objectives: To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. Methods: MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans (n = 60), Candida glabrata (n = 21), Candida parapsilosis (n = 14) and Candida tropicalis (n = 13). Results: Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. Conclusions: CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. PMID:28158577

  13. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis.

    PubMed

    Boikov, Dina A; Locke, Jeffrey B; James, Kenneth D; Bartizal, Ken; Sobel, Jack D

    2017-05-01

    The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans ( n  =   60), Candida glabrata ( n  =   21), Candida parapsilosis ( n  =   14) and Candida tropicalis ( n  =   13). Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  14. Cytosolic zinc release and clearance in hippocampal neurons exposed to glutamate – the role of pH and sodium

    PubMed Central

    Kiedrowski, Lech

    2011-01-01

    Although Zn2+ homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn2+ concentration ([Zn2+]i) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn2+]i and [Ca2+]i were monitored simultaneously using FluoZin-3 and Fura2-FF and intracellular pH (pHi) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na+-free conditions (Na+ substituted with N-methyl-D-glucamine+) caused Ca2+ influx, pHi drop, and Zn2+ release from intracellular stores. Experimental maneuvers resulting in a pHi increase during Glu/Gly applications, such as stimulation of Na+-dependent pathways of H+ efflux, forcing H+ efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn2+]i elevations. In the absence of Na+, the rate of [Zn2+]i decrease could be correlated with the rate of pHi increase. In the presence of Na+, the rate of [Zn2+]i decrease was about twice as fast as expected from the rate of pHi elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn2+]i elevations and that Na+ counteracts the latter by promoting pHi-dependent and pHi-independent mechanisms of cytosolic Zn2+ clearance. PMID:21255017

  15. Novel Bioconjugation Strategy Using Elevated Hydrostatic Pressure: A Case Study for the Site-Specific Attachment of Polyethylene Glycol (PEGylation) of Recombinant Human Ciliary Neurotrophic Factor.

    PubMed

    Wang, Qi; Zhang, Chun; Guo, Fangxia; Li, Zenglan; Liu, Yongdong; Su, Zhiguo

    2017-11-15

    In this paper, we reported a novel strategy for the site-specific attachment of polyethylene glycol (PEGylation) of proteins using elevated hydrostatic pressure. The process was similar to the conventional one except the reactor was under elevated hydrostatic pressure. The model protein was recombinant human ciliary neurotrophic factor (rhCNTF), and the reagent was monomethoxy-polyethylene glycol-maleimide (mPEG-MAL). PEGylation with mPEG (40 kDa)-MAL at pH 7.0 under normal pressure for 5 h achieved a less than 5% yield. In comparison, when the pressure was elevated, the PEGylation yield was increased dramatically, reaching nearly 90% at 250 MPa. Furthermore, the following phenomena were observed: (1) high-hydrostatic-pressure PEGylation (HHPP) could operate at a low reactant ratio of 1:1.2 (rhCNTF to mPEG-MAL), while the conventional process needs a much-higher ratio. (2) Short and long chains of PEG gave a similar yield of 90% in HHPP, while the conventional yield for the short chain of the PEG was higher than that of the long chain. (3) The reaction pH in the range of 7.0 to 8.0 had almost no influence upon the yield of HHPP, while the PEGylation yield was significantly increased by a factor of three from pH 7.0 to 8.0 at normal pressure. Surface accessibility analysis was performed using GRASP2 software, and we found that Cys17 of rhCNTF was located at the concave patches, which may have steric hindrance for the PEG to approach. The speculated benefit of HHPP was the facilitation of target-site exposure, reducing the steric hindrance and making the reaction much easier. Structure and activity analysis demonstrated that the HHPP product was comparable to the PEGylated rhCNTF prepared through a conventional method. Overall, this work demonstrated that HHPP, as we proposed, may have application potentials in various conjugations of biomacromolecules.

  16. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    PubMed

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.

  17. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    PubMed Central

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  18. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH.

    PubMed

    Rupprecht, Christian; Wingen, Marcus; Potzkei, Janko; Gensch, Thomas; Jaeger, Karl-Erich; Drepper, Thomas

    2017-09-20

    The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pK a ∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pK a values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates.

    PubMed

    Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah

    2014-06-01

    We investigated complex coacervation of sodium caseinate/Astragalus rahensis (A.r) as a function of pH with light scattering, spectrophotometry, and viscosity measurements. Interestingly, sodium caseinate/A.r displayed five structural transitions; pH 7.00 to pH ∼5.40: no interaction occurred, pH ∼5.40 to pH ∼4.80: initiation of the formation of primary soluble complexes, pH ∼4.80 to ∼4.30: formation of interpolymer complexes, pH ∼4.30 to ∼4.02: optimum coacervation and pH ∼4.02 to ∼2.50: suppression of coacervation. In addition, rheological properties of sodium caseinate/A.r coacervates were studied at various pH values. A much higher storage modulus (G') than loss modulus (G″) for all sodium caseinate/A.r coacervates suggests the formation of highly interconnected gel-like network structures with mainly elastic behaviour. Moreover, sodium caseinate/A.r coacervates at all pH values exhibited a shear thinning behaviour across the entire shear rate range investigated. Effects of different species of gum tragacanth on the interactions with sodium caseinate have been scarcely studied. Our study showed that systems containing various species (A.r, soluble fraction of A.r and Astragalus gossypinus (A.g)) had different critical pH values and particle sizes during complex coacervation, which could be due to different ratio of soluble to insoluble fractions and uronic acid content of various species. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. To Analyse the Erosive Potential of Commercially Available Drinks on Dental Enamel and Various Tooth Coloured Restorative Materials - An In-vitro Study.

    PubMed

    Karda, Babita; Jindal, Ritu; Mahajan, Sandeep; Sandhu, Sanam; Sharma, Sunila; Kaur, Rajwinder

    2016-05-01

    With the enormous change in life style pattern of a common man through the past few decades, there has been proportional variation in the amount and frequency of consumption of drinks. An increased consumption of these drinks will concurrently increase enamel surface roughness by demineralization, resulting in hypersensitivity and elevated caries risk. The present study was designed to evaluate the erosive potential of commercially available drinks on tooth enamel and various tooth coloured restorative materials. Extracted human teeth were taken and divided into four groups i.e. tooth enamel, glass ionomer cement, composite and compomer. Four commercially available drinks were chosen these were Coca -Cola, Nimbooz, Frooti and Yakult. The pH of each drink was measured. Each group was immersed in various experimental drinks for a period of 14 days. The erosive potential of each drink was measured by calculating the change in average surface roughness of these groups after the immersion protocol in various drinks. The data analysis was done by One Way Anova, Post-Hoc Bonferroni, and paired t -test. Group II-GIC showed highest values for mean of change in average surface roughness and the values were statistically significant (p<0.001) with tooth enamel, composite and compomer (p=0.002). Coca-cola showed the highest erosive potential and Yakult showed the lowest, there was no statistical significant difference between the results shown by Yakult and Frooti. Characteristics which may promote erosion of enamel and tooth coloured restorative materials were surface texture of the material and pH of the drinks.

  1. Urinary pH as a Risk Factor for Stone Type

    NASA Astrophysics Data System (ADS)

    Sakhaee, Khashayar

    2007-04-01

    A high urinary pH is main risk factor for the calcium phosphate stone formation; however, its pathophysiologic mechanism has not been fully understood. The introduction of Topiramate in the treatment of various neurological disorders has been complicated by metabolic acidosis, significant hypocitraturia, elevated urinary pH, and calcium phosphate stone formation. This model provides a probe to investigate the pathophysiologic mechanism of calcium phosphate stone formation and perhaps to develop appropriate countermeasures in the future. On the other hand an unduly acidic urine predisposes one to uric acid nephrolithiasis. Our recent investigation linking low urinary pH, and defective renal ammoniagenesis to insulin resistance provides new knowledge to unfold the pathophysiology of uric acid nephrolithiasis. The metabolic profile leading to uric acid stone may emerge as one of the components of metabolic syndrome.

  2. Flexible modeling improves assessment of prognostic value of C-reactive protein in advanced non-small cell lung cancer.

    PubMed

    Gagnon, B; Abrahamowicz, M; Xiao, Y; Beauchamp, M-E; MacDonald, N; Kasymjanova, G; Kreisman, H; Small, D

    2010-03-30

    C-reactive protein (CRP) is gaining credibility as a prognostic factor in different cancers. Cox's proportional hazard (PH) model is usually used to assess prognostic factors. However, this model imposes a priori assumptions, which are rarely tested, that (1) the hazard ratio associated with each prognostic factor remains constant across the follow-up (PH assumption) and (2) the relationship between a continuous predictor and the logarithm of the mortality hazard is linear (linearity assumption). We tested these two assumptions of the Cox's PH model for CRP, using a flexible statistical model, while adjusting for other known prognostic factors, in a cohort of 269 patients newly diagnosed with non-small cell lung cancer (NSCLC). In the Cox's PH model, high CRP increased the risk of death (HR=1.11 per each doubling of CRP value, 95% CI: 1.03-1.20, P=0.008). However, both the PH assumption (P=0.033) and the linearity assumption (P=0.015) were rejected for CRP, measured at the initiation of chemotherapy, which kept its prognostic value for approximately 18 months. Our analysis shows that flexible modeling provides new insights regarding the value of CRP as a prognostic factor in NSCLC and that Cox's PH model underestimates early risks associated with high CRP.

  3. Using eddy currents for noninvasive in vivo pH monitoring for bone tissue engineering.

    PubMed

    Beck-Broichsitter, Benedicta E; Daschner, Frank; Christofzik, David W; Knöchel, Reinhard; Wiltfang, Jörg; Becker, Stephan T

    2015-03-01

    The metabolic processes that regulate bone healing and bone induction in tissue engineering models are not fully understood. Eddy current excitation is widely used in technical approaches and in the food industry. The aim of this study was to establish eddy current excitation for monitoring metabolic processes during heterotopic osteoinduction in vivo. Hydroxyapatite scaffolds were implanted into the musculus latissimus dorsi of six rats. Bone morphogenetic protein 2 (BMP-2) was applied 1 and 2 weeks after implantation. Weekly eddy current excitation measurements were performed. Additionally, invasive pH measurements were obtained from the scaffolds using fiber optic detection devices. Correlations between the eddy current measurements and the metabolic values were calculated. The eddy current measurements and pH values decreased significantly in the first 2 weeks of the study, followed by a steady increase and stabilization at higher levels towards the end of the study. The measurement curves and statistical evaluations indicated a significant correlation between the resonance frequency values of the eddy current excitation measurements and the observed pH levels (p = 0.0041). This innovative technique was capable of noninvasively monitoring metabolic processes in living tissues according to pH values, showing a direct correlation between eddy current excitation and pH in an in vivo tissue engineering model.

  4. Comparison of survival of diarrhoeagenic agents in two local weaning foods (ogi and koko).

    PubMed

    Bakare, S; Smith, S I; Olukoya, D K; Akpan, E

    1998-12-01

    The pH values of both cooked and uncooked ogi and koko samples were determined and the survival rate of four diarrhoeagenic agents, enteroinvasive Escherichia coli, Salmonella typhi, Shigella flexneri, and Vibrio cholerae were studied after they were seeded into cooked ogi and koko. Analysis of the pH of the cooked inoculated samples showed that there was a slight increase in pH (decrease in acidity) during storage for 48 h and 37 degrees C (from 3.5 to 3.7 for ogi and from 3.7 to 4.1 for koko). The study also showed that ogi had a slightly lower pH value than koko both before and after cooking. In both cases, the cooked samples had a slightly lower pH value than the uncooked samples. The pH value of ogi ranged from 3.0 to 3.6 and that of koko from 3.5 to 3.9. The survival experiment showed that the inoculated enteric pathogens were inhibited in cooked ogi and koko during storage for 24-48 h. The antibacterial effect of cooked koko was more pronounced, on the four enteric pathogens studied, than that of cooked ogi. Except for Shigella flexneri and E. coli in ogi, non of the other bacteria studied was recovered after 24 h.

  5. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumins on the Synthesis and Stability of Gold Nanostructures

    PubMed Central

    Miranda, Érica G. A.; Tofanello, Aryane; Brito, Adrianne M. M.; Lopes, David M.; Albuquerque, Lindomar J. C.; de Castro, Carlos E.; Costa, Fanny N.; Giacomelli, Fernando C.; Ferreira, Fabio F.; Araújo-Chaves, Juliana C.; Nantes, Iseli L.

    2016-01-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3–12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below 6.0, in these conditions the loss of native albumin structure impaired GNP synthesis. Alkaline pH values (9–12) combined the unfavorable conditions of denaturated protein structure with less reactive gold species. Therefore, an optimal condition for the synthesis of GNPs using serum albumins involves more reactive gold salt species combined with a reducing and negatively charged form of the protein, all favored at pH 6–7. PMID:27066476

  6. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals.

    PubMed Central

    Collins, Y E; Stotzky, G

    1992-01-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength (mu) of 3 x 10(-4); montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 (the pH at which charge reversal occurred differed with the metal) and then, at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a mu of greater than 3 x 10(-4), whereas there was no reversal in solutions with a mu of less than 3 x 10(-4). The clays became net positively charged when the mu of Cu was greater than 3 x 10(-4) and that of Ni was greater than 1.5 x 10(-4). The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (mu = 3 x 10(-4)). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measure the electrophoretic mobility did not affect their viability. The specific adsorption on the cells and clays of the hydrolyzed species of some of the heavy metals that formed at higher pH values was probably responsible for the charge reversal. These results suggest that the toxicity of some heavy metals to microorganisms varies with pH because the hydrolyzed speciation forms of these metals, which occur at higher pH values, bind on the cell surface and alter the net charge of the cell.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1622229

  7. Response of humic acid formation to elevated nitrate during chicken manure composting.

    PubMed

    Shi, Mingzi; Wei, Zimin; Wang, Liqin; Wu, Junqiu; Zhang, Duoying; Wei, Dan; Tang, Yu; Zhao, Yue

    2018-06-01

    Nitrate can stimulate microbes to degrade aromatic compounds, whereas humic acid (HA) as a high molecular weight aromatic compound, its formation may be affected by elevated nitrate during composting. Therefore, this study is conducted to determine the effect of elevated nitrate on HA formation. Five tests were executed by adding different nitrate concentrations to chicken manure composting. Results demonstrate that the concentration of HA in treatment group is significantly decreased compared with control group (p < 0.05), especially in the highest nitrate concentration group. RDA indicates that the microbes associated with HA and environmental parameters are influenced by elevated nitrate. Furthermore, structural equation model reveals that elevated nitrate reduces HA formation by mediating microbes directly, or by affecting ammonia and pH as the indirect drivers to regulate microbial community structure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe.

    PubMed

    Bundschuh, Mirco; Weyers, Arnd; Ebeling, Markus; Elsaesser, David; Schulz, Ralf

    2016-01-01

    Fate and toxicity of the active ingredients (AI's) of plant protection products in surface waters is often influenced by pH. Although a general range of pH values is reported in literature, an evaluation targeting aquatic ecosystems with documented AI inputs is lacking at the larger scale. Results show 95% of European surface waters (n = 3075) with a documented history of AI exposure fall within a rather narrow pH range, between 7.0 and 8.5. Spatial and temporal variability in the data may at least be partly explained by the calcareous characteristics of parental rock material, the affiliation of the sampling site to a freshwater ecoregion, and the photosynthetic activity of macrophytes (i.e., higher pH values with photosynthesis). Nonetheless, the documented pH range fits well with the standard pH of most ecotoxicological test guidelines, confirming the fate and ecotoxicity of AIs are usually adequately addressed.

  9. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.

    PubMed

    Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan

    2013-06-26

    We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.

  10. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  11. Elevated CO(2) and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversity in vitro.

    PubMed

    Meibaum, Birgit; Riede, Susanne; Schröder, Bernd; Manderscheid, Remy; Weigel, Hans-Joachim; Breves, Gerhard

    2012-12-01

    Climate changes are supposed to influence productivity and chemical composition of plants. In the present experiments, it was hypothesised that the incubation of plants exposed to elevated atmospheric carbon dioxide concentrations ([CO₂]) and drought stress will result in different ruminal fermentation pattern and microbial diversity compared to unaffected plants. Maize plants were grown, well-watered under ambient (380 ppm CO₂, Variant A) and elevated [CO₂] (550 ppm CO₂, Variant B). Furthermore, each CO₂ treatment was also exposed to drought stress (380 ppm and 550 ppm CO₂,Variants C and D, respectively), which received only half as much water as the well-watered plants. Plant material from these treatments was incubated in a semi-continuous in vitro fermentation experiment using the rumen simulation technique. Single strand conformation polymorphism (SSCP) analysis was conducted for Bacteria and Archaea specific profiles. The analysis of crude nutrients showed higher contents of fibre fraction in drought stress Variants C and D. Crude protein content was increased by drought stress under ambient but not under elevated [CO₂]. Fermentation of drought stress variants resulted in significantly increased pH values, decreased digestibilities of organic matter and increased ammonia-N (NH₃-N) concentrations compared with well-watered variants. Additionally, the 550 ppm CO₂ Variants B and D showed significantly lower NH₃-N concentrations than Variants A and C. The Bacteria- and Archaea-specific SSCP profiles as well as the production rates of short-chain fatty acids and their molar percentages were not affected by treatments. During the first four days of equilibration period, a decrease of molar percentage of acetate and increased molar percentages of propionate were observed for all treatments. These alterations might have been induced by adaptation of the in vitro system to the new substrate. The rumen microflora appeared to be highly adaptive and could cope with altered contents of crude nutrients in plants as induced by elevated [CO₂] and drought stress.

  12. Influence of pH for the determination of serum albumin by a dye-binding method in the presence of a detergent.

    PubMed

    Suzuki, Yuji

    2008-08-01

    In the dye-binding method, the absorbance increase caused by a protein error of a pH indicator is observed only in a restricted pH range. However, this pH range in the presence of a detergent has not yet been examined. Thus, the author investigated the pH (pH(UL)) where the absorbance increase becomes zero by a calculation based on the chemical equilibrium of a protein error of a pH indicator, and by experiments using four sulfonephthalein dyes. The pH(UL) value changed only with the detergent concentration, but did not change at all due to the dye, buffer solution or protein concentrations. Although the pH(UL) value was different according to the kind of dye used, it correlated well with the pK(D) values (dissociation constant) of BPB, BCG, BCP and BTB. The characteristics of pH(UL) in the reactions of the four dyes indicated good agreement with that obtained by a calculation.

  13. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  14. Role of Recurrent Hypoxia-Ischemia in Preterm White Matter Injury Severity

    PubMed Central

    Hagen, Matthew W.; Riddle, Art; McClendon, Evelyn; Gong, Xi; Shaver, Daniel; Srivastava, Taasin; Dean, Justin M.; Bai, Ji-Zhong; Fowke, Tania M.; Gunn, Alistair J.; Jones, Daniel F.; Sherman, Larry S.; Grafe, Marjorie R.; Hohimer, A. Roger; Back, Stephen A.

    2014-01-01

    Objective Although the spectrum of white matter injury (WMI) in preterm infants is shifting from cystic necrotic lesions to milder forms, the factors that contribute to this changing spectrum are unclear. We hypothesized that recurrent hypoxia-ischemia (rHI) will exacerbate the spectrum of WMI defined by markers of inflammation and molecules related to the extracellular matrix (hyaluronan (HA) and the PH20 hyaluronidase) that regulate maturation of the oligodendrocyte (OL) lineage after WMI. Methods We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. The response to rHI was compared against corresponding early or later single episodes of HI. An ordinal rating scale of WMI was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microglial activation. Late oligodendrocyte progenitors (preOLs) were quantified by stereology. Analysis of hyaluronan and the hyaluronidase PH20 defined the progressive response of the extracellular matrix to WMI. Results rHI resulted in a more severe spectrum of WMI with a greater burden of necrosis, but an expanded population of preOLs that displayed reduced susceptibility to cell death. WMI from single episodes of HI or rHI was accompanied by elevated HA levels and increased labeling for PH20. Expression of PH20 in fetal ovine WMI was confirmed by RT-PCR and RNA-sequencing. Conclusions rHI is associated with an increased risk for more severe WMI with necrosis, but reduced risk for preOL degeneration compared to single episodes of HI. Expansion of the preOL pool may be linked to elevated hyaluronan and PH20. PMID:25390897

  15. Influence of environmental, structural, and behavioral factors on the presence of phosphine in worker areas during fumigations in grain elevators.

    PubMed

    Reed, C

    2001-02-01

    Data-logging gas monitors with electrochemical cells sensitive to phosphine (PH3) were used to characterize concentrations of this common grain fumigant in and around grain elevators during fumigations. Twenty-four grain fumigations were observed, and each was monitored over a 5- to 8-day period. Phosphine gas, generated from aluminum phosphide fumigant applied to the grain, generally moved upward toward the grain surface and exited the bin at bin-top openings to the outside air or to enclosed worker areas. The upward air currents appeared to be the result of chimney effects, e.g., pressure differences resulting from buoyant air inside the warm grain and cooler, denser, ambient air. Significant wind effects on the PH3 concentration were also observed in the air between the grain surface and the bin roof. In enclosed areas located at the bin-top level, monitors located near the fill port or the fumigant dispenser recorded PH3 concentrations in excess of the exposure limit of 0.3 parts per million (ppm) about 35% of the time during grain fumigations. Phosphine concentrations between 0.31 and 1.0 ppm were observed 17.3% of the time, and concentrations in the ranges of 1.01-3.0, 3.01-10.0, and >10 ppm constituted 11.8%, 5.5%, and 0.3% of all readings, respectively, in bin-top worker areas. The likelihood of recording PH3 concentrations >0.3 ppm depended on ventilation practices. Fans in tunnels and open windows at aboveground locations appeared to greatly reduce the likelihood of high PH3 concentrations in enclosed areas.

  16. Juice Test for Identification of Nonerosive Reflux Disease in Heartburn Patients.

    PubMed

    Fernandes, Michel R; De Oliveira, Marina; Callegari-Jacques, Sidia M; Gonçalves, Gissele V R; Fornari, Fernando

    2018-04-30

    Evaluation of esophageal clearance by orange juice swallowing could be useful to identify different categories of gastroesophageal reflux disease. We determined whether a juice test at the beginning of esophageal pH monitoring can identify nonerosive reflux disease (NERD) among heartburn patients. Multiple swallows of orange juice (pH 3) were performed at the beginning of esophageal pH monitoring in 71 heartburn patients off acid-suppressive therapy. The area between pH drop below 5 and recovery to 5 was calculated from pH tracings and named Delta5 (mmol∙L⁻¹∙sec). Fifteen healthy subjects served to determine Delta5 cutoff (95th percentile). Patients were classified as NERD, non-NERD (a mix of reflux hypersensitivity, functional heartburn, and undetermined), and erosive disease depending on acid exposure, reflux symptom analysis, and upper endoscopy. Delta5 cutoff in healthy subjects was 251 mmol·L⁻¹∙sec. Among 71 patients, 23 had NERD, 26 had non-NERD, and 22 had erosive disease. Compared to non-NERD, Delta5 was higher in both NERD (median [interquartile range]: 316 [213-472] vs 165 [105-225]; P < 0.01) and erosive disease (310 [169-625] vs 165 [105-225]; P < 0.01). An elevated Delta5 (> 251 mmol∙L⁻¹∙sec) showed sensitivity of 74% and specificity of 81% for identification of NERD. Positive and negative likelihood ratios were 3.84 and 0.32 respectively, whereas test accuracy was 78%. A juice test with calculation of Delta5 helps in the identification of true NERD among heartburn patients with endoscopy-negative reflux disease. In these patients, an elevated Delta5 could make prolonged reflux testing unnecessary.

  17. Comparative study of the functional properties of three legume seed isolates: adzuki, pea and soy bean.

    PubMed

    Barac, Miroljub B; Pesic, Mirjana B; Stanojevic, Sladjana P; Kostic, Aleksandar Z; Bivolarevic, Vanja

    2015-05-01

    The aim of this work was to compare functional properties including solubility, emulsifying and foaming properties of native and thermally treated adzuki, soy and pea protein isolates prepared under the same conditions. These functional properties were tested at four pH values: pH 3.0, pH 5.0, pH 7.0 and pH 8.0. The lowest solubility at all pH values were obtained for isolate of adzuki whereas isolates of soybean had the highest values at almost all pHs. Thermal treatment reduced solubility of soy and pea isolates at all pH values, whereas solubility of adzuki isolate was unchanged, except at pH 8. Native isolate of adzuki had the best emulsifying properties at pH 7.0 whereas at the other pH values some of native pea and soybean protein isolates were superior. After thermal treatment, depending on tested pH and selected variety all of three species could be a good emulsifier. Native soy protein isolates formed the most stable foams at all pHs. Thermal treatment significantly improved foaming properties of adzuki isolate, whereas reduced foaming capacity of soy and pea isolates, but could improve foam stability of these isolates at specific pH. Appropriate selection of legume seed as well as variety could have great importance in achievement of desirable functional properties of final products. All three tested species could find specific application in wide range of food products.

  18. Effect of ph Value and Calcination Temperature on Structure and Magnetic Properties of Strontium Hexaferrite Thin Film

    NASA Astrophysics Data System (ADS)

    Shanaghi, A.

    2012-02-01

    Strontium hexaferrite was widely used in the fabrication of commercial permanent magnets and certain microwave devices. In this study, the strontium hexaferrite nanoparticle coatings were prepared by sol-gel method and using spin coating process on silicon substrate, then the effect of pH value, such as 5, 7 and 9, and calcination temperatures, such as 600°C, 800°C, and 1000°C, on structural and magnetic properties of strontium hexaferrite thin films were investigated by XRD, SEM and VSM measurements. The maximum saturation magnetization value of 57.43 emu/g and coercivity value of 3908 Oe were achieved for the thin film with crystallite size approximately 41 nm, prepared at pH value of 7 and calcinations temperature of 800°C.

  19. [Advances in the effects of pH value of micro-environment on wound healing].

    PubMed

    Tian, Ruirui; Li, Na; Wei, Li

    2016-04-01

    Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.

  20. HDP for the Neutralized pH Value Control in the Clarifying Process of Sugar Cane Juice

    NASA Astrophysics Data System (ADS)

    Lin, Xiaofeng; Yang, Jiaran

    2009-05-01

    Neutralizing pH value of sugar cane juice is the important craft in the control process in the clarifying process of sugar cane juice, which is the important factor to influence output and the quality of white sugar. On the one hand, it is an important content to control the neutralized pH value within a required range, which has the vital significance for acquiring high quality purified juice, reducing energy consumption and raising sucrose recovery. On the other hand, it is a complicated physical-chemistry process, which has the characteristics of strong non-linearity, time-varying, large time-delay, and multi-input. Therefore, there has not been a very good solution to control the neutralized pH value. Firstly, in this chapter, a neural network model for the clarifying process of sugar juice is established based on gathering 1200 groups of real-time sample data in a sugar factory. Then, the HDP (Heuristic Dynamic Programming) method is used to optimize and control the neutralized pH value in the clarifying process of sugar juice. Simulation results indicate that this method has good control effect. This will build a good foundation for stabilizing the clarifying process and enhancing the quality of the purified juice and lastly enhancing the quality of white sugar.

Top