Mielke, Michelle M; Hagen, Clinton E; Xu, Jing; Chai, Xiyun; Vemuri, Prashanthi; Lowe, Val J; Airey, David C; Knopman, David S; Roberts, Rosebud O; Machulda, Mary M; Jack, Clifford R; Petersen, Ronald C; Dage, Jeffrey L
2018-04-04
We examined and compared plasma phospho-tau181 (pTau181) and total tau: (1) across the Alzheimer's disease (AD) clinical spectrum; (2) in relation to brain amyloid β (Aβ) positron emission tomography (PET), tau PET, and cortical thickness; and (3) as a screening tool for elevated brain Aβ. Participants included 172 cognitively unimpaired, 57 mild cognitively impaired, and 40 AD dementia patients with concurrent Aβ PET (Pittsburgh compound B), tau PET (AV1451), magnetic resonance imaging, plasma total tau, and pTau181. Plasma total tau and pTau181 levels were higher in AD dementia patients than those in cognitively unimpaired. Plasma pTau181 was more strongly associated with both Aβ and tau PET. Plasma pTau181 was a more sensitive and specific predictor of elevated brain Aβ than total tau and was as good as, or better than, the combination of age and apolipoprotein E (APOE). Plasma pTau181 may have utility as a biomarker of AD pathophysiology and as a noninvasive screener for elevated brain Aβ. Copyright © 2018. Published by Elsevier Inc.
Regional rat brain noradrenaline turnover in response to restraint stress.
Glavin, G B; Tanaka, M; Tsuda, A; Kohno, Y; Hoaki, Y; Nagasaki, N
1983-08-01
Male Wistar rats were starved for 12 hr and then subjected to either 2 hr of wire mesh "envelope" restraint at room temperature; 2 hr of supine restraint in a specially constructed harness at room temperature or were not restrained. Eight brain regions were examined for NA level and the level of its major metabolite, MHPG-SO4. Plasma corticosterone and gastric ulcer incidence were also measured. All restrained rats displayed marked elevations in MHPG-SO4 levels in most brain regions. In addition, several brain regions in restrained animals showed a reduction in NA level. All restrained rats showed elevated plasma corticosterone levels and evidence of gastric lesions. In general, supine restraint produced greater alterations in regional brain NA turnover, greater evidence of ulcer disease, and higher plasma corticosterone levels than did wire mesh restraint. These data suggest that acute but intense stress in the form of restraint causes markedly altered brain NA activity--a possible neurochemical mechanism underlying the phenomenon of stress-induced disease.
Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells
NASA Astrophysics Data System (ADS)
Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun
2012-02-01
Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.
Höglund, E; Kolm, N; Winberg, S
2001-10-01
Arctic charr (Salvelinus alpinus) were tested for aggressive behavior using intruder tests, before and after 2 days of dyadic social interaction. Following social interaction, half of the dominant and half of the subordinate fish were given L-DOPA (10 mg/kg, orally), whereas the remaining dominant and subordinate fish were given vehicle. One hour following drug treatment, the fish were tested for aggressive behavior again in a third and final intruder test, after which blood plasma and brain tissue were sampled for analysis of plasma cortisol concentrations and brain levels of monoamines and monoamine metabolites. Subordinate fish showed a reduction in the number of attacks launched against the intruder, as well as an increase in attack latency, as compared to prior to dyadic social interactions. Social subordination also resulted in an elevation of brain serotonergic activity. Fish receiving L-DOPA prior to the final intruder test showed shorter attack latency than vehicle controls. Drug treatment was a stressful experience and vehicle controls showed elevated plasma cortisol levels and longer attack latency as compared to before treatment. L-DOPA-treated fish showed lower plasma levels of cortisol and lower serotonergic activity in certain brain areas than vehicle controls. These results suggest that L-DOPA counteracts the stress-induced inhibition of aggressive behavior, and at the same time inhibits stress-induced effects on brain serotonergic activity and plasma cortisol concentrations.
Vuille-Dit-Bille, Raphael N; Ha-Huy, Riem; Stover, John F
2012-09-01
Changes in plasma aromatic amino acids (AAA = phenylalanine, tryptophan, tyrosine) and branched chain amino acids (BCAA = isoleucine, leucine, valine) levels possibly influencing intracranial pressure (ICP) and cerebral oxygen consumption (SjvO(2)) were investigated in 19 sedated patients up to 14 days following severe traumatic brain injury (TBI). Compared to 44 healthy volunteers, jugular venous plasma BCAA were significantly decreased by 35% (p < 0.001) while AAA were markedly increased in TBI patients by 19% (p < 0.001). The BCAA to AAA ratio was significantly decreased by 55% (p < 0.001) which persisted during the entire study period. Elevated plasma phenylalanine was associated with decreased ICP and increased SjvO(2), while higher plasma isoleucine and leucine levels were associated with increased ICP and higher plasma leucine and valine were linked to decreased SjvO(2). The amount of enterally administered amino acids was associated with significantly increased plasma levels with the exception of phenylalanine. Contrary to the initial assumption that elevated AAA and decreased BCAA levels are detrimental, increased plasma phenylalanine levels were associated with beneficial signs in terms of decreased ICP and reduced cerebral oxygen consumption reflected by increased SjvO(2); concomitantly, elevated plasma isoleucine and leucine levels were associated with increased ICP while leucine and valine were associated with decreased SjvO(2) following severe TBI, respectively. The impact of enteral nutrition on this observed pattern must be examined prospectively to determine if higher amounts of phenylalanine should be administered to promote beneficial effects on brain metabolism and if normalization of plasma BCAA levels is without cerebral side effects.
Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma.
Neselius, Sanna; Zetterberg, Henrik; Blennow, Kaj; Randall, Jeffrey; Wilson, David; Marcusson, Jan; Brisby, Helena
2013-01-01
The aim of this study was to investigate if olympic (amateur) boxing is associated with elevation of brain injury biomarkers in peripheral blood compared to controls. Thirty olympic boxers competing in at least 47 bouts were compared to 25 controls. Blood was collected from the controls at one occasion and from the boxers within 1-6 days after a bout and after a rest period of at least 14 days. Tau concentration in plasma was determined using a novel single molecule ELISA assay and S-100B, glial fibrillary acidic protein, brain-derived neurotrophic factor and amyloid β 1-42 were determined using standard immunoassays. None of the boxers had been knocked-out during the bout. Plasma-tau was significantly increased in the boxers after a bout compared to controls (mean ± SD, 2.46 ± 5.10 vs. 0.79 ± 0.961 ng L(-1), p = 0.038). The other brain injury markers did not differ between the groups. Plasma-tau decreased significantly in the boxers after a resting period compared to after a bout (p = 0.030). Olympic boxing is associated with elevation of tau in plasma. The repetitive minimal head injury in boxing may lead to axonal injuries that can be diagnosed with a blood test.
Palmisano, Aldo N.; Winton, J.R.; Dickhoff, Walton W.
2000-01-01
In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6??C; + 10.6??C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold, Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight.
Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.
2004-01-01
We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.
Bednarek, Nathalie; Svedin, Pernilla; Garnotel, Roselyne; Favrais, Géraldine; Loron, Gauthier; Schwendiman, Leslie; Hagberg, Henrik; Morville, Patrice; Mallard, Carina; Gressens, Pierre
2012-01-01
To implement neuroprotective strategies in newborns, sensitive and specific biomarkers are needed for identifying those who are at risk for brain damage. We evaluated the effectiveness of matrix metalloproteinases (MMPs) and their naturally occurring tissue inhibitors of metalloproteinases (TIMPs) in predicting neonatal encephalopathy (NE) damage in newborns. Plasma MMP-9 and TIMP-1 levels were upregulated as early as 1 h after the HI insult but not did not show such elevations after other types of injury (ibotenate-induced excitotoxicity, hypoxia, lipopolysaccharide-induced inflammation), and brain levels reflected this increase soon thereafter. We confirmed these results by carrying out plasma MMP-9 and TIMP-1 measurements in human newborns with NE. In these infants, protein levels of MMP-9 and TIMP-1 were found to be elevated during a short window up to 6 h after birth. This feature is particularly useful in identifying newborns in need of neuroprotection. A second peak observed 72 h after birth is possibly related to the second phase of energy failure after a HI insult. Our data, although preliminary, support the use of MMP-9 and TIMP-1 as early biomarkers for the presence and extent of perinatal brain injury in human term newborns. We first used a mouse model of neonatal HI injury to explore mechanistic aspects such as the time course of these markers after the hypoxia-ischemia event, and the correlation between the levels of these candidate markers in brain and plasma.
Rattner, B.A.; Franson, J.C.
1984-01-01
Physiological and toxicological effects of p.o. methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10-h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?C) and cold (-5?C) environments. Methyl parathion was highly toxic (estimated median lethal dose of 3.08 mg/kg, 95% confidence limits of 2.29 -4.14 mg/kg), producing dose-dependent inhibition of brain and plasma cholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Brain and plasma cholinesterase inhibition in excess of 50% was associated with transient but pronounced hypothermia 2 h after intubation, although the magnitude of this response was yariable. Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication and elevated plasma alanine aminotransferase activity. Cold intensified methyl parathion toxicity, but did not affect that of fenvalerate. Thus, it would appear that organophosphorus insecticides pose far greater hazard than pyrethroids to raptorial birds.
Paul, Rajib; Borah, Anupom
2017-12-20
There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.
Wood, JodiAnne T.; Williams, John S.; Pandarinathan, Lakshmipathi; Janero, David R.; Lammi-Keefe, Carol J.; Makriyannis, Alexandros
2010-01-01
The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications. PMID:20071693
Wood, Jodianne T; Williams, John S; Pandarinathan, Lakshmipathi; Janero, David R; Lammi-Keefe, Carol J; Makriyannis, Alexandros
2010-06-01
The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications.
Oral uridine-5'-monophosphate (UMP) increases brain CDP-choline levels in gerbils.
Cansev, Mehmet; Watkins, Carol J; van der Beek, Eline M; Wurtman, Richard J
2005-10-05
We examined the biochemical pathways whereby oral uridine-5'-monophosphate (UMP) increases membrane phosphatide synthesis in brains of gerbils. We previously showed that supplementing PC12 cells with uridine caused concentration-related increases in CDP-choline levels, and that this effect was mediated by elevations in intracellular uridine triphosphate (UTP) and cytidine triphosphate (CTP). In the present study, adult gerbils received UMP (1 mmol/kg), a constituent of human breast milk and infant formulas, by gavage, and plasma samples and brains were collected for assay between 5 min and 8 h thereafter. Thirty minutes after gavage, plasma uridine levels were increased from 6.6 +/- 0.58 to 32.7 +/- 1.85 microM (P < 0.001), and brain uridine from 22.6 +/- 2.9 to 89.1 +/- 8.82 pmol/mg tissue (P < 0.001). UMP also significantly increased plasma and brain cytidine levels; however, both basally and following UMP, these levels were much lower than those of uridine. Brain UTP, CTP, and CDP-choline were all elevated 15 min after UMP (from 254 +/- 31.9 to 417 +/- 50.2, [P < 0.05]; 56.8 +/- 1.8 to 71.7 +/- 1.8, [P < 0.001]; and 11.3 +/- 0.5 to 16.4 +/- 1, [P < 0.001] pmol/mg tissue, respectively), returning to basal levels after 20 and 30 min. The smallest UMP dose that significantly increased brain CDP-choline was 0.05 mmol/kg. These results show that oral UMP, a uridine source, enhances the synthesis of CDP-choline, the immediate precursor of PC, in gerbil brain.
Phan, Jenny-Ann; Landau, Anne M; Jakobsen, Steen; Wong, Dean F; Gjedde, Albert
2017-11-22
We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [ 11 C]yohimbine binding in brain to quantify the density and affinity of α 2 adrenoceptors under condition of changing radioligand binding to plasma proteins. We obtained dynamic PET recordings from brain of Spraque Dawley rats at baseline, followed by pharmacological challenge with unlabeled yohimbine (0.3 mg/kg). The challenge with unlabeled ligand failed to diminish radioligand accumulation in brain tissue, due to the blocking of radioligand binding to plasma proteins that elevated the free fractions of the radioligand in plasma. We devised a method that graphically resolved the masking of unlabeled ligand binding by the increase of radioligand free fractions in plasma. The Extended Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50-60% in the presence of unlabeled ligand. The kinetic unmasking of inhibited binding reflected in the increase of the reference volume of distribution yielded estimates of receptor saturation consistent with the binding of unlabeled ligand.
Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy.
Barton, David A; Esler, Murray D; Dawood, Tye; Lambert, Elisabeth A; Haikerwal, Deepak; Brenchley, Celia; Socratous, Florentia; Hastings, Jacqueline; Guo, Ling; Wiesner, Glen; Kaye, David M; Bayles, Richard; Schlaich, Markus P; Lambert, Gavin W
2008-01-01
The biological basis for the development of major depressive disorder (MDD) remains incompletely understood. To quantify brain serotonin (5-hydroxytryptamine [5-HT]) turnover in patients with MDD. Patients with depression were studied both untreated and during administration of a selective serotonin reuptake inhibitor (SSRI) in an unblinded study of sequential design. Healthy volunteers were examined on only 1 occasion. Direct internal jugular venous blood sampling was used to directly quantify brain serotonin turnover. The effect of serotonin transporter (5-HTT) genotype on brain serotonin turnover was evaluated and the influence of SSRI therapy on serotonin turnover was investigated. Participants were recruited from the general community following media advertisement. Experimental procedures were performed in the research catheterization laboratory of a major training hospital and medical research institute. Studies were performed in 21 patients fulfilling the DSM-IV and International Statistical Classification of Diseases, 10th Revision diagnostic criteria for MDD and in 40 healthy volunteers. Treatment for patients consisted of SSRI administration for approximately 12 weeks. Brain serotonin turnover before and after SSRI therapy. Brain serotonin turnover was significantly elevated in unmedicated patients with MDD compared with healthy subjects (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 4.4 [4.3] vs 1.6 [2.4] nmol/L, respectively; P = .003). Analysis of the influence of the 5-HTT genotype in MDD indicated that carriage of the s allele compared with the l allele was associated with greater than a 2-fold increase in brain serotonin turnover (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 6.5 [4.7] vs 2.7 [2.9] nmol/L, respectively; P = .04). Following SSRI therapy, brain serotonin turnover was substantially reduced (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 6.0 [4.0] nmol/L prior to treatment vs 2.0 [3.3] nmol/L following therapy; P = .008). Brain serotonin turnover is elevated in unmedicated patients with MDD and is influenced by the 5-HTT genotype. The marked reduction in serotonin turnover following SSRI treatment and the accompanying improvement in symptoms suggest that high brain serotonin turnover may be a biological substrate of MDD.
Manjarrez-Gutiérrez, G; Rocío Herrera-Márquez, J R; Bueno-Santoyo, S; González-Ramírez, M; Hernández, J
2000-01-01
To investigate if the changes in the activity of the tryptophan-5-hydroxylase and in brain serotonin synthesis provoked by diabetes mellitus persist or return to normal in the diabetic rats submitted to treatment with insulin. Diabetes induced by the administration of streptozotocin in rats and their treatment with insulin was the paradigm used. At days 7, 14 and 21 of evolution, the brain serotonergic biosynthetic activity was evaluated. The diabetic rats showed a significant decrease of body weight. Also, they showed a low concentration of I-tryptophan, as well as a diminution in the activity of the key enzyme tryptophan-5-hydroxylase and its product serotonin in the cerebral cortex and brainstem. Interestingly, the activity of the enzyme was higher in the brainstem from day 14, accompanied with an elevation of the neurotransmitter. The diabetic rats submitted to treatment with insulin showed a complete physical recovery and a return to normal of plasma and brain I-tryptophan. The activity of the enzyme not only normalized but was elevated and with an increase of serotonin in the brainstem and cerebral cortex. The present findings confirm that diabetes mellitus produced a chronic anabolic deficit and a decrease in some brain regions of serotonin synthesis. Also, demonstrate that the diabetic rats under specific treatment with insulin had a complete physical recovery and a return to normal of the serotonin precursor in the blood and brain. However, the activity of the limiting enzyme TrpOH case was elevated with an increase of the neurotransmitter in all regions studied. Since the diabetic animal, insulin treated, does recover metabolically, the mechanism of activation of the serotonin biosynthetic path in the brain may not be dependent on the decreased availability of its precursor the free plasma I-tryptophan. Instead, it might be due to a change in the kinetics of tryptophan-5-hydroxylase, since its activity remains significantly increased in spite of plasma and brain normalization of its substrate. Altogether these changes in the biosynthesis of an important brain neurotransmitter may be of relevance in the pathophysiology of the psychoneurological complications in diabetic patients.
Chen, Cheng-Sheng; Kuo, Yu-Ting; Tsai, Hui-Yi; Li, Chun-Wei; Lee, Chen-Chang; Yen, Cheng-Fang; Lin, Hsiu-Fen; Ko, Chih-Hung; Juo, Suh-Hang Hank; Yeh, Yi-Chun; Liu, Gin-Chung
2011-07-01
An elevated plasma homocysteine level has been reported to be associated with various neuropsychiatric diseases. However, little is known about the brain biochemical changes associated with the higher plasma homocysteine level. The main goal of this study was to examine the sex difference in brain biochemical concentrations using brain proton magnetic resonance spectroscopy (H MRS), and to elucidate the biochemical changes associated with plasma homocysteine levels by sex in healthy elderly subjects. Seventy elderly subjects without any clinical psychiatric and neurological disease underwent 3-T brain H MRS. MRS spectra were acquired from voxels placed on the left side of the basal ganglia, frontal lobe, and hippocampus. Brain biochemical concentrations were compared between the elderly male and female participants. Correlations between these biochemical concentrations and plasma homocysteine levels by sex were analyzed. Female participants had significantly higher levels of choline in the left frontal lobe and hippocampus, and lower creatine and myo-inositol, in the left basal ganglia than did males. A higher homocysteine level was correlated with a lower N-acetylaspartate (NAA) concentration in the left hippocampus in elderly women (r = -0.44; p = 0.03) but not in elderly men. This study found that there was a sex difference in brain biochemical concentrations in the elderly participants. A higher plasma homocysteine level was associated with a lower NAA in the hippocampus of elderly women. The sex difference in association between brain biochemical concentrations and plasma homocysteine levels needs further investigation. We speculate that after menopause, women lose protection of estrogen from the neurotoxic effects of homocysteine in the hippocampus. Future studies are required to examine this speculation.
Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V; Notarangelo, Francesca M; Thomas, Marian A R; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J
2013-12-20
Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.
Effects of boron on growth and physiology in mallard ducklings
Hoffman, D.J.; Camardese, M.B.; LeCaptain, L.J.; Pendleton, G.W.
1990-01-01
High concentrations of boron (B) have been associated with irrigation drainwater and aquatic plants consumed by waterfowl. Day-old mallard (Anas platyrhynchos) ducklings received an untreated diet (controls) or diets containing 100, 400 or 1,600 ppm B as boric acid. Survival, growth and food consumption were measured for 10 weeks. At termination, blood and tissue samples were collected for biochemical assays and histological examination. The highest dietary concentration of B caused 10% mortality, decreased overall growth and the rate of growth (sexes combined), whereas lower concentrations of B altered growth only in females. Food consumption water lower during the first 3 weeks in the 1,600-ppm group and during the second week in all B-treated groups compared to controls. Hematocrit and hemaglobin were lower and plasma calcium concentration higher in the 1,600-ppm group compared to controls. Plasma triglyceride concentration was elevated in all B-treated groups. Brain B concentration increased to 25 times that of controls in the 1,600-ppm group. Brain ATP decreased with increasing dietary B. Brain acetylcholinesterase activity and total ATPase activity (in males) were elevated and protein concentration lowered in the 1,600-ppm group. Boron accumulated less in the liver than in the brain but resulted in an initial elevation of hepatic glutathione. These findings, in combination with altered duckling behavior, suggest that concentrations of B occurring in aquatic plants could adversely affect normal duckling development.
Tekes, K; Gyenge, M; Hantos, M; Csaba, G
2007-07-01
Female rats were treated with 10 microg of beta-endorphin on the 19th day of pregnancy. Offspring were studied when five months old. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in four brain regions were determined by HPLC-EC and the nocistatin levels of blood plasma using RIA methods. In each brain region studied, the 5-HT levels were highly significantly reduced and that of 5-HIAA in three regions was highly significantly increased. When 5HIAA/5HT ratios, as a measure of serotonin turnover, were calculated, imprinted animals showed extremely high values. Plasma nocistatin level was also significantly elevated. The results call attention to the effect of perinatal endorphin imprinting and its long-term consequences (e.g., setting of aggressiveness, pain tolerance).
Study of plasma-derived miRNAs mimic differences in Huntington's disease brain.
Hoss, Andrew G; Lagomarsino, Valentina N; Frank, Samuel; Hadzi, Tiffany C; Myers, Richard H; Latourelle, Jeanne C
2015-12-01
Biomarkers for Huntington's disease progression could accelerate therapeutic developments and improve patient care. Brain microRNAs relating to clinical features of Huntington's disease may represent a potential Huntington's disease biomarker in blood. This study was undertaken to examine candidate microRNAs in plasma to determine whether changes observed in HD brains are detectable in peripheral samples. Four microRNAs from 26 manifest Huntington's disease, four asymptomatic Huntington's disease gene carriers, and eight controls were quantified in plasma using reverse transcription quantitative polymerase chain reaction. Linear regression was used to assess microRNA levels across control, asymptomatic gene carriers, and manifest patients. miR-10b-5p (P = 0.0068) and miR-486-5p (P = 0.044) were elevated in Huntington's disease plasma. miR-10b-5p was decreased in asymptomatic gene carriers as compared with patients with Huntington's disease (P = 0.049), but no difference between asymptomatic gene carriers and healthy controls was observed (P = 0.24). These findings suggest that microRNA changes observed in Huntington's disease brain may be detectable in plasma and have potential clinical utility. © 2015 International Parkinson and Movement Disorder Society.
Berry, G T; Bridges, N D; Nathanson, K L; Kaplan, P; Clancy, R R; Lichtenstein, G R; Spray, T L
1999-04-01
Lethal hyperammonemic coma has been reported in 2 adults after lung transplantation. It was associated with a massive elevation of brain glutamine levels, while plasma glutamine levels were normal or only slightly elevated. In liver tissue, glutamine synthetase activity was markedly reduced, and the histologic findings resembled those of Reye syndrome. The adequacy of therapy commonly used for inherited disorders of the urea cycle has not been adequately evaluated in patients with this form of secondary hyperammonemia. To determine whether hemodialysis, in conjunction with intravenous sodium phenylacetate, sodium benzoate, and arginine hydrochloride therapy, would be efficacious in a patient with hyperammonemic coma after solid-organ transplantation. Case report. A children's hospital. A 41-year-old woman with congenital heart disease developed a hyperammonemic coma with brain edema 19 days after undergoing a combined heart and lung transplantation. Ammonium was measured in plasma. Amino acids were quantitated in plasma and cerebrospinal fluid by column chromatography. The effectiveness of therapy was assessed by measuring plasma ammonium levels and intracranial pressure and performing sequential neurological examinations. The patient had the anomalous combination of increased cerebrospinal fluid and decreased plasma glutamine levels. To our knowledge, she is the first patient with this complication after solid-organ transplantation to survive after combined therapy with sodium phenylacetate, sodium benzoate, arginine hydrochloride, and hemodialysis. Complications of the acute coma included focal motor seizures, which were controlled with carbamazepine, and difficulty with short-term memory. The aggressive use of hemodialysis in conjunction with intravenous sodium phenylacetate, sodium benzoate, and arginine hydrochloride therapy may allow survival in patients after solid-organ transplantation. An acute acquired derangement in extra-central nervous system glutamine metabolism may play a role in the production of hyperammonemia in this illness that resembles Reye syndrome, and, as in other hyperammonemic disorders, the duration and degree of elevation of brain glutamine levels may be the important determining factors in responsiveness to therapy.
2014-01-01
Introduction Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. Methods Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. Results Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Plasma glutamate remained unchanged and cerebral glutamate was decreased without any signs of cerebral impairment. Urea and ammonia were significantly increased within normal limits without signs of organ dysfunction (urea: from 2.7 ± 1.6 to 5.5 ± 1.5 mmol/ l; ammonia: from 12 ± 6.3 to 26 ± 8.3 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Conclusions High dose L-alanine-L-glutamine infusion (0.75 g/ kg/ d up to 5 days) increased plasma and brain glutamine and alanine levels. This was not associated with elevated glutamate or signs of potential glutamate-mediated cerebral injury. The increased nitrogen load should be considered in patients with renal and hepatic dysfunction. Trial registration Clinicaltrials.gov NCT02130674. Registered 5 April 2014 PMID:24992948
Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women.
Hwang, Janice J; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S; Sherwin, Robert S
2015-01-01
Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose) contributes to brain exposure to fructose. In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.
Fructose Levels Are Markedly Elevated in Cerebrospinal Fluid Compared to Plasma in Pregnant Women
Hwang, Janice J.; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S.; Sherwin, Robert S.
2015-01-01
Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption. PMID:26035307
Targeted Deletion of Kynurenine 3-Monooxygenase in Mice
Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Thomas, Marian A. R.; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J.
2013-01-01
Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease. PMID:24189070
A mathematical model of aging-related and cortisol induced hippocampal dysfunction
McAuley, Mark T; Kenny, Rose Anne; Kirkwood, Thomas BL; Wilkinson, Darren J; Jones, Janette JL; Miller, Veronica M
2009-01-01
Background The hippocampus is essential for declarative memory synthesis and is a core pathological substrate for Alzheimer's disease (AD), the most common aging-related dementing disease. Acute increases in plasma cortisol are associated with transient hippocampal inhibition and retrograde amnesia, while chronic cortisol elevation is associated with hippocampal atrophy. Thus, cortisol levels could be monitored and managed in older people, to decrease their risk of AD type hippocampal dysfunction. We generated an in silicomodel of the chronic effects of elevated plasma cortisol on hippocampal activity and atrophy, using the systems biology mark-up language (SBML). We further challenged the model with biologically based interventions to ascertain if cortisol associated hippocampal dysfunction could be abrogated. Results The in silicoSBML model reflected the in vivoaging of the hippocampus and increased plasma cortisol and negative feedback to the hypothalamic pituitary axis. Aging induced a 12% decrease in hippocampus activity (HA), increased to 30% by acute and 40% by chronic elevations in cortisol. The biological intervention attenuated the cortisol associated decrease in HA by 2% in the acute cortisol simulation and by 8% in the chronic simulation. Conclusion Both acute and chronic elevations in cortisol secretion increased aging-associated hippocampal atrophy and a loss of HA in the model. We suggest that this first SMBL model, in tandem with in vitroand in vivostudies, may provide a backbone to further frame computational cortisol and brain aging models, which may help predict aging-related brain changes in vulnerable older people. PMID:19320982
Interactions among dietary boron, molybdenum, and magnesium in the chick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, C.D.; Nielsen, F.H.
The authors have previously reported that dietary B affects plasma Mo concentrations in chicks fed inadequate levels of Mg and cholecalciferol (vit. D/sub 3/). Because of this finding, they studied the effect of dietary Mo and Mg on the signs of B deficiency in vit. D/sub 3/ deprived chicks. In a fully crossed, 2 x 2 x 2 factorially arranged experiment, day-old cockerel chicks (19 per group) were fed a ground corn-casein-corn oil based diet (containing 0.850 mg B, 0.319 mg Mo, and 125 IU vit. D/sub 3//kg) supplemented with B at 0 or 3 mg/kg, Mo at 0 ormore » 20 mg/kg, and Mg at 300 or 500 mg/kg. After four weeks, B deprivation depressed growth and elevated the plasma glucose and the brain wt/body wt ratio. Low dietary Mo elevated the heart wt/body wt ratio. An interaction between B and Mg affected hemoglobin and plasma alkaline phosphatase and an interaction between B and Mo affected the heart wt/body wt and liver wt/body wt ratios. Mg deficiency gave usual signs including depressed growth, plasma alkaline phosphatase, glucose, and spleen and liver wt/body wt ratios and elevated hematocrit and brain wt/body wt ratio. The findings suggest that physiological levels of Mg and Mo affect B metabolism. The effects of low dietary Mo on vit. D/sub 3/ and/or Mg-deficient chicks needs to be elucidated.« less
Effect of clozapine and molindone on plasma and brain levels of mescaline in mice.
Shah, N S; Gulati, O D
1984-01-01
Levels of unchanged mescaline were examined in the plasma and brain of albino Swiss-Webster mice pretreated with various doses of either clozapine or molindone. In clozapine treated mice, the mescaline levels were statistically significantly higher at 2 and 3 h with 7.5 and 15.0 mg/kg and at 1, 2 and 3 h with 30 mg/kg. Molindone at 4.0 and 8.0 mg/kg produced no significant effect; at 16.0 and 48.0 mg/kg, the levels were significantly higher at 1 and 2 h. Elevated brain levels of mescaline by clozapine and molindone indicate an adverse metabolic interaction between a hallucinogen and drugs that are commonly used to treat mescaline-induced psychosis.
Kyeremanteng, C; MacKay, J C; James, J S; Kent, P; Cayer, C; Anisman, H; Merali, Z
2014-10-03
Investigations in healthy outbred rat strains have shown a potential role for brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis in the antidepressant and memory side effects of electroconvulsive therapy (ECT, or ECS in animals). The Wistar-Kyoto (WKY) rat strain is used as a genetic model of depression yet no studies to date have directly compared the impact of ECS on the WKY strain to its healthy outbred control (Wistar). The objective of this study is to examine behavioral (antidepressant and retrograde memory) and neurochemical (BDNF and HPA axis) changes immediately (1day) and at a longer delay (7days) after repeated ECS (5 daily administrations) in WKY and Wistar rats. Male Wistar and WKY rats received 5days of repeated ECS or sham treatment and were assessed 1 and 7days later for 1) depression-like behavior and mobility; 2) retrograde memory; and 3) brain BDNF protein, brain corticotropin-releasing factor (CRF) and plasma corticosterone levels. Both strains showed the expected antidepressant response and retrograde memory impairments at 1day following ECS, which were sustained at 7days. In addition, at 1day after ECS, Wistar and WKY rats showed similar elevations in brain BDNF and extra-hypothalamic CRF and no change in plasma corticosterone. At 7days after ECS, Wistar rats showed sustained elevations of brain BDNF and CRF, whereas WKY rats showed a normalization of brain BDNF, despite sustained elevations of brain CRF. The model of 5 daily ECS was effective at eliciting behavioral and neurochemical changes in both strains. A temporal association was observed between brain CRF levels, but not BDNF, and measures of antidepressant effectiveness of ECS and retrograde memory impairments suggesting that extra-hypothalamic CRF may be a potential important contributor to these behavioral effects after repeated ECS/ECT. Copyright © 2014 Elsevier Inc. All rights reserved.
Maccormack, Tyson James; Lewis, Johanne Mari; Almeida-Val, Vera Maria Fonseca; Val, Adalberto Luis; Driedzic, William Robert
2006-04-01
The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.
Udy, Andrew A; Jarrett, Paul; Lassig-Smith, Melissa; Stuart, Janine; Starr, Therese; Dunlop, Rachel; Deans, Renae; Roberts, Jason A; Senthuran, Siva; Boots, Robert; Bisht, Kavita; Bulmer, Andrew C; Lipman, Jeffrey
2017-01-01
Augmented renal clearance (ARC) is being increasingly described in neurocritical care practice. The mechanisms driving this phenomenon are largely unknown. The aim of this project was therefore to explore changes in renal function, cardiac output (CO), and atrial natriuretic peptide (ANP) concentrations in patients with isolated traumatic brain injury (TBI). This prospective observational cohort study was conducted in a tertiary-level, university-affiliated intensive care unit (ICU). Patients with normal plasma creatinine concentrations (<120 μmol/L) at admission and no history of chronic kidney disease, admitted with isolated TBI, were eligible for enrollment. Continuous CO measures were obtained using arterial pulse waveform analysis. Eight-hour urinary creatinine clearances (CL CR ) were used to quantify renal function. ANP concentrations in plasma were measured on alternate days. Data were collected from study enrollment until ICU discharge, death, or day 15, which ever came first. Eleven patients, contributing 100 ICU days of physiological data, were enrolled into the study. Most participants were young men, requiring mechanical ventilation. Median ICU length of stay was 9.6 [7.8-13.0] days. Elevated CL CR measures (>150 mL/min) were frequent and appeared to parallel changes in CO. Plasma ANP concentrations were also significantly elevated over the study period (minimum value = 243 pg/mL). These data suggest that ARC is likely to complicate the care of TBI patients with normal plasma creatinine concentrations, and may be driven by associated cardiovascular changes and/or elevated plasma ANP concentrations. However, significant additional research is required to further understand these findings.
Sokol, Deborah K.; Lahiri, Debomoy K.
2011-01-01
Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP. PMID:21731612
Lema, Sean C.; Dickey, Jon T.; Schultz, Irvin R.; Swanson, Penny
2008-01-01
Background Polybrominated diphenyl ether (PBDE) flame retardants have been implicated as disruptors of the hypothalamic-pituitary-thyroid axis. Animals exposed to PBDEs may show reduced plasma thyroid hormone (TH), but it is not known whether PBDEs impact TH-regulated pathways in target tissues. Objective We examined the effects of dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47)—commonly the highest concentrated PBDE in human tissues—on plasma TH levels and on gene transcripts for glycoprotein hormone α-subunit (GPHα) and thyrotropin β-subunit (TSHβ) in the pituitary gland, the autoinduced TH receptors α and β in the brain and liver, and the TH-responsive transcription factor basic transcription element-binding protein (BTEB) in the brain. Methods Breeding pairs of adult fathead minnows (Pimephales promelas) were given dietary PBDE-47 at two doses (2.4 μg/pair/day or 12.3 μg/pair/day) for 21 days. Results Minnows exposed to PBDE-47 had depressed plasma thyroxine (T4), but not 3,5,3′-triiodothyronine (T3). This decline in T4 was accompanied by elevated mRNA levels for TStHβ (low dose only) in the pituitary. PBDE-47 intake elevated transcript for TH receptor αin the brain of females and decreased mRNA for TH receptor β in the brain of both sexes, without altering these transcripts in the liver. In males, PBDE-47 exposure also reduced brain transcripts for BTEB. Conclusions Our results indicate that dietary exposure to PBDE-47 alters TH signaling at multiple levels of the hypothalamic-pituitary-thyroid axis and provide evidence that TH-responsive pathways in the brain may be particularly sensitive to disruption by PBDE flame retardants. PMID:19079722
Plasma urotensin in human systolic heart failure.
Ng, Leong L; Loke, Ian; O'Brien, Russell J; Squire, Iain B; Davies, Joan E
2002-12-03
Human urotensin II (UTN) has potent vasoactive and cardiostimulatory effects, acting on the G protein-linked receptor GPR14. Myocardial UTN expression is upregulated in heart failure, and UTN stimulates myocardial expression of the natriuretic peptides. We investigated plasma UTN levels in heart failure (HF; left ventricular systolic dysfunction) in comparison with plasma N-terminal pro-brain natriuretic peptide (N-BNP) levels. N-BNP and UTN were measured in plasma from 126 patients with HF and 220 age- and sex-matched controls. Both peptides were elevated in plasma of HF patients and were correlated (r(s)=0.35, P<0.001). In contrast to N-BNP, there was no relationship of plasma UTN with New York Heart Association (NYHA) class. Although plasma N-BNP showed a positive relationship with age and female sex, there was no such age-dependent change in plasma UTN, and control women had lower levels compared with control men. Receiver operating characteristic curves for the diagnosis of HF had areas of 0.90 and 0.86 for N-BNP and UTN, respectively (P<0.001 for both). Receiver operating characteristic curve area for diagnosis of NYHA class I HF with UTN was better than that with N-BNP. Plasma UTN is elevated in HF, which suggests a pathophysiological role for this peptide. Plasma UTN may be a useful alternative to N-BNP in the diagnosis of HF, inasmuch as its levels are elevated irrespective of age, sex, or NYHA class.
Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio
2014-01-01
Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF) during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep. PMID:24586790
Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function.
Moon, Hyo Youl; Becke, Andreas; Berron, David; Becker, Benjamin; Sah, Nirnath; Benoni, Galit; Janke, Emma; Lubejko, Susan T; Greig, Nigel H; Mattison, Julie A; Duzel, Emrah; van Praag, Henriette
2016-08-09
Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition. Published by Elsevier Inc.
Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease.
Ma, Qiu-Lan; Teng, Edmond; Zuo, Xiaohong; Jones, Mychica; Teter, Bruce; Zhao, Evan Y; Zhu, Cansheng; Bilousova, Tina; Gylys, Karen H; Apostolova, Liana G; LaDu, Mary Jo; Hossain, Mir Ahamed; Frautschy, Sally A; Cole, Gregory M
2018-06-01
Synaptic neurodegeneration is thought to be an early event initiated by soluble β-amyloid (Aβ) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aβ aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aβ oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4 +/+ /FAD +/- ) relative to E4FAD- (non-carrier; APOE4 +/+ /FAD -/- ) mice, suggesting NP1 is modulated by Aβ expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD. Copyright © 2018. Published by Elsevier Inc.
[Changes in cerebra serotonin synthesis induced by insulin-dependent diabetes mellitus].
Manjarrez-Gutiérrez, G; Herrera-Márquez, J R; Molina-Hernández, A; Bueno-Santoyo, S; González-Ramírez, M; Hernández, J
1999-01-01
Evaluate if the rats with diabetes mellitus insulin-dependent have a minor activity of the serotonergic biosynthetic pathway through the decrease of the free fraction of L-tryptophan in plasma. Diabetes mellitus was induced in rats, and the brain serotonergic biosynthetic activity was evaluated at 7, 14, and 21 days after streptozotocin administration. The diabetic animals showed a general decrease in body weight. In plasma they had a decrease in the free fraction of L-tryptophan. Also, in the brain they show low levels of the amino acid, as well as decrease of the activity of the limiting enzyme tryptophan-5-hydroxylase and its product serotonin. Interestingly, the activity of the enzyme was higher in the brainstem from day 14, accompanied with an elevation of the neurotransmitter. The results confirm that diabetes mellitus insulin-depend induce chronic undernourishment. The low levels of L-tryptophan in blood of the diabetic animals suggest a minor transport of the amino acid to the brain and a decrease in serotonin synthesis, in cerebral cortex and hypothalamus. Besides, during the evolution of the disease, the activity of tryptophan hydroxylase was elevated, independently of L-tryptophan concentration in the brainstem of diabetic animals, suggesting a different response according to the brain region and possibly a different functional change, accompanied by an increase in the synthesis of the neurotransmitter.
Tesic, Milorad; Seferovic, Jelena; Trifunovic, Danijela; Djordjevic-Dikic, Ana; Giga, Vojislav; Jovanovic, Ivana; Petrovic, Olga; Marinkovic, Jelena; Stankovic, Sanja; Stepanovic, Jelena; Ristic, Arsen; Petrovic, Milan; Mujovic, Nebojsa; Vujisic-Tesic, Bosiljka; Beleslin, Branko; Vukcevic, Vladan; Stankovic, Goran; Seferovic, Petar
2017-10-01
The relations of elevated N-terminal pro-brain natriuretic peptide (NT-pro-BNP) and cardiac ischemia in hypertrophic cardiomyopathy (HCM) patients is uncertain. Therefore we designed the study with the following aims: (1) to analyze plasma concentrations of NT-pro-BNP in various subsets of HCM patients; (2) to reveal the correlations of NT-pro-BNP, myocardial ischemia, and diastolic dysfunction; (3) to assess predictors of the elevated plasma levels of NT-pro-BNP. In 61 patients (mean age 48.9±16.3 years; 26 male) with asymmetric HCM plasma levels of NT-pro-BNP were obtained. Standard transthoracic examination, tissue Doppler echocardiography with measurement of transthoracic coronary flow velocity reserve (CFVR) in left anterior descending artery (LAD) was done. Mean natural logarithm value of NT-pro-BNP was 7.11±0.95pg/ml [median value 1133 (interquartile range 561-2442)pg/ml]. NT-pro-BNP was significantly higher in patients with higher NYHA class, in obstructive HCM, more severe mitral regurgitation, increased left atrial volume index (LAVI), presence of calcified mitral annulus, elevated left ventricular (LV) filling pressure and in decreased CFVR. Levels of NT-pro-BNP significantly correlated with the ratio of E/e' (r=0.534, p<0.001), LV outflow tract gradient (r=0.503, p=0.024), LAVI (r=0.443, p<0.001), while inversely correlated with CFVR LAD (r=-0.569, p<0.001). When multivariate analysis was done only CFVR LAD and E/e' emerged as independent predictors of NT-pro-BNP. Plasma levels of NT-pro-BNP were significantly higher in HCM patients with more advanced disease. Elevated NT-pro-BNP not only reflects the diastolic impairment of the LV, but it might also be the result of cardiac ischemia in patients with HCM. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Dalterio, S; Steger, R; Mayfield, D; Bartke, A
1984-01-01
Maternal exposure to delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent in marihuana, or to the non-psychoactive cannabinol (CBN) or cannabidiol (CBD) alters endocrine functions and concentrations of brain biogenic amines in their male offspring. Prenatal CBN exposure on day 18 of gestation resulted in decreased plasma FSH levels, testicular testosterone (T) concentrations, and seminal vesicles weights, but increased plasma levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) post-castration in adulthood. Prenatal exposure to THC significantly enhanced the responsiveness of the testes to intratesticular LH injection in vivo and tended to increase human chorionic gonadotropin (hCG)-stimulated T production by decapsulated testes in vitro. In the CBN-exposed mice, hCG-stimulated T production was enhanced, while CBD exposure had no effect. Prenatal THC exposure altered the negative feedback effects of exogenous gonadal steroids in castrated adults, with lower plasma T and FSH levels after 20 micrograms T than in castrated controls. In contrast, CBD-exposed mice had higher levels of LH in plasma post-castration. In CBN-exposed adults, two weeks post-castration the concentration of norepinephrine (NE) and dopamine (DA) in hypothalamus and remaining brain were reduced, while levels of serotonin (5-HT) and its metabolite, 5-HIAA, were elevated compared to that in castrated OIL-controls. Prenatal CBD-exposure also reduced NE and elevated 5-HT and 5-HIAA, but did not affect DA levels post-castration. Concentrations of brain biogenic amines were not influenced by prenatal THC exposure in the present study. A single prenatal exposure to psychoactive or non-psychoactive components of marihuana results in long term alterations in the function of the hypothalamo-pituitary-gonadal axis. Changes in the concentrations of brain biogenic amines may be related to these effects of prenatal cannabinoids on endocrine function in adult male mice.
Wang, Qingsong; Yu, Ke; Wang, Jun; Lin, Hang; Wu, Yuxian; Wang, Weiwen
2012-04-21
To investigate the long-term effects of psychological stress on emotionality, the emotional arousal of rats in 4 months after predator stress was assessed in both an open field environment and elevated plus maze. We also assessed the levels of plasma corticosterone (CORT) by radioimmunoassay, the distributions of brain glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) by immunohistochemistry, and the expressions of GR and MR by Western blot. The results showed that intense predator stress, which was adjusted to ensure consistent stressor intensity using rat tonic immobility behavior, successfully induced lasting decreased locomotor activity and habituation to novel environments, suppressed exploratory behavior, and increased anxiety-like behavior. The plasma CORT levels dramatically increased 1h after stress, then returned to basal levels at 1wk, decreased 1 month later, and remained significantly lower than control levels 4 months after exposure to stress. Immunohistochemical analysis showed that GR was markedly increased in the hippocampus and frontal cortexes of stressed rats and that the changes in the hippocampus were more pronounced. In contrast, MR expression was significantly decreased in both brain regions. Western analysis confirmed these dramatically elevated levels of GR expression and lower levels of MR expression in the hippocampus 4 months after stress. We conclude that acute severe psychological stress may induce long-term emotional behavioral changes, and that different patterns in plasma CORT, alterations in brain corticoid receptors, and increased hippocampal vulnerability to the effects of predator stress may play important roles in the persistent emotional arousal induced by intense psychological stress. Copyright © 2012 Elsevier B.V. All rights reserved.
Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism
Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A.; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J.; Lapworth, Amanda L.; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M.; Scheja, Ludger; Grove, Kevin L.; Smith, Richard D.; Qian, Wei-Jun; Lynch, Christopher J.; Newgard, Christopher B.; Buettner, Christoph
2014-01-01
Summary Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α keto-acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in non-human primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs, and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. PMID:25307860
Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism.
Shin, Andrew C; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J; Lapworth, Amanda L; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M; Scheja, Ludger; Grove, Kevin L; Smith, Richard D; Qian, Wei-Jun; Lynch, Christopher J; Newgard, Christopher B; Buettner, Christoph
2014-11-04
Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in nonhuman primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zgoda-Pols, Joanna R., E-mail: joanna.pols@merck.com; Chowdhury, Swapan; Wirth, Mark
2011-08-15
An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increasedmore » in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research Highlights: > Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. > MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. > 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than creatinine or urea. > 3-IS levels were increased not only in murine plasma but also in the brain. > 3-IS potentially contributes to renal-and CNS-related rapid onset of toxicities.« less
Wang, Youqiong; Tang, Lipeng; Yin, Wei; Chen, Jiesi; Leng, Tiandong; Zheng, Xiaoke; Zhu, Wenbo; Zhang, Haipeng; Qiu, Pengxin; Yang, Xiaoxiao; Yan, Guangmei; Hu, Haiyan
2016-01-01
Sensitive and specific biomarkers are required for the diagnosis and treatment of depression because the existing diagnostic criteria are subjective and could produce false positives or negatives. Some endogenous neuroactive steroids that have shown either antidepressant effects or concentration changes in individuals with depression could provide potential biomarkers. In this study, a simple and specific method was developed to simultaneously determine seven endogenous neuroactive steroids in biological samples: cortisone, cortisol, dehydroepiandrosterone, estradiol, progesterone, pregnenolone, and testosterone. After liquid-liquid extraction, chromatographic separation was achieved on a C18 column with gradient elution using water-methanol at a flow rate of 300 μL min(-1). Detection and quantitation were performed by tandem mass spectrometry with atmospheric pressure chemical ionization and selected reaction monitoring. Plasma and brain neuroactive steroid levels were then determined in control rats and rats exposed to forced swimming, a classical rodent model of depression. The results showed that the plasma concentrations of testosterone, pregnenolone, and progesterone significantly increased in rats exposed to the forced swimming test. In contrast, brain homogenate levels of cortisol, estradiol, and progesterone decreased, while pregnenolone levels were elevated in this model of depression. In conclusion, a new method to quantify neuroactive steroids was successfully developed and applied to their investigation in rat plasma and brain. The findings of this study indicated that plasma testosterone, pregnenolone, and progesterone levels could provide potential biomarkers for the diagnosis and treatment of depression.
Genain, C P; Van Loon, G R; Kotchen, T A
1985-01-01
The purpose of this study was to investigate the biochemistry and the regulation of the brain renin-angiotensin system in the Sprague-Dawley rat. Renin activity and angiotensinogen concentrations (direct and indirect radioimmunoassays) were measured in several brain areas and in neuroendocrine glands. Regional renin activities were measured in separate groups of rats on high and low NaCl diets. Mean tissue renin activities ranged from 2.2 +/- 0.6 to 54.4 +/- 19.7 fmol/mg protein per h (mean of 7 +/- SD), with the highest amounts in pineal, pituitary, and pons-medulla. NaCl depletion increased renin activity in selected regions; based on estimates of residual plasma contamination (despite perfusion of brains with saline), increased renin activity of pineal gland and posterior pituitary was attributed to higher plasma renin. To eliminate contamination by plasma renin, 16-h-nephrectomized rats were also studied. In anephric rats, NaCl depletion increased renin activity by 92% in olfactory bulbs and by 97% in anterior pituitary compared with NaCl-replete state. These elevations could not be accounted for by hyperreninemia. Brain renin activity was low and was unaffected by dietary NaCl in amygdala, hypothalamus, striatum, frontal cortex, and cerebellum. In contrast to renin, highest angiotensinogen concentrations were measured in hypothalamus and cerebellum. Overall, angiotensinogen measurements with the direct and the indirect assays were highly correlated (n = 56, r = 0.96, P less than 0.001). We conclude that (a) NaCl deprivation increases renin in olfactory bulbs and anterior pituitary of the rat, unrelated to contamination by plasma renin; and (b) the existence of angiotensinogen, the precursor of angiotensins, is demonstrated by direct radioimmunoassay throughout the brain and in neuroendocrine glands. PMID:3902894
Possible neurologic effects of aspartame, a widely used food additive.
Maher, T J; Wurtman, R J
1987-01-01
The artificial sweetener aspartame (L-aspartyl-L-phenylalanyl-methyl ester), is consumed, primarily in beverages, by a very large number of Americans, causing significant elevations in plasma and, probably, brain phenylalanine levels. Anecdotal reports suggest that some people suffer neurologic or behavioral reactions in association with aspartame consumption. Since phenylalanine can be neurotoxic and can affect the synthesis of inhibitory monoamine neurotransmitters, the phenylalanine in aspartame could conceiveably mediate neurologic effects. If mice are given aspartame in doses that elevate plasma phenylalanine levels more than those of tyrosine (which probably occurs after any aspartame dose in humans), the frequency of seizures following the administration of an epileptogenic drug, pentylenetetrazole, is enhanced. This effect is simulated by equimolar phenylalanine and blocked by concurrent administration of valine, which blocks phenylalanine's entry into the brain. Aspartame also potentiates the induction of seizures by inhaled fluorothyl or by electroconvulsive shock. Perhaps regulations concerning the sale of food additives should be modified to require the reporting of adverse reactions and the continuing conduct of mandated safety research. PMID:3319565
Kim, Min; Nevado-Holgado, Alejo; Whiley, Luke; Snowden, Stuart G.; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Thambisetty, Madhav; Dobson, Richard J.B.; Powell, John F.; Lupton, Michelle K.; Simmons, Andy; Velayudhan, Latha; Lovestone, Simon; Proitsi, Petroula; Legido-Quigley, Cristina
2016-01-01
Lipids such as ceramides and phosphatidylcholines (PC) have been found altered in the plasma of Alzheimer’s disease (AD) patients in a number of discovery studies. For this reason, the levels of 6 ceramides and 3 PCs, with different fatty acid length and saturation levels, were measured in the plasma from 412 participants (AD n = 205, Control n = 207) using mass spectrometry coupled with ultra-performance liquid chromatography. After this, associations with AD status, brain atrophy, and age-related effects were studied. In the plasma of AD participants, cross-sectional analysis revealed elevated levels of three ceramides (Cer16:0 p < 0.01, Cer18:0 p < 0.01, Cer24:1 p < 0.05). In addition, two PCs in AD plasma (PC36:5 p < 0.05, PC38:6 p < 0.05) were found to be depleted compared to the control group, with PC36:5 also associating with hippocampal atrophy (p < 0.01). Age-specific analysis further revealed that levels of Cer16:0, Cer18:0, and Cer20:0 were associated with hippocampal atrophy only in younger participants (age < 75, p < 0.05), while all 3 PCs did so in the older participants (age > 75, p < 0.05). PC36:5 was associated with AD status in the younger group (p < 0.01), while PC38:6 and 40:6 did so in the older group (p < 0.05). In this study, elevated ceramides and depleted PCs were found in the plasma from 205 AD volunteers. Our findings also suggest that dysregulation in PC and ceramide metabolism could be occurring in different stages of AD progression. PMID:27911300
D’Sa, Carrol; Dileone, Ralph J.; Anderson, George M.; Sinha, Rajita
2013-01-01
Although the effects of alcohol on brain-derived neurotrophic factor (BDNF) have been extensively studied in rodents, BDNF levels have rarely been measured in abstinent, alcohol-dependent (AD) individuals. Interpretation of reported group comparisons of serum BDNF levels is difficult due to limited information regarding analytical variance, biological variability, and the relative contribution of platelet and plasma pools to serum BDNF. Analytical variance (intra- and inter-assay coefficients of variation) of the enzyme-linked immunosorbent assay (ELISA) was characterized. Within- and between-subject variability, and group differences in serum and plasma BDNF, was assessed on three separate days in 16, 4-week abstinent AD individuals (7M/9F) and 16 social drinkers (SDs; 8M/8F). Significantly higher mean (±sd) serum BDNF levels were observed for the AD group compared to the SD (p = 0.003). No significant difference in mean baseline plasma BDNF levels was observed between AD and SD groups. The low analytical variance, high day-to-day within-individual stability and the high degree of individuality demonstrates the potential clinical utility of measuring serum BDNF levels. The low correlations that we observed between plasma and serum levels are congruent with their representing separate pools of BDNF. The observation of higher basal serum BDNF in the AD group without a concomitant elevation in plasma BDNF levels indicates that the elevated serum BDNF in AD patients is not due to greater BDNF exposure. Further research is warranted to fully elucidate mechanisms underlying this alteration and determine the utility of serum BDNF as a predictor or surrogate marker of chronic alcohol abuse. PMID:22364688
Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder
Brady, Roscoe O; McCarthy, Julie M; Prescot, Andrew P; Jensen, J Eric; Cooper, Alissa J; Cohen, Bruce M; Renshaw, Perry F; Ongür, Dost
2017-01-01
Objectives Gamma-aminobutyric acid (GABA) abnormalities have been implicated in bipolar disorder. However, due to discrepant studies measuring postmortem, cerebrospinal fluid, plasma, and in vivo brain levels of GABA, the nature of these abnormalities is unclear. Using proton magnetic resonance spectroscopy, we investigated tissue levels of GABA in the anterior cingulate cortex and parieto-occipital cortex of participants with bipolar disorder and healthy controls. Methods Fourteen stably medicated euthymic outpatients with bipolar disorder type I (mean age 32.6 years, eight male) and 14 healthy control participants (mean age 36.9 years, 10 male) completed a proton magnetic resonance spectroscopy scan at 4-Tesla after providing informed consent. We collected data from two 16.7-mL voxels using MEGAPRESS, and they were analyzed using LCModel. Results GABA/creatine ratios were elevated in bipolar disorder participants compared to healthy controls [F(1,21) = 4.4, p = 0.048] in the anterior cingulate cortex (25.1% elevation) and the parieto-occipital cortex (14.6% elevation). Bipolar disorder participants not taking GABA-modulating medications demonstrated greater GABA/creatine elevations than patients taking GABA-modulating medications. Conclusions We found higher GABA/creatine levels in euthymic bipolar disorder outpatients compared to healthy controls, and the extent of this elevation may be affected by the use of GABA-modulating medications. Our findings suggest that elevated brain GABA levels in bipolar disorder may be associated with GABAergic dysfunction and that GABA-modulating medications reduce GABA levels in this condition. PMID:23634979
Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P.; Giardini, Guido; Croisille, Pierre; Haller, Sven
2017-01-01
Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods:This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results:The whole brain ADC significantly increased from baseline to arrival (p = 0.005) and then significantly decreased at recovery (p = 0.005) to lower values than at baseline (p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality (p = 0.01), cholesterol (p = 0.009), c-reactive protein (p = 0.04), sodium (p = 0.01), and chloride (p = 0.002) plasma level variations. Conclusions:These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport. PMID:28105018
Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P; Giardini, Guido; Croisille, Pierre; Haller, Sven
2016-01-01
Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods: This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results: The whole brain ADC significantly increased from baseline to arrival ( p = 0.005) and then significantly decreased at recovery ( p = 0.005) to lower values than at baseline ( p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality ( p = 0.01), cholesterol ( p = 0.009), c-reactive protein ( p = 0.04), sodium ( p = 0.01), and chloride ( p = 0.002) plasma level variations. Conclusions: These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport.
Acute responses of American kestrels to methyl parathion and fenvalerate
Rattner, B.A.; Franson, J.C.
1984-01-01
Physiological and toxicological effects of p.o, methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10 h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?.C) and cold (-5?.C) environments. Methyl parathion was highly toxic (LD50=3.08 mg/kg, 95% confidence limits=2.29-4.l4 mg/kg, producing overt intoxication (abnormal posture, ataxia, paresis), dose-dependent inhibition (26-67%) of brain acetylcholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Transient but pronounced hypothermia was associated with plasma cholinesterase inhibition in excess of 50% (2 h after intubation), although this response was highly variable (plasma ChE inhibition vs. A cloacal temperature, r=-0.60). Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication (irregular head movement) and elevated plasma alanine aminotransferase activity, but did not alter cloacal temperature, plasma activities of CK, U-HBDH, and LDK, or concentrations of corticosterone, glucose, triiodothyronine, and uric acid. Cold exposure intensified methyl parathion toxicity, but did not affect that of fenvalerate. It would thus appear that the organophosphorus insecticide methyl parathion poses far greater hazard than the pyrethroid fenvalerate to raptorial birds.
Hensler, T; Sauerland, S; Riess, P; Hess, S; Helling, H J; Andermahr, J; Bouillon, B; Neugebauer, E A
2000-10-01
Besides interleukin (IL)-10, accumulating evidence from in vitro studies has indicated a strong antiinflammatory capacity for IL-13. A prospective clinical study was undertaken to assess the influence of additional brain injury on systemic IL-10 and IL-13 levels as markers for the antiinflammatory state in trauma patients. The course of IL-10 and IL-13 plasma levels from 32 patients with an isolated severe head trauma (SHT), 50 patients with multiple injuries and additional SHT and 39 patients with multiple injuries without SHT was detected using ELISA-technique. Blood samples from 37 healthy blood donors were analysed for control. IL-10 levels were significantly elevated in all 3 injury groups within 3 h after trauma. The lowest initial release was detected in patients with an isolated SHT (Injury severity score; ISS: 18.1 +/- 5.6). No difference could be demonstrated for the IL-10 levels from multiple injured patients with (ISS: 35.3 +/- 9.6) or without additional SHT (ISS: 25.5 +/- 11.7), though there were relevant differences in the ISS. In contrast, the IL-13 plasma levels were not elevated systemically after trauma. IL-10 but not IL-13 is a detectable antiinflammatory marker in trauma patients with or without brain injury and to a minor degree in patients with an isolated SHT.
Shah, Nilay S.; Vidal, Jean-Sébastien; Masaki, Kamal; Petrovitch, Helen; Ross, G. Webster; Tilley, Cathy; DeMattos, Ronald B.; Tracy, Russell P.; White, Lon R.; Launer, Lenore J.
2012-01-01
Beta-amyloid (Aβ), a vasoactive protein, and elevated blood pressure (BP) levels are associated with Alzheimer’s disease (AD) and possibly vascular dementia (VaD). We investigated the joint association of mid-life BP and Aβ peptide levels with the risk for late-life AD and VaD. Subjects were 667 Japanese-American men (including 73 with a brain autopsy), from the prospective Honolulu Heart Program/Honolulu Asia Aging Study (1965 – 2000). Mid-life BP was measured starting in 1971 participants mean age 58 years, Aβ was measured in specimens collected1980/82, and assessment of dementia and autopsy collection started in 1991/93. The outcome measures were prevalent (present in 1991/3) and incident AD (n= 53, including 38 with no contributing cardiovascular disease), and VaD (n=24). Cerebral amyloid angiopathy (CAA), β-amyloid neuritic plaques, and neurofibrillary tangles were evaluated in post-mortem tissue. The risk for AD significantly increased with lower levels of plasma Aβ (Aβ1-40 hazard ratio (HR) 2.1, 95% confidence interval (CI) 1.4 – 3.1; Aβ1-42 HR 1.6, 95% CI 1.1 – 2.3). Evidence of interaction between diastolic BP and plasma Aβ (1-40 pinteraction <0.05; 1-42 pinteraction <0.07) levels, indicated the Aβ-related risk for AD was higher when BP was higher. Low plasma Aβ was associated with the presence of CAA (ptrend<0.05), but not the other neuropathologies. Aβ plasma levels start decreasing at least 15 years before AD is diagnosed, and the association of Aβ to AD is modulated by mid-life diastolic BP. Elevated BP may compromise vascular integrity leading to CAA and impaired Aβ clearance from the brain. PMID:22392902
El-Ansary, Afaf K; Bacha, Abir Ben; Ayahdi, Layla Y Al-
2011-09-01
This study aims to clarify the relationship between blood Pb(2+) concentration as a ubiquitous environmental pollutant and plasma neurotransmitters as biochemical parameters that reflect brain function in Saudi autistic patients. RBC's lead content together with plasma concentration of gamma aminobutyric acid (GABA), serotonin (5HT) and dopamine (DA) were measured in 25 Saudi autistic patients and compared to 16 age-matching control samples. The obtained data recorded that Saudi autistic patients have a remarkable higher levels of Pb(2+) and significantly elevated levels of GABA, 5HT and DA compared to healthy subjects. ROC analysis revealed satisfactory values of specificity and sensitivity of the measured parameters. This study suggests that postnatal lead toxicity in autistic patients of Saudi Arabia could represent a causative factor in the pathogenesis of autism. Elevated GABA, 5HT and DA were discussed in relation to the chronic lead toxicity recorded in the investigated autistic samples. Copyright © 2011. Published by Elsevier Inc.
Troen, Aron M.; Chao, Wei-Hsun; Crivello, Natalia A.; D'Anci, Kristen E.; Shukitt-Hale, Barbara; Smith, Don E.; Selhub, Jacob; Rosenberg, Irwin H.
2008-01-01
Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely thought to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate deficiency in cognitive dysfunction, we fed rats folate-deficient diets (0 mg FA/kg diet) with or without supplemental L-methionine for 10 wk, followed by cognitive testing and tissue collection for hematological and biochemical analysis. Folate deficiency with normal methionine impaired spatial memory and learning; however, this impairment was prevented when the folate-deficient diet was supplemented with methionine. Under conditions of folate deficiency, brain membrane content of the methylated phospholipid phosphatidylcholine was significantly depleted, which was reversed with supplemental methionine. In contrast, neither elevated plasma homocysteine nor brain S-adenosylmethionine and S-adenosylhomocysteine concentrations predicted cognitive impairment and its prevention by methionine. The correspondence of cognitive outcomes to changes in brain membrane phosphatidylcholine content suggests that altered phosphatidylcholine and possibly choline metabolism might contribute to the manifestation of folate deficiency-related cognitive dysfunction. PMID:19022979
Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human
Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren
2013-01-01
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage. PMID:23894384
Yang, Fen; Wang, Baolian; Liu, Zhihao; Xia, Xuejun; Wang, Weijun; Yin, Dali; Sheng, Li; Li, Yan
2017-01-01
Physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) models can contribute to animal-to-human extrapolation and therapeutic dose predictions. Buagafuran is a novel anxiolytic agent and phase I clinical trials of buagafuran have been completed. In this paper, a potentially effective dose for buagafuran of 30 mg t.i.d. in human was estimated based on the human brain concentration predicted by a PBPK/PD modeling. The software GastroPlus TM was used to build the PBPK/PD model for buagafuran in rat which related the brain tissue concentrations of buagafuran and the times of animals entering the open arms in the pharmacological model of elevated plus-maze. Buagafuran concentrations in human plasma were fitted and brain tissue concentrations were predicted by using a human PBPK model in which the predicted plasma profiles were in good agreement with observations. The results provided supportive data for the rational use of buagafuran in clinic.
Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.
2010-01-01
Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850
Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L
2010-08-20
Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.
Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling
NASA Technical Reports Server (NTRS)
Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.
2016-01-01
While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for elevated ICP can be identified. This may eventually lead to a blood test to diagnose intracranial hypertension.
Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.
Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław
2017-04-01
The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.
Kim, John P; Lentz, Margaret R; Westmoreland, Susan V; Greco, Jane B; Ratai, Eva M; Halpern, Elkan; Lackner, Andrew A; Masliah, Eliezer; González, R Gilberto
2005-04-01
In vivo 1H MR spectroscopy demonstrates elevated choline (Cho)/creatine (Cr) and myo-inositol (MI)/Cr in many neurologic diseases that has been ascribed to gliosis. We tested the hypotheses that in vivo Cho/Cr and/or MI/Cr levels are correlated with glial fibrillary acidic protein (GFAP) immunostains and that the changes are water-soluble metabolites. We performed postmortem 1H MR spectroscopy and GFAP immunohistochemistry in brains from seven rhesus macaques acutely infected with simian immunodeficiency virus (SIV) and in four controls and compared the findings with previous in vivo MR spectroscopic results. Changes in neuropathologic and MR spectroscopic markers after infection and relationships among plasma viral load, GFAP immunostaining results, and ex vivo and in vivo MR spectroscopic measures were statistically evaluated. On GFAP immunostaining and in vivo MR spectroscopy, GFAP, Cho/Cr and MI/Cr were highest near the time of peak plasma viral load at 11 days postinfection (dpi). Immunostains returned to baseline by 14 dpi, whereas Cho/Cr and MI/Cr had different time courses, with the former dropping below baseline and the latter remaining elevated. Viral load and immunostains were significantly correlated. No correlation was found between ex vivo Cho/Cr or MI/Cr and viral load or between metabolite ratios from in vivo and ex vivo MR spectroscopy. In acute SIV infection, plasma viral load was significantly correlated with brain GFAP immunostains and in vivo 1H MR spectroscopic Cho/Cr. In vivo changes in Cho/Cr and MI/Cr were principally due to contributions other than those of low-molecular-weight water-soluble metabolites.
The pathogenesis of small arterial lesions in nephrectomized rats by the administration of renin.
Kai, M.; Kanaide, H.; Yamamoto, H.; Kurozumi, T.; Tanaka, K.; Nakamura, M.
1981-01-01
Intraperitoneal injection of purified hog renal renin produced a marked and sustained elevation of arterial pressure and lesions of the "fibrinoid necrosis" type in the small arteries and arterioles of the pancreas, heart and mesentery, but not of the brain, in bilaterally nephrectomized rats. Both the elevation of arterial pressure and the production of arterial lesions were completely prevented by pretreatment with oral SQ14225. Plasma renin clearance in bilaterally nephrectomized rats was markedly slower than that in sham-nephrectomized rats. Pre-treatment with oral SQ14225 did not affect renin clearance. It is suggested that sustained high blood pressure due to the sustained high plasma renin concentration in bilaterally nephrectomized rat was responsible for the production by renin of lesions of the fibrinoid necrosis type in the arteries. Images Fig. 1 Fig. 4 PMID:7016159
Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q
2009-12-15
Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.
Wong, Wen Mai; Durakoglugil, Murat S.; Wasser, Catherine R.; Jiang, Shan; Xian, Xunde
2016-01-01
Alzheimer's disease (AD) is the most common form of dementia in individuals over the age of 65 years. The most prevalent genetic risk factor for AD is the ε4 allele of apolipoprotein E (ApoE4), and novel AD treatments that target ApoE are being considered. One unresolved question in ApoE biology is whether ApoE is necessary for healthy brain function. ApoE knock-out (KO) mice have synaptic loss and cognitive dysfunction; however, these findings are complicated by the fact that ApoE knock-out mice have highly elevated plasma lipid levels, which may independently affect brain function. To bypass the effect of ApoE loss on plasma lipids, we generated a novel mouse model that expresses ApoE normally in peripheral tissues, but has severely reduced ApoE in the brain, allowing us to study brain ApoE loss in the context of a normal plasma lipid profile. We found that these brain ApoE knock-out (bEKO) mice had synaptic loss and dysfunction similar to that of ApoE KO mice; however, the bEKO mice did not have the learning and memory impairment observed in ApoE KO mice. Moreover, we found that the memory deficit in the ApoE KO mice was specific to female mice and was fully rescued in female bEKO mice. Furthermore, while the AMPA/NMDA ratio was reduced in ApoE KO mice, it was unchanged in bEKO mice compared with controls. These findings suggest that plasma lipid levels can influence cognition and synaptic function independent of ApoE expression in the brain. SIGNIFICANCE STATEMENT One proposed treatment strategy for Alzheimer's disease (AD) is the reduction of ApoE, whose ε4 isoform is the most common genetic risk factor for the disease. A major concern of this strategy is that an animal model of ApoE deficiency, the ApoE knock-out (KO) mouse, has reduced synapses and cognitive impairment; however, these mice also develop dyslipidemia and severe atherosclerosis. Here, we have shown that genetic restoration of plasma ApoE to wild-type levels normalizes plasma lipids in ApoE KO mice. While this does not rescue synaptic loss, it does completely restore learning and memory in the mice, suggesting that both CNS and plasma ApoE are independent parameters that affect brain health. PMID:27683909
O'Brien, F E; Clarke, G; Fitzgerald, P; Dinan, T G; Griffin, B T; Cryan, J F
2012-06-01
Recent studies indicate that efflux of antidepressants by the multidrug resistance transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) may contribute to treatment-resistant depression (TRD) by limiting intracerebral antidepressant concentrations. In addition, clinical experience shows that adjunctive treatment with the P-gp inhibitor verapamil may improve the clinical outcome in TRD. Therefore, the present study aimed to investigate the effect of P-gp inhibition on the transport of the tricyclic antidepressant imipramine and its active metabolite desipramine across the BBB. Intracerebral microdialysis in rats was used to monitor brain levels of imipramine and desipramine following i.v. imipramine administration, with or without pretreatment with one of the P-gp inhibitors verapamil or cyclosporin A (CsA). Plasma drug levels were also determined at regular intervals. Pretreatment with either verapamil or CsA resulted in significant increases in imipramine concentrations in the microdialysis samples, without altering imipramine plasma pharmacokinetics. Furthermore, pretreatment with verapamil, but not CsA, led to a significant elevation in plasma and brain levels of desipramine. The present study demonstrated that P-gp inhibition enhanced the intracerebral concentration of imipramine , thus supporting the hypothesis that P-gp activity restricts brain levels of certain antidepressants, including imipramine. These findings may help to explain reports of a beneficial response to adjunctive therapy with verapamil in TRD. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Zahniser, N R; Chou, D; Hanin, I
1977-03-01
Acute administration of deanol-p-acetamidobenzoate (Deaner; deanol) has been reported to elevate brain choline (CH) and acetylcholine (ACh) levels. We have developed a specific and sensitive gas chromatographic assay to measure deanol levels in tissue and have applied this assay to our studies of the effect of acute deanol administration on deanol, ACh and Ch levels in rodent brains. Details of the method are described in this text. This procedure is quantitative and yields reproducible results over a wide range of deanol concentrations (0.30-200 nmol). Seven endogenous and pharmacological parameters have been studied using this procedure. In control rodent brain, liver, heart, lung and plasma, we detected no free endogenous deanol (less than 1 nmol/g). After deanol administration, we were able to detect deanol in tissue and have attempted to determine a relationship between these levels and values of ACh in the same tissue. Regardless of deanol pretreatment time (1-30 minutes) or doses (33.3-3000 mg/kg i.p.) used, we detected no increase in mouse whole brain ACh levels. Likewise, there was no detectable elevation in ACh levels in rat whole brain, cortex, striatum or hippocampus after a 15-minute pretreatment with 550 mg/kg of deanol (i.p.). The only elevation in ACh levels which we detected occurred selectively in the striatum of mice pretreated with a massive dose (900 mg/kg i.p.) of deanol for 30 minutes. This selective increase in striatal ACh levels oculd not, however, be related to levels of deanol in the striatum because there was no greater accumulation of deanol in the striatum than in other brain areas tested or in whole brain. These data do not confirm the results of other investigators who reported elevations in whole brain or striatal ACh levels after acute administration of lower doses of deanol. The data emphasize the need for further investigation into the mode of action of deanol and question its suggested role as an immediate precursor of ACh synthesis in the central nervous system.
Wiegers, Evita C; Rooijackers, Hanne M; Tack, Cees J; Groenewoud, Hans J M M; Heerschap, Arend; de Galan, Bastiaan E; van der Graaf, Marinette
2017-12-01
Since altered brain lactate handling has been implicated in the development of impaired awareness of hypoglycemia (IAH) in type 1 diabetes, the capacity to transport lactate into the brain during hypoglycemia may be relevant in its pathogenesis. High-intensity interval training (HIIT) increases plasma lactate levels. We compared the effect of HIIT-induced hyperlacticacidemia on brain lactate during hypoglycemia between 1 ) patients with type 1 diabetes and IAH, 2 ) patients with type 1 diabetes and normal awareness of hypoglycemia, and 3 ) healthy participants without diabetes ( n = 6 per group). All participants underwent a hypoglycemic (2.8 mmol/L) clamp after performing a bout of HIIT on a cycle ergometer. Before HIIT (baseline) and during hypoglycemia, brain lactate levels were determined continuously with J-difference-editing 1 H-MRS, and time curves were analyzed using nonlinear mixed-effects modeling. At the beginning of hypoglycemia (after HIIT), brain lactate levels were elevated in all groups but most pronounced in patients with IAH. During hypoglycemia, brain lactate decreased ∼30% below baseline in patients with IAH but returned to baseline levels and remained there in the other two groups. Our results support the concept of enhanced lactate transport as well as increased lactate oxidation in patients with type 1 diabetes and IAH. © 2017 by the American Diabetes Association.
Stress hormonal changes in the brain and plasma after acute noise exposure in mice.
Jin, Sang Gyun; Kim, Min Jung; Park, So Young; Park, Shi Nae
2017-06-01
To investigate the effects of acute noise stress on two amine stress hormones, norepinephrine (NE) and 5-hydroxyindoleacetic acid (5-HIAA) in the brain and plasma of mice after noise exposure. Mice were grouped into the control and noise groups. Mice in the noise group were exposed to white noise of 110dB sound pressure level for 60min. Auditory brainstem response thresholds, distortion product otoacoustic emissions, the organ of Corti grading scores, western blots of NE/5-HIAA in the whole brain and hippocampus, and the plasma levels of NE/5-HIAA were compared between the two groups. Significant hearing loss and cochlear damage were demonstrated in the noise group. NE and 5-HIAA in the hippocampus were elevated in the noise group (p=0.019/0.022 for NE/5-HIAA vs. the control). Plasma levels of NE and 5-HIAA were not statistically different between the groups (p=0.052/0.671 for NE/5-HIAA). Hearing loss with outer hair cell dysfunction and morphological changes of the organ of Corti after noise exposure in C57BL/6 mice proved the reliability of our animal model as an acute noise stress model. NE and 5-HIAA are suggested to be the potential biomarkers for acute noise stress in the hippocampus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Marungruang, N; Arévalo Sureda, E; Lefrançoise, A; Weström, B; Nyman, M; Prykhodko, O; Fåk Hållenius, F
2018-06-01
Precocious maturation of the gastrointestinal barrier (GIB) in newborn mammals can be induced by dietary provocation, but how this affects the gut microbiota and the gut-brain axis remains unknown. The objective of this study was to investigate effects of induced GIB maturation on gut microbiota composition and blood-brain barrier (BBB) permeability. Suckling rats were studied at 72 h after gavage with phytohemagglutinin (PHA) or microbial protease (PT) to induce maturation of GIB. For comparison, untreated suckling and weaned rats were included (n = 10). Human serum albumin (HSA) was administered orally and analyzed in blood to assess permeability of the GIB, while intraperitoneally injected bovine serum albumin (BSA) was measured in the brain tissue for BBB permeability. The cecal microbial composition, plasma lipopolysaccharide-binding protein (LBP) levels and short-chain fatty acids in serum and brain were analyzed. Cessation of HSA passage to blood after PHA or PT treatment was similar to that seen in weaned rats. Interestingly, concomitant increases in cecal Bacteroidetes and plasma LBP levels were observed after both PHA and PT treatments. The BBB passage of BSA was surprisingly elevated after weaning, coinciding with lower plasma LBP levels and specific microbial taxa and increased acetate uptake into the brain. This study provides evidence that the gut microbiota alteration following induced precocious GIB maturation may induce low-grade systemic inflammation and alter SCFAs utilization in the brain which may also play a potential role in GIB-BBB dysfunction disorders in neonates. © 2018 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.
Zhu, Hao-Jie; Wang, Jun-Sheng; DeVane, C Lindsay; Williard, Robin L; Donovan, Jennifer L; Middaugh, Lawrence D; Gibson, Brian B; Patrick, Kennerly S; Markowitz, John S
2006-07-01
The psychostimulant medications methylphenidate (MPH) and amphetamine (AMP), available in various ratios or enantiopure formulations of their respective active dextrorotary isomers, constitute the majority of agents used in the treatment of attention-deficit/hyperactivity disorder (ADHD). Substantial interindividual variability occurs in their pharmacokinetics and tolerability. Little is known regarding the potential role of drug transporters such as P-glycoprotein (P-gp) in psychostimulant pharmacokinetics and response. Therefore, experiments were carried out in P-gp knockout (KO) mice versus wild-type (WT) mice after intraperitoneal dosing (2.5 mg/kg) of d-MPH or (3.0 mg/kg) of d-AMP. After the administration of each psychostimulant, locomotor activity was assessed at 30-min intervals for 2 h. Total brain-to-plasma drug concentration ratios were determined at 10-, 30-, and 80-min postdosing time-points. The results showed no statistically supported genotypic difference in d-AMP-induced locomotor activity stimulation or in brain-to-plasma ratio of d-AMP. As for d-MPH, the P-gp KO mice had 33% higher brain concentrations (p < 0.05) and 67.5% higher brain-to-plasma ratios (p < 0.01) than WT controls at the 10-min postdosing timepoint. However, in spite of elevated brain concentrations, d-MPH-induced locomotor activity increase was attenuated for P-gp compared with that for WT mice. These data indicate that P-gp has no apparent effect on the pharmacokinetics and pharmacodynamics of d-AMP. In addition, d-MPH is a relatively weak P-gp substrate, and its entry into the brain may be limited by P-gp. Furthermore, the mechanism by which d-MPH-induced locomotor activity was attenuated in P-gp KO mice remains to be elucidated.
Lack of effect of vasopressin replacement on renin hypersecretion in Brattleboro rats
NASA Technical Reports Server (NTRS)
Golin, Raffaello M. A.; Gotoh, Eiji; Keil, Lanny C.; Shackelford, Roy L.; Ganong, William F.
1989-01-01
The congenital vasopressin deficiency in homozygous Brattleboro rats with diabetes insipidus is associated with elevated plasma renin activity at rest and supernormal responses to stimuli that increase renin secretion. The mechanism underlying this phenomenon was investigated by infusing homozygous and heterozygous Brattleboro rats with a dose of arginine vasopressin that restored plasma vasopressin to normal in the homozygous animals. The resulting data indicate that increased renin secretion in homozygous rats results from increased sympathetic activity. Because circulating vasopressin does not cross the blood-brain barrier, it seems likely that the increased sympathetic activity is central in origin.
The role of neurotrophins related to stress in saliva and salivary glands.
Saruta, Juri; Sato, Sadao; Tsukinoki, Keiichi
2010-10-01
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are well-studied neurotrophins involved in neurogenesis, differentiation, growth, and maintenance of selected peripheral and central populations of neuronal cells during development and adulthood. Neurotrophins, in concert with the hypothalamic-pituitary-adrenal (HPA) axis, play key roles in modulating brain plasticity and behavioral coping, especially during ontogenetic critical periods, when the developing brain is particularly sensitive to external stimuli. Early life events, such as psychophysical stress, affect NGF and BDNF levels and induce dysregulation of the HPA axis, thereby affecting brain development and contributing to inter-individual differences in vulnerability to stress or psychiatric disorders. Immobilization stress modifies BDNF mRNA expression in some organs. We studied the effect of immobilization stress on BDNF and its receptor tyrosine receptor kinase B (TrkB) in rat submandibular glands, and found increased BDNF expression in duct cells under immobilization stress. Upon further investigation on the influence of salivary glands on plasma BDNF using an acute immobilization stress model, we found that acute immobilization stress lasting 60 min significantly increases the plasma BDNF level. However, plasma BDNF elevation is markedly suppressed in bilaterally sialoadenectomized rats. This suggests that salivary glands may be the primary source of plasma BDNF under acute immobilization stress. This report reviews the structure of salivary glands, the role of neurotrophins in salivary glands, and the significance of BDNF in saliva and salivary glands, followed by a summary of the evidence that indicates the relationship between immobilization stress and BDNF expression within salivary glands.
Severe polyuria after the resection of adrenal pheochromocytoma.
Tobe, Musashi; Ito, Keiichi; Umeda, Shun; Sato, Akinori; Adaniya, Noriaki; Tanaka, Yuji; Hayakawa, Masamichi; Asano, Tomohiko
2010-12-01
A 73-year-old male patient with hypertension and hyperglycemia was referred to our hospital because of a diagnosis regarding his left adrenal tumor. Because the levels of urinary metanephrine and normetanephrine were elevated, and (131) I-MIBG scintigraphy showed intense uptake in the adrenal tumor, the tumor was diagnosed as a pheochromocytoma. An adrenalectomy was carried out. Severe polyuria, which was accompanied by a rapid decrease in central venous pressure, started 1 hour after the operation. Urine output of more than 8000 mL/day continued until the 16th postoperative day. Plasma antidiuretic hormone (ADH) levels were within the normal range. Plasma human atrial natriuretic peptide (hANP) and brain natriuretic peptide (BNP) were elevated postoperatively, and the elevation of these peptides was one possible cause for the severe polyuria. Because ADH levels in the tumor fluid were not elevated, the tumor was not an ADH-secreting tumor. Urinary β2-microglobulin was significantly elevated after the operation, thus suggesting that renal tubule dysfunction might also have been involved in the polyuria. However, the mechanism of polyuria after the resection of adrenal pheochromocytoma is not fully understood. Polyuria after the resection of adrenal pheochromocytoma is extremely rare, and the present subject is the second case to date. © 2010 The Japanese Urological Association.
Effects of arsenate on growth and physiology in mallard ducklings
Camardese, M.B.; Hoffman, D.J.; LeCaptain, L.J.; Pendleton, G.W.
1990-01-01
Arsenic (As) has been found at elevated concentrations in irrigation drainwater and in aquatic plants utilized by waterfowl. Mallard (Anas platyrhynchos) duckings received an untreated diet (controls) or diets containing 30, 100 or 300 ppm As added as sodium arsenate. After 10 weeks blood and tissue samples were collected for biochemical and histological examination. Arsenic accumulated significantly in brain and liver of ducklings fed 100 or 300 ppm but did not result in histopathological lesions. The 300-ppm dietary As concentration decreased overall growth (weight gain) in males, whereas all concentrations of As decreased overall growth and rate of growth in females. Food consumption was less during the first three weeks in all 300-ppm group and during the second week for the 100-ppm compared to controls. Plasma sorbitol dehydrogenase activity and plasma glucose concentration were higher in the 300-ppm group compared to controls. Plasma triglyceride concentration increased in all As-treated groups. Brain ATP was lower in the 300-ppm group and sodium/potassium-dependent ATPase activity was higher in the 30- and 100-ppm groups. Hepatic glutathione peroxidase activity was lower in the 300-ppm group and malondialdehyde lower in all treatment groups. All treatment levels caused elevation in hepatic glutathione and ATP concentrations. These findings, in combination with altered duckling behavior (increased resting time) suggesting that concentrations of As that have been found in aquatic plants (up to 430 ppm dry weight) could adversely affect normal duckling development.
Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism
Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; ...
2014-10-09
Circulating branched-chain amino acid (BCAA) levels are elevated in obesity and diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway in the liver. Selective induction of hypothalamic insulin signaling in rats as well as inducible and lifelong genetic modulation of brain insulin receptor expression in mice both demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Further, short-term overfeedingmore » impairs the ability of brain insulin to lower circulating BCAA levels in rats. Chronic high-fat feeding in primates and obesity and/or type 2 diabetes in humans is associated with reduced BCKDH protein expression in liver, further supporting the concept that decreased hepatic BCKDH is a primary cause of increased plasma BCAA levels in insulin-resistant states. These findings demonstrate that neuroendocrine pathways control BCAA homeostasis and that hypothalamic insulin resistance can be a cause of impaired BCAA metabolism in obesity and diabetes.« less
Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika
Circulating branched-chain amino acid (BCAA) levels are elevated in obesity and diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway in the liver. Selective induction of hypothalamic insulin signaling in rats as well as inducible and lifelong genetic modulation of brain insulin receptor expression in mice both demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Further, short-term overfeedingmore » impairs the ability of brain insulin to lower circulating BCAA levels in rats. Chronic high-fat feeding in primates and obesity and/or type 2 diabetes in humans is associated with reduced BCKDH protein expression in liver, further supporting the concept that decreased hepatic BCKDH is a primary cause of increased plasma BCAA levels in insulin-resistant states. These findings demonstrate that neuroendocrine pathways control BCAA homeostasis and that hypothalamic insulin resistance can be a cause of impaired BCAA metabolism in obesity and diabetes.« less
Developmental changes of l-arginine transport at the blood-brain barrier in rats.
Tachikawa, Masanori; Hirose, Shirou; Akanuma, Shin-Ichi; Matsuyama, Ryo; Hosoya, Ken-Ichi
2018-05-01
l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.
A Nutrient Combination that Can Affect Synapse Formation
Wurtman, Richard J.
2014-01-01
Brain neurons form synapses throughout the life span. This process is initiated by neuronal depolarization, however the numbers of synapses thus formed depend on brain levels of three key nutrients—uridine, the omega-3 fatty acid DHA, and choline. Given together, these nutrients accelerate formation of synaptic membrane, the major component of synapses. In infants, when synaptogenesis is maximal, relatively large amounts of all three nutrients are provided in bioavailable forms (e.g., uridine in the UMP of mothers’ milk and infant formulas). However, in adults the uridine in foods, mostly present at RNA, is not bioavailable, and no food has ever been compelling demonstrated to elevate plasma uridine levels. Moreover, the quantities of DHA and choline in regular foods can be insufficient for raising their blood levels enough to promote optimal synaptogenesis. In Alzheimer’s disease (AD) the need for extra quantities of the three nutrients is enhanced, both because their basal plasma levels may be subnormal (reflecting impaired hepatic synthesis), and because especially high brain levels are needed for correcting the disease-related deficiencies in synaptic membrane and synapses. PMID:24763080
Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D
2014-03-01
Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.
Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.
2014-01-01
Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433
Veasey, Sigrid C.; Lear, Jessica; Zhu, Yan; Grinspan, Judith B.; Hare, Dominic J.; Wang, SiHe; Bunch, Dustin; Doble, Philip A.; Robinson, Stephen R.
2013-01-01
Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. Design: Participants were randomly allocated to a control or experimental group (single independent variable). Setting: University animal house. Participants: Adult male C57BL/6J mice. Interventions: To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). Measurements and Results: Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. Conclusions: Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea. Citation: Veasey SC; Lear J; Zhu Y; Grinspan JB; Hare DJ; Wang S; Bunch D; Doble PA; Robinson SR. Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. SLEEP 2013;36(10):1471-1481. PMID:24082306
Mice overexpressing corticotropin-releasing factor show brain atrophy and motor dysfunctions.
Goebel, Miriam; Fleming, Sheila M; Million, Mulugeta; Stengel, Andreas; Taché, Yvette; Wang, Lixin
2010-03-31
Chronic stress and persistently high glucocorticoid levels can induce brain atrophy. Corticotropin-releasing factor (CRF)-overexpressing (OE) mice are a genetic model of chronic stress with elevated brain CRF and plasma corticosterone levels and Cushing's syndrome. The brain structural alterations in the CRF-OE mice, however, are not well known. We found that adult male and female CRF-OE mice had significantly lower whole brain and cerebellum weights than their wild type (WT) littermates (347.7+/-3.6mg vs. 460.1+/-4.3mg and 36.3+/-0.8mg vs. 50.0+/-1.3mg, respectively) without sex-related difference. The epididymal/parametrial fat mass was significantly higher in CRF-OE mice. The brain weight was inversely correlated to epididymal/parametrial fat weight, but not to body weight. Computerized image analysis system in Nissl-stained brain sections of female mice showed that the anterior cingulate and sensorimotor cortexes of CRF-OE mice were significantly thinner, and the volumes of the hippocampus, hypothalamic paraventricular nucleus and amygdala were significantly reduced compared to WT, while the locus coeruleus showed a non-significant increase. Motor functions determined by beam crossing and gait analysis showed that CRF-OE mice took longer time and more steps to traverse a beam with more errors, and displayed reduced stride length compared to their WT littermates. These data show that CRF-OE mice display brain size reduction associated with alterations of motor coordination and an increase in visceral fat mass providing a novel animal model to study mechanisms involved in brain atrophy under conditions of sustained elevation of brain CRF and circulating glucocorticoid levels. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Sex-dependent effects of letrozole on anxiety in middle-aged rats.
Borbélyová, Veronika; Domonkos, Emese; Csongová, Melinda; Kačmárová, Mária; Ostatníková, Daniela; Celec, Peter; Hodosy, Július
2017-12-01
Aromatase catalyzes the conversion of testosterone to estradiol and is involved in the physiological effects of sex hormones on brain function. Animal experiments have shown that the aromatase inhibitor, letrozole, can induce anxiety in young ovariectomized females that are used as a model of aging. Whether or not these effects would be similar in intact middle-aged animals is unknown. The aim of our study was to analyze the effects of letrozole on anxiety in middle-aged rats of both sexes. Fifteen month old male and female rats were treated daily with either letrozole or vehicle for 2 weeks. The elevated plus maze was used to test anxiety-like behaviour. Sex differences were found not only in plasma concentrations of testosterone but also in the effects of letrozole treatment on plasma testosterone (P<.05). The interaction between sex and treatment was also proven in locomotor activity (P<.05) and time spent in the open arms of the elevated plus maze (P<.05). Letrozole-treated male rats spent 95% less time in the open arms of the elevated plus maze than the control rats did (P<.05) suggesting an anxiogenic effect of aromatase inhibition. This difference was not found between letrozole-treated and vehicle-treated females. In contrast to previous experiments on young animals, letrozole seems to induce anxiety in male but not in female middle-aged rats. This sex-specific effect might be related to sex differences of oestrogen and androgen signalling in aging brains. These results should be taken into account in clinical applications of letrozole, especially in men. © 2017 John Wiley & Sons Australia, Ltd.
Choi, Young-Jun; Kim, Jin Young; Jin, Wei-Peng; Kim, Yoon-Tae; Lee, Jong-Ho; Jahng, Jeong Won
2015-07-01
This study was conducted to examine if taste over load with oral capsaicin improves the adverse behavioural effects induced by partial aberration of oral sensory relays to brain with bilateral transections of the lingual and chorda tympani nerves. Male Sprague-Dawley rats received daily 1 ml of 0.02% capsaicin or water drop by drop into the oral cavity following the bilateral transections of the lingual and chorda tympani nerves. Rats were subjected to ambulatory activity, elevated plus maze and forced swim tests after 11th, 14th and 17th daily administration of capsaicin or water, respectively. The basal and stress-induced plasma corticosterone levels were examined after the end of behavioural tests. Ambulatory counts, distance travelled, centre zone activities and rearing were increased, and rostral grooming decreased, during the activity test in capsaicin treated rats. Behavioural scores of capsaicin rats during elevated plus maze test did not differ from control rats. Immobility during the swim test was decreased in capsaicin rats with near significance (P = 0.0547). Repeated oral capsaicin increased both the basal level and stress-induced elevation of plasma corticosterone in rats with bilateral transections of the lingual and chorda tympani nerves. It is concluded that repeated oral administration of capsaicin reduces anxiety-like behaviours in rats that received bilateral transections of the lingual and chorda tympani nerves, and that the increased corticosterone response, possibly modulating the hippocampal neural plasticity, may be implicated in the anxiolytic efficacy of oral capsaicin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Choudhury, Sabanum; Borah, Anupom
2015-07-01
Liver diseases lead to a complex syndrome characterized by neurological, neuro-psychiatric and motor complications, called hepatic encephalopathy, which is prevalent in patients and animal models of acute, sub-chronic and chronic liver failure. Although alterations in GABAergic, glutamatergic, cholinergic and serotonergic neuronal functions have been implicated in HE, the molecular mechanisms that lead to HE in chronic liver disease (CLD) is least illustrated. Due to hepatocellular failure, levels of ammonia and homocysteine (Hcy), in addition to others, are found to increase in the brain as well as plasma. Hcy, a non-protein forming amino acid and an excitotoxin, activates ionotropic glutamate (n-methyl-d-aspartate; NMDA) receptors, and thereby leads to influx of Ca(2+) into neurons, which in turn activates several pathways that trigger oxidative stress, inflammation and apoptosis, collectively called excitotoxicity. Elevated levels of Hcy in the plasma and brain, a condition called Hyperhomocysteinemia (HHcy), and the resultant NMDA receptor-mediated excitotoxicity has been implicated in several diseases, including Parkinson's disease and Alzheimer's disease. Although, hyperammonemia has been shown to cause excitotoxicity, the role of HHcy in the development of behavioral and neurochemical alterations that occur in HE has not been illustrated yet. It is hypothesized that CLD-induced HHcy plays a major role in the development of HE through activation of NMDA receptors. It is further hypothesized that HHcy synergizes with hyperammonemia to activate NMDA receptor in the brain, and thereby cause oxidative stress, inflammation and apoptosis, and neuronal loss that leads to HE. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pari, Elisa; Rinaldi, Fabrizio; Premi, Enrico; Codella, Maria; Rao, Renata; Paghera, Barbara; Panarotto, Maria Beatrice; De Maria, Giovanni; Padovani, Alessandro
2014-04-01
Hashimoto's encephalopathy (HE) is a rare neuropsychiatric syndrome associated with antithyroid antibodies. It may have an acute onset (episodes of cerebral ischemia, seizure, and psychosis) or it may present as an indolent form (depression, cognitive decline, myoclonus, tremors, and fluctuations in level of consciousness). We here describe a case of encephalopathy presenting as non-convulsive status epilepticus associated with Hashimoto's thyroiditis (HT), unresponsive to corticosteroid therapy, with improvement after plasma exchange treatment. A previously healthy 19-year-old woman, presented generalized tonic-clonic seizures. About a month later, she manifested a speech disorder characterized by difficulties in the production and comprehension of language. Within a few days she also developed confusion and difficulties in recognizing familiar places, with gradual worsening over time. EEG revealed a non-convulsive status epilepticus (NCSE). CSF examination showed slightly elevated cell count and four oligoclonal bands. MRI was unremarkable, and (18)F-FDG brain PET showed widespread hypometabolism, mostly in posterior regions bilaterally. Laboratory and ultrasound findings showed signs of HT. Treatment with steroid was introduced without any improvement. After five sessions of plasma exchange there was a decrease of antithyroid antibodies, as well as EEG and clinical improvement. Three months after discharge (18)F-FDG brain PET showed a complete normalization of the picture, and the patient was asymptomatic. This report emphasizes the successful treatment of HE with plasma exchange in a patient who presented with NCSE. Based on the actual evidence, the term "Encephalopathy associated with Hashimoto's thyroiditis" may be the most proper. Furthermore, to our knowledge, this is the first case of an adult patient studied twice with an (18)F-FDG brain PET: prior to treatment with plasma exchange, and at 3 months follow-up when the patient was clinically completely asymptomatic. Studies in more patients are needed to clarify the relevance of (18)F-FDG brain PET as a possible diagnostic tool for HE.
Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study.
Pham, Nam; Akonasu, Hungbo; Shishkin, Rhonda; Taghibiglou, Changiz
2015-01-01
Sport-related mild traumatic brain injury (mTBI) or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasma soluble cellular prion protein (PrP(C)) as a potential reliable biomarker for blast induced TBI (bTBI) in a rodent animal model. In order to explore the application of this novel TBI biomarker to sport-related concussion, we conducted a pilot study at the University of Saskatchewan (U of S) by recruiting athlete and non-athlete 18 to 30 year-old students. Using a modified quantitative ELISA method, we first established normal values for the plasma soluble PrP(C) in male and female students. The measured plasma soluble PrP(C) in confirmed concussion cases demonstrated a significant elevation of this analyte in post-concussion samples. Data collected from our pilot study indicates that the plasma soluble PrP(C) is a potential biomarker for sport-related concussion, which may be further developed into a clinical diagnostic tool to assist clinicians in the assessment of sport concussion and return-to-play decision making.
Naora, K; Ichikawa, N; Hirano, H; Iwamoto, K
1999-05-01
Pharmacokinetic changes of various drugs have been reported in renal or hepatic failure. The present study employed ciprofloxacin, a quinolone antibiotic having neurotoxic side effects, to assess the influence of these diseases on distribution of ciprofloxacin into the central nervous system (CNS). After intravenous dosing of ciprofloxacin (10-30 mg kg(-1)), ciprofloxacin levels in plasma and brain were measured in normal rats (Wistar, male, 10-week-old) and those with acute renal and hepatic injuries which were induced by uranyl nitrate and carbon tetrachloride (CCl4), respectively. In the uranyl nitrate-treated rats, the plasma elimination half-life of ciprofloxacin was prolonged and the total body clearance was reduced when compared with those in the normal rats. Similar but smaller changes were observed in the CCl4-treated group. Brain levels of ciprofloxacin were significantly increased by both uranyl nitrate and CCl4 treatments. A proportional correlation between serum unbound levels and brain levels of ciprofloxacin was observed in the normal group. However, brain-to-serum unbound concentration ratios of ciprofloxacin were reduced in the rats with renal or hepatic failure. These results suggest that renal failure as well as hepatic failure retards elimination of ciprofloxacin from the blood, leading to elevation of the CNS level, and also that ciprofloxacin distribution in the brain is reduced in these disease states.
Baxter, Laura L.; Marugan, Juan J.; Xiao, Jingbo; Incao, Art; McKew, John C.; Zheng, Wei; Pavan, William J.
2012-01-01
Vitamin E isoforms are essential nutrients that are widely used as dietary supplements and therapeutic agents for a variety of diseases. However, their pharmacokinetic (PK) properties remain poorly characterized, and high dosage animal studies may provide further information on their in vivo functions and pharmacological effects. In this study, alpha-tocopherol (α-toc) and delta-tocopherol (δ-toc) levels were measured in mouse plasma and tissues following their high dosage dietary supplementation. Average α-toc levels at 5, 10 and 20 g α-toc/kg diet increased over baseline levels 6-fold in plasma, 1.6-fold in brain, and 4.9-fold in liver. These elevated α-toc concentrations remained constant from 5 to 20 g α-toc/kg diet, rather than showing further increases across these dosages. No α-toc-related toxicity occurred at these high dosages, and strain-specific differences in liver and brain α-toc levels between Balb/cJ and C57Bl/6J mice were observed. Relatively high-dosage administration of dietary δ-toc for 1 or 4 weeks resulted in 6–30-fold increases in plasma and liver levels between dosages of 0.33 and 1.67 g δ-toc/kg diet. Co-administration of sesamin with δ-toc further increased δ-toc levels between 1.3- and 14-fold in plasma, liver, and brain. These results provide valuable PK information on high dosage α-toc and δ-toc in mouse and show that supplementation of sesamin with δ-toc further increases δ-toc levels over those seen with δ-toc supplementation alone. PMID:22822447
O’Neill, Casey E.; Newsom, Ryan J.; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C.; Spencer, Robert L.; Campeau, Serge; Bachtell, Ryan K.
2016-01-01
Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3 g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24 h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24 h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence increased basal Crf mRNA in the central nucleus of the amygdala, but no additional effects of stress or caffeine consumption were observed in other brain regions. Together these findings suggest that adolescent caffeine consumption may increase vulnerability to psychiatric disorders including anxiety-related disorders, and this vulnerability may result from dysregulation of the neuroendocrine stress response system. PMID:26874560
Effects of hemorrhagic hypotension on tyrosine concentrations in rat spinal cord and plasma
NASA Technical Reports Server (NTRS)
Conlay, L. A.; Maher, T. J.; Roberts, C. H.; Wurtman, R. J.
1988-01-01
Tyrosine is the precursor for catecholamine neurotransmitters. When catecholamine-containing neurons are physiologically active (as sympathoadrenal cells are in hypotension), tyrosine administration increases catecholamine synthesis and release. Since hypotension can alter plasma amino acid composition, the effects of an acute hypotensive insult on tyrosine concentrations in plasma and spinal cord were examined. Rats were cannulated and bled until the systolic blood pressure was 50 mmHg, or were kept normotensive for 1 h. Tyrosine and other large neutral amino acids (LNAA) known to compete with tyrosine for brain uptake were assayed in plasma and spinal cord. The rate at which intra-arterial (H-3)tyrosine disappeared from the plasma was also estimated in hemorrhaged and control rats. In plasma of hemorrhaged animals, both the tyrosine concentration and the tyrosine/LNAA ratio was elevated; moreover, the disappearance of (H-3)tyrosine was slowed. Tyrosine concentrations also increased in spinal cords of hemorrhaged-hypotensive rats when compared to normotensive controls. Changes in plasma amino acid patterns may thus influence spinal cord concentrations of amino acid precursors for neurotransmitters during the stress of hemorrhagic shock.
Energy and glucose pathways in thiamine deficient primary rat brain microvascular endothelial cells.
Ham, D; Karska-Wysocki, B
2005-12-01
Thiamine deficiency (TD) results in lactate acidosis, which is associated with neurodegeneration. The aim of this study was to investigate this alteration in primary rat brain endothelia. Spectrophotometric analysis of culture media revealed that only a higher concentration of pyrithiamine, which accelerates the intracellular blocking of thiamine, significantly elevated the lactate level and lactate dehydrogenase activity within 7 days. The medium without pyrithiamine and with a thiamine concentration comparable to pathophysiological plasma levels mildly reduced only the activity of transketolase. This suggests that significant metabolic changes may not occur at the early phase of TD in cerebral capillary cells, while anaerobic glycolysis in capillaries may be mediated during late stage/chronic TD.
Curzon, G; Fernando, J C
1976-12-01
1 Aminophylline and other methylxanthines increase brain tryptophan and hence 5-hydroxytryptamine turnover. The mechanism of this effect of aminophylline was investigated. 2 At lower doses (greater than 100 mg/kg i.p.) the brain tryptophan increase could be explained by the lipolytic action of the drug, i.e. increased plasma unesterified fatty acid freeing plasma tryptophan from protein binding so that it became available to the brain. 3 Plasma unesterified fatty acid did not increase when aminophylline (109 mg/kg i.p.) was given to nicotinamide-treated rats but as both plasma total and free tryptophan rose, a tryptophan increase in the brain still occurred. 4 The rise in brain tryptophan concentration following the injection of a higher dose of the drug (150 mg/kg i.p.) could no longer be explained by a rise of plasma free tryptophan as the ratio of brain tryptophan to plasma free tryptophan rose considerably. Plasma total tryptophan fell and the plasma insulin concentration rose. 5 The increase of brain tryptophan concentration after injection of 150 mg/kg aminophylline appeared specific for this amino acid as brain tyrosine and phenyllanine did not increase. However as their plasma concentrations fell the brain/plasma ratio for all three amino acids rose. 6 The higher dose of aminophylline increased the muscle concentration of tryptophan but that of tyrosine fell and that of phenylalanine remained unaltered. The liver concentrations were not affected. 7 The aminophylline-induced increase of the ratio of brain tryptophan of plasma free tryptophan no longer occurred when the drug was given to animals injected with the beta-adrenoreceptor blocking agent propranolol or the diabetogenic agent streptozotocin. 8 The changes in brain tryptophan upon aminophylline injection may be explained by (a) increased availability of plasma tryptophan to the brain due to increased lipolysis and (b) increased effectiveness of uptake of tryptophan by the brain due to increased insulin secretion.
Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain
Chen, Chuck T.; Kitson, Alex P.; Hopperton, Kathryn E.; Domenichiello, Anthony F.; Trépanier, Marc-Olivier; Lin, Lauren E.; Ermini, Leonardo; Post, Martin; Thies, Frank; Bazinet, Richard P.
2015-01-01
Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain. PMID:26511533
Shortall, SE; Green, AR; Swift, KM; Fone, KCF; King, MV
2013-01-01
Background and Purpose Recreational users report that mephedrone has similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). MDMA induces well-characterized changes in body temperature due to complex monoaminergic effects on central thermoregulation, peripheral blood flow and thermogenesis, but there are little preclinical data on the acute effects of mephedrone or other synthetic cathinones. Experimental Approach The acute effects of cathinone, methcathinone and mephedrone on rectal and tail temperature were examined in individually housed rats, with MDMA included for comparison. Rats were killed 2 h post-injection and brain regions were collected for quantification of 5-HT, dopamine and major metabolites. Further studies examined the impact of selected α-adrenoceptor and dopamine receptor antagonists on mephedrone-induced changes in rectal temperature and plasma catecholamines. Key Results At normal room temperature, MDMA caused sustained decreases in rectal and tail temperature. Mephedrone caused a transient decrease in rectal temperature, which was enhanced by α1-adrenoceptor and dopamine D1 receptor blockade, and a prolonged decrease in tail temperature. Cathinone and methcathinone caused sustained increases in rectal temperature. MDMA decreased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) content in several brain regions and reduced striatal homovanillic acid (HVA) levels, whereas cathinone and methcathinone increased striatal HVA and 5-HIAA. Cathinone elevated striatal and hypothalamic 5-HT. Mephedrone elevated plasma noradrenaline levels, an effect prevented by α-adrenoceptor and dopamine receptor antagonists. Conclusions and Implications MDMA and cathinones have different effects on thermoregulation, and their acute effects on brain monoamines also differ. These findings suggest that the adverse effects of cathinones in humans cannot be extrapolated from previous observations on MDMA. PMID:23043631
Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.
Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong
2017-03-01
Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1 ys/ys ). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1 ys/ys mice at a dose of 5 × 10 11 vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1 ys/ys mice.
Shortall, S E; Green, A R; Swift, K M; Fone, K C F; King, M V
2013-02-01
Recreational users report that mephedrone has similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). MDMA induces well-characterized changes in body temperature due to complex monoaminergic effects on central thermoregulation, peripheral blood flow and thermogenesis, but there are little preclinical data on the acute effects of mephedrone or other synthetic cathinones. The acute effects of cathinone, methcathinone and mephedrone on rectal and tail temperature were examined in individually housed rats, with MDMA included for comparison. Rats were killed 2 h post-injection and brain regions were collected for quantification of 5-HT, dopamine and major metabolites. Further studies examined the impact of selected α-adrenoceptor and dopamine receptor antagonists on mephedrone-induced changes in rectal temperature and plasma catecholamines. At normal room temperature, MDMA caused sustained decreases in rectal and tail temperature. Mephedrone caused a transient decrease in rectal temperature, which was enhanced by α(1) -adrenoceptor and dopamine D(1) receptor blockade, and a prolonged decrease in tail temperature. Cathinone and methcathinone caused sustained increases in rectal temperature. MDMA decreased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) content in several brain regions and reduced striatal homovanillic acid (HVA) levels, whereas cathinone and methcathinone increased striatal HVA and 5-HIAA. Cathinone elevated striatal and hypothalamic 5-HT. Mephedrone elevated plasma noradrenaline levels, an effect prevented by α-adrenoceptor and dopamine receptor antagonists. MDMA and cathinones have different effects on thermoregulation, and their acute effects on brain monoamines also differ. These findings suggest that the adverse effects of cathinones in humans cannot be extrapolated from previous observations on MDMA. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Duarte, João M N; Morgenthaler, Florence D; Gruetter, Rolf
2017-06-01
Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.
Johnson, Kaitlin M; Lema, Sean C
2011-07-01
In fish as in other vertebrates, the diverse functions of thyroid hormones are mediated at the peripheral tissue level through iodothyronine deiodinase (dio) enzymes and thyroid hormone receptor (tr) proteins. In this study, we examined thyroid hormone regulation of mRNAs encoding the three deiodinases dio1, dio2 and dio3 - as well as three thyroid hormone receptors trαA, trαB and trβ - in initial phase striped parrotfish (Scarus iseri). Parrotfish were treated with dissolved phase T(3) (20 nM) or methimazole (3 mM) for 3 days. Treatment with exogenous T(3) elevated circulating T(3), while the methimazole treatment depressed plasma T(4). Experimentally-induced hyperthyroidism increased the relative abundance of transcripts encoding trαA and trβ in the liver and brain, but did not affect trαB mRNA levels in either tissue. In both sexes, methimazole-treated fish exhibited elevated dio2 transcripts in the liver and brain, suggesting enhanced outer-ring deiodination activity in these tissues. Accordingly, systemic hyperthyroidism elevated relative dio3 transcript levels in these same tissues. In the gonad, however, patterns of transcript regulation were distinctly different with elevated T(3) increasing mRNAs encoding dio2 in testicular and ovarian tissues and dio3, trαA and trαB in the testes only. Thyroid hormone status did not affect dio1 transcript abundance in the liver, brain or gonads. Taken as a whole, these results demonstrate that thyroidal status influences relative transcript abundance for dio2 and dio3 in the liver, provide new evidence for similar patterns of dio2 and dio3 mRNA regulation in the brain, and make evident that fish exhibit tr subtype-specific transcript abundance changes to altered thyroid status. Copyright © 2011 Elsevier Inc. All rights reserved.
Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.
2016-01-01
Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level, arguing against a DAAO-mediated effect. However, NaB reduced plasma L-serine and based on reports that NaB also elevates various plasma metabolites, for example aminoisobutyric acid (AIB), a potential effect via the System A amino acid carrier may be involved in the regulation of synaptic glycine level to modulate NMDAR function needs to be investigated. Acute ascorbic acid (300 mg/kg) also inhibited PCP-induced locomotor activity, which was further attenuated in the presence of D-serine (600 mg/kg). Ascorbic acid may have an action at the dopamine membrane carrier and/or altering redox mechanisms that modulate NMDARs, but this needs to be further investigated. The findings support an effect of D-serine on PCP-induced hyperactivity. They also offer suggestions on an interaction of NaB via an unknown mechanism, other than DAAO inhibition, perhaps through metabolomic changes, and find unexpected synergy between D-serine and ascorbic acid that supports combined NMDA glycine- and redox-site intervention. Although mechanisms of these specific agents need to be determined, overall it supports continued glutamatergic drug development. PMID:26857796
Dunlap, Kent D; Keane, Geoffrey; Ragazzi, Michael; Lasky, Elise; Salazar, Vielka L
2017-07-01
The brain structure of many animals is influenced by their predators, but the cellular processes underlying this brain plasticity are not well understood. Previous studies showed that electric fish ( Brachyhypopomus occidentalis ) naturally exposed to high predator ( Rhamdia quelen ) density and tail injury had reduced brain cell proliferation compared with individuals facing few predators and those with intact tails. However, these field studies described only correlations between predator exposure and cell proliferation. Here, we used a congener Brachyhypopomus gauderio and another electric fish Apteronotus leptorhynchus to experimentally test the hypothesis that exposure to a predator stimulus and tail injury causes alterations in brain cell proliferation. To simulate predator exposure, we either amputated the tail followed by short-term (1 day) or long-term (17-18 days) recovery or repeatedly chased intact fish with a plastic rod over a 7 day period. We measured cell proliferation (PCNA+ cell density) in the telencephalon and diencephalon, and plasma cortisol, which commonly mediates stress-induced changes in brain cell proliferation. In both species, either tail amputation or simulated predator chase decreased cell proliferation in the telencephalon in a manner resembling the effect of predators in the field. In A. leptorhynchus , cell proliferation decreased drastically in the short term after tail amputation and partially rebounded after long-term recovery. In B. gauderio , tail amputation elevated cortisol levels, but repeated chasing had no effect. In A. leptorhynchus , tail amputation elevated cortisol levels in the short term but not in the long term. Thus, predator stimuli can cause reductions in brain cell proliferation, but the role of cortisol is not clear. © 2017. Published by The Company of Biologists Ltd.
Huang, Tien-sheng; Ruoff, Peter; Fjelldal, Per G
2010-10-01
In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.
Adult cerebral adrenoleukodystrophy and Addison's disease in a female carrier.
Chen, Xiaoyan; Chen, Zhiye; Huang, Dehui; Liu, Xiaofeng; Gui, Qiuping; Yu, Shengyuan
2014-07-10
We described a 38-year-old woman of rapidly progressive dementia with white matter encephalopathy and death. She had Addison's disease but the adrenal glands were hyperplastic. Brain magnetic resonance imaging revealed diffuse white matter lesion predominantly in the frontal lobe with band-like contrast enhancement. l-Methyl-11C-methionine positron emission tomography revealed accumulation of tracer in bilateral frontal lobes. Stereotactic biopsy demonstrated demyelination changes. A number of urinary organic acids were elevated. Adrenoleukodystrophy was diagnosed by elevated plasma very long chain fatty acid and ABCD1 gene mutation (C1544C/T). Adrenoleukodystrophy should be considered as a differential diagnosis in women with rapidly progressive white matter encephalopathy. Copyright © 2014 Elsevier B.V. All rights reserved.
Elevation of Glutathione as a Therapeutic Strategy in Alzheimer Disease
Pocernich, Chava B.; Butterfield, D. Allan
2011-01-01
Oxidative stress has been associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer disease (AD). AD and MCI brain and plasma display extensive oxidative stress as indexed by protein oxidation, lipid peroxidation, free radical formation, DNA oxidation, and decreased antioxidants. The most abundant endogenous antioxidant, glutathione, plays a significant role in combating oxidative stress. The ratio of oxidized to reduced glutathione is utilized as a measure of intensity of oxidative stress. Antioxidants have long been considered as an approach to slow down AD progression. In this review, we focus on the elevation on glutathione through N-acytl-cysteine (NAC) and γ-glutamylcysteine ethyl ester (GCEE) as a potential therapeutic approach for Alzheimer disease. PMID:22015471
Rätsep, Matthew T; Hickman, Andrew F; Croy, B Anne
2016-12-01
Preeclampsia (PE) is a significant gestational disorder affecting 3-5% of all human pregnancies. In many PE pregnancies, maternal plasma is deficient in placental growth factor (PGF), a placentally-produced angiokine. Beyond immediate fetal risks associated with acute termination of the pregnancy, offspring of PE pregnancies (PE-F1) have higher long-term risks for hypertension, stroke, and cognitive impairment compared to F1s from uncomplicated pregnancies. At present, mechanisms that explain PE-F1 gains in postpartum risks are poorly understood. Our laboratory found that mice genetically-deleted for Pgf have altered fetal and adult brain vascular development. This is accompanied by sexually dimorphic alterations in anatomic structure in the adult Pgf -/- brain and impaired cognitive functions. We hypothesize that cerebrovascular and neurological aberrations occur in fetuses exposed to the progressive development of PE and that these brain changes impair cognitive functioning, enhance risk for stroke, elevate severity of stroke, and lead to worse stroke outcomes. These brain and placental outcomes may be linked to down-regulated PGF gene expression in early pre-implantation embryos, prior to gastrulation. This review explores our hypothesis that there are mechanistic links between low PGF detection in maternal plasma prodromal to PE, PE, and altered brain vascular, structural, and functional development amongst PE-F1s. We also include a summary of preliminary outcomes from a pilot study of 7-10 year old children that is the first to report magnetic resonance imaging, magnetic resonance angiography, and functional brain region assessment by eye movement control studies in PE-F1s. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin
2014-12-01
Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.
Labots, M; Zheng, X; Moattari, G; Lozeman-Van't Klooster, J G; Baars, J M; Hesseling, P; Lavrijsen, M; Kirchhoff, S; Ohl, F; van Lith, H A
2016-06-01
Magnesium (Mg) has been described to possess an anxiolytic function, but a number of studies present inconsistent results on this matter. In this study the effect of Mg deficiency on anxiety-related behavior, brain and blood plasma Mg in young adult male C57BL/6JOlaHsd and C57BL/6NCrl mice was studied. The animals were put on a control or Mg deficient diet from day 0 and significant hypomagnesaemia was evident from day 12 onwards in the test animals. Housing and test conditions were under either conventional light regime (white light behavioral test conditions) or reverse light regime (red light behavioral test conditions). The animals were tested in three tests for unconditioned anxiety: the modified Hole Board (day 14), the light-dark test (day 21) and the elevated plus maze (day 28). Overall integrated behavioral z-scores were calculated over these three behavioral tests. Mg showed a structure dependent distribution at the level of the brain, that differed between C57BL/6 substrain and light regime (conventional versus reverse), respectively. Likewise, total brain Mg did differ between substrain and light regime, but was not affected by the diet. Animals on the Mg deficient diet housed under conventional light regime had a higher final (day 28) blood plasma corticosterone level as compared to controls. Animals housed under reverse light regime exhibited no diet effect of plasma corticosterone levels. The significant hypomagnesaemia at blood plasma level resulted in an effect of Mg deficiency on avoidance, but not overall anxiety-related behavior. Significant differences regarding avoidance behavior were found between the two substrains and light regimes, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Passino, Claudio; Maria Sironi, Anna; Favilli, Brunella; Poletti, Roberta; Prontera, Concetta; Ripoli, Andrea; Lombardi, Massimo; Emdin, Michele
2005-09-15
Atrial and brain natriuretic peptides (ANP and BNP) plasma concentration increases and holds a prognostic significance in patients with left ventricular dysfunction. We assessed the hypothesis that right ventricular (RV) overload might significantly contribute to plasma elevation of cardiac natriuretic hormones in patients with heart failure. Forty-one patients with cardiomyopathy and depressed left ventricular (LV) function (ejection fraction, EF, <40%), underwent cardiac magnetic resonance imaging (MRI) and resting plasma determination of ANP and BNP. Nineteen healthy subjects were also studied as control group. Ventricular volumes and function were assessed by MRI. In the group of patients, LVEF was 22.6+/-1.2% (controls: 61.2+/-1.3%, P<0.001, mean+/-S.E.M.), while RVEF was 48.2+/-2.5% (controls: 66.7+/-1.6%, P<0.001); LV and RV end diastolic/systolic volumes, corrected by body surface area, were 143+/-7/114+/-7 ml/m2 (controls 70+/-3/27+/-2 ml/m2, both P<0.001) and 66+/-3/37+/-4 ml/m2 (controls: 63+/-4/21+/-2 ml/m2, P<0.01 only for end-systolic volume). BNP plasma value was on average 324+/-39 pg/ml (range: 23-1280, controls 10+/-2 pg/ml), ANP value was 144+/-17 pg/ml (range: 26-534, controls 15+/-1 pg/ml). BNP positively correlated with either end-diastolic or end-systolic RV volume in patients, less with LV systolic, and not with LV diastolic volume. Moreover, a significant negative correlation was observed between BNP and either LVEF or RVEF. Conversely, ANP showed a significant correlation only with end-systolic RV volume and with both RVEF and LVEF. When multivariate stepwise linear regression analysis was applied LVEF resulted the only independent predictor for ANP plasma values (R=0.591, P<0.001), while LVEF and RV end-diastolic volume for BNP (R=0.881, P<0.001, and R=0.881, P=0.035, respectively). Right heart overload contributes independently to plasma elevation of natriuretic peptides. RV involvement, which is known to independently worsen prognosis in patients with cardiomyopathy, might contribute to their established prognostic power, inducing compensatory secretion of plasma cardiac natriuretic hormones.
Pinto, John T.; Khomenko, Tetyana; Szabo, Sandor; McLaren, Gordon D.; Denton, Travis T.; Krasnikov, Boris F.; Jeitner, Thomas M.; Cooper, Arthur J.L.
2009-01-01
An HPLC method with coulometric detection is presented for the quantitation of cysteamine, cystamine, thialysine, glutathione, glutathione disulfide and an oxidized metabolite of thialysine [S-(2-aminoethyl)-l-cysteine ketimine decarboxylated dimer (AECK-DD)]. The advantage of coulometric detection is that derivatization is unnecessary if the analyte is redox sensitive. The method was used to quantitate several sulfur-containing compounds in plasma and brain following gavage feeding of cysteamine to rats. Cysteamine, cystamine, thialysine and AECK-DD were detected in the brains of these animals. Interestingly, cysteamine treatment resulted in greatly elevated levels of cerebral methionine, despite the fact that cysteamine is not a precursor of methionine. PMID:19523884
Hormonal responses and tolerance to cold of female quail following parathion ingestion
Rattner, B.A.; Sileo, L.; Scanes, C.G.
1982-01-01
Thirty-week-old female bobwhite quail (Colinus virginianus), maintained at 26 + 1?C, were provided diets containing 0,25, or 100 ppm parathion ad libitum. After 10 days, birds were exposed to mild cold (6 + 1?C) for 4,8, 12, 24, or 48 hr. Brain acetylcholinesterase activity was inhibited in a dose-dependent manner in birds receiving 25 and 100 ppm parathion. Body weight, egg production, and plasma luteinizing hormone and progesterone concentrations were reduced in birds receiving 100 ppm parathion compared with other groups. Cold exposure did not alter plasma corticosterone levels in the 0- and 25-ppm parathion groups, but a two- to five fold elevation of plasma corticosterone was observed in birds fed 100 ppm parathion. These findings indicate that (i) short-term ingestion of parathion can impair reproduction possibly by altering gonadotropin or steroid secretion, and (ii) tolerance to cold may be reduced following ingestion of this organophosphate.
Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang
2014-10-01
To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of hormonal levels on hospital mortality for male patients with severe traumatic brain injury.
Hohl, Alexandre; Ronsoni, Marcelo Fernando; Debona, Rodrigo; Ben, Juliana; Schwarzbold, Marcelo Liborio; Diaz, Alexandre Paim; Thais, Maria Emília Rodrigues de Oliveira; Linhares, Marcelo Neves; Latini, Alexandra; Prediger, Rui Daniel; Pizzol, Felipe Dal; Walz, Roger
2014-01-01
Changes in hormone blood levels during the acute phase of traumatic brain injury (TBI) have been described in the literature. The objective was to investigate the association among several hormones plasma levels in the acute phase of severe TBI and the hospital mortality rate of male patients. The independent association among plasma levels of TSH, LH, FSH, GH, free T4, cortisol, IGF-1 and total testosterone was measured 10 hours and 30 hours after severe TBI and the hospital mortality of 60 consecutive male patients was evaluated. At least one hormonal level abnormality was demonstrated in 3.6-73.1% of patients. The multiple logistic regressions showed a trend for an independent association among hospital mortality and normal or elevated LH levels measured at 10 hours (OR = 3.7, 95% CI = 0.8-16.3, p = 0.08) and 30 hours (OR = 3.9, 95% CI = 0.9-16.7, p = 0.06). Admission with abnormal pupils and a lower Glasgow Coma Score also were independently associated with hospital mortality. The hormonal changes are frequent in the acute phase of severe TBI. The hormones plasma levels, excepting the LH, are not highly consistent with the hospital mortality of male patients.
Neurophysiological symptoms and aspartame: What is the connection?
Choudhary, Arbind Kumar; Lee, Yeong Yeh
2018-06-01
Aspartame (α-aspartyl-l-phenylalanine-o-methyl ester), an artificial sweetener, has been linked to behavioral and cognitive problems. Possible neurophysiological symptoms include learning problems, headache, seizure, migraines, irritable moods, anxiety, depression, and insomnia. The consumption of aspartame, unlike dietary protein, can elevate the levels of phenylalanine and aspartic acid in the brain. These compounds can inhibit the synthesis and release of neurotransmitters, dopamine, norepinephrine, and serotonin, which are known regulators of neurophysiological activity. Aspartame acts as a chemical stressor by elevating plasma cortisol levels and causing the production of excess free radicals. High cortisol levels and excess free radicals may increase the brains vulnerability to oxidative stress which may have adverse effects on neurobehavioral health. We reviewed studies linking neurophysiological symptoms to aspartame usage and conclude that aspartame may be responsible for adverse neurobehavioral health outcomes. Aspartame consumption needs to be approached with caution due to the possible effects on neurobehavioral health. Whether aspartame and its metabolites are safe for general consumption is still debatable due to a lack of consistent data. More research evaluating the neurobehavioral effects of aspartame are required.
Stanley, Molly; Macauley, Shannon L.; Caesar, Emily E.; Koscal, Lauren J.; Moritz, Will; Robinson, Grace O.; Roh, Joseph; Keyser, Jennifer; Jiang, Hong
2016-01-01
Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aβ, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aβ. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment. PMID:27852778
Shimizu, Takahiro; Tanaka, Kenjiro; Shimizu, Shogo; Higashi, Youichirou; Yawata, Toshio; Nakamura, Kumiko; Taniuchi, Keisuke; Ueba, Tetsuya; Yuri, Kazunari; Saito, Motoaki
2015-08-01
We previously reported that intracerebroventricularly (i.c.v.) administered (±)-epibatidine (1, 5 or 10 nmol/animal), a nicotinic acetylcholine receptor agonist, dose-dependently induced secretion of noradrenaline and adrenaline (catecholamines) from the rat adrenal medulla by brain diacylglycerol lipase- (DGL), monoacylglycerol lipase- (MGL) and cyclooxygenase-mediated mechanisms. Diacylglycerol is hydrolyzed by DGL into 2-arachidonoylglycerol (2-AG), which is further hydrolyzed by MGL to arachidonic acid (AA), a cyclooxygenase substrate. These findings suggest that brain 2-AG-derived AA is involved in the (±)-epibatidine-induced response. This AA precursor 2-AG is also a major brain endocannabinoid, which inhibits synaptic transmission through presynaptic cannabinoid CB1 receptors. Released 2-AG into the synaptic cleft is rapidly inactivated by cellular uptake. Here, we examined a role of brain 2-AG as an endocannabinoid in the (±)-epibatidine-induced activation of central adrenomedullary outflow using anesthetized male Wistar rats. In central presence of AM251 (CB1 antagonist) (90 and 180 nmol/animal, i.c.v.), (±)-epibatidine elevated plasma catecholamines even at an ineffective dose (1 nmol/animal, i.c.v.). Central pretreatment with ACEA (CB1 agonist) (0.7 and 1.4 μmol/animal, i.c.v.), 2-AG ether (stable 2-AG analog for MGL) (0.5 and 1.0 μmol/animal, i.c.v.) or AM404 (endocannabinoid uptake inhibitor) (80 and 250 nmol/animal, i.c.v.) significantly reduced an effective dose of (±)-epibatidine- (5 nmol/animal, i.c.v.) induced elevation of plasma catecholamines, and AM251 (90 and 180 nmol/animal, i.c.v.) centrally abolished the reduction induced by 2-AG ether (1.0 μmol/animal, i.c.v.) or AM404 (250 nmol/animal, i.c.v.). Immunohistochemical studies demonstrated that (±)-epibatidine (10 nmol/animal, i.c.v.) activated DGLα-positive spinally projecting neurons in the hypothalamic paraventricular nucleus, a control center of central adrenomedullary system. These results suggest a possibility that a brain endocannabinoid, probably 2-AG, plays an inhibitory role in (±)-epibatidine-induced activation of central adrenomedullary outflow through brain CB1 receptors in the rat. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ennis, Kathleen; Lusczek, Elizabeth; Rao, Raghavendra
2017-07-13
Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1 H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R 2 =0.92, Q 2 =0.31; plasma: R 2 =0.95, Q 2 =0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R 2 =0.86; hypoglycemia group: R 2 =0.59; p<0.05), but not with plasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Wei; Maloney, Ronald E; Aw, Tak Yee
2015-08-01
We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Li, Wei; Maloney, Ronald E.; Aw, Tak Yee
2015-01-01
We previously demonstrated that in normal glucose (5 mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. PMID:25867911
Newman, Amy E. M.; Soma, Kiran K.
2010-01-01
Prolonged increases in plasma glucocorticoids can exacerbate neurodegeneration. In rats, these neurodegenerative effects can be reduced by dehydroepiandrosterone (DHEA), an androgen precursor with anti-glucocorticoid actions. In song sparrows, season and acute restraint stress affect circulating levels of corticosterone and DHEA, and the effects of stress differ in plasma collected from the brachial and jugular veins. Jugular plasma is an indirect index of the neural steroidal milieu. Here, we directly measured corticosterone and DHEA in several brain regions and jugular plasma, and examined the effects of season and acute restraint stress (30 min) (n = 571 samples). Corticosterone levels were up to 10× lower in brain than in jugular plasma. In contrast, DHEA levels were up to 5× higher in brain than in jugular plasma and were highest in the hippocampus. Corticosterone and DHEA concentrations were strongly seasonally regulated in plasma but, surprisingly, not seasonally regulated in brain. Acute stress increased corticosterone levels in plasma and brain, except during the molt, when stress unexpectedly decreased corticosterone levels in the hippocampus. Acute stress increased DHEA levels in plasma during the molt but had no effects on DHEA levels in brain. This is the first study to measure (i) corticosterone or DHEA levels in the brain of adult songbirds and (ii) seasonal changes in corticosterone or DHEA levels in the brain of any species. These results highlight several critical differences between systemic and local steroid concentrations and the difficulty of using circulating steroid levels to infer local steroid levels within the brain. PMID:19473242
Bakhtazad, Atefeh; Vousooghi, Nasim; Garmabi, Behzad; Zarrindast, Mohammad Reza
2016-10-01
It has been shown previously that cocaine- and amphetamine-regulated transcript (CART) peptide has a modulatory role and homeostatic regulatory effect in motivation to and reward of the drugs of abuse specially psychostimulants. Recent data also showed that in addition to psychostimulants, CART is critically involved in the different stages of opioid addiction. Here we have evaluated the fluctuations in the level of CART peptide in plasma and CSF in different phases of opioid addiction to find out whether CART can serve as a suitable marker in opioid addiction studies. Male rats were randomly distributed in groups of control, acute low-dose (10mg/kg) morphine, acute high-dose morphine (80mg/kg), chronic escalating doses of morphine, withdrawal syndrome precipitated by administration of naloxone (1mg/kg), and abstinent after long-term drug-free maintenance of addicted animals. The level of CART peptide in CSF and plasma samples was measured by enzyme immunoassay. CART peptide concentration in the CSF and plasma was significantly elevated in acute high-dose morphine and withdrawal state animals and down-regulated in addicted rats. In abstinent group, CART peptide level was up-regulated in plasma but not in CSF samples. As the observed results are in agreement with data regarding the CART mRNA and protein expression in the brain reward pathway in opioid addiction phases, it may be suggested that evaluation of CART peptide level in CSF or plasma could be a suitable marker which reflects the rises and falls of the peptide concentration in brain in the development of opioid addiction. Copyright © 2016 Elsevier Inc. All rights reserved.
Doremus-Fitzwater, Tamara L.; Gano, Anny; Paniccia, Jacqueline E.; Deak, Terrence
2015-01-01
Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31–33 days of age) and adult (69–71 days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250 µg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3 hr later for measurement of blood EtOH concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. EtOH challenge, IL-6 and IκBα expression were significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 expression elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults injected with LPS, no corresponding elevations were seen in adolescents after LPS; and (ii) neither adolescents nor adults demonstrated increases in plasma endotoxin concentrations following i.p. or i.g. ethanol administration. Analysis of BECs indicated that, for both routes of exposure, adolescents exhibited lower BECs than adults. Taken together, these data suggest that categorically different mechanisms are involved in the central cytokine response to antigen exposure versus ethanol administration. Furthermore, these findings confirm once again that acute ethanol intoxication is a potent activator of brain cytokines, and calls for future studies to identify the mechanisms underlying age-related differences in the cytokine response observed during ethanol intoxication. PMID:25708278
Goltzman, D; Tannenbaum, G S
1987-07-21
Calcitonin (CT), when administered peripherally, is a potent hypocalcemic agent. This peptide can also exert a variety of profound effects through brain receptors after central injection. We examined the capacity of CT to alter plasma calcium of freely moving conscious rats after intracerebroventricular (i.c.v.) injection. A dose-dependent decrease in plasma calcium was seen after administration of 25 ng, 250 ng or 2500 ng of salmon calcitonin (sCT). The extent and duration of hypocalcemia after central injection was equal to, or greater than, that seen after giving the same doses of peptide intravenously (i.v.). Calcitonin gene-related peptide (CGRP), when administered centrally at a 50-fold molar excess, produced only a transient decrease in plasma calcium. No increase in plasma levels of sCT could be detected by RIA after i.c.v. injection, although measurable levels were obtained by i.v. injection. Centrally administered sCT did not appear to produce hypocalcemia by enhancing the release of endogenous rat CT. In contrast to the rise in rat immunoreactive parathyroid hormone (PTH) seen after i.v. injection of sCT, no significant elevation occurred after central administration of the peptide despite induction of comparable levels of hypocalcemia. Consequently, reduced PTH release may contribute to the central hypocalcemic action of CT. The results indicate that peptides acting through the brain CT receptor may modulate peripheral blood calcium.
Circulating Neprilysin Clears Brain Amyloid
Liu, Yinxing; Studzinski, Christa; Beckett, Tina; Murphy, M. Paul; Klein, Ronald L.; Hersh, Louis B.
2010-01-01
The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer’s disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Aβ. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Aβ by 30%, soluble brain Aβ by ~28%, insoluble brain Aβ by ~55%, and Aβ oligomers by 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Aβ was due to plasma NEP which altered blood-brain Aβ transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing. PMID:20558294
Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H
2016-01-01
It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma. These results indicate that following TBI, the cerebral endothelium undergoes vascular remodeling through shedding of eMVs containing TJPs and endothelial markers. The detection of this shedding potentially allows for a novel methodology for real-time monitoring of cerebral vascular health (remodeling), BBB status and neuroinflammation following a TBI event.
Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment.
Olivera, Anlys; Lejbman, Natasha; Jeromin, Andreas; French, Louis M; Kim, Hyung-Suk; Cashion, Ann; Mysliwiec, Vincent; Diaz-Arrastia, Ramon; Gill, Jessica
2015-10-01
Approximately one-third of military personnel who deploy for combat operations sustain 1 or more traumatic brain injuries (TBIs), which increases the risk for chronic symptoms of postconcussive disorder, posttraumatic stress disorder, and depression and for the development of chronic traumatic encephalopathy. Elevated concentrations of tau are observed in blood shortly following a TBI, but, to our knowledge, the role of tau elevations in blood in the onset and maintenance of chronic symptoms after TBI has not been investigated. To assess peripheral tau levels in military personnel exposed to TBI and to examine the relationship between chronic neurological symptoms and tau elevations. Observational assessment from September 2012 to August 2014 of US military personnel at the Madigan Army Medical Center who had been deployed within the previous 18 months. Plasma total tau concentrations were measured using a novel ultrasensitive single-molecule enzyme-linked immunosorbent assay. Classification of participants with and without self-reported TBI was made using the Warrior Administered Retrospective Casualty Assessment Tool. Self-reported symptoms of postconcussive disorder, posttraumatic stress disorder, and depression were determined by the Neurobehavioral Symptom Inventory, the Posttraumatic Stress Disorder Checklist Military Version, and the Quick Inventory of Depressive Symptomatology, respectively. Group differences in tau concentrations were determined through analysis of variance models, and area under the receiver operating characteristic curve determined the sensitivity and specificity of tau concentrations in predicting TBI and chronic symptoms. Seventy participants with self-reported TBI on the Warrior Administered Retrospective Casualty Assessment Tool and 28 control participants with no TBI exposure were included. Concentration of total tau in peripheral blood. Concentrations of plasma tau were significantly elevated in the 70 participants with self-reported TBI compared with the 28 controls (mean [SD], 1.13 [0.78] vs 0.63 [0.48] pg/mL, respectively; F1,97 = 4.97; P = .03). Within the self-reported TBI cases, plasma total tau concentrations were significantly associated with having a medical record of TBI compared with self-reported TBI only (mean [SD], 1.57 [0.92] vs 0.85 [0.52] pg/mL, respectively; F1,69 = 6.15; P = .02) as well as reporting the occurrence of 3 of more TBIs during deployment compared with fewer than 3 TBIs (mean [SD], 1.52 [0.82] vs 0.82 [0.60] pg/mL, respectively; F1,69 = 8.57; P = .008). The severity of total postconcussive symptoms correlated with total tau concentrations in the self-reported TBI group (r = 0.37; P = .003). Military personnel who report multiple TBIs have long-term elevations in total tau concentration. The total tau concentration relates to symptoms of postconcussive disorder.
Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic.
Krey, Anke; Kwan, Michael; Chan, Hing Man
2012-04-01
Methylmercury (MeHg) is a neurotoxicant that has been found at elevated concentrations in the Arctic ecosystem. Little is known about its internal dose in wildlife such as polar bears. We measured concentrations of mercury (Hg) in three different brain regions (cerebellum, frontal lobe and brain stem) of 24 polar bears collected from the Nunavik, Canada between 2000 and 2003. Speciation of Hg was measured by High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectroscopy (HPLC-ICP-MS). Concentrations of mean total Hg in brain tissue were up to 625 times lower (0.28 ± 0.07 mg kg(-1) dry weight (dw) in frontal lobe, 0.23 ± 0.07 mg kg(-1) dw in cerebellum and 0.12 ± 0.0 3mg kg(-1) dw in brain stem) than the mean total Hg concentration previously reported in polar bear liver collected from Eastern Baffin Island. Methylmercury (MeHg) accounted for 100% of the Hg found in all three brain regions analyzed. These results suggest that polar bear might reduce the toxic effects of Hg by limiting the uptake into the brain and/or decrease the rate of demethylation so that Hg can be excreted from the brain more easily. The toxicokinetics and the blood-brain-barrier mechanisms of polar bears are still unknown and further research is required. Copyright © 2012 Elsevier Inc. All rights reserved.
Daubert, Daisy L.; Looney, Benjamin M.; Clifton, Rebekah R.; Cho, Jake N.
2014-01-01
Repeated stress and chronically elevated glucocorticoids cause exaggerated cardiovascular responses to novel stress, elevations in baseline blood pressure, and increased risk for cardiovascular disease. We hypothesized that elevated corticosterone (Cort) within the dorsal hindbrain (DHB) would: 1) enhance arterial pressure and neuroendocrine responses to novel and repeated restraint stress, 2) increase c-Fos expression in regions of the brain involved in sympathetic stimulation during stress, and 3) recruit a vasopressin-mediated blood pressure response to acute stress. Small pellets made of 10% Cort were implanted on the surface of the DHB in male Sprague-Dawley rats. Blood pressure was measured by radiotelemetry. Cort concentration was increased in the DHB in Cort-treated compared with Sham-treated rats (60 ± 15 vs. 14 ± 2 ng Cort/g of tissue, P < 0.05). DHB Cort significantly increased the integrated arterial pressure response to 60 min of restraint stress on days 6, 13, and 14 following pellet implantation (e.g., 731 ± 170 vs. 1,204 ± 68 mmHg/60 min in Sham- vs. Cort-treated rats, day 6, P < 0.05). Cort also increased baseline blood pressure by day 15 (99 ± 2 vs. 108 ± 3 mmHg for Sham- vs. Cort-treated rats, P < 0.05) and elevated baseline plasma norepinephrine and neuropeptide Y concentrations. Cort significantly enhanced stress-induced c-Fos expression in vasopressin-expressing neurons in the paraventricular nucleus of the hypothalamus, and blockade of peripheral vasopressin V1 receptors attenuated the effect of DHB Cort to enhance the blood pressure response to restraint. These data indicate that glucocorticoids act within the DHB to produce some of the adverse cardiovascular consequences of chronic stress, in part, by a peripheral vasopressin-dependent mechanism. PMID:24829502
Manzardo, Ann M.; Poje, Albert B.; Penick, Elizabeth C.; Butler, Merlin G.
2016-01-01
Chronic alcohol use alters adaptive immunity and cytokine activity influencing immunological and hormone responses, inflammation, and wound healing. Brain cytokine disturbances may impact neurological function, mood, cognition and traits related to alcoholism including impulsiveness. We examined the relationship between plasma cytokine levels and self-rated psychiatric symptoms in 40 adult males (mean age 51 ± 6 years; range 33–58 years) with current alcohol dependence and 30 control males (mean age 48 ± 6 years; range 40–58 years) with no history of alcoholism using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Log-transformed cytokine levels were analyzed for their relationship with the Symptom Checklist-90R (SCL-90R), Barratt Impulsivity Scales (BIS) and Alcoholism Severity Scale (ASS). Inflammatory cytokines (interferon γ-induced protein-10 (IP-10); monocyte chemoattractant protein-1 (MCP1); regulated on activation, normal T cell expressed and secreted (RANTES)) were significantly elevated in alcoholism compared to controls while bone marrow-derived hematopoietic cytokines and chemokines (granulocyte-colony stimulating factor (GCSF); soluble CD40 ligand (sCD40L); growth-related oncogene (GRO)) were significantly reduced. GRO and RANTES levels were positively correlated with BIS scales; and macrophage-derived chemokine (MDC) levels were positively correlated with SCL-90R scale scores (p < 0.05). Elevated inflammatory mediators in alcoholism may influence brain function leading to increased impulsiveness and/or phobia. The novel association between RANTES and GRO and impulsivity phenotype in alcoholism should be further investigated in alcoholism and psychiatric conditions with core impulsivity and anxiety phenotypes lending support for therapeutic intervention. PMID:27043532
Manzardo, Ann M; Poje, Albert B; Penick, Elizabeth C; Butler, Merlin G
2016-03-29
Chronic alcohol use alters adaptive immunity and cytokine activity influencing immunological and hormone responses, inflammation, and wound healing. Brain cytokine disturbances may impact neurological function, mood, cognition and traits related to alcoholism including impulsiveness. We examined the relationship between plasma cytokine levels and self-rated psychiatric symptoms in 40 adult males (mean age 51 ± 6 years; range 33-58 years) with current alcohol dependence and 30 control males (mean age 48 ± 6 years; range 40-58 years) with no history of alcoholism using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Log-transformed cytokine levels were analyzed for their relationship with the Symptom Checklist-90R (SCL-90R), Barratt Impulsivity Scales (BIS) and Alcoholism Severity Scale (ASS). Inflammatory cytokines (interferon γ-induced protein-10 (IP-10); monocyte chemoattractant protein-1 (MCP1); regulated on activation, normal T cell expressed and secreted (RANTES)) were significantly elevated in alcoholism compared to controls while bone marrow-derived hematopoietic cytokines and chemokines (granulocyte-colony stimulating factor (GCSF); soluble CD40 ligand (sCD40L); growth-related oncogene (GRO)) were significantly reduced. GRO and RANTES levels were positively correlated with BIS scales; and macrophage-derived chemokine (MDC) levels were positively correlated with SCL-90R scale scores (p < 0.05). Elevated inflammatory mediators in alcoholism may influence brain function leading to increased impulsiveness and/or phobia. The novel association between RANTES and GRO and impulsivity phenotype in alcoholism should be further investigated in alcoholism and psychiatric conditions with core impulsivity and anxiety phenotypes lending support for therapeutic intervention.
Wilhelm, Clare J; Fuller, Bret E; Huckans, Marilyn; Loftis, Jennifer M
2017-07-01
The adverse effects of alcohol on brain function result, in part, from inflammatory processes. The sex-specific neuropsychiatric consequences and inflammatory status of active alcohol dependence and early remission from dependence have not been investigated. Neuropsychiatric symptoms, inflammatory factors, and liver enzymes were compared in a prospective cohort study of adults with (n=51) or without (n=31) a current or recent history of alcohol dependence. Neuropsychiatric profiles were similar in adults with current or recent alcohol dependence regardless of sex. In male and female participants measures of depression (female p<0.05, male p<0.001), anxiety (female p<0.001, male p<0.001), and memory complaints (female p<0.001, male p<0.05) were elevated, relative to non-dependent controls. Significant sex×alcohol dependence history interactions were observed for plasma levels of tissue inhibitor of metalloproteinase 1 (TIMP-1) and brain derived neurotrophic factor (BDNF), with women in the alcohol dependent group exhibiting increased levels of both analytes (p<0.05) relative to controls. Positive correlations between TIMP-1 levels and measures of depression (r 2 =0.35, p<0.01), anxiety (r 2 =0.24, p<0.05) and memory complaints (r 2 =0.44, p<0.01) were found in female, but not male, participants. Though neuropsychiatric profiles were similar for men and women with current or recent alcohol dependence, plasma factors associated with increases in depression, anxiety, and memory impairment differed and support the need to tailor treatments based on sex. Published by Elsevier B.V.
de Koning, P P; Figee, M; Endert, E; van den Munckhof, P; Schuurman, P R; Storosum, J G; Denys, D; Fliers, E
2016-01-01
Improvement of obsessions and compulsions by deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) is often preceded by a rapid and transient mood elevation (hypomania). In a previous study we showed that improvement of mood by DBS for OCD is associated with a decreased activity of the hypothalamus–pituitary adrenal axis. The aim of our present study was to evaluate the time course of rapid clinical changes following DBS reactivation in more detail and to assess their association with additional neuroendocrine parameters. We included therapy-refractory OCD patients treated with DBS (>1 year) and performed a baseline assessment of symptoms, as well as plasma concentrations of thyroid-stimulating hormone (TSH), prolactin, growth hormone, copeptin and homovanillic acid. This was repeated after a 1-week DBS OFF condition. Next, we assessed the rapid effects of DBS reactivation by measuring psychiatric symptom changes using visual analog scales as well as repeated neuroendocrine measures after 30 min, 2 h and 6 h. OCD, anxiety and depressive symptoms markedly increased during the 1-week OFF condition and decreased again to a similar extent already 2 h after DBS reactivation. We found lower plasma prolactin (41% decrease, P=0.003) and TSH (39% decrease, P=0.003) levels during DBS OFF, which increased significantly already 30 min after DBS reactivation. The rapid and simultaneous increase in TSH and prolactin is likely to result from stimulation of hypothalamic thyrotropin-releasing hormone (TRH), which may underlie the commonly observed transient mood elevation following DBS. PMID:26812043
Circulating neprilysin clears brain amyloid.
Liu, Yinxing; Studzinski, Christa; Beckett, Tina; Murphy, M Paul; Klein, Ronald L; Hersh, Louis B
2010-10-01
The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer's disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Abeta. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Abeta by 30%, soluble brain Abeta by approximately 28%, insoluble brain Abeta by approximately 55%, and Abeta oligomersby 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Abeta was due to plasma NEP which altered blood-brain Abeta transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing. Copyright 2010 Elsevier Inc. All rights reserved.
The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice.
Moon, Morgan L; Joesting, Jennifer J; Lawson, Marcus A; Chiu, Gabriel S; Blevins, Neil A; Kwakwa, Kristin A; Freund, Gregory G
2014-09-01
Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that last beyond an acute elevation in plasma FFAs. Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 h after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hours after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24h after palmitic acid treatment. Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. Copyright © 2014 Elsevier Inc. All rights reserved.
Smith, Christina L; Toomey, Matthew; Walker, Benjimen R; Braun, Eldon J; Wolf, Blair O; McGraw, Kevin; Sweazea, Karen L
2011-06-01
Plasma glucose (P(Glu)) concentrations in birds are 1.5-2 times higher than those of mammals of similar body mass. In mammals, sustained elevations of P(Glu) lead to oxidative stress and free radical-mediated scavenging of endogenous vasodilators (e.g., nitric oxide), contributing to elevated blood pressure. Despite the relatively high P(Glu) levels in birds, they appear resistant to the development of oxidative stress in tissues such as the heart, brain and kidneys. To our knowledge no information exists on oxidative stress susceptibility in the resistance vasculature of birds. Therefore, we compared endogenous antioxidant mechanisms in the resistance vasculature of mourning doves (MODO; Zenaida macroura) and rats (Rattus norvegicus). Reactive oxygen species (ROS) were assessed with the fluorescent indicator 7'-dichlorodihydrofluorescein diacetate, acetyl ester in mesenteric arteries from rats and wild-caught MODO. Despite having significantly higher P(Glu) than rats, there were no significant differences in ROS levels between mesenteric arteries from rats or doves. Although superoxide dismutase and catalase activities were lower in the plasma, total antioxidant capacity, uric acid, vitamin E (α-tocopherol), and carotenoids (lutein and zeaxanthin) were significantly higher in MODO than in rats. Thus, compared to rats, MODO have multiple circulating antioxidants that may prevent the development of oxidative stress in the vasculature. Copyright © 2011 Elsevier GmbH. All rights reserved.
Nishikimi, Toshio; Ikeda, Masashi; Takeda, Yosuke; Ishimitsu, Toshihiko; Shibasaki, Ikuko; Fukuda, Hirotsugu; Kinoshita, Hideyuki; Nakagawa, Yasuaki; Kuwahara, Koichiro; Nakao, Kazuwa
2012-01-01
Pro-brain natriuretic peptide (proBNP)-108 and N-terminal proBNP-76 (NT-BNP) contain seven sites for O-linked oligosaccharide attachment. Currently, levels of glycosylated NT-BNP are probably underestimated because it is not recognised by one antibody in the sandwich assay system. The pathophysiological significance of cardiac and plasma levels of non-glycosylated (nonglyNT-BNP) and glycosylated NT-BNP (glyNT-BNP) in heart failure (HF) and chronic renal failure (CRF) was investigated. Plasma samples from 186 patients with HF and 76 patients with CRF on haemodialysis were studied, together with 11 atrial tissue samples. To measure nonglyNT-BNP and glyNT-BNP, samples were incubated with or without deglycosylating enzymes and NT-BNP was measured using Roche Elecsys proBNP I. The percentage glyNT-BNP was calculated as glyNT-BNP/(glyNT-BNP + nonglyNT-BNP). In HF, plasma BNP, nonglyNT-BNP and glyNT-BNP levels all increased with increasing disease severity (New York Heart Association class; p<0.0001), though the molar ratio remained constant (molar ratio, BNP:nonglyNT-BNP:glyNT-BNP = 1:2.4:9.6). Before haemodialysis for CRF, plasma BNP and nonglyNT-BNP were somewhat elevated, and glyNT-BNP was markedly increased (molar ratio, BNP:nonglyNT-BNP:glyNT-BNP = 1:8.5:82). After haemodialysis, plasma BNP, nonglyNT-BNP, atrial natriuretic protein and cGMP all declined (p<0.0001), but glyNT-BNP was unchanged. Notably, the percentage of glyNT-BNP was elevated before haemodialysis, and was further increased after haemodialysis (p<0.0001). Atrial tissue levels of BNP, nonglyNT-BNP and glyNT-BNP were similar. THE findings suggest that most endogenous plasma NT-BNP is glycosylated and therefore undetectable with the current assay system, and that the relative glycosylation level is increased by haemodialysis.
McCreary, J Keiko; Truica, L Sorina; Friesen, Becky; Yao, Youli; Olson, David M; Kovalchuk, Igor; Cross, Albert R; Metz, Gerlinde A S
2016-08-25
Prenatal stress is a risk factor for abnormal neuroanatomical, cognitive, behavioral and mental health outcomes with potentially transgenerational consequences. Females in general seem more resilient to the effects of prenatal stress than males. Here, we examined if repeated stress across generations may diminish stress resiliency and cumulatively enhance the susceptibility for adverse health outcomes in females. Pregnant female rats of three successive generations were exposed to stress from gestational days 12-18 to generate multigenerational prenatal stress (MPS) in the maternal lineage. Stress response was measured by plasma corticosterone levels and open-field exploration in each generation. Neuromorphological consequences of MPS were investigated in the F3 generation using in vivo manganese-enhanced magnetic resonance imaging (MEMRI), T2-relaxometry, and cytoarchitectonics in relation to candidate gene expression involved in brain plasticity and mental health. Each additional generation of prenatal stress incrementally elevated hypothalamic-pituitary-adrenal axis activation, anxiety-like and aversive behaviors in adult female offspring. Elevated stress responses in the MPS F3 generation were accompanied by reduced neural density in prefrontal cortex, hippocampus and whole brain along with altered brain activation patterns in in vivo MEMRI. MPS increased ephrin receptor A5 (Epha5), neuronal growth regulator (Negr1) and synaptosomal-associated protein 25 (Snap25) gene expression and reduced fibroblast growth factor 12 (Fgf12) in prefrontal cortex. These genes regulate neuronal maturation, arborization and synaptic plasticity and may explain altered brain cytoarchitectonics and connectivity. These findings emphasize that recurrent stress across generations may cumulatively increase stress vulnerability and the risk of adverse health outcomes through perinatal programing in females. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Toxicity of abate® 4E (temephos) in mallard ducklings and the influence of cold
Fleming, W.J.; Heinz, G.H.; Franson, J.C.; Rattner, B.A.
1985-01-01
Diets mixed to contain 0, 0.1, 1.0, 10 and 100 ppm temephos (determined chemically to contain less than 0.5, less than 0.5, 0.89, 6.0 and 59 ppm temephos, respectively) in an Abate® 4E formulation, were fed to mallard (Anas platyrhynchos) ducklings for 7 d. During this period, half of the ducklings in each dietary treatment group were housed in a heated brooder (39 to 41 °C) and half were housed in an unheated brooder (10 to 18°C). Mortality in all dietary groups in the unheated brooder was higher than in the heated brooder. High temephos-related mortality occurred in the 100 ppm group in the unheated brooder but not in any other diet-temperature groups. Ingestion of the 100 ppm temephos diet inhibited plasma Cholinesterase (ChE) activity and elevated plasma corticosterone concentration and creatine phosphokinase activity, but other selected plasma chemistries were not affected in a dose-related manner. Brain ChE activity was depressed only in the 100 ppm dietary groups; maximum inhibition of brain ChE activity was 48%. These findings suggest that diets containing up to 10 ppm temephos do not directly affect duckling survival during the first week of life and that the toxicity of 100 ppm temephos is markedly enhanced by cold.
Lu, Yanxia; Ho, Cyrus S; Liu, Xin; Chua, Anna N; Wang, Wei; McIntyre, Roger S; Ho, Roger C
2017-01-01
This study evaluated the chronic effects of fluoxetine, a commonly prescribed SSRI antidepressant, on the peripheral and central levels of inflammatory cytokines including IL-1β, IL-6, TNF-α and IL-17 over a 4-interval in a rat model of chronic mild stress (CMS) which resembles the human experience of depression. Twenty-four Sprague-Dawley rats were randomly assigned to CMS+vehicle (n = 9), CMS+fluoxetine (n = 9) and the control (n = 6) groups. Sucrose preference and forced swim tests were performed to assess behavioral change. Blood samples were collected on day 0, 60, 90 and 120 for measurement of cytokine levels in plasma. On day 120, the brain was harvested and central level of cytokines was tested using Luminex. Four months of fluoxetine treatment resulted in changes in the sucrose preference and immobility time measurements, commensurate with antidepressant effects. The CMS+vehicle group exhibited elevated plasma levels of IL-1β, IL-17, and TNF-α on day 60 or 120. Rats treated with fluoxetine demonstrated lower IL-1β in plasma and brain after 90 and 120-day treatment respectively (p<0.05). There was a trend of reduction of IL-6 and TNF-α concentration. This study revealed the potential therapeutic effects of fluoxetine by reducing central and peripheral levels of IL-1β in the alleviation of depressive symptoms.
Nootropic and hypophagic effects following long term intake of almonds (Prunus amygdalus) in rats.
Haider, S; Batool, Z; Haleem, D J
2012-01-01
Over a period of time researchers have become more interested in finding out the potential of various foods to maintain the general health and to treat diseases. Almonds are a very good source of many nutrients which may help to sharpen the memory and to reduce cardiovascular risk factors. The present study was conducted to evaluate the nootropic effects of almonds. Effect of oral intake of almond was also monitored on food intake and plasma cholesterol levels. Rats were given almond paste orally with the help of feeding tube for 28 days. Memory function in rats was assessed by Elevated Plus Maze (EPM) and Radial Arm Maze (RAM). Brain tryptophan, 5-HT and 5-HIAA were estimated at the end of the treatment by HPLC-EC method. A significant improvement in learning and memory of almond treated rats compared to controls was observed. Almond treated rats also exhibited a significant decrease in food intake and plasma cholesterol levels while the change in growth rate (in terms of percentage) remained comparable between the two groups. Analysis of brain tryptophan (TRP) monoamines exhibited enhanced TRP levels and serotonergic turnover in rat brain following oral intake of almonds. The findings show that almonds possess significant hypophagic and nootropic effects. Results are discussed in context of enhanced 5-HT metabolism following almond administration.
Hassan, Wafaa A; Rahman, Taghride Abdel; Aly, Mona S; Shahat, Asmaa S
2013-08-01
The present study was conducted to investigate the effect of experimentally-induced hyperthyroidism on dopamine (DA), norepinephrine (NE) and serotonin (5-HT) levels in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats (60 rats of each age). Hyperthyroidism was induced by daily s.c. injection of L-thyroxine (L-T4, 500 μg/kg body wt.) for 21 consecutive days. Induction of hyperthyroidism caused a significant elevation in DA and 5-HT levels in most of the tissues studied of both young and adult animals after 7, 14, and 21 days. NE content significantly decreased after 21 days in most of the brain regions examined and after 14 and 21 days in blood plasma of young rats following hyperthyroidism. In adult rats, NE content decreased after 14 and 21 days in cardiac muscle and after 21 days only in adrenal gland. It may be suggested that the changes in monoamines level induced by hyperthyroidism may be due to disturbance in the synthesis, turnover and release of these amines through the neurons impairment or may attributed to an alteration pattern of their synthesis and/or degradative enzymes or changes in the sensitivity of their receptors. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.
Tanaka, Kenjiro; Shimizu, Takahiro; Yanagita, Toshihiko; Nemoto, Takayuki; Nakamura, Kumiko; Taniuchi, Keisuke; Dimitriadis, Fotios; Yokotani, Kunihiko; Saito, Motoaki
2014-01-01
Haemopressin and RVD-haemopressin, derived from the haemoglobin α-chain, are bioactive peptides found in brain and are ligands for cannabinoid CB1 receptors. Activation of brain CB1 receptors inhibited the secretion of adrenal catecholamines (noradrenaline and adrenaline) induced by i.c.v. bombesin in the rat. Here, we investigated the effects of two haemoglobin-derived peptides on this bombesin-induced response Anaesthetised male Wistar rats were pretreated with either haemoglobin-derived peptide, given i.c.v., 30 min before i.c.v. bombesin and plasma catecholamines were subsequently measured electrochemically after HPLC. Direct effects of bombesin on secretion of adrenal catecholamines were examined using bovine adrenal chromaffin cells. Furthermore, activation of haemoglobin α-positive spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of central adrenomedullary outflow) after i.c.v. bombesin was assessed by immunohistochemical techniques. Bombesin given i.c.v. dose-dependently elevated plasma catecholamines whereas incubation with bombesin had no effect on spontaneous and nicotine-induced secretion of catecholamines from chromaffin cells. The bombesin-induced increase in catecholamines was inhibited by pretreatment with i.c.v. RVD-haemopressin (CB1 receptor agonist) but not after pretreatment with haemopressin (CB1 receptor inverse agonist). Bombesin activated haemoglobin α-positive spinally projecting neurons in the PVN. The haemoglobin-derived peptide RVD-haemopressin in the brain plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow via brain CB1 receptors in the rat. These findings provide basic information for the therapeutic use of haemoglobin-derived peptides in the modulation of central adrenomedullary outflow. © 2013 The British Pharmacological Society.
Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia
NASA Astrophysics Data System (ADS)
Gjedde, Albert; Crone, Christian
1981-10-01
Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.
Gonzales, Mitzi M; Tarumi, Takashi; Eagan, Danielle E; Tanaka, Hirofumi; Vaghasia, Miral; Haley, Andreana P
2012-09-01
Elevated body mass index (BMI) at midlife is associated with increased risk of cognitive decline in later life. The goal of the current study was to assess mechanisms of early brain vulnerability by examining if higher BMI at midlife affects current cognitive performance through alterations in cerebral neurochemistry. Fifty-five participants, aged 40 to 60 years, underwent neuropsychological testing, health screen, and proton magnetic resonance spectroscopy examining N-acetylaspartate, creatine (Cr), myo-inositol (mI), choline, and glutamate concentrations in occipitoparietal gray matter. Concentrations of N-acetylaspartate, choline, mI, and glutamate were calculated as a ratio over Cr and examined in relation to BMI using multivariate regression analyses. Structural equation modeling was used to determine if BMI had an indirect effect on cognition through cerebral metabolite levels. Higher BMI was associated with elevations in mI/Cr (F(5,45) = 3.843, p = .006, β = 0.444, p = .002), independent of age, sex, fasting glucose levels, and systolic blood pressure. Moreover, a χ(2) difference test of the direct and indirect structural equation models revealed that BMI had an indirect effect on global cognitive performance (Δχ(2) = 19.939, df = 2, p < .001). Subsequent follow-up analyses revealed that this effect was specific to memory (Δχ(2) = 22.027, df = 2, p < .001). Higher BMI was associated with elevations in mI/Cr concentrations in the occipitoparietal gray matter and indirectly related to poorer memory performance through mI/Cr levels, potentially implicating plasma hypertonicity and neuroinflammation as mechanisms underlying obesity-related brain vulnerability.
Garcia-Diaz, Beatriz; Garone, Caterina; Barca, Emanuele; Mojahed, Hamed; Gutierrez, Purification; Pizzorno, Giuseppe; Tanji, Kurenai; Arias-Mendoza, Fernando; Quinzii, Caterina M.
2014-01-01
Balanced pools of deoxyribonucleoside triphosphate precursors are required for DNA replication, and alterations of this balance are relevant to human mitochondrial diseases including mitochondrial neurogastrointestinal encephalopathy. In this disease, autosomal recessive TYMP mutations cause severe reductions of thymidine phosphorylase activity; marked elevations of the pyrimidine nucleosides thymidine and deoxyuridine in plasma and tissues, and somatic multiple deletions, depletion and site-specific point mutations of mitochondrial DNA. Thymidine phosphorylase and uridine phosphorylase double knockout mice recapitulated several features of these patients including thymidine phosphorylase activity deficiency, elevated thymidine and deoxyuridine in tissues, mitochondrial DNA depletion, respiratory chain defects and white matter changes. However, in contrast to patients with this disease, mutant mice showed mitochondrial alterations only in the brain. To test the hypothesis that elevated levels of nucleotides cause unbalanced deoxyribonucleoside triphosphate pools and, in turn, pathogenic mitochondrial DNA instability, we have stressed double knockout mice with exogenous thymidine and deoxyuridine, and assessed clinical, neuroradiological, histological, molecular, and biochemical consequences. Mutant mice treated with exogenous thymidine and deoxyuridine showed reduced survival, body weight, and muscle strength, relative to untreated animals. Moreover, in treated mutants, leukoencephalopathy, a hallmark of the disease, was enhanced and the small intestine showed a reduction of smooth muscle cells and increased fibrosis. Levels of mitochondrial DNA were depleted not only in the brain but also in the small intestine, and deoxyribonucleoside triphosphate imbalance was observed in the brain. The relative proportion, rather than the absolute amount of deoxyribonucleoside triphosphate, was critical for mitochondrial DNA maintenance. Thus, our results demonstrate that stress of exogenous pyrimidine nucleosides enhances the mitochondrial phenotype of our knockout mice. Our mouse studies provide insights into the pathogenic role of thymidine and deoxyuridine imbalance in mitochondrial neurogastrointestinal encephalopathy and an excellent model to study new therapeutic approaches. PMID:24727567
James, J H; Ziparo, V; Jeppsson, B; Fischer, J E
1979-10-13
It is proposed that hyperammonaemia in liver cirrhosis or after portacaval shunt contributes to plasma neutral aminoacid imbalance and to increased activity of the blood-brain neutral amino-acid transport system. Plasma neutral aminoacid concentrations are deranged, partly, but not completely, because ammonia stimulates glucagon secretion; a high rate of gluconeogenesis and hyperinsulinaemia follow. Brain uptake of neutral aminoacids rises because ammonia stimulates brain-glutamine synthesis, which results in rapid exchange of brain glutamine for plasma neutral aminoacids. Hyperammonaemia therefore contributes to encephalopathy indirectly, by raising the brain concentration of neutral aminoacids which after neurotransmitter metabolism, rather than directly, by toxic effects on neuronal metabolism.
Brain natriuretic peptide and right heart dysfunction after heart transplantation.
Talha, Samy; Charloux, Anne; Piquard, François; Geny, Bernard
2017-06-01
Heart transplantation (HT) should normalize cardiac endocrine function, but brain natriuretic peptide (BNP) levels remain elevated after HT, even in the absence of left ventricular hemodynamic disturbance or allograft rejection. Right ventricle (RV) abnormalities are common in HT recipients (HTx), as a result of engraftment process, tricuspid insufficiency, and/or repeated inflammation due to iterative endomyocardial biopsies. RV function follow-up is vital for patient management as RV dysfunction is a recognized cause of in-hospital death and is responsible for a worse prognosis. Interestingly, few and controversial data are available concerning the relationship between plasma BNP levels and RV functional impairment in HTx. This suggests that infra-clinical modifications, such as subtle immune system disorders or hypoxic conditions, might influence BNP expression. Nevertheless, due to other altered circulating molecular forms of BNP, a lack of specificity of BNP assays is described in heart failure patients. This phenomenon could exist in HT population and could explain elevated BNP plasmatic levels despite a normal RV function. In clinical practice, intra-individual change in BNP over time, rather than absolute BNP values, might be more helpful in detecting right cardiac dysfunction in HTx. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy
Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph
2017-01-01
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944
Coughlin, J M; Wang, Y; Ambinder, E B; Ward, R E; Minn, I; Vranesic, M; Kim, P K; Ford, C N; Higgs, C; Hayes, L N; Schretlen, D J; Dannals, R F; Kassiou, M; Sawa, A; Pomper, M G
2016-01-01
Several lines of evidence suggest aberrant immune response in schizophrenia, including elevated levels of cytokines. These cytokines are thought to be produced by activated microglia, the innate immune cells of the central nervous system. However, increase in translocator protein 18 kDa (TSPO), a marker of activated glia, has not been found in patients with chronic schizophrenia using second-generation radiotracers and positron emission tomography (PET)-based neuroimaging. In this study we focused on patients with recent onset of schizophrenia (within 5 years of diagnosis). Quantified levels of TSPO in the cortical and subcortical brain regions using the PET-based radiotracer [11C]DPA-713 were compared between the patients and healthy controls. Markers of inflammation, including interleukin 6 (IL-6), were assessed in the plasma and cerebrospinal fluid (CSF) in these participants. We observed no significant change in the binding of [11C]DPA-713 to TSPO in 12 patients with recent onset of schizophrenia compared with 14 controls. Nevertheless, the patients with recent onset of schizophrenia showed a significant increase in IL-6 in both plasma (P<0.001) and CSF (P=0.02). The CSF levels of IL-6 were significantly correlated with the levels of IL-6 in plasma within the total study population (P<0.001) and in patients with recent onset of schizophrenia alone (P=0.03). Our results suggest that increased levels of IL-6 may occur in the absence of changed TSPO PET signal in the brains of medicated patients with recent onset of schizophrenia. Future development of PET-based radiotracers targeting alternative markers of glial activation and immune response may be needed to capture the inflammatory signature present in the brains of patients with early-stage disease. PMID:27070405
Blom, Chris; Deller, Brittany L; Fraser, Douglas D; Patterson, Eric K; Martin, Claudio M; Young, Bryan; Liaw, Patricia C; Yazdan-Ashoori, Payam; Ortiz, Angelica; Webb, Brian; Kilmer, Greg; Carter, David E; Cepinskas, Gediminas
2015-04-07
Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either β2 (CD18), αL/β2 (CD11α/CD18; LFA-1) or αM/β2 (CD11β/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a β2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE.
Abdullah, Laila; Evans, James E; Montague, Hannah; Reed, Jon M; Moser, Ann; Crynen, Gogce; Gonzalez, Ariel; Zakirova, Zuchra; Ross, Ivan; Mullan, Chris; Mullan, Michael; Ait-Ghezala, Ghania; Crawford, Fiona
2013-01-01
For two decades, 25% of the veterans who served in the 1991 Gulf War (GW) have been living with Gulf War Illness (GWI), a chronic multisymptom illness. Evidence suggests that brain structures involved in cognitive function may be affected in GWI. Gulf War agents such as the acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB) and the pesticide permethrin (PER) are considered key etiogenic factors in GWI. We therefore developed a mouse model of GW agent exposure by co-administering PB and PER and showed that this model exhibits cognitive impairment and anxiety, and increased astrogliosis at chronic post-exposure time-points. Since GW agents inhibit AChE, we hypothesized that PB+PER exposure will modulate phosphatidylcholine (PC) and sphingomyelin (SM), which are reservoirs of phosphocholine required for endogenous ACh synthesis. Lipidomic analyses showed that PC and SM were elevated in the brains of exposed compared to control mice. Brain ether PC (ePC) species were increased but lyso-platelet activating factors (lyso-PAF) that are products of ePC were decreased in exposed animals compared to controls. Catalase expression (a marker for peroxisomes) was increased in GW agent exposed mice compared to controls. Ether PC and lyso-PAF modulation was also evident in the plasma of GW agent exposed mice compared to controls. These studies suggest peroxisomal and lysosomal dysfunction in the brain at a chronic post-exposure timepoint following GW agent exposure. Our studies provide a new direction for GWI research, which will be useful for developing suitable therapies for treating GWI. © 2013 Elsevier Inc. All rights reserved.
Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi
2017-09-01
A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.
Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia.
Xu, Jingshu; Church, Stephanie J; Patassini, Stefano; Begley, Paul; Waldvogel, Henry J; Curtis, Maurice A; Faull, Richard L M; Unwin, Richard D; Cooper, Garth J S
2017-08-16
Datasets comprising simultaneous measurements of many essential metals in Alzheimer's disease (AD) brain are sparse, and available studies are not entirely in agreement. To further elucidate this matter, we employed inductively-coupled-plasma mass spectrometry to measure post-mortem levels of 8 essential metals and selenium, in 7 brain regions from 9 cases with AD (neuropathological severity Braak IV-VI), and 13 controls who had normal ante-mortem mental function and no evidence of brain disease. Of the regions studied, three undergo severe neuronal damage in AD (hippocampus, entorhinal cortex and middle-temporal gyrus); three are less-severely affected (sensory cortex, motor cortex and cingulate gyrus); and one (cerebellum) is relatively spared. Metal concentrations in the controls differed among brain regions, and AD-associated perturbations in most metals occurred in only a few: regions more severely affected by neurodegeneration generally showed alterations in more metals, and cerebellum displayed a distinctive pattern. By contrast, copper levels were substantively decreased in all AD-brain regions, to 52.8-70.2% of corresponding control values, consistent with pan-cerebral copper deficiency. This copper deficiency could be pathogenic in AD, since levels are lowered to values approximating those in Menkes' disease, an X-linked recessive disorder where brain-copper deficiency is the accepted cause of severe brain damage. Our study reinforces others reporting deficient brain copper in AD, and indicates that interventions aimed at safely and effectively elevating brain copper could provide a new experimental-therapeutic approach.
Brain antibodies in the cortex and blood of people with schizophrenia and controls
Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C
2017-01-01
The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in ‘high’ and ‘low’ proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances. PMID:28786974
Brain antibodies in the cortex and blood of people with schizophrenia and controls.
Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C
2017-08-08
The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in 'high' and 'low' proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances.
Connors, Susan L; Matteson, Karla J; Sega, Gary A; Lozzio, Carmen B; Carroll, Roger C; Zimmerman, Andrew W
2006-09-01
Serotonin is necessary for normal fetal brain development. Administration of serotonin inhibitors to pregnant rats results in offspring with abnormal behaviors, brain morphology, and serotonin receptor numbers. Low maternal plasma serotonin may contribute to abnormal brain development in autism. In this study, plasma serotonin levels in autism mothers and control mothers of typically developing children were compared, and plasma serotonin levels in children with autism (n = 17) and their family members were measured. Plasma serotonin levels in autism mothers were significantly lower than in mothers of normal children (P = 0.002). Plasma serotonin levels correlated between autism mothers and their children, but differed between autistic children and their fathers (P = 0.028) and siblings (P = 0.063). Low maternal plasma serotonin may be a risk factor for autism through effects on fetal brain development.
Bazak, Noam; Kozlovsky, Nitsan; Kaplan, Zeev; Matar, Michael; Golan, Hava; Zohar, Joseph; Richter-Levin, Gal; Cohen, Hagit
2009-07-01
Early-life stress produces a cascade of neurobiological events that cause enduring changes in neural plasticity and synaptic efficacy that appear to play pivotal roles in the pathophysiology of post-traumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) has been implicated in the neurobiological mechanisms of these changes, in interaction with components of the stress response, such as corticosterone. This study examined the consequences of juvenile stress for behavior during adulthood in association with circulating corticosterone levels and BDNF expression. The experiments examined single exposure to predator scent stress (soiled cat litter for 10 min) as compared to repeated exposure, early in life and later on. Behavioral responses were assessed in the elevated plus maze and the acoustic startle response paradigms at 28, 60 and 90 days of age. Plasma corticosterone was measured and brain areas analyzed for BDNF levels. The results show that juvenile stress exposure increased anxiety-like behavior and startle amplitude and decreased plasma corticosterone. This response was seen immediately after exposure and also long term. Adult stress exposure increased anxiety-like behavior, startle amplitude and plasma corticosterone. Exposure to both early and later life trauma elicited reduced levels of corticosterone following the initial exposure, which were not raised by re-exposure, and elicited significant downregulation of BDNF mRNA and protein levels in the hippocampus CA1 subregion. The consequences of adult stress exposure were more severe in rats were exposed to the same stressor as juveniles, indicated increased vulnerability. The results suggest that juvenile stress has resounding effects in adulthood reflected in behavioral responses. The concomitant changes in BDNF and corticosterone levels may mediate the changes in neural plasticity and synaptic functioning underlying clinical manifestations of PTSD.
B vitamins and the aging brain.
Selhub, Jacob; Troen, Aron; Rosenberg, Irwin H
2010-12-01
Deficiencies of the vitamins folate, B(12) , and B(6) are associated with neurological and psychological dysfunction and with congenital defects. In the elderly, cognitive impairment and incident dementia may be related to the high prevalence of inadequate B vitamin status and to elevations of plasma homocysteine. Plausible mechanisms include homocysteine neurotoxicity, vasotoxicity, and impaired S-adenosylmethionine-dependent methylation reactions vital to central nervous system function. In light of this, it is imperative to find safe ways of improving vitamin B status in the elderly without exposing some individuals to undue risk. © 2010 International Life Sciences Institute.
Hyperammonemia in anorectic tumor-bearing rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chance, W.T.; Cao, L.; Nelson, J.L.
1988-01-01
Plasma ammonia concentrations were significantly elevated by 150% in anorectic rats bearing methylcholanthrene sarcomas. Assessment of ammonia levels in blood draining these sarcomas indicated nearly a 20-fold increase as compared with venous blood in control rats, suggesting the tumor mass as the source of this increase in ammonia. Infusing increasing concentrations of ammonium salts produced anorexia and alterations in brain amino acids in normal rats that were similar to those observed in anorectic tumor-bearing rats. Therefore, these results suggest that ammonia released by tumor tissue may be an important factor in the etiology of cancer anorexia.
Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases
Park, Myung Hee; Igarashi, Kazuei
2013-01-01
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke. PMID:24009852
Maltais, Domynick; Roy, Robert L
2014-10-01
The copper redhorse, Moxostoma hubbsi, is an endangered species endemic to Quebec. The presence of contaminants, in particular endocrine disrupting chemicals (EDCs), in its habitat has been advanced as partly responsible for the reproductive difficulties encountered by the species. In the present study, immature copper redhorse were exposed to the estrogenic surfactant nonylphenol (NP; 1, 10 and 50µg/l) and the synthetic estrogen 17α-ethinylestradiol (EE2; 10ng/l) for 21 days in a flow-through system. The endpoints investigated included general health indicators (hepatosomatic index and hematocrit), thyroid hormones, sex steroids, brain aromatase activity, plasma and mucus vitellogenin (VTG), cytochrome P4501A protein expression and ethoxyresorufin-O-deethylase activity, heat shock protein 70 (HSP70) and muscle acetylcholinesterase. Exposure to 10ng EE2/l significantly increased brain aromatase activity. Exposure to 50µg NP/l resulted in a significant reduction of plasma testosterone concentrations and a significant induction of hepatic HSP70 protein expression. NP at 50µg/l also induced plasma and mucus VTG. The presence of elevated VTG levels in the surface mucus of immature copper redhorse exposed to NP, and its correlation to plasma VTG, supports the use of mucus VTG as a non-invasive biomarker to evaluate copper redhorse exposure to EDCs in the environment and contribute to restoration efforts of the species. The results of the present study indicate that exposure to high environmentally relevant concentrations of NP and EE2 can affect molecular endpoints related to reproduction in the copper redhorse. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Ceramide and Its Related Neurochemical Networks as Targets for Some Brain Disorder Therapies.
Brodowicz, Justyna; Przegaliński, Edmund; Müller, Christian P; Filip, Malgorzata
2018-02-01
Correlational and causal comparative research link ceramide (Cer), the precursor of complex sphingolipids, to some psychiatric (e.g., depression, schizophrenia (SZ), alcohol use disorder, and morphine antinociceptive tolerance) and neurological (e.g., Alzheimer's disease (AD), Parkinson disease (PD)) disorders. Cer generation can occur through the de novo synthesis pathway, the sphingomyelinase pathways, and the salvage pathway. The discoveries that plasma Cer concentration increase during depressive episodes in patients and that tricyclic and tetracyclic antidepressants functionally inhibit acid sphingomyelinase (ASM), the enzyme that catalyzes the degradation of sphingomyelin to Cer, have initiated a series of studies on the role of the ASM-Cer system in depressive disorder. Disturbances in the metabolism of Cer or SM are associated with the occurrence of SZ and PD. In both PD and SZ patients, the elevated levels of Cer or SM in the brain regions were associated with the disease. AD patients showed also an abnormal metabolism of brain Cer at early stages of the disease which may suggest Cer as an AD biomarker. In plasma of AD patients and in AD transgenic mice, ASM activity was increased. In contrast, partial ASM inhibition of Aβ deposition improved memory deficits. Furthermore, in clinical and preclinical research, ethanol enhanced activation of ASM followed by Cer production. Limited data have shown that Cer plays an important role in the development of morphine antinociceptive tolerance. In summary, clinical and preclinical findings provide evidence that targeting the Cer system should be considered as an innovative translational strategy for some brain disorders.
Valine entry into rat brain after diet-induced changes in plasma amino acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tews, J.K.; Greenwood, J.; Pratt, O.E.
1987-01-01
Passage of amino acids across the blood-brain barrier is assumed to be modified by amino acid composition of the blood. To gain a better understanding of the effects of protein intake on brain amino acid uptake, the authors examined associations among diet, plasma amino acid patterns, and the rate of entry of valine into the brain. Rats were fed diets containing 6, 18, or 50% casein before receiving one meal of a diet containing 0, 6, 18, or 50% casein. After 4-7 h, they were anesthetized and infused intravenously with (/sup 14/C)valine for 5 min before plasma and brain samplesmore » were taken for determination of radioactivity and content of individual amino acids. As protein content of the meal was increased from 0 to 50% casein, plasma and brain concentrations of valine and most other large neutral amino acid (LNAA) increased severalfold; also the ratio of (/sup 14/C)valine in brain to that in plasma decreased by >50%, and the rate of valine entry into the brain increased 3.5-fold. The increase in valine flux slowed as plasma levels of LNAA, competitors for valine transport, increased. The results were far more dependent on protein content of the final meal than on that of the adaptation diet; thus changes in protein intake, as reflected in altered plasma amino acid patterns, markedly altered valine entry into the brain.« less
Chang, Ronald; Folkerson, Lindley E; Sloan, Duncan; Tomasek, Jeffrey S; Kitagawa, Ryan S; Choi, H Alex; Wade, Charles E; Holcomb, John B
2017-02-01
Plasma-based resuscitation improves outcomes in trauma patients with hemorrhagic shock, while large-animal and limited clinical data suggest that it also improves outcomes and is neuroprotective in the setting of combined hemorrhage and traumatic brain injury. However, the choice of initial resuscitation fluid, including the role of plasma, is unclear for patients after isolated traumatic brain injury. We reviewed adult trauma patients admitted from January 2011 to July 2015 with isolated traumatic brain injury. "Early plasma" was defined as transfusion of plasma within 4 hours. Purposeful multiple logistic regression modeling was performed to analyze the relationship of early plasma and inhospital survival. After testing for interaction, subgroup analysis was performed based on the pattern of brain injury on initial head computed tomography: epidural hematoma, intraparenchymal contusion, subarachnoid hemorrhage, subdural hematoma, or multifocal intracranial hemorrhage. Of the 633 isolated traumatic brain injury patients included, 178 (28%) who received early plasma were injured more severely coagulopathic, hypoperfused, and hypotensive on admission. Survival was similar in the early plasma versus no early plasma groups (78% vs 84%, P = .08). After adjustment for covariates, early plasma was not associated with improved survival (odds ratio 1.18, 95% confidence interval 0.71-1.96). On subgroup analysis, multifocal intracranial hemorrhage was the largest subgroup with 242 patients. Of these, 61 (25%) received plasma within 4 hours. Within-group logistic regression analysis with adjustment for covariates found that early plasma was associated with improved survival (odds ratio 3.34, 95% confidence interval 1.20-9.35). Although early plasma transfusion was not associated with improved in-hospital survival for all isolated traumatic brain injury patients, early plasma was associated with increased in-hospital survival in those with multifocal intracranial hemorrhage. Copyright © 2016 Elsevier Inc. All rights reserved.
Colovic, Milena; Caccia, Silvio
2003-07-05
An isocratic reversed-phase high-performance liquid chromatographic procedure was developed for the determination of minocycline in rat plasma and brain and applied to brain-to-blood (plasma) distribution studies. The procedure is based on isolation of the compound and the internal standard (either demeclocycline or tetracycline may be used) from plasma and brain constituents using the Oasis HLB cartridge, with satisfactory recovery and specificity, and separation on a Symmetry Shield RP8 (15 cm x 4.6 mm, 3.5 microm) column coupled with a UV detector set at 350 nm. The assay was linear over a wide range, with a lower limit of quantification of 50 ng ml(-1) or g(-1), using 0.2 ml of plasma and about 200 mg of brain tissue. Precision and accuracy were acceptable. In the rat minocycline crossed the blood-brain barrier slowly, achieving mean brain concentrations between 30 and 40% of the equivalent systemic exposure, regardless of the dose and route of administration.
Elevated plasma creatinine due to creatine ethyl ester use.
Velema, M S; de Ronde, W
2011-02-01
Creatine is a nutritional supplement widely used in sport, physical fitness training and bodybuilding. It is claimed to enhance performance. We describe a case in which serum creatinine is elevated due to the use of creatine ethyl esther. One week after withdrawal, the plasma creatinine had normalised. There are two types of creatine products available: creatine ethyl esther (CEE) and creatine monohydrate (CM). Plasma creatinine is not elevated in all creatine-using subjects. CEE , but not CM, is converted into creatinine in the gastrointestinal tract. As a result the use of CEE may be associated with elevated plasma creatinine levels. Since plasma creatinine is a widely used marker for renal function, the use of CEE may lead to a false assumption of renal failure.
Valensi, P; Combes, M E; Perret, G; Attali, J R
1996-05-01
The aim of this study was to investigate TSH and PRL response to TRH and domperidone, an antidopaminergic drug which does not cross the blood-brain barrier, in 16 patients with primary empty sella (PES) and either normal or elevated plasma PRL level and to compare it with the response observed in 8 patients with prolactinoma. In the patients with PES and hyperprolactinemia, the PRL response to TRH was significantly lower than in the controls and the patients with PES and normal PRL, which suggests there is impaired PRL synthesis and release in cases of PES with hyperprolactinemia. The TSH response to domperidone was significantly elevated in patients with PES and either normal or elevated PRL, as in patients with prolactinoma. The PRL response to domperidone was significantly reduced in patients with PES and hyperprolactinemia as in patients with prolactionoma. These results suggestthat in PES with prolactinoma the inhibiting dopaminergic tone is increased on the thyrotropic cells and reduced on the lactotropic cells in PES with elevated PRL and that some patients with PES might bear a microprolactinoma in the bottom of the sella which remained undetected by the CT scan.
Fowler, Joanna S.; Logan, Jean; Volkow, Nora D.; ...
2015-10-29
Selegiline (L-deprenyl) is a selective, irreversible inhibitor of monoamine oxidase B (MAO-B) at the conventional dose (10 mg/day oral) that is used in the treatment of Parkinson’s disease. However, controlled studies have demonstrated antidepressant activity for high doses of oral selegiline and for transdermal selegiline suggesting that when plasma levels of selegiline are elevated, brain MAO-A might also be inhibited. Zydis selegiline (Zelapar®) is an orally disintegrating formulation of selegiline, which is absorbed through the buccal mucosa producing higher plasma levels of selegiline and reduced amphetamine metabolites compared to equal doses of conventional selegiline. Although there is indirect evidence thatmore » Zydis selegiline at high doses loses its selectivity for MAO-B, there is no direct evidence that it also inhibits brain MAO-A in humans. We measured brain MAO-A in 18 healthy men after a 28-day treatment with Zydis selegiline (2.5, 5.0, or 10 mg/day) and in 3 subjects receiving the selegiline transdermal system (Emsam patch, 6 mg/day) using PET and the MAO-A radiotracer [¹¹C]clorgyline. We also measured dopamine transporter (DAT) availability in three subjects from the 10 mg group. The 10 mg Zydis selegiline dose significantly inhibited MAO-A (36.9 ± 19.7%, range 11–70%, p<0.007)) but not DAT; and while Emsam also inhibited MAO-A (33.2 ± 28.9 (range 9-68%) the difference did not reach significance (p=0.10)) presumably because of the small sample size. Our results provide the first direct evidence of brain MAO-A inhibition in humans by formulations of selegiline, which are currently postulated but not verified to target brain MAO-A in addition to MAO-B.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Joanna S.; Logan, Jean; Volkow, Nora D.
Selegiline (L-deprenyl) is a selective, irreversible inhibitor of monoamine oxidase B (MAO-B) at the conventional dose (10 mg/day oral) that is used in the treatment of Parkinson’s disease. However, controlled studies have demonstrated antidepressant activity for high doses of oral selegiline and for transdermal selegiline suggesting that when plasma levels of selegiline are elevated, brain MAO-A might also be inhibited. Zydis selegiline (Zelapar®) is an orally disintegrating formulation of selegiline, which is absorbed through the buccal mucosa producing higher plasma levels of selegiline and reduced amphetamine metabolites compared to equal doses of conventional selegiline. Although there is indirect evidence thatmore » Zydis selegiline at high doses loses its selectivity for MAO-B, there is no direct evidence that it also inhibits brain MAO-A in humans. We measured brain MAO-A in 18 healthy men after a 28-day treatment with Zydis selegiline (2.5, 5.0, or 10 mg/day) and in 3 subjects receiving the selegiline transdermal system (Emsam patch, 6 mg/day) using PET and the MAO-A radiotracer [¹¹C]clorgyline. We also measured dopamine transporter (DAT) availability in three subjects from the 10 mg group. The 10 mg Zydis selegiline dose significantly inhibited MAO-A (36.9 ± 19.7%, range 11–70%, p<0.007)) but not DAT; and while Emsam also inhibited MAO-A (33.2 ± 28.9 (range 9-68%) the difference did not reach significance (p=0.10)) presumably because of the small sample size. Our results provide the first direct evidence of brain MAO-A inhibition in humans by formulations of selegiline, which are currently postulated but not verified to target brain MAO-A in addition to MAO-B.« less
Yip, Hon-Kan; Sun, Cheuk-Kwan; Chang, Li-Teh; Chen, Mien-Cheng; Liou, Chia-Wei
2006-04-01
The association between plasma levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) and prognostic outcomes in patients after ischemic stroke remains unknown. The present study tested the hypothesis that NT-proBNP level is noticeably increased after ischemic stroke and that elevated NT-proBNP is associated with unfavorable clinical outcomes (UFCO). Blood samples for NT-proBNP levels were collected serially and examined with sandwich immunoassay after acute ischemic stroke in 86 consecutive patients. The NT-proBNP levels were also measured in 30 healthy control volunteers and 30 at-risk control subjects. The NT-proBNP levels were significantly higher at 4 intervals after ischemic stroke than in healthy and at-risk control subjects (all p<0.001). The NT-proBNP decreased to a significantly lower level on day 21 and to a substantially lower level on day 90. Additionally, the NT-proBNP level at any of the 4 intervals was significantly higher in patients with than in patients without UFCO (defined as combined congestive heart failure > or = class 3, acute myocardial infarction, recurrent stroke or any cause of death) (all p<0.01). Multivariate analysis demonstrated that age and NIH Stroke Scale were the 2 strongest independent predictors of increased NT-proBNP levels (all p<0.01). Furthermore, increased NT-proBNP (> or = 150 pg/ml) was the strongest independent predictor of long-term (mean follow-up: 24 months) UFCO (26 patients) (all p<0.05). The NT-proBNP level was markedly elevated after acute ischemic stroke and declined substantially thereafter. An increased NT-proBNP level was strongly and independently correlated with UFCO in patients after ischemic stroke.
Lenz, Max; Krychtiuk, Konstantin A; Goliasch, Georg; Distelmaier, Klaus; Wojta, Johann; Heinz, Gottfried; Speidl, Walter S
2018-04-01
Patients treated at medical intensive care units suffer from various pathologies and often present with elevated troponin T (TnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Both markers may reflect different forms of cardiac involvement in critical illness. Therefore, the aim of our study was to examine the synergistic prognostic potential of NT-proBNP and high-sensitivity TnT (hs)TnT in unselected critically ill patients. We included all consecutive patients admitted to our intensive care unit within one year, excluding those suffering from acute myocardial infarction or undergoing cardiac surgery and measured NT-proBNP and TnT plasma levels on the day of admission and 72 hours thereafter. Of the included 148 patients, 52% were male, mean age was of 64.2 ± 16.8 years and 30-day mortality was 33.2%. Non-survivors showed significantly higher NT-proBNP and TnT plasma levels as compared with survivors ( p<0.01). An elevation of both markers exhibited an additive effect on mortality, as those with both NT-proBNP and TnT levels above the median had a 30-day mortality rate of 51.0%, while those with both markers below the median had a 16.7% mortality rate (hazard ratio 3.7). These findings were independent of demographic and clinical parameters ( p<0.05). Our findings regarding the individual predictive properties of NT-proBNP and TnT are in line with literature. However, we were able to highlight that they exhibit additive prognostic potential which exceeds their individual value. This might be attributed to a difference in underlying pathomechanisms and an assessment of synergistic risk factors.
Curzon, G.; Knott, P.J.
1974-01-01
1 The effects on tryptophan distribution and metabolism of drugs altering plasma unesterified fatty acid (UFA) concentration were investigated in the rat. 2 UFA and plasma free (i.e. ultrafilterable) tryptophan altered in the same direction. 3 Catecholamines and L-DOPA increased both plasma UFA and free tryptophan. L-DOPA also increased brain tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) but decreased brain 5-hydroxytryptamine (5-HT). 4 Aminophylline increased plasma UFA and free tryptophan and also brain tryptophan, 5-HT and 5-HIAA. Food deprivation had qualitatively similar effects. 5 Insulin decreased plasma UFA and free tryptophan in both fed and food-deprived rats. However, while in fed rats these changes were associated with small decreases of brain indoles, in food-deprived animals small increases occurred. 6 Nicotinic acid had only small effects in fed rats but it opposed both the UFA and indole changes in food-deprived animals. Total plasma tryptophan increased in nicotinic acid treated, food-deprived rats. 7 There was a tendency towards inverse relations between changes of plasma free and total tryptophan. 8 The results suggest that drugs which influence plasma UFA through actions on cyclic AMP thereby alter the binding of tryptophan to plasma protein and that this leads to altered distribution and metabolism of tryptophan. PMID:4371899
Narra, Madhusudan Reddy
2016-02-01
Pesticide mixtures are common in the streams of agricultural or urban catchments. Individual and cartel toxicity of four different pesticides, namely Endosulfan, Carbofuran, Methyl parathion and Cypermethrin were studied. Sub acute exposure (1/10th of LC50) for 1, 7, 15, 30 and 60 days in Clarias batrachus active tissues such as brain, gills, blood and liver were evaluated. Growth, hepatosomatic index and survival performance were decreased, inhibition of brain acetylcholinesterase, gills Na(+)/K(+) ATPase activities, and abnormal behavior are noticed. The characteristics of the blood respiratory burst activity, erythrocyte count, contents of hematocrit and hemoglobin are dwindled. Plasma total proteins and liver glycogen decreased whereas blood glucose and serum creatinine, triglycerides are elevated. The immunological attributes such as white blood cell count was elevated, whereas albumin, globulins and lysozyme activity significantly decreased. Hepatic superoxide dismutase, catalase and glutathione S-transferase activities and lipid peroxidation levels are elevated, whereas glutathione peroxidase and glutathione are reduced. Toxicity effect of pesticides reached to a crest on 30th day and showed a descent thereafter except in endosulfan which mounted its detrimental effect throughout the experimental period. Toxicity trends of the present study are determined to be highest in Mix group followed by cypermethrin, methyl parathion and carbofuran. Indiscriminate application of these chemicals pose a toxic threat to non-target organisms, damage the ecosystems and jeopardizes human health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Walters, Tomos E; Kalman, Jonathan M; Patel, Sheila K; Mearns, Megan; Velkoska, Elena; Burrell, Louise M
2017-08-01
Angiotensin converting enzyme 2 (ACE2) is an integral membrane protein whose main action is to degrade angiotensin II. Plasma ACE2 activity is increased in various cardiovascular diseases. We aimed to determine the relationship between plasma ACE2 activity and human atrial fibrillation (AF), and in particular its relationship to left atrial (LA) structural remodelling. One hundred and three participants from a tertiary arrhythmia centre, including 58 with paroxysmal AF (PAF), 20 with persistent AF (PersAF), and 25 controls, underwent clinical evaluation, echocardiographic analysis, and measurement of plasma ACE2 activity. A subgroup of 20 participants underwent invasive LA electroanatomic mapping. Plasma ACE2 activity levels were increased in AF [control 13.3 (9.5-22.3) pmol/min/mL; PAF 16.9 (9.7-27.3) pmol/min/mL; PersAF 22.8 (13.7-33.4) pmol/min/mL, P = 0.006]. Elevated plasma ACE2 was associated with older age, male gender, hypertension and vascular disease, elevated left ventricular (LV) mass, impaired LV diastolic function and advanced atrial disease (P < 0.05 for all). Independent predictors of elevated plasma ACE2 activity were AF (P = 0.04) and vascular disease (P < 0.01). There was a significant relationship between elevated ACE2 activity and low mean LA bipolar voltage (adjusted R2 = 0.22, P = 0.03), a high proportion of complex fractionated electrograms (R2 = 0.32, P = 0.009) and a long LA activation time (R2 = 0.20, P = 0.04). Plasma ACE2 activity is elevated in human AF. Both AF and vascular disease predict elevated plasma ACE2 activity, and elevated plasma ACE2 is significantly associated with more advanced LA structural remodelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye; Johansson, Pär Ingemar
2017-03-01
Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG ® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid percussion brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for 51 Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB permeability. Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.
The effect of stress on the acute neurotoxicity of the organophosphate insecticide chlorpyrifos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, Sandra; Ehrich, Marion; Hinckley, Jonathan
2007-03-15
A study was conducted to determine if multiple exposures to several stress paradigms might affect the anticholinesterase effect of subsequently administered organophosphate insecticide chlorpyrifos. Male Sprague-Dawley rats were subject to daily periods of restraint, swimming, a combination of the two, or neither of the two (controls) (n = 8/group) for 5 days per week over a six-week period. The most profound stress, as measured by reduced body weight gain and elevated levels of plasma corticosterone, was swimming. On day 39 of the study, shortly after the daily stress episode, one half of the rats in each group was dosed withmore » 60 mg/kg chlorpyrifos subcutaneously. This had no effect on subsequent levels of plasma corticosterone. There were no stress-related differences in the degree of chlorpyrifos-induced inhibition of brain acetylcholinesterase in animals sacrificed on day 43.« less
Comparative neurobiological effects of ibogaine and MK-801 in rats.
Baumann, M H; Rothman, R B; Ali, S F
2000-05-01
Ibogaine is a plant-derived alkaloid with putative 'anti-addictive' properties. Although ibogaine binds to multiple targets in the brain, recent evidence suggests the drug acts as an N-methyl-D-aspartate (NMDA) antagonist similar to MK-801. The purpose of the present study was to compare neurochemical and neuroendocrine effects of ibogaine and MK-801 in vivo. Male rats received either i.p. saline, ibogaine (10 and 100 mg/kg), or MK-801 (0.1 and 1 mg/kg). Groups of rats (N=6-8/group) were decapitated 30 or 60 min after injection. Brains were harvested for analysis of dopamine (DA) and its metabolites, while trunk blood was collected for analysis of plasma corticosterone and prolactin. Ibogaine produced marked dose-dependent reductions in tissue DA with concurrent increases in the metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). This profile of ibogaine-induced effects on DA metabolism was consistently observed in the cortex, striatum, olfactory tubercle, and hypothalamus. MK-801, on the other hand, did not reduce DA levels in any brain region but did cause modest region-specific elevations in DA metabolites. Ibogaine and MK-801 caused comparable elevations in circulating corticosterone, but only ibogaine increased prolactin. The present findings show that the effects of ibogaine on DA neurotransmission and neuroendocrine secretion are not fully mimicked by MK-801. Thus, the wide spectrum of in vivo actions of ibogaine can probably not be explained simply on the basis of antagonism at NMDA receptors.
Meguid, Nagwa A; Gebril, Ola H; Khalil, Rehab O
2015-01-01
Autism spectrum disorder (ASD) is a complex, heterogeneous neurodevelopmental disorder with onset during early childhood. Most studies have reported an elevation in platelet serotonin in persons with autism. The serotonin (5-hydroxytryptamine; 5-HT) transporter in the brain uptakes 5-HT from extracellular spaces. It is also present in platelets, where it takes up 5-HT from plasma. Polymorphisms in serotonin transporter gene (SLC6A4) were frequently studied in many neuropsychiatric disorders. We have measured the plasma 5-HT levels in 20 autistic male children and 20 control male children by the enzyme-linked immunosorbent assay (ELISA) method. In addition, the SLC6A4 promoter region (5-HTTLPR) insertion/deletion (I/D) polymorphism was studied, using whole genomic DNA. Plasma serotonin was significantly low in autistic children compared to control (P = 0.001), although correlation to severity of autism was not significant. The frequency of short (S) allele in autism cases was 10% and in the control group it was absent. Our study demonstrated an increased prevalence of 5-HTTLPR S allele in autism subjects. Significantly decreased plasma serotonin was detected in autism subjects, with no significant relationship between 5-HTTLPR genotype and plasma 5-HT being evident.
Meguid, Nagwa A.; Gebril, Ola H.; Khalil, Rehab O.
2015-01-01
Background: Autism spectrum disorder (ASD) is a complex, heterogeneous neurodevelopmental disorder with onset during early childhood. Most studies have reported an elevation in platelet serotonin in persons with autism. The serotonin (5-hydroxytryptamine; 5-HT) transporter in the brain uptakes 5-HT from extracellular spaces. It is also present in platelets, where it takes up 5-HT from plasma. Polymorphisms in serotonin transporter gene (SLC6A4) were frequently studied in many neuropsychiatric disorders. Materials and Methods: We have measured the plasma 5-HT levels in 20 autistic male children and 20 control male children by the enzyme-linked immunosorbent assay (ELISA) method. In addition, the SLC6A4 promoter region (5-HTTLPR) insertion/deletion (I/D) polymorphism was studied, using whole genomic DNA. Results: Plasma serotonin was significantly low in autistic children compared to control (P = 0.001), although correlation to severity of autism was not significant. The frequency of short (S) allele in autism cases was 10% and in the control group it was absent. Conclusion: Our study demonstrated an increased prevalence of 5-HTTLPR S allele in autism subjects. Significantly decreased plasma serotonin was detected in autism subjects, with no significant relationship between 5-HTTLPR genotype and plasma 5-HT being evident. PMID:26015920
Fluconazole penetration in cerebral parenchyma in humans at steady state.
Thaler, F; Bernard, B; Tod, M; Jedynak, C P; Petitjean, O; Derome, P; Loirat, P
1995-01-01
We studied fluconazole penetration in the brain in five patients who had a deep cerebral tumor whose removal required the excision of healthy brain tissue. Plasma and brain samples were simultaneously obtained after oral ingestion of 400 mg of fluconazole daily for 4 days (90% of steady state). Fluconazole penetration in healthy cerebral parenchyma was determined. Plasma and brain samples were assayed by high-pressure liquid chromatography. Concentrations in plasma and brain tissue were 13.5 +/- 5.5 micrograms/ml and 17.6 +/- 6.6 micrograms/g, respectively. The average ratio of concentrations in the brain and plasma (four patients) was 1.33 (range, 0.70 to 2.39). Despite the lack of data concerning the penetration of fluconazole in brain abscesses, these results should permit the use of a daily dose of 400 mg of fluconazole in prospective clinical studies that evaluate the effectiveness of this drug in the treatment of brain abscesses due to susceptible species of fungi. PMID:7625804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.
1981-01-01
Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylationmore » rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.« less
Palermo, Francesco Alessandro; Cocci, Paolo; Nabissi, Massimo; Polzonetti-Magni, Alberta; Mosconi, Gilberto
2012-11-01
4-Nonylphenol (4-NP) is a breakdown product of alkylphenolpolyethoxylates and can be found in almost all environmental water matrices. 4-NP can act as environmental stressor on fish, typically causing modulation of hypothalamic-pituitary-interrenal axis (HPI). To examine the effects of the xenoestrogen 4-NP or 17β-estradiol (E2) on induction of stress response mechanisms by evaluating the levels of proopiomelanocortin (POMC) mRNA, heat shock protein 70 (HSP70) mRNA and plasma cortisol, we exposed juvenile sole (Solea solea), under static condition for 7 day, to either 10(-6) or 10(-8) M 4-NP, or 10(-8) M E2. In addition, plasma cortisol titers were correlated to the total antioxidant capacity (TAC), one of the oxidative stress parameters. 4-NP treatments resulted in high levels of POMC mRNA, HSP70 mRNA and plasma cortisol. On the contrary, E2 basically down-regulated POMC expression. Moreover, elevated cortisol levels in fish exposed to the highest dose of 4-NP were accompanied by low TAC. These results suggest that 4-NP modulates the sole HPI axis inducing a cortisol-mediated stress response. Specifically, we suggest that 4-NP affects brain POMC mRNA levels via non-estrogen receptor (ER)-mediated mechanism further supporting the ability of 4-NP to target multiple receptor systems. Copyright © 2012 Elsevier Inc. All rights reserved.
Gonzales, Mitzi M.; Takashi, Tarumi; Eagan, Danielle E.; Tanaka, Hirofumi; Vaghasia, Miral; Haley, Andreana P.
2012-01-01
Objective Elevated body mass index (BMI) at midlife is associated with increased risk of cognitive decline in later life. The goal of the current study was to assess mechanisms of early brain vulnerability by examining if higher BMI at midlife has an effect on current cognitive performance through alterations in cerebral neurochemistry. Methods Fifty-five participants, aged 40–60 years, underwent neuropsychological testing, health screen, and proton magnetic resonance spectroscopy (1H MRS) examining N-acetyl-aspartate (NAA), creatine (Cr), myo-inositol (mI), choline (Cho), and glutamate (Glu) concentrations in occipitoparietal grey matter. Concentrations of NAA, Cho, mI, and Glu were calculated as a ratio over Cr and examined in relation to BMI using multivariate regression analyses. Structural equation modeling was used to determine if BMI had an indirect effect on cognition through cerebral metabolite levels. Results Higher BMI was associated with elevations in mI/Cr (F(5,45)= 3.843, p=0.006, β=0.444, p=0.002), independent of age, sex, fasting glucose levels, and systolic blood pressure. Moreover, a chi-square difference test of the direct and indirect structural equation models revealed that BMI had an indirect effect on global cognitive performance (ΔX2(df=2) =19.939, p<0.001). Subsequent follow-up analyses revealed that this effect was specific to memory (ΔX2(df=2) = 22.027, p<0.001). Conclusions Higher BMI was associated with elevations in mI/Cr concentrations in the occipitoparietal grey matter and indirectly related to poorer memory performance through mI/Cr, potentially implicating plasma hypertonicity and neuroinflammation as mechanisms underlying obesity-related brain vulnerability. PMID:22822230
Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S
2002-03-01
Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.
Evans, M L; Hopkins, D; Macdonald, I A; Amiel, S A
2004-05-01
To investigate the potential for the non-glucose metabolic substrate alanine to support brain function during glucose deprivation in man. Seven healthy men were studied on two occasions using a hyperinsulinaemic glucose clamp to lower arterialized plasma glucose to 2.5 mmol/l, in the presence of either 2 mmol/kg/h alanine infusion or saline, measuring counter-regulatory hormonal responses, symptoms generated and cognitive function with a mini-battery of tests sensitive to hypoglycaemia. Alanine infusion elevated plasma alanine (peak value 1481 +/- 1260 vs. 138 +/- 32 micro mol/l, P = 0.02 alanine vs. saline) and lactate (peak value 3.09 +/- 0.14 vs. 2.05 +/- 0.12 mmol/l, P = 0.02). Cognitive function assessed by the Stroop word and colour subtests deteriorated less with alanine than saline (P < 0.01 for both). Other cognitive function tests deteriorated equally and counter-regulatory hormones rose equally during hypoglycaemia in both studies (P > 0.34) except for increased glucagon with alanine (peak 260 +/- 53 vs. 91 + 8 ng/l, P = 0.03). There was no significant effect of alanine on either autonomic or neuroglycopenic symptom scores. Some, but not all, aspects of cognitive performance may be supported by an alanine infusion during hypoglycaemia. It is not clear whether alanine supports brain function directly or via increased availability of lactate. These data contribute to the growing evidence that regional metabolic differences exist in the brain's ability to use non-glucose fuels during hypoglycaemia.
Changes in renal function and fluid and electrolyte regulation in space flight
NASA Technical Reports Server (NTRS)
Leach, C. S.
1992-01-01
The cephalad fluid redistribution resulting from weightlessness has a number of physiologic consequences. Plasma volume is reduced soon after weightlessness is reached, and red blood cell mass reduction follows. Plasma atrial natriuretic peptide, which inhibits aldosterone secretion, was elevated during space flight while plasma aldosterone was below preflight levels. Serum sodium was also reduced and potassium was elevated. Antidiuretic hormone (ADH) was markedly elevated at almost all measurement times in the first eight days of flight, but plasma volume did not return to preflight levels.
Cerebrospinal fluid Plasmodium falciparum histidine-rich protein-2 in pediatric cerebral malaria.
Thakur, Kiran T; Vareta, Jimmy; Carson, Kathryn A; Kampondeni, Samuel; Potchen, Michael J; Birbeck, Gretchen L; MacCormick, Ian; Taylor, Terrie; Sullivan, David J; Seydel, Karl B
2018-03-23
Cerebral malaria (CM) causes a rapidly developing coma, and remains a major contributor to morbidity and mortality in malaria-endemic regions. This study sought to determine the relationship between cerebrospinal fluid (CSF) Plasmodium falciparum histidine rich protein-2 (PfHRP-2) and clinical, laboratory and radiographic features in a cohort of children with retinopathy-positive CM. Patients included in the study were admitted (2009-2013) to the Pediatric Research Ward (Queen Elizabeth Central Hospital, Blantyre, Malawi) meeting World Health Organization criteria for CM with findings of malarial retinopathy. Enzyme-linked immunosorbent assay was used to determine plasma and CSF PfHRP-2 levels. Wilcoxon rank-sum tests and multivariable logistic regression analysis assessed the association of clinical and radiographic characteristics with the primary outcome of death during hospitalization. In this cohort of 94 patients, median age was 44 (interquartile range 29-62) months, 53 (56.4%) patients were male, 6 (7%) were HIV-infected, and 10 (11%) died during hospitalization. Elevated concentrations of plasma lactate (p = 0.005) and CSF PfHRP-2 (p = 0.04) were significantly associated with death. On multivariable analysis, higher PfHRP-2 in the CSF was associated with death (odds ratio 9.00, 95% confidence interval 1.44-56.42) while plasma PfHRP-2 was not (odds ratio 2.05, 95% confidence interval 0.45-9.35). Elevation of CSF, but not plasma PfHRP-2, is associated with death in this paediatric CM cohort. PfHRP-2 egress into the CSF may represent alteration of blood brain barrier permeability related to the sequestration of parasitized erythrocytes in the cerebral microvasculature.
Nielsen, Forrest H; Penland, James G
2006-01-01
To determine whether boron deprivation affects rat behaviour and whether behavioural responses to boron deprivation are modified by differing amounts of dietary long-chain omega-3 fatty acids. Female rats were fed diets containing 0.1 mg (9 micromol)/kg boron in a factorial arrangement with dietary variables of supplemental boron at 0 and 3mg (278 micromol)/kg and fat sources of 75 g/kg safflower oil or 65 g/kg fish (menhaden) oil plus 10 g/kg linoleic acid. After 6 weeks, six females per treatment were bred. Dams and pups continued on their respective diets through gestation, lactation and after weaning. Between ages 6 and 20 weeks, behavioural tests were performed on 13-15 male offspring from three dams in each dietary treatment. The rats were euthanized at age 21 weeks for the collection of tissues and blood. At ages 6 and 19 weeks, auditory startle was evaluated with an acoustic startle system and avoidance behaviour was evaluated by using an elevated plus maze. At ages 7 and 20 weeks, spontaneous behaviour activity was evaluated with a photobeam activity system. A brightness discrimination test was performed on the rats between age 15 and 16 weeks. Brain mineral composition was determined by coupled argon plasma atomic emission spectroscopy. Plasma total glutathione was determined by HPLC and total cholesterol and 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) were determined by using commercially available kits. Boron-deficient rats were less active than boron-adequate rats when fed safflower oil based on reduced number, distance and time of horizontal movements, front entries, margin distance and vertical breaks and jumps in the spontaneous activity evaluation. Feeding fish oil instead of safflower oil attenuated the activity response to boron deprivation. In the plus maze evaluation, the behavioural reactivity of the boron-deficient rats fed fish oil was noticeably different than the other three treatments. They made more entries into both open and closed arms and the center area and thus visited more locations. The boron-deficient rats fed fish oil also exhibited the lowest copper and zinc and highest boron concentrations in brain and the highest plasma glutathione concentration. Both boron deprivation and safflower oil increased plasma 8-iso-PGF2alpha. Both dietary boron and long-chain omega-3 fatty acids influence rat behaviour and brain composition and the influence of one these bioactive substances can be altered by changing the intake of the other. Brain mineral and plasma cholesterol, glutathione and 8-iso-PGF2alpha findings suggest that rat behaviour is affected by an interaction between boron and fish oil because both affect oxidative metabolism and act the cellular membrane level.
A time-course analysis of changes in cerebral metal levels following a controlled cortical impact.
Portbury, Stuart D; Hare, Dominic J; Sgambelloni, Charlotte; Finkelstein, David I; Adlard, Paul A
2016-02-01
Traumatic brain injury (TBI) is complicated by a sudden and dramatic change in brain metal levels, including iron (Fe), copper (Cu) and zinc (Zn). Specific 'metallo-pathological' features of TBI include increased non-heme bound Fe and the liberation of free Zn ions, both of which may contribute to the pathogenesis of TBI. To further characterise the metal dyshomeostasis that occurs following brain trauma, we performed a quantitative time-course survey of spatial Fe, Cu and Zn distribution in mice receiving a controlled cortical impact TBI. Images of brain metal levels produced using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in the upper quadrant of the ipsilateral hemisphere were compared to the corresponding contralateral hemisphere, together with regional areas radiating toward the center of the brain from the site of lesion. Significant regional and time point specific elevations in Fe, Zn and Cu were detected immediately and up to 28 days after TBI. The magnitude and timeframe of many of these changes suggest that TBI results in a pronounced and sustained alteration in normal metal levels within the brain. Such alterations are likely to play a role in both the short- and long-term consequences of head trauma and suggest that pharmacological modulation to normalize these metal levels may be efficacious in improving functional outcome.
Plasma brain-derived neurotrophic factor in women after bariatric surgery: a pilot study.
Merhi, Zaher O; Minkoff, Howard; Lambert-Messerlian, Geralyn M; Macura, Jerzy; Feldman, Joseph; Seifer, David B
2009-04-01
Eighteen morbidly obese women had plasma brain-derived neurotrophic factor (BDNF) measured before bariatric surgery and 3 months postoperatively. We analyzed plasma BDNF levels in all the participants then subdivided according to menopausal status and type of surgery. Brain-derived neurotrophic factor decreased significantly in all the participants and in the premenopausal group when looked at in isolation.
Metabonomic Profiling of TASTPM Transgenic Alzheimer's Disease Mouse Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zeping; Browne, Edward R.; Liu, Tao
2012-12-07
Identification of molecular mechanisms underlying early stage Alzheimer’s disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, non-targeted metabotyping of TASTPM transgenic AD mice was performed. The metabolic profiles of both brain and plasma of TASTPM mice were characterized using gas chromatography-mass spectrometry and compared to those of wild type C57BL/6J mice. TASTPM mice were metabolically distinct compared to wild type mice (Q28 Y = 0.587 and 0.766 for PLS-DA models derived from brain and plasma, respectively). A number of metabolites were found to be perturbed in TASTPM mice in bothmore » brain (D11 fructose, L-valine, L-serine, L-threonine, zymosterol) and plasma (D-glucose, D12 galactose, linoleic acid, arachidonic acid, palmitic acid and D-gluconic acid). In addition, enzyme immunoassay confirmed that selected endogenous steroids were significantly perturbed in brain (androstenedione and 17-OH-progesterone) and plasma (cortisol and testosterone) of TASTPM mice. Ingenuity pathway analysis revealed that perturbations related to amino acid metabolism (brain), steroid biosynthesis (brain), linoleic acid metabolism (plasma) and energy metabolism (plasma) accounted for the differentiation of TASTPM and wild-type« less
Influence of Omega-3 Fatty Acid Status on the Way Rats Adapt to Chronic Restraint Stress
Hennebelle, Marie; Balasse, Laure; Latour, Alizée; Champeil-Potokar, Gaelle; Denis, Stéphanie; Lavialle, Monique; Gisquet-Verrier, Pascale; Denis, Isabelle; Vancassel, Sylvie
2012-01-01
Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days) on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF) activity, anxiety in the elevated-plus maze (EPM), the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test) and entries into the open arms (EPM). Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress. PMID:22860066
Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes
Morais, Tatiana P.; Coelho, David; Vaz, Sandra H.; Sebastião, Ana M.; Valente, Cláudia A.
2018-01-01
In central nervous system, glycine receptor (GlyR) is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T) that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM), a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM), as well as by nocodazole (1 μM), known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication. PMID:29386993
Chirackal Manavalan, Anil Paul; Kober, Alexandra; Metso, Jari; Lang, Ingrid; Becker, Tatjana; Hasslitzer, Karin; Zandl, Martina; Fanaee-Danesh, Elham; Pippal, Jyotsna Brijesh; Sachdev, Vinay; Kratky, Dagmar; Stefulj, Jasminka; Jauhiainen, Matti; Panzenboeck, Ute
2014-01-01
Phospholipid transfer protein (PLTP) is a key protein involved in biogenesis and remodeling of plasma HDL. Several neuroprotective properties have been ascribed to HDL. We reported earlier that liver X receptor (LXR) activation promotes cellular cholesterol efflux and formation of HDL-like particles in an established in vitro model of the blood-brain barrier (BBB) consisting of primary porcine brain capillary endothelial cells (pBCEC). Here, we report PLTP synthesis, regulation, and its key role in HDL metabolism at the BBB. We demonstrate that PLTP is highly expressed and secreted by pBCEC. In a polarized in vitro model mimicking the BBB, pBCEC secreted phospholipid-transfer active PLTP preferentially to the basolateral (“brain parenchymal”) compartment. PLTP expression levels and phospholipid transfer activity were enhanced (up to 2.5-fold) by LXR activation using 24(S)-hydroxycholesterol (a cerebral cholesterol metabolite) or TO901317 (a synthetic LXR agonist). TO901317 administration elevated PLTP activity in BCEC from C57/BL6 mice. Preincubation of HDL3 with human plasma-derived active PLTP resulted in the formation of smaller and larger HDL particles and enhanced the capacity of the generated HDL particles to remove cholesterol from pBCEC by up to 3-fold. Pre-β-HDL, detected by two-dimensional crossed immunoelectrophoresis, was generated from HDL3 in pBCEC-derived supernatants, and their generation was markedly enhanced (1.9-fold) upon LXR activation. Furthermore, RNA interference-mediated PLTP silencing (up to 75%) reduced both apoA-I-dependent (67%) and HDL3-dependent (30%) cholesterol efflux from pBCEC. Based on these findings, we propose that PLTP is actively involved in lipid transfer, cholesterol efflux, HDL genesis, and remodeling at the BBB. PMID:24369175
Vindas, Marco A; Sørensen, Christina; Johansen, Ida B; Folkedal, Ole; Höglund, Erik; Khan, Uniza W; Stien, Lars H; Kristiansen, Tore S; Braastad, Bjarne O; Øverli, Øyvind
2014-01-01
Comparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward') causes increased aggression in Atlantic salmon (Salmo salar). Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF) and dopamine receptor mRNA transcripts in the same paradigm. Groups of fish were initially conditioned to associate a flashing light with feeding. Subsequently, the expected food reward was delayed for 30 minutes during two out of three meals per day in the OER treatment, while the previously established routine was maintained in control groups. After 8 days there was no effect of OER on baseline brain stem serotonin (5-HT) or dopamine (DA) activity. Subsequent exposure to acute confinement stress led to increased plasma cortisol and elevated turnover of brain stem DA and 5-HT in all animals. The DA response was potentiated and DA receptor 1 (D1) mRNA abundance was reduced in the OER-exposed fish, indicating a sensitization of the DA system. In addition OER suppressed abundance of BDNF in the telencephalon of non-stressed fish. Regardless of OER treatment, a strong positive correlation between BDNF and D1 mRNA abundance was seen in non-stressed fish. This correlation was disrupted by acute stress, and replaced by a negative correlation between BDNF abundance and plasma cortisol concentration. These observations indicate a conserved link between DA, neurotrophin regulation, and corticosteroid-signaling pathways. The results also emphasize how fish models can be important tools in the study of neural plasticity and responsiveness to environmental unpredictability.
Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B
2018-01-01
Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.
2013-01-01
The diagnosis of autism spectrum disorder (ASD) during early childhood has a profound effect not only on young children but on their families. Aside from the physical and behavioural issues that need to be dealt with, there are significant emotional and financial costs associated with living with someone diagnosed with ASD. Understanding how autism occurs will assist in preparing families to deal with ASD, if not preventing or lessening its occurrence. Serotonin plays a vital role in the development of the brain during the prenatal and postnatal periods, yet very little is known about the serotonergic systems that affect children with ASD. This review seeks to provide an understanding of the biochemistry and physiological actions of serotonin and its termination of action through the serotonin reuptake transporter (SERT). Epidemiological studies investigating prenatal conditions that can increase the risk of ASD describe a number of factors which elevate plasma cortisol levels causing such symptoms during pregnancy such as hypertension, gestational diabetes and depression. Because cortisol plays an important role in driving dysregulation of serotonergic signalling through elevating SERT production in the developing brain, it is also necessary to investigate the physiological functions of cortisol, its action during gestation and metabolic syndromes. PMID:24103554
Kamada, Yumi; Masuda, Takashi; Tanaka, Shinya; Akiyama, Ayako; Nakamura, Takeshi; Hamazaki, Nobuaki; Okubo, Michihito; Kobayashi, Naoyuki; Ako, Junya
2017-08-03
Autonomic imbalance in hypertension induces excessive blood pressure (BP) elevation during exercise, thereby increasing left ventricular mass (LVM). Although muscle weakness enhances autonomic imbalance by stimulating muscle sympathetic activity during exercise, it is unclear whether muscle weakness is associated with an increase of LVM in patients with hypertension. This study aimed to investigate the relationships between muscle weakness, BP elevation during exercise, and LVM in these patients. Eighty-six hypertensive patients aged 69 ± 8 years with controlled resting BP (ie, < 140/90 mmHg) were recruited. Plasma brain natriuretic peptide (BNP), left ventricular mass index (LVMI), and knee extension muscle strength were measured. Changes in plasma noradrenaline (NORA) and brachial-ankle pulse wave velocity (ba-PWV) were assessed before and after an ergometer exercise test performed at moderate intensity (ΔNORA and ΔPWV, respectively). A difference between baseline and peak systolic BP during the exercise test was defined as BP elevation during exercise (ΔSBP). Relationships between muscle strength, ΔNORA, ΔPWV, ΔSBP, BNP, and LVMI were analyzed, and significant factors increasing LVM were identified using univariate and multivariate regression analyses. Muscle strength was negatively correlated with ΔNORA (r = -0.202, P = 0.048), ΔPWV (r = -0.328, P = 0.002), ΔSBP (r = -0.230, P = 0.033), BNP (r = -0.265, P = 0.014), and LVMI (r = -0.233, P = 0.031). LVMI was positively correlated with ΔPWV (r = 0.246, P = 0.023) and ΔSBP (r = 0.307, P = 0.004). Muscle strength was a significant independent factor associated with LVMI (β = -0.331, P = 0.010). Our findings suggest that muscle weakness is associated with an increase of LVM through excessive BP elevation during exercise in patients with hypertension.
Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy
Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.
2017-01-01
Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326
Laeger, T; Wirthgen, E; Piechotta, M; Metzger, F; Metges, C C; Kuhla, B; Hoeflich, A
2014-05-01
Hormones and metabolites act as satiety signals in the brain and play an important role in the control of feed intake (FI). These signals can reach the hypothalamus and brainstem, 2 major centers of FI regulation, via the blood stream or the cerebrospinal fluid (CSF). During the early lactation period of high-yielding dairy cows, the increase of FI is often insufficient. Recently, it has been demonstrated that insulin-like growth factors (IGF) may control FI. Thus, we asked in the present study if IGF-binding proteins (IGFBP) are regulated during the periparturient period and in response to feed restriction and therefore might affect FI as well. In addition, we specifically addressed conditional distribution of IGFBP in plasma and CSF. In one experiment, 10 multiparous German Holstein dairy cows were fed ad libitum and samples of CSF and plasma were obtained before morning feeding on d -20, -10, +1, +10, +20, and +40 relative to calving. In a second experiment, 7 cows in second mid-lactation were sampled for CSF and plasma after ad libitum feeding and again after feeding 50% of the previous ad libitum intake for 4 d. Intact IGFBP-2, IGFBP-3, and IGFBP-4 were detected in plasma by quantitative Western ligand blot analysis. In CSF, we were able to predominantly identify intact IGFBP-2 and a specific IGFBP-2 fragment containing detectable binding affinities for biotinylated IGF-II. Whereas plasma concentrations of IGFBP-2 and IGFBP-4 increased during the periparturient period, IGFBP-3 was unaffected over time. In CSF, concentrations of IGFBP-2, both intact and fragmented, were not affected during the periparturient period. Plasma IGF-I continuously decreased until calving but remained at a lower concentration in early lactation than in late pregnancy. Food restriction did not affect concentrations of IGF components present in plasma or CSF. We could show that the IGFBP profiles in plasma and CSF are clearly distinct and that changes in IGFBP in plasma do not simply correspond in the brain. We thus assume independent control of IGFBP distribution between plasma and CSF. Due to the known anorexic effect of IGF-I, elevated plasma concentrations of IGFBP-2 and IGFBP-4 during the postpartum period in conjunction with reduced plasma IGF-I concentrations may be interpreted as an endocrine response against negative energy balance in early lactation in dairy cows. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Li, H; Sun, J; Du, J; Wang, F; Fang, R; Yu, C; Xiong, J; Chen, W; Lu, Z; Liu, J
2018-05-01
Traumatic brain injury (TBI) is a common occurrence following gastrointestinal dysfunction. Recently, more and more attentions are being focused on gut microbiota in brain and behavior. Glucagon-like peptide-1 (GLP-1) is considered as a mediator that links the gut-brain axis. The aim of this study was to explore the neuroprotective effects of Clostridium butyricum (Cb) on brain damage in a mouse model of TBI. Male C57BL/6 mice were subjected to a model of TBI-induced by weight-drop impact head injury and were treated intragastrically with Cb. The cognitive deficits, brain water content, neuronal death, and blood-brain barrier (BBB) permeability were evaluated. The expression of tight junction (TJ) proteins, Bcl-2, Bax, GLP-1 receptor (GLP-1R), and phosphorylation of Akt (p-Akt) in the brain were also measured. Moreover, the intestinal barrier permeability, the expression of TJ protein and GLP-1, and IL-6 level in the intestine were detected. Cb treatment significantly improved neurological dysfunction, brain edema, neurodegeneration, and BBB impairment. Meanwhile, Cb treatment also significantly increased the expression of TJ proteins (occludin and zonula occluden-1), p-Akt and Bcl-2, but decreased expression of Bax. Moreover, Cb treatment exhibited more prominent effects on decreasing the levels of plasma d-lactate and colonic IL-6, upregulating expression of Occludin, and protecting intestinal barrier integrity. Furthermore, Cb-treated mice showed increased the secretion of intestinal GLP-1 and upregulated expression of cerebral GLP-1R. Our findings demonstrated the neuroprotective effect of Cb in TBI mice and the involved mechanisms were partially attributed to the elevating GLP-1 secretion through the gut-brain axis. © 2017 John Wiley & Sons Ltd.
Reale, Marcella; Di Nicola, Marta; Velluto, Lucia; D’Angelo, Chiara; Costantini, Erica; Lahiri, Debomoy K.; Kamal, Mohammad A.; Yu, Qian-sheng; Greig, Nigel H.
2016-01-01
Increasing evidence suggests that the early pathogenesis of Alzheimer’s disease (AD) is driven by elevated production and/or reduced clearance of amyloid-β peptide (Aβ), which is derived from the larger Aβ precursor protein (APP). Aβ aggregates to form neurotoxic soluble oligomers that trigger a cascade of events leading to neuronal dysfunction, neurodegeneration and, ultimately, clinical dementia. Inflammation, both within the brain and systemically, together with a deficiency in the brain neurotransmitter acetylcholine, which underpinned the development of anticholinesterases for the symptomatic treatment of AD, are invariable hallmarks of the disease. The inter-relation between Aβ, inflammation and cholinergic signaling is complex, with each feeding back onto the others to drive disease progression. To elucidate these interactions plasma samples and peripheral blood mononuclear cells (PBMCs) were evaluated from healthy control (HC) subjects and AD patients. Plasma levels of acetyl- (AChE) and butyrylcholinesterase (BuChE) as well as Aβ were significantly elevated in AD vs. HC subjects, and acetylcholine showed a trend towards reduced levels. Aβ challenge of the AD and HC PBMCs resulted in greater release of inflammatory cytokines interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) from AD vs. HC subjects, with IL-10 expression being similarly affected. THP-1 monocytic cells, a cell culture counterpart of PBMCs and brain microglial cells, responded similarly to Aβ as well as to phytohaemagglutinin (PHA) challenge, to allow preliminary analysis of the cellular and molecular pathways that underpin Aβ-induced changes in cytokine expression. In light of prior studies demonstrating that APP expression was regulated by specific cytokines and anticholinesterase drugs, the latter were evaluated on Aβ- and PHA-induced chemo-cytokine expression. Co-incubation with selective inhibitors, such as the acetylcholinesterase (AChE)-inhibitor (−)-phenserine and the butyrylcholinesterase (BuChE)-inhibitor (−)-cymserine analogues mitigated the rise in cytokine levels, and suggest that augmentation of the cholinergic anti-inflammatory pathway may prove valuable in AD. PMID:24359497
Xu, Ming; Liu, Xiaoxia; Mei, Guanghai; Zhang, Junjie; Wang, Weixing; Xu, Hongzhi
2018-05-09
Aberrant expression of angiogenic factors has been anecdotally documented in brain arteriovenous malformation (AVM) nidus vessels; however, no data is available on the effect of radiosurgery on the levels of angiogenic factors in AVM patients. We sought to determine the plasma contents of VEGF, TGF-β, Ang-2 and bFGF in 28 brain AVM patients at baseline and post radiosurgery and further analyzed the relationship between plasma contents of these angiogenic factors with clinicopathologic variables of these patients. We enrolled brain AVM patients who underwent Cyberknife radiosurgery at our hospital between January 2014 and December 2015. Brain AVM was confirmed by cerebral angiography and radiosurgery was performed with Cyberknife irradiation. Plasma contents of VEGF, TGF-β, Ang-2 and bFGF were analyzed using commercially available enzyme-linked immunoassay (ELISA) kits. The baseline plasma VEGF content was 222.63 pg/mL (range 43.25-431.25 pg/mL). At three months post surgery, there was a significant -34.29% decline in plasma VEGF content versus baseline (P = 0.000). Furthermore, the median baseline plasma VEGF levels were higher in brain AVM with a nidus volume ≥ 10 cm 3 ) than those with a nidus volume < 10 cm 3 [median(IQR) 293.5 (186.5,359.25) vs. 202 (59.75, 270.75) pg/mL, P = 0.057]. The baseline plasma TGF-β content was 556.17 pg/mL (range 44.44-1486.11 pg/mL) and there was a significant -27.47% decline in plasma TGF-β content at 3 months post radiosurgery versus baseline (P = 0.015). Moreover, the baseline plasma ANG-2 content was 214.27 pg/mL (range 77.14-453.76 pg/mL). There was an immediate and significant -12.47% decline in plasma ANG-2 content post surgery versus baseline (P = 0.002). At three months post surgery, the plasma ANG-2 content still remained significantly depressed versus baseline (P = 0.002). In addition, the baseline plasma bFGF content was 9.17 pg/mL (range 3.67-36.78 pg/mL). No significant difference in plasma bFGF content was observed immediately post surgery and 3 months post surgery versus baseline (P = 0.05). Radiosurgery for brain AVM patients significantly reduced the plasma levels of angiogenic factors. The plasma angiogenic factors may be candidate markers for aberrant agniogenesis of brain AVM and patient response to radiosurgery. Copyright © 2018 Elsevier Inc. All rights reserved.
Imafuku, Keisuke; Yoshino, Koji; Yamaguchi, Kei; Tsuboi, Satoshi; Ohara, Kuniaki; Hata, Hiroo
2017-01-01
Vemurafenib is an inhibitor of the BRAF mutation and has been approved by the Food and Drug Administration as a treatment option for patients with unresectable melanoma without brain metastasis. In the literature, vemurafenib has been reported to be also effective against brain metastasis. We encountered 3 cases with brain metastasis on vemurafenib therapy. In these cases, vemurafenib was clinically effective against metastatic lesions other than those in the brain. The brain lesions developed after the metastatic lesion had occurred. Therefore, we assume that the melanomas of the patients acquired resistance against vemurafenib. The brain metastases were treated with the cyberknife. Patients 1 and 2 without LDH elevation are still alive, but patient 3 with abnormal LDH elevation died despite the treatment. We need to carefully follow patients on vemurafenib therapy because brain metastasis can suddenly occur even if the metastatic lesion has decreased clinically. The therapeutic effect of vemurafenib against brain metastasis is poor in cases with LDH elevation.
Noda, Akihiro; Fushiki, Hiroshi; Murakami, Yoshihiro; Sasaki, Hiroshi; Miyoshi, Sosuke; Kakuta, Hirotoshi; Nishimura, Shintaro
2012-11-01
Telmisartan is a widely used, long-acting antihypertensive agent. Known to be a selective angiotensin II type 1 (AT(1)) receptor (AT(1)R) blocker (ARB), telmisartan acts as a partial agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and inhibits centrally mediated effects of angiotensin II in rats following peripheral administration, although the brain penetration of telmisartan remains unclear. We investigated the brain concentration and localization of telmisartan using (11)C-labeled telmisartan and positron emission tomography (PET) in conscious rhesus macaques. Three male rhesus macaques were bolus intravenously administered [(11)C]telmisartan either alone or as a mixture with unlabeled telmisartan (1mg/kg). Dynamic PET images were acquired for 95min following administration. Blood samples were collected for the analysis of plasma concentration and metabolites, and brain and plasma concentrations were calculated from detected radioactivity using the specific activity of the administered drug preparation, in which whole blood radioactivity was used for the correction of intravascular blood radioactivity in brain. Telmisartan penetrated into the brain little but enough to block AT(1)R and showed a consistently increasing brain/plasma ratio within the PET scanning period, suggesting slow clearance of the compound from the brain compared to the plasma clearance. Brain/plasma ratios at 30, 60, and 90min were 0.06, 0.13, and 0.18, respectively. No marked localization according to the AT(1)R distribution was noted over the entire brain, even on tracer alone dosing. Telmisartan penetrated into the brain enough to block AT(1)R and showed a slow clearance from the brain in conscious rhesus macaques, supporting the long-acting and central responses of telmisartan as a unique property among ARBs. Copyright © 2012 Elsevier Inc. All rights reserved.
Methadone patients exhibit increased startle and cortisol response after intravenous yohimbine.
Stine, S M; Grillon, C G; Morgan, C A; Kosten, T R; Charney, D S; Krystal, J H
2001-03-01
Brain noradrenergic systems have been shown to be altered in opioid dependence and to mediate aspects of opioid withdrawal. Pre-clinical and clinical studies by others have shown that yohimbine, which increases noradrenergic activity, also increases both baseline and fear enhancement of the magnitude of the acoustic startle response (ASR). In a separate report from this experiment, it was shown that yohimbine produced opioid withdrawal-like symptoms, including anxiety, in clinically stable methadone-maintained patients and also produced elevations in the norepinepherine (NE) metabolite, 3-methoxy-4 hydroxyphenethyleneglycol (MHPG), and cortisol serum levels. The current study reports the effects of intravenous yohimbine hydrochloride, 0.4 mg/kg versus saline (double-blind), on ASR magnitude, plasma MHPG, and cortisol levels in eight methadone-maintained patients and 13 healthy subjects in a double-blind fashion. Yohimbine increased startle magnitude in both groups. There was no basal (placebo day) difference between the startle response of the two groups, but methadone patients had a larger startle magnitude increase in response to yohimbine than healthy controls. Methadone-maintained patients had lower baseline plasma levels of MHPG and similar baseline plasma cortisol levels compared with normal subjects. Yohimbine caused significant elevation in cortisol and MHPG in both groups. Methadone-maintained subjects had higher elevations in cortisol levels and MHPG (methadone main effect) levels in response to yohimbine. However, when MHPG levels were corrected for baseline differences by analysis of covariance (ANCOVA), the yohimbine effect, but not the methadone effect remained statistically significant. These results are consistent with the previous report and support the hypothesis that abnormalities of the hypothalamic-pituitary-adrenal (HPA) axis and of noradrenergic mechanisms of stress response persist in opioid-agonist maintenance. The ASR effect extends the previous report and provides an additional objective measure for perturbation of noradrenergic and stress responses in these patients.
Gary, Charlotte; Hérard, Anne-Sophie; Hanss, Zoé; Dhenain, Marc
2018-01-01
Accumulation of amyloid-β (Aβ) peptides in the brain is a critical early event in the pathogenesis of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. There is increasing interest in measuring levels of plasma Aβ since this could help in diagnosis of brain pathology. However, the value of plasma Aβ in such a diagnosis is still controversial and factors modulating its levels are still poorly understood. The mouse lemur ( Microcebus murinus ) is a primate model of cerebral aging which can also present with amyloid plaques and whose Aβ is highly homologous to humans'. In an attempt to characterize this primate model and to evaluate the potential of plasma Aβ as a biomarker for brain alterations, we measured plasma Aβ 40 concentration in 21 animals aged from 5 to 9.5 years. We observed an age-related increase in plasma Aβ 40 levels. We then evaluated the relationships between plasma Aβ 40 levels and cerebral atrophy in these mouse lemurs. Voxel-based analysis of cerebral MR images (adjusted for the age/sex/brain size of the animals), showed that low Aβ 40 levels are associated with atrophy of several white matter and subcortical brain regions. These results suggest that low Aβ 40 levels in middle-aged/old animals are associated with brain deterioration. One special feature of mouse lemurs is that their metabolic and physiological parameters follow seasonal changes strictly controlled by illumination. We evaluated seasonal-related variations of plasma Aβ 40 levels and found a strong effect, with higher plasma Aβ 40 concentrations in winter conditions compared to summer. This question of seasonal modulation of Aβ plasma levels should be addressed in clinical studies. We also focused on the amplitude of the difference between plasma Aβ 40 levels during the two seasons and found that this amplitude increases with age. Possible mechanisms leading to these seasonal changes are discussed.
Volkova, S Iu
2008-01-01
During 6 months therapy initial and final N-terminal pro-B-type natriuretic peptide. TNF-alpha, and IL-6 level in blood plasma were determined in 61 ischemic CHI cases with left ventricular ejection fraction below 40%. The patients were followed up for next 24.7 +/- 11.5 months. In period of 6 months following up associated with performed therapy 67.9% of patients showed a positive clinical effect, combined with a decrease of plasma pools of neurohumoral mediators (NM) in 51.4%-71.4% of cases (in dependence on studied NM). There were selected the 4 variants of combinations of clinical efficacy and NM dynamics which failed to coincide in a half of observations for NT-pro BNP and IL-6, and in a third for TNF-alpha. Multivariate analysis of conformities showed, that a decrease of all NM during therapy significantly relates with patient surviving. In a group with a decrease of plasma NT-pro BNP level associated with therapy during consequent following up no lethal outcome was recorded, compared to 16% in a group with a rise in NT-pro BNP (a = 0.2). Lethal outcome was fixed in 4.2% in a group with a decrease in TNF-alpha, compared to 33.3% in a group with elevation in TNF-alpha (a = 0.016); and in 5% in a group with a fall in IL-6, compared to 23.1% in a group with an elevation of IL-6 (a = 0.04).
Chronic treatment with fibrates elevates superoxide dismutase in adult mouse brain microvessels
Wang, Guangming; Liu, Xiaowei; Guo, Qingmin; Namura, Shobu
2010-01-01
Fibrates are activators of peroxisome proliferator-activated receptor (PPAR) α. Pretreatment with fibrates has been shown to protect brain against ischemia in mice. We hypothesized that fibrates elevate superoxide dismutase (SOD) levels in the brain microvessels (BMV). BMV were isolated from male C57BL/6 and PPARα null mice that had been treated with fenofibrate or gemfibrozil for 7 days. To examine the effect of discontinuation of fenofibrate, another animal group treated with fenofibrate was examined on post-discontinuation day 3 (D-3). To examine whether SOD elevations attenuate oxidative stress in the ischemic brain, separate animals treated with fenofibrate for 7 days were subjected to 60 minutes focal ischemia on post-discontinuation day 0 (D-0) or D-3. Fenofibrate (30 mg/kg) increased mRNA levels of all three isoforms of SOD and activity level in BMV on D-0 but these effects were not detected on D-3. The elevations were not detected in PPARα null mice. SOD levels were also elevated by gemfibrozil (30 mg/kg). Fenofibrate significantly reduced superoxide production and protein oxidation in the ischemic brain at 30 minutes after reperfusion. Fenofibrate reduced infarct size measured at 24 hours after reperfusion on D-0; however, the infarct reduction was not seen when ischemia was induced on D-3. These findings suggest that fibrates elevate SOD in BMV through PPARα, which contributes to the infarct reduction, at least in part. Further studies are needed to establish the link between the SOD elevations and the brain protection by fibrates against ischemia. PMID:20813100
Bond, P A; Brooks, B A; Judd, A
1975-01-01
1 The tissue solubilizer Soluene-100 provides an efficient and easy means of preparing small amounts of rat tissue for cation analysis. 2 Administration of lithium ions to rats for two days to 42 days by the addition of lithium chloride to the diet at a concentration of 30 mmol/kg dry weight results in (a) the uniform distribution of lithium throughout the brain at a concentration comparable to that found in plasma; (b) decrease in the brain sodium concentration: (c) a decrease in brain magnesium concentration and an increase in plasma magnesium concentration; (d)no change in brain water content. 3 The inclusion of LiCl in the diet at a concentration of 30 mmol/kg dry food gives consistent and predictable plasma and brain levels of lithium in the rat without the occurrence of serious side effects over periods of up to 42 days. PMID:1148484
Woźniak, A; Drewa, G; Woźniak, B; Schachtschabel, D O
2004-06-01
The activity of antioxidant enzymes and the concentration of the lipid peroxidation product malondialdehyde (MDA) as indicator of oxidative damage were determined in selected tissues of healthy mice and transplanted B16 melanoma-bearing mice with increasing age. A total of 60 male mice were divided into 6 groups. Groups 1, 2 and 3 consisted of tumor-free, healthy mice aged 1, 9 and 16 months, respectively (average life span: 2 years). Groups 4, 5 and 6 consisted of mice of the same age as the healthy mice, but given intraperitoneally 10(6) cells of B16 melanoma for 2 weeks. An increase in the concentration of MDA was found in all the studied tissues (brain, liver, lungs, erythrocytes) and blood plasma of 16-month old healthy mice compared with the younger ones. The activity of superoxide dismutase (SOD) and catalase (CAT) was elevated in the brain and the activity of CAT and glutathione peroxidase (GPx) in the liver of aged healthy mice. The transplantation of melanoma caused an increase of the concentration of MDA and of the activity of all studied enzymes in all tissues. This elevation was most pronounced in the youngest mice group 4 and was higher than in the oldest healthy group 3. Thus, these early changes of the "(anti-)oxidative status" in the investigated tissues caused by the tumor development have similarities with age-associated alterations of healthy mice, especially in regard to MDA in all tissues or SOD and CAT in brain.
Sex-role reversal is reflected in the brain of African black coucals (Centropus grillii).
Voigt, Cornelia; Goymann, Wolfgang
2007-10-01
In most bird species males compete over access to females and have elevated circulating androgen levels when they establish and defend a breeding territory or guard a mate. Testosterone is involved in the regulation of territorial aggression and sexual display in males. In few bird species the traditional sex-roles are reversed and females are highly aggressive and compete over access to males. Such species represent excellent models to study the hormonal modulation of aggressive behavior in females. Plasma sex steroid concentrations in sex-role reversed species follow the patterns of birds with "traditional" sex-roles. The neural mechanisms modulating endocrine secretion and hormone-behavior interactions in sex-role reversed birds are currently unknown. We investigated the sex differences in the mRNA expression of androgen receptors, estrogen receptor alpha, and aromatase in two brain nuclei involved in reproductive and aggressive behavior in the black coucal, the nucleus taeniae and the bed nucleus of the stria terminalis. In the bed nucleus there were no sex differences in the receptor or aromatase expression. In the nucleus taeniae, however, we show for the first time, that females have a higher mRNA expression of androgen receptors than males. These results suggest that the expression of agonistic and courtship behavior in females does not depend on elevated blood hormone levels, but may be regulated via increased steroid hormone sensitivity in particular target areas in the brain. Hence, aggression in females and males may indeed be modulated by the same hormones, but regulated at different levels of the neuroendocrine cascade. 2007 Wiley Periodicals, Inc.
Ferreira, Carlos R; Devaney, Joseph M; Hofherr, Sean E; Pollard, Laura M; Cusmano-Ozog, Kristina
2017-02-01
We describe a patient with failure to thrive, hepatomegaly, liver dysfunction, and elevation of multiple plasma lysosomal enzyme activities mimicking mucolipidosis II or III, in whom a diagnosis of hereditary fructose intolerance (HFI) was ultimately obtained. She presented before introduction of solid foods, given her consumption of a fructose-containing infant formula. We present the most extensive panel of lysosomal enzyme activities reported to date in a patient with HFI, and propose that multiple enzyme elevations in plasma, especially when in conjunction with a normal plasma α-mannosidase activity, should elicit a differential diagnosis of HFI. We also performed a review of the literature on the different etiologies of elevated lysosomal enzyme activities in serum or plasma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Albumin elicits calcium signals from astrocytes in brain slices from neonatal rat cortex
Nadal, Angel; Sul, Jai-Yoon; Valdeolmillos, Miguel; McNaughton, Peter A
1998-01-01
Albumin causes calcium signals and mitosis in cultured astrocytes, but it has not been established whether astrocytes in intact brain also respond to albumin. The effect of albumin on intracellular calcium concentration ([Ca2+]i) in single cells was therefore studied in acutely isolated cortical brain slices from the neonatal rat.Physiological concentrations of albumin from plasma and from serum produced an increase in [Ca2+]i in a subpopulation of cortical cells. Trains of transient elevations in [Ca2+]i (Ca2+ spikes) were seen in 41 % of these cells.The cells responding to albumin are identified as astrocytes because the neurone-specific agonist NMDA caused much smaller and slower responses in these cells. On the other hand NMDA-responsive cells, which are probably neurones, exhibited only small and slow responses to albumin. The residual responses of astrocytes to NMDA and neurones to albumin are likely to be due to crosstalk with adjacent neurones and astrocytes, respectively.Methanol extraction of albumin removes a polar lipid and abolishes the ability of albumin to increase intracellular calcium.Astrocyte calcium signalling caused by albumin may have important physiological consequences when the blood-brain barrier breaks down and allows albumin to enter the CNS. PMID:9596793
Melnyk-Lamont, Nataliya; Best, Carol; Gesto, Manuel; Vijayan, Mathilakath M
2014-11-18
Venlafaxine, a serotonin-norepinephrine reuptake inhibitor, is a widely prescribed antidepressant drug routinely detected in the aquatic environment. However, little is known about its impact on the physiology of nontarget organisms. We tested the hypothesis that venlafaxine perturbs brain monoamine levels and disrupts molecular responses essential for stress coping and feeding activity in fish. Rainbow trout (Oncorhynchus mykiss) were exposed to waterborne venlafaxine (0.2 and 1.0 μg/L) for 7 days. This treatment elevated norepinephrine, serotonin, and dopamine levels in the brain in a region-specific manner. Venlafaxine also increased the transcript levels of genes involved in stress and appetite regulation, including corticotropin releasing factor, pro-opiomelanocortin B, and glucose transporter type 2 in distinct brain regions of trout. The drug treatment reduced the total feed consumed per day, but did not affect the feeding behavior of the dominant and subordinate fish. However, the subordinate fish from the venlafaxine-exposed group had significantly higher plasma cortisol levels compared to the subordinate fish in the control group. Collectively, our results demonstrate that venlafaxine, at environmentally realistic levels, is a neuroendocrine disruptor, impacting the stress and feeding responses in rainbow trout. We propose the midbrain region as a key target for venlafaxine impact and the mode of action involves abnormal monoamine content in trout.
Plasma Levels of Glucose and Insulin in Patients with Brain Tumors
ALEXANDRU, OANA; ENE, L.; PURCARU, OANA STEFANA; TACHE, DANIELA ELISE; POPESCU, ALISA; NEAMTU, OANA MARIA; TATARANU, LIGIA GABRIELA; GEORGESCU, ADA MARIA; TUDORICA, VALERICA; ZAHARIA, CORNELIA; DRICU, ANICA
2014-01-01
In the last years there were many authors that suggest the existence of an association between different components of metabolic syndrome and various cancers. Two important components of metabolic syndrome are hyperglycemia and hyperinsulinemia. Both of them had already been linked with the increased risk of pancreatic, breast, endometrial or prostate cancer. However the correlation of the level of the glucose and insulin with various types and grades of brain tumors remains unclear. In this article we have analysed the values of plasma glucose and insulin in 267 patients, consecutively diagnosed with various types of brain tumors. Our results showed no correlation between the glycemia and brain tumor types or grades. High plasma levels of insulin were found in brain metastasis and astrocytomas while the other types of brain tumors (meningiomas and glioblastomas) had lower levels of the peptide. The levels of insulin were also higher in brain metastasis and grade 3 brain tumors when compared with grade 1, grade 2 and grade 4 brain tumors. PMID:24791202
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacobini, E.; Boyer, A.; Somani, S.M.
1986-03-05
Time course of /sup 3/H-physostigmine (Phy) concentration and cholinesterase (ChE) activity in plasma and tissues was studied in rats pretreated with Phy and then soman. Rats were dosed with Phy (100 ..mu..g/kg, i.v.), 5 or 15 min prior to soman (105 ..mu..g/kg, 1.5 LD/sub 50/, s.c.) treatment and were sacrificed at various times; Phys conc. and ChE activity were determined. BuChE activity in plasma was 5% of control from 7-30 min after Phy i.v. pretreatment and soman or soman alone treatment. Plasma Phy conc. steadily declined (32.6 ng/ml at 7 min) to 15 ng/ml at 30 min. ChE activity inmore » muscle was 60-50% of control for Phy pretreated but soman alone gave 85-72% activity from 2-30 min. Brain ChE activity was about 5% of control within 2 min after soman treatment; however, with Phy pretreatment, the activity was about 52% at 7 min, 40% at 22 min, which recovered to 45% of control at 35 min, indicating that Phy protected brain ChE. Brain Phy conc. steadily declined (58.6 ng/g at 7 min) to 11.7 ng/g at 30 min. However, pretreatment of rat with a higher dose of Phy and then soman showed BuChE in plasma and ChE in brain and muscle to be about 25, 35 and 51%, in comparison to about 5% in plasma and brain with soman alone treatment, indicating higher protection of ChE enzyme with higher conc. of Phy in plasma and brain.« less
Acetate transport and utilization in the rat brain.
Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles
2009-05-01
Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.
Burgos, Jonathan R; Iresjö, Britt-Marie; Smedh, Ulrika
2016-04-01
The aim of the present study was to explore central and peripheral host responses to an anorexia-cachexia producing tumor. We focused on neuroendocrine anorexigenic signals in the hypothalamus, brainstem, pituitary and from the tumor per se. Expression of mRNA for corticotropin-releasing hormone (CRH), cocaine- and amphetamine-regulated transcript (CART), nesfatin-1, thyrotropin (TSH) and the TSH receptor were explored. In addition, we examined changes in plasma TSH, CART peptides (CARTp) and serum amyloid P component (SAP). C57BL/6 mice were implanted with MCG101 tumors or sham-treated. A sham-implanted, pair‑fed (PF) group was included to delineate between primary tumor and secondary effects from reduced feeding. Food intake and body weight were measured daily. mRNA levels from microdissected mouse brain samples were assayed using qPCR, and plasma levels were determined using ELISA. MCG101 tumors expectedly induced anorexia and loss of body weight. Tumor-bearing (TB) mice exhibited an increase in nesfatin-1 mRNA as well as a decrease in CART mRNA in the paraventricular area (PVN). The CART mRNA response was secondary to reduced caloric intake whereas nesfatin-1 mRNA appeared to be tumor-specifically induced. In the pituitary, CART and TSH mRNA were upregulated in the TB and PF animals compared to the freely fed controls. Plasma levels for CARTp were significantly elevated in TB but not PF mice whereas levels of TSH were unaffected. The plasma CARTp response was correlated to the degree of inflammation represented by SAP. The increase in nesfatin-1 mRNA in the PVN highlights nesfatin-1 as a plausible candidate for causing tumor-induced anorexia. CART mRNA expression in the PVN is likely an adaptation to reduced caloric intake secondary to a cancer anorexia-cachexia syndrome (CACS)‑inducing tumor. The MCG101 tumor did not express CART mRNA, thus the elevation of plasma CARTp is host derived and likely driven by inflammation.
Brain-Targeted (Pro)Renin Receptor Knockdown attenuates Angiotensin II-Dependent Hypertension
Li, Wencheng; Peng, Hua; Cao, Theresa; Sato, Ryosuke; McDaniels, Sarah. J.; Kobori, Hiroyuki; Navar, L. Gabriel; Feng, Yumei
2012-01-01
The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor shRNA was used to knockdown (pro)renin receptor expression in the brain of non-transgenic normotensive and human renin-angiotensinogen double transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor and vasopressin mRNA levels. Plasma vasopressin levels were determined by Enzyme-Linked Immuno Sorbent Assay. Double transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor shRNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared to the control virus treatment in double transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II-dependent hypertension and is associated with a decrease insympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with down-regulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice. PMID:22526255
Boerrigter, Danny; Weickert, Thomas W; Lenroot, Rhoshel; O'Donnell, Maryanne; Galletly, Cherrie; Liu, Dennis; Burgess, Martin; Cadiz, Roxanne; Jacomb, Isabella; Catts, Vibeke S; Fillman, Stu G; Weickert, Cynthia Shannon
2017-09-18
Increases in pro-inflammatory cytokines are found in the brain and blood of people with schizophrenia. However, increased cytokines are not evident in all people with schizophrenia, but are found in a subset. The cytokine changes that best define this subset, termed the "elevated inflammatory biotype", are still being identified. Using quantitative RT-PCR, we measured five cytokine mRNAs (IL-1β, IL-2 IL-6, IL-8 and IL-18) from peripheral blood of healthy controls and of people with schizophrenia or schizoaffective disorder (n = 165). We used a cluster analysis of the transcript levels to define those with low and those with elevated levels of cytokine expression. From the same cohort, eight cytokine proteins (IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12, IFNγ and TNFα) were measured in serum and plasma using a Luminex Magpix-based assay. We compared peripheral mRNA and protein levels across diagnostic groups and between those with low and elevated levels of cytokine expression according to our transcription-based cluster analysis. We found an overall decrease in the anti-inflammatory IL-2 mRNA (p = 0.006) and an increase in three serum cytokines, IL-6 (p = 0.010), IL-8 (p = 0.024) and TNFα (p < 0.001) in people with schizophrenia compared to healthy controls. A greater percentage of people with schizophrenia (48%) were categorised into the elevated inflammatory biotype compared to healthy controls (33%). The magnitude of increase in IL-1β, IL-6, IL-8 and IL-10 mRNAs in people in the elevated inflammation biotype ranged from 100 to 220% of those in the non-elevated inflammatory biotype and was comparable between control and schizophrenia groups. Blood cytokine protein levels did not correlate with cytokine mRNA levels, and plasma levels of only two cytokines distinguished the elevated and low inflammatory biotypes, with IL-1β significantly increased in the elevated cytokine control group and IL-8 significantly increased in the elevated cytokine schizophrenia group. Our results confirm that individuals with schizophrenia are more likely to have elevated levels of inflammation compared to controls. We suggest that efforts to define inflammatory status based on peripheral measures need to consider both mRNA and protein measures as each have distinct advantages and disadvantages and can yield different results.
Wood, S M; Jung, R T; Webster, J D; Ghatei, M A; Adrian, T E; Yanaihara, N; Yanaihara, C; Bloom, S R
1983-10-01
Gastrin-releasing peptide, a newly isolated mammalian peptide similar in its structure and actions to the amphibian peptide, bombesin, has recently been localized to nerves in the brain, gut and pancreas. The present study investigates its effects on gut and pancreatic peptides in man. Intravenous infusion of 0.7 and 2.9 pmol min-1 kg-1 produced significant elevation of plasma gastrin, cholecystokinin-like immunoreactivity and neurotensin. It was found also to potentiate glucose-dependent insulin secretion. Its specific location in nerve fibres in the proximal gut and pancreas and its selective effect on gastroenteropancreatic peptides may favour its role as a physiological regulatory neuropeptide.
Lundblad, Linda C.; Fatouleh, Rania H.; McKenzie, David K.; Macefield, Vaughan G.
2015-01-01
Obstructive sleep apnea (OSA) is associated with significantly elevated muscle sympathetic nerve activity (MSNA), leading to hypertension and increased cardiovascular morbidity. Although little is known about the mechanisms responsible for the sympathoexcitation, we have recently shown that the elevated MSNA in OSA is associated with altered neural processing in various brain stem sites, including the dorsolateral pons, rostral ventrolateral medulla, medullary raphe, and midbrain. Given the risk associated with elevated MSNA, we aimed to determine if treatment of OSA with continuous positive airway pressure (CPAP) would reduce the elevated MSNA and reverse the brain stem functional changes associated with the elevated MSNA. We performed concurrent recordings of MSNA and blood oxygen level-dependent (BOLD) signal intensity of the brain stem, using high-resolution functional magnetic resonance imaging, in 15 controls and 13 subjects with OSA, before and after 6 mo CPAP treatment. As expected, 6 mo of CPAP treatment significantly reduced MSNA in subjects with OSA, from 54 ± 4 to 23 ± 3 bursts/min and from 77 ± 7 to 36 ± 3 bursts/100 heart beats. Importantly, we found that MSNA-coupled changes in BOLD signal intensity within the dorsolateral pons, medullary raphe, and rostral ventrolateral medulla returned to control levels. That is, CPAP treatment completely reversed brain stem functional changes associated with elevated MSNA in untreated OSA subjects. These data highlight the effectiveness of CPAP treatment in reducing one of the most significant health issues associated with OSA, that is, elevated MSNA and its associated elevated morbidity. PMID:25995345
Lundblad, Linda C; Fatouleh, Rania H; McKenzie, David K; Macefield, Vaughan G; Henderson, Luke A
2015-08-01
Obstructive sleep apnea (OSA) is associated with significantly elevated muscle sympathetic nerve activity (MSNA), leading to hypertension and increased cardiovascular morbidity. Although little is known about the mechanisms responsible for the sympathoexcitation, we have recently shown that the elevated MSNA in OSA is associated with altered neural processing in various brain stem sites, including the dorsolateral pons, rostral ventrolateral medulla, medullary raphe, and midbrain. Given the risk associated with elevated MSNA, we aimed to determine if treatment of OSA with continuous positive airway pressure (CPAP) would reduce the elevated MSNA and reverse the brain stem functional changes associated with the elevated MSNA. We performed concurrent recordings of MSNA and blood oxygen level-dependent (BOLD) signal intensity of the brain stem, using high-resolution functional magnetic resonance imaging, in 15 controls and 13 subjects with OSA, before and after 6 mo CPAP treatment. As expected, 6 mo of CPAP treatment significantly reduced MSNA in subjects with OSA, from 54 ± 4 to 23 ± 3 bursts/min and from 77 ± 7 to 36 ± 3 bursts/100 heart beats. Importantly, we found that MSNA-coupled changes in BOLD signal intensity within the dorsolateral pons, medullary raphe, and rostral ventrolateral medulla returned to control levels. That is, CPAP treatment completely reversed brain stem functional changes associated with elevated MSNA in untreated OSA subjects. These data highlight the effectiveness of CPAP treatment in reducing one of the most significant health issues associated with OSA, that is, elevated MSNA and its associated elevated morbidity. Copyright © 2015 the American Physiological Society.
NKTR-102 Efficacy versus irinotecan in a mouse model of brain metastases of breast cancer.
Adkins, Chris E; Nounou, Mohamed I; Hye, Tanvirul; Mohammad, Afroz S; Terrell-Hall, Tori; Mohan, Neel K; Eldon, Michael A; Hoch, Ute; Lockman, Paul R
2015-10-13
Brain metastases are an increasing problem in women with invasive breast cancer. Strategies designed to treat brain metastases of breast cancer, particularly chemotherapeutics such as irinotecan, demonstrate limited efficacy. Conventional irinotecan distributes poorly to brain metastases; therefore, NKTR-102, a PEGylated irinotecan conjugate should enhance irinotecan and its active metabolite SN38 exposure in brain metastases leading to brain tumor cytotoxicity. Female nude mice were intracranially or intracardially implanted with human brain seeking breast cancer cells (MDA-MB-231Br) and dosed with irinotecan or NKTR-102 to determine plasma and tumor pharmacokinetics of irinotecan and SN38. Tumor burden and survival were evaluated in mice treated with vehicle, irinotecan (50 mg/kg), or NKTR-102 low and high doses (10 mg/kg, 50 mg/kg respectively). NKTR-102 penetrates the blood-tumor barrier and distributes to brain metastases. NKTR-102 increased and prolonged SN38 exposure (>20 ng/g for 168 h) versus conventional irinotecan (>1 ng/g for 4 h). Treatment with NKTR-102 extended survival time (from 35 days to 74 days) and increased overall survival for NKTR-102 low dose (30 % mice) and NKTR-102 high dose (50 % mice). Tumor burden decreased (37 % with 10 mg/kg NKTR-102 and 96 % with 50 mg/kg) and lesion sizes decreased (33 % with 10 mg/kg NKTR-102 and 83 % with 50 mg/kg NKTR-102) compared to conventional irinotecan treated animals. Elevated and prolonged tumor SN38 exposure after NKTR-102 administration appears responsible for increased survival in this model of breast cancer brain metastasis. Further, SN38 concentrations observed in this study are clinically achieved with 145 mg/m(2) NKTR-102, such as those used in the BEACON trial, underlining translational relevance of these results.
Hampton, Caryn; Rosa, Raymond; Szeto, Daphne; Forrest, Gail; Campbell, Barry; Kennan, Richard; Wang, Shubing; Huang, Chin-Hu; Gichuru, Loise; Ping, Xiaoli; Shen, Xiaolan; Small, Kersten; Madwed, Jeffrey; Lynch, Joseph J
2017-01-01
Introduction: Despite the widespread use of the mouse transverse aortic constriction heart failure model, there are no reports on the characterization of the standard-of-care agent carvedilol in this model. Methods: Left ventricular pressure overload was produced in mice by transverse aortic constriction between the innominate and left common carotid arteries. Carvedilol was administered at multiple dose levels (3, 10 and 30 mg/kg/day per os; yielding end-study mean plasma concentrations of 0.002, 0.015 and 0.044 µM, respectively) in a therapeutic design protocol with treatment initiated after the manifestation of left ventricular remodeling at 3 weeks post transverse aortic constriction and continued for 10 weeks. Results: Carvedilol treatment in transverse aortic constriction mice significantly decreased heart rate and left ventricular dP/dt (max) at all dose levels consistent with β-adrenoceptor blockade. The middle dose of carvedilol significantly decreased left ventricular weight, whereas the higher dose decreased total heart, left and right ventricular weight and wet lung weight compared to untreated transverse aortic constriction mice. The higher dose of carvedilol significantly increased cardiac performance as measured by ejection fraction and fractional shortening and decreased left ventricular end systolic volume consistent with the beneficial effect on cardiac function. End-study plasma sST-2 and Gal-3 levels did not differ among sham, transverse aortic constriction control and transverse aortic constriction carvedilol groups. Plasma brain natriuretic peptide concentrations were elevated significantly in transverse aortic constriction control animals (~150%) compared to shams in association with changes in ejection fraction and heart weight and tended to decrease (~30%, p = 0.10–0.12) with the mid- and high-dose carvedilol treatment. Conclusion: A comparison of carvedilol hemodynamic and structural effects in the mouse transverse aortic constriction model versus clinical use indicates a strong agreement in effect profiles preclinical versus clinical, providing important translational validation for this widely used animal model. The present plasma brain natriuretic peptide biomarker findings support the measurement of plasma natriuretic peptides in the mouse transverse aortic constriction model to extend the translational utility of the model. PMID:28491305
Soybean greatly reduces valproic acid plasma concentrations: A food–drug interaction study
Marahatta, Anu; Bhandary, Bidur; Jeong, Seul-Ki; Kim, Hyung-Ryong; Chae, Han-Jung
2014-01-01
The aim of this study was to investigate the effects of soy on the pharmacokinetics and pharmacodynamics of valproic acid (VPA). In a preclinical study, rats were pretreated with two different amounts of soy extract for five days (150 mg/kg and 500 mg/kg), which resulted in decreases of 57% and 65% in the Cmax of VPA, respectively. AUC of VPA decreased to 83% and 70% in the soy pretreatment groups. Interestingly, the excretion rate of VPA glucuronide (VPAG) was higher in the soy-fed groups. Levels of UDP-glucuronosyltransferase (UGT) UGT1A3, UGT1A6, UGT2B7 and UGT2B15 were elevated in the soy-treated group, and GABA concentrations were elevated in the brain after VPA administration. However, this was less pronounced in soy extract pretreated group than for the untreated group. This is the first study to report the effects of soy pretreatment on the pharmacokinetics and pharmacodynamics of VPA in rodents. PMID:24618639
Soybean greatly reduces valproic acid plasma concentrations: a food-drug interaction study.
Marahatta, Anu; Bhandary, Bidur; Jeong, Seul-Ki; Kim, Hyung-Ryong; Chae, Han-Jung
2014-03-12
The aim of this study was to investigate the effects of soy on the pharmacokinetics and pharmacodynamics of valproic acid (VPA). In a preclinical study, rats were pretreated with two different amounts of soy extract for five days (150 mg/kg and 500 mg/kg), which resulted in decreases of 57% and 65% in the Cmax of VPA, respectively. AUC of VPA decreased to 83% and 70% in the soy pretreatment groups. Interestingly, the excretion rate of VPA glucuronide (VPAG) was higher in the soy-fed groups. Levels of UDP-glucuronosyltransferase (UGT) UGT1A3, UGT1A6, UGT2B7 and UGT2B15 were elevated in the soy-treated group, and GABA concentrations were elevated in the brain after VPA administration. However, this was less pronounced in soy extract pretreated group than for the untreated group. This is the first study to report the effects of soy pretreatment on the pharmacokinetics and pharmacodynamics of VPA in rodents.
Gouweleeuw, L; Naudé, P J W; Rots, M; DeJongste, M J L; Eisel, U L M; Schoemaker, R G
2015-05-01
Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Gonçalves, David; Teles, Magda; Alpedrinha, João; Oliveira, Rui F
2008-11-01
In the peacock blenny Salaria pavo large males with well-developed secondary sexual characters establish nests and attract females while small "sneaker" males mimic female sexual displays in order to approach the nests of larger males and parasitically fertilize eggs. These alternative reproductive tactics are sequential, as sneakers irreversibly switch into nesting males. This transition involves major morphologic and behavioral changes and is likely to be mediated by hormones. This study focuses on the role of aromatase, an enzyme that catalyses the conversion of androgens into estrogens, in the regulation of male sexual polymorphism in S. pavo. For this, sex steroid plasma levels and aromatase activity (AA) in gonads, whole brain and brain macroareas were determined in sneakers, transitional males (i.e. sneakers undergoing the transition into nesting males), nesting males and females collected in the field. AA was much higher in ovarian tissue than in testicular tissue and accordingly circulating estradiol levels were highest in females. This supports the view that elevated AA and estradiol levels are associated with the development of a functional ovary. Transitional males are in a non-reproductive phase and had underdeveloped testes when compared with sneakers and nesting males. Testicular AA was approximately 10 times higher in transitional males when compared with sneakers and nesting males, suggesting high AA has a suppressive effect on testicular development. Nesting males had significantly higher plasma levels of both testosterone (T) and 11-ketotestosterone when compared with the other male morphs and previous studies demonstrated that these androgens suppress female-like displays in sneakers. In the brain, AA was highest in macroareas presumably containing hypothalamic nuclei traditionally associated with the regulation of reproductive behaviors. Overall, females presented the highest levels of brain AA. In male morphs AA increased from sneakers, to transitional males, to nesting males in all brain macroareas. These results suggest that the transition into the nesting male tactic is accompanied both by an increase in testicular androgen production and by a higher conversion of androgens into estrogens in the brain. The increase in androgen production is likely to mediate the development of male secondary sexual characters while the increase in brain AA may be related to the behavioral changes associated with tactic transition.
Swaminathan, Suresh Kumar; Ahlschwede, Kristen M; Sarma, Vidur; Curran, Geoffry L; Omtri, Rajesh S; Decklever, Teresa; Lowe, Val J; Poduslo, Joseph F; Kandimalla, Karunya K
2018-05-01
Impaired brain clearance of amyloid-beta peptides (Aβ) 40 and 42 across the blood-brain barrier (BBB) is believed to be one of the pathways responsible for Alzheimer's disease (AD) pathogenesis. Hyperinsulinemia prevalent in type II diabetes was shown to damage cerebral vasculature and increase Aβ accumulation in AD brain. However, there is no clarity on how aberrations in peripheral insulin levels affect Aβ accumulation in the brain. This study describes, for the first time, an intricate relation between plasma insulin and Aβ transport at the BBB. Upon peripheral insulin administration in wild-type mice: the plasma clearance of Aβ40 increased, but Aβ42 clearance reduced; the plasma-to-brain influx of Aβ40 increased, and that of Aβ42 reduced; and the clearance of intracerebrally injected Aβ40 decreased, whereas Aβ42 clearance increased. In hCMEC/D3 monolayers (in vitro BBB model) exposed to insulin, the luminal uptake and luminal-to-abluminal permeability of Aβ40 increased and that of Aβ42 reduced; the abluminal-to-luminal permeability of Aβ40 decreased, whereas Aβ42 permeability increased. Moreover, Aβ cellular trafficking machinery was altered. In summary, Aβ40 and Aβ42 demonstrated distinct distribution kinetics in plasma and brain compartments, and insulin differentially modulated their distribution. Cerebrovascular disease and metabolic disorders may disrupt this intricate homeostasis and aggravate AD pathology.
Adult cystic fibrosis: postprandial response of gut regulatory peptides.
Allen, J M; Penketh, A R; Adrian, T E; Lee, Y C; Sarson, D L; Hodson, M E; Batten, J C; Bloom, S R
1983-12-01
Responses of 11 gastrointestinal regulatory peptides to a standard test meal were assessed in 10 adult patients with cystic fibrosis. The basal plasma neurotensin was significantly elevated in patients with cystic fibrosis, being 31.5 +/- 6.1 pmol/L compared with a control value of 10.3 +/- 1.5 pmol/L (p less than 0.005). Plasma neurotensin remained elevated throughout the test period. Basal plasma enteroglucagon was similarly elevated, the patients with fibrocystic disease having levels of 51.3 +/- 4.6 pmol/L compared to controls with levels of 33.2 +/- 6.7 pmol/L (p less than 0.02). There was, however, no significant difference in postprandial levels of plasma enteroglucagon. Postprandial motilin was significantly elevated in the patients with cystic fibrosis; this elevation is in contrast with previous findings in children. Release of gastric inhibitory polypeptide was impaired, while release of cholecystokinin showed no significant difference in control values, although there was a tendency for delay. There was no significant postprandial rise of pancreatic polypeptide in the patients, whose levels were grossly lower than controls. Insulin showed a delayed response. No significant differences were observed between patients and controls in levels of gastrin, pancreatic glucagon, somatostatin, or vasoactive intestinal peptide. The elevation of plasma neurotensin and enteroglucagon in the basal state may reflect an adaptive response and may be part of the improved digestive function in adults compared with children with fibrocystic disease.
Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System
Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.
2014-01-01
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103
A 43-year-old woman with unexplained elevation of hCG.
Johnson, Lisa M; Gniadek, Thomas J; Cohn, Claudia S; Bachowski, Gary; Karger, Amy B
2018-05-01
This case report investigates an unusual hCG result in a woman who is not pregnant. A 43-year-old woman was admitted for recurrence of thrombotic thrombocytopenic purpura (TTP) and therapeutic plasma exchange (TPE) was initiated. Prior to transitioning the patient from TPE to immunosuppressive therapy, a serum qualitative hCG test was performed and was positive. Several etiologies for elevated hCG were considered and investigated, including heterophile antibody interference, endogenous hCG from pituitary or malignancy, and exogenous hCG. Retrospective measurement of hCG levels in remnant samples, including a sample obtained prior to TPE initiation, demonstrated that the hCG elevation occurred with plasma administration for TPE. Further investigation with the American Red Cross confirmed that a plasma donor was unknowingly pregnant and in the latter half of the first trimester at the time of donation, when hCG levels peak. In plasma recipients with unexplained hCG elevation, passive transfer of hCG from plasma should be considered in the differential diagnosis. Retrospective measurement of hCG in remnant samples obtained prior to plasma exchange can assist in confirming the source. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Yang, Yan-Fang; Zhang, Lei; Yang, Xiu-Wei
2018-01-20
Angelicae Pubescentis Radix (APR) is a widely-used traditional Chinese medicine. Pharmacological studies have begun to probe its biological activities on neurological disorders recently. To assess the brain penetration and distribution of APR, a validated ultra-performance liquid chromatography tandem mass spectrometry method was applied to the simultaneous determinations of the main coumarins from APR in the rat cerebrospinal fluid (CSF) and brain after oral administration of APR extract, including psoralen, xanthotoxin, bergapten, isoimperatorin, columbianetin, columbianetin acetate, columbianadin, oxypeucedanin hydrate, angelol B, osthole, meranzin hydrate and nodakenetin. Most of the tested coumarins entered the rat CSF and brain quickly, and double-peak phenomena in concentration-time curves were similar to those of their plasma pharmacokinetics. Columbianetin had the highest concentration in the CSF and brain, while psoralen and columbianetin acetate had the largest percent of CSF/plasma and brain/plasma, indicating that these three coumarins may be worthy of further research on the possible nervous effects. Correlations between the in vivo brain distributions and plasma pharmacokinetics of these coumarins were well verified. These results provided valuable information for the overall in vivo brain distribution characteristics of APR and also for its further studies on the active substances for the central nervous system.
Increased densities of monocarboxylate transporter MCT1 after chronic hyperglycemia in rat brain.
Canis, Martin; Maurer, Martin H; Kuschinsky, Wolfgang; Duembgen, Lutz; Duelli, Roman
2009-02-27
The brain is capable of taking up monocarboxylates as energy substrates. Under physiological conditions, plasma levels of monocarboxylates are very low and glucose is the primary energy substrate in brain metabolism. However, given conditions such as hyperglycemia and ketosis, levels of circulating monocarboxylates such as lactate and pyruvate are elevated. Previous studies reported an increased expression of monocarboxylate transporter MCT1 in brain following ketotic diet. The major aim of the present study was to answer the question whether chronic hyperglycemia is likewise sufficient to change local densities of MCT1 in the brain. Moreover, chronic hyperglycemia increases local cerebral glucose utilization (LCGU) in particular brain areas. Glucose hereby enters the brain parenchyma via glucose transporters and is partially metabolised by astrocytes, which then release lactate to meet the energetic demands of surrounding neurons. Streptozotocin was given intravenously to induce chronic hyperglycemia and local densities of MCT1 were measured by immunoautoradiographic methods in cryosections of rat brains. The density of monocarboxylate transporter MCT1 was significantly increased in 10 of 24 brain structures investigated (median increase 11.7+/-3.4 %). Immunocytochemical stainings of these substructures revealed an expression of MCT1 within endothelial cells and astrocytes. A comparison of MCT1 densities with LCGU measured in a previous study under normo- and hyperglycemic conditions revealed a partial correlation between both parameters and under both conditions. Four out of 10 brain areas, which showed a significant increase in MCT1 density due to hyperglycemia, also showed a significant increase in LCGU. In summary, our data show that chronic hyperglycemia induces a moderate increase of local and global density of MCT1 in several brain structures. However, in terms of brain topologies and substructures this phenomenon did only partially match with increased LCGU. It is concluded that MCT1 transporters were up-regulated during chronic hyperglycemia at the level of brain substructures and independently of LCGU.
Distribution of lacosamide in the rat brain assessed by in vitro slice technique.
Gáll, Zsolt; Vancea, Szende
2018-01-01
Lacosamide is a newer anticonvulsant and is the only one that enhances the slow inactivation of voltage gated sodium channels. It is also claimed to have disease-modifying potential, but its pharmacokinetic properties have been much less discussed in the literature. In rats, lacosamide shows restricted distribution to tissues, and the brain-to-plasma partition coefficient (K p ) is only 0.553. In this study, the brain disposition of lacosamide was evaluated in rat brains, and its neuropharmacokinetic parameters (i.e., protein binding and intracellular accumulation) were assessed using in vitro methods. Brain slice experiments and brain homogenate binding studies were performed for several drugs acting on the central nervous system, and drugs were assayed by using a liquid chromatography-mass spectrometry system. By applying a combined approach, it was found that (1) the unbound volume of distribution in the brain for lacosamide (V u,brain = 1.37) was lower than that of other classical anticonvulsants; (2) the unbound fraction of lacosamide in the brain (0.899) was slightly lower than its unbound fraction in plasma (0.96); (3) the unbound intracellular-to-extracellular concentration ratio of lacosamide was 1.233, meaning that lacosamide was accumulated in the intracellular space because of its physicochemical properties and zwitterionic structure; and (4) the unbound brain-to-plasma concentration ratio of lacosamide was lower than the total brain-to-plasma concentration ratio (K p,uu,brain = 0.42 vs. K p = 0.553). In conclusion, the limited brain distribution of lacosamide is not related to its nonspecific protein-binding capacity; rather, an active transport mechanism across the blood-brain barrier may be involved, which reduces the anticonvulsant and/or antiepileptogenic actions of this drug.
[Effect of nociceptin on histamine and serotonin release in the central nervous system].
Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa
2006-01-01
Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.
Nishijima, Tsuguo; Tajima, Kazuki; Yamashiro, Yoshihiro; Hosokawa, Keisuke; Suwabe, Akira; Takahashi, Kazuhiro; Sakurai, Shigeru
2016-04-01
(Pro)renin receptor ((P)RR), a receptor for renin and prorenin, is implicated in the pathophysiology of diabetes mellitus, hypertension and their complications. Soluble (P)RR (s(P)RR) is composed of extracellular domain of (P)RR and thus exists in blood. We have reported that plasma concentrations of s(P)RR were elevated in male patients with obstructive sleep apnea syndrome (OSAS). The aim of the present study was to clarify the difference in plasma s(P)RR concentrations between male and female OSAS patients. Plasma s(P)RR concentrations were studied in 289 subjects (206 males and 83 females) consisting of 259 OSAS patients and 30 non-OSAS control subjects. The 259 OSAS patients were classified into mild (5 ≤ apnea hypopnea index (AHI) < 15 events/h), moderate (15 ≤ AHI < 30), and severe OSAS (AHI ≥ 30). Plasma s(P)RR levels were significantly elevated in all three OSAS groups compared to non-OSAS control subjects (AHI < 5) in the entire cohort and male subjects, whereas in female subjects, the significant elevation was found only in severe OSAS. Plasma s(P)RR levels were significantly correlated with AHI in both sexes, with a higher r value found in male subjects (male r = 0.413, p < 0.0001; female r = 0.263, p < 0.05). Importantly, when OSAS patients (26 males and 15 females) with AHI ≥ 20 underwent continuous positive airway pressure treatment, plasma s(P)RR levels were significantly decreased. In conclusion, plasma s(P)RR levels are elevated in both male and female OSAS patients in parallel with the disease severity.
Larsen, Malte Selch; Keizer, Ron; Munro, Gordon; Mørk, Arne; Holm, René; Savic, Rada; Kreilgaard, Mads
2016-05-01
Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA-induced inflammatory hyperalgesia. A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration of a range of gabapentin doses (oral and intravenous). The plasma/brain ECF concentration-time profiles of gabapentin were adequately described with a two-compartment plasma model with saturable intestinal absorption rate (K m = 44.1 mg/kg, V max = 41.9 mg/h∙kg) and dose-dependent oral bioavailability linked to brain ECF concentration through a transit compartment. Brain ECF concentration was directly linked to a sigmoid E max function describing reversal of hyperalgesia (EC 50, plasma = 16.7 μg/mL, EC 50, brain = 3.3 μg/mL). The proposed semi-mechanistic population-based PKPD model provides further knowledge into the understanding of gabapentin's non-linear pharmacokinetics and the link between plasma/brain disposition and anti-hyperalgesic effects. The model suggests that intestinal absorption is the primary source of non-linearity and that the investigated rat model provides reasonable predictions of clinically effective plasma concentrations for gabapentin.
Effect of salt acclimation on digitalis-like compounds in the toad.
Lichtstein, D; Gati, I; Babila, T; Haver, E; Katz, U
1991-01-23
Digitalis-like compounds (DLC) were shown to be a normal constituent of the skin and plasma of toads. In order to assess the possible physiological role of these compounds in the toad, their levels were determined in the brain, plasma and skin following acclimation in different NaCl solutions. We demonstrate that an increase in salt concentrations in the animal medium from 0 to 1.2% decreased the levels of DLC in the brain by 50% without altering significantly its levels in the plasma and skin. An increase in medium salt concentration to 1.5% resulted in a 50% increase of DLC levels in the skin without changing its levels in the plasma or brain. These results suggest that skin and brain DLC may participate in the long-term salt and water homeostasis in the toad, while the plasma compound either participates in the short-term regulations of salt and water homeostasis or have some other, unknown, function.
Faviou, E; Zachari, A; Nounopoulos, C; Agrafiotis, E; Vourli, G; Dionyssiou-Asteriou, A
2008-03-01
Recent investigations have suggested the occurrence of transient cardiac dysfunction and reversible myocardial injury in healthy individuals after heavy exercise. Our purpose was to examine if the release of N-terminal pro-brain natriuretic peptide (NT-proBNP) after intense exercise in obviously healthy participants may have cytoprotective and growth-regulating effects or may result from myocardial dysfunction/damage with changes in cTnT as a marker for myocardial cell necrosis during exercise. In 43 highly-trained male athletes <35 years old, who were examined immediately after exercising as well as 2 days later, 21 age-matched male patients classified as stage-B according to ACC/AHA guidelines and 35 healthy age-matched males, we evaluated NT-proBNP and 3rd generation's cTnT by electrochemiluminescence immunoassay. All participants underwent a detailed cardiac protocol including echocardiography and electrocardiogram (ECG). In athletes, cTnT consistently remained <0.01 mg/L after exercising as well as after 2 days. NTproBNP immediately after exercising was 58.27+/-19.48 ng/L, without reaching pathological levels, decreasing 2 days later to 22.93+/-10.22 ng/L. Our patients maintained high levels of NTproBNP, as much as a six-fold increase with reference to the levels of our study's control group and with cTnT <0.01 mg/L. In the control group, cTnT and NTproBNP levels were statistically similar with those of the athletes 2 days after exercising. NT-proBNP as a biological marker can reliably discriminate pathological from physiological cardiac hypertrophy. A normal plasma concentration of NT-proBNP in consecutive routine check-up, before and after exercise, could minimize the possibility of cardiac dysfunction, whereas persistent elevated plasma concentrations warrant further cardiological evaluation.
Cortisol reduces cell proliferation in the telencephalon of rainbow trout (Oncorhynchus mykiss).
Sørensen, Christina; Bohlin, Linda C; Øverli, Øyvind; Nilsson, Göran E
2011-03-28
The fish brain grows throughout life, and new cells are added continuously in all major brain areas. As in mammals, the rate of adult brain cell proliferation in fish can be regulated by external factors including environmental complexity and interaction with conspecifics. We have recently demonstrated that the stress experienced by subordinate rainbow trout in social hierarchies leads to a marked suppression of brain cell proliferation in the telencephalon, and that this is accompanied by an increase in plasma levels of cortisol. Corticosteroid hormones are known to suppress adult neurogenesis in mammals, and to investigate whether this is also the case in fish, rainbow trout were fed feed containing either a low or a high dose of cortisol for 6 days. Compared to control animals receiving regular feed, both cortisol treated groups had significantly elevated cortisol levels 24h after the last feeding, with the high group having levels comparable to those previously reported in socially stressed fish. To quantify cell proliferation, immunohistochemistry for proliferating cell nuclear antigen (PCNA) was performed to identify actively cycling cells. The density of PCNA-positive nuclei in the telencephalon was reduced by about 50% in both cortisol treated groups. The effect of cortisol on brain cell proliferation did not reflect a general down regulation of growth, as only the high cortisol group had reduced growth rate, and there was no correlation between brain cell proliferation and growth rate in any group. These results indicate that the reduced proliferative activity seen in brains of socially stressed fish is mediated by cortisol, and that there is a similar suppressive effect of cortisol on brain cell proliferation in the teleost forebrain as in the mammalian hippocampus. Copyright © 2010 Elsevier Inc. All rights reserved.
Chen, Sujuan; Ren, Qian; Zhang, Jinfei; Ye, Yangjing; Zhang, Zhen; Xu, Yijiao; Guo, Min; Ji, Haiyan; Xu, Chong; Gu, Chenjian; Gao, Wei; Huang, Shile; Chen, Long
2014-01-01
Aims This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). Methods NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signaling pathway in brain neurons were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. Results Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. Conclusions NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases. PMID:24299490
Bridges, Leslie R; Andoh, Joycelyn; Lawrence, Andrew J; Khoong, Cheryl H L; Poon, Wayne; Esiri, Margaret M; Markus, Hugh S; Hainsworth, Atticus H
2014-11-01
The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.
Reynoso-Moreno, Inés; Chicca, Andrea; Flores-Soto, Mario E; Viveros-Paredes, Juan M; Gertsch, Jürg
2018-01-01
Different anandamide (AEA) transport inhibitors show antinociceptive and antiinflammatory effects in vivo , but due to their concomitant inhibition of fatty acid amide hydrolase (FAAH) and overall poor bioavailability, they cannot be used unequivocally to study the particular role of endocannabinoid (EC) transport in pathophysiological conditions in vivo . Here, the potent and selective endocannabinoid reuptake inhibitor WOBE437, which inhibits AEA and 2-arachidonoylglycerol (2-AG) transport, was tested for its oral bioavailability to the brain. WOBE437 is assumed to locally increase EC levels in tissues in which facilitated EC reuptake intermediates subsequent hydrolysis. Given the marked polypharmacology of ECs, we hypothesized to see differential effects on distinct EC receptors in animal models of acute and chronic pain/inflammation. In C57BL6/J male mice, WOBE437 was orally bioavailable with an estimated t max value of ≤20 min in plasma (C max ∼ 2000 pmol/mL after 50 mg/kg, p.o.) and brain (C max ∼ 500 pmol/g after 50 mg/kg, p.o.). WOBE437 was cleared from the brain after approximately 180 min. In addition, in BALB/c male mice, acute oral administration of WOBE437 (50 mg/kg) exhibited similar brain concentrations after 60 min and inhibited analgesia in the hot plate test in a cannabinoid CB1 receptor-dependent manner, without inducing catalepsy or affecting locomotion. WOBE437 significantly elevated AEA in the somatosensory cortex, while showing dose-dependent biphasic effects on 2-AG levels in plasma but no significant changes in N -acylethanolamines other than AEA in any of the tissues. In order to explore the presumed polypharmacology mediated via elevated EC levels, we tested this EC reuptake inhibitor in complete Freud's adjuvant induced monoarthritis in BALB/c mice as a model of chronic inflammation. Repetitive doses of WOBE437 (10 mg/kg, i.p.) attenuated allodynia and edema via cannabinoid CB2, CB1, and PPARγ receptors. The allodynia inhibition of WOBE437 treatment for 3 days was fully reversed by antagonists of any of the receptors. In the single dose treatment the CB2 and TRPV1 antagonists significantly blocked the effect of WOBE437. Overall, our results show the broad utility of WOBE437 for animal experimentation for both p.o. and i.p. administrations. Furthermore, the data indicate the possible involvement of EC reuptake/transport in pathophysiological processes related to pain and inflammation.
Töllner, Kathrin; Brandt, Claudia; Römermann, Kerstin; Löscher, Wolfgang
2015-01-05
Bumetanide is increasingly being used for experimental treatment of brain disorders, including neonatal seizures, epilepsy, and autism, because the neuronal Na-K-Cl cotransporter NKCC1, which is inhibited by bumetanide, is implicated in the pathophysiology of such disorders. However, use of bumetanide for treatment of brain disorders is associated with problems, including poor brain penetration and systemic adverse effects such as diuresis, hypokalemic alkalosis, and hearing loss. The poor brain penetration is thought to be related to its high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, but more recently brain efflux transporters have been involved, too. Multidrug resistance protein 4 (MRP4), organic anion transporter 3 (OAT3) and organic anion transporting polypeptide 2 (OATP2) were suggested to mediate bumetanide brain efflux, but direct proof is lacking. Because MRP4, OAT3, and OATP2 can be inhibited by probenecid, we studied whether this drug alters brain levels of bumetanide in mice. Probenecid (50 mg/kg) significantly increased brain levels of bumetanide up to 3-fold; however, it also increased its plasma levels, so that the brain:plasma ratio (~0.015-0.02) was not altered. Probenecid markedly increased the plasma half-life of bumetanide, indicating reduced elimination of bumetanide most likely by inhibition of OAT-mediated transport of bumetanide in the kidney. However, the diuretic activity of bumetanide was not reduced by probenecid. In conclusion, our study demonstrates that the clinically available drug probenecid can be used to increase brain levels of bumetanide and decrease its elimination, which could have therapeutic potential in the treatment of brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Hanak, Anne-Sophie; Chevillard, Lucie; El Balkhi, Souleiman; Risède, Patricia; Peoc'h, Katell; Mégarbane, Bruno
2015-01-01
Lithium-induced neurotoxicity may be life threatening. Three patterns have been described, including acute, acute-on-chronic, and chronic poisoning, with unexplained discrepancies in the relationship between clinical features and plasma lithium concentrations. Our objective was to investigate differences in plasma, erythrocyte, cerebrospinal fluid, and brain lithium pharmacokinetics using a multicompartmental approach in rat models mimicking the three human intoxication patterns. We developed acute (intraperitoneal administration of 185 mg/kg Li₂CO₃ in naive rats), acute-on-chronic (intraperitoneal administration of 185 mg/kg Li₂CO₃ in rats receiving 800 mg/l Li₂CO₃ in water during 28 days), and chronic poisoning models (intraperitoneal administration of 74 mg/kg Li₂CO₃ during 5 days in rats with 15 mg/kg K₂Cr₂O₇-induced renal failure). Delayed absorption (4.03 vs 0.31 h), increased plasma elimination (0.65 vs 0.37 l/kg/h) and shorter half-life (1.75 vs 2.68 h) were observed in acute-on-chronically compared with acutely poisoned rats. Erythrocyte and cerebrospinal fluid kinetics paralleled plasma kinetics in both models. Brain lithium distribution was rapid (as early as 15 min), inhomogeneous and with delayed elimination (over 78 h). However, brain lithium accumulation was more marked in acute-on-chronically than acutely poisoned rats [area-under-the-curve of brain concentrations (379 ± 41 vs 295 ± 26, P < .05) and brain-to-plasma ratio (45 ± 10 vs 8 ± 2, P < .0001) at 54 h]. Moreover, brain lithium distribution was increased in chronically compared with acute-on-chronically poisoned rats (brain-to-plasma ratio: 9 ± 1 vs 3 ± 0, P < .01). In conclusion, prolonged rat exposure results in brain lithium accumulation, which is more marked in the presence of renal failure. Our data suggest that differences in plasma and brain kinetics may at least partially explain the observed variability between human intoxication patterns. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R; Lawrence, Catherine B; Coll, Anthony P; White, Anne
2016-11-01
Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.
Astroglial pentose phosphate pathway rates in response to high-glucose environments
Takahashi, Shinichi; Izawa, Yoshikane; Suzuki, Norihiro
2012-01-01
ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke. PMID:22300409
Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice
Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R.; Lawrence, Catherine B.; Coll, Anthony P.
2016-01-01
Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances. PMID:27649090
Embryotoxic and biochemical effects of waste crankcase oil on birds' eggs
Hoffman, D.J.; Eastin, W.C.; Gay, M.L.
1982-01-01
Waste crankcase oil (WCO) is a major source of oil pollution in both the aquatic and terrestrial environment and has been implicated in the poisoning of mammals and fish. It is also mutagenic. Since birds' eggs are highly sensitive to external microliter applications of environmentally polluting oils, we examined the developmental effects of external applications of WCO on eggs of the mallard duck (Anas platyrhynchos) and the bobwhite quail (Colinus virginianus). At 48 hr of development, mallard eggs were exposed externally to 2, 5, or 15 :l of WCO or 15 :l of clean crankcase oil (CCO) while bobwhite eggs received proportional doses of 0.5, 1, or 3 :l of WCO and 3 :l of CCO in a similar manner. WCO was highly embryotoxic to both species compared to CCO and resulted in dose-dependent mortality, reduced growth, and abnormal survivors. Application of 15 :l WCO resulted in 84% mortality in mallards and 3 :l WCO resulted in 88% mortality in bobwhites. Abnormal survivors included embryos with subcutaneous edema, incomplete ossification, and eye and brain defects. Red blood cell *-aminolevulinic acid dehydratase (ALAD) activity, liver ALAD activity, and hemoglobin concentration were significantly lower after treatment with WCO in embryos and hatchlings of both species. Plasma uric acid, plasma alanine aminotransferase (ALT), and plasma aspartate aminotransferese (AST) were significantly elevated in WCO-treated mallards after hatching. Biochemical effects, growth retardation, and mortality at proportionally lower dose levels were more pronounced in mallards than in bobwhites. Chemical analysis of the WCO and CCO revealed a considerably higher content of aromatic hydrocarbons in WCO than in CCO. Lead levels were highly elevated in WCO (4600 ppm) compared to CCO (2 ppm).
Plasma urocortin in human systolic heart failure.
Ng, Leong L; Loke, Ian W; O'Brien, Russell J; Squire, Iain B; Davies, Joan E
2004-04-01
Urocortin (UCN), a member of the corticotrophin-releasing factor family, is expressed in heart, brain and gut. UCN has potent cardiostimulatory, cardioprotective, vasodilator and diuretic/natriuretic effects, and cardiac UCN expression is increased in heart failure (HF). In the present study, we investigated plasma levels of UCN in 119 patients with HF and 212 age- and gender-matched controls to clarify its relationship with gender and disease severity. UCN was elevated in HF [normal males, 19.5 (3.9-68.8) pmol/l and HF males, 50.2 (6.9-108.2) pmol/l, P < 0.0005; normal females, 14.2 (3.9-53.5) pmol/l and HF females, 21.8 (3.9-112.5) pmol/l, P < 0.001; values are medians (range)]. The relative increase was greater in males than females ( P < 0.03). UCN fell with increasing age, especially in HF patients ( r(s) = -0.56, P < 0.0005) and with increasing New York Heart Association (NYHA) class ( r(s) = -0.55, P < 0.0005). The fall in UCN levels with increasing NYHA class was reinforced by a significant correlation between UCN and ejection fraction ( r(s) = 0.45, P < 0.0005) in HF patients. Although receiver operating characteristic (ROC) curves for diagnosis of all HF cases yielded an area under the curve (AUC) of 0.76, ROC AUCs for patients with early HF (NYHA class I and II) were better (0.91). ROC AUCs for logistic models incorporating N-terminal probrain natriuretic peptide (N-BNP) and UCN were better than either peptide alone. In conclusion, plasma UCN is elevated in HF, especially in its early stages. Its decline with increasing HF severity may expedite disease progression due to diminished cardioprotective/anti-inflammatory effects. UCN measurement may also complement N-BNP in the diagnosis of early HF.
Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation.
Reisenauer, Chris J; Bhatt, Dhaval P; Mitteness, Dane J; Slanczka, Evan R; Gienger, Heidi M; Watt, John A; Rosenberger, Thad A
2011-04-01
Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6 g/kg by oral gavage. In parallel experiments, free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 h. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 h. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive glial fibrillary acidic protein-positive astrocytes and activated CD11b-positive microglia by 40-50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of choline acetyltransferase (ChAT)-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation
Reisenauer, Chris J.; Bhatt, Dhaval P.; Mitteness, Dane J.; Slanczka, Evan R.; Gienger, Heidi M.; Watt, John A.; Rosenberger, Thad A.
2011-01-01
Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6g/kg by oral gavage. In parallel experiments free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 hr. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 hr. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive GFAP-positive astrocytes and activated CD11b-positive microglia by 40–50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of ChAT-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. PMID:21272004
McNamara, Robert K; Schurdak, Jennifer D; Asch, Ruth H; Peters, Bart D; Lindquist, Diana M
2018-01-01
Neuropsychiatric disorders that frequently initially emerge during adolescence are associated with deficits in the omega-3 (n-3) fatty acid docosahexaenoic acid (DHA), elevated proinflammatory signaling, and regional reductions in white matter integrity (WMI). This study determined the effects of altering brain DHA accrual during adolescence on WMI in the rat brain by diffusion tensor imaging (DTI), and investigated the potential mediating role of proinflammatory signaling. During periadolescent development, male rats were fed a diet deficient in n-3 fatty acids (DEF, n = 20), a fish oil-fortified diet containing preformed DHA (FO, n = 20), or a control diet (CON, n = 20). In adulthood, DTI scans were performed and brain WMI was determined using voxelwise tract-based spatial statistics (TBSS). Postmortem fatty acid composition, peripheral (plasma IL-1β, IL-6, and C-reactive protein [CRP]) and central (IL-1β and CD11b mRNA) proinflammatory markers, and myelin basic protein (MBP) mRNA expression were determined. Compared with CON rats, forebrain DHA levels were lower in DEF rats and higher in FO rats. Compared with CON rats, DEF rats exhibited greater radial diffusivity (RD) and mean diffusivity in the right external capsule, and greater axial diffusivity in the corpus callosum genu and left external capsule. DEF rats also exhibited greater RD than FO rats in the right external capsule. Forebrain MBP expression did not differ between groups. Compared with CON rats, central (IL-1β and CD11b) and peripheral (IL-1β and IL-6) proinflammatory markers were not different in DEF rats, and DEF rats exhibited lower CRP levels. These findings demonstrate that deficits in adolescent DHA accrual negatively impact forebrain WMI, independently of elevated proinflammatory signaling. © 2017 S. Karger AG, Basel.
Fleming, W.J.
1981-01-01
Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.
Shantha Kumara, H M C; Gaita, David; Miyagaki, Hiromichi; Yan, Xiaohong; Hearth, Sonali Ac; Njoh, Linda; Cekic, Vesna; Whelan, Richard L
2016-08-15
To assess blood chitinase 3-like 1 (CHi3L1) levels for 2 mo after minimally invasive colorectal resection (MICR) for colorectal cancer (CRC). CRC patients in an Institutional Review Board approved data/plasma bank who underwent elective MICR for whom preoperative (PreOp), early postoperative (PostOp), and 1 or more late PostOp samples [postoperative day (POD) 7-27] available were included. Plasma CHi3L1 levels (ng/mL) were determined in duplicate by enzyme linked immunosorbent assay. PreOp and PostOp plasma sample were available for 80 MICR cancer patients for the study. The median PreOp CHi3L1 level was 56.8 CI: 41.9-78.6 ng/mL (n = 80). Significantly elevated (P < 0.001) median plasma levels (ng/mL) over PreOp levels were detected on POD1 (667.7 CI: 495.7, 771.7; n = 79), POD 3 (132.6 CI: 95.5, 173.7; n = 76), POD7-13 (96.4 CI: 67.7, 136.9; n = 62), POD14-20 (101.4 CI: 80.7, 287.4; n = 22), and POD 21-27 (98.1 CI: 66.8, 137.4; n = 20, P = 0.001). No significant difference in plasma levels were noted on POD27-41. Plasma CHi3L1 levels were significantly elevated for one month after MICR. Persistently elevated plasma CHi3L1 may support the growth of residual tumor and metastasis.
Zelek, Wioleta M; Watkins, Lewis M; Howell, Owain W; Evans, Rhian; Loveless, Sam; Robertson, Neil P; Beenes, Marijke; Willems, Loek; Brandwijk, Ricardo; Morgan, B Paul
2018-02-01
CD59, a broadly expressed glycosylphosphatidylinositol-anchored protein, is the principal cell inhibitor of complement membrane attack on cells. In the demyelinating disorders, multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), elevated complement protein levels, including soluble CD59 (sCD59), were reported in cerebrospinal fluid (CSF). We compared sCD59 levels in CSF and matched plasma in controls and patients with MS, NMOSD and clinically isolated syndrome (CIS) and investigated the source of CSF sCD59 and whether it was microparticle associated. sCD59 was quantified using enzyme-linked immunosorbent assay (ELISA; Hycult; HK374-02). Patient and control CSF was subjected to western blotting to characterise anti-CD59-reactive materials. CD59 was localised by immunostaining and in situ hybridisation. CSF sCD59 levels were double those in plasma (CSF, 30.2 ng/mL; plasma, 16.3 ng/mL). Plasma but not CSF sCD59 levels differentiated MS from NMOSD, MS from CIS and NMOSD/CIS from controls. Elimination of microparticles confirmed that CSF sCD59 was not membrane anchored. CSF levels of sCD59 are not a biomarker of demyelinating diseases. High levels of sCD59 in CSF relative to plasma suggest an intrathecal source; CD59 expression in brain parenchyma was low, but expression was strong on choroid plexus (CP) epithelium, immediately adjacent the CSF, suggesting that this is the likely source.
Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood.
Bryn, V; Halvorsen, B; Ueland, T; Isaksen, J; Kolkova, K; Ravn, K; Skjeldal, O H
2015-07-01
Neurotrophic factors are essential regulators of neuronal maturation including synaptic synthesis. Among those, Brain derived neurotrophic factor (BDNF) has been in particular focus in the understanding of autism spectrum disorders (ASD). The aim of our study was to investigate whether BNDF could be used as diagnostic/biological marker for ASD. For this purpose we examined the plasma levels of BDNF and the precursors pro- BDNF in patients with ASD and compared it with non-autistic controls; determined whether there was a correlation between the BDNF and proBDNF levels and clinical severity. We also investigated the coding region of BDNF identify for well-variations which could be associated to ASD. The 65 ASD patients (51 boys) were enrolled from a recent completed epidemiological survey covering two counties (Oppland and Hedmark) in Norway. The mean age of the total number of children who participated in this study was 11,7 years. 30 non-autistic children were included as controls, 14 boys and 16 girls. The mean age was 11.3 years. Exclusion criteria for control group were individuals suffering from either neurological, endocrine, or immune insuffiency. Patients with ASD were characterized by moderately but significantly elevated plasma levels of BDNF compared to matched controls. No differences were observed in the proBDNF level between patients and controls. Within the ASD group, children with intellectual disability demonstrated increased BDNF, but not proBDNF levels, while the presence of ADHD had no impact on circulating proBDNF or BDNF. No further associations between plasma proBDNF or BDNF and other clinical demographics were observed. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Snowden, J A; Hill, G R; Hunt, P; Carnoutsos, S; Spearing, R L; Espiner, E; Hart, D N
2000-08-01
Cardiac failure is a known complication of haemopoietic stem cell transplantation (HSCT) and is often difficult to diagnose as patients may have multiple medical problems. Since brain natriuretic peptide (BNP) is largely a hormone of cardiac ventricular origin and is released early in the course of ventricular dysfunction, we have examined the value of serial plasma BNP levels for detecting cardiac failure in patients undergoing cytotoxic conditioning for HSCT. Fifteen patients undergoing HSCT were evaluated (10 undergoing autologous HSCT; five undergoing allogeneic HSCT). BNP was measured by radioimmunoassay prior to therapy and weekly for 5 weeks. Seven patients had a significant rise in BNP level (above a previously established threshold of 43 pmol/l associated with cardiac failure), occurring 1-4 weeks post commencement of conditioning. In three of these patients, cardiac failure was subsequently diagnosed clinically 3, 9 and 23 days after a BNP level of 43 pmol/l had been detected. These three patients had the highest peak BNP levels for the group and in each case elevation in BNP level occurred for a period exceeding 1 week. Although numbers were relatively small, a BNP >43 pmol/l was significantly associated with the inclusion of high-dose cyclophosphamide in the preparative regimen (P = 0.02). BNP levels showed no relationship to febrile episodes. In conclusion, these results show that plasma BNP may be used as a marker for early detection of cardiac dysfunction in patients undergoing HSCT, particularly if levels are increased for periods exceeding 1 week. Measurement of BNP during HSCT may be helpful in patients at risk of cardiac failure, in complex clinical situations and in monitoring the cardiotoxicity of preparative regimens.
The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids
Gutierrez-Aguilar, Ruth; Thompson, Abigail; Marchand, Nathalie; Dumont, Patrick; Woods, Stephen C.; de Launoit, Yvan; Seeley, Randy J.; Ulrich-Lai, Yvonne M.
2015-01-01
The transcription factor E-twenty-six version 5 (ETV5) has been linked with obesity in genome-wide association studies. Moreover, ETV5-deficient mice (knockout; KO) have reduced body weight, lower fat mass, and are resistant to diet-induced obesity, directly linking ETV5 to the regulation of energy balance and metabolism. ETV5 is expressed in hypothalamic brain regions that regulate both metabolism and HPA axis activity, suggesting that ETV5 may also modulate HPA axis function. In order to test this possibility, plasma corticosterone levels were measured in ETV5 KO and wildtype (WT) mice before (pre-stress) and after (post-stress) a mild stressor (intraperitoneal injection). ETV5 deficiency increased both pre- and post-stress plasma corticosterone, suggesting that loss of ETV5 elevated glucocorticoid tone. Consistent with this idea, ETV5 KO mice have reduced thymus weight, suggestive of increased glucocorticoid-induced thymic involution. ETV5 deficiency also decreased the mRNA expression of glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and vasopressin receptor 1A in the hypothalamus, without altering vasopressin, corticotropin-releasing hormone, or oxytocin mRNA expression. In order to test whether reduced MR and GR expression affected glucocorticoid negative feedback, a dexamethasone suppression test was performed. Dexamethasone reduced plasma corticosterone in both ETV5 KO and WT mice, suggesting that glucocorticoid negative feedback was unaltered by ETV5 deficiency. In summary, these data suggest that the obesity-associated transcription factor ETV5 normally acts to diminish circulating glucocorticoids. This might occur directly via ETV5 actions on HPA-regulatory brain circuitry, and/or indirectly via ETV5-induced alterations in metabolic factors that then influence the HPA axis. PMID:25813907
Liang, S; Wang, T; Hu, X; Luo, J; Li, W; Wu, X; Duan, Y; Jin, F
2015-12-03
Increasing numbers of studies have suggested that the gut microbiota is involved in the pathophysiology of stress-related disorders. Chronic stress can cause behavioral, cognitive, biochemical, and gut microbiota aberrations. Gut bacteria can communicate with the host through the microbiota-gut-brain axis (which mainly includes the immune, neuroendocrine, and neural pathways) to influence brain and behavior. It is hypothesized that administration of probiotics can improve chronic-stress-induced depression. In order to examine this hypothesis, the chronic restraint stress depression model was established in this study. Adult specific pathogen free (SPF) Sprague-Dawley rats were subjected to 21 days of restraint stress followed by behavioral testing (including the sucrose preference test (SPT), elevated-plus maze test, open-field test (OFT), object recognition test (ORT), and object placement test (OPT)) and biochemical analysis. Supplemental Lactobacillus helveticus NS8 was provided every day during stress until the end of experiment, and selective serotonin reuptake inhibitor (SSRI) citalopram (CIT) served as a positive control. Results showed that L. helveticus NS8 improved chronic restraint stress-induced behavioral (anxiety and depression) and cognitive dysfunction, showing an effect similar to and better than that of CIT. L. helveticus NS8 also resulted in lower plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, higher plasma interleukin-10 (IL-10) levels, restored hippocampal serotonin (5-HT) and norepinephrine (NE) levels, and more hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression than in chronic stress rats. Taken together, these results indicate an anti-depressant effect of L. helveticus NS8 in rats subjected to chronic restraint stress depression and that this effect could be due to the microbiota-gut-brain axis. They also suggest the therapeutic potential of L. helveticus NS8 in stress-related and possibly other kinds of depression. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Kenna, Kelly; De Matteo, Robert; Hanita, Takushi; Rees, Sandra; Sozo, Foula; Stokes, Victoria; Walker, David; Bocking, Alan; Brien, James; Harding, Richard
2011-10-01
High levels of ethanol (EtOH) consumption during pregnancy adversely affect fetal development; however, the effects of lower levels of exposure are less clear. Our objectives were to assess the effects of daily EtOH exposure (3.8 USA standard drinks) on fetal-maternal physiological variables and the fetal brain, particularly white matter. Pregnant ewes received daily intravenous infusions of EtOH (0.75 g/kg maternal body wt over 1 h, 8 fetuses) or saline (8 fetuses) from 95 to 133 days of gestational age (DGA; term ∼145 DGA). Maternal and fetal arterial blood was sampled at 131-133 DGA. At necropsy (134 DGA) fetal brains were collected for analysis. Maternal and fetal plasma EtOH concentrations reached similar maximal concentration (∼0.11 g/dl) and declined at the same rate. EtOH infusions produced mild reductions in fetal arterial oxygenation but there were no changes in maternal oxygenation, maternal and fetal Pa(CO(2)), or in fetal mean arterial pressure or heart rate. Following EtOH infusions, plasma lactate levels were elevated in ewes and fetuses, but arterial pH fell only in ewes. Fetal body and brain weights were similar between groups. In three of eight EtOH-exposed fetuses there were small subarachnoid hemorrhages in the cerebrum and cerebellum associated with focal cortical neuronal death and gliosis. Overall, there was no evidence of cystic lesions, inflammation, increased apoptosis, or white matter injury. We conclude that daily EtOH exposure during the third trimester-equivalent of ovine pregnancy has modest physiological effects on the fetus and no gross effects on fetal white matter development.
Zhang, Yan; Schuetz, John D; Elmquist, William F; Miller, Donald W
2004-11-01
Several multidrug resistance-associated protein (MRP) homologs are expressed in brain microvessel endothelial cells forming the blood-brain barrier (BBB). The influence of these MRP transporters on BBB permeability will be dependent on their localization within the brain microvessel endothelial cells. Using two different and complementary approaches, the localization of various MPR homologs (MRP1, MRP4, and MRP5) was examined in primary cultured bovine brain microvessel endothelial cells (BBMECs). The first approach involved centrifugal separation of apical and basolateral plasma membranes of cultured BBMECs. The membrane fractions were then subjected to Western blot analysis for MRPs. The second approach used confocal laser scanning microscopy to determine membrane localization of MRPs in BBMECs. Results show a predominantly apical plasma membrane distribution for MRP1 and MRP5, and an almost equal distribution of MRP4 on the apical and basolateral plasma membrane of BBMECs. These studies provide the first demonstration of the localization of MRP1, MRP4, and MRP5 homologs in brain microvessel endothelial cells. The present studies also indicate that the localization of MRPs in the endothelial cells forming the BBB is different from that observed in polarized epithelial cells and thus may contribute to the reduced entry and enhanced elimination of organic anions and nucleotides in the brain.
Renal hemodynamic response to galanin: importance of elevated plasma glucose.
Premen, A J
1989-12-01
Although recent data point to a possible indirect role for galanin in modulating renal blood flow (RBF) and fluid homeostasis in experimental animals, there have been no systematic studies exploring the possible direct effects of the peptide on the mammalian kidney. We ascertained the RBF, glomerular filtration rate (GFR) and plasma glucose responses to direct intrarenal infusion of three progressively increasing doses of synthetic galanin in anesthetized dogs. A 50 ng/kg per min dose (n = 6) failed to affect RBF, GFR or arterial plasma glucose (APG). Yet, a 100 ng/kg per min dose elevated RBF and GFR by 13 and 14%, respectively, while concomitantly increasing APG by 38%. At 200 ng/kg per min, galanin elevated RBF and GFR by 32 and 33%, respectively, while elevating APG by 57%. Intrarenal infusion of glucose (12.5 mg/kg per min; n = 6), reproducing the percentage rise in glucose (62%) elicited by the highest dose of galanin, elevated RBF and GFR by 20 and 23%, respectively. These data indicate that the elevated plasma glucose level, stimulated by galanin infusion, may account for about 63 and 70% of the RBF and GFR responses, respectively, elicited by galanin infusion at the 200 ng dose. The factors mediating the remaining renal hyperemia and hyperfiltration await resolution.
Mihajlica, Nebojsa; Betsholtz, Christer; Hammarlund-Udenaes, Margareta
2018-06-19
Pericytes are perivascular cells that play important roles in the regulation of the blood-brain barrier (BBB) properties. Pericyte-deficiency causes compromised BBB integrity and increase in permeability to different macromolecules mainly by upregulated transcytosis. The aim of the present study was to investigate pericyte involvement in the extent of small-molecular drug transport across the BBB. This was performed with five compounds: diazepam, digoxin, levofloxacin, oxycodone and paliperidone. Compounds were administered at low doses via subcutaneous injections as a cassette (simultaneously) to pericyte-deficient Pdgfb ret/ret mice and corresponding WT controls. Total drug partitioning across the BBB was calculated as the ratio of total drug exposures in brain tissue and plasma (K p,brain ). In addition, equilibrium dialysis experiments were performed to estimate unbound drug fractions in brain (f u,brain ) and plasma (f u,plasma ). This enabled estimation of unbound drug partitioning coefficients (K p,uu,brain ). The results indicated slight tendencies towards increase of total brain exposures in Pdgfb ret/ret mice as reflected in K p,brain values, which were within the 2-fold limit. Part of these differences could be explained by differences in plasma protein binding. No difference was found in brain tissue binding. The combined in vivo and in vitro data resulted in no differences in BBB transport in pericyte-deficiency, as described by similar K p,uu,brain values in Pdgfb ret/ret and control mice. In conclusion, these findings imply no influence of pericytes on the extent of BBB transport of small-molecular drugs, and suggest preserved BBB features relevant for handling of this type of molecules irrespective of pericyte presence at the brain endothelium. Copyright © 2018. Published by Elsevier B.V.
Badawy, E A; Rasheed, W I; Elias, T R; Hussein, J; Harvi, M; Morsy, S; Mahmoud, Ya El-Latif
2015-11-01
This study was performed to investigate the biochemical effect of flaxseed oil on oxidative stress and brain monoamines release in streptozotocin-induced diabetic rats. Sixty male albino rats were divided into following four groups (15 for each group): control group, flaxseed oil group, diabetic group, and flaxseed oil-treated diabetic group. Serum glucose, insulin, pentosidine, plasma advanced oxidation protein products (AOPPs), and plasma total antioxidant capacity were estimated. Brain neurotransmitters, malondialdehyde (MDA), and nitric oxide (NO) were also determined. The mean values of serum pentosidine and plasma AOPP showed a significant decrease in treated diabetic group as compared to their values in the diabetic group. Also, brain neurotransmitters levels were improved after treatment with flaxseed. Brain MDA and NO were increased significantly in the diabetic group, while they were significantly decreased after treatment. Brain NO and brain MDA had a significant positive correlation with pentosidine, AOPP, and neurotransmitters. We concluded that flaxseed oil supplementation may be useful in the treatment of brain dysfunction in diabetes. © The Author(s) 2015.
Zhou, Boda; Ren, Chuan; Zu, Lingyun; Zheng, Lemin; Guo, Lijun; Gao, Wei
2016-01-01
Abstract Migration inhibitory factor (MIF) has been shown to be critical in the pathology of early artherosclerosis; this article aim to investigate the plasma levels of MIF in hypertension plus hyperlipidemia patients. A total of 39 hypertension plus hyperlipidemia patients without any previous treatment were enrolled (HTN-HLP). Twenty-five healthy subjects were enrolled as the healthy control group (HEALTHY). Plasma MIF was measured by ELISA; laboratory and clinical characteristics were analyzed. HUVECs were treated with pooled plasma from HTN-HLP and HEALTHY groups, and the protein levels of adhesion molecules VCAM-1 and ICAM-1 were determined by ELISA. We found that plasma MIF was significantly elevated in the HTN-HLP group. Serum NO and eNOS levels were significantly lower; serum ET-1 (endothelin) levels were significantly higher in the HTN-HLP group. Furthermore, blood pressure, baPWV (brachial–ankle pulse wave velocity), and serum ET-1 level were significantly positively; serum NO and eNOS levels were negatively correlated with plasma MIF levels. Plasma from HTN-HLP significantly stimulated VCAM-1 and ICAM-1 protein expression on the surface of HUVECs. Plasma MIF was elevated in HTN-HLP patients and correlates with impaired endothelial function. PMID:27787379
Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio
2015-08-01
Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P < 0.05), was higher in liver and brain (P < 0.001), and lower in kidney (P < 0.001) vs. male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P < 0.01), brain, liver, and kidney (all P < 0.001). However, in male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P < 0.001). The tissue-to-plasma AUC0→∞ ratio was similar between male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P < 0.001) while remained unchanged in female mice and in kidney (male and female mice) but decreased 55% in brain (P < 0.05). The tissue-to-plasma partial AUC ratio, the drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences. © 2015 Société Française de Pharmacologie et de Thérapeutique.
Chakkarapani, Elavazhagan; Chau, Vann; Poskitt, Kenneth J; Synnes, Anne; Kwan, Eddie; Roland, Elke; Miller, Steven P
2016-09-01
To determine the association between lowest plasma magnesium concentration and brain metabolism, and whether magnetic resonance imaging brain injury patterns moderated the association in hypoxic-ischemic encephalopathy. In 131 early (day-of-life 3) and 65 late (day-of-life 10) scans of term encephalopathic infants born between 2004 and 2012, we examined the association of lowest plasma magnesium (until day-of-life 3) on basal ganglia and white matter peak metabolite ratios on magnetic resonance spectroscopy independent of covariates, stratified by the predominant patterns of injury (normal, basal nuclei/total, watershed, multifocal) using multiple linear regression. Lowest plasma magnesium was associated with lower white matter N-acetyl-aspartate/choline in the multifocal pattern on early scan (regression-coefficient, β: 0.13; 95% CI: 0.04, 0.22) and in the basal nuclei/total pattern on late scan (β: 0.08; 95% CI: 0.02, 0.15), and was negatively associated with basal ganglia lactate/N-acetyl-aspartate (β: -0.16; 95% CI: -0.05, -0.28) and lactate/choline (β: -0.1; 95% CI: -0.03, -0.17) ratio in the basal nuclei/total pattern on late scan independent of hypomagnesaemia correction, cooling and postmenstrual age at scan. Lowest plasma magnesium was not associated with metabolite ratios in other brain injury patterns. In infants with hypoxic-ischaemic encephalopathy, predominant patterns of brain injury moderated the association between lowest plasma magnesium in the first three days of life and impaired brain metabolism. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
The acute effect of cannabis on plasma, liver and brain ammonia dynamics, a translational study.
Abulseoud, Osama A; Zuccoli, Maria Laura; Zhang, Lifeng; Barnes, Allan; Huestis, Marilyn A; Lin, Da-Ting
2017-07-01
Recent reports of ammonia released during cannabis smoking raise concerns about putative neurotoxic effects. Cannabis (54mg) was administered in a double-blind, placebo-controlled design to healthy cannabis users (n=15) either orally, or through smoking (6.9%THC cigarette) or inhalation of vaporized cannabis (Volcano®). Serial assay of plasma ammonia concentrations at 0, 2, 4, 6, 8, 10, 15, 30, and 90min from onset of cannabis administration showed significant time (P=0.016), and treatment (P=0.0004) effects with robust differences between placebo and edible at 30 (P=0.002), and 90min (P=0.007) and between placebo and vaporized (P=0.02) and smoking routes (P=0.01) at 90min. Furthermore, plasma ammonia positively correlated with blood THC concentrations (P=0.03). To test the hypothesis that this delayed increase in plasma ammonia originates from the brain we administered THC (3 and 10mg/kg) to mice and measured plasma, liver, and brain ammonia concentrations at 1, 3, 5 and 30min post-injection. Administration of THC to mice did not cause significant change in plasma ammonia concentrations within the first 5min, but significantly reduced striatal glutamine-synthetase (GS) activity (P=0.046) and increased striatal ammonia concentration (P=0.016). Furthermore, plasma THC correlated positively with striatal ammonia concentration (P<0.001) and negatively with striatal GS activity (P=0.030). At 30min, we found marked increase in striatal ammonia (P<0.0001) associated with significant increase in plasma ammonia (P=0.042) concentration. In conclusion, the results of these studies demonstrate that cannabis intake caused time and route-dependent increases in plasma ammonia concentrations in human cannabis users and reduced brain GS activity and increased brain and plasma ammonia concentrations in mice. Published by Elsevier B.V.
Chen, Xiaodi; Sadowska, Grazyna B; Zhang, Jiyong; Kim, Jeong-Eun; Cummings, Erin E; Bodge, Courtney A; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Threlkeld, Steven W; Banks, William A; Stonestreet, Barbara S
2015-01-01
We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Howard, J. C.; Young, D. R.
1975-01-01
Plasma growth hormone concentrations during sleep were determined experimentally. An elevated level of plasma growth hormone was observed during the initial phase of sleep and remained elevated for approximately 3 hr before returning to the steady-state level. Moreover, subsequent to a prolonged interruption of sleep, of the order of 2-3 hr, an elevated level of plasma growth hormone was again observed during the initial phase of resumed sleep. A control system formulation of the mechanism that controls the secretions of serum growth hormone in humans was used to account for the growth hormone responses observed.
Blood-C.S.F. barriers dysfunction in the chronic organic brain syndrome; a R.I.A. study.
Vardi, Y; Czerniak, P; Rabey, Y; Flechter, S; Boruchowsky, S; Streifler, M
1978-01-01
C.S.F. samples of 35 patients, who suffered from verified chronic, non-tumorous organic brain syndrome, were radioimmunoassayed for T4 and T.S.H., and were compared to C.S.F.-R.I.A. samples from a control group of patients who underwent myelography because of lumbar disc. In addition T4 and T.S.H. plasma levels were evaluated in the O.B.S. patients. C.S.F. T4 and T.S.H. levels were significantly higher in 65% of the O.B.S. group of patients than those of the control group. The average determinations for T4 were: 0.77 muh/100 ml in O.B.S. group as against 0--0.4 micrograms/100 ml in the C.S.F.'s of the control group. P greater than 0,001 T.S.H. C.S.F. levels were 1.33 microU/ml in the O.B.S. group, and 0--0.6 microU/ml in the control group (P greater than 0.005). It is suggested that the elevated R.I.A. values of these hormones in the C.S.F. of the O.B.S. patients reflect a disruption of blood-C.S.F. barriers. Therefore in the organic brain syndrome there seems to exist a pathophysiological dysfunction of brain barriers in addition of the neural damage.
Goldstein, David S; Holmes, Courtney; Kaufmann, Horacio; Freeman, Roy
2004-12-01
Oral L-threo-3,4-dihydroxyphenylserine (L-DOPS), a synthetic catechol amino acid, increases standing blood pressure and improves standing ability in patients with neurogenic orthostatic hypotension, by conversion of L-DOPS to norepinephrine (NE) outside the brain. This study assessed the pharmacokinetics of L-DOPS, NE, and dihydroxyphenylglycol (DHPG), the main neuronal metabolite of NE, in patients with primary chronic autonomic failure from pure autonomic failure (PAF) or multiple system atrophy (MSA). In 5 MSA and 4 PAF patients, antecubital venous blood was drawn during supine rest and plasma levels of catechols measured at various times for 48 hours after a single oral dose of 400 mg of L-DOPS. Plasma L-DOPS peaked at 1.9 microg/ml (9 micromol/L) about 3 hours after drug administration, followed by a monoexponential decline with a half-time of 2-3 hours in both patient groups. Plasma NE and DHPG also peaked at about 3 hours, but at much lower concentrations (4 and 42 nmol/L). Compared to the MSA group, the PAF group had a smaller calculated volume of distribution of L-DOPS and up to 10-fold lower plasma NE levels at all time points. Plasma NE was above baseline in MSA even at 48 hours after L-DOPS. The relatively long half-time for disappearance of L-DOPS compared to that of NE explains their very different attained plasma concentrations. The similar NE and DHPG responses in PAF and MSA suggests production of NE from LDOPS mainly in non-neuronal cells. Persistent elevation of plasma NE in MSA suggests residual release of NE from sympathetic nerves.
Vinothkumar, G; Kedharnath, C; Krishnakumar, S; Sreedhar, S; Preethikrishnan, K; Dinesh, S; Sundaram, A; Balakrishnan, D; Shivashekar, G; Sureshkumar; Venkataraman, P
2017-12-01
Cognitive dysfunction has been increasingly recognized in chronic kidney disease (CKD) patients. Senile plaques are important pathophysiological characteristic of cognitive dysfunction. The major component of plaques is the amyloid β (Aβ) peptide released from proteolytic cleavage of amyloid precursor protein (APP). Plasma Aβ has been a focus of the growing literature on blood based biomarkers for cognitive dysfunction. Oxidative stress is prevalent in CKD and it plays an important role in cognitive dysfunction. Increased oxidative stress leads to cause cleavage of APP and Aβ production. The aim of this study is to assess the antioxidant status and Aβ 42 levels in plasma of CKD patients with cognitive dysfunction compared to CKD without cognitive dysfunction. A total of 60 subjects divided into 30 CKD without cognitive dysfunction and 30 CKD with cognitive dysfunction based on neuropsychological assessment tests. To compare antioxidant status and Aβ 42 levels in plasma, the following groups such as healthy subjects (n = 30), normocytic normochromic anemia (n = 30) and Alzheimer's disease (AD, n = 10) patients were also maintained. Plasma Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Reduced glutathione (GSH) and lipid peroxidation (LPO) were determined by spectrophotometrically. Aβ level was determined by immunoblotting method. The parameters were statistically compared with healthy, normocytic normochromic anemia and AD subjects. Like AD subjects, significantly increased Aβ and LPO level while decreased SOD, CAT, GPx and GSH levels were observed in plasma of CKD patients with cognitive dysfunction when compared to healthy, CKD without cognitive dysfunction and normocytic normochromic anemic subjects. Results suggest that elevated plasma oxidative stress and Aβ were seen in CKD patients with cognitive dysfunction may be attributed to pathological changes within the brain.
Cao, Chuanhai; Wang, Li; Lin, Xiaoyang; Mamcarz, Malgorzata; Zhang, Chi; Bai, Ge; Nong, Jasson; Sussman, Sam; Arendash, Gary
2011-01-01
Retrospective and prospective epidemiologic studies suggest that enhanced coffee/caffeine intake during aging reduces risk of Alzheimer's disease (AD). Underscoring this premise, our studies in AD transgenic mice show that long-term caffeine administration protects against cognitive impairment and reduces brain amyloid-β levels/deposition through suppression of both β- and γ-secretase. Because coffee contains many constituents in addition to caffeine that may provide cognitive benefits against AD, we examined effects of caffeinated and decaffeinated coffee on plasma cytokines, comparing their effects to caffeine alone. In both AβPPsw+PS1 transgenic mice and non-transgenic littermates, acute i.p. treatment with caffeinated coffee greatly and specifically increased plasma levels of granulocyte-colony stimulating factor (GCSF), IL-10, and IL-6. Neither caffeine solution alone (which provided high plasma caffeine levels) or decaffeinated coffee provided this effect, indicating that caffeine synergized with some as yet unidentified component of coffee to selectively elevate these three plasma cytokines. The increase in GCSF is particularly important because long-term treatment with coffee (but not decaffeinated coffee) enhanced working memory in a fashion that was associated only with increased plasma GCSF levels among all cytokines. Since we have previously reported that long-term GCSF treatment enhances cognitive performance in AD mice through three possible mechanisms (e.g., recruitment of microglia from bone marrow, synaptogenesis, and neurogenesis), the same mechanisms could be complimentary to caffeine's established ability to suppress Aβ production. We conclude that coffee may be the best source of caffeine to protect against AD because of a component in coffee that synergizes with caffeine to enhance plasma GCSF levels, resulting in multiple therapeutic actions against AD.
Wang, Peipei; Sun, Hongxiang; Liu, Dianyu; Jiao, Zezhao; Yue, Su; He, Xiuquan; Xia, Wen; Ji, Jianbo; Xiang, Lan
2017-05-05
Portulaca oleracea L. is a potherb and also a widely used traditional Chinese medicine. In accordance with its nickname "longevity vegetable", pharmacological study demonstrated that this plant possessed antioxidant, anti-aging, and cognition-improvement function. Active principles pertaining to these functions of P. oleracea need to be elucidated. The present study evaluated the effect of a phenolic extract (PAAs) from P. oleracea which contained specific antioxidant indoline amides on cognitive impairment in senescent mice. PAAs was prepared through AB-8 macroporous resin column chromatography. Total phenol content was determined using colorimetric method, and contents of indoline amides were determined using HPLC-UV method. Senescent Kunming mice with cognitive dysfunction were established by intraperitoneal injection of D-galactose (D-gal, 1250mg/kg/day) and NaNO 2 (90mg/kg/day) for 8 weeks, L-PAAs (360mg/kg/day), H-PAAs (720mg/kg/day), and nootropic drug piracetam (PA, 400mg/kg/day) as the positive control were orally administered. Spatial learning and memory abilities were evaluated by Morris water maze experiment. Activities of AChE, SOD, CAT, and levels of GSH and MDA in the brain or plasma were measured. Hippocampal morphology was observed by HE staining. Chronic treatment of large dose of D-gal/NaNO 2 significantly reduced lifespan, elevated AChE activity, decreased CAT activity, compensatorily up-regulated SOD activity and GSH level, increased MDA level, induced neuronal damage in hippocampal CA1, CA3 and CA4 regions, and impaired cognitive function. Similar to PA, PAAs prolonged the lifespan and improved spatial memory ability. Moreover, PAAs improved learning ability. H-PAAs significantly reversed compensatory increase in SOD activity to the normal level, elevated serum CAT activity, and reduced MDA levels in brain and plasma, more potent than L-PAAs. Besides these, PAAs evidently inhibited hippocampal neuronal damage. However, it had no effect on brain AChE activity. PAAs as the bioactive principles of P. oleracea attenuated oxidative stress, improved survival rate, and enhanced cognitive function in D-gal/NaNO 2 -induced senile mice, similar to piracetam. This phenolic extract provides a promising candidate for prevention of aging and aging-related cognitive dysfunction in clinic. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Dispositional study of opioids in mice pretreated with sympathomimetic agents.
Dambisya, Y M; Chan, K; Wong, C L
1992-08-01
Brain and plasma levels of morphine and codeine were determined by an assay method involving solid-phase extraction and ion-pair reversed phase HPLC. Detection was by a variable wavelength UV-detector (for codeine) and an amperometric electro-chemical detector (for morphine) coupled in series. Ephedrine or phenylpropanolamine pretreatment did not interfere with the plasma disposition of morphine, evidenced by overlapping plasma concentration-time profiles. Brain opioid levels were equally unaffected by sympathomimetic pretreatment. The relative ratios of brain to plasma concentrations at the time corresponding to the respective peak anti-nociceptive activity for morphine and codeine revealed no significant differences. It is concluded that single doses of ephedrine and phenylpropanolamine do not affect the disposition of morphine and codeine in mice.
Wang, Kevin K W; Yang, Zhihui; Yue, John K; Zhang, Zhiqun; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Lingsma, Hester F; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Manley, Geoffrey T; Cooper, Shelly R; Dams-O'Connor, Kristen; Hricik, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Sinha, Tuhin K; Vassar, Mary J
2016-07-01
We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906). These data suggest that while exposure to TBI may trigger the AutoAb[GFAP] response, circulating antibodies are elevated specifically in acute TBI patients with a history of TBI. AutoAb[GFAP] levels for participants with chronic TBI (average post-TBI time 176 days or 6.21 months) were also significantly higher (15.08 ± 2.82; n = 21) than healthy controls (p < 0.001). These data suggest a persistent upregulation of the autoimmune response to specific brain antigen(s) in the subacute to chronic phase after TBI, as well as after repeated TBI insults. Hence, AutoAb[GFAP] may be a sensitive assay to study the dynamic interactions between post-injury brain and patient-specific autoimmune responses across acute and chronic settings after TBI.
Portnow, Jana; Badie, Behnam; Chen, Mike; Liu, An; Blanchard, Suzette; Synold, Timothy W
2009-11-15
Intracerebral microdialysis (ICMD) is an accepted method for monitoring changes in neurochemistry from acute brain injury. The goal of this pilot study was to determine the feasibility of using ICMD to examine the neuropharmacokinetics of temozolomide in brain interstitium following oral administration. Patients with primary or metastatic brain tumors had a microdialysis catheter placed in peritumoral brain tissue at the time of surgical debulking. Computerized tomography scan confirmed the catheter location. Patients received a single oral dose of temozolomide (150 mg/m2) on the first postoperative day, serial plasma and ICMD samples were collected over 24 hours, and temozolomide concentrations were determined by tandem mass spectrometry. Nine patients were enrolled. Dialysate and plasma samples were successfully collected from seven of the nine patients. The mean temozolomide areas under the concentration-time curve (AUC) in plasma and brain interstitium were 17.1 and 2.7 microg/mL x hour, with an average brain interstitium/plasma AUC ratio of 17.8%. The mean peak temozolomide concentration in the brain was 0.6 +/- 0.3 microg/mL, and the mean time to reach peak level in brain was 2.0 +/- 0.8 hours. The use of ICMD to measure the neuropharmacokinetics of systemically administered chemotherapy is safe and feasible. Concentrations of temozolomide in brain interstitium obtained by ICMD are consistent with published data obtained in a preclinical ICMD model, as well as from clinical studies of cerebrospinal fluid. However, the delayed time required to achieve maximum temozolomide concentrations in brain suggests that current chemoradiation regimens may be improved by administering temozolomide 2 to 3 hours before radiation.
Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice.
Neumann, Inga D; Maloumby, Rodrigue; Beiderbeck, Daniela I; Lukas, Michael; Landgraf, Rainer
2013-10-01
The possibility to improve socio-emotional behaviors in humans by intranasal administration of synthetic oxytocin (OXT) attracts increasing attention, but its uptake into the brain has never been demonstrated so far. Here we used simultaneous microdialysis in both the dorsal hippocampus and amygdala of rats and mice in combination with concomitant blood sampling from the jugular vein to study the dynamics of the neuropeptide in brain extracellular fluid and plasma after its nasal administration. OXT was found to be increased in microdialysates from both the hippocampus and amygdala with peak levels occurring 30-60min after nasal administration. Despite a similar temporal profile of OXT concentrations in plasma, peripheral OXT is unlikely to contribute to dialysate OXT as calculated from in vitro recovery data, indicating a central route of transport. Moreover, intraperitoneal administration of synthetic OXT in identical amounts caused rapid peak levels in brain dialysates and plasma during the first 30min after treatment and a subsequent return toward baseline. While the precise route(s) of central transport remain to be elucidated, our data provide the first evidence that nasally applied OXT indeed reaches behaviorally relevant brain areas, and this uptake is paralleled by changes in plasma OXT. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wilson, T A; DeSimone, A P; Romano, C A; Nicolosi, R J
2000-09-01
The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol compared to the stanol diet. The CFO, sterol, and stanol diets excreted significantly more fecal cholesterol compared to the coconut oil and CO diets. In summary, CFO reduces plasma and hepatic cholesterol concentrations and increases fecal cholesterol excretion greater than CO through some other mechanism(s) in addition to increase dietary sterols and stanols-possibly oryzanols.
Shantha Kumara, H M C; Gaita, David; Miyagaki, Hiromichi; Yan, Xiaohong; Hearth, Sonali AC; Njoh, Linda; Cekic, Vesna; Whelan, Richard L
2016-01-01
AIM To assess blood chitinase 3-like 1 (CHi3L1) levels for 2 mo after minimally invasive colorectal resection (MICR) for colorectal cancer (CRC). METHODS CRC patients in an Institutional Review Board approved data/plasma bank who underwent elective MICR for whom preoperative (PreOp), early postoperative (PostOp), and 1 or more late PostOp samples [postoperative day (POD) 7-27] available were included. Plasma CHi3L1 levels (ng/mL) were determined in duplicate by enzyme linked immunosorbent assay. RESULTS PreOp and PostOp plasma sample were available for 80 MICR cancer patients for the study. The median PreOp CHi3L1 level was 56.8 CI: 41.9-78.6 ng/mL (n = 80). Significantly elevated (P < 0.001) median plasma levels (ng/mL) over PreOp levels were detected on POD1 (667.7 CI: 495.7, 771.7; n = 79), POD 3 (132.6 CI: 95.5, 173.7; n = 76), POD7-13 (96.4 CI: 67.7, 136.9; n = 62), POD14-20 (101.4 CI: 80.7, 287.4; n = 22), and POD 21-27 (98.1 CI: 66.8, 137.4; n = 20, P = 0.001). No significant difference in plasma levels were noted on POD27-41. CONCLUSION Plasma CHi3L1 levels were significantly elevated for one month after MICR. Persistently elevated plasma CHi3L1 may support the growth of residual tumor and metastasis. PMID:27574553
Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro
2013-07-01
Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.
Sagare, Abhay P.; Deane, Rashid; Zlokovic, Berislav V.
2012-01-01
Low-density lipoprotein receptor-related protein-1 (LRP1) is the main cell surface receptor involved in brain and systemic clearance of the Alzheimer's disease (AD) toxin amyloid-beta (Aβ). In plasma, a soluble form of LRP1 (sLRP1) is the major transport protein for peripheral Aβ. LRP1 in brain endothelium and mural cells mediates Aβ efflux from brain by providing a transport mechanism for A across the blood-brain barrier (BBB). sLRP1 maintains a plasma ‘sink’ activity for Aβ through binding of peripheral Aβ which in turn inhibits re-entry of free plasma Aβ into the brain. LRP1 in the liver mediates systemic clearance of Aβ. In AD, LRP1 expression at the BBB is reduced and Aβ binding to circulating sLRP1 is compromised by oxidation. Cell surface LRP1 and circulating sLRP1 represent druggable targets which can be therapeutically modified to restore the physiological mechanisms of brain Aβ homeostasis. In this review, we discuss how increasing LRP1 expression at the BBB and liver with lifestyle changes, statins, plant-based active principles and/or gene therapy on one hand, and how replacing dysfunctional plasma sLRP1 on the other regulate Aβ clearance from brain ultimately controlling the onset and/or progression of AD. PMID:22820095
Pisu, Maria Giuseppina; Floris, Ivan; Maciocco, Elisabetta; Serra, Mariangela; Biggio, Giovanni
2006-09-01
Stressful stimuli and anxiogenic drugs increase the plasma and brain concentrations of neuroactive steroids. Moreover, in rats trained to consume their daily meal during a fixed period, the anticipation of food is associated with changes in the function of various neurotransmitter systems. We have now evaluated the effects of anticipation and consumption of food in such trained rats on the plasma and brain concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) and 3alpha,21-dihydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH DOC), two potent endogenous positive modulators of type A receptors for gamma-aminobutyric acid (GABA). The abundance of these neuroactive steroids was increased in both the cerebral cortex and plasma of the rats during both food anticipation and consumption. In contrast, the concentration of their precursor, progesterone, was increased in the brain only during food consumption, whereas it was increased in plasma only during food anticipation. Intraperitoneal administration of the selective agonist abecarnil (0.1 mg/kg) 40 min before food presentation prevented the increase in the brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC during food anticipation but not that associated with consumption. The change in emotional state associated with food anticipation may thus result in an increase in the plasma and brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC in a manner sensitive to the activation of GABA(A) receptor-mediated neurotransmission. A different mechanism, insensitive to activation of such transmission, may underlie the changes in the concentrations of these neuroactive steroids during food consumption.
Adolescent activity-based anorexia increases anxiety-like behavior in adulthood.
Kinzig, Kimberly P; Hargrave, Sara L
2010-09-01
Activity-based anorexia is a paradigm that induces increased physical activity, reduced food intake, and heightened activity of the hypothalamic-pituitary-adrenal axis in adult rats. To investigate whether experience with activity-based anorexia produced enduring effects on brain and behavior, female adolescent rats experienced activity-based anorexia during adolescence and were tested in adulthood for anxiety-like behavior on an elevated plus maze and in an open field. Analysis of elevated plus maze and open field behavior in adulthood revealed that rats that experienced activity-based anorexia during adolescence, but not rats that were simply food restricted, displayed increased anxiety-like behavior in adulthood. Plasma corticosterone and expression levels of corticotropin-releasing hormone mRNA in the hypothalamic paraventricular nucleus and in the central nucleus of the amygdala were significantly elevated in adult rats that had undergone activity-based anorexia in adolescence in response to the open field exposure, as compared to control rats. These data demonstrate enduring effects of adolescent activity-based anorexia on anxiety-like behavior and neuroendocrine factors critical in stress responsivity in adulthood. Furthermore, we demonstrate that activity-based anorexia during adolescence serves as a model whereby prolonged anxiety is induced, allowing for evaluation of the behavioral and neural correlates of mediating anxiety-like behaviors in adulthood. Copyright 2010 Elsevier Inc. All rights reserved.
Adolescent Activity-Based Anorexia Increases Anxiety-Like Behavior in Adulthood
Kinzig, Kimberly P.; Hargrave, Sara L.
2010-01-01
Activity-based anorexia is a paradigm that induces increased physical activity, reduced food intake, and heightened activity of the hypothalamic-pituitary-adrenal axis in adult rats. To investigate whether experience with activity-based anorexia produced enduring effects on brain and behavior, female adolescent rats experienced activity-based anorexia during adolescence and were tested in adulthood for anxiety-like behavior on an elevated plus maze and in an open field. Analysis of elevated plus maze and open field behavior in adulthood revealed that rats that experienced activity-based anorexia during adolescence, but not rats that were simply food restricted, displayed increased anxiety-like behavior in adulthood. Plasma corticosterone and expression levels of corticotropin- releasing hormone mRNA in the hypothalamic paraventricular nucleus and in the central nucleus of the amygdala were significantly elevated in adult rats that had undergone activity-based anorexia in adolescence in response to the open field exposure, as compared to control rats. These data demonstrate enduring effects of adolescent activity-based anorexia on anxiety-like behavior and neuroendocrine factors critical in stress responsivity in adulthood. Furthermore, we demonstrate that activity-based anorexia during adolescence serves as a model whereby prolonged anxiety is induced, allowing for evaluation of the behavioral and neural correlates of mediating anxiety-like behaviors in adulthood. PMID:20566408
Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A
2014-01-01
Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. PMID:25161074
Johnson, W E; Propper, C R
2000-05-01
Under dehydrating conditions, many terrestrial vertebrates species exhibit increases in plasma osmolality and their drinking behavior. Under some circumstances, this behavioral change is accompanied by changes in plasma and central angiotensin concentrations, and it has been proposed that these changes in angiotensin levels induce the thirst-related behaviors. In response to dehydration, the spadefoot toad, Scaphiopus couchii, exhibits thirst-related behavior in the form of cutaneous drinking. This behavior has been termed water absorption response (WR) behavior. Spadefoot toads live in harsh desert environments and are subject annually to dehydrating conditions that may induce thirst-related behavior. We tested the hypothesis that an increase in WR behavior is associated with both an increase in plasma osmolality and an increase in plasma and brain angiotensin concentrations. First, we determined the degree of dehydration that was necessary to initiate WR behavior. Animals dehydrated to 85% of their standard bladder-empty weight via deprivation of water exhibited WR behavior more frequently than control toads left in home containers with water available. Next, using the same dehydration methods, we determined the plasma osmolality and sodium concentrations of dehydrated toads. Toads dehydrated to 85% standard weight also had a significant increase in plasma osmolality, but exhibited no overall change in plasma sodium concentrations, indicating that while an overall increase in plasma osmolality appears to be associated with WR behavior in S. couchii, changes in sodium concentrations alone are not sufficient to induce the behavior. Finally, plasma and brain angiotensin concentrations were measured in control toads and toads dehydrated to 85% standard weight. Plasma and brain angiotensin concentrations did not increase in dehydrated toads, indicating that dehydration-induced WR behavior that is associated with changes in plasma osmolality may not be induced by changes in endogenous angiotensin concentrations in S. couchii.
[Endogenous nociceptin level in ischemic stroke: connection to serotonin system].
Tekes, Kornélia; Hantos, Mónika; Bátor, György; Gyenge, Melinda; Laufer, Rudolf; Folyovich, András
2006-06-01
Particular role of the heptadecapeptide nociceptin (orphanin FQ), the endogenous agonist of the NOP receptor, has been widely demonstrated in the regulation of pain sensation and anxiety-related behavior. In our best knowledge this is the first study reporting plasma nociceptin levels in 26 acute stroke and 6 transiens ischemic attack (TIA) patients. We have found significantly elevated plasma nociceptin levels in all the three groups of patients studied (stroke influencing the carotis or the lacunar region and TIA). We suggest that elevated plasma nociceptin level is the consequence of stroke as in the group of patients recovered from previous stroke was found similar the control value. Plasma serotonin level was found non-significantly decreased in patients with stroke influencing the lacunar region and TIA patients. However the plasma 5-hydroxy-indoleacetic acid (5HIAA) levels were found significantly elevated in patient groups with stroke influencing both the carotis and the lacunar regions. Data may serve as further evidence for the serotonergic dysregulation in stroke.
Prevention of the Angiogenic Switch in Human Breast Cancer
2006-03-01
elevated plasma bFGF and CTAPIII (connective tissue activating protein III) in mice bearing tumors that were non-angiogenic. This breast cancer also...increases in bFGF and PDGF were found In platelets, but not in plasma , as early as day 32 after implantation of breast cancer that was non-angiogenic...implantation of non-angiogenic tumor cells in SCID immunodeficient mice (Figure 6a). The plasma angiogenesis proteome revealed an elevation of PDGF and PF4 and
Hariu, Crystal D; Saunders, Ashley B; Gordon, Sonya G; Norby, Bo; Miller, Matthew W
2013-09-01
Determine if plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) correlates with markers of hemodynamically significant patent ductus arteriosus (PDA) in dogs. Ten dogs with PDA and 30 healthy dogs of similar ages. Prospective case series with control population. Dogs with PDA were initially evaluated with thoracic radiographs, transthoracic echocardiography, pulmonary capillary wedge pressure (PCWP) and NT-proBNP. Following ductal occlusion, NT-proBNP and echocardiography were repeated within 24 h and at day 90. PCWP was repeated at day 90. Correlation between NT-proBNP and hemodynamic measurements was assessed, and accuracy of NT-proBNP for identifying PDA severity was estimated. NT-proBNP was significantly higher (median; absolute range) in dogs with PDA (895; 490-7118 pmol/L) than controls (663; 50-1318 pmol/L) (p = 0.025). NT-proBNP decreased significantly 90 days post-ductal closure (597; 154-1858 pmol/L) (p = 0.013). Left atrial and ventricular size decreased significantly within 24 h and at day 90 as did PCWP (day 90 only). NT-proBNP correlated with vertebral heart size (VHS) and indexed left ventricular systolic diameter (iLVIDs); concentrations ≥ 1224 pmol/L distinguished dogs with elevated VHS and iLVIDs. NT-proBNP is elevated in dogs with PDA, decreases following PDA closure and correlates with select radiographic and echocardiographic markers of cardiac remodeling. Copyright © 2013 Elsevier B.V. All rights reserved.
Markus, C Rob; Sierksma, Aafje; Verbeek, Cees; van Rooijen, Jan J M; Patel, Hamina J; Brand, A Nico; Hendriks, Henk F J
2004-12-01
Brain serotonin (5-HT) synthesis is controlled by nutrients that influence the availability of plasma tryptophan (Trp) as compared with the sum of the other large neutral amino acids (LNAA; Trp:LNAA). Alcohol consumption is found to change mood and performance and this might well be due to alterations in the plasma Trp:LNAA ratio and brain 5-HT. In the present study, we tested whether whisky consumption as part of a meal may alter the plasma Trp:LNAA ratio and influence mood and performance in healthy volunteers. Twenty-four healthy male subjects participated in a within-subjects cross-over study. Subjects consumed whisky (125 ml; 40 g alcohol) or water (125 ml) as part of a standard evening meal. Effects of whisky consumption were tested on mood and choice reaction time and blood samples were taken to measure changes in plasma amino acids, glucose and insulin. The plasma Trp:LNAA ratio showed a significant decline 2 h after whisky consumption of alcohol (P<0.001). No effects were found on choice reaction time or mood as compared with the control condition. The present findings reveal that whisky consumption alters available plasma Trp for uptake into the brain, whereas there were no effects on mood and performance.
Boĭko, S S; Bobkov, Iu G; Dobrokhotova, T A; Kniazeva, N A; Neznamov, G G
1987-01-01
Experimental and clinical data indicated bemetil ability to penetrate through the blood-brain barrier. Bemetil concentration in the rat brain tissue was found to be significantly higher than in the plasma. Its concentration in the cerebrospinal fluid of patients with craniocerebral trauma was lower than in the plasma; the latter however does not exclude the possibility of bemetil accumulation in the brain structures.
Optical imaging characterizing brain response to thermal insult in injured rodent
NASA Astrophysics Data System (ADS)
Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.
2018-02-01
We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.
Abdel Gader, Abdel Galil M.; Al Momen, Abdul Karim M.; Alhaider, Abdulqader; Brooks, Marjory B.; Catalfamo, James L.; Al Haidary, Ahmed A.; Hussain, Mansour F.
2013-01-01
The objective of this study was to characterize the highly elevated levels of clotting factor VIII (FVIII) in camel plasma. Whole blood was collected from healthy camels and factor VIII clotting activity (FVIII:C) assays were conducted using both the clotting and the chromogenic techniques. The anticoagulant citrate phosphate dextrose adenine (CPDA) produced the highest harvest of FVIII:C, the level of plasma factor VIII, compared to heparin:saline and heparin:CPDA anticoagulants. Camel FVIII can be concentrated 2 to 3 times in cryoprecipitate. There was a significant loss of camel FVIII when comparing levels of FVIII in camel plasma after 1 h of incubation at 37°C (533%), 40°C (364%), and 50°C (223%). Thrombin generation of camel plasma is comparable to that of human plasma. It was concluded that camel plasma contains very elevated levels of FVIII:C, approaching 8 times the levels in human plasma, and that these elevated levels could not be attributed to excessive thrombin generation. Unlike human FVIII:C, camel FVIII:C is remarkably heat stable. Taken together, these unique features of camel FVIII could be part of the physiological adaptation of hemostasis of the Arabian camel in order to survive in the hot desert environment. PMID:24082408
Lithium suppression of tau induces brain iron accumulation and neurodegeneration.
Lei, P; Ayton, S; Appukuttan, A T; Moon, S; Duce, J A; Volitakis, I; Cherny, R; Wood, S J; Greenough, M; Berger, G; Pantelis, C; McGorry, P; Yung, A; Finkelstein, D I; Bush, A I
2017-03-01
Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T 2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.
Plasma Lipids and Betaine Are Related in an Acute Coronary Syndrome Cohort
Lever, Michael; George, Peter M.; Atkinson, Wendy; Molyneux, Sarah L.; Elmslie, Jane L.; Slow, Sandy; Richards, A. Mark; Chambers, Stephen T.
2011-01-01
Background Low plasma betaine has been associated with unfavorable plasma lipid profiles and cardiovascular risk. In some studies raised plasma betaine after supplementation is associated with elevations in plasma lipids. We aimed to measure the relationships between plasma and urine betaine and plasma lipids, and the effects of lipid-lowering drugs on these. Methodology Fasting plasma samples were collected from 531 subjects (and urine samples from 415) 4 months after hospitalization for an acute coronary syndrome episode. In this cross-sectional study, plasma betaine and dimethylglycine concentrations and urine excretions were compared with plasma lipid concentrations. Subgroup comparisons were made for gender, with and without diabetes mellitus, and for drug treatment. Principal Findings Plasma betaine negatively correlated with triglyceride (Spearman's rs = −0.22, p<0.0001) and non-high-density lipoprotein cholesterol (rs = −0.27, p<0.0001). Plasma betaine was a predictor of BMI (p<0.05) and plasma non-high-density lipoprotein cholesterol and triglyceride (p<0.001) independently of gender, age and the presence of diabetes. Using data grouped by plasma betaine decile, increasing plasma betaine was linearly related to decreases in BMI (p = 0.008) and plasma non-HDL cholesterol (p = 0.002). In a non-linear relationship betaine was negatively associated with elevated plasma triglycerides (p = 0.004) only for plasma betaine >45 µmol/L. Subjects taking statins had higher plasma betaine concentrations (p<0.001). Subjects treated with a fibrate had lower plasma betaine (p = 0.003) possibly caused by elevated urine betaine loss (p<0.001). The ratio of coenzyme Q to non-high-density lipoprotein cholesterol was higher in subjects with higher plasma betaine, and in subjects taking a statin. Conclusion Low plasma betaine concentrations correlated with an unfavourable lipid profile. Betaine deficiency may be common in the study population. Controlled clinical trials of betaine supplementation should be conducted in appropriate populations to determine whether correction affects cardiovascular risk. PMID:21747945
Bretillon, L; Lütjohann, D; Ståhle, L; Widhe, T; Bindl, L; Eggertsen, G; Diczfalusy, U; Björkhem, I
2000-05-01
We have previously presented evidence that most of the 24S-hydroxycholesterol present in the circulation originates from the brain and that most of the elimination of this oxysterol occurs in the liver. Plasma 24S-hydroxycholesterol levels decline by a factor of about 5 during the first decades of life. The concentration of the enzyme cholesterol 24S-hydroxylase in the brain is, however, about constant from the first year of life, and reduced enzyme levels thus cannot explain the decreasing plasma levels during infancy. In the present work we tested the hypothesis that the plasma levels of 24S-hydroxycholesterol may reflect the size of the brain relative to the capacity of the liver to eliminate the substance. It is shown here that the age-dependent changes in absolute as well as cholesterol-related plasma level of 24S-hydroxycholesterol closely follow the changes in the ratio between estimated brain weight and estimated liver volume. The size of the brain is increased only about 50% whereas the size of the liver is increased by about 6-fold after the age of 1 year. Liver volume is known to be highly correlated to body surface, and in accordance with this the absolute as well as the cholesterol-related plasma level of 24S-hydroxycholesterol was found to be highly inversely correlated to body surface in 77 healthy subjects of varying ages (r(2) = 0.74). Two chondrodystrophic dwarves with normal size of the brain but with markedly reduced body area had increased levels of 24S-hydroxycholesterol when related to age but normal levels when related to body surface. It is concluded that the balance between cerebral production and hepatic metabolism is a critical determinant for plasma levels of 24S-hydroxycholesterol at different ages and that endocrinological factors are less important. The results are discussed in relation to the possibility to use 24S-hydroxycholesterol in the circulation as a marker for cholesterol homeostasis in the brain.
Interleukin-6 amplifies glucagon secretion: coordinated control via the brain and pancreas
Barnes, Tammy M.; Otero, Yolanda F.; Elliott, Amicia D.; Locke, Alicia D.; Malabanan, Carlo M.; Coldren, Anastasia G.; Brissova, Marcela; Piston, David W.
2014-01-01
Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases. PMID:25205821
Chromium supplementation improved post-stroke brain infarction and hyperglycemia.
Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung
2016-04-01
Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.
Paring down on Descartes: a review of brain noradrenaline and sympathetic nervous function.
Lambert, G W
2001-12-01
1. The conceptual framework of mind-body interaction can be traced back to the seminal observations of the French philosopher and mathematician René Descartes (1596-1650). Descartes succeeded in eliminating the soul's apparent physiological role and established the brain as the body's control centre. 2. While the pivotal role played by the central nervous system (CNS) in the maintenance of physiological and psychological health has long been recognized, the development of methods designed for the direct examination of human CNS processes has only recently come to fruition. 3. There exists a substantial body of evidence derived from clinical and experimental studies indicating that CNS monoaminergic cell groups, in particular those using noradrenaline as their neurotransmitter, participate in the excitatory regulation of the sympathetic nervous system and the development and maintenance of the hypertensive state. 4. In essential hypertension, particularly in younger patients, there occurs an activation of sympathetic nervous outflows to the kidneys, heart and skeletal muscle. The existence of a correlation between subcortical brain noradrenaline turnover and total body noradrenaline spillover to plasma, resting blood pressure and heart rate provides further support for the observation that elevated subcortical noradrenergic activity subserves a sympathoexcitatory role in the regulation of sympathetic preganglionic neurons of the thorocolumbar cord.
Quantification of [(11)C]yohimbine binding to α2 adrenoceptors in rat brain in vivo.
Phan, Jenny-Ann; Landau, Anne M; Wong, Dean F; Jakobsen, Steen; Nahimi, Adjmal; Doudet, Doris J; Gjedde, Albert
2015-03-01
We quantified the binding potentials (BPND) of [(11)C]yohimbine binding in rat brain to alpha-2 adrenoceptors to evaluate [(11)C]yohimbine as an in vivo marker of noradrenergic neurotransmission and to examine its sensitivity to the level of noradrenaline. Dual [(11)C]yohimbine dynamic positron emission tomography (PET) recordings were applied to five Sprague Dawley rats at baseline, followed by acute amphetamine administration (2 mg/kg) to induce elevation of the endogenous level of noradrenaline. The volume of distribution (VT) of [(11)C]yohimbine was obtained using Logan plot with arterial plasma input. Because alpha-2 adrenoceptors are distributed throughout the brain, the estimation of the BPND is complicated by the absence of an anatomic region of no displaceable binding. We used the Inhibition plot to acquire the reference volume, VND, from which we calculated the BPND. Acute pharmacological challenge with amphetamine induced a significant decline of [(11)C]yohimbine BPND of ~38% in all volumes of interest. The BPND was greatest in the thalamus and striatum, followed in descending order by, frontal cortex, pons, and cerebellum. The experimental data demonstrate that [(11)C]yohimbine binding is sensitive to a challenge known to increase the extracellular level of noradrenaline, which can benefit future PET investigations of pathologic conditions related to disrupted noradrenergic neurotransmission.
Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor
2018-01-05
In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Zhen; Yan, Chonghuai; Liu, Gang; Niu, Yixin; Zhang, Weiwei; Lu, Shuai; Li, Xiaoyong; Zhang, Hongmei; Ning, Guang; Fan, Jiangao; Qin, Li; Su, Qing
2016-01-01
Selenium exposure can induce liver insulin resistance and increased liver triglyceride concentrations in animals, which may link to an increased risk of nonalcoholic fatty liver disease (NAFLD). However, epidemiological studies investigating the association between elevated plasma selenium levels and NAFLD were not available. We aimed to investigate the association of selenium levels with the prevalence of NAFLD in Chinese adults. This was a cross-sectional study of 8550 Chinese adults aged 40 yr or older in Shanghai, China. A questionnaire, anthropometric measurements, and laboratory tests were conducted. NAFLD was diagnosed by hepatic ultrasound after the exclusion of alcohol abuse and other liver diseases. Plasma selenium concentration was assessed by inductively coupled plasma mass spectroscopy. The median concentration of plasma selenium was 213.0 μg/L. Elevated plasma selenium levels were associated with higher triglycerides, LDL-cholesterol, fasting plasma glucose, post-loading plasma glucose, A1c, HOMA-IR, as well as ALT, AST and γ-GT (all P < 0.05). The odds ratios were substantially higher for NAFLD (OR = 1.54, 95% CI 1.13–2.18) in the highest selenium quartile compared with those in the lowest quartile, after adjustment for potential cofounder. The results of this study provided epidemiological evidence that increased plasma selenium level is associated with elevated prevalence of NAFLD. PMID:27853246
Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William; Marchand, Sandrine
2014-01-01
The distribution of metronidazole in the central nervous system has only been described based on cerebrospinal fluid data. However, extracellular fluid (ECF) concentrations may better predict its antimicrobial effect and/or side effects. We sought to explore by microdialysis brain ECF metronidazole distribution in patients with acute brain injury. Four brain-injured patients monitored by cerebral microdialysis received 500 mg of metronidazole over 0.5 h every 8 h. Brain dialysates and blood samples were collected at steady state over 8 h. Probe recoveries were evaluated by in vivo retrodialysis in each patient for metronidazole. Metronidazole and OH-metronidazole were assayed by high-pressure liquid chromatography, and a noncompartmental pharmacokinetic analysis was performed. Probe recovery was equal to 78.8% ± 1.3% for metronidazole in patients. Unbound brain metronidazole concentration-time curves were delayed compared to unbound plasma concentration-time curves but with a mean metronidazole unbound brain/plasma AUC0-τ ratio equal to 102% ± 19% (ranging from 87 to 124%). The unbound plasma concentration-time profiles for OH-metronidazole were flat, with mean average steady-state concentrations equal to 4.0 ± 0.7 μg ml(-1). This microdialysis study describes the steady-state brain distribution of metronidazole in patients and confirms its extensive distribution.
A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer's disease.
Newport, Mary T; VanItallie, Theodore B; Kashiwaya, Yoshihiro; King, Michael Todd; Veech, Richard L
2015-01-01
Providing ketone bodies to the brain can bypass metabolic blocks to glucose utilization and improve function in energy-starved neurons. For this, plasma ketones must be elevated well above the ≤ 0.2 mM default concentrations normally prevalent. Limitations of dietary methods currently used to produce therapeutic hyperketonemia have stimulated the search for better approaches. Described herein is a new way to produce therapeutic hyperketonemia, entailing prolonged oral administration of a potent ketogenic agent--ketone monoester (KME)--to a patient with Alzheimer's disease dementia and a pretreatment Mini-Mental State Examination score of 12. The patient improved markedly in mood, affect, self-care, and cognitive and daily activity performance. The KME was well tolerated throughout the 20-month treatment period. Cognitive performance tracked plasma β-hydroxybutyrate concentrations, with noticeable improvements in conversation and interaction at the higher levels, compared with predose levels. KME-induced hyperketonemia is robust, convenient, and safe, and the ester can be taken as an oral supplement without changing the habitual diet. Published by Elsevier Inc.
Fortuna, Ana; Alves, Gilberto; Soares-da-Silva, Patrício; Falcão, Amílcar
2013-11-01
In silico approaches to predict absorption, distribution, metabolism and excretion (ADME) of new drug candidates are gaining a relevant importance in drug discovery programmes. When considering particularly the pharmacokinetics during the development of oral antiepileptic drugs (AEDs), one of the most prominent goals is designing compounds with good bioavailability and brain penetration. Thus, it is expected that in silico models able to predict these features may be applied during the early stages of AEDs discovery. The present investigation was mainly carried out in order to generate in vivo pharmacokinetic data that can be utilized for development and validation of in silico models. For this purpose, a single dose of each compound (1.4mmol/kg) was orally administered to male CD-1 mice. After quantifying the parent compound and main metabolites in plasma and brain up to 12h post-dosing, a non-compartmental pharmacokinetic analysis was performed and the corresponding brain/plasma ratios were calculated. Moreover the plasma protein binding was estimated in vitro applying the ultrafiltration procedure. The present in vivo pharmacokinetic characterization of the test compounds and corresponding metabolites demonstrated that the metabolism extensively compromised the in vivo activity of CBZ derivatives and their toxicity. Furthermore, it was clearly evidenced that the time to reach maximum peak concentration, bioavailability (given by the area under the curve) and metabolic stability (given by the AUC0-12h ratio of the parent compound and total systemic drug) influenced the in vivo pharmacological activities and must be considered as primary parameters to be investigated. All the test compounds presented brain/plasma ratios lower than 1.0, suggesting that the blood-brain barrier restricts drug entry into the brain. In agreement with in vitro studies already performed within our research group, CBZ, CBZ-10,11-epoxide and oxcarbazepine exhibited the highest brain/plasma ratios (>0.50), followed by eslicarbazepine, R-licarbazepine, trans-diol and BIA 2-024 (ratios within 0.05-0.50). BIA 2-265 was not found in the biophase, probably due to its high plasma-protein bound fraction (>90%) herein revealed for the first time. The comparative in vivo pharmacokinetic data obtained in the present work might be usefully applied in the context of discovery of new antiepileptic drugs that are derivatives of CBZ. Copyright © 2013 Elsevier B.V. All rights reserved.
Elevated Plasma CXCL12α Is Associated with a Poorer Prognosis in Pulmonary Arterial Hypertension
Li, Lili; O’Connell, Caroline; Codd, Mary; Lawrie, Allan; Morton, Allison; Kiely, David G.; Condliffe, Robin; Elliot, Charles; McLoughlin, Paul; Gaine, Sean
2015-01-01
Rationale Recent work in preclinical models suggests that signalling via the pro-angiogenic and pro-inflammatory cytokine, CXCL12 (SDF-1), plays an important pathogenic role in pulmonary hypertension (PH). The objective of this study was to establish whether circulating concentrations of CXCL12α were elevated in patients with PAH and related to mortality. Methods Plasma samples were collected from patients with idiopathic pulmonary arterial hypertension (IPAH) and PAH associated with connective tissue diseases (CTD-PAH) attending two pulmonary hypertension referral centres (n = 95) and from age and gender matched healthy controls (n = 44). Patients were subsequently monitored throughout a period of five years. Results CXCL12α concentrations were elevated in PAH groups compared to controls (P<0.05) and receiver-operating-characteristic analysis showed that plasma CXCL12α concentrations discriminated patients from healthy controls (AUC 0.80, 95% confidence interval 0.73-0.88). Kaplan Meier analysis indicated that elevated plasma CXCL12α concentration was associated with reduced survival (P<0.01). Multivariate Cox proportional hazards model showed that elevated CXCL12α independently predicted (P<0.05) earlier death in PAH with a hazard ratio (95% confidence interval) of 2.25 (1.01-5.00). In the largest subset by WHO functional class (Class 3, 65% of patients) elevated CXCL12α independently predicted (P<0.05) earlier death, hazard ratio 2.27 (1.05-4.89). Conclusions Our data show that elevated concentrations of circulating CXCL12α in PAH predicted poorer survival. Furthermore, elevated circulating CXCL12α was an independent risk factor for death that could potentially be included in a prognostic model and guide therapy. PMID:25856504
Elevated plasma CXCL12α is associated with a poorer prognosis in pulmonary arterial hypertension.
McCullagh, Brian N; Costello, Christine M; Li, Lili; O'Connell, Caroline; Codd, Mary; Lawrie, Allan; Morton, Allison; Kiely, David G; Condliffe, Robin; Elliot, Charles; McLoughlin, Paul; Gaine, Sean
2015-01-01
Recent work in preclinical models suggests that signalling via the pro-angiogenic and pro-inflammatory cytokine, CXCL12 (SDF-1), plays an important pathogenic role in pulmonary hypertension (PH). The objective of this study was to establish whether circulating concentrations of CXCL12α were elevated in patients with PAH and related to mortality. Plasma samples were collected from patients with idiopathic pulmonary arterial hypertension (IPAH) and PAH associated with connective tissue diseases (CTD-PAH) attending two pulmonary hypertension referral centres (n = 95) and from age and gender matched healthy controls (n = 44). Patients were subsequently monitored throughout a period of five years. CXCL12α concentrations were elevated in PAH groups compared to controls (P<0.05) and receiver-operating-characteristic analysis showed that plasma CXCL12α concentrations discriminated patients from healthy controls (AUC 0.80, 95% confidence interval 0.73-0.88). Kaplan Meier analysis indicated that elevated plasma CXCL12α concentration was associated with reduced survival (P<0.01). Multivariate Cox proportional hazards model showed that elevated CXCL12α independently predicted (P<0.05) earlier death in PAH with a hazard ratio (95% confidence interval) of 2.25 (1.01-5.00). In the largest subset by WHO functional class (Class 3, 65% of patients) elevated CXCL12α independently predicted (P<0.05) earlier death, hazard ratio 2.27 (1.05-4.89). Our data show that elevated concentrations of circulating CXCL12α in PAH predicted poorer survival. Furthermore, elevated circulating CXCL12α was an independent risk factor for death that could potentially be included in a prognostic model and guide therapy.
Increased plasma ghrelin suppresses insulin release in wethers fed with a high-protein diet.
Takahashi, T; Sato, K; Kato, S; Yonezawa, T; Kobayashi, Y; Ohtani, Y; Ohwada, S; Aso, H; Yamaguchi, T; Roh, S G; Katoh, K
2014-06-01
Ghrelin is a multifunctional peptide that promotes an increase of food intake and stimulates GH secretion. Ghrelin secretion is regulated by nutritional status and nutrients. Although a high-protein (HP) diet increases plasma ghrelin secretion in mammals, the mechanisms and the roles of the elevated ghrelin concentrations due to a HP diet have not been fully established. To clarify the roles of elevated acylated ghrelin upon intake of a HP diet, we investigated the regulation of ghrelin concentrations in plasma and tissues in wethers fed with either the HP diet or the control (CNT) diet for 14 days, and examined the action of the elevated plasma ghrelin by using a ghrelin-receptor antagonist. The HP diet gradually increased the plasma acylated-ghrelin concentrations, but the CNT diet did not. Although the GH concentrations did not vary significantly across the groups, an injection of ghrelin-receptor antagonist enhanced insulin levels in circulation in the HP diet group. In the fundus region of the stomach, the ghrelin levels did not differ between the HP and CNT diet groups, whereas ghrelin O-acyltransferase mRNA levels were higher in the group fed with HP diet than those of the CNT diet group were. These results indicate that the HP diet elevated the plasma ghrelin levels by increasing its synthesis; this elevation strongly suppresses the appearance of insulin in the circulation of wethers, but it is not involved in GH secretion. Overall, our findings indicate a role of endogenous ghrelin action in secretion of insulin, which acts as a regulator after the consumption of a HP diet. © 2014 Society for Endocrinology.
Wong, Alexander; Keats, Kirily; Rooney, Kieron; Hicks, Callum; Allsop, David J; Arnold, Jonathon C; McGregor, Iain S
2014-10-01
Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, accumulates in fat tissue where it can remain for prolonged periods. Under conditions of increased fat utilisation, blood cannabinoid concentrations can increase. However, it is unclear whether this has behavioural consequences. Here, we examined whether rats pre-treated with multiple or single doses of THC followed by a washout would show elevated plasma cannabinoids and altered behaviour following fasting or exercise manipulations designed to increase fat utilisation. Behavioural impairment was measured as an inhibition of spontaneous locomotor activity or a failure to successfully complete a treadmill exercise session. Fat utilisation was indexed by plasma free fatty acid (FFA) levels with plasma concentrations of THC and its terminal metabolite (-)-11-nor-9-carboxy-∆(9)-tetrahydrocannabinol (THC-COOH) also measured. Rats given daily THC (10 mg/kg) for 5 days followed by a 4-day washout showed elevated plasma THC-COOH when fasted for 24 h relative to non-fasted controls. Fasted rats showed lower locomotor activity than controls suggesting a behavioural effect of fat-released THC. However, rats fasted for 20 h after a single 5-mg/kg THC injection did not show locomotor suppression, despite modestly elevated plasma THC-COOH. Rats pre-treated with THC (5 mg/kg) and exercised 20 h later also showed elevated plasma THC-COOH but did not differ from controls in their likelihood of completing 30 min of treadmill exercise. These results confirm that fasting and exercise can increase plasma cannabinoid levels. Behavioural consequences are more clearly observed with pre-treatment regimes involving repeated rather than single THC dosing.
Chen, Yimin; Zhao, Ying; Feng, Linmin; Zhang, Jie; Zhang, Juanwen; Feng, Guofang
2016-04-27
Metabolic syndrome is closely associated with an increased risk for fatty liver disease morbidity and mortality. Recently, studies have reported that participants with fatty liver disease have higher serum alpha-fetoprotein levels than those without. We investigated the association between alpha-fetoprotein levels and the prevalence of metabolic syndrome in a Chinese asymptomatic population. A cross-sectional study was performed with 7,755 participants who underwent individual health examinations. Clinical and anthropometric parameters were collected and serum alpha-fetoprotein levels and other clinical and laboratory parameters were measured. Logistic regression analysis was used to examine associations between alpha-fetoprotein and metabolic syndrome. Participants with metabolic syndrome had significantly higher (p < 0.001) alpha-fetoprotein levels than those without, though all alpha-fetoprotein levels were within the reference interval. The association between the components of metabolic syndrome (central obesity, elevated blood pressure, elevated triglycerides, reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose) and alpha-fetoprotein levels was evaluated. Alpha-fetoprotein levels in the elevated triglycerides, reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose groups were significantly different (p=0.002, p < 0.001, p=0.020) compared with alpha-fetoprotein in the normal triglycerides, high-density lipoprotein cholesterol, and fasting plasma glucose groups. Logistic regression analyses showed an association between alpha-fetoprotein levels and increased risk for metabolic syndrome, the presence of reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose, but not with obesity, elevated blood pressure, or triglycerides. These results suggest a significant association between alpha-fetoprotein and metabolic syndrome.
Giri, Nagdeep; Shaik, Naveed; Pan, Guoyu; Terasaki, Tetsuya; Mukai, Chisato; Kitagaki, Shinji; Miyakoshi, Naoki; Elmquist, William F.
2016-01-01
Many anti-human immunodeficiency virus 1 nucleoside reverse-transcriptase inhibitors have low central nervous system (CNS) distribution due in part to active efflux transport at the blood-brain barrier. We have previously shown that zidovudine (AZT) and abacavir (ABC) are in vitro substrates for the efflux transport protein breast cancer resistance protein (Bcrp) 1. We evaluated the influence of Bcrp1 on plasma pharmacokinetics and brain penetration of zidovudine and abacavir in wild-type and Bcrp1-deficient (Bcrp1−/−) FVB mice. There was no difference in either area under the concentration-time profiles for plasma (AUCplasma) or brain (AUCbrain) for zidovudine between the wild-type and Bcrp1−/− mice. The AUCplasma of abacavir was 20% lower in the Bcrp1−/− mice, whereas the AUCbrain was 20% greater. This difference resulted in a 1.5-fold increase in abacavir brain exposure in the Bcrp1−/− mice. The effect of selective and nonselective transport inhibitors on the ABC brain/plasma ratio at a single time point was evaluated. 3-(6-Isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionicacid tert-butyl ester (Ko143), N[4[2-(6, 7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10H-acridine-4-carboxamide (GF120918), probenecid, and Pluronic P85 increased abacavir plasma concentrations in the wild-type mice. Abacavir plasma concentrations in Bcrp1−/− mice were increased by (R)-4-((1aR,6R,10bS)-1,2-difluoro-1,1a,6,10b-tetrahydrodibenzo(a,e)cyclopropa(c)cycloheptan-6-yl)-α-((5-quinoloyloxy)methyl)-1-piperazineethanol trihydrochloride (LY335979), GF120918, and probenecid, but not by Ko143. Brain/plasma concentration ratios in both the wild-type and Bcrp1−/− mice were increased by the P-glycoprotein inhibitors LY335979 and GF120918, but not by BCRP-selective inhibitors. These data indicate that deletion of Bcrp1 has little influence on the pharmacokinetics or brain penetration of AZT. However, for abacavir, deletion of Bcrp1 reduces plasma exposure and enhances brain penetration. These findings suggest that Bcrp1 does not play a significant role in limiting the CNS distribution of zidovudine and abacavir; however, brain penetration of abacavir is dependent on P-glycoprotein-mediated efflux. PMID:18443033
Simultaneous measurement of glucose transport and utilization in the human brain
Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.
2011-01-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622
Kim, Jae Hwan; Kim, Jae Young; Jung, Jin Young; Lee, Yong Woo; Lee, Won Taek; Huh, Seung Kon
2017-01-01
Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance. PMID:29302205
Gonçalves, Rithiele; Vargas, Liane S.; Lara, Marcus V. S.; Güllich, Angélica; Mandredini, Vanusa; Ponce-Soto, Luis; Marangoni, Sergio; Dal Belo, Cháriston A.; Mello-Carpes, Pâmela B.
2014-01-01
Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required. PMID:25380458
Effects of morphine on stress induced anxiety in rats: role of nitric oxide and Hsp70.
Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita
2015-02-01
The present study evaluated the effects of morphine on acute and chronic restraint stress (RS) induced anxiety modulation and the possible involvement of nitric oxide (NO) and heat shock proteins (Hsp70) during such effects. Acute RS (×1) induced anxiogenesis in the elevated plus maze (EPM) test which was associated with lowered brain NO metabolites (NOx) and elevated Hsp70 levels. Pretreatment with morphine (1 and 5 mg/kg) and L-arginine (500 mg/kg) attenuated the RS effects on EPM activity and brain NOx, whereas, Hsp70 levels were further augmented. Co-administration of both agents showed synergistic effects. By contrast, repeated RS (×15) did not induce any significant changes in EPM activity or brain NOx, but brain Hsp70 levels stayed elevated. Administration of morphine or L-arginine prior to chronic RS did not influence such chronic stress induced changes in behavioral and biochemical markers, but appreciably attenuated chronic RS induced elevation in Hsp70 levels. These results suggest that acute and chronic RS induced anxiety modulations were differentially influenced by morphine and L-arginine and that complex interactions involving brain NO and unregulated Hsp70 could regulate such effects. Copyright © 2014. Published by Elsevier Inc.
Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.
Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J
2016-08-01
In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.
Fillman, S G; Weickert, T W; Lenroot, R K; Catts, S V; Bruggemann, J M; Catts, V S; Weickert, C S
2016-01-01
Previous studies on schizophrenia have detected elevated cytokines in both brain and blood, suggesting neuroinflammation may contribute to the pathophysiology in some cases. We aimed to determine the extent to which elevated peripheral cytokine messenger RNA (mRNA) expression: (1) characterizes a subgroup of people with schizophrenia and (2) shows a relationship to cognition, brain volume and/or symptoms. Forty-three outpatients with schizophrenia or schizoaffective disorder and matched healthy controls were assessed for peripheral cytokine mRNAs (interleukin (IL)-1β, IL-2, IL-6, IL-8 and IL-18), intelligence quotient, memory and verbal fluency, symptom severity and cortical brain volumes integral to language (that is, Broca's and Wernicke's areas). IL-1β mRNA levels were 28% increased in schizophrenia compared with controls (t(82)=2.64, P<0.01). Using a two-step clustering procedure, we identified a subgroup of people displaying relatively elevated cytokine mRNA levels (17/43 people with schizophrenia and 9/42 controls). Individuals with schizophrenia in the elevated cytokine subgroup performed significantly worse than the low-cytokine subgroup on verbal fluency (F(1,40)=15.7, P<0.001). There was a 17% volume reduction of the left pars opercularis (POp) (Broca's area) in patients with elevated cytokines compared with patients with lower cytokines (F(1,29)=9.41, P=0.005). Negative linear relationships between IL-1β mRNA levels and both verbal fluency and left POp volume were found in schizophrenia. This study is among the first to link blood biomarkers of inflammation with both cognitive deficits and brain volume reductions in people with schizophrenia, supporting that those with elevated cytokines represent a neurobiologically meaningful subgroup. These findings raise the possibility that targeted anti-inflammatory treatments may ameliorate cognitive and brain morphological abnormalities in some people with schizophrenia. PMID:26194183
Zhang, Zu-Yong; Zhang, Li-Xin; Dong, Xiao-Qiao; Yu, Wen-Hua; Du, Quan; Yang, Ding-Bo; Shen, Yong-Feng; Wang, Hao; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Jiang, Li; Du, Yuan-Feng
2014-10-01
Enhanced blood levels of copeptin correlate with poor clinical outcomes after acute critical illness. This study aimed to compare the prognostic performances of plasma concentrations of copeptin and other biomarkers like myelin basic protein, glial fibrillary astrocyte protein, S100B, neuron-specific enolase, phosphorylated axonal neurofilament subunit H, Tau and ubiquitin carboxyl-terminal hydrolase L1 in severe traumatic brain injury. We recruited 102 healthy controls and 102 acute patients with severe traumatic brain injury. Plasma concentrations of these biomarkers were determined using enzyme-linked immunosorbent assay. Their prognostic predictive performances of 6-month mortality and unfavorable outcome (Glasgow Outcome Scale score of 1-3) were compared. Plasma concentrations of these biomarkers were statistically significantly higher in all patients than in healthy controls, in non-survivors than in survivors and in patients with unfavorable outcome than with favorable outcome. Areas under receiver operating characteristic curves of plasma concentrations of these biomarkers were similar to those of Glasgow Coma Scale score for prognostic prediction. Except plasma copeptin concentration, other biomarkers concentrations in plasma did not statistically significantly improve prognostic predictive value of Glasgow Coma Scale score. Copeptin levels may be a useful tool to predict long-term clinical outcomes after severe traumatic brain injury and have a potential to assist clinicians. Copyright © 2014 Elsevier Inc. All rights reserved.
Rubenstein, Richard; Chang, Binggong; Yue, John K.; Chiu, Allen; Winkler, Ethan A.; Puccio, Ava M.; Diaz-Arrastia, Ramon; Yuh, Esther L.; Mukherjee, Pratik; Valadka, Alex B.; Gordon, Wayne A.; Okonkwo, David O.; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T.; Wang, Kevin K. W.
2017-01-01
IMPORTANCE Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. OBJECTIVE To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. DESIGN, SETTING, AND PARTICIPANTS In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. MAIN OUTCOMES AND MEASURES Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. RESULTS In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau–T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13–15, n = 162) from healthy controls. The P-tau level and P-tau–T-tau ratio were higher in individuals with more severe TBI (GCS, ≤12 vs 13–15). The P-tau level and P-tau–T-tau ratio outperformed the T-tau level in distinguishing cranial computed tomography–positive from −negative cases (AUC = 0.921, 0.923, and 0.646, respectively). Acute P-tau levels and P-tau–T-tau ratio weakly distinguished patients with TBI who had good outcomes (Glasgow Outcome Scale–Extended GOS-E, 7–8) (AUC = 0.663 and 0.658, respectively) and identified those with poor outcomes (GOS-E, ≤4 vs >4) (AUC = 0.771 and 0.777, respectively). Plasma samples from patients with chronic TBI also showed elevated P-tau levels and a P-tau–T-tau ratio significantly higher than that of healthy controls, with both P-tau indices strongly discriminating patients with chronic TBI from healthy controls (AUC = 1.000 and 0.963, respectively). CONCLUSIONS AND RELEVANCE Plasma P-tau levels and P-tau–T-tau ratio outperformed T-tau level as diagnostic and prognostic biomarkers for acute TBI. Compared with T-tau levels alone, P-tau levels and P-tau–T-tau ratios show more robust and sustained elevations among patients with chronic TBI. PMID:28738126
Rubenstein, Richard; Chang, Binggong; Yue, John K; Chiu, Allen; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T; Wang, Kevin K W; Cooper, Shelly R; Dams-O'Connor, Kristen; Borrasso, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Vassar, Mary J
2017-09-01
Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau-T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13-15, n = 162) from healthy controls. The P-tau level and P-tau-T-tau ratio were higher in individuals with more severe TBI (GCS, ≤12 vs 13-15). The P-tau level and P-tau-T-tau ratio outperformed the T-tau level in distinguishing cranial computed tomography-positive from -negative cases (AUC = 0.921, 0.923, and 0.646, respectively). Acute P-tau levels and P-tau-T-tau ratio weakly distinguished patients with TBI who had good outcomes (Glasgow Outcome Scale-Extended GOS-E, 7-8) (AUC = 0.663 and 0.658, respectively) and identified those with poor outcomes (GOS-E, ≤4 vs >4) (AUC = 0.771 and 0.777, respectively). Plasma samples from patients with chronic TBI also showed elevated P-tau levels and a P-tau-T-tau ratio significantly higher than that of healthy controls, with both P-tau indices strongly discriminating patients with chronic TBI from healthy controls (AUC = 1.000 and 0.963, respectively). Plasma P-tau levels and P-tau-T-tau ratio outperformed T-tau level as diagnostic and prognostic biomarkers for acute TBI. Compared with T-tau levels alone, P-tau levels and P-tau-T-tau ratios show more robust and sustained elevations among patients with chronic TBI.
Vitamin B6 is essential for serine de novo biosynthesis.
Ramos, Rúben J; Pras-Raves, Mia L; Gerrits, Johan; van der Ham, Maria; Willemsen, Marcel; Prinsen, Hubertus; Burgering, Boudewijn; Jans, Judith J; Verhoeven-Duif, Nanda M
2017-11-01
Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.
Brain Aquaporin-4 in Experimental Acute Liver Failure
Rama Rao, Kakulavarapu V.; Jayakumar, Arumugam R.; Tong, Xiaoying; Curtis, Kevin M.; Norenberg, Michael D.
2016-01-01
Intracranial hypertension due to brain edema and associated astrocyte swelling is a potentially lethal complication of acute liver failure (ALF). Mechanisms of edema formation are not well understood but elevated levels of blood and brain ammonia and its byproduct glutamine have been implicated in this process. We examined mRNA and protein expression of the water channel protein aquaporin-4 (AQP4) in cerebral cortex in a rat model of ALF induced by the hepatotoxin thioacetamide. Rats with ALF showed increased AQP4 protein in the plasma membrane (PM). Total tissue levels of AQP4 protein and mRNA levels were not altered indicating that increased AQP4 is not transcriptionally mediated but is likely due to a conformational change in the protein, i.e. a more stable anchoring of AQP4 to the PM and/or interference with its degradation. By immunohistochemistry there was an increase in AQP4 immunoreactivity in the PM of perivascular astrocytes in ALF. Rats with ALF showed increased levels of α-syntrophin, a protein involved in the anchoring of AQP4 to perivascular astrocytic end-feet. Increased AQP4 and α-syntrophin levels were inhibited by L-histidine, an inhibitor of glutamine transport into mitochondria, suggesting a role for glutamine in the increase of PM levels of AQP4. These results indicate that increased AQP4 PM levels in perivascular astrocytic end-feet are likely critical to the development of brain edema in ALF. PMID:20720509
Nishikimi, Toshio; Okamoto, Hiroyuki; Nakamura, Masahiro; Ogawa, Naoko; Horii, Kazukiyo; Nagata, Kiyoshi; Nakagawa, Yasuaki; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakao, Kazuhiro; Minami, Takeya; Kuwabara, Yoshihiro; Kuwahara, Koichiro; Masuda, Izuru; Kangawa, Kenji; Minamino, Naoto; Nakao, Kazuwa
2013-01-01
Background Recent studies have shown that in addition to brain (or B-type) natriuretic peptide (BNP) and the N-terminal proBNP fragment, levels of intact proBNP are also increased in heart failure. Moreover, present BNP immunoassays also measure proBNP, as the anti-BNP antibody cross-reacts with proBNP. It is important to know the exact levels of proBNP in heart failure, because elevation of the low-activity proBNP may be associated with the development of heart failure. Methodology/Principal Findings We therefore established a two-step immunochemiluminescent assay for total BNP (BNP+proBNP) and proBNP using monoclonal antibodies and glycosylated proBNP as a standard. The assay enables measurement of plasma total BNP and proBNP within only 7 h, without prior extraction of the plasma. The detection limit was 0.4 pmol/L for a 50-µl plasma sample. Within-run CVs ranged from 5.2%–8.0% in proBNP assay and from 7.0%–8.4% in total BNP assay, and between-run CVs ranged from 5.3–7.4% in proBNP assay and from 2.9%–9.5% in total BNP assay, respectively. The dilution curves for plasma samples showed good linearity (correlation coefficients = 0.998–1.00), and analytical recovery was 90–101%. The mean total BNP and proBNP in plasma from 116 healthy subjects were 1.4±1.2 pM and 1.0±0.7 pM, respectively, and were 80±129 pM and 42±70 pM in 32 heart failure patients. Plasma proBNP levels significantly correlate with age in normal subjects. Conclusions/Significance Our immunochemiluminescent assay is sufficiently rapid and precise for routine determination of total BNP and proBNP in human plasma. PMID:23365636
Lindberg, Søren; Jensen, Jan Skov; Bjerre, Mette; Pedersen, Sune H; Frystyk, Jan; Flyvbjerg, Allan; Mogelvang, Rasmus
2014-06-01
There is increasing evidence of cross-talk between the heart, body metabolism, and adipose tissue, but the precise mechanisms are poorly understood. Natriuretic peptides (NPs) have recently emerged as the prime candidate for a mediator. In patients with heart failure (HF), infusion of NPs increases adiponectin secretion, indicating that NPs may improve adipose tissue function and in this way function as a cardio-protective agent in HF. Accordingly we investigated the interplay between plasma adiponectin, plasma proBNP, and development of HF. We prospectively followed 5574 randomly selected men and women from the community without ischaemic heart disease or HF. Plasma adiponectin and proBNP were measured at study entry. Median follow-up time was 8.5 years (interquartile range 8.0-9.1 years). During follow-up 271 participants developed symptomatic HF. Plasma adiponectin and proBNP were strongly associated (P < 0.001). Participants with increasing adiponectin had increased risk of incident HF (P < 0.001). After adjustment for confounding risk factors (including age, gender, smoking status, body mass ratio, waist-hip ratio, glucose, glycated haemoglobin, systolic and diastolic blood pressure, lipid profile, high sensitivity C-reactive protein, estimated glomerular filtration rate, and physical activity) by Cox regression analysis, adiponectin remained an independent predictor of HF: the hazard ratio (HR) per 1 standard deviation (SD) increase in adiponectin was 1.20 [95% confidence interval (CI) 1.06-1.30; P = 0.003]. However, the association vanished when plasma proBNP was included in the analysis, HR 1.08 (95% CI 0.95-1.23; P = 0.26). In conclusion, plasma adiponectin and proBNP are strongly associated. Increasing plasma adiponectin is associated with increased risk of HF. However, concomitantly elevated proBNP levels appear to explain the positive association between adiponectin and risk of HF. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
Sharma, Suvasini; Sankhyan, Naveen; Kumar, Atin; Scheper, Gert C; van der Knaap, Marjo S; Gulati, Sheffali
2011-06-01
A 17-year-old Indian boy with gradually progressive ataxia with onset at 12 years of age is described. Magnetic resonance imaging (MRI) of the brain revealed extensive, inhomogeneous signal abnormalities in the cerebral white matter, with involvement of selected tracts in the brain stem and spinal cord. The imaging findings were characteristic of leukoencephalopathy with brain stem and spinal cord involvement and high lactate, a recently described leukodystrophy. Interestingly, magnetic resonance spectroscopy of the abnormal white matter did not reveal elevated lactate. The patient was compound heterozygous for 2 new mutations in DARS2, genetically confirming the diagnosis.
Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William
2014-01-01
The distribution of metronidazole in the central nervous system has only been described based on cerebrospinal fluid data. However, extracellular fluid (ECF) concentrations may better predict its antimicrobial effect and/or side effects. We sought to explore by microdialysis brain ECF metronidazole distribution in patients with acute brain injury. Four brain-injured patients monitored by cerebral microdialysis received 500 mg of metronidazole over 0.5 h every 8 h. Brain dialysates and blood samples were collected at steady state over 8 h. Probe recoveries were evaluated by in vivo retrodialysis in each patient for metronidazole. Metronidazole and OH-metronidazole were assayed by high-pressure liquid chromatography, and a noncompartmental pharmacokinetic analysis was performed. Probe recovery was equal to 78.8% ± 1.3% for metronidazole in patients. Unbound brain metronidazole concentration-time curves were delayed compared to unbound plasma concentration-time curves but with a mean metronidazole unbound brain/plasma AUC0–τ ratio equal to 102% ± 19% (ranging from 87 to 124%). The unbound plasma concentration-time profiles for OH-metronidazole were flat, with mean average steady-state concentrations equal to 4.0 ± 0.7 μg ml−1. This microdialysis study describes the steady-state brain distribution of metronidazole in patients and confirms its extensive distribution. PMID:24277041
Pereira, Joana B; Westman, Eric; Hansson, Oskar
2017-10-01
The aggregation and deposition of amyloid-β (Aβ) peptides into plaques is an early event in Alzheimer's disease (AD), which is followed by different aspects of neurodegeneration that can be measured in the cerebrospinal fluid (CSF) or plasma using neurofilament light (NFL), neurogranin (Ng), total Tau (T-Tau), and phosphorylated tau (P-Tau) levels. The relationship between these biomarkers and regional brain atrophy across the different stages of AD remains largely unexplored. In this study, we assessed whether NFL, Ng, T-Tau, and P-Tau levels in CSF and NFL in plasma are associated with cortical thinning and subcortical volume loss in cognitively normal, mild cognitive impairment, and AD subjects with and without Aβ pathology. Our main findings showed that CSF NFL levels were associated with brain atrophy in all groups, but plasma NFL only correlated with atrophy in symptomatic cases. In contrast, Ng was associated with regional brain atrophy only in individuals with Aβ pathology. Altogether, our main findings suggest that Ng is strongly associated with Aβ pathology, whereas NFL is more unspecific. Copyright © 2017 Elsevier Inc. All rights reserved.
Hews, D K; Abell Baniki, A J
2013-10-01
Acute glucocorticoid elevations can be adaptations to short-term stressors. The breeding season hypothesis predicts reduced glucocorticoid responsiveness to acute stressors in populations or species with short breeding seasons. The striped plateau lizard (Sceloporus virgatus) has a short breeding season in Arizona. We measured plasma corticosterone and total androgen levels (dihydrotestosterone and testosterone) following one of the four stress-handling treatments (0, 10, 60, or 180 min). In both sexes, longer handling stress yielded higher corticosterone; females had higher corticosterone than males at all time points. Androgens did not vary with handling duration, in either sex. Combining treatments, plasma androgens correlated positively with corticosterone (CORT) in females but not in males; plasma CORT and body mass residuals were negatively correlated in both sexes, suggesting lizards in poor body condition and/or not investing heavily in reproduction (follicle mass) have higher acute corticosterone. Total plasma androgens and body mass residuals were positively associated in males, but showed no association in females. The maximal CORT elevation after handling stress in this single-clutching species was of comparable magnitude to responses in related multi-clutching lizard species with longer breeding seasons. Using data from studies of multiple populations of three Sceloporus species, we found no relationship between the relative magnitude of the CORT increase and either latitude or elevation, two variables in the literature correlated with duration of the breeding season, and only weak relationships with geographic elevation and actual (not relative) stress-elevated CORT values in this multi-population comparison.
Vega, Gloria Lena; Weiner, Myron F; Lipton, Anne M; Von Bergmann, Klaus; Lutjohann, Dieter; Moore, Carol; Svetlik, Doris
2003-04-01
The statin treatment of dyslipidemia is associated with a reduced risk of development of Alzheimer disease (AD). The effect may be mediated by a reduction in cholesterol biosynthesis in the brain, by lowering levels of apolipoprotein E (apo E)-containing lipoproteins, or by pleitropic effects such as reduction in beta-amyloid production. In the brain, cholesterol from damaged or dying neurons is converted to 24S-hydroxycholesterol by cholesterol 24-hydroxylase (CYP46). The oxysterol is subsequently transferred across the blood-brain barrier, transported to the liver by low-density lipoproteins (LDLs), and excreted as bile acids. Most of plasma 24S-hydroxycholesterol is derived from brain cholesterol; consequently, plasma levels of the oxysterol reflect brain cholesterol catabolism. To examine the effect of 3 statins and a nonstatin hypolipidemic agent on plasma levels of 24S-hydroxycholesterol and apo E in patients with AD. The study had a sequential parallel design. It was open-labeled and involved lipoprotein and 24S-hydroxycholesterol evaluations at baseline and at 6 weeks of treatment with 40 mg of lovastatin, simvastatin, or pravastatin sodium per day, or 1 g of extended-release niacin per day. Blood samples were drawn after a 12-hour fast for measurement of plasma sterols, oxysterols, lipoprotein cholesterol, and levels of apo E, plasma transaminases, and glucose. Measurements were made at baseline and during treatment. Statin treatment reduced levels of plasma lathosterol by 49.5%, 24S-hydroxycholesterol by 21.4%, LDL cholesterol by 34.9%, and total cholesterol by 25%. The ratios of lathosterol-campesterol and 24S-hydroxycholesterol-LDL cholesterol were reduced significantly, but the ratio of 24S-hydroxycholesterol-total cholesterol was unchanged. Extended-release niacin also significantly reduced levels of 24S-hydroxycholesterol by 10% and LDL cholesterol by 18.1%. None of the agents lowered plasma concentration of apo E. Statins lowered levels of plasma 24S-hydroxycholesterol without affecting levels of apo E. The LDL lowering was more pronounced than 24S-hydroxycholesterol reductions. The effect of statins on LDL partially explains the reduction of plasma oxysterol level.
Kushida, Hirotaka; Fukutake, Miwako; Tabuchi, Masahiro; Katsuhara, Takao; Nishimura, Hiroaki; Ikarashi, Yasushi; Kanitani, Masanao; Kase, Yoshio
2013-12-01
Uncaria Hook (UH) alkaloids are involved in the beneficial effects of Yokukansan. However, the pharmacokinetics of UH alkaloids after oral administration of Yokukansan has not yet been sufficiently investigated. Therefore, we developed and validated a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantitation of seven UH alkaloids (corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether) in rat plasma and brain. After protein precipitation with acetonitrile, chromatographic separation was performed using an Ascentis Express RP-amide column, with gradient elution with 0.2% formic acid and acetonitrile at 0.3 mL/min. All analytes in the plasma and brain showed good linearity over a wide concentration range (r > 0.995). Intra-day and inter-day variations of each constituent were 8.6 and 8.0% or less in the plasma, and 14.9 and 15.0% or less in the brain, respectively. The validated LC/MS/MS method was applied in the pharmacokinetic studies of UH alkaloids after oral administration of Yokukansan to rats. In the plasma, rhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether were detected, but only geissoschizine methyl ether was detected in the brain. These results suggest that geissoschizine methyl ether is an important constituent of the pharmacological effects of Yokukansan. Copyright © 2013 John Wiley & Sons, Ltd.
Endogenous pyrogen activity in human plasma after exercise.
Cannon, J G; Kluger, M J
1983-05-06
Plasma obtained from human subjects after exercise and injected intraperitoneally into rats elevated rat rectal temperature and depressed plasma iron and zinc concentrations. The pyrogenic component was heat-denaturable and had an apparent molecular weight of 14,000 daltons. Human mononuclear leukocytes obtained after exercise and incubated in vitro released a factor into the medium that also elevated body temperature in rats and reduced trace metal concentrations. These results suggest that endogenous pyrogen, a protein mediator of fever and trace metal metabolism during infection, is released during exercise.
Gooden, Felicia C. T.; Tabet, Michael R.; Ball, William J.
2014-01-01
The monoclonal antibody (mAb), h2E2, is a humanized version of the chimeric human/murine anti-cocaine mAb 2E2. The recombinant h2E2 protein was produced in vitro from a transfected mammalian cell line and retained high affinity (4 nM Kd) and specificity for cocaine over its inactive metabolites benzoylecgonine (BE) and ecgonine methyl ester. In rats, pharmacokinetic studies of h2E2 (120 mg/kg i.v.) showed a long terminal elimination half-life of 9.0 days and a low volume of distribution at steady state (Vdss) of 0.3 l/kg. Pretreatment with h2E2 produced a dramatic 8.8-fold increase in the area under the plasma cocaine concentration-time curve (AUC) and in brain a concomitant decrease of 68% of cocaine’s AUC following an i.v. injection of an equimolar cocaine dose. Sequestration of cocaine in plasma by h2E2, shown via reduction of cocaine’s Vdss, indicates potential clinical efficacy. Although the binding of cocaine to h2E2 in plasma should inhibit distribution and metabolism, the elimination of cocaine remained multicompartmental and was still rapidly eliminated from plasma despite the presence of h2E2. BE was the major cocaine metabolite, and brain BE concentrations were sixfold higher than in plasma, indicating that cocaine is normally metabolized in the brain. In the presence of h2E2, brain BE concentrations were decreased and plasma BE was increased, consistent with the observed h2E2-induced changes in cocaine disposition. The inhibition of cocaine distribution to the brain confirms the humanized mAb, h2E2, as a lead candidate for development as an immunotherapy for cocaine abuse. PMID:24733787
Naylor, Jennifer C; Hulette, Christine M; Steffens, David C; Shampine, Lawrence J; Ervin, John F; Payne, Victoria M; Massing, Mark W; Kilts, Jason D; Strauss, Jennifer L; Calhoun, Patrick S; Calnaido, Rohana P; Blazer, Daniel G; Lieberman, Jeffrey A; Madison, Roger D; Marx, Christine E
2008-08-01
It is currently unknown whether cerebrospinal fluid (CSF) neurosteroid levels are related to brain neurosteroid levels in humans. CSF and brain dehydroepiandrosterone (DHEA) levels are elevated in patients with Alzheimer's disease (AD), but it is unclear whether CSF DHEA levels are correlated with brain DHEA levels within the same subject cohort. We therefore determined DHEA and pregnenolone levels in AD patients (n = 25) and cognitively intact control subjects (n = 16) in both CSF and temporal cortex. DHEA and pregnenolone levels were determined by gas chromatography/mass spectrometry preceded by HPLC. Frozen CSF and temporal cortex specimens were provided by the Alzheimer's Disease Research Center at Duke University Medical Center. Data were analyzed by Mann-Whitney U test statistic and Spearman correlational analyses. CSF DHEA levels are positively correlated with temporal cortex DHEA levels (r = 0.59, P < 0.0001) and neuropathological disease stage (Braak and Braak) (r = 0.42, P = 0.007). CSF pregnenolone levels are also positively correlated with temporal cortex pregnenolone levels (r = 0.57, P < 0.0001) and tend to be correlated with neuropathological disease stage (Braak) (r = 0.30, P = 0.06). CSF DHEA levels are elevated (P = 0.032), and pregnenolone levels tend to be elevated (P = 0.10) in patients with AD, compared with cognitively intact control subjects. These findings indicate that CSF DHEA and pregnenolone levels are correlated with temporal cortex brain levels of these neurosteroids and that CSF DHEA is elevated in AD and related to neuropathological disease stage. Neurosteroids may thus be relevant to the pathophysiology of AD.
Falsely Elevated Plasma Creatinine Due to an Immunoglobulin M Paraprotein.
McGill, Mitchell R; Vijayan, Anitha; Trulock, Elbert P; Witt, Chad A; Kohler, Giselle D; Scott, Mitchell G
2016-11-01
The most common method for measuring plasma creatinine is based on its reaction with picric acid. However, enzymatic methods are becoming more popular due to improved specificity. We present a case of falsely elevated plasma creatinine values obtained by an enzymatic method that turned out to be due to a monoclonal immunoglobulin M (IgM) paraprotein. A 63-year-old woman evaluated for lung transplantation had falsely increased plasma creatinine levels (1.54-1.71mg/dL; corresponding to estimated glomerular filtration rates of 32-36 mL/min/1.73m 2 ) as measured by the Roche Creatinine plus enzymatic assay when compared with the picric acid-based procedure and several other enzymatic methods, which gave plasma creatinine values of 0.7 to 0.8mg/dL. Serum protein electrophoresis revealed an IgM κ light chain paraprotein. Removal of high-molecular-weight (>30kDa) proteins by ultrafiltration reduced the patient's plasma creatinine level by the Roche enzymatic method to 0.7mg/dL. Addition of the patient's immunoglobulin fraction to plasma from other patients with normal plasma creatinine levels resulted in values that were increased by 0.58 to 0.62mg/dL. Furthermore, removal of non-IgM immunoglobulins with protein G-coupled beads did not eliminate the interference from the patient's plasma. Taken together, these studies demonstrate that falsely elevated plasma creatinine values by the Roche enzymatic method can be due to an IgM paraprotein. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Yokogoshi, Hidehiko; Wurtman, Richard J.
1986-01-01
The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein-poor meals may affect subsequent food choice and various serotonin-mediated behaviors.
Portnow, Jana; Badie, Behnam; Chen, Mike; Liu, An; Blanchard, Suzette; Synold, Timothy W.
2010-01-01
Purpose Intracerebral microdialysis (ICMD) is an accepted methodology for monitoring changes in neurochemistry from acute brain injury. The goal of this pilot study was to determine the feasibility of using ICMD to examine the neuropharmacokinetics (nPK) of temozolomide (TMZ) in brain interstitium (BI) following oral administration. Experimental Design Patients with primary or metastatic brain tumors had a microdialysis catheter placed in peritumoral brain tissue at the time of surgical debulking. CT scan confirmed the catheter location. Patients received a single oral dose of TMZ (150 mg/m2) on the first post-operative day, serial plasma and ICMD samples were collected over 24 hrs, and TMZ concentrations were determined by tandem mass spectrometry. Results Nine patients were enrolled. Dialysate and plasma samples were successfully collected from 7 of the 9 patients. The mean TMZ area-under-the-concentration-time-curve (AUC) in plasma and BI were 17.1 and 2.7 μg/ml × hr, with an average BI/plasma AUC ratio of 17.8%. The mean peak TMZ concentration in brain was 0.6 ± 0.3 μg/ml, and the mean time to reach peak level in brain was 2.0 ± 0.8 hrs. Conclusions The use of ICMD to measure the nPK of systemically administered chemotherapy is safe and feasible. Concentrations of TMZ in BI obtained by ICMD are consistent with published data obtained in a pre-clinical ICMD model, as well as from clinical studies of cerebrospinal fluid. However, the delayed time required to achieve maximum TMZ concentrations in brain suggests that current chemoradiation regimens may be improved by administering TMZ 2-3 hours before radiation. PMID:19861433
Simultaneous measurement of glucose transport and utilization in the human brain.
Shestov, Alexander A; Emir, Uzay E; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R; Öz, Gülin
2011-11-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.
Markus, C Rob; Olivier, Berend; de Haan, Edward H F
2002-06-01
Cognitive performance often declines under chronic stress exposure. The negative effect of chronic stress on performance may be mediated by reduced brain serotonin function. The uptake of the serotonin precursor tryptophan into the brain depends on nutrients that influence the availability of tryptophan by changing the ratio of plasma tryptophan to the sum of the other large neutral amino acids (Trp-LNAA ratio). In addition, a diet-induced increase in tryptophan may increase brain serotonergic activity levels and improve cognitive performance, particularly in high stress-vulnerable subjects. We tested whether alpha-lactalbumin, a whey protein with a high tryptophan content, would increase the plasma Trp-LNAA ratio and improve cognitive performance in high stress- vulnerable subjects. Twenty-three high stress-vulnerable subjects and 29 low stress-vulnerable subjects participated in a double-blind, placebo-controlled, crossover study. All subjects conducted a memory-scanning task after the intake of a diet enriched with either alpha-lactalbumin (alpha-lactalbumin diet) or sodium caseinate (control diet). Blood samples were taken to measure the effect of dietary manipulation on the plasma Trp-LNAA ratio. A significantly greater increase in the plasma Trp-LNAA ratio after consumption of the alpha-lactalbumin diet than after the control diet (P = 0.0001) was observed; memory scanning improved significantly only in the high stress-vulnerable subjects (P = 0.019). Because an increase in the plasma Trp-LNAA ratio is considered to be an indirect indication of increased brain serotonin function, the results suggest that dietary protein rich in alpha-lactalbumin improves cognitive performance in stress-vulnerable subjects via increased brain tryptophan and serotonin activities.
Ng, Sze May; Turner, Mark A; Gamble, Carrol; Didi, Mohammed; Victor, Suresh; Atkinson, Jessica; Sluming, Vanessa; Parkes, Laura M; Tietze, Anna; Abernethy, Laurence J; Weindling, Alan Michael
2014-08-01
In order to assess relationships between thyroid hormone status and findings on brain MRI, a subset of babies was recruited to a multi-centre randomised, placebo-controlled trial of levothyroxine (LT4) supplementation for babies born before 28 weeks' gestation (known as the TIPIT study, for Thyroxine supplementation In Preterm InfanTs). These infants were imaged at term-equivalence. Forty-five TIPIT participants had brain MRI using diffusion tensor imaging (DTI) to estimate white matter development by apparent diffusion coefficient (ADC), fractional anisotropy (FA) and tractography metrics of number and length of streamlines. We made comparisons between babies with the lowest and highest plasma FT4 concentrations during the initial 4 weeks after birth. There were no differences in DTI metrics between babies who had received LT4 supplementation and those who had received a placebo. Among recipients of a placebo, babies in the lowest quartile of plasma-free thyroxine (FT4) concentrations had significantly higher apparent diffusion coefficient measurements in the posterior corpus callosum and streamlines that were shorter and less numerous in the right internal capsule. Among LT4-supplemented babies, those who had plasma FT4 concentrations in the highest quartile had significantly lower apparent diffusion coefficient values in the left occipital lobe, higher fractional anisotropy in the anterior corpus callosum and longer and more numerous streamlines in the anterior corpus callosum. DTI variables were not associated with allocation of placebo or thyroid supplementation. Markers of poorly organised brain microstructure were associated with low plasma FT4 concentrations after birth. The findings suggest that plasma FT4 concentrations affect brain development in very immature infants and that the effect of LT4 supplementation for immature babies with low FT4 plasma concentrations warrants further study.
David, Arthur; Lange, Anke; Tyler, Charles R; Hill, Elizabeth M
2018-04-15
Fish can be exposed to a variety of neuroactive pharmaceuticals via the effluent discharges from wastewater treatment plants and concerns have arisen regarding their potential impacts on fish behaviour and ecology. In this study, we investigated the uptake of 14 neuroactive pharmaceuticals from a treated wastewater effluent into blood plasma and brain regions of roach (Rutilus rutilus) after exposure for 15days. We show that a complex mixture of pharmaceuticals including, 6 selective serotonin reuptake inhibitors, a serotonin-noradrenaline reuptake inhibitor, 3 atypical antipsychotics, 2 tricyclic antidepressants and a benzodiazepine, concentrate in different regions of the brain including the telencephalon, hypothalamus, optic tectum and hindbrain of effluent-exposed fish. Pharmaceuticals, with the exception of nordiazepam, were between 3-40 fold higher in brain compared with blood plasma, showing these neuroactive drugs are readily uptaken, into brain tissues in fish. To assess for the potential for any adverse ecotoxicological effects, the effect ratio was calculated from human therapeutic plasma concentrations (HtPCs) and the measured or predicted fish plasma concentrations of pharmaceuticals. After accounting for a safety factor of 1000, the effect ratios indicated that fluoxetine, norfluoxetine, sertraline, and amitriptyline warrant prioritisation for risk assessment studies. Furthermore, although plasma concentrations of all the pharmaceuticals were between 33 and 5714-fold below HtPCs, alterations in serotonin, glutamate, acetylcholine and tryptophan concentrations were observed in different brain regions of effluent-exposed fish. This study highlights the importance of determining the potential health effects arising from the concentration of complex environmental mixtures in risk assessment studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Lack of insulinotropic effect of endogenous and exogenous cholecystokinin in man.
Reimers, J; Nauck, M; Creutzfeldt, W; Strietzel, J; Ebert, R; Cantor, P; Hoffmann, G
1988-05-01
Intraduodenal phenylalanine administration (333 mg/min over 60 min) released endogenous cholecystokinin in healthy young subjects as demonstrated radioimmunologically and by intraduodenal bilirubin and pancreatic enzyme output. Concomitantly, there was only a small increase over basal in circulating immunoreactive-insulin and immunoreactive-C-peptide concentrations. In healthy volunteers intraduodenal infusions of saline (10 ml/min), glucose (333 mg/min) or phenylalanine (333 mg/min) were performed for 60 min when plasma glucose was clamped at approximately 8 mmol/l. Phenylalanine enhanced immunoreactive-insulin and immunoreactive-C-peptide responses three-fold more than did the same amount of glucose. Immuno-reactive gastric inhibitory polypeptide responses were small and not different after glucose and phenylalanine administration. Immunoreactive cholecystokinin was significantly stimulated to 9.4 +/- 1.4 pmol/l only by intraduodenal phenylalanine. Plasma phenylalanine concentrations increased into the supraphysiological range (approximately 1.5 mmol/l). Intravenous infusions of phenylalanine achieving plasma concentrations of 1.2 mmol/l stimulated insulin secretion at elevated plasma glucose concentrations (approximately 8 mmol/l clamp experiments), but had no effect at basal plasma glucose concentrations. A small increase in cholecystokinin also was observed. Intravenous infusions of synthetic sulphated cholecystokinin-8 leading to plasma concentrations in the upper postprandial range (8-12 pmol/l) did not augment the immunoreactive-insulin or immunoreactive-C-peptide levels during hyperglycaemic clamp experiments, in the absence or presence of elevated plasma phenylalanine concentrations. It is concluded that the augmentation of the glucose-induced insulin release by intraduodenal administration of phenylalanine cannot be related to cholecystokinin release, but rather is explained by the combined effects of elevated glucose and phenylalanine concentrations. In man, cholecystokinin does not augment insulin secretion caused by moderate hyperglycaemia, elevations of phenylalanine concentrations, or combinations thereof.
Sailer, Manuela; Dahlhoff, Christoph; Giesbertz, Pieter; Eidens, Mena K; de Wit, Nicole; Rubio-Aliaga, Isabel; Boekschoten, Mark V; Müller, Michael; Daniel, Hannelore
2013-01-01
In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO) mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ) to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF) feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline) is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic impairments.
Shannon, Richard J; Timofeev, Ivan; Nortje, Jürgens; Hutchinson, Peter J; Carpenter, Keri L H
2014-11-01
The aims were to determine blood-brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. After the first VGB dose, the maximum concentration of VGB (Cmax ) was 31.7 (26.9-42.6) μmol l(-1) (median and interquartile range for eight patients) in plasma and 2.41 (2.03-5.94) μmol l(-1) in brain microdialysates (nine patients, 11 catheters), without significant plasma-brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24-7.14) μmol l(-1) (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Vigabatrin, given enterally to severe TBI patients, crosses the blood-brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood. © 2014 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Early fever after trauma: Does it matter?
Hinson, Holly E; Rowell, Susan; Morris, Cynthia; Lin, Amber L; Schreiber, Martin A
2018-01-01
Fever is strongly associated with poor outcome after traumatic brain injury (TBI). We hypothesized that early fever is a direct result of brain injury and thus would be more common in TBI than in patients without brain injury and associated with inflammation. We prospectively enrolled patients with major trauma with and without TBI from a busy Level I trauma center intensive care unit (ICU). Patients were assigned to one of four groups based on their presenting Head Abbreviated Injury Severity Scale scores: multiple injuries: head Abbreviated Injury Scale (AIS) score greater than 2, one other region greater than 2; isolated head: head AIS score greater than 2, all other regions less than 3; isolated body: one region greater than 2, excluding head/face; minor injury: no region with AIS greater than 2. Early fever was defined as at least one recorded temperature greater than 38.3°C in the first 48 hours after admission. Outcome measures included neurologic deterioration, length of stay in the ICU, hospital mortality, discharge Glasgow Outcome Scale-Extended, and plasma levels of seven key cytokines at admission and 24 hours (exploratory). Two hundred sixty-eight patients were enrolled, including subjects with multiple injuries (n = 59), isolated head (n = 97), isolated body (n = 100), and minor trauma (n = 12). The incidence of fever was similar in all groups irrespective of injury (11-24%). In all groups, there was a significant association between the presence of early fever and death in the hospital (6-18% vs. 0-3%), as well as longer median ICU stays (3-7 days vs. 2-3 days). Fever was significantly associated with elevated IL-6 at admission (50.7 pg/dL vs. 16.9 pg/dL, p = 0.0067) and at 24 hours (83.1 pg/dL vs. 17.1 pg/dL, p = 0.0025) in the isolated head injury group. Contrary to our hypothesis, early fever was not more common in patients with brain injury, though fever was associated with longer ICU stays and death in all groups. Additionally, fever was associated with elevated IL-6 levels in isolated head injury. Prognostic and Epidemiological study, level III.
Effect of capture stress on plasma enzyme activities in rainbow trout (Salmo gairdneri)
Bouck, G.R.; Cairns, M. A.; Christian, A. R.
1978-01-01
Four capture methods were used to collect domesticated rainbow trout (Salmo gairdneri): angling, electroshocking, seining, and direct netting (control). Blood was sampled rapidly upon capture, usually within 2 min. No significant differences were noted within the time frame of the experiment between the four capture groups for plasma protein concentration, lactate dehydrogenase activity, or leucine aminonaphthylamidase activity. Creatine phosphokinase activity was elevated among electroshocked fish. Acid phosphatase activity was too low for accurate measurement. Hematocrits were significantly elevated by capture struggles. These results indicate that these capture methods do not preclude the use of plasma enzyme levels for investigating the health of wild fish. Key words: plasma enzyme, capture stress, physiology, plasma protein, rainbow trout, lactate dehydrogenase, leucine aminonaphthylamidase, creatine phosphokinase
Direct effects of recurrent hypoglycaemia on adrenal catecholamine release.
Orban, Branly O; Routh, Vanessa H; Levin, Barry E; Berlin, Joshua R
2015-01-01
In Type 1 and advanced Type 2 diabetes mellitus, elevation of plasma epinephrine plays a key role in normalizing plasma glucose during hypoglycaemia. However, recurrent hypoglycaemia blunts this elevation of plasma epinephrine. To determine whether recurrent hypoglycaemia affects peripheral components of the sympatho-adrenal system responsible for epinephrine release, male rats were administered subcutaneous insulin daily for 3 days. These recurrent hypoglycaemic animals showed a smaller elevation of plasma epinephrine than saline-injected controls when subjected to insulin-induced hypoglycaemia. Electrical stimulation of an adrenal branch of the splanchnic nerve in recurrent hypoglycaemic animals elicited less release of epinephrine and norepinephrine than in controls, without a change in adrenal catecholamine content. Responsiveness of isolated, perfused adrenal glands to acetylcholine and other acetylcholine receptor agonists was also unchanged. These results indicate that recurrent hypoglycaemia compromised the efficacy with which peripheral neuronal activity stimulates adrenal catecholamine release and demonstrate that peripheral components of the sympatho-adrenal system were directly affected by recurrent hypoglycaemia. © The Author(s) 2014.
Baysal, Ayse; Saşmazel, Ahmet; Yildirim, Ayse; Ozyaprak, Buket; Gundogus, Narin; Kocak, Tuncer
2014-01-01
In children undergoing congenital heart surgery, plasma brain natriuretic peptide levels may have a role in development of low cardiac output syndrome that is defined as a combination of clinical findings and interventions to augment cardiac output in children with pulmonary hypertension. In a prospective observational study, fifty-one children undergoing congenital heart surgery with preoperative echocardiographic study showing pulmonary hypertension were enrolled. The plasma brain natriuretic peptide levels were collected before operation, 12, 24 and 48h after operation. The patients enrolled into the study were divided into two groups depending on: (1) Development of LCOS which is defined as a combination of clinical findings or interventions to augment cardiac output postoperatively; (2) Determination of preoperative brain natriuretic peptide cut-off value by receiver operating curve analysis for low cardiac output syndrome. The secondary end points were: (1) duration of mechanical ventilation ≥72h, (2) intensive care unit stay >7days, and (3) mortality. The differences in preoperative and postoperative brain natriuretic peptide levels of patients with or without low cardiac output syndrome (n=35, n=16, respectively) showed significant differences in repeated measurement time points (p=0.0001). The preoperative brain natriuretic peptide cut-off value of 125.5pgmL-1 was found to have the highest sensitivity of 88.9% and specificity of 96.9% in predicting low cardiac output syndrome in patients with pulmonary hypertension. A good correlation was found between preoperative plasma brain natriuretic peptide level and duration of mechanical ventilation (r=0.67, p=0.0001). In patients with pulmonary hypertension undergoing congenital heart surgery, 91% of patients with preoperative plasma brain natriuretic peptide levels above 125.5pgmL-1 are at risk of developing low cardiac output syndrome which is an important postoperative outcome. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Vorhees, Charles V; Morford, LaRonda R; Graham, Devon L; Skelton, Matthew R; Williams, Michael T
2011-10-05
Whether selective serotonin reuptake inhibitors (SSRIs) exposure during adolescent brain development causes lasting effects remains unresolved. Assess the effects of fluoxetine and paroxetine 60 days after adolescent exposure compared with when on-drug. Male Sprague-Dawley littermates (41 litters) were gavaged on postnatal days 33-53 with fluoxetine (3 or 10 mg/kg/day), paroxetine (3, 10 or, 17 mg/kg/day), or water; half were tested while on-drug (21 litters) and half after 60 days off-drug (20 litters). The highest dose of the drugs reduced body weight gain during treatment that rebounded 1 week post-treatment. On-drug, no significant group differences were found on elevated plus maze time-in-open, zone entries, or latency to first open entry; however, the high dose of paroxetine significantly reduced head-dips (N=20/group). No significant effects were found on-drug for acoustic startle response/prepulse inhibition (ASR/PPI) although a trend (p<0.10) was seen, which after combining dose levels, showed a significant increase in ASR amplitude for both fluoxetine and paroxetine (N=20-21/group). No differences on immobility time were seen in the Porsolt forced swim test or in plasma corticosterone at the end of forced swim (N-19-21/group). Off-drug, no effects were seen in the elevated plus maze (N=16/group), ASR/PPI (N=20/group), forced swim (N=19-20/group), or plasma corticosterone (N=19/group). At the doses tested, fluoxetine and paroxetine induced minor effects with drug on-board but no residual, long-term adverse effects in rats 60 days after drug discontinuation. The data provide no evidence that fluoxetine or paroxetine have long-term adverse effects on the behaviors measured here after adolescent to young adult exposure.
Anxiolytic-like effects of restraint during the dark cycle in adolescent mice.
Ota, Yuki; Ago, Yukio; Tanaka, Tatsunori; Hasebe, Shigeru; Toratani, Yui; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio
2015-05-01
Stress during developmental stage may cause psychological morbidities, and then the studies on stress are important in adolescent rodents. Restraint is used as a common stressor in rodents and the effects of restraint during the light cycle have been studied, but those of restraint during the dark cycle have not. The present study examined the effects of restraint during the light and dark cycles on anxiety behaviors in adolescent mice. Restraint for 3h during either the light or dark cycle impaired memory function in the fear conditioning test, but did not affect locomotor activity. In the elevated plus-maze test, restraint during the dark cycle reduced anxiety-like behaviors in mice. Repeated exposure to a 3-h period dark cycle restraint for 2 weeks had a similar anxiolytic-like effect. In contrast, restraint for 3h during the light cycle produced anxiety behavior in adolescent, but not adult, mice. The light cycle stress increased plasma corticosterone levels, and elevated c-Fos expression in the prefrontal cortex, paraventricular hypothalamic nucleus, basolateral amygdala and dentate gyrus, and enhanced serotonin turnover in the hippocampus and striatum, while the dark cycle stress did not. There was no difference in the stress-mediated reduction in pentobarbital-induced sleeping time between dark and light cycle restraint. These findings suggest that the anxiolytic effect of dark cycle restraint is mediated by corticosterone, serotonin or γ-aminobutyric acid-independent mechanisms, although the anxiogenic effect of light cycle restraint is associated with changes in plasma corticosterone levels and serotonin turnover in specific brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials
USDA-ARS?s Scientific Manuscript database
Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....
How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension
Leenen, Frans H. H.; Chen, Ling; Golovina, Vera A.; Hamlyn, John M.; Pallone, Thomas L.; Van Huysse, James W.; Zhang, Jin; Wier, W. Gil
2012-01-01
Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na+ and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na+]. This leads, via the Na+-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na+ pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na+]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na+ channels, EO, ouabain-sensitive α2 Na+ pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na+ channel-EO-α2 Na+ pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α2 Na+ pump-Na+/Ca2+ exchanger-Ca2+ signaling pathway. Circulating EO also activates an EO-α2 Na+ pump-Src kinase signaling cascade. This increases the expression of the Na+/Ca2+ exchanger-transient receptor potential cation channel Ca2+ signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP. PMID:22058154
NASA Astrophysics Data System (ADS)
Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis
2009-11-01
The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.
Gestational Protein Restriction Increases Angiotensin II Production in Rat Lung1
Gao, Haijun; Yallampalli, Uma; Yallampalli, Chandra
2013-01-01
ABSTRACT Gestational protein restriction (PR) alters the renin-angiotensin system in uterine arteries and placentas and elevates plasma levels of angiotensin II in pregnant rats. To date, how PR increases maternal plasma levels of angiotensin II remains unknown. In this study, we hypothesize that the expression and/or the activity of angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 (ACE) in lungs, but not kidneys and blood, largely contribute to elevated plasma angiotensin II levels in pregnant rats subject to gestational PR. Time-scheduled pregnant Sprague-Dawley rats were fed a normal or low-protein diet from Day 3 of pregnancy until euthanized at Day 19 or 22. Expressions of Ace and Ace2 (angiotens in I converting enzyme [peptidyl-dipeptidase A] 2) in lungs and kidneys from pregnant rats by quantitative real-time PCR and Western blotting, and the activities of these proteins in lungs, kidneys, and plasma, were measured. The mRNA levels of Ace and Ace2 in lungs were elevated by PR at both Days 19 and 22 of pregnancy. The abundance of ACE protein in lungs was increased, but ACE2 protein was decreased, by PR. The activities of ACE, but not ACE2, in lungs were increased by PR. PR did not change expressions of Ace and Ace2, the activities of both ACE and ACE2 in kidneys, and the abundance and activity of plasma ACE. These findings suggest that maternal lungs contribute to the elevated plasma levels of angiotensin II by increasing both the expression and the activity of ACE in response to gestational PR. PMID:23365412
Sunny, Nishanth E; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T; Williams, Caroline M; Cusi, Kenneth
2015-08-15
Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.
Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J.; Nautiyal, Manisha; Mathew, Justin T.; Williams, Caroline M.; Cusi, Kenneth
2015-01-01
Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD. PMID:26058864
Pettengill, Matthew; Matute, Juan D; Tresenriter, Megan; Hibbert, Julie; Burgner, David; Richmond, Peter; Millán, José Luis; Ozonoff, Al; Strunk, Tobias; Currie, Andrew; Levy, Ofer
2017-01-01
A host defense function for Alkaline phosphatases (ALPs) is suggested by the contribution of intestinal ALP to detoxifying bacterial lipopolysaccharide (endotoxin) in animal models in vivo and the elevation of ALP activity following treatment of human cells with inflammatory stimuli in vitro. However the activity of ALP in human plasma (primarily tissue-nonspecific ALP; TNAP) on lipopolysaccharide and other microbial products has not been assessed, nor has its expression been studied in preterm newborns, a vulnerable population at high risk of sepsis. In this context, the aim of our study was to characterize the activity of TNAP on Toll-like receptor (TLR) agonists and assess the concentrations of plasma ALP during late-onset sepsis in preterm newborns. Recombinant human TNAP was incubated with microbial products and phosphate release was measured by malachite green assay. Plasma ALP activity was measured serially in a cohort of preterm (N = 129) infants at high risk of late-onset sepsis (LOS). TNAP dephosphorylates poly-inosine:cytosine (Toll-like receptor (TLR) 3 agonist) and LPS from Klebsiella pneumoniae and Salmonella minnesota (TLR4 agonists). Plasma ALP significantly increased postnatally over the first 4 weeks of life in preterm and term newborns. Bacteremic LOS in preterm infants (gestational age ≤ 30 weeks) was associated with significantly elevated plasma ALP at 4 weeks postnatal age. TNAP, the main circulating isozyme of ALP, de-phosphorylates TLR agonists, demonstrates a post-natal age dependent increase in preterm and term plasma across the first 4 weeks of life, and is elevated in association with preterm LOS.
Evidence for brain glucose dysregulation in Alzheimer's disease.
An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav
2018-03-01
It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.
Galimberti, Daniela; Fumagalli, Giorgio G; Fenoglio, Chiara; Cioffi, Sara M G; Arighi, Andrea; Serpente, Maria; Borroni, Barbara; Padovani, Alessandro; Tagliavini, Fabrizio; Masellis, Mario; Tartaglia, Maria Carmela; van Swieten, John; Meeter, Lieke; Graff, Caroline; de Mendonça, Alexandre; Bocchetta, Martina; Rohrer, Jonathan D; Scarpini, Elio
2018-02-01
We investigated whether progranulin plasma levels are predictors of the presence of progranulin gene (GRN) null mutations or of the development of symptoms in asymptomatic at risk members participating in the Genetic Frontotemporal Dementia Initiative, including 19 patients, 64 asymptomatic carriers, and 77 noncarriers. In addition, we evaluated a possible role of TMEM106B rs1990622 as a genetic modifier and correlated progranulin plasma levels and gray-matter atrophy. Plasma progranulin mean ± SD plasma levels in patients and asymptomatic carriers were significantly decreased compared with noncarriers (30.5 ± 13.0 and 27.7 ± 7.5 versus 99.6 ± 24.8 ng/mL, p < 0.00001). Considering the threshold of >61.55 ng/mL, the test had a sensitivity of 98.8% and a specificity of 97.5% in predicting the presence of a mutation, independent of symptoms. No correlations were found between progranulin plasma levels and age, years from average age at onset in each family, or TMEM106B rs1990622 genotype (p > 0.05). Plasma progranulin levels did not correlate with brain atrophy. Plasma progranulin levels predict the presence of GRN null mutations independent of proximity to symptoms and brain atrophy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Procop, Gary W; Taege, Alan J; Starkey, Colleen; Tungsiripat, Marisa; Warner, Diane; Schold, Jesse D; Yen-Lieberman, Belinda
2017-09-01
The processing of specimens often occurs in a central processing area within laboratories. We demonstrated that plasma centrifuged in the central laboratory but allowed to remain within the primary tube following centrifugation was associated with spuriously elevated HIV viral loads compared with recentrifugation of the plasma just prior to testing. Copyright © 2016 Elsevier Inc. All rights reserved.
Tacrine is implicated in oxidative stress in the laboratory guinea pig model.
Kracmarova, Alzbeta; Bandouchova, Hana; Pikula, Jiri; Pohanka, Miroslav
2012-01-01
Tacrine was the first acetylcholinesterase inhibitor approved for the treatment of Alzheimer disease. The compound is not available for therapeutic purposes as it was withdrawn due to hepatotoxicity of its metabolites. The hepatotoxicity can be decreased by alternative ways of drug administration avoiding thus the first pass effect. The present study is aimed to investigate the influence of intramuscularly administrated tacrine on oxidative stress. Laboratory guinea pigs were exposed to tacrine at doses of 0-800 μg/kg. The animals were euthanized 1 and 24 hours after the exposure. Parameters such as ferric reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS), carbonylated proteins, caspase 3 activity, superoxide dismutase activity and glutathione reductase activity were assessed in the frontal, temporal and occipital lobe, cerebellum, liver, spleen, heart, and kidney. Moreover, levels of glucose, total and HDL cholesterol forms, triglycerides, blood urea nitrogen, creatinine, total bilirubin, total protein, albumin and activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase were assessed in plasma samples. Activities of the enzymatic markers, level of carbonylated proteins in organs and levels of biochemical markers in plasma were only slightly influenced by tacrine. Dose-dependent elevation of the FRAP value was recognized in the brain tissues and the liver. The TBARS value was increased in the kidney and heart 1 and 24 hours, respectively, after exposure. In the study, the effect of tacrine on markers of oxidative stress was proved. Possible positive effects of tacrine on the antioxidant defence in the brain tissue were discussed.
Del Cerro, M C R; Ortega, E; Gómez, F; Segovia, S; Pérez-Laso, C
2015-07-01
Environmental prenatal stress (EPS) has effects on fetuses that are long-lasting, altering their hormone levels, brain morphology and behavior when they reach maturity. In previous research, we demonstrated that EPS affects the expression of induced maternal behavior (MB), the neuroendocrine system, and morphology of the sexually dimorphic accessory olfactory bulb (AOB) involved in reproductive behavior patterns. The bed nucleus of the accessory olfactory tract (BAOT) is another vomeronasal (VN) structure that plays an inhibitory role in rats in the expression of induced maternal behavior in female and male virgins. In the present study, we have ascertained whether the behavioral, neuroendocrine, and neuromorphological alterations of the AOB found after EPS also appear in the BAOT. After applying EPS to pregnant rats during the late gestational period, in their female offspring at maturity we tested induced maternal behavior, BAOT morphology and plasma levels of testosterone (T), estradiol (E2), progesterone (P), adrenocorticotropic hormone (ACTH) and corticosterone (Cpd B). EPS: a) affected the induction of MB, showed a male-like pattern of care for pups, b) elevated plasma levels of Cpd B and reduced E2 in comparison with the controls, and c) significantly increased the number of BAOT neurons compared to the control females and comparable to the control male group. These findings provide further evidence that stress applied to pregnant rats produces long-lasting behavioral, endocrine and neuroanatomical alterations in the female offspring that are evident when they become mature. Copyright © 2015 Elsevier Inc. All rights reserved.
Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury.
Dong, Tingting; Zhi, Liang; Bhayana, Brijesh; Wu, Mei X
2016-08-25
Acute traumatic brain injury (TBI) represents one of major causes of mortality and disability in the USA. Neuroinflammation has been regarded both beneficial and detrimental, probably in a time-dependent fashion. To address a role for neuroinflammation in brain injury, C57BL/6 mice were subjected to a closed head mild TBI (mTBI) by a standard controlled cortical impact, along with or without treatment of sphingosine 1-phosphate (S1P) or rolipram, after which the brain tissue of the impact site was evaluated for cell morphology via histology, inflammation by qRT-PCR and T cell staining, and cell death with Caspase-3 and TUNEL staining. Circulating lymphocytes were quantified by flow cytometry, and plasma hydrocortisone was analyzed by LC-MS/MS. To investigate the mechanism whereby cortisol lowered the number of peripheral T cells, T cell egress was tracked in lymph nodes by intravital confocal microscopy after hydrocortisone administration. We detected a decreased number of circulating lymphocytes, in particular, T cells soon after mTBI, which was inversely correlated with a transient and robust increase of plasma cortisol. The transient lymphocytopenia might be caused by cortisol in part via a blockade of lymphocyte egress as demonstrated by the ability of cortisol to inhibit T cell egress from the secondary lymphoid tissues. Moreover, exogenous hydrocortisone severely suppressed periphery lymphocytes in uninjured mice, whereas administering an egress-promoting agent S1P normalized circulating T cells in mTBI mice and increased T cells in the injured brain. Likewise, rolipram, a cAMP phosphodiesterase inhibitor, was also able to elevate cAMP levels in T cells in the presence of hydrocortisone in vitro and abrogate the action of cortisol in mTBI mice. The investigation demonstrated that the number of circulating T cells in the early phase of TBI was positively correlated with T cell infiltration and inflammatory responses as well as cell death at the cerebral cortex and hippocampus beneath the impact site. Decreases in intracellular cAMP might be part of the mechanism behind cortisol-mediated blockade of T cell egress. The study argues strongly for a protective role of cortisol-induced immune suppression in the early stage of TBI.
Factors determining extreme brain natriuretic peptide elevation.
Guglin, Maya; Hourani, Rayan; Pitta, Sridevi
2007-01-01
Brain natriuretic peptide (BNP) level is elevated in heart failure and reflects its severity. It is unknown why some patients have extremely high BNP levels. The authors retrospectively reviewed data on 179 consecutive patients whose BNP levels fell within one of several predetermined ranges: mild elevation, 500 to 1000 pg/mL (n=82); moderate elevation, 2000 to 3000 pg/mL (n=48); and high elevation, 4000 to 20,000 pg/mL (n=49). The statistical analysis was conducted with the unpaired t test and Pearson's correlation coefficient. Adjustments were made for age, sex, and serum creatinine level. Patients with moderate BNP elevation were more symptomatic and had more advanced structural and hemodynamic changes than did patients with lower BNP elevation. Characteristics of the high BNP level group did not differ from those of the moderate BNP level group. Serum creatinine level correlated with BNP level, but neither age nor sex did. High BNP level (4000-20,000 pg/mL) is determined more by renal dysfunction than by the severity of heart failure.
Changes in Neuroactive Steroid Concentrations After Preterm Delivery in the Guinea Pig
Hirst, Jonathan J.; Palliser, Hannah K.
2013-01-01
Background: Preterm birth is a major cause of neurodevelopmental disorders. Allopregnanolone, a key metabolite of progesterone, has neuroprotective and developmental effects in the brain. The objectives of this study were to measure the neuroactive steroid concentrations following preterm delivery in a neonatal guinea pig model and assess the potential for postnatal progesterone replacement therapy to affect neuroactive steroid brain and plasma concentrations in preterm neonates. Methods: Preterm (62-63 days) and term (69 days) guinea pig pups were delivered by cesarean section and tissue was collected at 24 hours. Plasma progesterone, cortisol, allopregnanolone, and brain allopregnanolone concentrations were measured by immunoassay. Brain 5α-reductase (5αR) expression was determined by Western blot. Neurodevelopmental maturity of preterm neonates was assessed by immunohistochemistry staining for myelination, glial cells, and neurons. Results: Brain allopregnanolone concentrations were significantly reduced after birth in both preterm and term neonates. Postnatal progesterone treatment in preterm neonates increased brain and plasma allopregnanolone concentrations. Preterm neonates had reduced myelination, low birth weight, and high mortality compared to term neonates. Brain 5αR expression was also significantly reduced in neonates compared to fetal expression. Conclusions: Delivery results in a loss of neuroactive steroid concentrations resulting in a premature reduction in brain allopregnanolone in preterm neonates. Postnatal progesterone therapy reestablished neuroactive steroid levels in preterm brains, a finding that has implications for postnatal growth following preterm birth that occurs at a time of neurodevelopmental immaturity. PMID:23585339
Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model.
Piccolo, Brian D; Graham, James L; Stanhope, Kimber L; Fiehn, Oliver; Havel, Peter J; Adams, Sean H
2016-06-01
Elevations of plasma concentrations of branched-chain amino acids (BCAAs) are observed in human insulin resistance and type 2 diabetes mellitus (T2DM); however, there has been some controversy with respect to the passive or causative nature of the BCAA phenotype. Using untargeted metabolomics, plasma BCAA and other metabolites were assessed in lean control Sprague-Dawley rats (LC) and temporally during diabetes development in the UCD-T2DM rat model, i.e., prediabetic (PD) and 2 wk (D2W), 3 mo (D3M), and 6 mo (D6M) post-onset of diabetes. Plasma leucine, isoleucine, and valine concentrations were elevated only in D6M rats compared with D2W rats (by 28, 29, and 30%, respectively). This was in contrast to decreased plasma concentrations of several other amino acids in D3M and/or D6M relative to LC rats (Ala, Arg, Glu, Gln, Met, Ser, Thr, and Trp). BCAAs were positively correlated with fasting glucose and negatively correlated with plasma insulin, total body weight, total adipose tissue weight, and gastrocnemius muscle weight in the D3M and D6M groups. Multivariate analysis revealed that D3M and D6M UCD-T2DM rats had lower concentrations of amino acids, amino acid derivatives, 1,5-anhydroglucitol, and conduritol-β-opoxide and higher concentrations of uronic acids, pantothenic acids, aconitate, benzoic acid, lactate, and monopalmitin-2-glyceride relative to PD and D2W UCD-T2DM rats. The UCD-T2DM rat does not display elevated plasma BCAA concentrations until 6 mo post-onset of diabetes. With the acknowledgement that this is a rodent model of T2DM, the results indicate that elevated plasma BCAA concentrations are not necessary or sufficient to elicit an insulin resistance or T2DM onset. Copyright © 2016 the American Physiological Society.
Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model
Piccolo, Brian D.; Graham, James L.; Stanhope, Kimber L.; Fiehn, Oliver; Havel, Peter J.
2016-01-01
Elevations of plasma concentrations of branched-chain amino acids (BCAAs) are observed in human insulin resistance and type 2 diabetes mellitus (T2DM); however, there has been some controversy with respect to the passive or causative nature of the BCAA phenotype. Using untargeted metabolomics, plasma BCAA and other metabolites were assessed in lean control Sprague-Dawley rats (LC) and temporally during diabetes development in the UCD-T2DM rat model, i.e., prediabetic (PD) and 2 wk (D2W), 3 mo (D3M), and 6 mo (D6M) post-onset of diabetes. Plasma leucine, isoleucine, and valine concentrations were elevated only in D6M rats compared with D2W rats (by 28, 29, and 30%, respectively). This was in contrast to decreased plasma concentrations of several other amino acids in D3M and/or D6M relative to LC rats (Ala, Arg, Glu, Gln, Met, Ser, Thr, and Trp). BCAAs were positively correlated with fasting glucose and negatively correlated with plasma insulin, total body weight, total adipose tissue weight, and gastrocnemius muscle weight in the D3M and D6M groups. Multivariate analysis revealed that D3M and D6M UCD-T2DM rats had lower concentrations of amino acids, amino acid derivatives, 1,5-anhydroglucitol, and conduritol-β-opoxide and higher concentrations of uronic acids, pantothenic acids, aconitate, benzoic acid, lactate, and monopalmitin-2-glyceride relative to PD and D2W UCD-T2DM rats. The UCD-T2DM rat does not display elevated plasma BCAA concentrations until 6 mo post-onset of diabetes. With the acknowledgement that this is a rodent model of T2DM, the results indicate that elevated plasma BCAA concentrations are not necessary or sufficient to elicit an insulin resistance or T2DM onset. PMID:27094034
Brain interstitial fluid TNF-α after subarachnoid hemorrhage
Hanafy, Khalid A.; Grobelny, Bartosz; Fernandez, Luis; Kurtz, Pedro; Connolly, ES; Mayer, Stephan A.; Schindler, Christian; Badjatia, Neeraj
2010-01-01
Objective: TNF-α is an inflammatory cytokine that plays a central role in promoting the cascade of events leading to an inflammatory response. Recent studies have suggested that TNF-α may play a key role in the formation and rupture of cerebral aneurysms, and that the underlying cerebral inflammatory response is a major determinate of outcome following subrarachnoid hemorrhage (SAH). Methods: We studied 14 comatose SAH patients who underwent multimodality neuromonitoring with intracranial pressure (ICP) and cerebral microdialysis as part of their clinical care. Continuous physiological variables were time-locked every 8 hours and recorded at the same point that brain interstitial fluid TNF-α was measured in brain microdialysis samples. Significant associations were determined using generalized estimation equations. Results: Each patient had a mean of 9 brain tissue TNF-α measurements obtained over an average of 72 hours of monitoring. TNF-α levels rose progressively over time. Predictors of elevated brain interstitial TNF-α included higher brain interstitial fluid glucose levels (β=0.066, P<0.02), intraventricular hemorrhage (β=0.085, P<0.021), and aneurysm size >6 mm (β=0.14, p<0.001). There was no relationship between TNF-α levels and the burden of cisternal SAH; concurrent measurements of serum glucose, or lactate-pyruvate ratio. Interpretation: Brain interstitial TNF-α levels are elevated after SAH, and are associated with large aneurysm size, the burden of intraventricular blood, and elevation brain interstitial glucose levels. PMID:20110094
Disorders of creatine transport and metabolism.
Longo, Nicola; Ardon, Orly; Vanzo, Rena; Schwartz, Elizabeth; Pasquali, Marzia
2011-02-15
Creatine is a nitrogen containing compound that serves as an energy shuttle between the mitochondrial sites of ATP production and the cytosol where ATP is utilized. There are two known disorders of creatine synthesis (both transmitted as autosomal recessive traits: arginine: glycine amidinotransferase (AGAT) deficiency; OMIM 602360; and guanidinoacetate methyltransferase (GAMT) deficiency (OMIM 601240)) and one disorder of creatine transport (X-linked recessive SLC6A8 creatine transporter deficiency (OMIM 300036)). All these disorders are characterized by brain creatine deficiency, detectable by magnetic resonance spectroscopy. Affected patients can have mental retardation, hypotonia, autism or behavioral problems and seizures. The diagnosis of these conditions relies on the measurement of plasma and urine creatine and guanidinoacetate. Creatine levels in plasma are reduced in both creatine synthesis defects and guanidinoacetate is increased in GAMT deficiency. The urine creatine/creatinine ratio is elevated in creatine transporter deficiency with normal plasma levels of creatine and guanidinoacetate. The diagnosis is confirmed in all cases by DNA testing or functional studies. Defects of creatine biosynthesis are treated with creatine supplements and, in GAMT deficiency, with ornithine and dietary restriction of arginine through limitation of protein intake. No causal therapy is yet available for creatine transporter deficiency and supplementation with the guanidinoacetate precursors arginine and glycine is being explored. The excellent response to therapy of early identified patients with GAMT or AGAT deficiency candidates these condition for inclusion in newborn screening programs. Copyright © 2011 Wiley-Liss, Inc.
Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol.
Sun, Wenjun; Chen, Liangjing; Zheng, Wei; Wei, Xiaoan; Wu, Wenqi; Duysen, Ellen G; Jiang, Wei
2017-06-01
Ethanol is one of the most commonly abused psychotropic substances with deleterious effects on the central nervous system. Ethanol exposure during development results in the loss of neurons in brain regions and when exposed to ethanol cultured cells undergo apoptosis. To date no information is available on whether abnormally high AChE activity is characteristic of apoptosis in animals exposed to ethanol. The aims of the present study were to determine whether induction of AChE activity is associated with ethanol-induced apoptosis and to explore the mechanism of enhanced AChE activity induced by ethanol. For this purpose, in vitro and in vivo experiments were performed. AChE activity was quantified by spectrophotometry and apoptosis by flow cytometer in SH-SY5Y cells exposed to ethanol. The results showed that cells treated with 500mM ethanol for 24h had a 9-fold increase in apoptotic cells and a 6-fold increase in AChE activity compared with controls. Mice exposed acutely to 200μl of 20% ethanol daily on days 1-4 had elevated AChE activity in plasma on days 3-7. On day 4, plasma AChE activity was 2.4-fold higher than pretreatment activity. More apoptotic cells were found in the brains of treated mice compared to controls. Cells in brain sections that were positive in the TUNEL assay stained for AChE activity. In conclusion, AChE activity and apoptosis were induced in SH-SY5Y cells and mice treated with ethanol, which may indicate that increased AChE may related to apoptosis induced by ethanol. Unusually high AChE activity may be an effect marker of exposure to ethanol. The relationship between AChE and apoptosis might represent a novel mechanism of ethanol-associated neuronal injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Elasfar, Abdelfatah
2012-01-01
Elevated plasma brain natriuretic peptide (BNP) levels have been demonstrated in patients with chronic valvular disease. We designed the present study to assess whether changes in N-terminal pro-brain natriuretic peptide (NT-proBNP) levels after mitral, aortic and double mitral and aortic valve replacement reflect changes in heart failure (HF) symptoms including New York Heart Association (NYHA) class and changes in left atrium (LA) size, left ventricle (LV) size and LV function. A prospective observational nonrandomized study among consecutive patients undergoing mitral and/or aortic valve replacement in our center. The study population consisted of 24 patients (mean [SD] age of 55.3 [16.2] years, 58% were males) who underwent surgical mitral valve replacement (12 patients), aortic valve replacement (8 patients) and combined mitral and aortic valve replacement (4 patients). NT-proBNP measurements, transthoracic echocardiography and NYHA class assessments were performed before and 6 months after surgery. The decrease in NT-proBNP was associated with decrease in left atrial dimension (r = 0.73, P < .002), LV end-diastolic dimension (r=0.65, P=.001), LV end-systolic dimension (r=0.53, P=.036), and increase in ejection fraction (r=-0.65, P=.001) after 6 months postoperatively. Furthermore, a decreasing NT-proBNP was associated with improvement in NYHA class. NT-proBNP levels after mitral, aortic and double valve replacement correlates with changes in HF manifestations as well as changes in LA size and LV dimension and function. Thus, we hypothesize that interval measurement of the NT-proBNP level at clinic visits can allow early detection of any clinical deterioration as well as the possibility of assessment of the long-term outcome of those patients.
Meyer, Thomas; Herrmann-Lingen, Christoph; Chavanon, Mira-Lynn; Pieske, Burkert; Wachter, Rolf; Edelmann, Frank
2015-12-01
It has been postulated that patients with heart failure have a high risk of ventricular arrhythmias and sudden cardiac death resulting from anxiety-induced autonomic arousal. In the prospective and multicenter DIAST-CHF (Diagnostic Trial on Prevalence and Clinical Course of Diastolic Dysfunction and Heart Failure) study, we therefore, tested the hypothesis that adrenomedullin (ADM), a well-established predictor for cardiovascular outcome, is associated with self-rated anxiety symptoms in patients at risk of suffering from or actually with overt heart failure. Study participants with risk factors for diastolic dysfunction were requested to complete the Hospital Anxiety and Depression Scale (HADS), and plasma mid-regional pro-adrenomedullin (MR-proADM) concentrations were measured. In bivariate analysis, we found significantly lower plasma MR-proADM levels in patients with elevated HADS-anxiety scores above the clinically relevant cut-off level of ≥11 (n=118, 536pmol/l, interquartile range [IQR] 449-626) as compared to non-anxious study participants (n=1,292, 573pmol/l, IQR 486-702, p=0.001). A set of multivariate models adjusted for potential confounders confirmed the negative association between self-rated anxiety symptoms and plasma MR-proADM. In similar models, no significant association was detected between HADS-depression scores and MR-proADM. The inverse relationship between plasma MR-proADM and anxiety observed in patients with cardiovascular risk factors supports a previous experimental study using a mutant mouse line with a brain-specific loss of ADM expression which displayed hyperactive and over-anxious behavior. Further experimental and clinical studies are warranted to test the hypothesis that also in humans ADM acts as a neuromodulator with anxiolytic properties. Copyright © 2015. Published by Elsevier Ltd.
Human umbilical cord plasma proteins revitalize hippocampal function in aged mice
Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony
2017-01-01
Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high translational value for targeting ageing- or disease-associated hippocampal dysfunction. PMID:28424512
Callegari, Ernesto; Malhotra, Bimal; Bungay, Peter J; Webster, Rob; Fenner, Katherine S; Kempshall, Sarah; LaPerle, Jennifer L; Michel, Martin C; Kay, Gary G
2011-01-01
AIMS To assess and compare the mechanisms of central nervous system (CNS) penetration of antimuscarinic overactive bladder (OAB) agents. METHODS Physical properties were computed or compiled from the literature. Rats were administered 5-hydroxymethyl tolterodine (HMT), darifenacin, oxybutynin, solifenacin, tolterodine or trospium subcutaneously. At 1 h postdose, plasma, brain and cerebrospinal fluid (CSF) concentrations were determined using LC-MS/MS assays. Brain and plasma protein binding were determined in vitro. Permeability in the presence and absence of the efflux transporter P-glycoprotein (P-gp) was assessed in RRCK and MDCK-MDR1 transwell assays. RESULTS Oxybutynin displayed extensive CNS penetration, with brain : plasma ratios (B : P), unbound brain : unbound plasma ratios (Kp,free) and CSF : free plasma ratios each >1. Tolterodine (B : P = 2.95, Kp,free = 0.23 and CSF : free plasma = 0.16) and solifenacin (B : P = 3.04, Kp,free = 0.28 and CSF : free plasma = 1.41) showed significant CNS penetration but with some restriction from CNS as indicated by Kp,free values significantly <1. 5-HMT, darifenacin and trospium displayed much lower B : P (0.03–0.16), Kp,free (0.01–0.04) and CSF : free plasma (0.004–0.06), consistent with poor CNS penetration. Permeability in RRCK cells was low for trospium (0.63 × 10−6 cm s−1), moderate for 5-HMT (11.7 × 10−6 cm s−1) and high for darifenacin, solifenacin, tolterodine and oxybutynin (21.5–38.2 × 10−6 cm s−1). In MDCK-MDR1 cells 5-HMT, darifenacin and trospium, were P-gp substrates, whereas oxybutynin, solifenacin and tolterodine were not P-gp substrates. CONCLUSIONS Brain penetration was low for antimuscarinics that are P-gp substrates (5-HMT, darifenacin and trospium), and significant for those that are not P-gp substrates (oxybutynin, solifenacin and tolterodine). CNS adverse events reported in randomized controlled clinical trials show general alignment with the preclinical data described in this study. PMID:21392072
Quantification of [11C]yohimbine binding to α2 adrenoceptors in rat brain in vivo
Phan, Jenny-Ann; Landau, Anne M; Wong, Dean F; Jakobsen, Steen; Nahimi, Adjmal; Doudet, Doris J; Gjedde, Albert
2015-01-01
We quantified the binding potentials (BPND) of [11C]yohimbine binding in rat brain to alpha-2 adrenoceptors to evaluate [11C]yohimbine as an in vivo marker of noradrenergic neurotransmission and to examine its sensitivity to the level of noradrenaline. Dual [11C]yohimbine dynamic positron emission tomography (PET) recordings were applied to five Sprague Dawley rats at baseline, followed by acute amphetamine administration (2 mg/kg) to induce elevation of the endogenous level of noradrenaline. The volume of distribution (VT) of [11C]yohimbine was obtained using Logan plot with arterial plasma input. Because alpha-2 adrenoceptors are distributed throughout the brain, the estimation of the BPND is complicated by the absence of an anatomic region of no displaceable binding. We used the Inhibition plot to acquire the reference volume, VND, from which we calculated the BPND. Acute pharmacological challenge with amphetamine induced a significant decline of [11C]yohimbine BPND of ~38% in all volumes of interest. The BPND was greatest in the thalamus and striatum, followed in descending order by, frontal cortex, pons, and cerebellum. The experimental data demonstrate that [11C]yohimbine binding is sensitive to a challenge known to increase the extracellular level of noradrenaline, which can benefit future PET investigations of pathologic conditions related to disrupted noradrenergic neurotransmission. PMID:25564241
Pawlosky, Robert J; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L
2010-02-01
Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Rats were infused with solutions of sodium acetate, ethanol, or saline containing (13)C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs' cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of (13)C-glucose into the brain compared to controls and the concentration of brain (13)C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg(2+) in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, alpha-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD(+)]/[NADH] was lower, the free mitochondrial [NAD(+)]/[NADH] and [CoQ]/[CoQH(2)] were oxidized and the DeltaG' of ATP lowered by acetate infusion from -61.4 kJ to -59.9 kJ/mol. Animals with elevated levels of blood ethanol or acetate had decreased (13)C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in (13)C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in DeltaG' of ATP was similar to administration of uncoupling agents indicating that the metabolism of acetate in brain caused the mitochondrial voltage dependent pore to form.
Pawlosky, Robert J.; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T.; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L.
2010-01-01
Background Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Methods Rats were infused with solutions of sodium acetate, ethanol, or saline containing 13C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs’ cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Results Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of 13C-glucose into the brain compared to controls and the concentration of brain 13C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg2+ in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, α-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD+]/[NADH] was lower, the free mitochondrial [NAD+]/[NADH] and [CoQ]/[CoQH2] were oxidized and the ΔG′ of ATP lowered by acetate infusion from −61.4 kJ to −59.9 kJ/mol. Conclusions Animals with elevated levels of blood ethanol or acetate had decreased 13C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in 13C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in ΔG′ of ATP was similar to administration of uncoupling agents indicating that the metabolism of acetate in brain caused the mitochondrial voltage dependent pore to form. PMID:19951290
Al-Waili, Noori S
2004-01-01
This study included the following experiments: (1) effects of dextrose solution (250 mL of water containing 75 g of dextrose) or honey solution (250 mL of water containing 75 g of natural honey) on plasma glucose level (PGL), plasma insulin, and plasma C-peptide (eight subjects); (2) effects of dextrose, honey, or artificial honey (250 mL of water containing 35 g of dextrose and 40 g of fructose) on cholesterol and triglycerides (TG) (nine subjects); (3) effects of honey solution, administered for 15 days, on PGL, blood lipids, C-reactive protein (CRP), and homocysteine (eight subjects); (4) effects of honey or artificial honey on cholesterol and TG in six patients with hypercholesterolemia and five patients with hypertriglyceridemia; (5) effects of honey for 15 days on blood lipid and CRP in five patients with elevated cholesterol and CRP; (6) effects of 70 g of dextrose or 90 g of honey on PGL in seven patients with type 2 diabetes mellitus; and (7) effects of 30 g of sucrose or 30 g of honey on PGL, plasma insulin, and plasma C-peptide in five diabetic patients. In healthy subjects, dextrose elevated PGL at 1 (53%) and 2 (3%) hours, and decreased PGL after 3 hours (20%). Honey elevated PGL after 1 hour (14%) and decreased it after 3 hours (10%). Elevation of insulin and C-peptide was significantly higher after dextrose than after honey. Dextrose slightly reduced cholesterol and low-density lipoprotein-cholesterol (LDL-C) after 1 hour and significantly after 2 hours, and increased TG after 1, 2, and 3 hours. Artificial honey slightly decreased cholesterol and LDL-C and elevated TG. Honey reduced cholesterol, LDL-C, and TG and slightly elevated high-density lipoprotein-cholesterol (HDL-C). Honey consumed for 15 days decreased cholesterol (7%), LDL-C (1%), TG (2%), CRP (7%), homocysteine (6%), and PGL (6%), and increased HDL-C (2%). In patients with hypertriglyceridemia, artificial honey increased TG, while honey decreased TG. In patients with hyperlipidemia, artificial honey increased LDL-C, while honey decreased LDL-C. Honey decreased cholesterol (8%), LDL-C (11%), and CRP (75%) after 15 days. In diabetic patients, honey compared with dextrose caused a significantly lower rise of PGL. Elevation of PGL was greater after honey than after sucrose at 30 minutes, and was lower after honey than it was after sucrose at 60, 120, and 180 minutes. Honey caused greater elevation of insulin than sucrose did after 30, 120, and 180 minutes. Honey reduces blood lipids, homocysteine, and CRP in normal and hyperlipidemic subjects. Honey compared with dextrose and sucrose caused lower elevation of PGL in diabetics.
Stress-induced changes of neurosteroid profiles in rat brain and plasma under immobilized condition.
Park, Myeong Hyeon; Rehman, Shaheed Ur; Kim, In Sook; Choi, Min Sun; Yoo, Hye Hyun
2017-05-10
In this study, various neurosteroids in brain and plasma were simultaneously determined using liquid chromatography-tandem mass spectrometry and their profile changes in a stress-induced rats were investigated. The investigated neurosteroids are as follows: progesterone (P4), 5α-dihydroprogesterone (5α-DHP), 5β-dihydroprogesterone, estrone, androstenedione (AE), cortisol, cortisone, corticosterone (CORT), dehydroepiandrosterone (DHEA), pregnanolone (3α,5β-THP), allopregnanolone (ALLO), 11-deoxycorticosterone (DOC), 11-deoxycortisol, pregnenolone (PREG), and 5α/5β-tetrahydrodeoxycorticosterone (5α/5β-THDOC). Brain and plasma samples were processed using solid-phase extraction with methanol and acetic acid (99:1), and derivatized with a hydroxylamine reagent. Separation was achieved within 13min at a flow rate of 0.4mL/min with a C18 column (3.0×50mm, 2.7μm). The triple quadrupole mass spectrometer was operated in the positive electrospray ionization mode. Using this method, the neurosteroid level variation was quantitated and investigated in the brain and plasma upon immobilization stress in rats. As a result, AE, CORT, DOC, P4, 5α-DHP, 5α/5β-THDOC, DHEA, 3α,5β-THP, ALLO, and PREG levels were significantly altered in both the brain and plasma samples when stress was induced. These findings demonstrated that stress leads to the alteration of the GABAergic neurosteroid profile. The present results will be helpful for furthering an understanding of the role of neurosteroids in stressed conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Blood metabolite markers of cognitive performance and brain function in aging.
Simpson, Brittany N; Kim, Min; Chuang, Yi-Fang; Beason-Held, Lori; Kitner-Triolo, Melissa; Kraut, Michael; Lirette, Seth T; Windham, B Gwen; Griswold, Michael E; Legido-Quigley, Cristina; Thambisetty, Madhav
2016-07-01
We recently showed that Alzheimer's disease patients have lower plasma concentrations of the phosphatidylcholines (PC16:0/20:5; PC16:0/22:6; and PC18:0/22:6) relative to healthy controls. We now extend these findings by examining associations between plasma concentrations of these PCs with cognition and brain function (measured by regional resting state cerebral blood flow; rCBF) in non-demented older individuals. Within the Baltimore Longitudinal Study of Aging neuroimaging substudy, participants underwent cognitive assessments and brain (15)O-water positron emission tomography. Plasma phosphatidylcholines concentrations (PC16:0/20:5, PC16:0/22:6, and PC18:0/22:6), cognition (California Verbal Learning Test (CVLT), Trail Making Test A&B, the Mini-Mental State Examination, Benton Visual Retention, Card Rotation, and Fluencies-Category and Letter), and rCBF were assessed. Lower plasma phosphatidylcholine concentrations were associated with lower baseline memory performance (CVLT long delay recall task-PC16:0/20:5: -2.17-1.39-0.60 p = 0.001 (β with 95% confidence interval subscripts)) and lower rCBF in several brain regions including those associated with memory performance and higher order cognitive processes. Our findings suggest that lower plasma concentrations of PC16:0/20:5, PC16:0/22:6, and PC18:0/22:6 are associated with poorer memory performance as well as widespread decreases in brain function during aging. Dysregulation of peripheral phosphatidylcholine metabolism may therefore be a common feature of both Alzheimer's disease and age-associated differences in cognition. © The Author(s) 2015.
Mehus, Aaron A.; Picklo, Sr, Matthew J.
2017-01-01
Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n-3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3n-3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3) and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2) and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors. PMID:29048374
Mehus, Aaron A; Picklo, Matthew J
2017-10-19
Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n -3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n -3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3 n -3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs ( Mt1-3 ) and modulators of MT expression including glucocorticoid receptors ( Nr3c1 and Nr3c2 ) and several mediators of thyroid hormone regulation ( Dio1-3 , Mct8 , Oatp1c1 , Thra , and Thrb ) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n -3 PUFA reduced Mt1 , Mt2 , Nr3c1 , Mct8 , and Thrb . ER elevated Nr3c1 , Dio1 , and Thrb and reduced Thra in the liver. Given MT's role in cellular protection, further studies are needed to evaluate whether ER or n -3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.
Morandini, Leonel; Ramallo, Martín Roberto; Moreira, Renata Guimarães; Höcht, Christian; Somoza, Gustavo Manuel; Silva, Ana; Pandolfi, Matías
2015-11-01
Reared animals for edible or ornamental purposes are frequently exposed to high aggression and stressful situations. These factors generally arise from conspecifics in densely breeding conditions. In vertebrates, serotonin (5-HT) has been postulated as a key neuromodulator and neurotransmitter involved in aggression and stress. The essential amino acid L-tryptophan (trp) is crucial for the synthesis of 5-HT, and so, leaves a gateway for indirectly augmenting brain 5-HT levels by means of a trp-enriched diet. The cichlid fish Cichlasoma dimerus, locally known as chanchita, is an autochthonous, potentially ornamental species and a fruitful laboratory model which behavior and reproduction has been studied over the last 15years. It presents complex social hierarchies, and great asymmetries between subordinate and dominant animals in respect to aggression, stress, and reproductive chance. The first aim of this work was to perform a morphological description of chanchita's brain serotonergic system, in both males and females. Then, we evaluated the effects of a trp-supplemented diet, given during 4weeks, on brain serotonergic activity, stress and sexual steroid hormones, and growth in isolated specimens. Results showed that chanchita's brain serotonergic system is composed of several populations of neurons located in three main areas: pretectum, hypothalamus and raphe, with no clear differences between males and females at a morphological level. Animals fed with trp-enriched diets exhibited higher forebrain serotonergic activity and a significant reduction in their relative cortisol levels, with no effects on sexual steroid plasma levels or growth parameters. Thus, this study points to food trp enrichment as a "neurodietary'' method for elevating brain serotonergic activity and decreasing stress, without affecting growth or sex steroid hormone levels. Copyright © 2015 Elsevier Inc. All rights reserved.
[A clinical study on the pathogenesis of lung cancer-related cerebral infarction].
Xie, X R; Qin, C; Chen, L; Cheng, D B; Huang, J Y; Wei, X X; Yu, L X; Liang, Z J
2017-02-01
Objective: To explore the risk factors for lung cancer-related cerebral infarction. Methods: The hospitalized active lung cancer patients on anti-cancer therapy with no traditional stroke risk factors, who experienced an acute cerebral infarct in the First Affiliated Hospital of Guangxi Medical University from January 2005 to December 2015, were consecutively collected as the LCRS (lung cancer-related stroke) group. The active lung cancer patients without cerebral infarction hospitalized at the same peroid matched with the LCRS group for age and gender were collected as the LC (lung cancer) group. Clinical data from the two groups were analyzed. Results: A total of 139 LCRS patients and 139 LC patients were enrolled in the study, with 110 male and 29 female in each group, and there were no significant difference for the mean age between the LCRS group (52.1±10.4 years old ) and the LC group (52.1±10.1 years old). Two or more acute ischemic lesions of the brain were showed by MRI in most patients in the LCRS group (117 cases, 84.2%). Compared with the LC group, more patients in the LCRS group were found with adenocarcinoma, metastasis, elevated plasma D-dimer, CA125 and CA199 levels [88 cases (63.3%) vs 47 cases (33.8%); 98 cases (70.5%) vs 56 cases (40.3%); (468.38±291.37) μg/L vs (277.59±191.22) μg/L; (221.42±146.34) U/ml vs (106.84±69.97) U/ml; (254.68±185.84) U/ml vs (97.15±63.64) U/ml; with all P <0.001]. By logistic regression analysis of multiple factors, the elevated plasma D-dimer, CA125 and CA199 levels were showed to be independent risk factors for the cerebral infarction ( OR =1.003, 95% CI 1.001-1.004; OR =1.006, 95% CI 1.003-1.010; OR =1.011, 95% CI 1.007-1.015). Conclusions: The elevated plasma D-dimer, CA125 and CA199 levels are the risk factors for the lung cancer related cerebral infarction, which may lead to hypercoagulation and induce cerebral infarction eventually.
Lupia, R H; Ferencz, N; Lertora, J J; Aggarwal, S K; George, W J; Agrawal, K C
1993-04-01
The pharmacokinetics of two prodrugs of zidovudine (AZT), 1,4-dihydro-1-methyl-3-[(pyridylcarbonyl)oxy] ester and isoleucinyl ester (DPAZT and IAZT, respectively), were investigated in a rabbit model to determine their potential utility as drugs against human immunodeficiency virus. Drugs were administered by intravenous infusion over 5 min at doses equal to 10 mg of AZT per kg of body weight. The levels of the prodrugs and of released AZT in plasma, cerebrospinal fluid (CSF), and brain were determined by high-performance liquid chromatography analysis. DPAZT disappeared rapidly from plasma, whereas IAZT maintained a sustained level in plasma for up to 4 h. The levels in plasma of AZT released from DPAZT were consistently lower than the levels of AZT released from IAZT or AZT itself. At 75 min after infusion of AZT, DPAZT, and IAZT, the CSF plasma AZT ratios were 0.23, 0.30, and 0.25, while the brain/CSF AZT ratios were 0.32, 0.63, and 0.64, respectively. These results indicate that the administration of each of the prodrugs produced a higher concentration of AZT in the brain than did the direct administration of AZT. Both prodrugs therefore may be superior to AZT itself with respect to achieving anti-human immunodeficiency virus concentrations within the central nervous system.
Lupia, R H; Ferencz, N; Lertora, J J; Aggarwal, S K; George, W J; Agrawal, K C
1993-01-01
The pharmacokinetics of two prodrugs of zidovudine (AZT), 1,4-dihydro-1-methyl-3-[(pyridylcarbonyl)oxy] ester and isoleucinyl ester (DPAZT and IAZT, respectively), were investigated in a rabbit model to determine their potential utility as drugs against human immunodeficiency virus. Drugs were administered by intravenous infusion over 5 min at doses equal to 10 mg of AZT per kg of body weight. The levels of the prodrugs and of released AZT in plasma, cerebrospinal fluid (CSF), and brain were determined by high-performance liquid chromatography analysis. DPAZT disappeared rapidly from plasma, whereas IAZT maintained a sustained level in plasma for up to 4 h. The levels in plasma of AZT released from DPAZT were consistently lower than the levels of AZT released from IAZT or AZT itself. At 75 min after infusion of AZT, DPAZT, and IAZT, the CSF plasma AZT ratios were 0.23, 0.30, and 0.25, while the brain/CSF AZT ratios were 0.32, 0.63, and 0.64, respectively. These results indicate that the administration of each of the prodrugs produced a higher concentration of AZT in the brain than did the direct administration of AZT. Both prodrugs therefore may be superior to AZT itself with respect to achieving anti-human immunodeficiency virus concentrations within the central nervous system. PMID:8494380
Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.
Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D
2017-04-01
Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.
Concas, A.; Mostallino, M. C.; Porcu, P.; Follesa, P.; Barbaccia, M. L.; Trabucchi, M.; Purdy, R. H.; Grisenti, P.; Biggio, G.
1998-01-01
The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of γ-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl− uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for γ2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also α1,α2, α3, α4, β1, β2, β3, and γ2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5α-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl− uptake and the decrease of γ2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats. PMID:9789080
Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.
Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari
2013-10-01
Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. © 2013 The Anatomical Society and John Wiley & Sons Ltd.
Clinical and Prognostic Effect of Plasma Fibrinogen in Renal Cell Carcinoma: A Meta-Analysis.
Tian, Yuejun; Hong, Mei; Jing, Suoshi; Liu, Xingchen; Wang, Hanzhang; Wang, Xinping; Kaushik, Dharam; Rodriguez, Ronald; Wang, Zhiping
2017-01-01
Background . Although numerous studies have shown that plasma fibrinogen is linked to renal cell carcinoma (RCC) risk, the consistency and magnitude of the effect of plasma fibrinogen are unclear. The aim of the study was to explore the association between plasma fibrinogen and RCC prognosis. Methods . An electronic search of Embase, PubMed/MEDLINE, and the Cochrane databases was performed to identify relevant studies published prior to June 1, 2016. Results . A total of 3744 patients with RCC from 7 published studies were included in the meta-analysis. The prognostic and clinical relevance of plasma fibrinogen are evaluated in RCC patients. Statistical significance of the combined hazard ratio (HR) was detected for overall survival, cancer-specific survival, and disease-free survival. Our pooled results showed that elevated plasma fibrinogen was significantly associated with clinical stage and Fuhrman grading. The level of plasma fibrinogen was not found to be associated with tumor type and gender. Conclusions . Elevated plasma fibrinogen is a strong indicator of poorer prognosis of patients with RCC, whereas the plasma fibrinogen is not significantly associated with tumor type. Therefore, plasma fibrinogen could be used in patients with RCC for risk stratification and decision providing a proper therapeutic strategy.
Gampa, Gautham; Kim, Minjee; Cook-Rostie, Nicholas; Laramy, Janice K; Sarkaria, Jann N; Paradiso, Linda; DePalatis, Louis; Elmquist, William F
2018-05-01
Clinically meaningful efficacy in the treatment of brain tumors, including melanoma brain metastases (MBM), requires selection of a potent inhibitor against a suitable target, and adequate drug distribution to target sites in the brain. Deregulated constitutive signaling of mitogen-activated protein kinase (MAPK) pathway has been frequently observed in melanoma, and mitogen-activated protein/extracellular signal-regulated kinase (MEK) has been identified to be an important target. E6201 is a potent synthetic small-molecule MEK inhibitor. The purpose of this study was to evaluate brain distribution of E6201, and examine the impact of active efflux transport at the blood-brain barrier on the central nervous system (CNS) exposure of E6201. In vitro studies utilizing transfected Madin-Darby canine kidney II (MDCKII) cells indicate that E6201 is not a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp). In vivo studies also suggest a minimal involvement of P-gp and Bcrp in E6201's brain distribution. The total concentrations in brain were higher than in plasma, resulting in a brain-to-plasma AUC ratio (Kp) of 2.66 in wild-type mice. The brain distribution was modestly enhanced in Mdr1a/b -/- , Bcrp1 -/- , and Mdr1a/b -/- Bcrp1 -/- knockout mice. The nonspecific binding of E6201 was higher in brain compared with plasma. However, free-drug concentrations in brain following 40 mg/kg intravenous dose reach levels that exceed reported in vitro half-maximal inhibitory concentration (IC 50 ) values, suggesting that E6201 may be efficacious in inhibiting MEK-driven brain tumors. The brain distribution characteristics of E6201 make it an attractive targeted agent for clinical testing in MBM, glioblastoma, and other CNS tumors that may be effectively targeted with inhibition of MEK signaling. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Ljubimova, Julia Y; Kleinman, Michael T; Karabalin, Natalya M; Inoue, Satoshi; Konda, Bindu; Gangalum, Pallavi; Markman, Janet L; Ljubimov, Alexander V; Black, Keith L
2013-11-01
Air pollution negatively impacts pulmonary, cardiovascular, and central nervous systems. Although its influence on brain cancer is unclear, toxic pollutants can cause blood-brain barrier disruption, enabling them to reach the brain and cause alterations leading to tumor development. By gene microarray analysis validated by quantitative RT-PCR and immunostaining we examined whether rat (n=104) inhalation exposure to air pollution particulate matter (PM) resulted in brain molecular changes similar to those associated with human brain tumors. Global brain gene expression was analyzed after exposure to PM (coarse, 2.5-10μm; fine, <2.5μm; or ultrafine, <0.15μm) and purified air for different times, short (0.5, 1, and 3 months) and chronic (10 months), for 5h per day, four days per week. Expression of select gene products was also studied in human brain (n=7) and in tumors (n=83). Arc/Arg3.1 and Rac1 genes, and their protein products were selected for further examination. Arc was elevated upon two-week to three-month exposure to coarse PM and declined after 10-month exposure. Rac1 was significantly elevated upon 10-month coarse PM exposure. On human brain tumor sections, Arc was expressed in benign meningiomas and low-grade gliomas but was much lower in high-grade tumors. Conversely, Rac1 was elevated in high-grade vs. low-grade gliomas. Arc is thus associated with early brain changes and low-grade tumors, whereas Rac1 is associated with long-term PM exposure and highly aggressive tumors. In summary, exposure to air PM leads to distinct changes in rodent brain gene expression similar to those observed in human brain tumors. Copyright © 2013 Elsevier GmbH. All rights reserved.
Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes
2014-01-01
Background Lysophosphatidic acid (LPA) is a bioactive phospholipid with a potentially causative role in neurotrauma. Blocking LPA signaling with the LPA-directed monoclonal antibody B3/Lpathomab is neuroprotective in the mouse spinal cord following injury. Findings Here we investigated the use of this agent in treatment of secondary brain damage consequent to traumatic brain injury (TBI). LPA was elevated in cerebrospinal fluid (CSF) of patients with TBI compared to controls. LPA levels were also elevated in a mouse controlled cortical impact (CCI) model of TBI and B3 significantly reduced lesion volume by both histological and MRI assessments. Diminished tissue damage coincided with lower brain IL-6 levels and improvement in functional outcomes. Conclusions This study presents a novel therapeutic approach for the treatment of TBI by blocking extracellular LPA signaling to minimize secondary brain damage and neurological dysfunction. PMID:24576351
Anand, Rashmi; Gulati, Kavita; Ray, Arunabha
2012-02-15
The present study evaluated the effects of the opioid agonist, morphine on stress induced anxiogenesis and the possible involvement of nitric oxide (NO) in such effects in rats. Acute restraint stress consistently induced an anxiety-like response in the elevated plus maze test, i.e. reduced number of open arm entries and time spent in the open arms as compared to controls. Pretreatment with morphine (1 and 5mg/kg), attenuated the restraint stress induced anxiogenic response in a dose related manner. Restraint stress induced neurobehavioral suppression was associated with reductions in brain NO oxidation products (NOx) levels, which were also reversed with morphine. Interaction studies showed that sub-effective doses of morphine and l-arginine (a NO precursor) had synergistic effects on stress induced elevated plus maze activity and brain NOx, whereas, l-NAME (a NO synthase inhibitor) neutralized these effects of morphine. Repeated restraint stress (×5) induced adaptative changes as evidenced by normalization of behavioral suppression and elevations in brain NOx, as compared to acute stress. Pretreatment with morphine in combination with repeated stress (×5) showed potentiating effects in the induction of behavioral adaptation in the elevated plus maze and elevations in brain NOx, as compared to repeated stress alone. Further, l-NAME, when administered prior to morphine, blocked this effect of morphine on stress adaptation. These results suggest differential morphine-NO interactions during acute and repeated restraint stress. Copyright © 2011 Elsevier B.V. All rights reserved.
Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides.
Nishikimi, Toshio; Kuwahara, Koichiro; Nakao, Kazuwa
2011-03-01
The mammalian natriuretic peptide family consists of atrial (ANP), brain [B-type; BNP] and C-type natriuretic peptide (CNP) and three receptors, natriuretic receptors-A (NPR-A), -B (NPR-B) and -C (NPR-C). Both ANP and BNP are abundantly expressed in the heart and are secreted mainly from the atria and ventricles, respectively. By contrast, CNP is mainly expressed in the central nervous system, bone and vasculature. Plasma concentrations of both ANP and BNP are elevated in patients with cardiovascular disease, though the magnitude of the increase in BNP is usually greater than the increase in ANP. This makes BNP is a clinically useful diagnostic marker for several pathophysiological conditions, including heart failure, ventricular remodeling and pulmonary hypertension, among others. Recent studies have shown that in addition to BNP-32, proBNP-108 also circulates in human plasma and that levels of both forms are increased in heart failure. Furthermore, proBNP-108 is O-glycosylated and circulates at higher levels in patients with severe heart failure. In this review we discuss recent progress in our understanding of the biochemistry, molecular biology and clinical relevance of the natriuretic peptide system. Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Sabo-Attwood, Tara; Kroll, Kevin J; Denslow, Nancy D
2004-04-15
The expression levels of three estrogen receptor (ER) isotypes alpha, beta, and gamma were quantified in female largemouth bass (Micropterus salmoides) (LMB) liver, ovary, brain, and pituitary tissues. ER alpha and beta expression predominated in the liver, while ERs beta and gamma predominated in the other tissues. Temporally in females, ER alpha was highly up-regulated, ER gamma was slightly up-regulated, and ER beta levels remained unchanged in the liver when plasma 17-beta estradiol (E2) and vitellogenin (Vtg) levels were elevated in the spring. In ovarian tissue from these same fish, all three ERs were maximally expressed in the fall, during early oocyte development and prior to peak plasma E2 levels. When males were injected with E2, ER alpha was highly inducible, ER gamma was moderately up-regulated, and ER beta levels were not affected. None of the ER isotypes were induced by E2 in gonadal tissues. These results combined suggest that the ERs themselves are not regulated in the same manner by E2, and furthermore, do not contribute equally to the transcriptional regulation of genes involved in fish reproduction such as Vtg.
Brain catechol synthesis - Control by brain tyrosine concentration
NASA Technical Reports Server (NTRS)
Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.
1974-01-01
Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.
Lewerin, C; Ljungman, S; Nilsson-Ehle, H
2007-01-01
To explore the dependence of glomerular filtration rate (GFR) on plasma total homocysteine (tHcy) and serum methylmalonic acid (MMA), as well as the consequences for the diagnosis of cobalamin and/or folic acid deficiency in an elderly community-dwelling population. Population-based study of 209 community-dwelling subjects, mean age 76 years. Four months' treatment study with oral vitamin B(12), folic acid and B(6) or placebo. Determinants of tHcy and MMA: cystatin C as a marker of GFR and serum/plasma concentrations of vitamin B(12) and folate, age and sex. Elevated cystatin C (>1.55 mg L(-1)) was found in 31.3% (men) and 13.0% (women). Elevated tHcy (> or = 16 micromol L(-1)) occurred in 53% and elevated MMA (> or = 0.34 micromol L(-1)) in 11% of all subjects. When GFR was taken into consideration, the proportion of elevated tHcy was reduced to 10% (20/209), whilst the proportion of elevated MMA was unchanged. Cystatin C was correlated with tHcy (r = 0.45, P < 0.001) and with MMA (r =0.28, P < 0.001), independently of vitamin B(12)- and folate status. According to multiple regression, independent predictors for tHcy were plasma folate (15%), cystatin C (11%) and vitamin B(12) (4%), and for MMA, cystatin C (8%) and vitamin B(12) (2%). The prevalence of elevated tHcy may be overestimated in elderly populations unless GFR is taken into account. Nomograms for evaluation of tHcy and MMA in relation to both cystatin C and serum creatinine are presented.
Macrophage Migration Inhibitory Factor for the Early Prediction of Infarct Size
Chan, William; White, David A.; Wang, Xin‐Yu; Bai, Ru‐Feng; Liu, Yang; Yu, Hai‐Yi; Zhang, You‐Yi; Fan, Fenling; Schneider, Hans G.; Duffy, Stephen J.; Taylor, Andrew J.; Du, Xiao‐Jun; Gao, Wei; Gao, Xiao‐Ming; Dart, Anthony M.
2013-01-01
Background Early diagnosis and knowledge of infarct size is critical for the management of acute myocardial infarction (MI). We evaluated whether early elevated plasma level of macrophage migration inhibitory factor (MIF) is useful for these purposes in patients with ST‐elevation MI (STEMI). Methods and Results We first studied MIF level in plasma and the myocardium in mice and determined infarct size. MI for 15 or 60 minutes resulted in 2.5‐fold increase over control values in plasma MIF levels while MIF content in the ischemic myocardium reduced by 50% and plasma MIF levels correlated with myocardium‐at‐risk and infarct size at both time‐points (P<0.01). In patients with STEMI, we obtained admission plasma samples and measured MIF, conventional troponins (TnI, TnT), high sensitive TnI (hsTnI), creatine kinase (CK), CK‐MB, and myoglobin. Infarct size was assessed by cardiac magnetic resonance (CMR) imaging. Patients with chronic stable angina and healthy volunteers were studied as controls. Of 374 STEMI patients, 68% had elevated admission MIF levels above the highest value in healthy controls (>41.6 ng/mL), a proportion similar to hsTnI (75%) and TnI (50%), but greater than other biomarkers studied (20% to 31%, all P<0.05 versus MIF). Only admission MIF levels correlated with CMR‐derived infarct size, ventricular volumes and ejection fraction (n=42, r=0.46 to 0.77, all P<0.01) at 3 day and 3 months post‐MI. Conclusion Plasma MIF levels are elevated in a high proportion of STEMI patients at the first obtainable sample and these levels are predictive of final infarct size and the extent of cardiac remodeling. PMID:24096574
Inagaki, Kei; Ishihara, Kengo; Ishida, Mariko; Watanabe, Ai; Fujiwara, Mika; Komatsu, Yuko; Shirai, Mika; Kato, Yoshiho; Takanezawa, Ami; Furuyashiki, Takashi; Takata, Hiroki; Seyama, Yousuke
2011-01-01
Enzymatically synthesized glycogen (ESG) has high solubility and its solution has low osmotic pressure. Therefore ESG solution could be rapidly absorbed and could be adequate for water rehydration and carbohydrate supplementation during exercise. The object of this study was to evaluate the gastric emptying time and plasma glucose elevation after an administration of ESG solution in comparison with another carbohydrate solution by using a laboratory animal. Male BALB/c mice were administered 10% w/v solution of glucose, maltodextrin, starch, naturally synthesized glycogen (NSG) and ESG at a dose of 20 µL/g body weight for the measurement of gastric emptying rate (Experiment 1) and 10 µL/g body weight for the measurement of plasma glucose elevation (Experiment 2). The osmolarity of gastric content was lower in the ESG and maltodextrin group than the other carbohydrate group. Weight of gastric fluid was significantly lower in the ESG and water group than the glucose group (p<0.01). Plasma glucose level was significantly lower in the ESG group than the glucose group from 0 to 60 min after administration (p<0.01), whereas plasma glucose level was same from 60 to 120 min for the ESG and glucose group (p=0.948). In Experiment 3, BALB/c mice ran on a treadmill for 2 h and were administered 8% of ESG or glucose solution (1.75, 3.5 or 7.0 µL/g body weight) every 20 min during running. There was no difference in post-exercise muscle glycogen level. These data suggest that 1) ESG beverage does not disturb water absorption because of its short gastric emptying time and 2) ESG slowly elevates plasma glucose level and maintains it for a prolonged time compared to the glucose solution.
Factor XIII as a modulator of plasma fibronectin alterations during experimental bacteremia.
Kiener, J L; Cho, E; Saba, T M
1986-11-01
Fibronectin is found in plasma as well as in association with connective tissue and cell surfaces. Depletion of plasma fibronectin is often observed in septic trauma and burned patients, while experimental rats often manifest hyperfibronectinemia with sepsis. Since Factor XIII may influence the rate of clearance and deposition of plasma fibronectin into tissues, we evaluated the temporal changes in plasma fibronectin and plasma Factor XIII following bacteremia and RE blockade in rats in an attempt to understand the mechanism leading to elevation of fibronectin levels in bacteremic rats, which is distinct from that observed with RE blockade. Clearance of exogenously administered fibronectin after bacteremia was also determined. Rats received either saline, Pseudomonas aeruginosa (1 X 10(9) organisms), gelatinized RE test lipid emulsion (50 mg/100 gm B.W.), or emulsion followed by Pseudomonas. Plasma fibronectin and Factor XIII were determined at 0, 2, 24, and 48 hours post-blockade or bacteremia. At 24 and 48 hr following bacteremia alone or bacteremia after RE blockade, there was a significant elevation (p less than 0.05) of plasma fibronectin and a concomitant decrease (p less than 0.05) of plasma factor XIII activity. Extractable tissue fibronectin from liver and spleen was also increased at 24 and 48 hours following R.E. blockade plus bacteremia. In addition, the plasma clearance of human fibronectin was significantly prolonged (p less than 0.05) following bacterial challenge. Infusion of activated Factor XIII (20 units/rat) during a period of hyperfibronectinemia (908.0 +/- 55.1 micrograms/ml) resulted in a significant (p less than 0.05) decrease in plasma fibronectin (548.5 +/- 49.9 micrograms/ml) within 30 min. Thus Factor XIII deficiency in rats with bacteremia may contribute to the elevation in plasma fibronectin by altering kinetics associated with the clearance of fibronectin from the blood.
Nemmar, Abderrahim; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Kazzam, Elsadig E; Ali, Badreldin H
2016-01-01
The use of amorphous silica (SiO2) in biopharmaceutical and industrial fields can lead to human exposure by injection, skin penetration, ingestion, or inhalation. However, the in vivo acute toxicity of amorphous SiO2 nanoparticles (SiNPs) on multiple organs and the mechanisms underlying these effects are not well understood. Presently, we investigated the acute (24 hours) effects of intraperitoneally administered 50 nm SiNPs (0.25 mg/kg) on systemic toxicity, oxidative stress, inflammation, and DNA damage in the lung, heart, liver, kidney, and brain of mice. Lipid peroxidation was significantly increased by SiNPs in the lung, liver, kidney, and brain, but was not changed in the heart. Similarly, superoxide dismutase and catalase activities were significantly affected by SiNPs in all organs studied. While the concentration of tumor necrosis factor α was insignificantly increased in the liver and brain, its increase was statistically significant in the lung, heart, and kidney. SiNPs induced a significant elevation in pulmonary and renal interleukin 6 and interleukin-1 beta in the lung, liver, and brain. Moreover, SiNPs caused a significant increase in DNA damage, assessed by comet assay, in all the organs studied. SiNPs caused leukocytosis and increased the plasma activities of lactate dehydrogenase, creatine kinase, alanine aminotranferase, and aspartate aminotransferase. These results indicate that acute systemic exposure to SiNPs causes oxidative stress, inflammation, and DNA damage in several major organs, and highlight the need for thorough evaluation of SiNPs before they can be safely used in human beings.
Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang
2015-11-01
Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress.
Upregulation of Aβ42 in the Brain and Bodily Fluids of Rhesus Monkeys with Aging.
Zhao, Qiao; Lu, Jing; Yao, Zitong; Wang, Shubo; Zhu, Liming; Wang, Ju; Chen, Baian
2017-01-01
The cerebral accumulation of amyloid beta (Aβ) is one of the key pathological hallmarks of Alzheimer's disease (AD). Aβ is also found in bodily fluids such as the cerebrospinal fluid (CSF) and plasma. However, the significance of Aβ accumulation in the brain and different bodily pools, as well as its correlation with aging and cerebral amyloid pathology, is not completely understood. To better understand this question, we selected the rhesus monkey, which is phylogenetically and physiologically highly similar to the human, as a model to study. We quantified the levels of the two main Aβ isoforms (Aβ42 and Aβ40) in different sections of the brain (frontal cortex, temporal cortex, and hippocampus) and bodily fluids (CSF and plasma) of rhesus monkeys at different developmental phases (young, 5-9 years of age; mature, 10-19 years of age; and old, 21-24 years of age). We found that the levels of neuronal and insoluble Aβ42 increased significantly in the brain with aging, suggesting that this specific isoform might be directly involved in aging and AD-like pathophysiology. There was no significant change in the Aβ40 level in the brain with aging. In addition, the Aβ42 level, but not the Aβ40 level, in both the CSF and plasma increased with aging. We also identified a positive correlation between Aβ42 in the CSF and plasma and Aβ42 in the brain. Taken collectively, our results indicate that there is an association between Aβ accumulation and age. These results support the increased incidence of AD with aging.
Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer's Disease.
Croteau, Etienne; Castellano, Christian-Alexandre; Richard, Marie Anne; Fortier, Mélanie; Nugent, Scott; Lepage, Martin; Duchesne, Simon; Whittingstall, Kevin; Turcotte, Éric E; Bocti, Christian; Fülöp, Tamàs; Cunnane, Stephen C
2018-06-09
In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.
Activity of the sympathoadrenal system in cosmonauts during 25-day space flight on station Mir
NASA Astrophysics Data System (ADS)
Kvetňanský, R.; Noskov, V. B.; Blazicek, P.; Gharib, C.; Popova, I. A.; Gauquelin, G.; Macho, L.; Guell, A.; Grigoriev, A. I.
The activity of the sympathoadrenal system in cosmonauts was studied by measuring plasma and urinary catecholamines and their metabolites and conjugates. The appliance Plasma 02 was used for collecting, processing, and storing blood and urine samples from the cosmonauts during the course of a 25-day flight on board the station Mir. Plasma and urine concentrations of adrenaline (A), noradrenaline (NA), and dopamine (DA) as well as urinary levels of vanillylmandelic acid (VMA) and homovanillic acid (HVA), and plasma levels of catecholamine sulphates were determined before, during and after the space flight. Plasma NA levels were slightly elevated on day 9 and plasma A on day 20, whereas plasma DA levels were unchanged. However, most of the changes were within the normal range of control values. Sulphates of plasma catecholamines did not change during flight but they were significantly elevated after landing. Urinary levels of A, NA, DA, VMA, and HVA were comparable with preflight values but were elevated at the different intervals studied after landing. The results obtained suggest that in the short period of about 9 days of the cosmonaut's stay in space the sympathoadrenal system was slightly activated indicating a mild stressful influence of the initial period of flight. This short-term space flight compared to long-term flight did not as markedly activate the sympathoadrenal system during the process of re-adaptation to Earth's gravity after landing. Our data suggest that weightlessness is not a stressful factor activating the sympathoadrenal system but it sensitizes the responsiveness of this system during the re-adaptation period after space flight.
Fuentes, Eduardo N; Kling, Peter; Einarsdottir, Ingibjörg Eir; Alvarez, Marco; Valdés, Juan Antonio; Molina, Alfredo; Björnsson, Björn Thrandur
2012-05-15
In fish, recent studies have indicated an anorexigenic role of leptin and thus its possible involvement in regulation of energy balance and growth. In the present study, the effects of fasting and refeeding periods on plasma leptin levels were studied in the fine flounder, a flatfish with remarkably slow growth. To further assess the endocrine status of the fish during periods of catabolism and anabolism, plasma growth hormone (GH) levels were also analyzed. Under normal feeding condition, plasma leptin and GH levels remained stable and relatively high in comparison with other teleost species. For the three separate groups of fish, fasted for 2, 3, and 4 weeks, respectively, plasma leptin levels increase gradually, becoming significantly elevated after 3 weeks, and reaching highest levels after 4-week fasting. Plasma GH levels were significantly elevated after 2-week fasting. At the onset of refeeding, following a single meal, leptin levels decline rapidly to lower than initial levels within 2 h, irrespective of the length of fasting. Plasma GH also decline, the decrease being significant after 4, 24 and 2 h for the 2, 3 and 4-week fasted groups, respectively. This study shows that plasma leptin levels in the fine flounder are strongly linked to nutritional status and suggests that leptin secretion is regulated by fast-acting mechanisms. Elevated leptin levels in fasted fish may contribute to a passive survival strategy of species which experience natural food shortage periods by lowering appetite and limiting physical foraging activity. Copyright © 2012 Elsevier Inc. All rights reserved.
Simon, Krzysztof Adam; Pazgan-Simon, Monika
2015-01-01
Aim of the study To determine plausible associations between liver cirrhosis and circulating endothelial cell-derived microparticles (EMPs), vascular endothelial growth factor (VEGF) levels and plasma nitric oxide (NO) metabolites. Material and methods Sixty patients with cirrhosis and 20 healthy control subjects were enrolled in the study. Circulating EMPs from platelet-poor plasma samples were examined by flow cytometry. These microparticles were categorized into endothelial cell-derived activated MPs (EMP-ac) (CD31+ CD42b– AN-V–) and endothelial cell-derived apoptotic MPs (EMP-ap) (CD31+ CD42b– AN-V+). Plasma VEGF levels were measured by enzyme-linked immunosorbent assay. Plasma NO metabolites (NOx–) levels were determined using a Greiss reaction method. Results Compared with the healthy control subjects, the patients with cirrhosis showed a significant increase in plasma levels of both phenotypes of EMPs. When the presence of ascites was considered, the plasma levels of EMP-ap were higher (p < 0.01), as well as NOx– (p < 0.05). EMP-ap positively correlated with VEGF level in all cirrhotic patients and this correlation was stronger in decompensated cirrhotic patients. In multivariate logistic regression analysis, the independent factors associated with the presence of ascites were high EMP-ap levels and elevated VEGF levels. Conclusions Elevated plasma levels of EMP-ap in addition to high levels of VEGF might be considered as valuable parameters for predicting the occurrence of ascites in cirrhotic patients. PMID:28856256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Virginia C., E-mail: Moser.ginger@epa.gov
Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavagemore » dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects. - Highlights: • Acute changes in locomotor activity were produced by λ- and γ-cyhalothrin. • γ-Cyhalothrin was about 2-fold more potent than λ-cyhalothrin. • Brain and plasma levels were tightly correlated across doses. • Activity changes correlated well with brain and plasma concentrations.« less
Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C
2006-01-01
AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803
Birnie-Gauvin, K; Peiman, K S; Larsen, M H; Aarestrup, K; Gilmour, K M; Cooke, S J
2018-01-01
This study demonstrates that vegetable shortening and cocoa butter are two effective vehicles for intraperitoneal cortisol implants in juvenile teleosts, specifically brown trout Salmo trutta, residing in north temperate freshwater environments. Each vehicle showed a different pattern of cortisol elevation. Vegetable shortening was found to be a more suitable vehicle for long-term cortisol elevation [elevated at 3, 6 and 9 days post treatment (dpt)], while cocoa butter may be better suited for short-term cortisol elevation (only elevated at 3 dpt). Additionally, plasma cortisol levels were higher with cortisol-vegetable shortening than with cortisol-cocoa butter implants. Plasma glucose levels were elevated 6 and 9 dpt for fishes injected with cortisol-vegetable shortening, but did not change relative to controls and shams in cortisol-cocoa butter fishes. In conclusion, vegetable shortening and cocoa butter are both viable techniques for cortisol manipulation in fishes in temperate climates, providing researchers with different options depending on study objectives. © 2017 The Fisheries Society of the British Isles.
Yan, J; Winter, L B; Burns-Whitmore, B; Vermeylen, F; Caudill, M A
2012-01-01
OBJECTIVES: We aimed to test the hypotheses that (i) plasma choline metabolites differ between normal (body mass index (BMI)<25 kg m−2) and overweight (BMI ⩾25 kg m−2) men, and (ii) an elevated BMI alters associations between plasma choline metabolites and indicators of metabolic stress. DESIGN: This was a cross-sectional study. A one-time fasting blood sample was obtained for measurements of the choline metabolites and metabolic stress indicators (that is, serum alanine aminotransferase (ALT), glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides and homocysteine), and for genotype determination. SUBJECTS: The analysis was conducted with 237 Mexican American men with a median age of 22 years. RESULTS: Compared with men with a normal BMI (n=98), those with an elevated BMI (n=139) had 6% lower (P=0.049) plasma betaine and an 11% lower (P=0.002) plasma betaine to choline ratio. Among men with an elevated BMI, plasma betaine and the plasma betaine to choline ratio positively associated (P⩽0.044) with a favorable serum cholesterol profile, and inversely associated (P=0.001) with serum ALT, a marker of liver dysfunction. The phosphatidylethanolamine N-methyltransferase (PEMT) 5465G→A (rs7946) genotype interacted (P⩽0.007) with the plasma betaine to choline ratio to modulate indicators of metabolic stress with stronger inverse associations observed among overweight men with the PEMT 5465GG genotype. CONCLUSIONS: Plasma choline metabolites predict metabolic stress among overweight men often in a genotype-specific manner. The diminished betaine among overweight men coupled with the inverse association between betaine and metabolic stress suggest that betaine supplementation may be effective in mitigating some of the metabolic insults arising from lipid overload. PMID:23169489
Warren, W B; Gurewitsch, E D; Goland, R S
1995-02-01
We hypothesized that maternal plasma corticotropin-releasing hormone levels are elevated in chronic hypertension and that elevations modulate maternal and fetal pituitary-adrenal function. Venous blood samples and 24-hour urine specimens were obtained in normal and hypertensive pregnancies at 21 to 40 weeks of gestation. Corticotropin-releasing hormone, corticotropin, cortisol, dehydroepiandrosterone sulfate, and total estriol levels were measured by radioimmunoassay. Mean hormone levels were compared by unpaired t test or two-way analysis of variance. Plasma corticotropin-releasing hormone levels were elevated early in hypertensive pregnancies but did not increase after 36 weeks. Levels of pituitary and adrenal hormones were not different in normal and hypertensive women. However, maternal plasma estriol levels were lower in hypertensive pregnancies compared with normal pregnancies. Fetal 16-hydroxy dehydroepiandrosterone sulfate, the major precursor to placental estriol production, has been reported to be lower than normal in hypertensive pregnancies, possibly explaining the decreased plasma estriol levels reported here. Early stimulation of placental corticotropin-releasing hormone production or secretion may be related to accelerated maturation of placental endocrine function in pregnancies complicated by chronic hypertension.
Hunt, William R; Helfman, Beth R; McCarty, Nael A; Hansen, Jason M
2016-09-01
The onset of cystic fibrosis-related diabetes (CFRD) exacerbates lung function decline and increases mortality. One pathway that may worsen the lung dysfunction associated with CFRD is that of the receptor for advanced glycation end products (RAGE) and its ligands. Human plasma was obtained from age-matched healthy, CF and CFRD patients. Plasma RAGE ligands (i.e. advanced glycation end products, S100A12, and high-mobility group protein B1) and soluble RAGE (sRAGE) levels were measured. CFRD patients had elevated plasma levels of AGEs and S100A12. Soluble RAGE, a RAGE ligand decoy receptor, was not significantly different between groups. Plasma AGE levels and S100A12 levels had significantly negative correlations with FEV1. AGEs are significantly elevated in CFRD and correlate negatively with FEV1. CFRD patients did not have significant increases in the decoy sRAGE, suggesting there may be heightened binding and activation of RAGE in CFRD exacerbating activation of proinflammatory pathways. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Breves, Jason P; Hirano, Tetsuya; Grau, E Gordon
2010-03-01
This study assessed the endocrine and ionoregulatory responses by tilapia (Oreochromis mossambicus) to disturbances of hydromineral balance during confinement and handling. In fresh water (FW), confinement and handling for 0.5, 1, 2 and 6h produced elevations in plasma cortisol and glucose; a reduction in plasma osmolality was observed at 6h. Elevations in plasma prolactins (PRL(177) and PRL(188)) accompanied this fall in osmolality while no effect upon growth hormone (GH) was evident; an increase in insulin-like growth-factor I (IGF-I) occurred at 0.5h. In seawater (SW), confinement and handling increased plasma osmolality and glucose between 0.5 and 6h; no effect on plasma cortisol was seen due to variable control levels. Concurrently, both PRLs were reduced in stressed fish with only transient changes in the GH/IGF-I axis. Next, the branchial expression of Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and Na(+)/Cl(-) cotransporter (NCC) was characterized following confinement and handling for 6h. In SW, NKCC mRNA levels increased in stressed fish concurrently with elevated plasma osmolality and diminished gill Na(+), K(+)-ATPase activity; NCC was unchanged in stressed fish irrespective of salinity. Taken together, PRL and NKCC participate in restoring osmotic balance during acute stress while the GH/IGF-I axis displays only modest responses. Copyright 2009 Elsevier Inc. All rights reserved.
Nukui, Megumi; Kawawaki, Hisashi; Inoue, Takeshi; Kuki, Ichiro; Okazaki, Shin; Amo, Kiyoko; Togawa, Masao; Ishikawa, Junichi; Rinka, Hiroshi; Shiomi, Masashi
2018-06-07
Acute encephalopathy has been observed with acute brain swelling (ABS) that is characterized by rapid progression to whole-brain swelling. The objective of this study was to describe the clinical characteristics of ABS. We encountered four patients with ABS and retrospectively investigated their clinical data with a medical chart review. Three patients had seizure clustering or status epilepticus in the clinical course. Signs of elevated intracranial pressure (ICP) appeared 3-9 h after the first convulsive attack in three patients. In all patients, signs of brainstem involvement appeared 1-8 h after signs of elevated ICP. Mild hyponatremia that progressed after signs of elevated ICP appeared was noted in three patients. Brain CT revealed mild brain swelling in the initial phase, which rapidly progressed to whole-brain swelling. No focal abnormalities were detected on brain MRI in one patient. Continuous electroencephalography was initially normal, but in two patients, high-amplitude slow waves appeared with rapid changes before signs of brainstem involvement. Although recovery was achieved without sequelae in two patients, outcome was fatal for the other two. The pathogenesis of ABS has yet to be clarified, but clinical features in our patients are not consistent with any established subtypes of acute encephalopathy. Therefore, we believe that ABS should be recognized as a new type of acute encephalopathy. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Georgoff, Patrick E; Nikolian, Vahagn C; Halaweish, Ihab; Chtraklin, Kiril; Bruhn, Peter J; Eidy, Hassan; Rasmussen, Monica; Li, Yongqing; Srinivasan, Ashok; Alam, Hasan B
2017-07-01
We have shown previously that fresh frozen plasma (FFP) and lyophilized plasma (LP) decrease brain lesion size and improve neurological recovery in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). In this study, we examine whether these findings can be validated in a clinically relevant model of severe TBI, HS, and polytrauma. Female Yorkshire swine were subjected to TBI (controlled cortical impact), hemorrhage (40% volume), grade III liver and splenic injuries, rib fracture, and rectus abdominis crush. The animals were maintained in a state of shock (mean arterial pressure 30-35 mm Hg) for 2 h, and then randomized to resuscitation with normal saline (NS), FFP, or LP (n = 5 swine/group). Animals were recovered and monitored for 30 d, during which time neurological recovery was assessed. Brain lesion sizes were measured via magnetic resonance imaging (MRI) on post-injury days (PID) three and 10. Animals were euthanized on PID 30. The severity of shock and response to resuscitation was similar in all groups. When compared with NS-treated animals, plasma-treated animals (FFP and LP) had significantly lower neurologic severity scores (PID 1-7) and a faster return to baseline neurological function. There was no significant difference in brain lesion sizes between groups. LP treatment was well tolerated and similar to FFP. In this clinically relevant large animal model of severe TBI, HS, and polytrauma, we have shown that plasma-based resuscitation strategies are safe and result in neurocognitive recovery that is faster than recovery after NS-based resuscitation.
Norman, Andrew B; Tabet, Michael R; Norman, Mantana K; Buesing, William R; Pesce, Amadeo J; Ball, William J
2007-01-01
The predominantly human sequence, high-affinity anticocaine monoclonal antibody (mAb) 2E2 was cleared slowly from mouse blood by a first-order process with an elimination t(1/2) of 8.1 days. Infused 2E2 also produced a dramatic dose-dependent increase in plasma cocaine concentrations and a concomitant decrease in the brain cocaine concentrations produced by an i.v. injection of cocaine HCl (0.56 mg/kg). At the highest dose of 2E2 tested (3:1, mAb/drug), cocaine was not detectable in the brain. Pharmacokinetic studies showed that the normal disappearance of cocaine from plasma was described by a two-compartment pharmacokinetic model with distribution t(1/2alpha) and terminal elimination t(1/2beta) values of 1.9 and 26.1 min, respectively. In the presence of an equimolar dose of mAb 2E2, there was a 26-fold increase in the area under the plasma cocaine concentration-time curve (AUC) relative to the AUC in the absence of 2E2. Consequently, 2E2 decreased the volume of distribution of cocaine from 6.0 to 0.20 l/kg, which approximated that of 2E2 (0.28 l/kg). However, cocaine was still rapidly cleared from plasma, and its elimination was now described by a single-compartment model with an elimination t(1/2) of 17 min. Importantly, 2E2 also produced a 4.5-fold (78%) decrease in the cocaine AUC in the brain. Therefore, the effect of 2E2 on plasma and brain cocaine concentrations was predominantly caused by a change in the distribution of cocaine with negligible effects on its rate of clearance. These data support the concept of immunotherapy for drug abuse.
Kreisl, William C; Bhatia, Ritwik; Morse, Cheryl L; Woock, Alicia E; Zoghbi, Sami S; Shetty, H Umesha; Pike, Victor W; Innis, Robert B
2015-01-01
The permeability-glycoprotein (P-gp) efflux transporter is densely expressed at the blood-brain barrier, and its resultant spare capacity requires substantial blockade to increase the uptake of avid substrates, blunting the ability of investigators to measure clinically meaningful alterations in P-gp function. This study, conducted in humans, examined 2 P-gp inhibitors (tariquidar, a known inhibitor, and disulfiram, a putative inhibitor) and 2 routes of administration (intravenous and oral) to maximally increase brain uptake of the avid and selective P-gp substrate (11)C-N-desmethyl-loperamide (dLop) while avoiding side effects associated with high doses of tariquidar. Forty-two (11)C-dLop PET scans were obtained from 37 healthy volunteers. PET was performed with (11)C-dLop under the following 5 conditions: injected under baseline conditions without P-gp inhibition, injected 1 h after intravenous tariquidar infusion, injected during intravenous tariquidar infusion, injected after oral tariquidar, and injected after disulfiram. (11)C-dLop uptake was quantified with kinetic modeling using metabolite-corrected arterial input function or by measuring the area under the time-activity curve in the brain from 10 to 30 min. Neither oral tariquidar nor oral disulfiram increased brain uptake of (11)C-dLop. Injecting (11)C-dLop during tariquidar infusion, when plasma tariquidar concentrations reach their peak, resulted in a brain uptake of the radioligand approximately 5-fold greater than baseline. Brain uptake was similar with 2 and 4 mg of intravenous tariquidar per kilogram; however, the lower dose was better tolerated. Injecting (11)C-dLop after tariquidar infusion also increased brain uptake, though higher doses (up to 6 mg/kg) were required. Brain uptake of (11)C-dLop increased fairly linearly with increasing plasma tariquidar concentrations, but we are uncertain whether maximal uptake was achieved. We sought to increase the dynamic range of P-gp function measured after blockade. Performing (11)C-dLop PET during peak plasma concentrations of tariquidar, achieved with concurrent administration of intravenous tariquidar, resulted in greater P-gp inhibition at the human blood-brain barrier than delayed administration and allowed the use of a lower, more tolerable dose of tariquidar. On the basis of prior monkey studies, we suspect that plasma concentrations of tariquidar did not fully block P-gp; however, higher doses of tariquidar would likely be associated with unacceptable side effects. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Adrenocortical responses of the Apollo 17 crew members
NASA Technical Reports Server (NTRS)
Leach, C. S.; Rambaut, P. C.; Johnson, P. C.
1974-01-01
Changes in adrenal activity of the three Apollo 17 crew members were studied during the 12.55-day mission and during selected post-recovery days. Aldosterone excretion was normal early and elevated later in the mission, probably causing a loss in total body exchangeable potassium. There was decreased 17-hydroxycorticosteroid excretion only during the early mission days for the two moon landers and throughout the mission for the other astronaut. Cortisol excretion was elevated on physically stressful mission days. At recovery, plasma ACTH was elevated without a similar increase in plasma cortisol. Angiotensin I activity was elevated at recovery in only one crewman. This crewman was the only one with a decreased extracellular fluid volume. These results indicate that the mission and its activities affect adrenal function of the crewmen.
Svetlovska, Daniela; Miskovska, Viera; Cholujova, Dana; Gronesova, Paulina; Cingelova, Silvia; Chovanec, Michal; Sycova-Mila, Zuzana; Obertova, Jana; Palacka, Patrik; Rajec, Jan; Kalavska, Katarina; Usakova, Vanda; Luha, Jan; Ondrus, Dalibor; Spanik, Stanislav; Mardiak, Jozef; Mego, Michal
2017-06-01
Cytokines are the communicators of immune system and are involved in all immune responses. The aim of this study was to assess the correlation among plasma cytokines, patient and tumor characteristics, and clinical outcome in chemonaive testicular germ-cell tumor (TGCT) patients. This study included 92 metastatic chemotherapy-naive TGCT patients treated with platinum-based chemotherapy from July 2010 to March 2014. Plasma was isolated before first administration of chemotherapy, and the concentration of 51 plasma cytokines were analyzed using multiplex bead arrays. At a median follow-up of 33.2 months (range, 0.1-54.8 months), 10.9% of patients experienced disease progression, and 7.6% died. Several cytokines were associated with different baseline clinicopathologic features. Elevated plasma levels of interferon (IFN)-α2, interleukin (IL)-2Rα, IL-16, hepatocyte growth factor (HGF), and monocyte chemotactic protein (MCP)-3 were significantly associated with worse progression-free survival and overall survival (OS). Moreover, elevated levels of stem-cell growth factor (SCGF)-β were also associated with worse OS. Patients with elevated levels of all 6 cytokines experienced significantly worse outcomes compared to patients who had fewer than 6 cytokines elevated (hazard ratio = 12.06; 95% confidence interval, 7.39-19.49; P = .002 for progression-free survival, and hazard ratio = 39.65; 95% confidence interval, 25.03-62.18; P < .00001 for OS, respectively). Results were independent of International Germ Cell Cancer Collaborative Group criteria. We found a correlation among progression free-survival, OS, and circulating cytokines in TGCT. This suggests the existence an association between plasma cytokines and baseline clinicopathologic features in TGCT. Plasma cytokines could be used for identification of high-risk patients who are candidates for new therapeutic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
Shannon, Richard J; Timofeev, Ivan; Nortje, Jürgens; Hutchinson, Peter J; Carpenter, Keri L H
2014-01-01
Aims The aims were to determine blood–brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Methods Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. Results After the first VGB dose, the maximum concentration of VGB (Cmax) was 31.7 (26.9–42.6) μmol l−1 (median and interquartile range for eight patients) in plasma and 2.41 (2.03–5.94) μmol l−1 in brain microdialysates (nine patients, 11 catheters), without significant plasma–brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24–7.14) μmol l−1 (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Conclusions Vigabatrin, given enterally to severe TBI patients, crosses the blood–brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood. PMID:24802902
Pharmacokinetics and brain penetration of carbapenems in mice.
Matsumoto, Kazuaki; Kurihara, Yuji; Kuroda, Yuko; Hori, Seiji; Kizu, Junko
2016-05-01
An adverse effect associated with the administration of carbapenems is central nervous system (CNS) toxicity, with higher brain concentrations of carbapenems being linked to an increased risk of seizures. However, the pharmacokinetics and brain penetration of carbapenems have not yet been examined. Thus, the aim of this in vivo investigation was to determine the pharmacokinetics and brain penetration of carbapenems in mice. Blood samples and brain tissue samples were obtained 10, 20, 30, 60, and 120 min after the subcutaneous administration of carbapenems (91 mg/kg). We obtained the following values for the pharmacokinetic parameters of carbapenems in mice: 1.20-1.71 L/h/kg for CLtotal/F, 1.41-2.03 h(-1) for Ke, 0.34-0.51 h for T1/2, 0.66-0.95 L/kg for Vss/F, 0.49-0.73 h for MRT, 83.46-110.58 μg/mL for Cmax, plasma, and 0.28-0.83 μg/g for Cmax, brain tissue. The AUC0-∞ of the carbapenems tested in plasma were in the following order: doripenem > meropenem > biapenem > imipenem, and in brain tissue were: imipenem > doripenem > meropenem > biapenem. The degrees of brain tissue penetration, defined as the AUC0-∞, brain tissue/fAUC0-∞, plasma ratio, were 0.016 for imipenem, 0.004 for meropenem, 0.002 for biapenem, and 0.008 for doripenem. The results of the present study demonstrated that, of the carbapenems examined, imipenem penetrated brain tissue to the greatest extent. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Gustafsson, Sofia; Lindström, Veronica; Ingelsson, Martin; Hammarlund-Udenaes, Margareta; Syvänen, Stina
2018-01-01
Pathophysiological impairment of the neurovascular unit, including the integrity and dynamics of the blood-brain barrier (BBB), has been denoted both a cause and consequence of neurodegenerative diseases. Pathological impact on BBB drug delivery has also been debated. The aim of the present study was to investigate BBB drug transport, by determining the unbound brain-to-plasma concentration ratio (K p,uu,brain ), in aged AβPP-transgenic mice, α-synuclein transgenic mice, and wild type mice. Mice were dosed with a cassette of five compounds, including digoxin, levofloxacin (1 mg/kg, s.c.), paliperidone, oxycodone, and diazepam (0.25 mg/kg, s.c.). Brain and blood were collected at 0.5, 1, or 3 h after dosage. Drug concentrations were measured using LC-MS/MS. The total brain-to-plasma concentration ratio was calculated and equilibrium dialysis was used to determine the fraction of unbound drug in brain and plasma for all compounds. Together, these three measures were used to determine the K p,uu,brain value. Despite Aβ or α-synuclein pathology in the current animal models, no difference was observed in the extent of drug transport across the BBB compared to wild type animals for any of the compounds investigated. Hence, the present study shows that the concept of a leaking barrier within neurodegenerative conditions has to be interpreted with caution when estimating drug transport into the brain. The capability of the highly dynamic BBB to regulate brain drug exposure still seems to be intact despite the presence of pathology. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chew, Wai Kit; Ambu, Stephen; Mak, Joon Wah
2012-01-01
Toxoplasma gondii is a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and the in vitro reactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n = 9), which received vehicle only; (ii) a spiramycin-only group (n = 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n = 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n = 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n = 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC0–∞) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC0–∞ values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P < 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reduced in vitro reactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment. PMID:22271863
Fuertig, René; Ceci, Angelo; Camus, Sandrine M; Bezard, Erwan; Luippold, Andreas H; Hengerer, Bastian
2016-09-01
The kynurenine (KYN) pathway is implicated in diseases such as cancer, psychiatric, neurodegenerative and autoimmune disorders. Measurement of KYN metabolite levels will help elucidating the involvement of the KYN pathway in the disease pathology and inform drug development. Samples of plasma, cerebrospinal fluid or brain tissue were spiked with deuterated internal standards, processed and analyzed by LC-MS/MS; analytes were chromatographically separated by gradient elution on a C18 reversed phase analytical column without derivatization. We established an LC-MS/MS method to measure 11 molecules, namely tryptophan, KYN, 3-OH-KYN, 3-OH-anthranilic acid, quinolinic acid, picolinic acid, kynurenic acid, xanthurenic acid, serotonin, dopamine and neopterin within 5.5 min, with sufficient sensitivity to quantify these molecules in small sample volumes of plasma, cerebrospinal fluid and brain tissue.
Moncrieff, J
1989-11-24
Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.
Mathew, Manoj; Tay, Eric; Cusi, Kenneth
2010-02-16
CVD in obesity and T2DM are associated with endothelial activation, elevated plasma vascular inflammation markers and a prothrombotic state. We examined the contribution of FFA to these abnormalities following a 48-hour physiological increase in plasma FFA to levels of obesity and diabetes in a group of healthy subjects. 40 non-diabetic subjects (age = 38 +/- 3 yr, BMI = 28 +/- 1 kg/m2, FPG = 95 +/- 1 mg/dl, HbA1c = 5.3 +/- 0.1%) were admitted twice and received a 48-hour infusion of normal saline or low-dose lipid. Plasma was drawn for intracellular (ICAM-1) and vascular (VCAM-1) adhesion molecules-1, E-selectin (sE-S), myeloperoxidase (MPO) and total plasminogen inhibitor-1 (tPAI-1). Insulin sensitivity was measured by a hyperglycemic clamp (M/I). Lipid infusion increased plasma FFA to levels observed in obesity and T2DM and reduced insulin sensitivity by 27% (p = 0.01). Elevated plasma FFA increased plasma markers of endothelial activation ICAM-1 (138 +/- 10 vs. 186 +/- 25 ng/ml), VCAM-1 (1066 +/- 67 vs. 1204 +/- 65 ng/ml) and sE-S (20 +/- 1 vs. 24 +/- 1 ng/ml) between 13-35% and by > or = 2-fold plasma levels of myeloperoxidase (7.5 +/- 0.9 to 15 +/- 25 ng/ml), an inflammatory marker of future CVD, and tPAI-1 (9.7 +/- 0.6 to 22.5 +/- 1.5 ng/ml), an indicator of a prothrombotic state (all p < or = 0.01). The FFA-induced increase was independent from the degree of adiposity, being of similar magnitude in lean, overweight and obese subjects. An increase in plasma FFA within the physiological range observed in obesity and T2DM induces markers of endothelial activation, vascular inflammation and thrombosis in healthy subjects. This suggests that even transient (48-hour) and modest increases in plasma FFA may initiate early vascular abnormalities that promote atherosclerosis and CVD.
Inability to produce a model of dialysis encephalopathy in the rat by aluminum administration.
Perry, T L; Yong, V W; Godolphin, W J; Sutter, M; Hansen, S; Kish, S J; Foulks, J G; Ito, M
1987-04-01
We attempted to produce a rat model of brain aluminum toxicity in order to explore whether or not aluminum accumulation produces the neurochemical changes observed in brains of patients who die with dialysis encephalopathy. Daily subcutaneous injection of Al(OH)3 caused marked elevation of serum aluminum concentrations, but did not increase brain aluminum contents, either in rats with normal renal function, or in rats with unilateral or 5/6 nephrectomies. LiCl pretreatment, which has been reported to cause irreversible renal failure, did not impair renal function nor aid in achieving elevated brain aluminum contents. No reductions in brain contents of gamma-aminobutyric acid (GABA) or in glutamic acid decarboxylase (GAD, E.C.4.1.1.15) and choline acetyltransferase (ChAT, E.C.2.3.1.6) activities were observed in aluminum-treated rats. We conclude that the rat is not a suitable laboratory animal to explore the role of aluminum toxicity in causing the GABA and ChAT deficits present in brains of hemodialyzed human patients.
Tatlisu, Mustafa A; Kaya, Adnan; Keskin, Muhammed; Uzman, Osman; Borklu, Edibe B; Cinier, Goksel; Hayiroglu, Mert I; Tatlisu, Kiymet; Eren, Mehmet
2017-01-01
The aim of this study was to investigate the association of plasma osmolality with all-cause mortality in ST-segment elevation myocardial infarction (STEMI) patients treated with a primary percutaneous coronary intervention. This study included 3748 patients (mean age 58.3±11.8 years, men 81%) with STEMI treated with primary percutaneous coronary intervention. The following formula was used to measure the plasma osmolality at admission: osmolality=1.86×sodium (mmol/l)+glucose (mg/dl)/18+BUN (mg/dl)/2.8+9. The patients were followed up for a mean period of 22±10 months. Patients with higher plasma osmolality had 3.7 times higher in-hospital (95% confidence interval: 2.7-5.1) and 3.2 times higher long-term (95% confidence interval: 2.5-4.1) all-cause mortality rates than patients with lower plasma osmolality. Plasma osmolality was found to be a predictor of both in-hospital and long-term all-cause mortality. Hence, plasma osmolality can be used to detect high-risk patients in STEMI.
Qiu, Chunfang; Frederick, Ihunnaya O; Sorensen, Tanya K; Enquobahrie, Daniel A; Williams, Michelle A
2014-01-09
Early-pregnancy short sleep duration is predictive of gestational diabetes and preeclampsia; mechanisms for these associations are unknown. Leptin, an adipocyte-derived peptide involved in regulating food intake and energy expenditure, may play a role in these observed associations. Given inconsistent reports linking short sleep duration with leptin, and absence of studies among pregnant women, we examined the association of maternal sleep duration with plasma leptin in early pregnancy. This cross-sectional study included 830 pregnant women. Plasma leptin was measured in samples collected around 13 weeks gestation. Sleep duration was categorized as: ≤5, 6, 7-8 (reference), and ≥9 hours. Differences in leptin concentrations across categories were estimated using linear regression. Analyses were completed for lean and overweight/obese women. Overall, women with long sleep duration had elevated plasma leptin (p-value = 0.04). However, leptin concentrations were not statistically significantly elevated in women with a short sleep duration. There was no association of leptin with sleep duration among lean women. Among overweight/obese women, a U-shaped relation between leptin and sleep duration was observed: Mean leptin was elevated (β = 21.96 ng/ml, P < 0.001) among women reporting ≤5 hour of sleep compared with reference group; and women reporting ≥9 hours of sleep also had elevated leptin (β = 4.29 ng/ml, P = 0.09). Short sleep duration, and to a lesser extent long sleep duration, were associated with elevated leptin among overweight/obese women. These data add some evidence to help understand mechanistic relationships of sleep duration with pregnancy complications.
Yang, Ding-Bo; Yu, Wen-Hua; Dong, Xiao-Qiao; Du, Quan; Shen, Yong-Feng; Zhang, Zu-Yong; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Wang, Hao; Jiang, Li; Du, Yuan-Feng
2014-08-01
Higher plasma copeptin levels correlate with poor clinical outcomes after traumatic brain injury. Nevertheless, their links with acute traumatic coagulopathy and progressive hemorrhagic injury are unknown. Therefore, we aimed to investigate the relationship between plasma copeptin levels, acute traumatic coagulopathy and progressive hemorrhagic injury in patients with severe traumatic brain injury. We prospectively studied 100 consecutive patients presenting within 6h from head trauma. Progressive hemorrhagic injury was present when the follow-up computerized tomography scan reported any increase in size or number of the hemorrhagic lesion, including newly developed ones. Acute traumatic coagulopathy was defined as an activated partial thromboplastic time greater than 40s and/or international normalized ratio greater than 1.2 and/or a platelet count less than 120×10(9)/L. We measured plasma copeptin levels on admission using an enzyme-linked immunosorbent assay in a blinded fashion. In multivariate logistic regression analysis, plasma copeptin level emerged as an independent predictor of progressive hemorrhagic injury and acute traumatic coagulopathy. Using receiver operating characteristic curves, we calculated areas under the curve for progressive hemorrhagic injury and acute traumatic coagulopathy. The predictive performance of copeptin was similar to that of Glasgow Coma Scale score. However, copeptin did not obviously improve the predictive value of Glasgow Coma Scale score. Thus, copeptin may help in the prediction of progressive hemorrhagic injury and acute traumatic coagulopathy after traumatic brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.
Kanai, Takahiro; Ito, Takane; Odaka, Jun; Saito, Takashi; Aoyagi, Jun; Betsui, Hiroyuki; Yamagata, Takanori
2016-03-01
Fabry disease is an X-linked glycosphingolipidosis caused by deficient synthesis of the enzyme α-galactosidase A, which results in accumulations of globotriaosylceramide (GL-3) in systemic tissues. Nephropathy is a dominant feature of Fabry disease. It still remains unclear how the nephropathy progresses. Recombinant agalsidase replacement therapy is currently the only approved, specific therapy for Fabry disease. The optimal dose of replacement enzyme also still remains unclear. The worldwide shortage of agalsidase-β in 2009 forced dose reduction of administration. It showed that the proteinuria emerged like surges, followed by temporary plasma GL-3 elevations in the early stages of classic Fabry disease. Additionally, it also showed that 1 mg/kg of agalsidase-β every other week could clear the GL-3 accumulations from podocytes and was required to maintain negative proteinuria and normal plasma GL-3 levels. This observation of a young patient with classic Fabry disease about 5 years reveals that the long-term, low-dose agalsidase-β caused proteinuria surges, but not persistent proteinuria, followed by temporary plasma GL-3 elevations, and agalsidase-β at 1 mg/kg every other week could clear accumulated GL-3 from podocytes and was required to maintain normal urinalysis and plasma GL-3 levels.
Elevated plasma endothelin-1 and pulmonary arterial pressure in children exposed to air pollution.
Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J; Reed, William
2007-08-01
Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O(3) that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. We conducted a study of 81 children, 7.9 +/- 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O(3) levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 mum in aerodynamic diameter (PM(2.5)) before endothelin-1 measurement (p = 0.03). Chronic exposure of children to PM(2.5) is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure.
Salazar, Martin R; Carbajal, Horacio A; Espeche, Walter G; Leiva Sisnieguez, Carlos E; March, Carlos E; Balbín, Eduardo; Dulbecco, Carlos A; Aizpurúa, Marcelo; Marillet, Alberto G; Reaven, Gerald M
2013-07-01
This study compares the ability of an elevated triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio, using sex-specific cut-points, to identify insulin-resistant individuals within a population without known cardiac disease or diabetes with that obtained using the diagnostic criteria of the metabolic syndrome (MetS). Measurements were made of waist circumference (WC), systolic and diastolic blood pressure, fasting plasma glucose, fasting plasma insulin (FPI), plasma TG and plasma HDL-C concentrations in 1102 women and 464 men. These data were used to classify subjects as being insulin resistant (FPI concentration in the upper quartile) and having the MetS or an elevated TG/HDL-C ratio (>2.5 and >3.5 for women and men, respectively). The sensitivity and specificity with which the two indices identified insulin-resistant subjects were similar (43% and 81% for TG/HDL-C ratio and 45% and 82% for MetS), as the number of individuals was found with either an elevated TG/HDL-C ratio (n = 386) or the MetS (n = 384). Eighty-one per cent of the individuals were identified concordantly. Cardio-metabolic risk profiles in 'low-risk' individuals identified by a low TG/HDL-C ratio were comparable to those who did not have the MetS, and this was also the case when comparing 'high-risk' groups identified by having the MetS or an elevated TG/HDL-C ratio. These findings suggest that TG/HDL-C concentration ratio is as adequate as MetS diagnosis to identify insulin-resistant subjects.
Markus, C Rob; Verschoor, E; Firk, C; Kloek, J; Gerhardt, C C
2010-10-01
Reduced brain serotonin function is involved in stress-related disturbances and may particularly occur under chronic stress. Although serotonin production directly depends on the availability of its plasma dietary amino acid precursor tryptophan (TRP), previously described effects of tryptophan-rich food sources on stress-related behavior are rather modest. Recently, an egg protein hydrolysate (EPH) was developed that showed a much greater effect on brain TRP availability than pure TRP and other TRP-food sources and therefore may be more effective for performance under stress. The aim of the present study was to investigate the effects of EPH compared to placebo protein on plasma amino acids, stress coping and performance in subjects with high and low chronic stress vulnerabilities. In a placebo-controlled, double-blind, crossover study, 17 participants with high and 18 participants with low chronic stress vulnerabilities were monitored for mood and performance under acute stress exposure either following intake of EPH or placebo. EPH significantly increased plasma TRP availability for uptake into the brain, decreased depressive mood in all subjects and improved perceptual-motor and vigilance performance only in low chronic stress-vulnerable subjects. The acute use of a TRP-rich egg protein hydrolysate (EPH) is an adequate method to increase plasma TRP for uptake into the brain and may be beneficial for perceptual-motor and vigilance performance in healthy volunteers. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Datta, Siddhartha; Chakrabarti, Nilkanta
2018-04-18
Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Esteves, William A M; Lodi-Junqueira, Lucas; Neto, Cirilo P Fonseca; Tan, Timothy C; Nascimento, Bruno R; Mehrotra, Praveen; Barbosa, Marcia M; Ribeiro, Antonio Luiz P; Nunes, Maria Carmo P
2013-10-01
We aimed to explore the relationship between brain natriuretic peptide (BNP) levels and right ventricular (RV) function in patients with mitral stenosis (MS), and to investigate the hemodynamic parameters that predict reduction of BNP levels after percutaneous mitral valvuloplasty (PMV). Few studies have evaluated BNP in the context of MS, specifically the impact of the RV stroke work (RVSW) on serum BNP levels has not been defined. Thirty patients with symptomatic rheumatic MS in sinus rhythm who were referred for a PMV were enrolled. Right and left heart pressures were obtained before and after valvuloplasty. RVSW index (RVSWI) was calculated by cardiac catheterization. Basal BNP levels were elevated in MS patients and correlated with several hemodynamic parameters including pulmonary pressure, pulmonary vascular resistance index, cardiac index (CI), and RVSWI. In multivariate analysis, CI and RVSWI were independent predictors of raised basal BNP levels. PMV resulted in a significant decrease in the RVSWI with a concurrent increase in CI (2.4 ± 0.43 to 2.9 ± 0.8 L/min/m(2), P = 0.010). Overall, plasma BNP levels significantly decreased from 124 (63/234) to 73 (48/148) pg/ml postvalvuloplasty. Multivariate analysis revealed that the reduction of left atrial (LA) pressure post-PMV was an independent predictor of change in BNP levels. Elevated baseline BNP level in MS patients was independently associated with CI and RVSWI. Plasma BNP levels were reduced after successful PMV, which was associated with the reduction of the LA pressure. © 2013, Wiley Periodicals, Inc.
Mulvey, Jamin M; Renshaw, Gillian M C
2009-02-01
Prolonged hypoxic exposure results in cell failure, glutamate excitotoxicity and apoptosis in the brain. The epaulette shark can withstand prolonged hypoxic exposure without brain injury, while maintaining normal function and activity at tropical temperatures. We examined whether the inhibitory neurotransmitter GABA was involved in hypoxia tolerance and neuroprotection during hypoxic preconditioning. Sharks were exposed to either cyclic hypoxic preconditioning or normoxic conditions. Whole brain GABA concentration was determined using high performance liquid chromatography; GABA distribution in neuronal structures was localised with immunohistochemistry and quantified. While the overall brain level of GABA was not significantly different, there was a significant heterogeneous change in GABA distribution. GABA immunoreactivity was elevated in key motor and sensory nuclei from preconditioned animals, including the nucleus motorius nervi vagi and the cerebellar crest (p<0.001), corresponding to areas of previously reported neuronal hypometabolism. Since the neuroprotection in all other hypoxia and anoxia tolerant species examined so far relies in part on significant elevations in GABA and the phylogenetically older epaulette shark does not, it is reasonable to assume that further research in this unique animal model may yield clues to new key modulators of neuroprotection. Understanding such mechanisms may facilitate the development of therapeutic interventions in the treatment of transient ischaemic attacks, strokes and traumatic brain injury.
Kelley, L.; Sanders, A. F. P.; Beaton, E. A.
2018-01-01
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a complex developmental disorder with serious medical, cognitive and emotional symptoms across the lifespan. This genetic deletion also imparts a lifetime risk for developing schizophrenia that is 25–30 times that of the general population. The origin of this risk is multifactorial and may include dysregulation of the stress response and immunological systems in relation to brain development. Vitamin D is involved in brain development and neuroprotection, gene transcription, immunological regulation and influences neuronal signal transduction. Low levels of vitamin D are associated with schizophrenia, depression and anxiety in the general population. Yet, little is known about how vitamin D levels in children with 22q11.2DS could mediate risk of psychosis in adulthood. Blood plasma levels of vitamin D were measured in children aged 7–16 years with (n = 11) and without (n = 16) 22q11.2DS in relation to parent reports of children’s anxiety and atypicality. Anxiety and atypicality in childhood are risk indicators for the development of schizophrenia in those with 22q11.2DS and the general population. Children with 22q11.2DS had lower vitamin D levels, as well as elevated anxiety and atypicality compared with typical peers. Higher levels of anxiety, depression and internalizing problems but not atypicality were associated with lower levels of vitamin D. Vitamin D insufficiency may relate to higher levels of anxiety and depression, in turn contributing to the elevated risk of psychosis in this population. Further study is required to determine casual linkages between anxiety, stress, mood and vitamin D in children with 22q11.2DS. PMID:27827293
Kelley, L; Sanders, A F P; Beaton, E A
2016-12-01
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a complex developmental disorder with serious medical, cognitive and emotional symptoms across the lifespan. This genetic deletion also imparts a lifetime risk for developing schizophrenia that is 25-30 times that of the general population. The origin of this risk is multifactorial and may include dysregulation of the stress response and immunological systems in relation to brain development. Vitamin D is involved in brain development and neuroprotection, gene transcription, immunological regulation and influences neuronal signal transduction. Low levels of vitamin D are associated with schizophrenia, depression and anxiety in the general population. Yet, little is known about how vitamin D levels in children with 22q11.2DS could mediate risk of psychosis in adulthood. Blood plasma levels of vitamin D were measured in children aged 7-16 years with (n=11) and without (n=16) 22q11.2DS in relation to parent reports of children's anxiety and atypicality. Anxiety and atypicality in childhood are risk indicators for the development of schizophrenia in those with 22q11.2DS and the general population. Children with 22q11.2DS had lower vitamin D levels, as well as elevated anxiety and atypicality compared with typical peers. Higher levels of anxiety, depression and internalizing problems but not atypicality were associated with lower levels of vitamin D. Vitamin D insufficiency may relate to higher levels of anxiety and depression, in turn contributing to the elevated risk of psychosis in this population. Further study is required to determine casual linkages between anxiety, stress, mood and vitamin D in children with 22q11.2DS.
Yamada, Hidetaka; Bishnoi, Mahendra; Keijzers, Kim F M; van Tuijl, Irma A; Small, Elysia; Shah, Hina P; Bauzo, Rayna M; Kobeissy, Firas H; Sabarinath, Sreedharan N; Derendorf, Hartmut; Bruijnzeel, Adrie W
2010-06-01
Epidemiological studies indicate that parental smoking increases the risk for smoking in children. However, the underlying mechanisms by which parental smoking increases the risk for smoking are not known. The aim of these studies was to investigate if preadolescent tobacco smoke exposure, postnatal days 21-35, affects the rewarding effects of nicotine and nicotine withdrawal in adult rats. The rewarding effects of nicotine were investigated with the conditioned place preference procedure. Nicotine withdrawal was investigated with the conditioned place aversion procedure and intracranial self-stimulation (ICSS). Elevations in brain reward thresholds in the ICSS paradigm reflect a dysphoric state. Plasma nicotine and cotinine levels in the preadolescent rats immediately after smoke exposure were 188 ng/ml and 716 ng/ml, respectively. Preadolescent tobacco smoke exposure led to the development of nicotine dependence as indicated by an increased number of mecamylamine-precipitated somatic withdrawal signs in the preadolescent tobacco smoke exposed rats compared to the control rats. Nicotine induced a similar place preference in adult rats that had been exposed to tobacco smoke or air during preadolescence. Furthermore, mecamylamine induced place aversion in nicotine dependent rats but there was no effect of preadolescent tobacco smoke exposure. Finally, preadolescent tobacco smoke exposure did not affect the elevations in brain reward thresholds associated with precipitated or spontaneous nicotine withdrawal. These studies indicate that passive exposure to tobacco smoke during preadolescence leads to the development of nicotine dependence but preadolescent tobacco smoke exposure does not seem to affect the rewarding effects of nicotine or nicotine withdrawal in adulthood. Published by Elsevier Inc.
The Role of Cytokines in the Pathophysiology of Suicidal Behavior
Ganança, Licínia; Oquendo, Maria A.; Tyrka, Audrey R.; Cisneros-Trujillo, Sebastian; Mann, J. John; Sublette, M. Elizabeth
2016-01-01
Objective Immune dysregulation has been implicated in depression and other psychiatric disorders. What is less clear is how immune dysregulation can affect risk of suicidal behavior. We reviewed the scientific literature concerning cytokines related to suicidal ideation, suicidal behavior and suicide, and surveyed clinical and neurobiological factors associated with cytokine levels that may modulate effects of inflammation on suicide risk. Methods We searched PubMed, Embase, Scopus and PsycINFO for relevant studies published from 1980 through February, 2015. Papers were included if they were written in English and focused on cytokine measurements in patients with suicidal behaviors. Results The literature search yielded 22 studies concerning cytokines and suicidal ideation, suicide attempts or suicide completion. The most consistent finding was elevated interleukin (IL)-6, found in 8 out of 14 studies, in CSF, blood, and postmortem brain. In one study, IL-6 in CSF was also found to be higher in violent than nonviolent attempters and to correlate with future suicide completion. Low plasma IL-2 was observed in 2 studies of suicide attempters, while divergent results were seen for tumor necrosis factor (TNF)-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, IL-4, and soluble Il-2 receptors. Conclusions Given the complexity suggested by the heterogenous cytokine findings, putative mediators and moderators of inflammation on suicidal behavior merit further study. Elevated IL-6 was the most robust cytokine finding, associated with suicidal ideation and both nonfatal suicide attempts and suicides. Future studies should evaluate the predictive value of high IL-6, consider how this may alter brain function to impact suicidal behavior, and explore the potential beneficial effects of reducing IL-6 on suicide risk. PMID:26546783
Normand-Lauzière, François; Frisch, Frédérique; Labbé, Sébastien M.; Bherer, Patrick; Gagnon, René; Cunnane, Stephen C.; Carpentier, André C.
2010-01-01
Background It has been proposed that abnormal postprandial plasma nonesterified fatty acid (NEFA) metabolism may participate in the development of tissue lipotoxicity and type 2 diabetes (T2D). We previously found that non-diabetic offspring of two parents with T2D display increased plasma NEFA appearance and oxidation rates during intravenous administration of a fat emulsion. However, it is currently unknown whether plasma NEFA appearance and oxidation are abnormal during the postprandial state in these subjects at high-risk of developing T2D. Methodology Palmitate appearance and oxidation rates and glycerol appearance rate were determined in eleven healthy offspring of two parents with T2D (positive family history, FH+), 13 healthy subjects without first-degree relatives with T2D (FH-) and 12 subjects with T2D at fasting, during normoglycemic hyperinsulinemic clamp and during continuous oral intake of a standard liquid meal to achieve steady postprandial NEFA and triacylglycerols (TG) without and with insulin infusion to maintain similar glycemia in all three groups. Principal Findings Plasma palmitate appearance and oxidation were higher at fasting and during the clamp conditions in the T2D group (all P<0.05). In the postprandial state, palmitate appearance, oxidative and non oxidative rates were all elevated in T2D (all P<0.05) but not in FH+. Both T2D and FH+ displayed elevated postprandial TG vs. FH- (P<0.001). Acute correction of hyperglycemia during the postprandial state did not affect these group differences. Increased waist circumference and BMI were positively associated with elevated postprandial plasma palmitate appearance and oxidation. Conclusions/Significance Postprandial plasma NEFA intolerance observed in subjects with T2D is not fully established in non-diabetic offspring of both parents with T2D, despite the presence of increased postprandial plasma TG in the later. Elevated postprandial plasma NEFA appearance and oxidation in T2D is observed despite acute correction of the exaggerated glycemic excursion in this group. PMID:20532041
Wewer Albrechtsen, Nicolai J; Junker, Anders E; Christensen, Mette; Hædersdal, Sofie; Wibrand, Flemming; Lund, Allan M; Galsgaard, Katrine D; Holst, Jens J; Knop, Filip K; Vilsbøll, Tina
2018-01-01
Patients with type 2 diabetes (T2D) and patients with nonalcoholic fatty liver disease (NAFLD) frequently exhibit elevated plasma concentrations of glucagon (hyperglucagonemia). Hyperglucagonemia and α-cell hyperplasia may result from elevated levels of plasma amino acids when glucagon's action on hepatic amino acid metabolism is disrupted. We therefore measured plasma levels of glucagon and individual amino acids in patients with and without biopsy-verified NAFLD and with and without type T2D. Fasting levels of amino acids and glucagon in plasma were measured, using validated ELISAs and high-performance liquid chromatography, in obese, middle-aged individuals with I) normal glucose tolerance (NGT) and NAFLD, II) T2D and NAFLD, III) T2D without liver disease, and IV) NGT and no liver disease. Elevated levels of total amino acids were observed in participants with NAFLD and NGT compared with NGT controls (1,310 ± 235 µM vs. 937 ± 281 µM, P = 0.03) and in T2D and NAFLD compared with T2D without liver disease (1,354 ± 329 µM vs. 511 ± 235 µM, P < 0.0001). Particularly amino acids with known glucagonotropic effects (e.g., glutamine) were increased. Plasma levels of total amino acids correlated to plasma levels of glucagon also when adjusting for body mass index (BMI), glycated hemoglobin (Hb A1c ), and cholesterol levels (β = 0.013 ± 0.007, P = 0.024). Elevated plasma levels of total amino acids associate with hyperglucagonemia in NAFLD patients independently of glycemic control, BMI or cholesterol - supporting the potential importance of a "liver-α-cell axis" in which glucagon regulates hepatic amino acid metabolism. Fasting hyperglucagonemia as seen in T2D may therefore represent impaired hepatic glucagon action with increasing amino acids levels. NEW & NOTEWORTHY Hypersecretion of glucagon (hyperglucagonemia) has been suggested to be linked to type 2 diabetes. Here, we show that levels of amino acids correlate with levels of glucagon. Hyperglucagonemia may depend on hepatic steatosis rather than type 2 diabetes.
Cohen, B M; Renshaw, P F; Stoll, A L; Wurtman, R J; Yurgelun-Todd, D; Babb, S M
1995-09-20
To test the hypothesis that uptake of circulating choline into the brain decreases with age, because alterations in metabolism of choline may be a factor contributing to age-related degenerative changes in the brain. Cohort comparison in younger and older adults. Subjects were chosen consecutively from lists of healthy volunteers screened by medical and psychiatric interviews and laboratory tests. Younger adults (n = 12) were between the ages of 20 and 40 years (mean age, 32 years), and older adults (n = 16) were between the ages of 60 and 85 years (mean age, 73 years). After fasting overnight, subjects received choline, as the bitartrate, to yield free choline equal to 50 mg/kg of body weight. Blood was drawn for determination of plasma choline concentration by high-performance liquid chromatography, and proton magnetic resonance spectroscopy (1H-MRS) was performed to determine the relative concentration of cytosolic choline-containing compounds in the brain at baseline and after ingestion of choline. Plasma choline and cytosolic choline-containing compounds in the brain, estimated as the ratio of the choline resonance to the creatine resonance on 1H-MRS scans of the basal ganglia, were compared following blinded analyses of data from subject cohorts studied at baseline and 3 hours after choline ingestion. Levels of plasma choline and cytosolic choline-containing compounds in brain were similar at baseline in younger and older subjects. Following ingestion of choline, plasma choline concentration increased by similar proportions (76% and 80%) in both younger and older subjects. Brain cytosolic choline--containing compounds increased substantially in younger subjects (mean increase, 60%; P < .001 vs baseline). Older subjects showed a much smaller increase in brain choline-containing compounds (mean, 16%; P < .001 vs the increase in younger subjects). Uptake of circulating choline into the brain decreases with age. Given the key role of choline in neuronal structure and function, this change may be a contributing factor in onset in late life of neurodegenerative, particularly dementing, illnesses in which cholinergic neurons show particular susceptibility to loss.
Nayak, P K; Zhang, H; Kerr, D S
2013-03-01
Previously we showed that 1-(4'-aminophenyl)-4-methyl-7,8-methylene-dioxy-2,3-benzodiazepine (GYKI-52466), an ionotropic AMPA receptor antagonist, can trigger strong, presumably metabotropic, protection against seizures and stroke at very low doses. To date, no study has determined brain and plasma concentrations of GYKI-52466 following subcutaneous administration in animals with or without brain damage. Here we developed and validated a rapid method of high-performance liquid chromatography with diode array detection. Chromatographic separation was achieved by a Luna C18 column using a mixture of 25 mM phosphate buffer (pH 7.0)-methanol-acetonitrile (40:37.5:22.5, v/v/v) as the mobile phase at a flow rate of 1.2 mL/min. The method showed acceptable precision and accuracy and allowed a precise quantification of 25 ng/mL GYKI-52466 in the plasma and brain. Recovery of GYKI-52466 from the plasma and brain was >87%, and GYKI was stable at room temperature and during prolonged storage at -20 °C. The method was successfully applied in measuring levels of GYKI-52466 following administration of 3 and 20 mg/kg of GYKI-52466 in control and brain damaged rats. A low brain concentration of 0.56 μM GYKI-52466 was observed with 3mg/kg compared to 10.7 μM with 20 mg/kg at 90 min post drug administration. Severe ataxia was observed with the 20mg/kg dose for up to 90 min. Furthermore, in ischaemic animals, there was no evidence of a 'surge' in brain GYKI concentrations at the injury site, confirming the integrity of the blood-brain barrier in the region of infarct. Taken together, our findings support a metabotropic mode of action underlying the low-dose neuroprotective efficacy of GYKI-52466. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Jung, Ji Won; Kwon, Yong Sam; Jeong, Jin Seok; Son, Miwon; Kang, Hee Eun
2015-01-01
DA-9701, a new botanical gastroprokinetic agent, has potential for the management of delayed gastric emptying in Parkinson's disease if it has no central anti-dopaminergic activity. Therefore, we examined the pharmacokinetics of DA-9701 components having dopamine D2 receptor antagonizing activity, tetrahydropalmatine (THP) and tetrahydroberberine (THB), following various oral doses (80-328 mg/kg) of DA-9701. The distribution of THP and THB to the brain and/or other tissues was also evaluated after single or multiple oral administrations of DA-9701. Oral administration of DA-9701 yielded dose-proportional area under the plasma concentration-time curve (AUC0-8 h) and maximum plasma concentration (Cmax) values for THP and THB, indicating linear pharmacokinetics (except for THB at the lowest dose). THP and THB's large tissue-to-plasma concentration ratios indicated considerable tissue distribution. High concentrations of THP and THB in the stomach and small intestine suggest an explanation for DA-9701's potent gastroprokinetic activity. The maximum concentrations of THP and THB in brain following multiple oral DA-9701 for 7 d (150 mg/kg/d) was observed at 30 min after the last oral DA-9701 treatment: 131±67.7 ng/g for THP and 6.97±4.03 ng/g for THB. Although both THP and THB pass through the blood-brain barrier, as indicated by brain-to-plasma concentration ratios greater than unity (approximately 2-4), oral administration of DA-9701 at the effective dose in humans is not expected to lead to sufficient brain concentrations to exert central dopamine D2 receptor antagonism.
Saito, Mariko; Wu, Gusheng; Hui, Maria; Masiello, Kurt; Dobrenis, Kostantin; Ledeen, Robert W.; Saito, Mitsuo
2015-01-01
Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration. PMID:26063460
Yamashita, A; Koike, Y; Takahashi, A; Hirayama, M; Murakami, N; Sobue, G
1997-08-01
We evaluated plasma noradrenaline (NA) levels at test and during head-up tilt test in 20 patients with sporadic amyotrophic lateral sclerosis (ALS). Their fasting plasma NA levels ranged from 195 to 4227 pg/ml. The average plasma NA level was 483 pg/ml in five ambulatory patients, 341 in two wheelchair-bound patients, 1264 in 11 bedridden patients, and 208 in two respirator-dependent patients whose disability grading was the worst among the four groups. Arterial carbon dioxide (PCO2) was evaluated as a measure of respiratory function. The coefficient of correlation between PCO2 and plasma NA was r = 0.654 (p < 0.01). Either respiratory failure or lower motor neuron dysfunction may relate to the elevation of plasma NA levels. In the two bedridden patients, plasma NA levels and heart rate at rest increased significantly as the disease progressed. Cardiovascular responses to head-up tilting were normal. These data suggest that the elevation of plasma NA levels may be related to progression of respiratory failure and lower motor neuron dysfunction. In conclusion, sympathetic hyperactivity in ALS is considered to be not primary, but secondary to somatic motor disabilities and respiratory failure.
Stress at birth: plasma noradrenaline concentrations of women in labour and in cord blood.
Messow-Zahn, K; Sarafoff, M; Riegel, K P
1978-03-15
Radioenzymatically measured plasma noradrenaline concentrations, present at birth in umbilical veins of 19 healthy, 17 acutely asphyxiated, and 9 chronically distressed newborn infants were found to be elevated above maternal values proportional to the degree of distress and to plasma H ion concentrations.
Plasma Amyloid-β Levels, Cerebral Small Vessel Disease, and Cognition: The Rotterdam Study.
Hilal, Saima; Akoudad, Saloua; van Duijn, Cornelia M; Niessen, Wiro J; Verbeek, Marcel M; Vanderstichele, Hugo; Stoops, Erik; Ikram, M Arfan; Vernooij, Meike W
2017-01-01
Plasma amyloid-β (Aβ) levels are increasingly studied as a potential, accessible marker of cognitive impairment and dementia. The most common plasma Aβ isoforms, i.e., Aβ1-40 and Aβ1-42 have been linked with risk of Alzheimer's disease. However, it remains under-explored whether plasma Aβ levels including novel Aβ1-38 relate to vascular brain disease and cognition in a preclinical-phase of dementiaObjective:To examine the association of plasma Aβ levels (i.e., Aβ1-38, Aβ1-40, and Aβ1-42) with markers of cerebral small vessel disease (SVD) and cognition in a large population-based setting. We analyzed plasma Aβ1 levels in 1201 subjects from two independent cohorts of the Rotterdam Study. Markers of SVD [lacunes, white matter hyperintensity (WMH) volume] were assessed on brain MRI (1.5T). Cognition was assessed by a detailed neuropsychological battery. In each cohort, the association of Aβ levels with SVD and cognition was performed using regression models. Estimates were then pooled across cohorts using inverse variance meta-analysis with fixed effects. Higher levels of plasma Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-40/ Aβ1-42 ratio were associated with increasing lacunar and microbleeds counts. Moreover, higher levels of Aβ1-40 and Aβ1-40/ Aβ1-42 were significantly associated with larger WMH volumes. With regard to cognition, a higher level of Aβ1-38 Aβ1-40 and Aβ1-40/ Aβ1-42 was related to worse performance on cognitive test specifically in memory domain. Higher plasma levels of Aβ levels are associated with subclinical markers of vascular disease and poorer memory. Plasma Aβ levels thus mark the presence of vascular brain pathology.
Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency
Burrage, Lindsay C.; Sun, Qin; Elsea, Sarah H.; Jiang, Ming-Ming; Nagamani, Sandesh C.S.; Frankel, Arthur E.; Stone, Everett; Alters, Susan E.; Johnson, Dale E.; Rowlinson, Scott W.; Georgiou, George; Lee, Brendan H.
2015-01-01
Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency. PMID:26358771
Adult Sickle Cell Anaemia Patients in Bone Pain Crisis have Elevated Pro-Inflammatory Cytokines
Alagbe, Adekunle Emmanuel; Aworanti, Oladapo Wale
2018-01-01
Background and Objectives Inflammatory markers that influence bone pain crisis (BPC) and other complications of sickle cell anaemia (SCA) are numerous and play various roles. This study determined the plasma levels of tumour necrosis factor (TNF) - α, interleukin - 8 (IL-8), and endothelin - 1 (ET-1) in adult SCA patients during BPC and in steady state. In addition, the plasma levels of these cytokines were correlated with the severity of BPC of the patients. Methods and Materials Sixty adult SCA patients (30 during BPC and 30 during steady state) and 30 haemoglobin A controls were enrolled for this cross-sectional study. The severity of BPC was assessed clinically, and questionnaires were filled. Plasma levels of TNF- α, IL-8 and ET-1 were quantified by ELISA, and haematological parameters were determined using a 5-part auto-analyzer. Plasma levels were correlated with the severity of bone pain crisis. Results were considered statistically significant if p<0.05. Results Plasma TNF-α, IL-8, and ET-1 were significantly elevated in the BPC group than in the steady state group and the controls. Plasma TNF-α, IL-8 and ET-1 were markedly higher in the severe BPC groups than the steady state and control groups, There was a positive correlation between TNF-α and ET-1 in the bone pain crisis group. Conclusion Elevated levels of plasma TNF-α, IL-8, and ET-1 further establish the chronic inflammatory state in SCA and equally affirm their significant contribution, not only to pathogenesis but also to the severity of pain in SCA. PMID:29531654
Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation
NASA Astrophysics Data System (ADS)
Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.
1999-12-01
Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.
Goldstone, Anthony P; Miras, Alexander D; Scholtz, Samantha; Jackson, Sabrina; Neff, Karl J; Pénicaud, Luc; Geoghegan, Justin; Chhina, Navpreet; Durighel, Giuliana; Bell, Jimmy D; Meillon, Sophie; le Roux, Carel W
2016-02-01
Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food.
Baganz, Nicole; Horton, Rebecca; Martin, Kathryn; Holmes, Andrew; Daws, Lynette C
2010-11-10
Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications.
Chemical Composition and Antimigraine Activity of Essential Oil of Angelicae dahuricae Radix.
Sun, Jingbo; Li, He; Sun, Jinghui; Liu, Huimin; Chen, Jianguang; Wang, Chunmei
2017-08-01
The aim of this study was to explore the chemical composition and the effect of essential oil of Angelicae dahuricae radix on a nitroglycerin (NTG)-induced rat model of migraine. The CO 2 supercritical fluid extraction method was optimized for the extraction of essential oil of A. dahuricae radix (EOAD) and its chemical composition was determined. The migraine model was established by subcutaneous injection of NTG (10 mg/kg) 1 h after the last administration of EOAD. The therapeutic effect of EOAD and its underlying mechanism were assessed by monitoring behavioral changes, levels of nitric oxide (NO) in serum and brain tissues, plasma levels of calcitonin gene-related peptide (CGRP) and endothelin (ET), and ET/NO ratio. The optimal conditions for CO 2 supercritical fluid extraction of EOAD, as determined by orthogonal test [L 9 (3 4 )], were as follows: 2 h extraction time, 20 MPa pressure, 40°C temperature, and 30 mesh. The yield of EOAD was 1.8%. On gas chromatography-mass spectrometry, 45 peaks were found in EOAD, and 22 compounds were identified and quantified. The main constituents of EOAD were 1-dodecanol (13.71%), elemene (7.54%), palmitic acid ethyl ester (7.32%), α-pinene (6.25%), and 1-pentadecanol (6.08%). Compared with rat migraine model controls, EOAD (35, 70, and 140 mg/kg) significantly reduced the number of head shaking, head scratching, and hind leg shooting events, decreased serum and brain NO levels, decreased plasma CGRP, and increased ET levels in rats. ET/NO ratio was elevated to 28.68 in the EOAD high-dose group. EOAD ameliorates NTG-induced migraine in rats likely by modulating the levels of vasoactive substances.
Adler, Amanda I; Stevens, Richard J; Manley, Sue E; Bilous, Rudy W; Cull, Carole A; Holman, Rury R
2003-01-01
The progression of nephropathy from diagnosis of type 2 diabetes has not been well described from a single population. This study sought to describe the development and progression through the stages of microalbuminuria, macroalbuminuria, persistently elevated plasma creatinine or renal replacement therapy (RRT), and death. Using observed and modeled data from 5097 subjects in the UK Prospective Diabetes Study, we measured the annual probability of transition from stage to stage (incidence), prevalence, cumulative incidence, ten-year survival, median duration per stage, and risk of death from all-causes or cardiovascular disease. From diagnosis of diabetes, progression to microalbuminuria occurred at 2.0% per year, from microalbuminuria to macroalbuminuria at 2.8% per year, and from macroalbuminuria to elevated plasma creatinine (>or=175 micromol/L) or renal replacement therapy at 2.3% per year. Ten years following diagnosis of diabetes, the prevalence of microalbuminuria was 24.9%, of macroalbuminuria was 5.3%, and of elevated plasma creatinine or RRT was 0.8%. Patients with elevated plasma creatinine or RRT had an annual death rate of 19.2% (95% confidence interval, CI, 14.0 to 24.4%). There was a trend for increasing risk of cardiovascular death with increasing nephropathy (P < 0.0001), with an annual rate of 0.7% for subjects in the stage of no nephropathy, 2.0% for those with microalbuminuria, 3.5% for those with macroalbuminuria, and 12.1% with elevated plasma creatinine or RRT. Individuals with macroalbuminuria were more likely to die in any year than to develop renal failure. The proportion of patients with type 2 diabetes who develop microalbuminuria is substantial with one quarter affected by 10 years from diagnosis. Relatively fewer patients develop macroalbuminuria, but in those who do, the death rate exceeds the rate of progression to worse nephropathy.
Dhir, Ashish; Rogawski, Michael A
2018-05-01
Diazepam, administered by the intravenous, oral, or rectal routes, is widely used for the management of acute seizures. Dosage forms for delivery of diazepam by other routes of administration, including intranasal, intramuscular, and transbuccal, are under investigation. In predicting what dosages are necessary to terminate seizures, the minimal exposure required to confer seizure protection must be known. Here we administered diazepam by continuous intravenous infusion to obtain near-steady-state levels, which allowed an assessment of the minimal levels that elevate seizure threshold. The thresholds for various behavioral seizure signs (myoclonic jerk, clonus, and tonus) were determined with the timed intravenous pentylenetetrazol seizure threshold test in rats. Diazepam was administered to freely moving animals by continuous intravenous infusion via an indwelling jugular vein cannula. Blood samples for assay of plasma levels of diazepam and metabolites were recovered via an indwelling cannula in the contralateral jugular vein. The pharmacokinetic parameters of diazepam following a single 80-μg/kg intravenous bolus injection were determined using a noncompartmental pharmacokinetic approach. The derived parameters V d , CL, t 1/2α (distribution half-life) and t 1/2β (terminal half-life) for diazepam were, respectively, 608 mL, 22.1 mL/min, 13.7 minutes, and 76.8 minutes, respectively. Various doses of diazepam were continuously infused without or with an initial loading dose. At the end of the infusions, the thresholds for various behavioral seizure signs were determined. The minimal plasma diazepam concentration associated with threshold elevations was estimated at approximately 70 ng/mL. The active metabolites nordiazepam, oxazepam, and temazepam achieved levels that are expected to make only minor contributions to the threshold elevations. Diazepam elevates seizure threshold at steady-state plasma concentrations lower than previously recognized. The minimally effective plasma concentration provides a reference that may be considered when estimating the diazepam exposure required for acute seizure treatment. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Tang, W.H. Wilson; Shrestha, Kevin; Tong, Wilson; Wang, Zeneng; Troughton, Richard W.; Borowski, Allen G.; Klein, Allan L.; Hazen, Stanley L.
2013-01-01
Adiponectin is an anti-inflammatory, anti-atherogenic adipokine elevated in heart failure (HF) that may protect against endothelial dysfunction by influencing underlying nitric oxide bioavailablity. In this study, we examine the relationship between plasma adiponectin levels and measures of nitric oxide bioavailability and myocardial performance in patients with chronic systolic HF. In 139 ambulatory patients with stable, chronic systolic HF (left ventricular [LV] ejection fraction ≤40%, New York Heart Association [NYHA] class I to IV), we measured plasma levels of adiponectin, asymmetric dimethylarginine (ADMA) and global arginine bioavailability (GABR), and performed comprehensive echocardiography with assessment of cardiac structure and performance. Adverse events (all-cause mortality or cardiac transplantation) were prospectively tracked for a median of 39 months. Plasma adiponectin levels directly correlated with plasma ADMA levels (Spearman’s r=0.41, p<0.001) and NT-proBNP levels (r=0.55, p<0.001), inversely correlated with GABR (r= −0.39, p<0.001), and were not associated with hsCRP (p=0.81) or MPO (p=0.07). Interestingly, increased plasma adiponectin levels remained positively correlated with plasma ADMA levels only in patients with elevated NT-proBNP levels (r= 0.33, p=0.009). Higher plasma adiponectin levels were associated with worse LV diastolic dysfunction (rank sums p=0.002), RV systolic dysfunction (rank sums p=0.002), and RV diastolic dysfunction (rank sums p=0.011), but not after adjustment for plasma ADMA and NT-proBNP levels. Plasma adiponectin levels predicted increased risk of adverse clinical events (HR [95% CI]: 1.45 [1.02–2.07], p=0.038) but not after adjustment for plasma ADMA and NT-proBNP levels, or echocardiographic indices of diastolic or RV systolic dysfunction. In patients with chronic systolic HF, adiponectin production is more closely linked with nitric oxide bioavailability than inflammation, and appears to be more robust in the setting of cardiac dysfunction or elevated natriuretic peptide levels. PMID:23499315
Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani
2009-07-15
Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.
Bruijnzeel, Adrie W.; Prado, Melissa; Isaac, Shani
2010-01-01
Background Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of CRF receptors with a non-specific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine seeking. Methods The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. Results In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450, but not the CRF2 receptor antagonist astressin-2B, prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450, but not astressin-2B, prevented stress-induced reinstatement of extinguished nicotine seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. Conclusions These studies indicate that CRF1 receptors, but not CRF2 receptors, play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine seeking. PMID:19217073
Demirci, Kadir; Nazıroğlu, Mustafa; Övey, İshak Suat; Balaban, Hasan
2017-04-01
A potent antioxidant, selenium might modulate dementia-induced progression of brain and blood oxidative and apoptotic injuries. The present study explores whether selenium protects against experimental dementia (scopolamine, SCOP)-induced brain, and blood oxidative stress, apoptosis levels, and cytokine production in rats. Thirty-two rats were equally divided into four groups. The first group was used as an untreated control. The second group was treated with SCOP to induce dementia. The third and fourth groups received 1.5 mg/kg selenium (sodium selenite) and SCOP + selenium, respectively. Dementia was induced in the second and forth groups by intraperitoneal SCOP (1 mg/kg) administration. Brain, plasma, and erythrocyte lipid peroxidation levels as well as plasma TNF-α, interleukin (IL)-1β, and IL-4 levels were high in the SCOP group though they were low in selenium treatments. Selenium and selenium + SCOP treatments increased the lowered glutathione peroxidase activity, reduced glutathione, vitamins A and E concentrations in the brain, erythrocytes and plasma of the SCOP group. Apoptotic value expressions as active caspase-3, procaspase-9, and PARP were also increased by SCOP, while they were decreased by selenium and selenium + SCOP treatments. In conclusion, selenium induced protective effects against experimental dementia-induced brain, and blood oxidative injuries and apoptosis through regulation of cytokine production, vitamin E, glutathione concentrations, and glutathione peroxidase activity.
Dam, Kevin; Füchtemeier, Martina; Farr, Tracy D; Boehm-Sturm, Philipp; Foddis, Marco; Dirnagl, Ulrich; Malysheva, Olga; Caudill, Marie A; Jadavji, Nafisa M
2017-03-15
Folates are B-vitamins that are vital for normal brain function. Deficiencies in folates either genetic (methylenetetrahydrofolate reductase, MTHFR) or dietary intake of folic acid result in elevated levels of homocysteine. Clinical studies have shown that elevated levels of homocysteine (Hcy) may be associated with the development of dementia, however this link remains unclear. The purpose of this study was to evaluate the impact of increased Hcy levels on a mouse model of vascular cognitive impairment (VCI) produced by chronic hypoperfusion. Male and female Mthfr +/+ and Mthfr +/- mice were placed on either control (CD) or folic acid deficient (FADD) diets after which all animals underwent microcoil implantation around each common carotid artery or a sham procedure. Post-operatively animals were tested on the Morris water maze (MWM), y-maze, and rotarod. Animals had no motor impairments on the rotarod, y-maze, and could learn the location of the platform on the MWM. However, on day 8 of testing of MWM testing during the probe trial, Mthfr +/- FADD microcoil mice spent significantly less time in the target quadrant when compared to Mthfr +/- CD sham mice, suggesting impaired reference memory. All FADD mice had elevated levels of plasma homocysteine. MRI analysis revealed arterial remodeling was present in Mthfr +/- microcoil mice not Mthfr +/+ mice. Acetylcholine and related metabolites were reduced in cortical tissue because of microcoil implantation and elevated levels of homocysteine. Deficiencies in folate metabolism resulting in increased Hcy levels yield a metabolic profile that increases susceptibility to neurodegeneration in a mouse model of VCI. Copyright © 2017 Elsevier B.V. All rights reserved.
Jacobsen, Jacob P R; Plenge, Per; Sachs, Benjamin D; Pehrson, Alan L; Cajina, Manuel; Du, Yunzhi; Roberts, Wendy; Rudder, Meghan L; Dalvi, Prachiti; Robinson, Taylor J; O'Neill, Sharon P; Khoo, King S; Morillo, Connie Sanchez; Zhang, Xiaodong; Caron, Marc G
2014-12-01
Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, there by curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence anti-depressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram's inhibition here of. Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). We generated mice expressing either the wild-type human SERT (hSERT(WT)) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERT(ALI/VFL+SI/TT)). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration. We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.
Tatani, Solange B; Carvalho, Antonio Carlos C; Andriolo, Adagmar; Rabelo, Rogério; Campos, Orlando; Moises, Valdir A
2010-04-01
Although the residual lesions after surgical correction of tetralogy of Fallot (TOF) can be evaluated by Doppler echocardiography (DE), the relation of DE parameters with the proBNP level, a potential biomarker of right ventricle overload, is not well known. The objective of this study was to evaluate the DE parameters and their relation to proBNP levels. proBNP plasma level and Doppler echocardiography parameters were obtained on the same day in 49 patients later after repair of TOF (mean age of 14.7 years, 51% female, mean PO time of 9.5 years). The DE parameters studied were the dimensions of the right atrium (RA) and ventricle (RV), RV diastolic and systolic function, and residual pulmonary lesions. The relation between them and proBNP levels were analyzed and the cutoff values of DE parameters for elevated proBNP determined. proBNP was elevated in 53% and correlated with RV diastolic diameter (r = 0.41; P = 0.003), RA longitudinal (r = 0.52; P = 0.0001) and transversal (r = 0.47; P = 0.001) diameters, pressure half time of pulmonary regurgitation (PR) velocity (PHT) (r =-0.42; P = 0.005), and the PR index (r =-0.60; P < 0.001). By multivariate analysis, the PR index (r =-597; P = 0,001; CI: -913.2 to -280.8) and RA longitudinal (r = 7.74; P < 0,001; CI 4.18 to 11.31) were independent predictors of elevated proBNP. PHT lower than 64 msec (0.76) and PRi lower than 0.65 (0.81) had the best accuracy for elevated proBNP. proBNP may be increased in patients after surgical repair of TOF, correlated with the size of right cardiac chambers and the severity of PR.
Katare, Yogesh K; Daya, Ritesh P; Sookram Gray, Christal; Luckham, Roger E; Bhandari, Jayant; Chauhan, Abhay S; Mishra, Ram K
2015-09-08
Delivery of therapeutics to the brain is challenging because many organic molecules have inadequate aqueous solubility and limited bioavailability. We investigated the efficiency of a dendrimer-based formulation of a poorly aqueous soluble drug, haloperidol, in targeting the brain via intranasal and intraperitoneal administration. Aqueous solubility of haloperidol was increased by more than 100-fold in the developed formulation. Formulation was assessed via different routes of administration for behavioral (cataleptic and locomotor) responses, and for haloperidol distribution in plasma and brain tissues. Dendrimer-based formulation showed significantly higher distribution of haloperidol in the brain and plasma compared to a control formulation of haloperidol administered via intraperitoneal injection. Additionally, 6.7 times lower doses of the dendrimer-haloperidol formulation administered via the intranasal route produced behavioral responses that were comparable to those induced by haloperidol formulations administered via intraperitoneal injection. This study demonstrates the potential of dendrimer in improving the delivery of water insoluble drugs to brain.
Uric Acid and Antioxidant Effects of Wine
Boban, Mladen; Modun, Darko
2010-01-01
The aim of this article is to review the role of uric acid in the context of antioxidant effects of wine and its potential implication to human health. We described and discussed the mechanisms of increase in plasma antioxidant capacity after consumption of moderate amounts of wine. Because this effect is largely contributed by acute elevation in plasma uric acid, we paid special attention to wine constituents and metabolic processes that are likely to be involved in uric acid elevation. PMID:20162741
Shetty, Reshma A; Sadananda, Monika
2017-05-01
The Wistar-Kyoto rat (WKY) model has been suggested as a model of adult and adolescent depression though face, predictive and construct validities of the model to depression remain equivocal. The suitability of the WKY as a diathesis model that tests the double-hit hypothesis, particularly during critical periods of brain and behavioural development remains to be established. Here, effects of post-weaning social isolation were assessed during early adolescence (~30pnd) on behavioural despair and learned helplessness in the forced swim test (FST), plasma corticosterone levels and tissue monoamine concentrations in brain areas critically involved in depression, such as prefrontal cortex, nucleus accumbens, striatum and hippocampus. Significantly increased immobility in the FST was observed in socially-isolated, adolescent WKY with a concomitant increase in corticosterone levels over and above the FST-induced stress. WKY also demonstrated a significantly increased release and utilization of dopamine, as manifested by levels of metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid in nucleus accumbens, indicating that the large dopamine storage pool evident during adolescence induces greater dopamine release when stimulated. The serotonin metabolite 5-hydroxy-indoleacetic acid was also significantly increased in nucleus accumbens, indicating increased utilization of serotonin, along with norepinephrine levels which were also signficantly elevated in socially-isolated adolescent WKY. Differences in neurochemistry suggest that social or environmental stimuli during critical periods of brain and behavioural development can determine the developmental trajectories of implicated pathways.
Modern Clinical Research on LSD
Liechti, Matthias E
2017-01-01
All modern clinical studies using the classic hallucinogen lysergic acid diethylamide (LSD) in healthy subjects or patients in the last 25 years are reviewed herein. There were five recent studies in healthy participants and one in patients. In a controlled setting, LSD acutely induced bliss, audiovisual synesthesia, altered meaning of perceptions, derealization, depersonalization, and mystical experiences. These subjective effects of LSD were mediated by the 5-HT2A receptor. LSD increased feelings of closeness to others, openness, trust, and suggestibility. LSD impaired the recognition of sad and fearful faces, reduced left amygdala reactivity to fearful faces, and enhanced emotional empathy. LSD increased the emotional response to music and the meaning of music. LSD acutely produced deficits in sensorimotor gating, similar to observations in schizophrenia. LSD had weak autonomic stimulant effects and elevated plasma cortisol, prolactin, and oxytocin levels. Resting-state functional magnetic resonance studies showed that LSD acutely reduced the integrity of functional brain networks and increased connectivity between networks that normally are more dissociated. LSD increased functional thalamocortical connectivity and functional connectivity of the primary visual cortex with other brain areas. The latter effect was correlated with subjective hallucinations. LSD acutely induced global increases in brain entropy that were associated with greater trait openness 14 days later. In patients with anxiety associated with life-threatening disease, anxiety was reduced for 2 months after two doses of LSD. In medical settings, no complications of LSD administration were observed. These data should contribute to further investigations of the therapeutic potential of LSD in psychiatry. PMID:28447622
Modern Clinical Research on LSD.
Liechti, Matthias E
2017-10-01
All modern clinical studies using the classic hallucinogen lysergic acid diethylamide (LSD) in healthy subjects or patients in the last 25 years are reviewed herein. There were five recent studies in healthy participants and one in patients. In a controlled setting, LSD acutely induced bliss, audiovisual synesthesia, altered meaning of perceptions, derealization, depersonalization, and mystical experiences. These subjective effects of LSD were mediated by the 5-HT 2A receptor. LSD increased feelings of closeness to others, openness, trust, and suggestibility. LSD impaired the recognition of sad and fearful faces, reduced left amygdala reactivity to fearful faces, and enhanced emotional empathy. LSD increased the emotional response to music and the meaning of music. LSD acutely produced deficits in sensorimotor gating, similar to observations in schizophrenia. LSD had weak autonomic stimulant effects and elevated plasma cortisol, prolactin, and oxytocin levels. Resting-state functional magnetic resonance studies showed that LSD acutely reduced the integrity of functional brain networks and increased connectivity between networks that normally are more dissociated. LSD increased functional thalamocortical connectivity and functional connectivity of the primary visual cortex with other brain areas. The latter effect was correlated with subjective hallucinations. LSD acutely induced global increases in brain entropy that were associated with greater trait openness 14 days later. In patients with anxiety associated with life-threatening disease, anxiety was reduced for 2 months after two doses of LSD. In medical settings, no complications of LSD administration were observed. These data should contribute to further investigations of the therapeutic potential of LSD in psychiatry.
Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.
Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham
2011-03-23
Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.
Li, Wenlong; Sparidans, Rolf W; Wang, Yaogeng; Lebre, Maria C; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H
2018-05-09
Lorlatinib (PF-06463922) is a promising oral anaplastic lymphoma kinase (ALK) and ROS1 inhibitor currently in Phase III clinical trials for treatment of non-small cell lung cancer (NSCLC) containing an ALK rearrangement. With therapy-resistant brain metastases a major concern in NSCLC, lorlatinib was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. In vitro, human ABCB1 and mouse Abcg2 modestly transported lorlatinib. Following oral lorlatinib administration (at 10 mg/kg), brain accumulation of lorlatinib, while relatively high in wild-type mice, was still 4-fold increased in Abcb1a/1b -/- and Abcb1a/1b;Abcg2 -/- mice, but not in single Abcg2 -/- mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice 4-fold, i.e. to the same level as in Abcb1a/1b;Abcg2 -/- mice, without altering plasma exposure. Similar results were obtained for lorlatinib testis accumulation. In Cyp3a -/- mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then 2-fold reduced upon transgenic over-expression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Our data indicate that lorlatinib brain accumulation is substantially limited by P-glycoprotein in the blood-brain barrier, but this can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is markedly restricted by CYP3A4 activity. These insights may be used in optimizing the therapeutic application of lorlatinib. This article is protected by copyright. All rights reserved. © 2018 UICC.
Evaluation of Endocrine Tests. C: glucagon and clonidine test in phaeochromocytoma.
Bisschop, P H; Corssmit, E P M; Baas, S J; Serlie, M J; Endert, E; Wiersinga, W M; Fliers, E
2009-03-01
The diagnosis of phaeochromocytoma is based on the demonstration of catecholamine excess. Urine and plasma metanephrine measurements are highly sensitive tests for the diagnosis of phaeochromocytoma, but moderate elevations in metanephrines lack optimal specificity. In this study we aimed to evaluate the diagnostic value of additional tests, i.e. glucagon stimulation and clonidine suppression test, in patients with moderately elevated catecholamines and/or metanephrines. Patients with suspected phaeochromocytoma with moderately elevated catecholamines and/or metanephrines in plasma or urine were subjected to the glucagon stimulation and clonidine suppression test. The presence of phaeochromocytoma was confirmed by histology and the absence by a disease-free extended follow-up. Fifty-five patients were included. Phaeochromocytoma was diagnosed in 11 patients. The follow-up period in patients without phaeochromocytoma was 56 (19 to 154) months. The sensitivity of the glucagon test was 30% and the specificity 100%. The clonidine test had no discriminative power, because the area under the ROC curve was not significantly different from 0.5. The clonidine suppression test without normetanephrine measurements and the glucagon stimulation test are not sensitive enough to safely exclude phaeochromocytoma in patients with mildly elevated plasma or urine catecholamines.
Sane, Ramola; Agarwal, Sagar; Mittapalli, Rajendar K; Elmquist, William F
2013-04-01
The study objective was to investigate factors that affect the central nervous system (CNS) distribution of elacridar. Elacridar inhibits transport mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and has been used to study the influence of transporters on brain distribution of chemotherapeutics. Adequate distribution of elacridar across the blood-brain barrier (BBB) and into the brain parenchyma is necessary to target tumor cells in the brain that overexpress transporters and reside behind an intact BBB. We examined the role of P-gp and Bcrp on brain penetration of elacridar using Friend leukemia virus strain B wild-type, Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)Bcrp1(-/-) mice. Initially, the mice were administered 2.5 mg/kg of elacridar intravenously, and the plasma and brain concentrations were determined. The brain-to-plasma partition coefficient of elacridar in the wild-type mice was 0.82, as compared with 3.5 in Mdr1a/b(-/-) mice, 6.6 in Bcrp1(-/-) mice, and 15 in Mdr1a/b(-/-)Bcrp1(-/-) mice, indicating that both P-gp and Bcrp limit the brain distribution of elacridar. The four genotypes were then administered increasing doses of elacridar, and the CNS distribution of elacridar was determined. The observed and model predicted maximum brain-to-plasma ratios (Emax) at the highest dose were not significantly different in all genotypes. However, the ED50 was lower for Mdr1a/b(-/-) mice compared with Bcrp1(-/-) mice. These findings correlate with the relative expression of P-gp and Bcrp at the BBB in these mice and demonstrate the quantitative enhancement in elacridar CNS distribution as a function of its dose. Overall, this study provides useful concepts for future applications of elacridar as an adjuvant therapy to improve targeting of chemotherapeutic agents to tumor cells in the brain parenchyma.
Zahr, Natalie M; Luong, Richard; Sullivan, Edith V; Pfefferbaum, Adolf
2010-11-01
In rodent and human studies, ethanol (EtOH) exposure is associated with elevated brain levels of the magnetic resonance spectroscopy (MRS) signal representing choline-containing compounds (Cho). One interpretation of elevated brain Cho is that it is a marker of neuroinflammation, and some evidence suggests that EtOH exposure promotes neuroinflammation. This study aimed to determine whether binge EtOH exposure (intragastric 3 g/kg 25% EtOH every 8 hours for 4 days) would induce the expression of certain cytokines in blood, liver, or brain, thereby supporting the neuroinflammation hypothesis of elevated Cho. Ten of 18 wild-type male Wistar rats (~322 g at baseline) were exposed to EtOH and attained average blood alcohol levels of ~315 mg/dl across 4 days. Blood for cytokine immunoassays was collected at baseline, after 5 doses of EtOH (binge), and immediately preceding euthanasia either 4 or 24 hours after the last dose of EtOH. Blood was additionally assayed for the levels of thiamine and liver enzymes; liver histopathology was performed postmortem; and tissue from liver and 6 brain regions was assayed for the potential induction of 7 cytokines. There were no group effects on the levels of thiamine or its phosphate derivatives, thiamine monophosphate or thiamine diphosphate. ANOVAs of liver enzyme levels indicated that only alkaline phosphatase (ALP) levels were higher in the EtOH group than in control group at binge; ALP elevations, however, are difficult to explain in the absence of changes in the levels of additional liver enzymes. Postmortem liver pathology provided evidence for minimal microvesicular lipidosis and portocentric fibrosis in the EtOH group. Group effects on the levels of the measured cytokines in the blood (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-13, and GRO/CXCL1) were not significant. Similarly, postmortem evaluation of liver cytokines did not reveal group effects. Postmortem evaluation of the 7 cytokines in 6 brain regions (anterior cerebellar vermis, cingulate cortex, frontal cortex, hippocampus, hypothalamus, striatum) also failed to identify group effects. A single 4-day bout of binge EtOH exposure alone was insufficient to induce the expression of 7 cytokines in blood, liver, or 6 brain regions of wild-type Wistar rats. Alternative interpretations for elevations in brain Cho in response to a 4-day binge EtOH treatment are therefore necessary and may include induction of cytokines not measured herein or other noninflammatory mechanisms. Copyright © 2010 by the Research Society on Alcoholism.
Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X.
Hagerman, R J; Leehey, M; Heinrichs, W; Tassone, F; Wilson, R; Hills, J; Grigsby, J; Gage, B; Hagerman, P J
2001-07-10
The authors report five elderly men with the fragile X premutation who had a progressive action tremor associated with executive function deficits and generalized brain atrophy. These individuals had elevated fragile X mental retardation 1 gene (FMR1) messenger RNA and normal or borderline levels of FMR1 protein. The authors propose that elevations of FMR1 messenger RNA may be causative for a neurodegenerative syndrome in a subgroup of elderly men with the FMR1 premutation.
Lai, Floriana; Fagernes, Cathrine E; Bernier, Nicholas J; Miller, Gabrielle M; Munday, Philip L; Jutfelt, Fredrik; Nilsson, Göran E
2017-08-01
The continuous increase of anthropogenic CO 2 in the atmosphere resulting in ocean acidification has been reported to affect brain function in some fishes. During adulthood, cell proliferation is fundamental for fish brain growth and for it to adapt in response to external stimuli, such as environmental changes. Here we report the first expression study of genes regulating neurogenesis and neuroplasticity in brains of three-spined stickleback ( Gasterosteus aculeatus ), cinnamon anemonefish ( Amphiprion melanopus ) and spiny damselfish ( Acanthochromis polyacanthus ) exposed to elevated CO 2 The mRNA expression levels of the neurogenic differentiation factor (NeuroD) and doublecortin (DCX) were upregulated in three-spined stickleback exposed to high-CO 2 compared with controls, while no changes were detected in the other species. The mRNA expression levels of the proliferating cell nuclear antigen (PCNA) and the brain-derived neurotrophic factor (BDNF) remained unaffected in the high-CO 2 exposed groups compared to the control in all three species. These results indicate a species-specific regulation of genes involved in neurogenesis in response to elevated ambient CO 2 levels. The higher expression of NeuroD and DCX mRNA transcripts in the brain of high-CO 2 -exposed three-spined stickleback, together with the lack of effects on mRNA levels in cinnamon anemonefish and spiny damselfish, indicate differences in coping mechanisms among fish in response to the predicted-future CO 2 level. © 2017 The Author(s).
Cremer, J E; Cunningham, V J; Seville, M P
1983-09-01
Studies were made on the relationships between the rate of glucose metabolism, the transport of glucose between plasma and brain, cerebral blood flow, and blood content. Conscious control rats were compared with rats with intense tremors induced with cismethrin. The influence of plasma glucose concentration was studied by fasting some animals overnight prior to the induction of tremors. Mean plasma glucose was 8.83 mM in controls, 12.57 mM in fed rats with tremors, and 4.94 mM in rats fasted overnight prior to induction of tremors. Of 12 brain regions studied, nine showed an increased rate of glucose utilization in both fed and fasted trembling rats. Cerebellum had the highest percentage increase (200%). Rates of unidirectional glucose influx in fed trembling rats were significantly greater than those in controls in eight regions. In fasted animals, rates were the same as in controls, except in cerebellum, where it was 1.6 times higher. These high rates of glucose influx at low plasma glucose concentrations were indicative of a change in kinetic parameters of glucose transport. Unidirectional glucose influx rates were transformed to estimates of maximal transport rates (Tmax), based on the Michaelis-Menten equation. Average plasma glucose concentrations in regional capillaries (c) were calculated and shown to be maintained at values close to arterial plasma glucose concentrations (Ca), in all brain regions of each group. In trembling rats, Tmax for each brain region was higher than that in controls. In fasted rats with tremors, Tmax was higher in several brain regions than in fed rats. Tmax in cerebellum was 3.37, 4.71, and 7.89 mumol g-1 min-1 in control, fed trembling, and fasted trembling rats, respectively. Blood flow increased significantly in all regions in rats with tremors and was higher in fasted than in fed animals. There was only a weak correlation between blood flow and Tmax. Blood content of several regions increased in rats with tremors, and there was a strong correlation between Tmax and tissue blood volume. Results are consistent with localized regulatory links between blood flow, capillary surface area, and glucose transport in response to metabolic demand and hypoglycaemia. These involve changes in the linear velocity of blood through capillaries and in the extent of capillary recruitment.
Chinnathambi, Vijayakumar; More, Amar S; Hankins, Gary D; Yallampalli, Chandra; Sathishkumar, Kunju
2014-07-01
Pre-eclampsia is a life-threatening pregnancy disorder whose pathogenesis remains unclear. Plasma testosterone levels are elevated in pregnant women with pre-eclampsia and polycystic ovary syndrome, who often develop gestational hypertension. We tested the hypothesis that increased gestational testosterone levels induce hypertension via heightened angiotensin II signaling. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate from Gestational Day 15 to 19 to induce a 2-fold increase in plasma testosterone levels, similar to levels observed in clinical conditions like pre-eclampsia. A subset of rats in these two groups was given losartan, an angiotensin II type 1 receptor antagonist by gavage during the course of testosterone exposure. Blood pressure levels were assessed through a carotid arterial catheter and endothelium-independent vascular reactivity through wire myography. Angiotensin II levels in plasma and angiotensin II type 1 receptor expression in mesenteric arteries were also examined. Blood pressure levels were significantly higher on Gestational Day 20 in testosterone-treated dams than in controls. Treatment with losartan during the course of testosterone exposure significantly attenuated testosterone-induced hypertension. Plasma angiotensin II levels were not significantly different between control and testosterone-treated rats; however, elevated testosterone levels significantly increased angiotensin II type 1 receptor protein levels in the mesenteric arteries. In testosterone-treated rats, mesenteric artery contractile responses to angiotensin II were significantly greater, whereas contractile responses to K(+) depolarization and phenylephrine were unaffected. The results demonstrate that elevated testosterone during gestation induces hypertension in pregnant rats via heightened angiotensin II type 1 receptor-mediated signaling, providing a molecular mechanism linking elevated maternal testosterone levels with gestational hypertension. © 2014 by the Society for the Study of Reproduction, Inc.
Chinnathambi, Vijayakumar; More, Amar S.; Hankins, Gary D.; Yallampalli, Chandra; Sathishkumar, Kunju
2014-01-01
ABSTRACT Pre-eclampsia is a life-threatening pregnancy disorder whose pathogenesis remains unclear. Plasma testosterone levels are elevated in pregnant women with pre-eclampsia and polycystic ovary syndrome, who often develop gestational hypertension. We tested the hypothesis that increased gestational testosterone levels induce hypertension via heightened angiotensin II signaling. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate from Gestational Day 15 to 19 to induce a 2-fold increase in plasma testosterone levels, similar to levels observed in clinical conditions like pre-eclampsia. A subset of rats in these two groups was given losartan, an angiotensin II type 1 receptor antagonist by gavage during the course of testosterone exposure. Blood pressure levels were assessed through a carotid arterial catheter and endothelium-independent vascular reactivity through wire myography. Angiotensin II levels in plasma and angiotensin II type 1 receptor expression in mesenteric arteries were also examined. Blood pressure levels were significantly higher on Gestational Day 20 in testosterone-treated dams than in controls. Treatment with losartan during the course of testosterone exposure significantly attenuated testosterone-induced hypertension. Plasma angiotensin II levels were not significantly different between control and testosterone-treated rats; however, elevated testosterone levels significantly increased angiotensin II type 1 receptor protein levels in the mesenteric arteries. In testosterone-treated rats, mesenteric artery contractile responses to angiotensin II were significantly greater, whereas contractile responses to K+ depolarization and phenylephrine were unaffected. The results demonstrate that elevated testosterone during gestation induces hypertension in pregnant rats via heightened angiotensin II type 1 receptor-mediated signaling, providing a molecular mechanism linking elevated maternal testosterone levels with gestational hypertension. PMID:24855104
Anti-IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus.
Zhang, Jiyong; Sadowska, Grazyna B; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Banks, William A; Stonestreet, Barbara S
2015-05-01
Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia. © FASEB.
Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.
Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin
2010-12-17
Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects. Copyright © 2010 Elsevier B.V. All rights reserved.
Dai, Zhiyu; Qi, Weiwei; Li, Cen; Lu, Juling; Mao, Yuling; Yao, Yachao; Li, Lei; Zhang, Ting; Hong, Honghai; Li, Shuai; Zhou, Ti; Yang, Zhonghan; Yang, Xia; Gao, Guoquan; Cai, Weibin
2013-09-05
Both elevated plasma free fatty acids (FFA) and accumulating triglyceride in adipose tissue are observed in the process of obesity and insulin resistance. This contradictory phenomenon and its underlying mechanisms have not been thoroughly elucidated. Recent studies have demonstrated that pigment epithelium-derived factor (PEDF) contributes to elevated plasma FFA and insulin resistance in obese mice via the activation of adipose triglyceride lipase (ATGL). However, we found that PEDF downregulated adipose ATGL protein expression despite of enhancing lipolysis. Plasma PEDF and FFA were increased in associated with a progressive high-fat-diet, and those outcomes were also accompanied by fat accumulation and a reduction in adipose ATGL. Exogenous PEDF injection downregulated adipose ATGL protein expression and elevated plasma FFA, while endogenous PEDF neutralization significantly rescued the adipose ATGL reduction and also reduced plasma FFA in obese mice. PEDF reduced ATGL protein expression in a time- and dose-dependent manner in differentiated 3T3-L1 cells. Small interfering RNA-mediated PEDF knockdown and antibody-mediated PEDF blockage increased endogenous ATGL expression, and PEDF overexpression downregulated ATGL. PEDF resulted in a decreased half-life of ATGL and regulated ATGL degradation via ubiquitin-dependent proteasomal degradation pathway. PEDF stimulated lipolysis via ATGL using ATGL inhibitor bromoenol lactone, and PEDF also downregulated G0/G1 switch gene 2 (G0S2) expression, which is an endogenous inhibitor of ATGL activation. Overall, PEDF attenuated ATGL protein accumulation via proteasome-mediated degradation in adipocytes, and PEDF also promoted lipolysis by activating ATGL. Elevated PEDF may contribute to progressive obesity and insulin resistance via its dual regulation of ATGL. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
[Variations of plasma concentrations of h-FABP during a muscular exercise].
Delacour, H; Nervale, A; Servonnet, A; Pagliano, B; Dehan, C; Gardet, V
2007-01-01
To test whether heart-Fatty Acid Binding Protein (h-FABP) is a useful plasma marker for the detection of acute coronary syndrome during muscular exercise. Plasma concentrations of h-FABP were measured in 42 volunteers before and after muscular exercise (military aptitude test). Myoglobin and troponin Ic were measured for comparison. Significant increase were found in plasma myoglobin (mean = 195,9 microg/L) and h-FABP (mean = 5,71 microg/L). Myoglobin and h-FABP concentrations were already significantly elevated (p < 10(-6)) at 60 minutes after exercise and h-FABP concentrations were superior to baseline values in 15 volunteers. Whereas h-FABP decreased to normal levels within 24 hours, myoglobin remained elevated in 12 volunteers. The myoglobin to h-FABP ratio in plasma is between 8,0 and 57,0 which is different from the reported plasma ratio after myocardial injury (<6). h-FABP can be used to exclude an acute coronary syndrome during exercise. The myoglobin to h-FABP ratio seems to be useful to identify the type of muscle injured. New studies are necessary to evaluate its diagnostic accuracy.
Plasma protein binding of phenytoin in 100 epileptic patients.
Peterson, G M; McLean, S; Aldous, S; Von Witt, R J; Millingen, K S
1982-01-01
The plasma protein binding of phenytoin was investigated in 100 epileptic patients, using equilibrium dialysis at 37 degrees C. The unbound fractions of phenytoin in plasma formed a skewed distribution, with a range of 9.7 to 24.7% and a median value of 12.3%. Most (80%) patients appeared to form one group with free phenytoin fractions from 9.7 to 14.5%, while the remainder formed a group with elevated free fractions (greater than 14.5%). Total and unbound plasma concentrations of phenytoin were strongly correlated (r=0.95, P less than 0.0001). There was a weak correlation between increasing age and the unbound phenytoin fraction (r=0.28, P less than 0.01). The results indicate that measurement of the total phenytoin concentration in plasma should usually provide a reliable index of anticonvulsant effect. However, determination of the unbound phenytoin fraction would be beneficial in the management of those patients in whom this fraction may be elevated, due to interacting drugs or biochemical abnormalities. PMID:7104186
Tarín, Nieves; Cristóbal, Carmen; Lorenzo, Óscar; Blanco-Colio, Luis; Martín-Ventura, José Luis; Huelmos, Ana; Alonso, Joaquín; Aceña, Álvaro; Pello, Ana; Carda, Rocío; Asensio, Dolores; Mahíllo-Fernández, Ignacio; López Bescós, Lorenzo; Egido, Jesús; Farré, Jerónimo
2015-01-01
Objective Several papers have reported elevated plasma levels of natriuretic peptides in patients with a previous diagnosis of cancer. We have explored whether N-terminal pro-brain natriuretic peptide (NT-proBNP) plasma levels predict a future diagnosis of cancer in patients with coronary artery disease (CAD). Methods We studied 699 patients with CAD free of cancer. At baseline, NT-proBNP, galectin-3, monocyte chemoattractant protein-1, soluble tumor necrosis factor-like weak inducer of apoptosis, high-sensitivity C-reactive protein, and high-sensitivity cardiac troponin I plasma levels were assessed. The primary outcome was new cancer diagnosis. The secondary outcome was cancer diagnosis, heart failure requiring hospitalization, or death. Results After 2.15±0.98 years of follow-up, 24 patients developed cancer. They were older (68.5 [61.5, 75.8] vs 60.0 [52.0, 72.0] years; p=0.011), had higher NT-proBNP (302.0 [134.8, 919.8] vs 165.5 [87.4, 407.5] pg/ml; p=0.040) and high-sensitivity C-reactive protein (3.27 [1.33, 5.94] vs 1.92 [0.83, 4.00] mg/L; p=0.030), and lower triglyceride (92.5 [70.5, 132.8] vs 112.0 [82.0, 157.0] mg/dl; p=0.044) plasma levels than those without cancer. NT-proBNP (Hazard Ratio [HR]=1.030; 95% Confidence Interval [CI]=1.008-1.053; p=0.007) and triglyceride levels (HR=0.987; 95%CI=0.975-0.998; p=0.024) were independent predictors of a new cancer diagnosis (multivariate Cox regression analysis). When patients in whom the suspicion of cancer appeared in the first one-hundred days after blood extraction were excluded, NT-proBNP was the only predictor of cancer (HR=1.061; 95%CI=1.034-1.088; p<0.001). NT-proBNP was an independent predictor of cancer, heart failure, or death (HR=1.038; 95%CI=1.023-1.052; p<0.001) along with age, and use of insulin and acenocumarol. Conclusions NT-proBNP is an independent predictor of malignancies in patients with CAD. New studies in large populations are needed to confirm these findings. PMID:26046344
Aid, Saba; Parikh, Nishant; Palumbo, Sara; Bosetti, Francesca
2010-07-12
Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells. Published by Elsevier Ireland Ltd.
Crivello, Natalia A.; Blusztajn, Jan K.; Joseph, James A.; Shukitt-Hale, Barbara; Smith, Donald E.
2010-01-01
The hypothesis of this study is that a folate-deficient diet (FD) has a greater effect on cholinergic system in the peripheral nervous system than in the brain, and that this effect escalates with age. It was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats fed either control or folate-deficient diets for 10 weeks, starting at age 4 weeks (the young group) or 9 months (the adult group). FD consumption resulted in depletion of plasma folate in both age groups. In young folate-deficient rats, liver and lung choline levels were significantly lower than those in the respective controls. No other significant effects of FD on choline and acetylcholine metabolism were found in young rats. In adult rats, FD consumption markedly decreased choline levels in the liver, kidneys, and heart; furthermore, choline levels in the cortex and striatum were moderately elevated, although hippocampal choline levels were not affected. Acetylcholine levels were higher in the heart, cortex, and striatum but lower in the hippocampus in adult folate-deficient rats, as compared to controls. Higher acetylcholine levels in the striatum in adult folate-deficient rats were also associated with higher dopamine release in the striatal slices. Thus, both age groups showed higher cholinergic metabolic sensitivity to FD in the peripheral nervous system than in the brain. However, compensatory abilities appeared to be better in the young group, implicating the adult group as a preferred model for further investigation of folate-choline-acetylcholine interactions and their role in brain plasticity and cognitive functions. PMID:21056288
Crivello, Natalia A; Blusztajn, Jan K; Joseph, James A; Shukitt-Hale, Barbara; Smith, Donald E
2010-10-01
The hypothesis of this study is that a folate-deficient diet (FD) has a greater effect on cholinergic system in the peripheral nervous system than in the brain, and that this effect escalates with age. It was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats fed either control or folate-deficient diets for 10 weeks, starting at age 4 weeks (the young group) or 9 months (the adult group). Folate-deficient diet consumption resulted in depletion of plasma folate in both age groups. In young folate-deficient rats, liver and lung choline levels were significantly lower than those in the respective controls. No other significant effects of FD on choline and acetylcholine metabolism were found in young rats. In adult rats, FD consumption markedly decreased choline levels in the liver, kidneys, and heart; furthermore, choline levels in the cortex and striatum were moderately elevated, although hippocampal choline levels were not affected. Acetylcholine levels were higher in the heart, cortex, and striatum but lower in the hippocampus in adult folate-deficient rats, as compared to controls. Higher acetylcholine levels in the striatum in adult folate-deficient rats were also associated with higher dopamine release in the striatal slices. Thus, both age groups showed higher cholinergic metabolic sensitivity to FD in the peripheral nervous system than in the brain. However, compensatory abilities appeared to be better in the young group, implicating the adult group as a preferred model for further investigation of folate-choline-acetylcholine interactions and their role in brain plasticity and cognitive functions. Copyright © 2010 Elsevier Inc. All rights reserved.