elevatr: Access Elevation Data from Various APIs | Science ...
Several web services are available that provide access to elevation data. This package provides access to several of those services and returns elevation data either as a SpatialPointsDataFrame from point elevation services or as a raster object from raster elevation services. Currently, the package supports access to the Mapzen Elevation Service, Mapzen Terrain Service, and the USGS Elevation Point Query Service. The R language for statistical computing is increasingly used for spatial data analysis . This R package, elevatr, is in response to this and provides access to elevation data from various sources directly in R. The impact of `elevatr` is that it will 1) facilitate spatial analysis in R by providing access to foundational dataset for many types of analyses (e.g. hydrology, limnology) 2) open up a new set of users and uses for APIs widely used outside of R, and 3) provide an excellent example federal open source development as promoted by the Federal Source Code Policy (https://sourcecode.cio.gov/).
Speciated atmospheric mercury and its potential source in Guiyang, China
NASA Astrophysics Data System (ADS)
Fu, Xuewu; Feng, Xinbin; Qiu, Guangle; Shang, Lihai; Zhang, Hui
2011-08-01
Speciated atmospheric mercury (Hg) including gaseous elemental mercury (GEM), particulate Hg (PHg), and reactive gaseous Hg (RGM) were continuously measured at an urban site in Guiyang city, southwest China from August to December 2009. The averaged concentrations for GEM, PHg, and RGM were 9.72 ± 10.2 ng m -3, 368 ± 676 pg m -3, and 35.7 ± 43.9 pg m -3, respectively, which were all highly elevated compared to observations at urban sites in Europe and North America. GEM and PHg were characterized by similar monthly and diurnal patterns, with elevated levels in cold months and nighttime, respectively. In contrast, RGM did not exhibit clear monthly and diurnal variations. The variations of GEM, PHg, and RGM indicate the sampling site was significantly impacted by sources in the city municipal area. Sources identification implied that both residential coal burning and large point sources were responsible to the elevated GEM and PHg concentrations; whereas point sources were the major contributors to elevated RGM concentrations. Point sources played a different role in regulating GEM, PHg, and RGM concentrations. Aside from residential emissions, PHg levels was mostly affected by small-scale coal combustion boilers situated to the east of the sampling site, which were scarcely equipped or lacking particulate control devices; whereas point sources situated to the east, southeast, and southwest of the sampling played an important role on the distribution of atmospheric GEM and RGM.
Couch, Richard W.; Gemperle, Michael
1982-01-01
Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.
77 FR 51744 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
..., FEMA published in the Federal Register a proposed rule that included an erroneous flooding source name for the Town of Livonia in Pointe Coupee Parish, Louisiana. The flooding source name of Bayou Fordoche... Coupee Parish, Louisiana, and Incorporated Areas'' addressed several flooding sources, including Bayou...
A method on error analysis for large-aperture optical telescope control system
NASA Astrophysics Data System (ADS)
Su, Yanrui; Wang, Qiang; Yan, Fabao; Liu, Xiang; Huang, Yongmei
2016-10-01
For large-aperture optical telescope, compared with the performance of azimuth in the control system, arc second-level jitters exist in elevation under different speeds' working mode, especially low-speed working mode in the process of its acquisition, tracking and pointing. The jitters are closely related to the working speed of the elevation, resulting in the reduction of accuracy and low-speed stability of the telescope. By collecting a large number of measured data to the elevation, we do analysis on jitters in the time domain, frequency domain and space domain respectively. And the relation between jitter points and the leading speed of elevation and the corresponding space angle is concluded that the jitters perform as periodic disturbance in space domain and the period of the corresponding space angle of the jitter points is 79.1″ approximately. Then we did simulation, analysis and comparison to the influence of the disturbance sources, like PWM power level output disturbance, torque (acceleration) disturbance, speed feedback disturbance and position feedback disturbance on the elevation to find that the space periodic disturbance still exist in the elevation performance. It leads us to infer that the problems maybe exist in angle measurement unit. The telescope employs a 24-bit photoelectric encoder and we can calculate the encoder grating angular resolution as 79.1016'', which is as the corresponding angle value in the whole encoder system of one period of the subdivision signal. The value is approximately equal to the space frequency of the jitters. Therefore, the working elevation of the telescope is affected by subdivision errors and the period of the subdivision error is identical to the period of encoder grating angular. Through comprehensive consideration and mathematical analysis, that DC subdivision error of subdivision error sources causes the jitters is determined, which is verified in the practical engineering. The method that analyze error sources from time domain, frequency domain and space domain respectively has a very good role in guiding to find disturbance sources for large-aperture optical telescope.
NASA Technical Reports Server (NTRS)
Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.
1977-01-01
Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.
Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)
1981-01-01
The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.
Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6
Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter
2017-10-26
Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less
Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter
Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less
Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6
NASA Astrophysics Data System (ADS)
Tutt, J.; Anderson, C.; McKinney, G.
Cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did not provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6. Cosmic background fluxes also scale with the solar cycle due to solar modulation. This modulation has been shown to be nearly sinusoidal over time, with an inverse effect - increased modulation leads to a decrease in cosmic fluxes. This effect was initially included with the cosmic source option in MCNP6 and has now been extended for use with the background source option when: (1) the date is specified in the background.dat file, and (2) when the user specifies a date on the source definition card. A description of the cosmic-neutron/photon date scaling feature will be presented along with scaling results for past and future date extrapolations.
NASA Astrophysics Data System (ADS)
Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi
2013-04-01
In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is more humid. A variety of other indices are used to explain the sediments yields. These indices, such as the average percentage of slope, the distance to the stream, the relative position in landscape, the position to the water table, etc. are mainly derived from high precision elevation data. All these data are used to locate critical source areas that generally correspond to a restraint part of the territory but account for the principal amount of sediments exports. Once the critical source areas are identified, best management practices (BMPs) (per example : contaminant source control practices, conservation cropping practices and surface runoff control structures) can be planned. This way, money and energy are used where it really counts. In this presentation, the complete methodology including LiDAR data processing will be explained. The results and the possibility to reproduce the developed method will be discussed.
Determination of MeHg sources to fish in the St. Louis River, MN, USA, using Hg stable isotopes
Mercury contamination in the Great Lakes region has become a prevalent concern due to elevated methylmercury (MeHg) levels in fish. While atmospheric deposition of Hg is ubiquitous, releases from legacy point-sources give rise to numerous Areas of Concern (AOCs) across the Great ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.; Cohen, M.O.
1975-02-01
The adjoint Monte Carlo method previously developed by MAGI has been applied to the calculation of initial radiation dose due to air secondary gamma rays and fission product gamma rays at detector points within buildings for a wide variety of problems. These provide an in-depth survey of structure shielding effects as well as many new benchmark problems for matching by simplified models. Specifically, elevated ring source results were obtained in the following areas: doses at on-and off-centerline detectors in four concrete blockhouse structures; doses at detector positions along the centerline of a high-rise structure without walls; dose mapping at basementmore » detector positions in the high-rise structure; doses at detector points within a complex concrete structure containing exterior windows and walls and interior partitions; modeling of the complex structure by replacing interior partitions by additional material at exterior walls; effects of elevation angle changes; effects on the dose of changes in fission product ambient spectra; and modeling of mutual shielding due to external structures. In addition, point source results yielding dose extremes about the ring source average were obtained. (auth)« less
Small catchments DEM creation using Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Gafurov, A. M.
2018-01-01
Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.
Environmental contaminants in bald eagle eggs from the Aleutian archipelago
Anthony, R.G.; Miles, A.K.; Ricca, M.A.; Estes, J.A.
2007-01-01
We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (??13C) and nitrogen (??15N). Concentrations of polychlorinated biphenyls (??PCBs), p,p???- dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of ??PCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (??13C) or nitrogen (??15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. ?? 2007 SETAC.
Abdelzaher, Amir M.; Wright, Mary E.; Ortega, Cristina; Solo-Gabriele, Helena M.; Miller, Gary; Elmir, Samir; Newman, Xihui; Shih, Peter; Bonilla, J. Alfredo; Bonilla, Tonya D.; Palmer, Carol J.; Scott, Troy; Lukasik, Jerzy; Harwood, Valerie J.; McQuaig, Shannon; Sinigalliano, Chris; Gidley, Maribeth; Plano, Lisa R. W.; Zhu, Xiaofang; Wang, John D.; Fleming, Lora E.
2010-01-01
Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution. PMID:19966020
Pasture-scale measurement of methane emissions of grazing cattle
USDA-ARS?s Scientific Manuscript database
Quantifying methane emission of cattle grazing on southern Great Plains pastures using micrometeorology presents several challenges. Cattle are elevated, mobile point sources of methane, so that knowing their location in relation to atmospheric methane concentration measurements becomes critical. St...
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas
White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.
1992-01-01
More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.
In-Situ Wave Observations in the High Resolution Air-Sea Interaction DRI
2008-09-30
Program ( CDIP ) Harvest buoy located in 204 m depth off Point Conception. The initial sea surface is assumed Gaussian and homogeneous, with spectral...of simulated sea surface elevation. Right panels: corresponding observed frequency-directional wave spectra (source: CDIP ). Upper panels: Typical
NASA Astrophysics Data System (ADS)
Pérez Quezadas, Juan; Heilweil, Victor M.; Cortés Silva, Alejandra; Araguas, Luis; Salas Ortega, María del Rocío
2016-12-01
Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11-20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.
Excess TDS/Major Ionic Stress/Elevated Conductivities appeared increasing in streams in Central and Eastern Appalachia. Direct discharges from permitted point sources and regional interest in setting eco-based effluent guidelines/aquatic life criteria, as well as potential differ...
Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum
USDA-ARS?s Scientific Manuscript database
Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...
NASA Astrophysics Data System (ADS)
Patterson, V. M.; Bormann, K.; Deems, J. S.; Painter, T. H.
2017-12-01
The NASA SnowEx campaign conducted in 2016 and 2017 provides a rich source of high-resolution Lidar data from JPL's Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) combined with extensive in-situ measurements in two key areas in Colorado: Grand Mesa and Senator Beck. While the uncertainty in the 50m snow depth retrievals from NASA's ASO been estimated at 1-2cm in non-vegetated exposed areas (Painter et al., 2016), the impact of forest cover and point-cloud density on ASO snow lidar depth retrievals is relatively unknown. Dense forest canopies are known to reduce lidar penetration and ground strikes thus affecting the elevation surface retrieved from in the forest. Using high-resolution lidar point cloud data from the ASO SnowEx campaigns (26pt/m2) we applied a series of data decimations (up to 90% point reduction) to the point cloud data to quantify the relationship between vegetation, ground point density, resulting snow-off and snow-on surface elevations and finally snow depth. We observed non-linear reductions in lidar ground point density in forested areas that were strongly correlated to structural forest cover metrics. Previously, the impacts of these data decimations on a small study area in Grand Mesa showed a sharp increase in under-canopy surface elevation errors of -0.18m when ground point densities were reduced to 1.5pt/m2. In this study, we expanded the evaluation to the more topographically challenging Senator Beck basin, have conducted analysis along a vegetation gradient and are considering snow the impacts of snow depth rather than snow-off surface elevation. Preliminary analysis suggest that snow depth retrievals inferred from airborne lidar elevation differentials may systematically underestimate snow depth in forests where canopy density exceeds 1.75 and where tree heights exceed 5m. These results provide a basis from which to identify areas that may suffer from vegetation-induced biases in surface elevation models and snow depths derived from airborne lidar data, and help quantify expected spatial distributions of errors in the snow depth that can be used to improve the accuracy of ASO basin-scale depth and water equivalent products.
Sveinbjörnsson, Bjartmar; Smith, Matthew; Traustason, Tumi; Ruess, Roger W; Sullivan, Patrick F
2010-08-01
Two opposing hypotheses have been presented to explain reduced tree growth at the treeline, compared with growth in lower elevation or lower latitude forests: the carbon source and sink limitation hypotheses. The former states that treeline trees have an unfavorable carbon balance and cannot support growth of the magnitude observed at lower elevations or latitudes, while the latter argues that treeline trees have an adequate carbon supply, but that cold temperatures directly limit growth. In this study, we examined the relative importance of source and sink limitation in forest and treeline white spruce (Picea glauca) in three mountain ranges from southern to northern Alaska. We related seasonal changes in needle nonstructural carbohydrate (NSC) content with branch extension growth, an approach we argue is more powerful than using needle NSC concentration. Branch extension growth in the southernmost Chugach Mountains was much greater than in the White Mountains and the Brooks Range. Trees in the Chugach Mountains showed a greater seasonal decline in needle NSC content than trees in the other mountain ranges, and the seasonal change in NSC was correlated with site-level branch growth across mountain ranges. There was no evidence of a consistent difference in branch growth between the forest and treeline sites, which differ in elevation by approximately 100 m. Our results point to a continuum between source and sink limitation of growth, with high-elevation trees in northern and interior Alaska showing greater evidence of sink limitation, and those in southern Alaska showing greater potential for source limitation.
Ghannam, K; El-Fadel, M
2013-02-01
This paper examines the relative source contribution to ground-level concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), and PM10 (particulate matter with an aerodynamic diameter < 10 microm) in a coastal urban area due to emissions from an industrial complex with multiple stacks, quarrying activities, and a nearby highway. For this purpose, an inventory of CO, oxide of nitrogen (NO(x)), and PM10 emissions was coupled with the non-steady-state Mesoscale Model 5/California Puff Dispersion Modeling system to simulate individual source contributions under several spatial and temporal scales. As the contribution of a particular source to ground-level concentrations can be evaluated by simulating this single-source emissions or otherwise total emissions except that source, a set of emission sensitivity simulations was designed to examine if CALPUFF maintains a linear relationship between emission rates and predicted concentrations in cases where emitted plumes overlap and chemical transformations are simulated. Source apportionment revealed that ground-level releases (i.e., highway and quarries) extended over large areas dominated the contribution to exposure levels over elevated point sources, despite the fact that cumulative emissions from point sources are higher. Sensitivity analysis indicated that chemical transformations of NO(x) are insignificant, possibly due to short-range plume transport, with CALPUFF exhibiting a linear response to changes in emission rate. The current paper points to the significance of ground-level emissions in contributing to urban air pollution exposure and questions the viability of the prevailing paradigm of point-source emission reduction, especially that the incremental improvement in air quality associated with this common abatement strategy may not accomplish the desirable benefit in terms of lower exposure with costly emissions capping. The application of atmospheric dispersion models for source apportionment helps in identifying major contributors to regional air pollution. In industrial urban areas where multiple sources with different geometry contribute to emissions, ground-level releases extended over large areas such as roads and quarries often dominate the contribution to ground-level air pollution. Industrial emissions released at elevated stack heights may experience significant dilution, resulting in minor contribution to exposure at ground level. In such contexts, emission reduction, which is invariably the abatement strategy targeting industries at a significant investment in control equipment or process change, may result in minimal return on investment in terms of improvement in air quality at sensitive receptors.
NASA Astrophysics Data System (ADS)
Kostrzewski, J. M.; Brooks, P. D.
2005-12-01
We assessed impacts of vegetative cover and water source on water quality in the Valles Caldera National Preserve (VCNP). Within the preserve we selected three montane watersheds due to vegetative and physical characteristics. Redondo Creek with an area of 11.7 mi2 is a higher elevation (7,000 to 11,200 ft) watershed with a vegetation transition from aspen to ponderosa pine to meadow. The La Jara Creek is a bedrock confined watershed with an area of 1.5 mi2, elevation range of 8,500 to 11,200 ft, and predominate vegetative cover of mixed conifer. The Jaramillo Creek is a lower elevation (8,500 to 10,500 ft) alluvial watershed with an area of 4.5 mi2 which is dominated by grassland vegetation. In the spring, early summer, and late summer we preformed stream and tributary synoptic sampling combined with regular fixed point sampling. Our experimental design includes analysis of conservative solutes (F-, Br-, Cl-, SO42-), water isotopes, and biogeochemical nutrients to quantify water sources, age, and biological influence within each catchment. Preliminary analysis of dissolved organic carbon (DOC) data suggests an early flushing of DOC in all three catchments to a reduced concentration in the early summer months. Elevated chloride and sulfate concentrations in Redondo Creek indicate a deeper water source than La Jara Creek. This difference in water source contributes to the higher variation of DOC concentrations in La Jara Creek (x=2.33 mg/L, s.d.=1.22) and a lower variation in Redondo Creek (x=2.72 mg/L, s.d.=0.49). A continuation of conservative solute and isotopic analyses will constrain hydrologic flow paths to evaluate the effects of vegetation and water source on water quality.
NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Luis, Alvarinho J.
2016-05-01
Digital elevation model (DEM) is indispensable for analysis such as topographic feature extraction, ice sheet melting, slope stability analysis, landscape analysis and so on. Such analysis requires a highly accurate DEM. Available DEMs of Antarctic region compiled by using radar altimetry and the Antarctic digital database indicate elevation variations of up to hundreds of meters, which necessitates the generation of local improved DEM. An improved DEM of the Schirmacher Oasis, East Antarctica has been generated by synergistically fusing satellite-derived laser altimetry data from Geoscience Laser Altimetry System (GLAS), Radarsat Antarctic Mapping Project (RAMP) elevation data and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global elevation data (GDEM). This is a characteristic attempt to generate a DEM of any part of Antarctica by fusing multiple elevation datasets, which is essential to model the ice elevation change and address the ice mass balance. We analyzed a suite of interpolation techniques for constructing a DEM from GLAS, RAMP and ASTER DEM-based point elevation datasets, in order to determine the level of confidence with which the interpolation techniques can generate a better interpolated continuous surface, and eventually improve the elevation accuracy of DEM from synergistically fused RAMP, GLAS and ASTER point elevation datasets. The DEM presented in this work has a vertical accuracy (≈ 23 m) better than RAMP DEM (≈ 57 m) and ASTER DEM (≈ 64 m) individually. The RAMP DEM and ASTER DEM elevations were corrected using differential GPS elevations as ground reference data, and the accuracy obtained after fusing multitemporal datasets is found to be improved than that of existing DEMs constructed by using RAMP or ASTER alone. This is our second attempt of fusing multitemporal, multisensory and multisource elevation data to generate a DEM of Antarctica, in order to address the ice elevation change and address the ice mass balance. Our approach focuses on the strengths of each elevation data source to produce an accurate elevation model.
Nutrient budgets of two watersheds on the Fernow Experimental Forest
M. B. Adams; J. N. Kochenderfer; T. R. Angradi; P. J. Edwards
1995-01-01
Acidic deposition is an important non-point source pollutant in the Central Appalachian region that is responsible for elevated nitrogen (N) and sulfur (S) inputs to forest ecosystems. Nitrogen and calcium (Ca) budgets and plant tissue concentrations were compared for two watersheds, one that received three years of an artificial acidification treatment and an adjacent...
Sources and Deposition of Polycyclic Aromatic Hydrocarbons to Western U.S. National Parks
USENKO, SASCHA; MASSEY SIMONICH, STACI L.; HAGEMAN, KIMBERLY J.; SCHRLAU, JILL E.; GEISER, LINDA; CAMPBELL, DON H.; APPLEBY, PETER G.; LANDERS, DIXON H.
2010-01-01
Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) in order to determine their current and historical deposition, as well as to identify their potential sources. Seasonal snowpack was measured to determine the current wintertime atmospheric PAH deposition; lichens were measured to determine the long-term, year around deposition; and the temporal PAH deposition trends were reconstructed using lake sediment cores dated using 210Pb and 137Cs. The fourteen remote lake catchments ranged from low-latitude catchments (36.6° N) at high elevation (2900 masl) in Sequoia National Park, CA to high-latitude catchments (68.4° N) at low elevation (427 masl) in the Alaskan Arctic. Over 75% of the catchments demonstrated statistically significant temporal trends in ΣPAH sediment flux, depending on catchment proximity to source regions and topographic barriers. The ΣPAH concentrations and fluxes in seasonal snowpack, lichens, and surficial sediment were 3.6 to 60,000 times greater in the Snyder Lake catchment of Glacier National Park than the other 13 lake catchments. The PAH ratios measured in snow, lichen, and sediment were used to identify a local aluminum smelter as a major source of PAHs to the Snyder Lake catchment. These results suggest that topographic barriers influence the atmospheric transport and deposition of PAHs in high-elevation ecosystems and that PAH sources to these national park ecosystems range from local point sources to diffuse regional and global sources. PMID:20465303
NASA Astrophysics Data System (ADS)
Morris, Phillip A.
The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.
Migaszewski, Z.M.; Galuszka, A.; Dole, ogonekgowska S.; Crock, J.G.; Lamothe, P.J.
2010-01-01
This report shows baseline concentrations of mercury in the moss species Hylocomium splendens and Pleurozium schreberi from the Kielce area and the remaining Holy Cross Mountains (HCM) region (south-central Poland), and Wrangell-Saint Elias National Park and Preserve (Alaska) and Denali National Park and Preserve (Alaska). Like mosses from many European countries, Polish mosses were distinctly elevated in Hg, bearing a signature of cross-border atmospheric transport combined with local point sources. In contrast, Alaskan mosses showed lower Hg levels, reflecting mostly the underlying geology. Compared to HCM, Alaskan and Kielce mosses exhibited more uneven spatial distribution patterns of Hg. This variation is linked to topography and location of local point sources (Kielce) and underlying geology (Alaska). Both H. splendens and P. schreberi showed similar bioaccumulative capabilities of Hg in all four study areas. ?? 2010 Elsevier Inc.
Thermal behavior of the Medicina 32-meter radio telescope
NASA Astrophysics Data System (ADS)
Pisanu, Tonino; Buffa, Franco; Morsiani, Marco; Pernechele, Claudio; Poppi, Sergio
2010-07-01
We studied the thermal effects on the 32 m diameter radio-telescope managed by the Institute of Radio Astronomy (IRA), Medicina, Bologna, Italy. The preliminary results show that thermal gradients deteriorate the pointing performance of the antenna. Data has been collected by using: a) two inclinometers mounted near the elevation bearing and on the central part of the alidade structure; b) a non contact laser alignment optical system capable of measuring the secondary mirror position; c) twenty thermal sensors mounted on the alidade trusses. Two series of measurements were made, the first series was performed by placing the antenna in stow position, the second series was performed while tracking a circumpolar astronomical source. When the antenna was in stow position we observed a strong correlation between the inclinometer measurements and the differential temperature. The latter was measured with the sensors located on the South and North sides of the alidade, thus indicating that the inclinometers track well the thermal deformation of the alidade. When the antenna pointed at the source we measured: pointing errors, the inclination of the alidade, the temperature of the alidade components and the subreflector position. The pointing errors measured on-source were 15-20 arcsec greater than those measured with the inclinometer.
Solar glare hazard analysis tool on account of determined points of time
Ho, Clifford K; Sims, Cianan Alexander
2014-09-23
Technologies pertaining to determining when glare will be perceived by a hypothetical observer from a glare source and the intensity of glare that will be perceived by the hypothetical observer from the glare source are described herein. A first location of a potential source of solar glare is received, and a second location of the hypothetical observer is received. Based upon such locations, including respective elevations, and known positions of the sun over time, a determination as to when the hypothetical observer will perceive glare from the potential source of solar glare is made. Subsequently, an amount of irradiance entering the eye of the hypothetical observer is calculated to assess potential ocular hazards.
Barile, Peter J
2018-03-01
The Indian River Lagoon (IRL) system, a poorly flushed 240 km long estuary in east-central Florida (USA), previously received 200 MLD of point source municipal wastewater that was largely mitigated by the mid-1990's. Since then, non-point source loads, including septic tank effluent, have become more important. Seventy sites were sampled for bloom-forming macroalgae and analyzed for δ 15 N, % nitrogen, % phosphorus, carbon:nitrogen, carbon:phosphorus, and nitrogen:phosphorus ratios. Data were fitted to geospatial models showing elevated δ 15 N values (>+5‰), matching human wastewater in most of the IRL system, with elevated enrichment (δ 15 N ≥ +7‰ to +10‰) in urbanized portions of the central IRL and Banana River Lagoon. Results suggest increased mobilization of OSDS NH 4 + during the wetter 2014 season. Resource managers must improve municipal wastewater treatment infrastructure and commence significant septic-to-sewer conversion to mitigate nitrogen over-enrichment, water quality decline and habitat loss as mandated in the Tampa and Sarasota Bays and the Florida Keys. Copyright © 2018 Marine Research & Consulting, Inc. Published by Elsevier Ltd.. All rights reserved.
Carabajal, C.C.; Harding, D.J.; Boy, J.-P.; Danielson, Jeffrey J.; Gesch, D.B.; Suchdeo, V.P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (?? 86?? latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete ???50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.
NASA Astrophysics Data System (ADS)
Guan, X.; Shen, H.; Li, X.; Gan, W.
2017-12-01
Mountainous area hosts approximately a quarter of the global land surface, with complex climate and ecosystem conditions. More knowledge about mountainous ecosystem could highly advance our understanding of the global carbon cycle and climate change. Net Primary Productivity (NPP), the biomass increment of plants, is a widely used ecological indicator that can be obtained by remote sensing methods. However, limited by the defective characteristic of sensors, which cannot be long-term with enough spatial details synchronously, the mountainous NPP was far from being understood. In this study, a multi-sensor fusion framework was applied to synthesize a 1-km NPP series from 1982 to 2014 in mountainous southwest China, where elevation ranged from 76m to 6740m. The validation with field-measurements proved this framework greatly improved the accuracy of NPP (r=0.79, p<0.01). The detailed spatial and temporal analysis indicated that NPP variation trends changed from decreasing to increasing with the ascending elevation, as a result of a warmer and drier climate over the region. The correlation of NPP and temperature varied from negative to positive almost at the same elevation break-point of NPP trends, but the opposite for precipitation. This phenomenon was determined by the altitudinal and seasonally uneven allocation of climatic factors, as well as the downward run-off. What is more, it was indicated that the NPP variation showed three distinct stages at the year break-point of 1992 and 2002 over the region. The NPP in low-elevation area varied almost triple more drastic than the high-elevation area for all the three stages, due to the much greater change rate of precipitation. In summary, this study innovatively conducted a long-term and accurate NPP study on the not understood mountainous ecosystem with multi-source data, the framework and conclusions will be beneficial for the further cognition of global climate change.
The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope
NASA Astrophysics Data System (ADS)
Sun, Z. X.; Chen, L.; Wang, J. Q.
2016-01-01
In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.
Wnuczko, Marta; Kennedy, John M
2011-10-01
Observers pointing to a target viewed directly may elevate their fingertip close to the line of sight. However, pointing blindfolded, after viewing the target, they may pivot lower, from the shoulder, aligning the arm with the target as if reaching to the target. Indeed, in Experiment 1 participants elevated their arms more in visually monitored than blindfolded pointing. In Experiment 2, pointing to a visible target they elevated a short pointer more than a long one, raising its tip to the line of sight. In Experiment 3, the Experimenter aligned the participant's arm with the target. Participants judged they were pointing below a visually monitored target. In Experiment 4, participants viewing another person pointing, eyes-open or eyes-closed, judged the target was aligned with the pointing arm. In Experiment 5, participants viewed their arm and the target via a mirror and posed their arm so that it was aligned with the target. Arm elevation was higher in pointing directly.
NASA Technical Reports Server (NTRS)
Junkin, B. G. (Principal Investigator)
1979-01-01
A method is presented for the processing and analysis of digital topography data that can subsequently be entered in an interactive data base in the form of slope, slope length, elevation, and aspect angle. A discussion of the data source and specific descriptions of the data processing software programs are included. In addition, the mathematical considerations involved in the registration of raw digitized coordinate points to the UTM coordinate system are presented. Scale factor considerations are also included. Results of the processing and analysis are illustrated using the Shiprock and Gallup Quadrangle test data.
Pivots for Pointing: Visually-Monitored Pointing Has Higher Arm Elevations than Pointing Blindfolded
ERIC Educational Resources Information Center
Wnuczko, Marta; Kennedy, John M.
2011-01-01
Observers pointing to a target viewed directly may elevate their fingertip close to the line of sight. However, pointing blindfolded, after viewing the target, they may pivot lower, from the shoulder, aligning the arm with the target as if reaching to the target. Indeed, in Experiment 1 participants elevated their arms more in visually monitored…
Kim, H A; Hwang, U J; Jung, S H; Ahn, S H; Kim, J H; Kwon, O Y
2017-11-01
This study was conducted in order to compare the strength of scapular elevator and shoulder abductor with and without restricted scapular elevation between male subjects with and without myofascial trigger points in the upper trapezius. In total, 15 male subjects with myofascial trigger points, and 15age- and weight-matched male subjects without myofascial trigger points in the upper trapezius. Each subject was measured in the strength of maximum isometric scapular elevation and shoulder abduction with and without restricted scapular elevation. Maximum isometric contractions were measured using the Smart KEMA strength measurement system. Independent t-tests were used to compare shoulder strength values between the myofascial trigger points and non- myofascial trigger points groups. The results showed that shoulder abductor strength in the group with myofascial trigger points (5.64kgf) was significantly lower than in the group without myofascial trigger points (11.96kgf) when scapular elevation was restricted (p<0.05). However, there was no significant difference in the strength of the scapular elevator or shoulder abductor between groups (p>0.05). These findings suggest that decreased strength in the shoulder abductor with restricted scapular elevation should be considered in evaluating and treating individuals with myofascial trigger points of the upper trapezius. Copyright © 2017 Elsevier Ltd. All rights reserved.
elevatr: Access Elevation Data from Various APIs
Several web services are available that provide access to elevation data. This package provides access to several of those services and returns elevation data either as a SpatialPointsDataFrame from point elevation services or as a raster object from raster elevation services. ...
Gravity-height correlations for unrest at calderas
NASA Astrophysics Data System (ADS)
Berrino, G.; Rymer, H.; Brown, G. C.; Corrado, G.
1992-11-01
Calderas represent the sites of the world's most serious volcanic hazards. Although eruptions are not frequent at such structures on the scale of human lifetimes, there are nevertheless often physical changes at calderas that are measurable over periods of years or decades. Such calderas are said to be in a state of unrest, and it is by studying the nature of this unrest that we may begin to understand the dynamics of eruption precursors. Here we review combined gravity and elevation data from several restless calderas, and present new data on their characteristic signatures during periods of inflation and deflation. We find that unless the Bouguer gravity anomaly at a caldera is extremely small, the free-air gradient used to correct gravity data for observed elevation changes must be the measured or calculated gradient, and not the theoretical gradient, use of which may introduce significant errors. In general, there are two models that fit most of the available data. The first involves a Mogi-type point source, and the second is a Bouguer-type infinite horizontal plane source. The density of the deforming material (usually a magma chamber) is calculated from the gravity and ground deformation data, and the best fitting model is, to a first approximation, the one producing the most realistic density. No realistic density is obtained where there are real density changes, or where the data do not fit the point source or slab model. We find that a point source model fits most of the available data, and that most data are for periods of caldera inflation. The limited examples of deflation from large silicic calderas indicate that the amount of mass loss, or magma drainage, is usually much less than the mass gain during the preceding magma intrusion. In contrast, deflationary events at basaltic calderas formed in extensional tectonic environments are associated with more significant mass loss as magma is injected into the associated fissure swarms.
Ricca, Mark A.; Miles, A. Keith; Anthony, Robert G.
2008-01-01
Persistent organochlorine compounds and mercury (Hg) have been detected in numerous coastal organisms of the Aleutian archipelago of Alaska, yet sources of these contaminants are unclear. We collected glaucous-winged gulls, northern fulmars, and tufted puffins along a natural longitudinal gradient across the western and central Aleutian Islands (Buldir, Kiska, Amchitka, Adak), and an additional 8 seabird species representing different foraging and migratory guilds from Buldir Island to evaluate: 1) point source input from former military installations, 2) westward increases in contaminant concentrations suggestive of distant source input, and 3) effects of trophic status (δ15N) and carbon source (δ13C) on contaminant accumulation. Concentrations of Σ polychlorinated biphenyls (PCBs) and most chlorinated pesticides in glaucous-winged gulls consistently exhibited a ‘U’-shaped pattern of high levels at Buldir and the east side of Adak and low levels at Kiska and Amchitka. In contrast, concentrations of Σ PCBs and chlorinated pesticides in northern fulmars and tufted puffins did not differ among islands. Hg concentrations increased westward in glaucous-winged gulls and were highest in northern fulmars from Buldir. Among species collected only at Buldir, Hg was notably elevated in pelagic cormorants, and relatively high Σ PCBs were detected in black-legged kittiwakes. Concentrations of Σ PCBs, dichlorodiphenyldichloroethylene (p,p′ DDE), and Hg were positively correlated with δ15N across all seabird species, indicating biomagnification across trophic levels. The east side of Adak Island (a former military installation) was a likely point source of Σ PCBs and p,p′ DDE, particularly in glaucous-winged gulls. In contrast, elevated levels of these contaminants and Hg, along with PCB congener and chlorinated pesticide compositional patterns detected at Buldir Island indicated exposure from distant sources influenced by a combination of atmospheric–oceanic processes and the migratory movements of seabirds.
Fujioka, R S
2001-01-01
The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely applicable to all countries in the warm and humid region of the world.
Vieno, M; Dore, A J; Bealey, W J; Stevenson, D S; Sutton, M A
2010-01-15
An atmospheric transport-chemistry model is applied to investigate the effects of source configuration in simulating regional sulphur deposition footprints from elevated point sources. Dry and wet depositions of sulphur are calculated for each of the 69 largest point sources in the UK. Deposition contributions for each point source are calculated for 2003, as well as for a 2010 emissions scenario. The 2010 emissions scenario has been chosen to simulate the Gothenburg protocol emission scenario. Point source location is found to be a major driver of the dry/wet deposition ratio for each deposition footprint, with increased precipitation scavenging of SO(x) in hill areas resulting in a larger fraction of the emitted sulphur being deposited within the UK for sources located near these areas. This reduces exported transboundary pollution, but, associated with the occurrence of sensitive soils in hill areas, increases the domestic threat of soil acidification. The simulation of plume rise using individual stack parameters for each point source demonstrates a high sensitivity of SO(2) surface concentration to effective source height. This emphasises the importance of using site-specific information for each major stack, which is rarely included in regional atmospheric pollution models, due to the difficulty in obtaining the required input data. The simulations quantify how the fraction of emitted SO(x) exported from the UK increases with source magnitude, effective source height and easterly location. The modelled reduction in SO(x) emissions, between 2003 and 2010 resulted in a smaller fraction being exported, with the result that the reductions in SO(x) deposition to the UK are less than proportionate to the emission reduction. This non-linearity is associated with a relatively larger fraction of the SO(2) being converted to sulphate aerosol for the 2010 scenario, in the presence of ammonia. The effect results in less-than-proportional UK benefits of reducing in SO(2) emissions, together with greater-than-proportional benefits in reducing export of UK SO(2) emissions. Copyright 2009 Elsevier B.V. All rights reserved.
Catchment Power and the Joint Distribution of Elevation and Travel Distance to the Outlet
NASA Astrophysics Data System (ADS)
Sklar, L. S.; Riebe, C. S.; Bellugi, D. G.; Lukens, C. E.; Noll, C.
2014-12-01
The delivery of water, sediment and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influences the particle size and production rate of sediment from slopes. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affect particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. We refer to the joint distribution of these two fundamental catchment attributes as "catchment power," recognizing that the ratio of elevation to travel distance is proportional to the average rate of loss of the potential energy provided by source elevation, as water or sediment travel to the outlet. We explore patterns in catchment power across a suite of catchments spanning a range of relief, drainage area and channel network geometry. We also develop an empirical algorithm for generating synthetic catchment power distributions, which can be parameterized with data from natural catchments, and used to explore the effects of varying the shape of the distribution on fluxes of water, sediment, isotopes and other landscape products passing through catchment outlets. Ultimately, our goal is to understand how catchment power distributions arise from the branching properties of networks and the relief structure of landscapes. This new way of quantifying catchment geometry may provide a fresh perspective on problems of both practical and theoretical interest.
Integration of SAR and DEM data: Geometrical considerations
NASA Technical Reports Server (NTRS)
Kropatsch, Walter G.
1991-01-01
General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed.
Hydrogen peroxide and methylhydroperoxide variations in Houston urban air during May 2009
NASA Astrophysics Data System (ADS)
Golovko, J.; Rappenglueck, B.; Jobson, B. T.
2010-12-01
Formation and destruction of peroxides along with OH and ozone cycles plays a significant role in the oxidizing capacity of the troposphere. Measurements of hydrogen peroxide and methylhydroperoxide (MHP) were carried out as a part of the Study of Houston Atmospheric Radical Precursors (SHARP) campaign during late spring 2009. The purpose of this study was to investigate peroxides variations in Houston urban atmosphere and factors controlling their distribution. Diurnal variation of hydrogen peroxide show typical pattern with the broad maximum in the afternoon for the whole period of time, with an exception on May 19th when the second maximum was determined after the sunrise. Less abundant in the atmosphere and possibly originating from different sources methylhydroperoxide demonstrated similar diurnal pattern of elevated mixing ratios in the afternoon. Elevated values of hydrogen peroxide in Houston area are associated with warm, moderately humid air, while southerly winds from the Gulf of Mexico result in H2O2 mixing ratio decrease. Some selected VOCs were analyzed in order to evaluate possible sources for both peroxides. Meteorological conditions significantly control H2O2 mixing ratios, showing elevated values primarily related to easterly and to a lesser extent to southeasterly winds. Similar pattern with the significant role of the easterly winds was observed for VOCs and was more pronounced during nighttime, pointing into industrial sector (Houston Ship Channel) influence. Increased values of H2O2/MHP ratio are mostly associated with drier northerly and northeasterly air masses, pointing out different solubility and origin of H2O2 and MHP.
Interpolating precipitation and its relation to runoff and non-point source pollution.
Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L
2005-01-01
When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.
Early repolarization, localization of J point elevation on ECG and arrhythmias.
Matoshvili, Z; Petriashvili, Sh; Archvadze, A; Azaladze, I
2015-04-01
Final aim of this observational study was to determine correlation between localization of J point elevation and number of premature ventricular beats. The 52 patients (19-68 years old; 31 men and 21 women) were divided in two groups based on localization of J point elevation. First Group - 9 patients (5 men and 4 women) with J-point elevation ≥1 mm in ≥2 contiguous inferior and/or lateral leads on a standard 12-lead ECG reading, Second Group - other 43 (26 men and 17 women) patients with another localization of J point elevation. Total summarized number of premature ventricular contractions for each group was compared and analyzed. The results of the study shows that the number of premature ventricular beats in first group was 61% higher. Thus, in our opinion J-point elevation ≥1 mm in ≥2 contiguous inferior and/or lateral leads, is more arrhythmogenic. Data shows that this difference is statistically significant.
NASA Astrophysics Data System (ADS)
Hudec, P.
2011-12-01
A digital elevation model (DEM) is an important part of many geoinformatic applications. For the creation of DEM, spatial data collected by geodetic measurements in the field, photogrammetric processing of aerial survey photographs, laser scanning and secondary sources (analogue maps) are used. It is very important from a user's point of view to know the vertical accuracy of a DEM. The article describes the verification of the vertical accuracy of a DEM for the region of Medzibodrožie, which was created using digital photogrammetry for the purposes of water resources management and modeling and resolving flood cases based on geodetic measurements in the field.
Can urine dipstick predict an elevated serum creatinine?
Shah, Kaushal; Kilian, Barbara; Hsieh, Wei-Jen; Kyrillou, Emily; Hedge, Vishal; Newman, David H
2010-06-01
Chart review studies have suggested that point-of-care urine dipstick testing may accurately predict an elevation in serum creatinine (Cr). We aimed to prospectively evaluate the test characteristics of proteinuria/hematuria in predicting elevated serum Cr. A prospective, observational study was conducted between March 2007 and June 2008 at 2 affiliated, urban hospitals with an annual emergency department census of 150,000. Patients undergoing laboratory urinalysis, point-of-care urine dipstick, and a serum chemistry panel were enrolled. Trained research assistants collected data on consecutive patients 18 hours per day using preformatted data forms and entry into an anonymized Access (Microsoft, Seattle, Wash) database. Demographic baseline variables including age, sex, chief complaint, vital signs, and source of sample (catheter vs "clean catch") were also collected. An elevated Cr level was defined as greater than 1.3 based on the laboratory reference range. Standard statistical methods were used to calculate diagnostic test operating characteristics of proteinuria or hematuria as a predictor of elevated serum Cr. Five thousand four hundred sixteen subjects were enrolled with 28.3% male and a mean age of 50.2 years. Elevated serum Cr greater than 1.3 mg/dL was found in 13.9% (755/5416) of subjects. The sensitivity of either proteinuria or hematuria for elevated Cr was 82.5% (95% confidence interval [CI], 80%-85%) and specificity was 34.4% (95% CI, 33%-36%). Positive predictive value was 16.9% (95% CI, 16%-18%) and negative predictive value was 92.4% (95% CI, 91-94%). The likelihood ratio for a positive test was 1.3 (95% CI, 1.1-1.5), and the likelihood ratio for a negative test was 0.5 (95% CI, 0.3-0.8). Although negative predictive value was high, the presence of proteinuria/hematuria was only moderately predictive of elevated serum Cr level. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Lessons Learned from OMI Observations of Point Source SO2 Pollution
NASA Technical Reports Server (NTRS)
Krotkov, N.; Fioletov, V.; McLinden, Chris
2011-01-01
The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.
Elevated blood-lead levels among children living in the rural Philippines.
Riddell, Travis J; Solon, Orville; Quimbo, Stella A; Tan, Cheryl May C; Butrick, Elizabeth; Peabody, John W
2007-09-01
Generally, lead poisoning is not considered a significant environmental hazard for children in rural areas of developing countries. With a prospectively designed policy experiment, the research community and the government are conducting a broad-based investigation to introduce and evaluate the impact of health policy reforms on children in a rural area of the Philippines - the Quality Improvement Demonstration Study (QIDS). As part of this study, we researched lead exposure in children under the age of five. We sampled a population of children from the Visayas region in the central Philippines, covering approximately one third of the country's geographical area. From December 2003 to September 2004, the survey collected blood lead levels (BLL) together with demographic, socioeconomic and child health data points. Supplemental field-testing among a sub-sample of the most exposed children assessed the sources of environmental lead exposure. Among children in this study, 21% (601 of 2861 children) had BLL greater than 10 microg/dl. BLL were associated independently with age, haemoglobin concentration, water source, roofing material, expenditures and history of breastfeeding. A follow-up assessment of possible environmental exposures among the sub-sample of children with elevated BLL revealed no single or predominant exposure source. Instead, there appear to be multiple potential sources, such as fossil-fuel combustion, lead paint (in or around 38% of homes) and household items. Elevated BLL are common among children in the Visayas, and may signify an under-recognized threat to children living in rural areas of other developing nations. This setting has varied environmental sources of lead. Observed correlates of BLL may be of clinical, environmental and public health utility to identify and mitigate the consequences of lead toxicity.
Washburn, Spencer J; Blum, Joel D; Demers, Jason D; Kurz, Aaron Y; Landis, Richard C
2017-10-03
Historic point source mercury (Hg) contamination from industrial processes on the South River (Waynesboro, Virginia) ended decades ago, but elevated Hg concentrations persist in the river system. In an effort to better understand Hg sources, mobility, and transport in the South River, we analyzed total Hg (THg) concentrations and Hg stable isotope compositions of streambed sediments, stream bank soils, suspended particles, and filtered surface waters. Samples were collected along a longitudinal transect of the South River, starting upstream of the historic Hg contamination point-source and extending downstream to the confluence with the South Fork Shenandoah River. Analysis of the THg concentration and Hg isotopic composition of these environmental samples indicates that the regional background Hg source is isotopically distinct in both Δ 199 Hg and δ 202 Hg from Hg derived from the original source of contamination, allowing the tracing of contamination-sourced Hg throughout the study reach. Three distinct end-members are required to explain the Hg isotopic and concentration variation observed in the South River. A consistent negative offset in δ 202 Hg values (∼0.28‰) was observed between Hg in the suspended particulate and dissolved phases, and this fractionation provides insight into the processes governing partitioning and transport of Hg in this contaminated river system.
NASA Astrophysics Data System (ADS)
Salmon, Neil A.; Mason, Ian; Wilkinson, Peter; Taylor, Chris; Scicluna, Peter
2010-10-01
The first passive millimetre wave (PMMW) imagery is presented from two proof-of-concept aperture synthesis demonstrators, developed to investigate the use of aperture synthesis for personnel security screening and all weather flying at 94 GHz, and satellite based earth observation at 183 GHz [1]. Emission from point noise sources and discharge tubes are used to examine the coherence on system baselines and to measure the point spread functions, making comparisons with theory. Image quality is examined using near field aperture synthesis and G-matrix calibration imaging algorithms. The radiometric sensitivity is measured using the emission from absorbers at elevated temperatures acting as extended sources and compared with theory. Capabilities of the latest Field Programmable Gate Arrays (FPGA) technologies for aperture synthesis PMMW imaging in all-weather and security screening applications are examined.
Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area
NASA Astrophysics Data System (ADS)
Du, Tangzheng; Liu, Chun-Ho
2013-04-01
Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.
NASA Astrophysics Data System (ADS)
Tarquini, S.; Nannipieri, L.; Favalli, M.; Fornaciai, A.; Vinci, S.; Doumaz, F.
2012-04-01
Digital elevation models (DEMs) are fundamental in any kind of environmental or morphological study. DEMs are obtained from a variety of sources and generated in several ways. Nowadays, a few global-coverage elevation datasets are available for free (e.g., SRTM, http://www.jpl.nasa.gov/srtm; ASTER, http://asterweb.jpl.nasa.gov/). When the matrix of a DEM is used also for computational purposes, the choice of the elevation dataset which better suits the target of the study is crucial. Recently, the increasing use of DEM-based numerical simulation tools (e.g. for gravity driven mass flows), would largely benefit from the use of a higher resolution/higher accuracy topography than those available at planetary scale. Similar elevation datasets are neither easily nor freely available for all countries worldwide. Here we introduce a new web resource which made available for free (for research purposes only) a 10 m-resolution DEM for the whole Italian territory. The creation of this elevation dataset was presented by Tarquini et al. (2007). This DEM was obtained in triangular irregular network (TIN) format starting from heterogeneous vector datasets, mostly consisting in elevation contour lines and elevation points derived from several sources. The input vector database was carefully cleaned up to obtain an improved seamless TIN refined by using the DEST algorithm, thus improving the Delaunay tessellation. The whole TINITALY/01 DEM was converted in grid format (10-m cell size) according to a tiled structure composed of 193, 50-km side square elements. The grid database consists of more than 3 billions of cells and occupies almost 12 GB of disk memory. A web-GIS has been created (http://tinitaly.pi.ingv.it/ ) where a seamless layer of images in full resolution (10 m) obtained from the whole DEM (both in color-shaded and anaglyph mode) is open for browsing. Accredited navigators are allowed to download the elevation dataset.
User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator
Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.
2003-01-01
BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)
Manolopoulos, Helen; Snyder, David C; Schauer, James J; Hill, Jason S; Turner, Jay R; Olson, Mark L; Krabbenhoft, David P
2007-08-15
Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m(-3) for elemental mercury (Hg0) and 38 300 pg m(-3) for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NO(x) were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NO(x) ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site.
Manolopoulos, H.; Snyder, D.C.; Schauer, J.J.; Hill, J.S.; Turner, J.R.; Olson, M.L.; Krabbenhoft, D.P.
2007-01-01
Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m-3 for elemental mercury (Hg 0) and 38 300 pg m-3 for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg 0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NOx were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NOx ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site. ?? 2007 American Chemical Society.
Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1981-01-01
Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.
High Frequency of Early Repolarization and Brugada-Type Electrocardiograms in Hypercalcemia.
Sonoda, Keiko; Watanabe, Hiroshi; Hisamatsu, Takashi; Ashihara, Takashi; Ohno, Seiko; Hayashi, Hideki; Horie, Minoru; Minamino, Tohru
2016-01-01
J wave, or early repolarization has recently been associated with an increased risk of lethal arrhythmia and sudden death, both in idiopathic ventricular fibrillation and in the general population. Hypercalcemia is one of the causes of J point and ST segment elevation, but the relationship has not been well studied. The aim of this study was to examine the effects of hypercalcemia on J point elevation. Electrocardiographic findings were compared in 89 patients with hypercalcemia and 267 age- and sex-matched healthy controls with normocalcemia. The association of J point elevation with arrhythmia events in patients with hypercalcemia was also studied. The PR interval and the QRS duration were longer in patients with hypercalcemia than in normocalcemic controls. Both the QT and the corrected QT intervals were shorter in patients with hypercalcemia compared with normocalcemic controls. Conduction disorders, ST-T abnormalities, and J point elevation were more common in patients with hypercalcemia than normocalcemic controls. Following the resolution of hypercalcemia, the frequency of J point elevation decreased to a level similar to that noted in controls. During hospitalization, no arrhythmia event occurred in patients with hypercalcemia. Hypercalcemia was associated with J point elevation. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Moore, J.; Bird, D. L.; Dobbis, S. K.; Woodward, G.
2016-12-01
Urban areas and associated impervious surface cover (ISC) are among the fastest growing land use types. Rapid growth of urban lands has significant implications for geochemical cycling and solute sources to streams, estuaries, and coastal waters. However, little work has been done to investigate the impacts of urbanization on Critical Processes, including on the export of solutes from urban watersheds. Despite observed elevated solute concentrations in urban streams in some previous studies, neither solute sources nor total solute fluxes have been quantified due to mixed bedrock geology, lack of a forested reference watershed, or the presence of point sources that confounded separation of anthropologic and natural sources. We investigated the geochemical signal of the urban built environment (e.g., roads, parking lots, buildings) in a set of five USGS-gaged watersheds across a rural (forested) to urban gradient in the Maryland Piedmont. These watersheds have ISC ranging from 0 to 25%, no point sources, and similar felsic bedrock chemistry. Weathering from the urban built environment and ISC produces dramatically higher solute concentrations in urban watersheds than in the forested watershed. Higher solute concentrations result in chemical weathering fluxes from urban watersheds that are 11-13 times higher than the forested watershed and are similar to fluxes from mountainous, weathering-limited watersheds rather than fluxes from transport-limited, dilute streams like the forested watershed. Weathering of concrete in urban watersheds produces geochemistry similar to weathering-limited watersheds with high concentrations of Ca2+, Mg2+, and DIC, which is similar to stream chemistry due to carbonate weathering. Road salt dissolution results in high Na+ and Cl- concentrations similar to evaporite weathering. Quantifying processes causing elevated solute fluxes from urban areas is essential to understanding cycling of Ca2+, Mg2+, and DIC in urban streams and in downgradient estuarine or coastal waters.
NASA Astrophysics Data System (ADS)
Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul
2016-06-01
We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ˜0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ˜2 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5 m where appropriate ground-control data are available, with observed standard deviation of ˜0.1-0.5 m for overlapping, co-registered DEMs (n = 14, 17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.
Kolker, A.; Olson, M.L.; Krabbenhoft, D.P.; Tate, M.T.; Engle, M.A.
2010-01-01
Simultaneous real-time changes in mercury (Hg) speciation ?????" reactive gaseous Hg (RGM), elemental Hg (Hg??), and fine particulate Hg (Hg-PM2.5), were determined from June to November 2007, in ambient air at three locations in rural Central Wisconsin. Known Hg emission sources within the airshed of the monitoring sites include: 1) a 1114 megawatt (MW) coal-fired electric utility generating station; 2) a Hg-bed chlor-alkali plant; and 3) a smaller (465 MW) coal-burning electric utility. Monitoring sites, showing sporadic elevation of RGM, Hg?? and Hg-PM 2.5, were positioned at distances of 25, 50 and 100 km northward of the larger electric utility. A series of RGM events were recorded at each site. The largest, on 23 September, occurred under prevailing southerly winds, with a maximum RGM value (56.8 pg m-3) measured at the 100 km site, and corresponding elevated SO2 (10.41 ppbv; measured at 50 km site). The finding that RGM, Hg??, and Hg-PM2.5 are not always highest at the 25 km site, closest to the large generating station, contradicts the idea that RGM decreases with distance from a large point source. This may be explained if: 1) the 100 km site was influenced by emissions from the chlor-alkali facility or by RGM from regional urban sources; 2) the emission stack height of the larger power plant promoted plume transport at an elevation where the Hg is carried over the closest site; or 3) RGM was being generated in the plume through oxidation of Hg??. Operational changes at each emitter since 2007 should reduce their Hg output, potentially allowing quantification of the environmental benefit in future studies.
NASA Astrophysics Data System (ADS)
Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin
2010-10-01
It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.
Domagalski, Joseph L.; Saleh, Dina
2015-01-01
The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de-trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small- and intermediate-sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.
Distinguishing sources of ground water recharge by using δ2H and δ18O
Blasch, Kyle W.; Bryson, Jeannie R.
2007-01-01
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.
Women with breast cancer: self-reported distress in early survivorship.
Lester, Joanne; Crosthwaite, Kara; Stout, Robin; Jones, Rachel N; Holloman, Christopher; Shapiro, Charles; Andersen, Barbara L
2015-01-01
To identify and compare levels of distress and sources of problems among patients with breast cancer in early survivorship. Descriptive, cross-sectional. A National Cancer Institute-designated comprehensive cancer center. 100 breast cancer survivors were selected to represent four time points in the cancer trajectory. Distress was self-reported using the Distress Thermometer and its 38-item problem list. Analysis of variance and chi-square analyses were performed as appropriate. Distress scores, problem reports, and time groups. Participants scored in range of the cutoff of more than 4 (range = 4.1-5.1) from treatment through three months post-treatment. At six months post-treatment, distress levels were significantly lower. Significant differences were found between groups on the total problem list score (p = 0.007) and emotional (p = 0.01) and physical subscale scores (p = 0.003). Comparison of groups at different points in the cancer trajectory found similar elevated levels from diagnosis through three months. Distress remained elevated in early survivorship but significantly decreased at six months post-treatment. Interventions to reduce or prevent distress may improve outcomes in early survivorship.
NASA Astrophysics Data System (ADS)
Harmon, T. C.; Rat'ko, A.; Dietrich, H.; Park, Y.; Wijsboom, Y. H.; Bendikov, M.
2008-12-01
Inorganic nitrogen (nitrate (NO3-) and ammonium (NH+)) from chemical fertilizer and livestock waste is a major source of pollution in groundwater, surface water and the air. While some sources of these chemicals, such as waste lagoons, are well-defined, their application as fertilizer has the potential to create distributed or non-point source pollution problems. Scalable nitrate sensors (small and inexpensive) would enable us to better assess non-point source pollution processes in agronomic soils, groundwater and rivers subject to non-point source inputs. This work describes the fabrication and testing of inexpensive PVC-membrane- based ion selective electrodes (ISEs) for monitoring nitrate levels in soil water environments. ISE-based sensors have the advantages of being easy to fabricate and use, but suffer several shortcomings, including limited sensitivity, poor precision, and calibration drift. However, modern materials have begun to yield more robust ISE types in laboratory settings. This work emphasizes the in situ behavior of commercial and fabricated sensors in soils subject to irrigation with dairy manure water. Results are presented in the context of deployment techniques (in situ versus soil lysimeters), temperature compensation, and uncertainty analysis. Observed temporal responses of the nitrate sensors exhibited diurnal cycling with elevated nitrate levels at night and depressed levels during the day. Conventional samples collected via lysimeters validated this response. It is concluded that while modern ISEs are not yet ready for long-term, unattended deployment, short-term installations (on the order of 2 to 4 days) are viable and may provide valuable insights into nitrogen dynamics in complex soil systems.
Synchronising data sources and filling gaps by global hydrological modelling
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; Crochemore, Louise; Hasan, Abdulghani; Pineda, Luis; Isberg, Kristina; Arheimer, Berit
2017-04-01
The advances in remote sensing in the last decades combined with the creation of different open hydrological databases have generated a very large amount of useful information for global hydrological modelling. Working with this huge number of datasets to set up a global hydrological model can constitute challenges such as multiple data formats and big heterogeneity on spatial and temporal resolutions. Different initiatives have made effort to homogenize some of these data sources, i.e. GRDC (Global Runoff Data Center), HYDROSHEDS (SHuttle Elevation Derivatives at multiple Scales), GLWD (Global Lake and Wetland Database) for runoff, watershed delineation and water bodies respectively. However, not all the related issues are covered or homogenously solved at the global scale and new information is continuously available to complete the current ones. This work presents synchronising efforts to make use of different global data sources needed to set up the semi-distributed hydrological model HYPE (Hydrological Predictions for the Environment) at the global scale. These data sources included: topography for watershed delineation, gauging stations of river flow, and extention of lakes, flood plains and land cover classes. A new database with approximately 100 000 subbasins, with an average area of 1000 km2, was created. Subbasin delineation was done combining Global Width Database for Large River (GWD-LR), SRTM high-resolution elevation data and a number of forced points of interest (gauging station of river flow, lakes, reservoirs, urban areas, nuclear plants and areas with high risk of flooding). Regarding flow data, the locations of GRDC stations were checked or placed along the river network when necessary, and completed with available information from national water services in data-sparse regions. A screening of doublet stations and associated time series was necessary to efficiently combine the two types of data sources. A total number about 21 000 stations were considered as forced point. In the case of lakes, some updating relating with location and area, of GLWD was done using esa (European Space Agency) gridded water bodies dataset. Many of the original lakes were shifted in relation with topography and some of them change their extension since the creation of the database. Moreover, the location of the outlet of all these lakes was also calculated. A new definition of global floodplain areas was also included. The land covers provided by ESA and some elevation criteria were used to define elevation land classes (ELC) using for the definition of the properties of each one of the proposed subbasin. All these new features: a) the inclusion of river width in the delineation of the subbasin, going further in the consideration of river shape; b) the merging of several data bases of gauging stations of river flow into an extended global dataset; c) coherent location of the lakes, river networks and floodplains; and d) a new definition of hydrological response units also considering elevation of the subbasins, will contribute to a better implementation of global hydrological models. The first results of world-wide HYPE will be shown but the model will yet not be fully calibrated using multi-sources of observed data and information. The ambition is to receive a global scale model which can also be useful at local scales. Starting with the global picture and then going into the details.
Elevations and distances in the United States
,
1991-01-01
The information in this booklet was compiled to answer inquiries received by the U.S. Geological Survey from students; teachers; writers; editors; publishers of encyclopedias, almanacs, and other reference books; and people in many other fields of work. The elevations of features and distances between points in the United States were determined from surveys and topographic maps of the U.S. Geological Survey or obtained from other sources. In most cases, the elevations were determined from surveys and from 1:24,000- and 1:25,000-scale, 7.5-minute topographic quadrangle maps. In Alaska, information was taken from 1:63,360-scale, 15-minute topographic quadrangle maps. In a few cases, data were obtained from older, 1:62,500-scale, 15-minute maps; these maps are being replaced with larger-scale 7.5-minute coverage. Further information about U.S. Geological Survey products can be obtained from: U.S. Geological Survey, Earth Science Information Center, 507 National Center, Reston, VA 22092 or phone 703-860-6045.
Incompatible Land Uses and the Topology of Cumulative Risk
NASA Astrophysics Data System (ADS)
Lejano, Raul P.; Smith, C. Scott
2006-02-01
The extensive literature on environmental justice has, by now, well defined the essential ingredients of cumulative risk, namely, incompatible land uses and vulnerability. Most problematic is the case when risk is produced by a large aggregation of small sources of air toxics. In this article, we test these notions in an area of Southern California, Southeast Los Angeles (SELA), which has come to be known as Asthmatown. Developing a rapid risk mapping protocol, we scan the neighborhood for small potential sources of air toxics and find, literally, hundreds of small point sources within a 2-mile radius, interspersed with residences. We also map the estimated cancer risks and noncancer hazard indices across the landscape. We find that, indeed, such large aggregations of even small, nondominant sources of air toxics can produce markedly elevated levels of risk. In this study, the risk profiles show additional cancer risks of up to 800 in a million and noncancer hazard indices of up to 200 in SELA due to the agglomeration of small point sources. This is significant (for example, estimates of the average regional point-source-related cancer risk range from 125 to 200 in a million). Most importantly, if we were to talk about the risk contour as if they were geological structures, we would observe not only a handful of distinct peaks, but a general “mountain range” running all throughout the study area, which underscores the ubiquity of risk in SELA. Just as cumulative risk has deeply embedded itself into the fabric of the place, so, too, must intervention seek to embed strategies into the institutions and practices of SELA. This has implications for advocacy, as seen in a recently initiated participatory action research project aimed at building health research capacities into the community in keeping with an ethic of care.
NASA Astrophysics Data System (ADS)
Bradley, E. S.; Leifer, I.; Roberts, D.; Dennison, P. E.; Margolis, J.; Moritsch, M.; Diskin, G. S.; Sachse, G. W.
2009-12-01
The Coal Oil Point (COP) hydrocarbon seep field off the coast of Santa Barbara, CA is one of the most active and best-studied marine geologic methane sources in the world and contributes to elevated terrestrial methane concentrations downwind. In this study, we investigate the spatiotemporal variability of this local source and the influence of meteorological conditions on transport and concentration. A methane plume emanating from Trilogy Seep was mapped with the Airborne Visible Infrared Imaging Spectrometer at a 7.5 m resolution with a short-wave infrared band ratio technique. This structure agrees with the local wind speed and direction and is orthogonal to the surface currents. ARCTAS-CARB aircraft in situ sampling of lower-troposphere methane is compared to sub-hour total hydrocarbon concentration (THC) measurements from the Santa Barbara Air Pollution Control District (SBAPCD) station located near COP. Hourly SBAPCD THC values from 1980-2008 demonstrate a decrease in seep source strength until the late 1990s, followed by a consistent increase. The occurrence of elevated SBAPCD THC values for onshore wind conditions as well as numerous positive outliers as high as 17 ppm suggests that seep field emissions are both quasi-steady state and transient, direct (bubble) and diffuse (outgassing). As demonstrated for the COP seeps, the combination of imaging spectrometry, aircraft in situ sampling, and ground-based monitoring provides a powerful approach for understanding local methane sources and transport processes.
NASA Astrophysics Data System (ADS)
Lague, D.
2014-12-01
High Resolution Topographic (HRT) datasets are predominantly stored and analyzed as 2D raster grids of elevations (i.e., Digital Elevation Models). Raster grid processing is common in GIS software and benefits from a large library of fast algorithms dedicated to geometrical analysis, drainage network computation and topographic change measurement. Yet, all instruments or methods currently generating HRT datasets (e.g., ALS, TLS, SFM, stereo satellite imagery) output natively 3D unstructured point clouds that are (i) non-regularly sampled, (ii) incomplete (e.g., submerged parts of river channels are rarely measured), and (iii) include 3D elements (e.g., vegetation, vertical features such as river banks or cliffs) that cannot be accurately described in a DEM. Interpolating the raw point cloud onto a 2D grid generally results in a loss of position accuracy, spatial resolution and in more or less controlled interpolation. Here I demonstrate how studying earth surface topography and processes directly on native 3D point cloud datasets offers several advantages over raster based methods: point cloud methods preserve the accuracy of the original data, can better handle the evaluation of uncertainty associated to topographic change measurements and are more suitable to study vegetation characteristics and steep features of the landscape. In this presentation, I will illustrate and compare Point Cloud based and Raster based workflows with various examples involving ALS, TLS and SFM for the analysis of bank erosion processes in bedrock and alluvial rivers, rockfall statistics (including rockfall volume estimate directly from point clouds) and the interaction of vegetation/hydraulics and sedimentation in salt marshes. These workflows use 2 recently published algorithms for point cloud classification (CANUPO) and point cloud comparison (M3C2) now implemented in the open source software CloudCompare.
NASA Astrophysics Data System (ADS)
Wright, G.; Gustin, M. S.; Weiss-Penzias, P. S.
2012-12-01
The Western Airborne Contaminants Assessment Project (WACAP) showed that fish in eight National Parks of the western U.S. had mercury(Hg) concentrations that exceeded the threshold for fish eating wildlife (www.nature.nps.gov/air/Studies/air_toxics/wacap.cfm). These observations led to the development of this study focused on investigating air gaseous oxidized mercury (GOM) concentrations and potential dry deposition using developed passive samplers and surrogate surfaces. The primary question was whether local, regional or global sources are responsible for the mercury measured in fish in these Western parks. To investigate this, passive samplers and surrogate surface samplers were deployed from the coast of California to the eastern edge of Nevada. Sampling sites were located from west to east at Point Reyes National Seashore, CA; Elkhorn Slough, CA, Lick Observatory, CA; Chews Ridge, CA; Chalk Mountain, CA; Yosemite National Park, CA; Sequoia & Kings Canyon National Park, CA; and Great Basin National Park, NV. Ancillary data (meteorology and ozone concentrations) collected by the parks will be applied to better understand potential sources. Air mercury concentrations were also measured at select locations using a Tekran® 2537a/1130mercury air measurement system for 4-6 weeks. Air GOM concentrations and potential deposition were measured simultaneously as a function of elevation at Yosemite and Great Basin National Park, using the passive samplers and surrogate surfaces during sampling intensives, allowing us to better understand potential sources of mercury to park ecosystems. Data collection began in August of 2010 and was completed in June 2012. Analyses of the data thus far has shown the lowest relative concentrations and potential GOM deposition were observed at the low elevation coastal sites, Elkhorn Slough and Point Reyes National Seashore. Highest values of potential deposition were recorded at Lick Observatory, a high elevation coastal site, while highest relative concentrations were measured at Great Basin National Park. Mean elemental mercury and GOM concentrations, collected using a Tekran® 2537A/1130 system, were 1.5 ± 0.6 ng/ m3 and 70 ± 50 pg/m3 respectively at Great Basin NP, 1.5 ng/m3 ¬± 0.3 and 6 pg/m3 ± 7 at Sequoia National Park, and 1.5 ng/m3 ± 1 and 14 pg/m3 ± 11 at Yosemite National Park.
Structure Line Detection from LIDAR Point Clouds Using Topological Elevation Analysis
NASA Astrophysics Data System (ADS)
Lo, C. Y.; Chen, L. C.
2012-07-01
Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and modeldriven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis (TEA) to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original threedimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds.
16. WEST ELEVATION. MONOMOY POINT LT. STATION, MASS., SHOWING PROPOSED ...
16. WEST ELEVATION. MONOMOY POINT LT. STATION, MASS., SHOWING PROPOSED ALTERATION AND IMPROVEMENT OF DWELLING. No. 1343. SHEET 3 of 5. July 1899. - Monomoy Point Light Station, Approximately 3500 feet Northeast Powder Hole Pond, Monomoy National Wildlife Refuge, Chatham, Barnstable County, MA
17. WEST ELEVATION. MONOMOY POINT LT. STATION, MASS., SHOWING PROPOSED ...
17. WEST ELEVATION. MONOMOY POINT LT. STATION, MASS., SHOWING PROPOSED ALTERATION AND IMPROVEMENT OF DWELLING. No. 1343. Sheet 4 of 5. July 1899. - Monomoy Point Light Station, Approximately 3500 feet Northeast Powder Hole Pond, Monomoy National Wildlife Refuge, Chatham, Barnstable County, MA
Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc
2014-04-15
Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan
2014-01-01
Validation of in-orbit instrument performance is a function of stability in both instrument and calibration source. This paper describes a method using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. The Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, these in-orbit observations have become standardized and compiled for the Flight Models -1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance measurements studied are detector sensitivity stability, pointing accuracy and static detector point response function. This validation method also shows trends per CERES data channel of 0.8% per decade or less for Flight Models 1-4. Using instrument gimbal data and computed lunar position, the pointing error of each detector telescope, the accuracy and consistency of the alignment between the detectors can be determined. The maximum pointing error was 0.2 Deg. in azimuth and 0.17 Deg. in elevation which corresponds to an error in geolocation near nadir of 2.09 km. With the exception of one detector, all instruments were found to have consistent detector alignment from 2006 to present. All alignment error was within 0.1o with most detector telescopes showing a consistent alignment offset of less than 0.02 Deg.
Lead exposure in indigenous communities of the Amazon basin, Peru.
Anticona, Cynthia; Bergdahl, Ingvar A; Lundh, Thomas; Alegre, Yuri; Sebastian, Miguel San
2011-12-01
Since 2006, three studies have reported elevated levels of lead (Pb) among the indigenous population of the Corrientes river, in the Amazon basin of Peru. Due to the large evidence of environmental pollution related to oil exploitation in the area, this activity has been suggested as the source of exposure. This study aimed to evaluate Pb levels in the population and environment of two communities exposed and one community non-exposed to the oil exploitation activity. Blood lead levels (BLL) were determined by the instrument Leadcare. A comparison with the graphite furnace atomic absorption technique was performed in order to validate the Leadcare results. Environmental samples were analyzed by inductively coupled plasma atomic emission spectroscopy. Among 361 capillary samples, the mean BLL was 9.4 μg/dl. Mean BLL of the communities exposed (n=171, x¯=9.5 μg/dl) and non-exposed (n=190, x¯=9.2 μg/dl) to the oil activity were not significantly different. Pb levels in environmental samples were below the maximum permissible levels. The sources of exposure could not be identified. Elevated levels of Pb in the oil-non-exposed community pointed out at other sources not yet clarified. Copyright © 2011 Elsevier GmbH. All rights reserved.
Altitudinal variation at 20 years in ponderosa and jeffrey pines
R. Z. Callaham; A. R. Liddicoet
1961-01-01
Early returns from a study of altitudinal variation of pines along an elevational transect in California indicated middle elevation sources grew best regardless of the elevation of planting, seeming to contradict the old maxim, "Local seed source is best" (6). Later returns bring some support for the maxim as local seed sources assert them selves after 20...
Haney, Matthew M.; Chouet, Bernard A.; Dawson, Phillip B.; Power, John A.
2013-01-01
The 2009 eruption of Redoubt produced several very-long-period (VLP) signals associated with explosions. We invert for the source location and mechanism of an explosion at Redoubt volcano using waveform methods applied to broadband recordings. Such characterization of the source carries information on the geometry of the conduit and the physics of the explosion process. Inversions are carried out assuming the volcanic source can be modeled as a point source, with mechanisms described by a) a set of 3 orthogonal forces, b) a moment tensor consisting of force couples, and c) both forces and moment tensor components. We find that the source of the VLP seismic waves during the explosion is well-described by either a combined moment/force source located northeast of the crater and at an elevation of 1.6 km ASL or a moment source at an elevation of 800 m to the southwest of the crater. The moment tensors for the solutions with moment and force and moment-only share similar characteristics. The source time functions for both moment tensors begin with inflation (pressurization) and execute two cycles of deflation-reinflation (depressurization–repressurization). Although the moment/force source provides a better fit to the data, we find that owing to the limited coverage of the broadband stations at Redoubt the moment-only source is the more robust and reliable solution. Based on the moment-only solution, we estimate a volume change of 19,000 m3 and a pressure change of 7 MPa in a dominant sill and an out-of-phase volume change of 5000 m3 and pressure change of 1.8 MPa in a subdominant dike at the source location. These results shed new light on the magmatic plumbing system beneath Redoubt and complement previous studies on Vulcanian explosions at other volcanoes.
NASA Astrophysics Data System (ADS)
Arrighi, Chiara; Campo, Lorenzo
2017-04-01
In last years, the concern about the economical and lives loss due to urban floods has grown hand in hand with the numerical skills in simulating such events. The large amount of computational power needed in order to address the problem (simulating a flood in a complex terrain such as a medium-large city) is only one of the issues. Among them it is possible to consider the general lack of exhaustive observations during the event (exact extension, dynamic, water level reached in different parts of the involved area), needed for calibration and validation of the model, the need of considering the sewers effects, and the availability of a correct and precise description of the geometry of the problem. In large cities the topographic surveys are in general available with a number of points, but a complete hydraulic simulation needs a detailed description of the terrain on the whole computational domain. LIDAR surveys can achieve this goal, providing a comprehensive description of the terrain, although they often lack precision. In this work an optimal merging of these two sources of geometrical information, measured elevation points and LIDAR survey, is proposed, by taking into account the error variance of both. The procedure is applied to a flood-prone city over an area of 35 square km approximately starting with a DTM from LIDAR with a spatial resolution of 1 m, and 13000 measured points. The spatial pattern of the error (LIDAR vs points) is analysed, and the merging method is tested with a series of Jackknife procedures that take into account different densities of the available points. A discussion of the results is provided.
NASA Astrophysics Data System (ADS)
de Oliveira, Lília M.; Santos, Nádia A. P.; Maillard, Philippe
2013-10-01
Non-point source pollution (NPSP) is perhaps the leading cause of water quality problems and one of the most challenging environmental issues given the difficulty of modeling and controlling it. In this article, we applied the Manning equation, a hydraulic concept, to improve models of non-point source pollution and determine its influence as a function of slope - land cover roughness for runoff to reach the stream. In our study the equation is somewhat taken out of its usual context to be applies to the flow of an entire watershed. Here a digital elevation model (DEM) from the SRTM satellite was used to compute the slope and data from the RapidEye satellite constellation was used to produce a land cover map later transformed into a roughness surface. The methodology is applied to a 1433 km2 watershed in Southeast Brazil mostly covered by forest, pasture, urban and wetlands. The model was used to create slope buffer of varying width in which the proportions of land cover and roughness coefficient were obtained. Next we correlated these data, through regression, with four water quality parameters measured in situ: nitrate, phosphorous, faecal coliform and turbidity. We compare our results with the ones obtained by fixed buffer. It was found that slope buffer outperformed fixed buffer with higher coefficients of determination up to 15%.
NASA Astrophysics Data System (ADS)
Shuler, Christopher K.; El-Kadi, Aly I.; Dulai, Henrietta; Glenn, Craig R.; Fackrell, Joseph
2017-12-01
This study presents a modeling framework for quantifying human impacts and for partitioning the sources of contamination related to water quality in the mixed-use landscape of a small tropical volcanic island. On Tutuila, the main island of American Samoa, production wells in the most populated region (the Tafuna-Leone Plain) produce most of the island's drinking water. However, much of this water has been deemed unsafe to drink since 2009. Tutuila has three predominant anthropogenic non-point-groundwater-pollution sources of concern: on-site disposal systems (OSDS), agricultural chemicals, and pig manure. These sources are broadly distributed throughout the landscape and are located near many drinking-water wells. Water quality analyses show a link between elevated levels of total dissolved groundwater nitrogen (TN) and areas with high non-point-source pollution density, suggesting that TN can be used as a tracer of groundwater contamination from these sources. The modeling framework used in this study integrates land-use information, hydrological data, and water quality analyses with nitrogen loading and transport models. The approach utilizes a numerical groundwater flow model, a nitrogen-loading model, and a multi-species contaminant transport model. Nitrogen from each source is modeled as an independent component in order to trace the impact from individual land-use activities. Model results are calibrated and validated with dissolved groundwater TN concentrations and inorganic δ15N values, respectively. Results indicate that OSDS contribute significantly more TN to Tutuila's aquifers than other sources, and thus should be prioritized in future water-quality management efforts.
Lead in the blood of children living close to industrial point sources in Bulgaria and Poland
NASA Astrophysics Data System (ADS)
Willeke-Wetstein, C.; Bainova, A.; Georgieva, R.; Huzior-Balajewicz, A.; Bacon, J. R.
2003-05-01
ln Eastern European countries some industrial point sources are still suspected to have unacceptable emission rates of lead that pose a major health risk in particular to children. An interdisciplinary research project under the auspices of the EU had the aims (I) to monitor the current contamination of two industrial zones in Bulgaria and Poland, (2) to relate the Pb levels in ecological strata to the internal exposure of children, (3) to develop public health strategies in order to reduce the health risk by heavy metals. The human monitoring of Pb in Poland did not show increased health risks for the children living in an industrial zone close to Krakow. Bulgarian children, however, exceeded the WHO limit of 100 μg lead per litre blood by over one hundred percent (240 μg/1). Samples of soil, fodder and livestock organs showed elevated concentrations of lead. Recent literature results are compared with the findings in Bulgaria and Poland. The sources of the high internal exposure of children are discussed. Public health strategies to prevent mental dysfunction in Bulgarian children at risk include awareness building and social masures.
Sub-arcminute pointing from a balloonborne platform
NASA Astrophysics Data System (ADS)
Craig, William W.; McLean, Ryan; Hailey, Charles J.
1998-07-01
We describe the design and performance of the pointing and aspect reconstruction system on the Gamma-Ray Arcminute Telescope Imaging System. The payload consists of a 4m long gamma-ray telescope, capable of producing images of the gamma-ray sky at an angular resolution of 2 arcminutes. The telescope is operated at an altitude of 40km in azimuth/elevation pointing mode. Using a variety of sensor, including attitude GPS, fiber optic gyroscopes, star and sun trackers, the system is capable of pointing the gamma-ray payload to within an arc-minute from the balloon borne platform. The system is designed for long-term autonomous operation and performed to specification throughout a recent 36 hour flight from Alice Springs, Australia. A star tracker and pattern recognition software developed for the mission permit aspect reconstruction to better than 10 arcseconds. The narrow field star tracker system is capable of acquiring and identifying a star field without external input. We present flight data form all sensors and the resultant gamma-ray source localizations.
Altman, Bob; Henson, C.M.; Waite, I.R.
1997-01-01
Aquatic toxicological investigations in the basin have focused primarily on fish. These studies have addressed chlorinated pesticides, polychlorinated biphenyls (PCBs), dioxins and furans, polycyclic aromatic hydrocarbons (PAHs), and trace elements in aquatic tissue, as well as fish health assessments, skeletal abnormalities, and aquatic toxicological responses. Several pesticides exceeded U.S. Environmental Protection Agency and State water-quality criteria for the protection of aquatic life. Elevated PCB, dioxin, and furan concentrations were associated with point sources, such as pulp and paper mills. Elevated concentrations of mercury in aquatic tissue were associated with several reservoirs. Fish health assessments and skeletal abnormality studies detected high levels of abnormalities in fish from the main stem Willamette River. Few investigations have examined aquatic toxicological responses, such as enzyme induction assays, growth assays, and biomarker studies.
Measurements of scalar released from point sources in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Talluru, K. M.; Hernandez-Silva, C.; Philip, J.; Chauhan, K. A.
2017-04-01
Measurements of velocity and concentration fluctuations for a horizontal plume released at several wall-normal locations in a turbulent boundary layer (TBL) are discussed in this paper. The primary objective of this study is to establish a systematic procedure to acquire accurate single-point concentration measurements for a substantially long time so as to obtain converged statistics of long tails of probability density functions of concentration. Details of the calibration procedure implemented for long measurements are presented, which include sensor drift compensation to eliminate the increase in average background concentration with time. While most previous studies reported measurements where the source height is limited to, {{s}z}/δ ≤slant 0.2 , where s z is the wall-normal source height and δ is the boundary layer thickness, here results of concentration fluctuations when the plume is released in the outer layer are emphasised. Results of mean and root-mean-square (r.m.s.) profiles of concentration for elevated sources agree with the well-accepted reflected Gaussian model (Fackrell and Robins 1982 J. Fluid. Mech. 117). However, there is clear deviation from the reflected Gaussian model for source in the intermittent region of TBL particularly at locations higher than the source itself. Further, we find that the plume half-widths are different for the mean and r.m.s. concentration profiles. Long sampling times enabled us to calculate converged probability density functions at high concentrations and these are found to exhibit exponential distribution.
Kim, Jonathan J; Comstock, Jeff; Ryan, Peter; Heindel, Craig; Koenigsberger, Stephan
2016-11-01
In 2000, elevated nitrate concentrations ranging from 12 to 34mg/L NO3N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed "little/no", "moderate", and "large" change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO3 (manure deposited in a ravine) was exhausted and NO3 dropped from 34mg/L to <10mg/L after ~10years; however, persistence of NO3 in the 3 to 8mg/L range (background) reflects the long term flux of nitrates from nutrients applied to the farm fields surrounding the ravine over the years predating and including this study. Inferred groundwater flow rates from the waste ravine to either moderate change wells in basin 2 or to the shallow bedrock zone beneath the large change wells are 0.05m/day, well within published bedrock aquifer flow rates. Enrichment of (15)N and (18)O in nitrate is consistent with lithotrophic denitrification of NO3 in the presence of dissolved Mn and Fe. Once the ravine point-source was removed, denitrification and dilution collectively were responsible for the down-gradient decrease of nitrate in this bedrock aquifer. Denitrification was most influential when NO3N was >10mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.
Hanna-Attisha, Mona; LaChance, Jenny; Sadler, Richard Casey; Champney Schnepp, Allison
2016-02-01
We analyzed differences in pediatric elevated blood lead level incidence before and after Flint, Michigan, introduced a more corrosive water source into an aging water system without adequate corrosion control. We reviewed blood lead levels for children younger than 5 years before (2013) and after (2015) water source change in Greater Flint, Michigan. We assessed the percentage of elevated blood lead levels in both time periods, and identified geographical locations through spatial analysis. Incidence of elevated blood lead levels increased from 2.4% to 4.9% (P < .05) after water source change, and neighborhoods with the highest water lead levels experienced a 6.6% increase. No significant change was seen outside the city. Geospatial analysis identified disadvantaged neighborhoods as having the greatest elevated blood lead level increases and informed response prioritization during the now-declared public health emergency. The percentage of children with elevated blood lead levels increased after water source change, particularly in socioeconomically disadvantaged neighborhoods. Water is a growing source of childhood lead exposure because of aging infrastructure.
LaChance, Jenny; Sadler, Richard Casey; Champney Schnepp, Allison
2016-01-01
Objectives. We analyzed differences in pediatric elevated blood lead level incidence before and after Flint, Michigan, introduced a more corrosive water source into an aging water system without adequate corrosion control. Methods. We reviewed blood lead levels for children younger than 5 years before (2013) and after (2015) water source change in Greater Flint, Michigan. We assessed the percentage of elevated blood lead levels in both time periods, and identified geographical locations through spatial analysis. Results. Incidence of elevated blood lead levels increased from 2.4% to 4.9% (P < .05) after water source change, and neighborhoods with the highest water lead levels experienced a 6.6% increase. No significant change was seen outside the city. Geospatial analysis identified disadvantaged neighborhoods as having the greatest elevated blood lead level increases and informed response prioritization during the now-declared public health emergency. Conclusions. The percentage of children with elevated blood lead levels increased after water source change, particularly in socioeconomically disadvantaged neighborhoods. Water is a growing source of childhood lead exposure because of aging infrastructure. PMID:26691115
77 FR 15664 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... table provided here represents the flooding sources, location of referenced elevations, and effective and modified elevations for the City of Cadiz, Kentucky. Specifically, it addresses the flooding... Cadiz, Kentucky'' addressed the flooding sources Little River (backwater effects from Lake Barkley) and...
Study of atmospheric diffusion using LANDSAT
NASA Technical Reports Server (NTRS)
Torsani, J. A.; Viswanadham, Y.
1982-01-01
The parameters of diffusion patterns of atmospheric pollutants under different conditions were investigated for use in the Gaussian model for calculation of pollution concentration. Value for the divergence pattern of concentration distribution along the Y axis were determined using LANDSAT images. Multispectral scanner images of a point source plume having known characteristics, wind and temperature data, and cloud cover and solar elevation data provided by LANDSAT, were analyzed using the 1-100 system for image analysis. These measured values are compared with pollution transport as predicted by the Pasquill-Gifford, Juelich, and Hoegstroem atmospheric models.
76 FR 20606 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... source(s) Location of referenced ground [caret] Communities affected elevation ** Elevation in meters (MSL) Effective Modified Sevier County, Utah, and Incorporated Areas Albinus Canyon Approximately 400... Creek Split Flow Approximately 400 feet None +5435 Town of Joseph. downstream of State Highway 118. At...
Mapping the spatio-temporal risk of lead exposure in apex species for more effective mitigation
Mateo-Tomás, Patricia; Olea, Pedro P.; Jiménez-Moreno, María; Camarero, Pablo R.; Sánchez-Barbudo, Inés S.; Rodríguez Martín-Doimeadios, Rosa C.; Mateo, Rafael
2016-01-01
Effective mitigation of the risks posed by environmental contaminants for ecosystem integrity and human health requires knowing their sources and spatio-temporal distribution. We analysed the exposure to lead (Pb) in griffon vulture Gyps fulvus—an apex species valuable as biomonitoring sentinel. We determined vultures' lead exposure and its main sources by combining isotope signatures and modelling analyses of 691 bird blood samples collected over 5 years. We made yearlong spatially explicit predictions of the species risk of lead exposure. Our results highlight elevated lead exposure of griffon vultures (i.e. 44.9% of the studied population, approximately 15% of the European, showed lead blood levels more than 200 ng ml−1) partly owing to environmental lead (e.g. geological sources). These exposures to environmental lead of geological sources increased in those vultures exposed to point sources (e.g. lead-based ammunition). These spatial models and pollutant risk maps are powerful tools that identify areas of wildlife exposure to potentially harmful sources of lead that could affect ecosystem and human health. PMID:27466455
Weinstein, Jason P; Hedges, Scott R; Kimbrough, Sue
2010-02-01
Background PM(2.5) and PM(10) levels were determined during Harmattan (West African wind blown dust) at a background site in Conakry, Guinea. The study was conducted from January to February, 2004 when Harmattan dust appeared to be most pronounced. PM(2.5) concentrations at the Nongo American housing compound ranged from 38mugm(-3) to 177mugm(-3), and PM(10) ranged from 80mugm(-3) to 358mugm(-3), exceeding standards set by EPA and European Commission Environment Directorate-General. PTFE filter samples were analyzed for insoluble and soluble inorganic constituents by XRF and IC, respectively. Sulfur and associated SO(4)(2-) concentrations were notably consistent among PM(2.5) and PM(10) samples which marked a relatively stable S background signal from anthropogenic sources. Enrichment factor (EF) analysis and aerosol mass reconstruction (AMR) techniques were used to isolate potential PM source contributors. The EF's for SiO(2), TiO(2), Al(2)O(3), Fe(2)O(3), and MnO were near unity which suggests a crustal origin for these elements. EF's for Na(2)O and K(2)O were above unity and highly variable, these elements were elevated due to widespread mangrove wood combustion as a fuel source in Conakry. The EF's for Cr were notably high with a median of 7 and interquartile range from 5 to 16, the elevated levels were attributed to unregulated point source and mobile source emitters in and around Conakry.
A candidate framework for PM2.5 source identification in highly industrialized urban-coastal areas
NASA Astrophysics Data System (ADS)
Mateus, Vinícius Lionel; Gioda, Adriana
2017-09-01
The variability of PM sources and composition impose tremendous challenges for police makers in order to establish guidelines. In urban PM, sources associated with industrial processes are among the most important ones. In this study, a 5-year monitoring of PM2.5 samples was carried out in an industrial district. Their chemical composition was strategically determined in two campaigns in order to check the effectiveness of mitigation policies. Gaseous pollutants (NO2, SO2, and O3) were also monitored along with meteorological variables. The new method called Conditional Bivariate Probability Function (CBPF) was successfully applied to allocate the observed concentration of criteria pollutants (gaseous pollutants and PM2.5) in cells defined by wind direction-speed which provided insights about ground-level and elevated pollution plumes. CBPF findings were confirmed by the Theil-Sen long trend estimations for criteria pollutants. By means of CBPF, elevated pollution plumes were detected in the range of 0.54-5.8 μg m-3 coming from a direction associated to stacks. With high interpretability, the use of Conditional Inference Trees (CIT) provided both classification and regression of the speciated PM2.5 in the two campaigns. The combination of CIT and Random Forests (RF) point out NO3- and Ca+2 as important predictors for PM2.5. The latter predictor mostly associated to non-sea-salt sources, given a nss-Ca2+ contribution equal to 96%.
Ultrafine particles from power plants: Evaluation of WRF-Chem simulations with airborne measurements
NASA Astrophysics Data System (ADS)
Forkel, Renate; Junkermann, Wolfgang
2017-04-01
Ultrafine particles (UFP, particles with a diameter < 100 nm) are an acknowledged risk to human health and have a potential effect on climate as their presence affects the number concentration of cloud condensation nuclei. Despite of the possibly hazardous effects no regulations exist for this size class of ambient air pollution particles. While ground based continuous measurements of UFP are performed in Germany at several sites (e.g. the German Ultrafine Aerosol Network GUAN, Birmili et al. 2016, doi:10.5194/essd-8-355-2016) information about the vertical distribution of UFP within the atmospheric boundary layer is only scarce. This gap has been closed during the last years by regional-scale airborne surveys for UFP concentrations and size distributions over Germany (Junkermann et al., 2016, doi: 10.3402/tellusb.v68.29250) and Australia (Junkermann and Hacker, 2015, doi: 10.3402/tellusb.v67.25308). Power stations and refineries have been identified as a major source of UFP in Germany with observed particle concentrations > 50000 particles cm-3 downwind of these elevated point sources. Nested WRF-Chem simulations with 2 km grid width for the innermost domain are performed with UFP emission source strengths derived from the measurements in order to study the advection and vertical exchange of UFP from power plants near the Czech and Polish border and their impact on planetary boundary layer particle patterns. The simulations are evaluated against the airborne observations and the downward mixing of the UFP from the elevated sources is studied.
Swaddiwudhipong, Witaya; Tontiwattanasap, Worawit; Khunyotying, Wanlee; Sanreun, Cherd
2013-11-01
We evaluate blood lead levels among Thai children to determine if exposure to lead-acid batteries is associated with elevated blood lead levels (EBLL). We screened 254 children aged 1-14 years old from 2 rural Thai villages for blood lead levels. We also screened 18 of 92 houses in these 2 villages for the presence of environmental lead. The overall prevalence of EBLL (> or = 10 microg/dl) was 43.3% and the mean lead level among study subjects was 9.8 +/- 5.1 microg/dl. The blood lead levels significantly decreased with increasing age. Fifty point eight percent of children who lived in a house with vented lead-acid batteries had EBLL while 23.3% of children who lived in a house without vented lead-acid batteries had EBLL. Multiple logistic regression analysis revealed a significant positive association between the presence of vented lead-acid batteries and EBLL, after adjusting for other variables. Forty-two point nine percent of house floor dust samples collected near the batteries had elevated lead levels, 7.1% of house floor dust samples collected from other areas in the house had elevated lead levels and 0% of the house floor dust samples collected in houses without vented lead-acid batteries had elevated lead levels. In the sampled houses with vented lead-acid batteries, lead contamination was found in the drinking-water kept in household containers, but not in the tap water or other village sources of water. Improper care and placement of vented lead-acid batteries can result in lead contamination in the home environment causing EBLL in exposed children.
75 FR 77762 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... Flooding source(s) elevation in feet above Communities affected ground [caret] Elevation in meters (MSL... South Monroe Village. Lane. Just upstream of High +5,491 Line Canal. Box Elder Creek Approximately 1,400...,773 downstream of East Arapahoe Road. Goldsmith Gulch West Tributary......... Approximately 400 feet...
Zereini, F; Dirksen, F; Skerstupp, B; Urban, H
1998-01-01
Soil samples from the area of Hanau (Hessen, Germany) were analyzed for anthropogenic platinum-group elements (PGE). The results confirm the existence of two different sources for anthropogenic PGE: 1. automotive catalysts, and 2. PGE-processing plants. Both sources emit qualitatively and quantitatively different PGE spectra and PGE interelemental ratios (especially the Pt/Rh ratio). Elevated PGE values which are due to automotive catalysts are restricted to a narrow-range along roadside soil, whereas those due to PGE-processing plants display a large-area dispersion. The emitted PGE-containing particles in the case of automotive catalysts are subject to transport by wind and water, whereas those from PGE-processing plants are preferably transported by wind. This points to a different aerodynamic particle size. Pt, Pd, and Rh concentrations along motorways are dependent on the amount of traffic and the driving characteristics.
Adaptive photoacoustic imaging using the Mallart-Fink focusing factor
NASA Astrophysics Data System (ADS)
Li, Meng-Lin
2008-02-01
Focusing errors caused by sound velocity heterogeneities widen the mainlobe and elevate the sidelobes, thus degrading both spatial and contrast resolutions in photoacoustic imaging. We propose an adaptive array-based photoacoustic imaging technique that uses the Mallart-Fink (MF) focusing factor weighting to reduce the effect of such focusing errors. The definition of the MF focusing factor indicates that the MF focusing factor at the main lobe of the point-spread function is high (close to 1, without speckle noise being present, which is the case in photoacoustic imaging), whereas it is low at the sidelobes. Based on this property, the elevated sidelobes caused by sound velocity heterogeneities in the tissue can be suppressed after being multiplied by the corresponding map of the MF focusing factor on each imaging point; thus the focusing quality can be improved. This technique makes no assumption of sources of focusing errors and directly suppresses the unwanted sidelobe contributions. Numerical experiments with near field phase screen and displaced phase screen models were performed here to verify the proposed adaptive weighting technique. The effect of the signal-to-noise ratio on the MF focusing factor is also discussed.
Women With Breast Cancer: Self-Reported Distress in Early Survivorship
Lester, Joanne; Crosthwaite, Kara; Stout, Robin; Jones, Rachel N.; Holloman, Christopher; Shapiro, Charles; Andersen, Barbara L.
2015-01-01
Purpose/Objectives To identify and compare levels of distress and sources of problems among patients with breast cancer in early survivorship. Design Descriptive, cross-sectional. Setting A National Cancer Institute–designated comprehensive cancer center. Sample 100 breast cancer survivors were selected to represent four time points in the cancer trajectory. Methods Distress was self-reported using the Distress Thermometer and its 38-item problem list. Analysis of variance and chi-square analyses were performed as appropriate. Main Research Variables Distress scores, problem reports, and time groups. Findings Participants scored in range of the cutoff of more than 4 (range = 4.1–5.1) from treatment through three months post-treatment. At six months post-treatment, distress levels were significantly lower. Significant differences were found between groups on the total problem list score (p = 0.007) and emotional (p = 0.01) and physical subscale scores (p = 0.003). Conclusions Comparison of groups at different points in the cancer trajectory found similar elevated levels from diagnosis through three months. Distress remained elevated in early survivorship but significantly decreased at six months post-treatment. Implications for Nursing Interventions to reduce or prevent distress may improve outcomes in early survivorship. PMID:25542330
Characterization of mercury contamination in the Androscoggin River, Coos County, New Hampshire
Chalmers, Ann; Marvin-DiPasquale, Mark C.; Degnan, James R.; Coles, James; Agee, Jennifer L.; Luce, Darryl
2013-01-01
Concentrations of total mercury (THg) and MeHg in sediment, pore water, and biota in the Androscoggin River were elevated downstream from the former chloralkali facility compared with those upstream from reference sites. Sequential extraction of surface sediment showed a distinct difference in Hg speciation upstream compared with downstream from the contamination site. An upstream site was dominated by potassium hydroxide-extractable forms (for example, organic-Hg or particle-bound Hg(II)), whereas sites downstream from the point source were dominated by more chemically recalcitrant forms (largely concentrated nitric acid-extractable), indicative of elemental mercury or mercurous chloride. At all sites, only a minor fraction (less than 0.1 percent) of THg existed in chemically labile forms (for example, water extractable or weak acid extractable). All metrics indicated that a greater percentage of mercury at an upstream site was available for Hg(II)-methylation compared with sites downstream from the point source, but the absolute concentration of bioavailable Hg(II) was greater downstream from the point source. In addition, the concentration of tin-reducible inorganic reactive mercury, a surrogate measure of bioavailable Hg(II) generally increased with distance downstream from the point source. Whereas concentrations of mercury species on a sediment-dry-weight basis generally reflected the relative location of the sample to the point source, river-reach integrated mercury-species inventories and MeHg production potential (MPP) rates reflected the amount of fine-grained sediment in a given reach. THg concentrations in biota were significantly higher downstream from the point source compared with upstream reference sites for smallmouth bass, white sucker, crayfish, oligochaetes, bat fur, nestling tree swallow blood and feathers, adult tree swallow blood, and tree swallow eggs. As with tin-reducible inorganic reactive mercury, THg in smallmouth bass also increased with distance downstream from the point source. Toxicity tests and invertebrate community assessments suggested that invertebrates were not impaired at the current (2009 and 2010) levels of mercury contamination downstream from the point source. Concentrations of THg and MeHg in most water and sediment samples from the Androscoggin River were below U.S. Environmental Protection Agency (USEPA), the Canadian Council of Ministers of the Environment, and probable effects level guidelines. Surface-water and sediment samples from the Androscoggin River had similar THg concentrations but lower MeHg concentrations compared with other rivers in the region. Concentrations of THg in fish tissue were all above regional and U.S. Environmental Protection Agency guidelines. Moreover, median THg concentrations in smallmouth bass from the Androscoggin River were significantly higher than those reported in regional surveys of river and streams nationwide and in the Northeastern United States and Canada. The higher concentrations of mercury in smallmouth bass suggest conditions may be more favorable for Hg(II)-methylation and bioaccumulation in the Androscoggin River compared with many other rivers in the United States and Canada.
Carbon source-sink limitations differ between two species with contrasting growth strategies.
Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P
2016-11-01
Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.
R. M. Echols; M. T. Conkle
1971-01-01
Genetic, environmental, and age effects were found in 29-yr-old ponderosa pine progenies from different elevational sources, when they were grown at 960, 2730, and 5650 ft elevation in the Sierra Nevada of California. Wood specific gravity decreased as elevation of seed parents increased, and all genotypes produced significantly lower specific gravity wood in the high-...
76 FR 46715 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... table provided here represents the flooding sources, location of referenced elevations, effective and.... Specifically, it addresses the following flooding sources: Cabin Branch, Franklin Branch, Hall Creek, Little... Incorporated Areas'' addressed the following flooding sources: Cabin Branch, Franklin Branch, Little Patuxent...
75 FR 31361 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... source(s) elevation ground [caret] Elevation Communities affected in meters (MSL) Effective Modified... meter. ** BFEs to be changed include the listed downstream and upstream BFEs, and include BFEs located... Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the listed downstream and...
Localization of virtual sound at 4 Gz.
Sandor, Patrick M B; McAnally, Ken I; Pellieux, Lionel; Martin, Russell L
2005-02-01
Acceleration directed along the body's z-axis (Gz) leads to misperception of the elevation of visual objects (the "elevator illusion"), most probably as a result of errors in the transformation from eye-centered to head-centered coordinates. We have investigated whether the location of sound sources is misperceived under increased Gz. Visually guided localization responses were made, using a remotely controlled laser pointer, to virtual auditory targets under conditions of 1 and 4 Gz induced in a human centrifuge. As these responses would be expected to be affected by the elevator illusion, we also measured the effect of Gz on the accuracy with which subjects could point to the horizon. Horizon judgments were lower at 4 Gz than at 1 Gz, so sound localization responses at 4 Gz were corrected for this error in the transformation from eye-centered to head-centered coordinates. We found that the accuracy and bias of sound localization are not significantly affected by increased Gz. The auditory modality is likely to provide a reliable means of conveying spatial information to operators in dynamic environments in which Gz can vary.
Witt, Emitt C.
2015-01-01
Growing use of two-dimensional (2-D) hydraulic models has created a need for high resolution data to support flood volume estimates, floodplain specific engineering data, and accurate flood inundation scenarios. Elevation data are a critical input to these models that guide the flood-wave across the landscape allowing the computation of valuable engineering specific data that provides a better understanding of flooding impacts on structures, debris movement, bed scour, and direction. High resolution elevation data are becoming publicly available that can benefit the 2-D flood modeling community. Comparison of these newly available data with legacy data suggests that better modeling outcomes are achieved by using 3D Elevation Program (3DEP) lidar point data and the derived 1 m Digital Elevation Model (DEM) product relative to the legacy 3 m, 10 m, or 30 m products currently available in the U.S. Geological Survey (USGS) National Elevation Dataset. Within the low topographic relief of a coastal floodplain, the newer 3DEP data better resolved elevations within the forested and swampy areas achieving simulations that compared well with a historic flooding event. Results show that the 1 m DEM derived from 3DEP lidar source provides a more conservative estimate of specific energy, static pressure, and impact pressure for grid elements at maximum flow relative to the legacy DEM data. Better flood simulations are critically important in coastal floodplains where climate change driven storm frequency and sea level rise will contribute to more frequent flooding events.
77 FR 20999 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... set forth below: * Elevation in feet (NGVD) + Elevation in feet (NAVD) Depth in feet Flooding source(s..., and Incorporated Areas Docket No.: FEMA-B-1100 Mississippi River Approximately 11.2 miles +585 City of.... Approximately 12.8 miles +594 upstream of State Highway 136. * National Geodetic Vertical Datum. + North...
76 FR 43965 - Proposed Flood Elevation Determinations; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... FR 70944. The table provided here represents the flooding sources, location of referenced elevations... Areas. Specifically, it addresses the flooding sources Cumberland River (Lake Barkley) and Tennessee... County, Kentucky, and Incorporated Areas'' addressed the flooding sources Cumberland River (Lake Barkley...
High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations
NASA Astrophysics Data System (ADS)
Yue, Linwei; Shen, Huanfeng; Zhang, Liangpei; Zheng, Xianwei; Zhang, Fan; Yuan, Qiangqiang
2017-01-01
The absence of a high-quality seamless global digital elevation model (DEM) dataset has been a challenge for the Earth-related research fields. Recently, the 1-arc-second Shuttle Radar Topography Mission (SRTM-1) data have been released globally, covering over 80% of the Earth's land surface (60°N-56°S). However, voids and anomalies still exist in some tiles, which has prevented the SRTM-1 dataset from being directly used without further processing. In this paper, we propose a method to generate a seamless DEM dataset blending SRTM-1, ASTER GDEM v2, and ICESat laser altimetry data. The ASTER GDEM v2 data are used as the elevation source for the SRTM void filling. To get a reliable filling source, ICESat GLAS points are incorporated to enhance the accuracy of the ASTER data within the void regions, using an artificial neural network (ANN) model. After correction, the voids in the SRTM-1 data are filled with the corrected ASTER GDEM values. The triangular irregular network based delta surface fill (DSF) method is then employed to eliminate the vertical bias between them. Finally, an adaptive outlier filter is applied to all the data tiles. The final result is a seamless global DEM dataset. ICESat points collected from 2003 to 2009 were used to validate the effectiveness of the proposed method, and to assess the vertical accuracy of the global DEM products in China. Furthermore, channel networks in the Yangtze River Basin were also extracted for the data assessment.
Using Passive Sampling to Asses Ozone Formation in Sparsely Monitored Areas
NASA Astrophysics Data System (ADS)
Crosby, C. M.; Mainord, J.; George, L. A.
2016-12-01
Tropospheric ozone (O3), a secondary pollutant, is detrimental to both human health and the environment. O3 is formed from nitrogen oxides (NOx) and volatile organic compounds, (VOC's) in the presence of sunlight. Hermiston is a low population rural city in Oregon (17,707), where O3 levels are expected to be minimal. However, Hermiston has recently experienced elevated O3 concentrations, approaching EPA levels of non-attainment. These levels were not predicted by airshed modeling of the region, suggesting that precursor emissions are not adequately represented in the model. Due to the limited monitoring in the area, there are no measurements of precursors in the region. In this study, passive Ogawa samplers were used to measure NOx and O3 levels at twenty sites in the area. The concentrations were then mapped in conjunction with wind trajectories derived from HYSPLIT and compared to NOx point sources attained from the National Emissions Inventory (NEI). The measurement campaign revealed areas of elevated NOx concentrations that were not accounted for in the airshed model. Further exploration is needed to identify these sources. This study lays groundwork for the use of passive sampling to ground-truth airshed models in the absence of monitoring networks.
NASA Astrophysics Data System (ADS)
Salha, A. A.; Stevens, D. K.
2015-12-01
Distributed watershed models are essential for quantifying sediment and nutrient loads that originate from point and nonpoint sources. Such models are primary means towards generating pollutant estimates in ungaged watersheds and respond well at watershed scales by capturing the variability in soils, climatic conditions, land uses/covers and management conditions over extended periods of time. This effort evaluates the performance of the Soil and Water Assessment Tool (SWAT) model as a watershed level tool to investigate, manage, and characterize the transport and fate of nutrients in Lower Bear Malad River (LBMR) watershed (Subbasin HUC 16010204) in Utah. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices along with identified point sources (WWTPs). Input data such as Digital Elevation Model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized to quantify the LBMR streamflow. Such modeling is useful in developing the required water quality regulations such as Total Maximum Daily Loads (TMDL). Measured concentrations of nutrients were closely captured by simulated monthly nutrient concentrations based on the R2 and Nash- Sutcliffe fitness criteria. The model is expected to be able to identify contaminant non-point sources, identify areas of high pollution risk, locate optimal monitoring sites, and evaluate best management practices to cost-effectively reduce pollution and improve water quality as required by the LBMR watershed's TMDL.
76 FR 26981 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... table provided here represents the flooding sources, location of referenced elevations, effective and.... Specifically, it addresses the following flooding sources: Cache Creek, Cache Creek Left Bank Overflow, and... ``Unincorporated Areas of Yolo County, California'' addressed the flooding source Cache Creek Settling Basin. That...
76 FR 13570 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
.... The table provided here represents the flooding sources, location of referenced elevations, effective.... Specifically, it addresses the flooding source South Creek. DATES: Comments are to be submitted on or before... table, entitled ``Sanpete County, Utah, and Incorporated Areas'' addressed the flooding source South...
77 FR 50667 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... table provided here represents the flooding sources, location of referenced elevations, effective and...). Specifically, it addresses the flooding sources Fourmile Creek and Lake Erie. DATES: Comments are to be... Jurisdictions)'' addressed the flooding sources Fourmile Creek and Lake Erie. That table contained inaccurate...
Palaseanu-Lovejoy, Monica; Poppenga, Sandra K.; Danielson, Jeffrey J.; Tyler, Dean J.; Gesch, Dean B.; Kottermair, Maria; Jalandoni, Andrea; Carlson, Edward; Thatcher, Cindy A.; Barbee, Matthew M.
2018-03-30
Atoll and island coastal communities are highly exposed to sea-level rise, tsunamis, storm surges, rogue waves, king tides, and the occasional combination of multiple factors, such as high regional sea levels, extreme high local tides, and unusually strong wave set-up. The elevation of most of these atolls averages just under 3 meters (m), with many areas roughly at sea level. The lack of high-resolution topographic data has been identified as a critical data gap for hazard vulnerability and adaptation efforts and for high-resolution inundation modeling for atoll nations. Modern topographic survey equipment and airborne lidar surveys can be very difficult and costly to deploy. Therefore, unmanned aircraft systems (UAS) were investigated for collecting overlapping imagery to generate topographic digital elevation models (DEMs). Medium- and high-resolution satellite imagery (Landsat 8 and WorldView-3) was investigated to derive nearshore bathymetry.The Republic of the Marshall Islands is associated with the United States through a Compact of Free Association, and Majuro Atoll is home to the capital city of Majuro and the largest population of the Republic of the Marshall Islands. The only elevation datasets currently available for the entire Majuro Atoll are the Shuttle Radar Topography Mission and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2 elevation data, which have a 30-m grid-cell spacing and a 8-m vertical root mean square error (RMSE). Both these datasets have inadequate spatial resolution and vertical accuracy for inundation modeling.The final topobathymetric DEM (TBDEM) developed for Majuro Atoll is derived from various data sources including charts, soundings, acoustic sonar, and UAS and satellite imagery spanning over 70 years of data collection (1944 to 2016) on different sections of the atoll. The RMSE of the TBDEM over the land area is 0.197 m using over 70,000 Global Navigation Satellite System real-time kinematic survey points for validation, and 1.066 m for Landsat 8 and 1.112 m for WorldView-3 derived bathymetry using over 16,000 and 9,000 lidar bathymetry points, respectively.
NASA Astrophysics Data System (ADS)
Tolle, F.; Friedt, J. M.; Bernard, É.; Prokop, A.; Griselin, M.
2014-12-01
Digital Elevation Model (DEM) is a key tool for analyzing spatially dependent processes including snow accumulation on slopes or glacier mass balance. Acquiring DEM within short time intervals provides new opportunities to evaluate such phenomena at the daily to seasonal rates.DEMs are usually generated from satellite imagery, aerial photography, airborne and ground-based LiDAR, and GPS surveys. In addition to these classical methods, we consider another alternative for periodic DEM acquisition with lower logistics requirements: digital processing of ground based, oblique view digital photography. Such a dataset, acquired using commercial off the shelf cameras, provides the source for generating elevation models using Structure from Motion (SfM) algorithms. Sets of pictures of a same structure but taken from various points of view are acquired. Selected features are identified on the images and allow for the reconstruction of the three-dimensional (3D) point cloud after computing the camera positions and optical properties. This cloud point, generated in an arbitrary coordinate system, is converted to an absolute coordinate system either by adding constraints of Ground Control Points (GCP), or including the (GPS) position of the cameras in the processing chain. We selected the opensource digital signal processing library provided by the French Geographic Institute (IGN) called Micmac for its fine processing granularity and the ability to assess the quality of each processing step.Although operating in snow covered environments appears challenging due to the lack of relevant features, we observed that enough reference points could be identified for 3D reconstruction. Despite poor climatic environment of the Arctic region considered (Ny Alesund area, 79oN) is not a problem for SfM, the low lying spring sun and the cast shadows appear as a limitation because of the lack of color dynamics in the digital cameras we used. A detailed understanding of the processing steps is mandatory during the image acquisition phase: compliance with acquisition rules reducing digital processing errors helps minimizing the uncertainty on the point cloud absolute position in its coordinate system. 3D models from SfM are compared with terrestrial LiDAR acquisitions for resolution assesment.
Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacks
Mast, M.A.; Turk, J.T.; Ingersoll, G.P.; Clow, D.W.; Kester, C.L.
2001-01-01
Stable sulfur isotope ratios and major ions in bulk snowpack samples were monitored at a network of 52 high-elevation sites along and near the Continental Divide from 1993 to 1999. This information was collected to better define atmospheric deposition to remote areas of the Rocky Mountains and to help identify the major source regions of sulfate in winter deposition. Average annual ??34S values at individual sites ranged from + 4.0 to + 8.2??? and standard deviations ranged from 0.4 to 1.6???. The chemical composition of all samples was extremely dilute and slightly acidic; average sulfate concentrations ranged from 2.4 to 12.2 ??eql-1 and pH ranged from 4.82 to 5.70. The range of ??34S values measured in this study indicated that snowpack sulfur in the Rocky Mountains is primarily derived from anthropogenic sources. A nearly linear relation between ??34S and latitude was observed for sites in New Mexico, Colorado, and southern Wyoming, which indicates that snowpack sulfate in the southern part of the network was derived from two isotopically distinct source regions. Because the major point sources of SO2 in the region are coal-fired powerplants, this pattern may reflect variations in the isotopic composition of coals burned by the plants. The geographic pattern in ??34S for sites farther to the north in Wyoming and Montana was much less distinct, perhaps rflecting the paucity of major point sources of SO2 in the northern part of the network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, Angela C.; Rogers, A.; Rees, M.
When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less
Burnett, Angela C.; Rogers, A.; Rees, M.; ...
2016-09-22
When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less
78 FR 22221 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... table provided here represents the flooding sources, location of referenced elevations, effective and.... Specifically, it addresses the following flooding sources: Pea Branch and Reedy Branch. DATES: Comments are to... Areas'' did not address the flooding sources Pea Branch and Reedy Branch. That table omitted information...
77 FR 51745 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
.... Specifically, it addresses the following flooding sources: Back Creek, Big Elk Creek, Bohemia River, Chesapeake... Areas'' addressed the following flooding sources: Back Creek, Big Elk Creek, Bohemia River, Chesapeake... modified elevation in feet, and/or communities affected for the following flooding sources: Big Elk Creek...
NASA Astrophysics Data System (ADS)
Loveday, S.; Harris, D. B.; Schiappa, T.; Pecha, M.
2017-12-01
The specific sources of sediments deposited in the Appalachian basin prior to and immediately following the Alleghenian orogeny has long been a topic of debate. Recent advances in U-Pb dating of detrital zircons have greatly helped to determine some of the sources of these sediments. For this study, sandstone samples were collected from the Pottsville Formation in the northern Appalachian Foreland Basin, Venango County, Pennsylvania to provide supplementary data for previous work that sought to describe the provenance of the same sediments by point counts of thin sections of the same units. Results of this previous work established that the provenance for these units was transitional recycled orogenic, including multiple recycled sediments, and that a cratonic contribution was not able to be determined clearly. The previous results suggested that the paleoenvironment was a fluvial dominated delta prograding in the northern direction. However, no geochronologic data was found during this study to confirm this interpretation. We sought to verify these results by U-Pb analysis of detrital zircons. Samples were collected from the areas where the previous research took place. U-Pb ages were found from sample at the highest elevation and lowest elevation. In the first sample, sample 17SL01 (younger sample stratigraphically), the zircons yield U-Pb age range peaks at 442-468 ma and 1037-1081 ma. The probability density plot for this specific sample displays a complete age gap from 500 ma to 811 ma. In the second sample, sample 17SL03 (older rock stratigraphically), the zircons yield U-Pb ages range peaks of 424-616 ma and 975-1057 ma. This sample doesn't show any ages younger than 424 ma and it doesn't display the sample age gap as sample 17SL01 does. The ages of zircons are consistent with thin section point counting provenance results from previous research suggesting zircon transport from the northern direction.
Influence of Elevation Data Source on 2D Hydraulic Modelling
NASA Astrophysics Data System (ADS)
Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław
2016-08-01
The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.
An Engelmann spruce seed source study in the central Rockies
Wayne D. Shepperd; Richard M. Jeffers; Frank Ronco
1981-01-01
Planted Englemann spruce seedlings from 20 sources throughout North America were field tested in the central Rockies at 9,600 feet (2,930 m) elevation. Overall survival was 73% after 10 years. Significant differences in height were evident among several sources. Sources from northern latitudes and lower elevations grew best. The results demonstrate that Englemann...
A quality control system for digital elevation data
NASA Astrophysics Data System (ADS)
Knudsen, Thomas; Kokkendorf, Simon; Flatman, Andrew; Nielsen, Thorbjørn; Rosenkranz, Brigitte; Keller, Kristian
2015-04-01
In connection with the introduction of a new version of the Danish national coverage Digital Elevation Model (DK-DEM), the Danish Geodata Agency has developed a comprehensive quality control (QC) and metadata production (MP) system for LiDAR point cloud data. The architecture of the system reflects its origin in a national mapping organization where raw data deliveries are typically outsourced to external suppliers. It also reflects a design decision of aiming at, whenever conceivable, doing full spatial coverage tests, rather than scattered sample checks. Hence, the QC procedure is split in two phases: A reception phase and an acceptance phase. The primary aim of the reception phase is to do a quick assessment of things that can typically go wrong, and which are relatively simple to check: Data coverage, data density, strip adjustment. If a data delivery passes the reception phase, the QC continues with the acceptance phase, which checks five different aspects of the point cloud data: Vertical accuracy Vertical precision Horizontal accuracy Horizontal precision Point classification correctness The vertical descriptors are comparatively simple to measure: The vertical accuracy is checked by direct comparison with previously surveyed patches. The vertical precision is derived from the observed variance on well defined flat surface patches. These patches are automatically derived from the road centerlines registered in FOT, the official Danish map data base. The horizontal descriptors are less straightforward to measure, since potential reference material for direct comparison is typically expected to be less accurate than the LiDAR data. The solution selected is to compare photogrammetrically derived roof centerlines from FOT with LiDAR derived roof centerlines. These are constructed by taking the 3D Hough transform of a point cloud patch defined by the photogrammetrical roof polygon. The LiDAR derived roof centerline is then the intersection line of the two primary planes of the transformed data. Since the photogrammetrical and the LiDAR derived roof centerline sets are independently derived, a low RMS difference indicates that both data sets are of very high accuracy. The horizontal precision is derived by doing a similar comparison between LiDAR derived roof centerlines in the overlap zone of neighbouring flight strips. Contrary to the vertical and horizontal descriptors, the point classification correctness is neither geometric, nor well defined. In this case we must resolve by introducing a human in the loop and presenting data in a form that is as useful as possible to this human. Hence, the QC system produces maps of suspicious patterns such as Vegetation below buildings Points classified as buildings where no building is registered in the map data base Building polygons from the map data base without any building points Buildings on roads All elements of the QC process is carried out in smaller tiles (typically 1 km × 1 km) and hence trivially parallelizable. Results from the parallel executing processes are collected in a geospatial data base system (PostGIS) and the progress can be analyzed and visualized in a desktop GIS while the processes run. Implementation wise, the system is based on open source components, primarily from the OSGeo stack (GDAL, PostGIS, QGIS, NumPy, SciPy, etc.). The system specific code is also being open sourced. This open source distribution philosophy supports the parallel execution paradigm, since all available hardware can be utilized without any licensing problems. As yet, the system has only been used for QC of the first part of a new Danish elevation model. The experience has, however, been very positive. Especially notable is the utility of doing full spatial coverage tests (rather than scattered sample checks). This means that error detection and error reports are exactly as spatial as the point cloud data they concern. This makes it very easy for both data receiver and data provider, to discuss and reason about the nature and causes of irregularities.
Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment
NASA Astrophysics Data System (ADS)
Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.
2013-12-01
When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only elevation differences above a predefined noise level are accounted for (according to a specified confidence interval related to the allowable false alarm rate) the change detection is robust to all these sources of noise. To first validate the approach, we built small-scale models and scanned them using a terrestrial laser scanner to establish 'ground truth'. Changes were manually applied to the models then new scans were performed and analyzed. Additionally, two airborne datasets of the Monterey Peninsula, California, were processed and analyzed. The first one was acquired during 2010 (with relatively low point density, 1-3 pts/m2), and the second one was acquired during 2012 (with up to 30 pts/m2). To perform the comparison, a new point cloud registration technique was developed and the data were registered to a common 1 m grid. The goal was to correct systematic shifts due to GPS and INS errors, and focus on the actual height differences regardless of the absolute planimetric accuracy of the datasets. Though no major disaster event occurred between the two acquisition dates, sparse changes were detected and interpreted mostly as construction and natural landscape evolution.
NASA Astrophysics Data System (ADS)
Melwani Daswani, M.; Kite, E. S.
2017-09-01
Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.
NOTE: Do acupuncture points exist?
NASA Astrophysics Data System (ADS)
Yan, Xiaohui; Zhang, Xinyi; Liu, Chenglin; Dang, Ruishan; Huang, Yuying; He, Wei; Ding, Guanghong
2009-05-01
We used synchrotron x-ray fluorescence analysis to probe the distribution of four chemical elements in and around acupuncture points, two located in the forearm and two in the lower leg. Three of the four acupuncture points showed significantly elevated concentrations of elements Ca, Fe, Cu and Zn in relation to levels in the surrounding tissue, with similar elevation ratios for Cu and Fe. The mapped distribution of these elements implies that each acupuncture point seems to be elliptical with the long axis along the meridian.
Satellite radar altimetry over ice. Volume 2: Users' guide for Greenland elevation data from Seasat
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.
1990-01-01
A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described. It is intended to be a user's guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating smaller-scale contour maps, and examining individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.
3D Sound Techniques for Sound Source Elevation in a Loudspeaker Listening Environment
NASA Astrophysics Data System (ADS)
Kim, Yong Guk; Jo, Sungdong; Kim, Hong Kook; Jang, Sei-Jin; Lee, Seok-Pil
In this paper, we propose several 3D sound techniques for sound source elevation in stereo loudspeaker listening environments. The proposed method integrates a head-related transfer function (HRTF) for sound positioning and early reflection for adding reverberant circumstance. In addition, spectral notch filtering and directional band boosting techniques are also included for increasing elevation perception capability. In order to evaluate the elevation performance of the proposed method, subjective listening tests are conducted using several kinds of sound sources such as white noise, sound effects, speech, and music samples. It is shown from the tests that the degrees of perceived elevation by the proposed method are around the 17º to 21º when the stereo loudspeakers are located on the horizontal plane.
Long-term changes in nitrate conditions over the 20th century in two Midwestern Corn Belt streams
Kelly, Valerie J.; Stets, Edward G.; Crawford, Charles G.
2015-01-01
Long-term changes in nitrate concentration and flux between the middle of the 20th century and the first decade of the 21st century were estimated for the Des Moines River and the Middle Illinois River, two Midwestern Corn Belt streams, using a novel weighted regression approach that is able to detect subtle changes in solute transport behavior over time. The results show that the largest changes in flow-normalized concentration and flux occurred between 1960 and 1980 in both streams, with smaller or negligible changes between 1980 and 2004. Contrasting patterns were observed between (1) nitrate export linked to non-point sources, explicitly runoff of synthetic fertilizer or other surface sources and (2) nitrate export presumably associated with point sources such as urban wastewater or confined livestock feeding facilities, with each of these modes of transport important under different domains of streamflow. Surface runoff was estimated to be consistently most important under high-flow conditions during the spring in both rivers. Nitrate export may also have been considerable in the Des Moines River even under some conditions during the winter when flows are generally lower, suggesting the influence of point sources during this time. Similar results were shown for the Middle Illinois River, which is subject to significant influence of wastewater from the Chicago area, where elevated nitrate concentrations were associated with at the lowest flows during the winter and fall. By modeling concentration directly, this study highlights the complex relationship between concentration and streamflow that has evolved in these two basins over the last 50 years. This approach provides insights about changing conditions that only become observable when stationarity in the relationship between concentration and streamflow is not assumed.
Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems
Elder, John F.; Collins, Jerilyn J.; Ware, George W.
1991-01-01
During the past several decades, studies from a variety of locations have demonstrated widespread occurrence of metals in surface waters at concentrations significantly higher than background levels. Elevated concentrations are not limited to certain water types or polluted areas; they appear in all types of systems and in all geographic areas. It is clear that metals enter the aquatic systems from diverse sources, both point and nonpoint, and they can be readily transported from one system to another. Transport routes include atmospheric, terrestrial, subterranean, aquatic, and biological pathways (Elder 1988; Salomons and Forstner 1984).
Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M
2014-01-01
Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Key Points Water shifts due to climatic fluctuations between floodplain storage reservoirs Anthropogenic changes to hydrology directly impact water available to trees Ecohydrologic approaches to integration of hydrology afford new possibilities PMID:25506099
Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.
2016-05-31
Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.
NASA Astrophysics Data System (ADS)
Nironi, Chiara; Salizzoni, Pietro; Marro, Massimo; Mejean, Patrick; Grosjean, Nathalie; Soulhac, Lionel
2015-09-01
The prediction of the probability density function (PDF) of a pollutant concentration within atmospheric flows is of primary importance in estimating the hazard related to accidental releases of toxic or flammable substances and their effects on human health. This need motivates studies devoted to the characterization of concentration statistics of pollutants dispersion in the lower atmosphere, and their dependence on the parameters controlling their emissions. As is known from previous experimental results, concentration fluctuations are significantly influenced by the diameter of the source and its elevation. In this study, we aim to further investigate the dependence of the dispersion process on the source configuration, including source size, elevation and emission velocity. To that end we study experimentally the influence of these parameters on the statistics of the concentration of a passive scalar, measured at several distances downwind of the source. We analyze the spatial distribution of the first four moments of the concentration PDFs, with a focus on the variance, its dissipation and production and its spectral density. The information provided by the dataset, completed by estimates of the intermittency factors, allow us to discuss the role of the main mechanisms controlling the scalar dispersion and their link to the form of the PDF. The latter is shown to be very well approximated by a Gamma distribution, irrespective of the emission conditions and the distance from the source. Concentration measurements are complemented by a detailed description of the velocity statistics, including direct estimates of the Eulerian integral length scales from two-point correlations, a measurement that has been rarely presented to date.
NASA Astrophysics Data System (ADS)
Aulich, G. D.; Moore, C. B.; Rison, W.
2006-12-01
Most people know that Ben Franklin invented the lightning rod and that his rods have successfully protected structures for over 250 years. What people don't know is that he invented them on the basis of two misconceptions. The first, that an elevated pointed conductor would discharge a thunderstorm, thereby preventing lightning. The second, that, should the first process fail, the elevated conductor, by virtue of its pointed tip, would serve as a preferred receptor for any lightning strokes that did occur. It has long been known that grounded, elevated, pointed conductors can not discharge thunderstorms and experiments conducted at the Langmuir Laboratory during the 1990s have shown that moderately blunt, rather than pointed, rods are the best receptors for lightning strokes. Nevertheless, Franklin's incorrect ideas about lightning rods persist in many minds, even among some people in the lightning protection business.
Mercury Sources and Fate in the Gulf of Maine
Sunderland, Elsie M.; Amirbahman, Aria; Burgess, Neil M.; Dalziel, John; Harding, Gareth; Jones, Stephen H.; Kamai, Elizabeth; Karagas, Margaret R.; Shi, Xun; Chen, Celia Y.
2012-01-01
Most human exposure to mercury (Hg) in the United States is from consuming marine fish and shellfish. The Gulf of Maine is a complex marine ecosystem comprised of twelve physioregions, including the Bay of Fundy, coastal shelf areas and deeper basins that contain highly productive fishing grounds. Here we review available data on spatial and temporal Hg trends to better understand the drivers of human and biological exposures. Atmospheric Hg deposition from U.S. and Canadian sources has declined since the mid-1990s in concert with emissions reductions but deposition from global sources has increased. Oceanographic circulation is the dominant source of total Hg inputs to the entire Gulf of Maine region (59%), followed by atmospheric deposition (28%), wastewater/industrial sources (8%), and rivers (5%). Resuspension of sediments increases MeHg inputs to overlying waters raising concerns about benthic trawling activities in shelf regions. In the near coastal areas, elevated sediment and mussel Hg levels are co-located in urban embayments and near large historical point sources. Temporal patterns in sentinel species (mussels and birds) have in some cases declined in response to localized point source mercury reductions but overall Hg trends do not show consistent declines. For example, levels of Hg have either declined or remained stable in eggs from four seabird species collected in the Bay of Fundy since 1972. Quantitatively linking Hg exposures from fish harvested from the Gulf of Maine to human health risks is challenging at this time because no data are available on the geographic origin of seafood consumed by coastal residents. In addition, there is virtually no information on Hg levels in commercial species for offshore regions of the Gulf of Maine where some of the most productive fisheries are located. Both of these data gaps should be priorities for future research. PMID:22572623
NASA Astrophysics Data System (ADS)
Brings, Christine; André Remke, Alexander; Gronz, Oliver; Becker, Kerstin; Seeger, Manuel; Ries, Johannes B.
2014-05-01
One particular problem in the study of rill erosion is the lack of information about sediment sources. So far, the sediment sources can only be identified by observation during the event or the experiment. Furthermore, only large and clear visible changes are considered and observations do not allow the quantification of erosion rates. A solution to this problem can be provided by 3D-modeling using the Structure from Motion (SfM)technique. Digital elevation models (DEM) from terrestrial and aircraft based images have been produced for many years; however, traditional photogrammetric analysis techniques require considerable expertise both for imaging and for data processing. The recent development of SfM providing for geoscientific applications the potential and greatly facilitated conditions for creating accurate 3D models from terrestrial and aerial photographs that were recorded by standard, non-metric cameras. Before and after the rill erosion experiments, coherent and largely overlapping terrestrial photos have been acquired. Afterwards, VisualSfM constructs 3D models by searching unique features in single images, searching for common features in image pairs and by triangulation of camera and feature positions using these pairs. The results are point clouds with x-, y- and z-coordinates, which are the basis for the preparation of the 3D-digital elevation models or volumetric surface models. The before and after models are all in their own, arbitrary coordinate systems and therefore they need to be superimposed and scaled. From the point clouds, surface models are created and via difference calculations of the before and after models, sediment sources can be detected, and erosion volumes can be quantified. Until now, the volume deviations between the 3D models and reference volumes do not exceed 10%. The noise of the 3D models in the worst dimension (z-axis) does not exceed the pixel spacing times 4-5. The results show that VisualSfM is a good, easy to apply and economic alternative to other imaging systems like laser scanning or standard software like Leica Photogrammetry Suite.
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
ERIC Educational Resources Information Center
Benacka, Jan
2015-01-01
This paper provides the formula for the elevation angle at which a projectile has to be fired in a vacuum from a general position to hit a target at a given distance. A spreadsheet application that models the trajectory is presented, and the problem of finding the points of shot and impact of a projectile moving in a vacuum if three points of the…
Collins, Dannie L.; Flynn, Kathleen M.
1979-01-01
This report summarizes and makes available to other investigators the measured hydraulic data collected during a series of experiments designed to study the effect of patterned bed roughness on steady and unsteady open-channel flow. The patterned effect of the roughness was obtained by clear-cut mowing of designated areas of an otherwise fairly dense coverage of coastal Bermuda grass approximately 250 mm high. All experiments were conducted in the Flood Plain Simulation Facility during the period of October 7 through December 12, 1974. Data from 18 steady flow experiments and 10 unsteady flow experiments are summarized. Measured data included are ground-surface elevations, grass heights and densities, water-surface elevations and point velocities for all experiments. Additional tables of water-surface elevations and measured point velocities are included for the clear-cut areas for most experiments. One complete set of average water-surface elevations and one complete set of measured point velocities are tabulated for each steady flow experiment. Time series data, on a 2-minute time interval, are tabulated for both water-surface elevations and point velocities for each unsteady flow experiment. All data collected, including individual records of water-surface elevations for the steady flow experiments, have been stored on computer disk storage and can be retrieved using the computer programs listed in the attachment to this report. (Kosco-USGS)
Preliminary GAOFEN-3 Insar dem Accuracy Analysis
NASA Astrophysics Data System (ADS)
Chen, Q.; Li, T.; Tang, X.; Gao, X.; Zhang, X.
2018-04-01
GF-3 satellite, the first C band and full-polarization SAR satellite of China with spatial resolution of 1 m, was successfully launched in August 2016. We analyze the error sources of GF-3 satellite in this paper, and provide the interferometric calibration model based on range function, Doppler shift equation and interferometric phase function, and interferometric parameters calibrated using the three-dimensional coordinates of ground control points. Then, we conduct the experimental two pairs of images in fine stripmap I mode covering Songshan of Henan Province and Tangshan of Hebei Province, respectively. The DEM data are assessed using SRTM DEM, ICESat-GLAS points, and ground control points database obtained using ZY-3 satellite to validate the accuracy of DEM elevation. The experimental results show that the accuracy of DEM extracted from GF-3 satellite SAR data can meet the requirements of topographic mapping in mountain and alpine regions at the scale of 1 : 50000 in China. Besides, it proves that GF-3 satellite has the potential of interferometry.
Khuzestani, Reza Bashiri; Schauer, James J; Shang, Jing; Cai, Tianqi; Fang, Dongqing; Wei, Yongjie; Zhang, Lulu; Zhang, Yuanxun
2018-05-01
The Ordos region in the southwestern part of Inner Mongolia experiences frequent PM concentrations in excess of the national PM 2.5 air quality standards. In order to determine the key sources of PM 2.5 contributing to these pollution episodes, the main sources of PM 2.5 OC during elevated PM episodes in the Inner Mongolia were analyzed and compared with non-polluted days. This will provide insight to the main sources of particulate matter pollution during the high-pollution episodes and the effective seasonal strategies to control sources of particulate matter during months and with the highest PM concentrations that need to be controlled. The PMF source contributions to OC demonstrated that the industrial/coal combustion (4762.77 ± 1061.54 versus 2726.49 ± 469.75 ng/m 3 ; p < 0.001) and mobile source factors (4651.14 ± 681.82 versus 2605.55 ± 276.50 ng/m 3 ; p value < 0.001) showed greater contributions to the elevated concentrations during the episode. The spatial analysis of secondary organic carbon (SOC) factors, regional biomass burning, and biogenic sources did not show significant difference in the pollution episodes and the non-polluted months. In addition, the bivariate polar plots and CWT maps of the industrial/coal combustion and mobile illustrated a regional long-range transport patterns from the external sources to the study area, however, adjacent areas were mostly controlling the contributions of these factors during the PM elevated episodes. The SOC sources, regional biomass burning, and biogenic sources illustrated a regional long-range transport with similar locations found during the elevated pollution episodes compared to the normal situations.
Grain Elevators: New Source Performance Standards (NSPS)
The New Source Performance Standards (NSPS) for Grain Elevators aims to reduce particulate matter pollution. The new amendments seek to clarify definitions, and requirements, as well as propose new regulations on particulate matter emissions
Topographic Structure from Motion
NASA Astrophysics Data System (ADS)
Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.
2011-12-01
The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with horizontal and vertical precision in the centimeter range, and with very low capital and labor costs and low expertise levels. Advanced structure from motion software (such as Bundler and OpenSynther) are currently under development and should increase the density of topographic points rivaling those of terrestrial laser scanning when using images shot from low altitude platforms such as helikites, poles, remote-controlled aircraft and rotocraft, and low-flying manned aircraft. Clearly, the development of this set of inexpensive and low-required-expertise tools has the potential to fundamentally shift the production of digital fluvial topography from a capital-intensive enterprise of a low number of researchers to a low-cost exercise of many river researchers.
Acoustic Source Elevation Angle Estimates Using Two Microphones
2014-06-01
elevated. Elevation angles are successfully estimated, under certain conditions, for a loudspeaker broadcasting band limited white noise. 15. SUBJECT...INTENTIONALLY LEFT BLANK. 1 1. Introduction The U.S. Army uses acoustic arrays to track and locate various sources including...ground and airborne vehicles, small arms, mortars, and rockets. The tracking and locating algorithms often used with these acoustic arrays perform
Radio frequency elevator for a pulsed positron beam
NASA Astrophysics Data System (ADS)
Dickmann, Marcel; Mitteneder, Johannes; Kögel, Gottfried; Egger, Werner; Sperr, Peter; Ackermann, Ulrich; Piochacz, Christian; Dollinger, Günther
2016-06-01
An elevator increases the potential energy of a particle beam with respect to ground potential without any alteration of kinetic energy and other beam parameters. This elevator is necessary for the implementation of the Munich Scanning Positron Microscope (SPM) at the intense positron source NEPOMUC at the research reactor FRM II in Munich. The principles of the rf elevator for pure electrostatically guided positrons are described. Measurements of beam quality behind the elevator are reported, which confirm that after the implementation of elevator and SPM at NEPOMUC the SPM can be operated at a considerably improved resolution (~ 0.3 μm) and event rate (~3.7 kHz) compared to the laboratory based β+-source.
Local point sources that affect ground-water quality in the East Meadow area, Long Island, New York
Heisig, Paul M.
1994-01-01
The extent and chemical characteristics of ground water affected by three local point sources--a stormwater basin, uncovered road-salt-storage piles, and an abandoned sewage-treatment plant--were delineated during a 3-year study of the chemical characteristics and migration of a body of reclaimed wastewater that was applied to the watertable aquifer during recharge experiments from October 1982 through January 1984 in East Meadow. The timing, magnitude, and chemical quality of recharge from these point sources is highly variable, and all sources have the potential to skew determinations of the quality of ambient ground-water and of the reclaimed-wastewater plume if they are not taken into account. Ground water affected by recharge from the stormwater basin is characterized by low concentrations of nitrate + nitrite (less than 5 mg/L [milligrams per liter] as N) and sulfate (less than 40 mg/L) and is almost entirely within the upper glacial aquifer. The plume derived from road-salt piles is narrow, has high concentrations of chloride (greater than 50 mg/L) and sodium (greater than 75 mg/L), and also is limited to the upper glacial aquifer. The sodium, in high concentrations, could react with aquifer material and exchange for sorbed cations such as calcium, potassium, and magnesium. Water affected by secondary-treated sewage from the abandoned treatment plant extends 152 feet below land surface into the upper part of the Magothy aquifer and longitudinally beyond the southern edge of the study area, 7,750 feet south of the recharge site. Ground water affected by secondary-treated sewage within the study area typically contains elevated concentrations of reactive chemical constituents, such as potassium and ammonium, and low concentrations of dissolved oxygen. Conservative or minimally reactive constituents such as chloride and sodium have been transported out of the study area in the upper glacial aquifer and the intermediate (transitional) zone but remain in the less permeable upper part of the Magothy aquifer. Identification of the three point sources and delineation of their areas of influence improved definition of ambient ground-water quality and delineation of the reclaimed-wastewater plume.
Implications of salinity pollution hotspots on agricultural production
NASA Astrophysics Data System (ADS)
Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph
2016-04-01
Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally, large metropolitan regions are initially loading hotspots and pollution, too, and prevention becomes important as point sources are dependent on sewer connection rates and treatment levels. In conclusion, this study provides a detailed picture of the spatial and temporal distribution of salinity pollution and identifies hotspot areas as well as the dominant sources. Furthermore, impacts of water quality degradation on agricultural production and food security are quantified, which aim for a better understanding of the risks for food security caused by water quality impairment.
Elevation Difference and Bouguer Anomaly Analysis Tool (EDBAAT) User's Guide
Smittle, Aaron M.; Shoberg, Thomas G.
2017-06-16
This report describes a software tool that imports gravity anomaly point data from the Gravity Database of the United States (GDUS) of the National Geospatial-Intelligence Agency and University of Texas at El Paso along with elevation data from The National Map (TNM) of the U.S. Geological Survey that lie within a user-specified geographic area of interest. Further, the tool integrates these two sets of data spatially and analyzes the consistency of the elevation of each gravity station from the GDUS with TNM elevation data; it also evaluates the consistency of gravity anomaly data within the GDUS data repository. The tool bins the GDUS data based on user-defined criteria of elevation misfit between the GDUS and TNM elevation data. It also provides users with a list of points from the GDUS data, which have Bouguer anomaly values that are considered outliers (two standard deviations or greater) with respect to other nearby GDUS anomaly data. “Nearby” can be defined by the user at time of execution. These outputs should allow users to quickly and efficiently choose which points from the GDUS would be most useful in reconnaissance studies or in augmenting and extending the range of individual gravity studies.
Yerramilli, Anjaneyulu; Srinivas, Challa Venkata; Dasari, Hari Prasad; Tuluri, Francis; White, Loren D.; Baham, Julius M.; Young, John H.; Hughes, Robert; Patrick, Chuck; Hardy, Mark G.; Swanier, Shelton J.
2009-01-01
Atmospheric dispersion calculations are made using the HYSPLIT Particle Dispersion Model for studying the transport and dispersion of air-borne releases from point elevated sources in the Mississippi Gulf coastal region. Simulations are performed separately with three meteorological data sets having different spatial and temporal resolution for a typical summer period in 1–3 June 2006 representing a weak synoptic condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) while the third is a meso-scale simulation generated using the Weather Research and Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of the combined influences of the land-sea breeze circulation, the large scale flow field and diurnal alteration in the mixing depth across the coast. The model predicted SO2 concentrations showed that the trajectory and the concentration distribution varied in the three cases of input data. While calculations with FNL data show an overall higher correlation, there is a significant positive bias during daytime and negative bias during night time. Calculations with EDAS fields are significantly below the observations during both daytime and night time though plume behavior follows the coastal circulation. The diurnal plume behavior and its distribution are better simulated using the mesoscale WRF meteorological fields in the coastal environment suggesting its suitability for pollution dispersion impact assessment in the local scale. Results of different cases of simulation, comparison with observations, correlation and bias in each case are presented. PMID:19440433
27 CFR 9.100 - Mesilla Valley.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 31 miles along the 4,200 foot elevation contour line to a point approximately 3.5 miles south of... follows the 4,150 foot elevation contour line northward for 15 miles until it meets with Interstate...) From the beginning point, the boundary runs east 3.7 miles along the north section line until it...
27 CFR 9.100 - Mesilla Valley.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 31 miles along the 4,200 foot elevation contour line to a point approximately 3.5 miles south of... follows the 4,150 foot elevation contour line northward for 15 miles until it meets with Interstate...) From the beginning point, the boundary runs east 3.7 miles along the north section line until it...
27 CFR 9.100 - Mesilla Valley.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 31 miles along the 4,200 foot elevation contour line to a point approximately 3.5 miles south of... follows the 4,150 foot elevation contour line northward for 15 miles until it meets with Interstate...) From the beginning point, the boundary runs east 3.7 miles along the north section line until it...
25. Photocopy of drawing, August 30, 1951 (original in files ...
25. Photocopy of drawing, August 30, 1951 (original in files of United States Military Academy Architectural Archive, West Point, New York) CONVERSION OF ICE HOUSE TO WAREHOUSE, FRONT ELEVATION, SOUTH ELEVATION, PLAN, TRANSVERSE SECTION - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY
Satellite radar altimetry over ice. Volume 4: Users' guide for Antarctica elevation data from Seasat
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.
1990-01-01
A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Greenland are described. This is a user guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.
Winter injury among white fir seedlings...unusual pattern in seed source study
M. Thompson Conkle; W. J. Libby; J. L. Hamrick
1967-01-01
White fir seeds collected from 43 sources were sown at the Institute of Forest Genetics, Placerville, Calif. in 1963. Observations made 3 years later showed that seedlings from northern sources sustained more winter injury than did southern origin seedlings. Seedlings from low elevations were less severely damaged than seedlings from higher elevations in the same...
Integrating Mercury Science and Policy in the Marine Context: Challenges and Opportunities
Lambert, Kathleen F.; Evers, David C.; Warner, Kimberly A.; King, Susannah L.; Selin, Noelle E.
2014-01-01
Mercury is a global pollutant and presents policy challenges at local, regional, and global scales. Mercury poses risks to the health of people, fish, and wildlife exposed to elevated levels of mercury, most commonly from the consumption of methylmercury in marine and estuarine fish. The patchwork of current mercury abatement efforts limits the effectiveness of national and multi-national policies. This paper provides an overview of the major policy challenges and opportunities related to mercury in coastal and marine environments, and highlights science and policy linkages of the past several decades. The U.S. policy examples explored here point to the need for a full life cycle approach to mercury policy with a focus on source reduction and increased attention to: (1) the transboundary movement of mercury in air, water, and biota; (2) the coordination of policy efforts across multiple environmental media; (3) the cross-cutting issues related to pollutant interactions, mitigation of legacy sources, and adaptation to elevated mercury via improved communication efforts; and (4) the integration of recent research on human and ecological health effects into benefits analyses for regulatory purposes. Stronger science and policy integration will benefit national and international efforts to prevent, control, and minimize exposure to methylmercury. PMID:22901766
Elevated and variable groundwater iron in rural northwestern Bangladesh.
Merrill, Rebecca D; Labrique, Alain B; Shamim, Abu Ahmed; Schulze, Kerry; Christian, Parul; Merrill, Robert K; West, Keith P
2010-12-01
Over the past 30 years, tubewells have become a ubiquitous source of potable groundwater in South Asia. Considered safer than surface water, groundwater naturally contains minerals that may impact human health; however, few data exist on tubewell water mineral content or its association with human nutritional or health conditions. We surveyed iron concentration in tubewell water across a 435 km2, contiguous, rural area in northwestern Bangladesh to map and quantify levels of iron in drinking water. One tubewell was randomly sampled from each of 948 adjacent grid cells 675 m2 in size. Water sampling was standardized and iron concentration measured using a field-based colorimetric kit. The median (interquartile range) concentration of iron in tubewell water was 7.6 (1.6, 17.6) mg l(-1). There was high geographic variation (range of 0-46.5 mg l(-1)), and iron in only 3% of surveyed tubewells fell below the WHO aesthetic cut-off of 0.3 mg l(-1) suggesting elevated levels of iron throughout the area. Villagers accurately perceived groundwater iron concentration, based on a 4-point ('none', 'a little', 'medium', 'a lot') scale (p<0.001). Water source iron content can be readily quantified in population settings offering the potential to evaluate the health relevance of groundwater iron exposure in rural communities.
PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De
2013-05-20
We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two opticalmore » telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.« less
Three dimensional volcano-acoustic source localization at Karymsky Volcano, Kamchatka, Russia
NASA Astrophysics Data System (ADS)
Rowell, Colin
We test two methods of 3-D acoustic source localization on volcanic explosions and small-scale jetting events at Karymsky Volcano, Kamchatka, Russia. Recent infrasound studies have provided evidence that volcanic jets produce low-frequency aerodynamic sound (jet noise) similar to that from man-made jet engines. Man-made jets are known to produce sound through turbulence along the jet axis, but discrimination of sources along the axis of a volcanic jet requires a network of sufficient topographic relief to attain resolution in the vertical dimension. At Karymsky Volcano, the topography of an eroded edifice adjacent to the active cone provided a platform for the atypical deployment of five infrasound sensors with intra-network relief of ˜600 m in July 2012. A novel 3-D inverse localization method, srcLoc, is tested and compared against a more common grid-search semblance technique. Simulations using synthetic signals indicate that srcLoc is capable of determining vertical source locations for this network configuration to within +/-150 m or better. However, srcLoc locations for explosions and jetting at Karymsky Volcano show a persistent overestimation of source elevation and underestimation of sound speed by an average of ˜330 m and 25 m/s, respectively. The semblance method is able to produce more realistic source locations by fixing the sound speed to expected values of 335 - 340 m/s. The consistency of location errors for both explosions and jetting activity over a wide range of wind and temperature conditions points to the influence of topography. Explosion waveforms exhibit amplitude relationships and waveform distortion strikingly similar to those theorized by modeling studies of wave diffraction around the crater rim. We suggest delay of signals and apparent elevated source locations are due to altered raypaths and/or crater diffraction effects. Our results suggest the influence of topography in the vent region must be accounted for when attempting 3-D volcano acoustic source localization. Though the data presented here are insufficient to resolve noise sources for these jets, which are much smaller in scale than those of previous volcanic jet noise studies, similar techniques may be successfully applied to large volcanic jets in the future.
Code of Federal Regulations, 2014 CFR
2014-04-01
... east-northeasterly in a straight line approximately 4.1 miles, onto the Inwood map, to the 1,786-foot... 2.1 miles to the 2,086-foot elevation point, section 15, T31N/R1W; then (3) Proceed north-northeasterly in a straight line approximately 0.7 mile to the marked 1,648-foot elevation point (which should...
Code of Federal Regulations, 2013 CFR
2013-04-01
... east-northeasterly in a straight line approximately 4.1 miles, onto the Inwood map, to the 1,786-foot... 2.1 miles to the 2,086-foot elevation point, section 15, T31N/R1W; then (3) Proceed north-northeasterly in a straight line approximately 0.7 mile to the marked 1,648-foot elevation point (which should...
Dem Generation from Close-Range Photogrammetry Using Extended Python Photogrammetry Toolbox
NASA Astrophysics Data System (ADS)
Belmonte, A. A.; Biong, M. M. P.; Macatulad, E. G.
2017-10-01
Digital elevation models (DEMs) are widely used raster data for different applications concerning terrain, such as for flood modelling, viewshed analysis, mining, land development, engineering design projects, to name a few. DEMs can be obtained through various methods, including topographic survey, LiDAR or photogrammetry, and internet sources. Terrestrial close-range photogrammetry is one of the alternative methods to produce DEMs through the processing of images using photogrammetry software. There are already powerful photogrammetry software that are commercially-available and can produce high-accuracy DEMs. However, this entails corresponding cost. Although, some of these software have free or demo trials, these trials have limits in their usable features and usage time. One alternative is the use of free and open-source software (FOSS), such as the Python Photogrammetry Toolbox (PPT), which provides an interface for performing photogrammetric processes implemented through python script. For relatively small areas such as in mining or construction excavation, a relatively inexpensive, fast and accurate method would be advantageous. In this study, PPT was used to generate 3D point cloud data from images of an open pit excavation. The PPT was extended to add an algorithm converting the generated point cloud data into a usable DEM.
Experimental investigation of outdoor propagation of finite-amplitude noise. [aircraft noise
NASA Technical Reports Server (NTRS)
Webster, D. A.; Blackstock, D. T.
1978-01-01
The outdoor propagation of finite amplitude acoustic waves was investigated using a conventional electroacoustic transmitter which was mounted on the ground and pointed upward in order to avoid ground reflection effects. The propagation path was parallel to a radio tower 85 m tall, whose elevator carried the receiving microphone. The observations and conclusions are as follows: (1) At the higher source levels nonlinear propagation distortion caused a strong generation of high frequency noise over the propagation path. For example, at 70 m for a frequency 2-3 octaves above the source noise band, the measured noise was up to 30 dB higher than the linear theory prediction. (2) The generation occurred in both the nearfield and the farfield of the transmitter. (3) At no measurement point was small-signal behavior established for the high requency noise. Calculations support the contention that the nonlinearity generated high frequency noise never becomes small-signal in its behavior, regardless of distance. (4) When measured spectra are scaled in frequency and level to make them comparable with spectra of actual jet noise, they are found to be well within the jet noise range. It is therefore entirely possible that nonlinear distortion affects jet noise.
Study on gas diffusion emitted from different height of point source.
Yassin, Mohamed F
2009-01-01
The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.
Characterization of the Atacama B-mode Search
NASA Astrophysics Data System (ADS)
Simon, S. M.; Raghunathan, S.; Appel, J. W.; Becker, D. T.; Campusano, L. E.; Cho, H. M.; Essinger-Hileman, T.; Ho, S. P.; Irwin, K. D.; Jarosik, N.; Kusaka, A.; Niemack, M. D.; Nixon, G. W.; Nolta, M. R.; Page, L. A.; Palma, G. A.; Parker, L. P.; Sievers, J. L.; Staggs, S. T.; Visnjic, K.
2014-07-01
The Atacama B-mode Search (ABS), which began observations in February of 2012, is a crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile. ABS is searching for the B-mode polarization spectrum of the cosmic microwave background (CMB) at large angular scales from multipole moments of ` ~ 50 ~ 500, a range that includes the primor- dial B-mode peak from inflationary gravity waves at ~ 100. The ABS focal plane consists of 240 pixels sensitive to 145 GHz, each containing two transition-edge sensor bolometers coupled to orthogonal polarizations with a planar ortho-mode transducer. An ambient-temperature con- tinuously rotating half-wave plate and 4 K optics make the ABS instrument unique. We discuss the characterization of the detector spectral responses with a Fourier transform spectrometer and demonstrate that the pointing model is adequate. We also present measurements of the beam from point sources and compare them with simulations.
Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine
Skinner, Nathan L.
1990-01-01
A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.
Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission
NASA Technical Reports Server (NTRS)
Bents, David J.
1989-01-01
Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for Low Earth Orbit (LEO) applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated sink temperature. The mass advantage of dynamic systems is significantly reduced for this application due to Mars' elevated background temperature.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator)
1975-01-01
The author has reported the following significant results. A data set containing SKYLAB, LANDSAT, and topographic data has been overlayed, registered, and geometrically corrected to a scale of 1:24,000. After geometrically correcting both sets of data, the SKYLAB data were overlayed on the LANDSAT data. Digital topographic data were then obtained, reformatted, and a data channel containing elevation information was then digitally overlayed onto the LANDSAT and SKYLAB spectral data. The 14,039 square kilometers involving 2,113, 776 LANDSAT pixels represents a relatively large data set available for digital analysis. The overlayed data set enables investigators to numerically analyze and compare two sources of spectral data and topographic data from any point in the scene. This capability is new and it will permit a numerical comparison of spectral response with elevation, slope, and aspect. Utilization of the spectral and topographic data together to obtain more accurate classifications of the various cover types present is feasible.
Gaining forests but losing ground: A GIS evaluation in a Himalayan watershed
NASA Astrophysics Data System (ADS)
Schreier, Hans; Brown, Sandra; Schmidt, Margaret; Shah, Pravakar; Shrestha, Bubhan; Nakarmi, Gopal; Subba, Khagendra; Wymann, Susanne
1994-01-01
GIS overlay techniques were used to provide a quantitative historic documentation of deforestation and land-use dynamics in the Middle Mountains of Nepal between 1947 and 1990. Deforestation was most critical in the 1960s, but active afforestation programs in the 1980s have reversed the process. In spite of these trends, the degradation problem is more complex. The GIS evaluation showed that 86% of the recently afforested land is now under pine plantations located primarily at lower elevations and moderately steep slopes. In contrast, rainfed agricultural expansion is most pronounced on acidic soils and steeper, upper elevation sites, suggesting marginalization of agriculture. Agricultural expansion coupled with major losses of grazing land to pine forests are the key processes pointing towards major animal feed deficits. An alternative animal feed source is suggested through GIS using a topographically based microclimatic classification to generate a tree-planting map where the optimum ecological conditions for selective native fodder tree species are identified.
Payne, G.A.
1994-01-01
The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.
Buckman, Kate L.; Marvin-DiPasquale, Mark; Taylor, Vivien F.; Chalmers, Ann; Broadley, Hannah J.; Agee, Jennifer; Jackson, Brian P.; Chen, Celia Y.
2015-01-01
In Berlin, NH, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US EPA Superfund site and source of mercury (Hg) to the river. A study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40x increase, mean±sd: 20.1±24.8 ng g−1 DW) and total mercury (THg, 10–30x increase, mean±sd: 2045±2669 ng g−1 DW) compared to all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7x on average) relative to the reference (THg mean±sd: 33.5±9.33 ng g−1 DW; MeHg mean±sd: 0.52±0.21 ng g−1 DW). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L−1) and dissolved (0.76 ng L−1) fractions were 5-fold higher than at the reference sites, and 2–5-fold higher than downstream. Methylmercury production potential (MPP) of periphyton material was highest (2–9 ng g−1 d−1 DW) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g−1 d−1 DW). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies and shiners showed a weak positive relationship with porewater MeHg concentration. PMID:25732794
SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites
NASA Technical Reports Server (NTRS)
Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.
1993-01-01
An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.
Karouna-Renier, Natalie K.; Snyder, Richard A.; Lange, Ted; Gibson, Suzanne; Allison, Jeffrey G.; Wagner, Matthew E.; Rao, K. Ranga
2011-01-01
The health benefits of regular consumption of fish and seafood have been espoused for many years. However, fish are also a potential source of environmental contaminants that have well known adverse effects on human health. We investigated the consumption risks for largemouth bass (Micropterus salmoides; n = 104) and striped mullet (Mugil cephalus; n = 170), two commonly harvested and consumed fish species inhabiting fresh and estuarine waters in northwest Florida. Skinless fillets were analyzed for total mercury, inorganic arsenic, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F), polychlorinated biphenyls (PCBs), and organochlorine pesticides. Contaminant levels were compared to screening values (SV) calculated using U.S. Environmental Protection Agency (EPA) recommendations for establishing consumption advisories. Largemouth bass were found to contain high levels of total mercury at all sampling locations (0.37-0.89 ug/g) and one location exhibited elevated total PCBs (39.4 ng/g). All of the samples exceeded Florida fish consumption advisory trigger levels for total mercury and one location exceeded the U.S. EPA SV for total PCBs. As a result of the high mercury levels, the non-cancer health risks (hazard index-HI) for bass were above 1 for all locations. Striped mullet from several locations with known point sources contained elevated levels of PCBs (overall range 3.4-59.3 ng/g). However, total mercury levels in mullet were low. Eight of the 16 mullet sampling locations exceeded the U.S. EPA SV for total PCBs and two locations exceeded an HI of 1 due to elevated PCBs. Despite the elevated levels of total PCBs in some samples, only two locations exceeded the acceptable cancer risk range and therefore cancer health risks from consumption of bass and mullet were determined to be low at most sampling locations.
NASA Astrophysics Data System (ADS)
Warneke, C.; Geiger, F.; Zahn, A.; Graus, M.; De Gouw, J. A.; Gilman, J. B.; Lerner, B. M.; Roberts, J. M.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Peischl, J.; Ryerson, T. B.; Williams, E. J.; Petron, G.; Kofler, J.; Sweeney, C.; Karion, A.; Dlugokencky, E. J.
2012-12-01
Technological advances such as hydraulic fracturing have led to a rapid increase in the production of natural gas from several basins in the Rocky Mountain West, including the Denver-Julesburg basin in Colorado, the Uintah basin in Utah and the Upper Green River basin in Wyoming. There are significant concerns about the impact of natural gas production on the atmosphere, including (1) emissions of methane, which determine the net climate impact of this energy source, (2) emissions of reactive hydrocarbons and nitrogen oxides, and their contribution to photochemical ozone formation, and (3) emissions of air toxics with direct health effects. The Energy & Environment - Uintah Basin Wintertime Ozone Study (UBWOS) in 2012 was focused on addressing these issues. During UBWOS, measurements of volatile organic compounds (VOCs) were made using proton-transfer-reaction mass spectrometry (PTR-MS) instruments from a ground site and a mobile laboratory. Measurements at the ground site showed mixing ratios of VOCs related to oil and gas extraction were greatly enhanced in the Uintah basin, including several days long periods of elevated mixing ratios and concentrated short term plumes. Diurnal variations were observed with large mixing ratios during the night caused by low nighttime mixing heights and a shift in wind direction during the day. The mobile laboratory sampled a wide variety of individual parts of the gas production infrastructure including active gas wells and various processing plants. Included in those point sources was a new well that was sampled by the mobile laboratory 11 times within two weeks. This new well was previously hydraulically fractured and had an active flow-back pond. Very high mixing ratios of aromatics were observed close to the flow-back pond. The measurements of the mobile laboratory are used to determine the source composition of the individual point sources and those are compared to the VOC enhancement ratios observed at the ground site. The source composition of most point sources was similar to the typical enhancement ratios observed at the ground site, whereas the new well with the flow-back pond showed a somewhat different composition.
The National Map seamless digital elevation model specifications
Archuleta, Christy-Ann M.; Constance, Eric W.; Arundel, Samantha T.; Lowe, Amanda J.; Mantey, Kimberly S.; Phillips, Lori A.
2017-08-02
This specification documents the requirements and standards used to produce the seamless elevation layers for The National Map of the United States. Seamless elevation data are available for the conterminous United States, Hawaii, Alaska, and the U.S. territories, in three different resolutions—1/3-arc-second, 1-arc-second, and 2-arc-second. These specifications include requirements and standards information about source data requirements, spatial reference system, distribution tiling schemes, horizontal resolution, vertical accuracy, digital elevation model surface treatment, georeferencing, data source and tile dates, distribution and supporting file formats, void areas, metadata, spatial metadata, and quality assurance and control.
Algorithms used in the Airborne Lidar Processing System (ALPS)
Nagle, David B.; Wright, C. Wayne
2016-05-23
The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.
NASA Astrophysics Data System (ADS)
Millet, Dylan B.; Goldstein, Allen H.; Holzinger, Rupert; Williams, Brent J.; Allan, James D.; Jimenez, José L.; Worsnop, Douglas R.; Roberts, James M.; White, Allen B.; Hudman, Rynda C.; Bertschi, Isaac T.; Stohl, Andreas
2006-12-01
We present a factor analysis-based method for differentiating air masses on the basis of source influence and apply the method to a broad suite of trace gas and aerosol measurements collected at Chebogue Point, Nova Scotia, during the summer of 2004 to characterize the chemical composition of atmospheric outflow from eastern North America. CO, ozone, and aerosol mass were elevated by 30%, 56%, and more than 300% at Chebogue Point during U.S. outflow periods. Organic aerosol mass was highest during U.S. pollution events, but made up the largest fraction (70%) of the total aerosol during periods of primary and especially secondary biogenic influence, indicating the importance of both anthropogenic and biogenic organic aerosol. Anthropogenic and oxygenated volatile organic compounds account for the bulk of the gas-phase organic carbon under most conditions; however, biogenic compounds are important in terms of chemical reactivity. Biogenic emissions thus have a significant impact on the chemistry of air masses downwind of the polluted northeastern United States. Using output from a global 3-D model of atmospheric composition (GEOS-Chem), we estimate that CO directly emitted from U.S. pollution sources makes up 28% of the total CO observed at Chebogue Point during U.S. outflow events and 19% at other times, although more work is needed to improve U.S. emission estimates for CO and other pollutants. We conclude that the effects of North American pollution on the chemistry of the western North Atlantic boundary layer are pervasive and not restricted to particular events.
Gesch, Dean; Evans, Gayla; Mauck, James; Hutchinson, John; Carswell, William J.
2009-01-01
The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the USGS. The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, and the island territories. The NED is derived from diverse source data sets that are processed to a specification with a consistent resolution, coordinate system, elevation units, and horizontal and vertical datums. The NED is the logical result of the maturation of the long-standing USGS elevation program, which for many years concentrated on production of topographic map quadrangle-based digital elevation models. The NED serves as the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. The NED is a multi-resolution dataset that is updated bimonthly to integrate newly available, improved elevation source data. NED data are available nationally at grid spacings of 1 arc-second (approximately 30 meters) for the conterminous United States, and at 1/3 and 1/9 arc-seconds (approximately 10 and 3 meters, respectively) for parts of the United States. Most of the NED for Alaska is available at 2-arc-second (about 60 meters) grid spacing, where only lower resolution source data exist. Part of Alaska is available at the 1/3-arc-second resolution, and plans are in development for a significant upgrade in elevation data coverage of the State over the next 5 years. Specifications for the NED include the following: *Coordinate system: Geographic (decimal degrees of latitude and longitude), *Horizontal datum: North American Datum of 1983 (NAD 83), *Vertical datum: North American Vertical Datum of 1988 (NAVD 88) over the conterminous United States and varies in other areas, and *Elevation units: Decimal meters.
Zhao, Hongxia; Li, Yongping; Zhang, Xiaolu; Korpelainen, Helena; Li, Chunyang
2012-11-01
Dioecious plants, which comprise more than 14,620 species, account for an important component of terrestrial ecosystems. Hence, understanding the sexually dimorphic responses in balancing carbon (C) supply and demand under elevated CO(2) is important for understanding leaf sink-to-source transitions. Here we investigate sex-related responses of the dioecious Populus cathayana Rehd. to elevated CO(2) and elevated temperature. The plants were grown in environmentally controlled growth chambers at two CO(2) enrichment regimes (350 ± 20 and 700 ± 20 μmol mol(-1)) with two temperature levels, elevated by 0 and 2 ± 0.2 °C (compared with the out-of-chamber environment). Plant growth characteristics, carbohydrate accumulation, C and nitrogen (N) allocation, photosynthetic capacity, N use efficiency and the morphology of mesophyll cells were investigated in the developing leaves (DLs) and expanded leaves (ELs) of both males and females. Elevated CO(2) enhanced plant growth and photosynthetic capacity in DLs of both males and females, and induced the male ELs to have a greater leaf mass production, net photosynthesis rate (P(n)), chlorophyll a/b ratio (Chl a/b), soluble protein level (SP), photosynthetic N use efficiency and soluble sugar level compared with females at the same leaf stage. Elevated temperature enhanced source activities and N uptake status during CO(2) enrichment, and the combined treatment induced males to be more responsive than females in sink capacities, especially in ELs, probably due to greater N acquisition from other plant parts. Our findings showed that elevated CO(2) increases the sink capacities of P. cathayana seedlings, and elevated temperature enhances the stimulation effect of elevated CO(2) on plant growth. Male ELs were found to play an important role in N acquisition from roots and stems under decreasing N in total leaves under elevated CO(2). Knowledge of the sex-specific leaf adaptability to warming climate can help us to understand sex-related source-to-sink transitions in dioecious plant species.
NASA Technical Reports Server (NTRS)
VandeVen, C.; Weiss, S. B.
2001-01-01
Our challenge is to model plant species distributions in complex montane environments using disparate sources of data, including topography, geology, and hyperspectral data. From an ecologist's point of view, species distributions are determined by local environment and disturbance history, while spectral data are 'ancillary.' However, a remote sensor's perspective says that spectral data provide picture of what vegetation is there, topographic and geologic data are ancillary. In order to bridge the gap, all available data should be used to get the best possible prediction of species distributions using complex multivariate techniques implemented on a GIS. Vegetation reflects local climatic and nutrient conditions, both of which can be modeled, allowing predictive mapping of vegetation distributions. Geologic substrate strongly affects chemical, thermal, and physical properties of soils, while climatic conditions are determined by local topography. As elevation increases, precipitation increases and temperature decreases. Aspect, slope, and surrounding topography determine potential insolation, so that south-facing slopes are warmer and north-facing slopes cooler at a given elevation. Topographic position (ridge, slope, canyon, or meadow) and slope angle affect sediment accumulation and soil depth. These factors combine as complex environmental gradients, and underlie many features of plant distributions. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, digital elevation models, digitized geologic maps, and 378 ground control points were used to predictively map species distributions in the central and southern White Mountains, along the western boundary of the Basin and Range province. Minimum Noise Fraction (MNF) bands were calculated from the visible and near-infrared AVIRIS bands, and combined with digitized geologic maps and topographic variables using Canonical Correspondence Analysis (CCA). CCA allows for modeling species 'envelopes' in multidimensional environmental space, which can then be projected across entire landscapes.
Zhang, Xianming; Lohmann, Rainer; Dassuncao, Clifton; Hu, Xindi C.; Weber, Andrea K.; Vecitis, Chad D.; Sunderland, Elsie M.
2017-01-01
Exposure to poly and perfluoroalkyl substances (PFASs) has been associated with adverse health effects in humans and wildlife. Understanding pollution sources is essential for environmental regulation but source attribution for PFASs has been confounded by limited information on industrial releases and rapid changes in chemical production. Here we use principal component analysis (PCA), hierarchical clustering, and geospatial analysis to understand source contributions to 14 PFASs measured across 37 sites in the Northeastern United States in 2014. PFASs are significantly elevated in urban areas compared to rural sites except for perfluorobutane sulfonate (PFBS), N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA), perfluoroundecanate (PFUnDA) and perfluorododecanate (PFDoDA). The highest PFAS concentrations across sites were for perfluorooctanate (PFOA, 56 ng L−1) and perfluorohexane sulfonate (PFOS, 43 ng L−1) and PFOS levels are lower than earlier measurements of U.S. surface waters. PCA and cluster analysis indicates three main statistical groupings of PFASs. Geospatial analysis of watersheds reveals the first component/cluster originates from a mixture of contemporary point sources such as airports and textile mills. Atmospheric sources from the waste sector are consistent with the second component, and the metal smelting industry plausibly explains the third component. We find this source-attribution technique is effective for better understanding PFAS sources in urban areas. PMID:28217711
47 CFR 1.959 - Computation of average terrain elevation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 1.959 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless..., average terrain elevation must be calculated by computer using elevations from a 30 second point or better..., if the results differ significantly from the computer derived averages. (a) Radial average terrain...
47 CFR 1.959 - Computation of average terrain elevation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 1.959 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless..., average terrain elevation must be calculated by computer using elevations from a 30 second point or better..., if the results differ significantly from the computer derived averages. (a) Radial average terrain...
Earth elevation map production and high resolution sensing camera imaging analysis
NASA Astrophysics Data System (ADS)
Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai
2010-11-01
The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.
Generating DEM from LIDAR data - comparison of available software tools
NASA Astrophysics Data System (ADS)
Korzeniowska, K.; Lacka, M.
2011-12-01
In recent years many software tools and applications have appeared that offer procedures, scripts and algorithms to process and visualize ALS data. This variety of software tools and of "point cloud" processing methods contributed to the aim of this study: to assess algorithms available in various software tools that are used to classify LIDAR "point cloud" data, through a careful examination of Digital Elevation Models (DEMs) generated from LIDAR data on a base of these algorithms. The works focused on the most important available software tools: both commercial and open source ones. Two sites in a mountain area were selected for the study. The area of each site is 0.645 sq km. DEMs generated with analysed software tools ware compared with a reference dataset, generated using manual methods to eliminate non ground points. Surfaces were analysed using raster analysis. Minimum, maximum and mean differences between reference DEM and DEMs generated with analysed software tools were calculated, together with Root Mean Square Error. Differences between DEMs were also examined visually using transects along the grid axes in the test sites.
Stöckel, Tino; Fries, Udo
2013-01-01
We examined the influence of visual context information on skilled motor behaviour and motor adaptation in basketball. The rules of basketball in Europe have recently changed, such that that the distance for three-point shots increased from 6.25 m to 6.75 m. As such, we tested the extent to which basketball experts can adapt to the longer distance when a) only the unfamiliar, new three-point line was provided as floor markings (NL group), or b) the familiar, old three-point line was provided in addition to the new floor markings (OL group). In the present study 20 expert basketball players performed 40 three-point shots from 6.25 m and 40 shots from 6.75 m. We assessed the percentage of hits and analysed the landing position of the ball. Results showed better adaptation of throwing performance to the longer distance when the old three-point line was provided as a visual landmark, compared to when only the new three-point line was provided. We hypothesise that the three-point line delivered relevant information needed to successfully adapt to the greater distance in the OL group, whereas it disturbed performance and ability to adapt in the NL group. The importance of visual landmarks on motor adaptation in basketball throwing is discussed relative to the influence of other information sources (i.e. angle of elevation relative to the basket) and sport practice.
Review Article: Increasing physical activity with point-of-choice prompts--a systematic review.
Nocon, Marc; Müller-Riemenschneider, Falk; Nitzschke, Katleen; Willich, Stefan N
2010-08-01
Stair climbing is an activity that can easily be integrated into everyday life and has positive health effects. Point-of-choice prompts are informational or motivational signs near stairs and elevators/escalators aimed at increased stair climbing. The aim of this review was to assess the effectiveness of point-of-choice prompts for the promotion of stair climbing. In a systematic search of the literature, studies that assessed the effectiveness of point-of-choice prompts to increase the rate of stair climbing in the general population were identified. No restrictions were made regarding the setting, the duration of the intervention, or the kind of message. A total of 25 studies were identified. Point-of-choice prompts were predominantly posters or stair-riser banners in public traffic stations, shopping malls or office buildings. The 25 studies reported 42 results. Of 10 results for elevator settings, only three reported a significant increase in stair climbing, whereas 28 of 32 results for escalator settings reported a significant increase in stair climbing. Overall, point-of-choice prompts are able to increase the rate of stair climbing, especially in escalator settings. In elevator settings, point-of-choice prompts seem less effective. The long-term efficacy and the most efficient message format have yet to be determined in methodologically rigorous studies.
Estimating Air-Manganese Exposures in Two Ohio Towns ...
Manganese (Mn), a nutrient required for normal metabolic function, is also a persistent air pollutant and a known neurotoxin at high concentrations. Elevated exposures can result in a number of motor and cognitive deficits. Quantifying chronic personal exposures in residential populations studied by environmental epidemiologists can be time-consuming and expensive. We developed an approach for quantifying chronic exposures for two towns (Marietta and East Liverpool, Ohio) with elevated air Mn concentrations (air-Mn) related to ambient emissions from industrial processes. This was accomplished through the use of measured and modeled data in the communities studied. A novel approach was developed because one of the facilities lacked emissions data for the purposes of modeling. A unit emission rate was assumed over the surface area of both source facilities, and offsite concentrations at receptor residences and air monitoring sites were estimated with the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). Ratios of all modeled receptor points were created, and a long-running air monitor was identified as a reference location. All ratios were normalized to the reference location. Long-term averages at all residential receptor points were calculated using modeled ratios and data from the reference monitoring location. Modeled five-year average air-Mn exposures ranged from 0.03-1.61 µg/m3 in Marietta and 0.01-6.32 µg/m3 in E
NASA Astrophysics Data System (ADS)
Weiss-Penzias, Peter; Gustin, Mae Sexauer; Lyman, Seth N.
2009-07-01
Air mercury (Hg) speciation was measured for 11 weeks (June-August 2007) at three sites simultaneously in Nevada, USA. Mean reactive gaseous Hg (RGM) concentrations were elevated at all sites relative to those reported for locations not directly influenced by known point sources. RGM concentrations at all sites displayed a regular diel pattern and were positively correlated with ozone (O3) and negatively correlated with elemental Hg (Hg0) and dew point temperature (Tdp). Superimposed on the diel changes were 2- to 7-day periods when RGM concentrations increased across all three sites, producing significant intersite correlations of RGM daily means (r = 0.53-0.76, p < 0.0001). During these periods, enhanced O3 concentrations and lower Tdp were also observed. Back trajectories were applied to develop gridded frequency distribution (GFD) plots and determine trajectory residence times (TRT) in specific source boxes. The GFD for the upper-quartile RGM daily means at one site showed a contributing airflow regime from the high-altitude subtropics with little precipitation, while that developed for the lower-quartile RGM concentrations indicated predominantly lower-altitude westerly flow and precipitation. Daily mean TRT in a subtropical high-altitude source box (>2 km and <35°N) explained a component of the daily mean RGM at two sites (r2 = 0.37 and 0.27, p < 0.05). These observations indicate that long-range transport of RGM from the free troposphere is a potentially important component of Hg input to rural areas of the western United States.
Digital elevation modeling via curvature interpolation for lidar data
USDA-ARS?s Scientific Manuscript database
Digital elevation model (DEM) is a three-dimensional (3D) representation of a terrain's surface - for a planet (including Earth), moon, or asteroid - created from point cloud data which measure terrain elevation. Its modeling requires surface reconstruction for the scattered data, which is an ill-p...
78 FR 6743 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... in feet (NGVD) + Elevation in feet (NAVD) Flooding source(s) Location of referenced Depth in feet... downstream of Greely Allen County. Chapel Road. Approximately 750 feet + 965 upstream of Faulkner Road. Dug.... Approximately 100 feet + 827 downstream of North Cable Road. Dug Run Tributary At the Dug Run confluence + 813...
A hierarchical network-based algorithm for multi-scale watershed delineation
NASA Astrophysics Data System (ADS)
Castronova, Anthony M.; Goodall, Jonathan L.
2014-11-01
Watershed delineation is a process for defining a land area that contributes surface water flow to a single outlet point. It is a commonly used in water resources analysis to define the domain in which hydrologic process calculations are applied. There has been a growing effort over the past decade to improve surface elevation measurements in the U.S., which has had a significant impact on the accuracy of hydrologic calculations. Traditional watershed processing on these elevation rasters, however, becomes more burdensome as data resolution increases. As a result, processing of these datasets can be troublesome on standard desktop computers. This challenge has resulted in numerous works that aim to provide high performance computing solutions to large data, high resolution data, or both. This work proposes an efficient watershed delineation algorithm for use in desktop computing environments that leverages existing data, U.S. Geological Survey (USGS) National Hydrography Dataset Plus (NHD+), and open source software tools to construct watershed boundaries. This approach makes use of U.S. national-level hydrography data that has been precomputed using raster processing algorithms coupled with quality control routines. Our approach uses carefully arranged data and mathematical graph theory to traverse river networks and identify catchment boundaries. We demonstrate this new watershed delineation technique, compare its accuracy with traditional algorithms that derive watershed solely from digital elevation models, and then extend our approach to address subwatershed delineation. Our findings suggest that the open-source hierarchical network-based delineation procedure presented in the work is a promising approach to watershed delineation that can be used summarize publicly available datasets for hydrologic model input pre-processing. Through our analysis, we explore the benefits of reusing the NHD+ datasets for watershed delineation, and find that the our technique offers greater flexibility and extendability than traditional raster algorithms.
NASA Astrophysics Data System (ADS)
Ng, G. H. C.; Wickert, A. D.; McLaughlin, R.; La Frenierre, J.; Liess, S.; Saberi, L.
2016-12-01
Climate change projections show greater rates at higher elevations, making tropical glaciated regions some of the most vulnerable hydrological systems and the earliest windows into changing conditions in mountainous watersheds. Many of the subsistence agrarian communities below Volcán Chimborazo, Ecuador, experience water stress, heightening the urgency to understand the hydrological impacts of climate change. Previous hydrochemical and physical observations suggest that a significant fraction of glacial melt may first recharge underlying groundwater before discharging to streams at lower elevations. This has important implications for tracking hydrological response to climate change, due to differences in the spatiotemporal behavior of surface water vs. groundwater. However, differentiating meltwater-sourced and precipitation-sourced groundwater throughout the watershed poses a challenge in elucidating the influence of accelerated but finite glacial melt on streamflow. In addition to glacial melt, recently noted upslope vegetation migration on Chimborazo will likely complicate future predictions of water availability by influencing the relative amounts of groundwater sources and changing discharge through altered evapotranspiration along riparian zones. To investigate the roles of groundwater pathways and vegetation on glacial melt contributions to streamflow, we implement the coupled groundwater/rainfall-runoff model GSFLOW. We infer hydrogeological model inputs from geological maps of Chimborazo and vegetation properties from a combination of remotely sensed imagery and in-situ surveys. Dynamically downscaled meteorological state variables, checked against field data, force the model. Such a model enables the quantification of the current meltwater contribution to streamflow at critical water extraction points and allows us to probe potential meltwater and water resource changes under future climate change scenarios.
Evaluating Air-Quality Models: Review and Outlook.
NASA Astrophysics Data System (ADS)
Weil, J. C.; Sykes, R. I.; Venkatram, A.
1992-10-01
Over the past decade, much attention has been devoted to the evaluation of air-quality models with emphasis on model performance in predicting the high concentrations that are important in air-quality regulations. This paper stems from our belief that this practice needs to be expanded to 1) evaluate model physics and 2) deal with the large natural or stochastic variability in concentration. The variability is represented by the root-mean- square fluctuating concentration (c about the mean concentration (C) over an ensemble-a given set of meteorological, source, etc. conditions. Most air-quality models used in applications predict C, whereas observations are individual realizations drawn from an ensemble. For cC large residuals exist between predicted and observed concentrations, which confuse model evaluations.This paper addresses ways of evaluating model physics in light of the large c the focus is on elevated point-source models. Evaluation of model physics requires the separation of the mean model error-the difference between the predicted and observed C-from the natural variability. A residual analysis is shown to be an elective way of doing this. Several examples demonstrate the usefulness of residuals as well as correlation analyses and laboratory data in judging model physics.In general, c models and predictions of the probability distribution of the fluctuating concentration (c), (c, are in the developmental stage, with laboratory data playing an important role. Laboratory data from point-source plumes in a convection tank show that (c approximates a self-similar distribution along the plume center plane, a useful result in a residual analysis. At pmsent,there is one model-ARAP-that predicts C, c, and (c for point-source plumes. This model is more computationally demanding than other dispersion models (for C only) and must be demonstrated as a practical tool. However, it predicts an important quantity for applications- the uncertainty in the very high and infrequent concentrations. The uncertainty is large and is needed in evaluating operational performance and in predicting the attainment of air-quality standards.
Persistence of artificial sweeteners in a 15-year-old septic system plume
NASA Astrophysics Data System (ADS)
Robertson, W. D.; Van Stempvoort, D. R.; Solomon, D. K.; Homewood, J.; Brown, S. J.; Spoelstra, J.; Schiff, S. L.
2013-01-01
SummaryGroundwater contamination from constituents such as NO3-, often occurs where multiple sources are present making source identification difficult. This study examines a suite of major ions and trace organic constituents within a well defined septic system plume in southern Ontario, Canada (Long Point site) for their potential use as wastewater tracers. The septic system has been operating for 20 years servicing a large, seasonal-use campground and tritium/helium age dating indicates that the 200 m long monitored section of the plume is about 15 years old. Four parameters are elevated along the entire length of the plume as follows; the mean electrical conductivity value (EC) in the distal plume zone is 926 μS/cm which is 74% of the mean value below the tile bed, Na+ (14.7 mg/L) is 43%, an artificial sweetener, acesulfame (12.1 μg/L) is 23% and Cl- (71.5 mg/L) is 137%. EC and Cl- appear to be affected by dispersive dilution with overlying background groundwater that has lower EC but has locally higher Cl- as result of the use of a dust suppressant (CaCl2) in the campground. Na+, in addition to advective dilution, could be depleted by weak adsorption. Acesulfame, in addition to the above processes could be influenced by increasing consumer use in recent years. Nonetheless, both Na+ and acesulfame remain elevated throughout the plume by factors of more than 100 and 1000 respectively compared to background levels, and are strong indicators of wastewater impact at this site. EC and Cl- are less useful because their contrast with background values is much less (EC) or because other sources are present (Cl-). Nutrients (NO3-, NH4+, PO43-, K+) and pathogens (Escherichia coli) do not persist in the distal plume zone and are less useful as wastewater indicators here. The artificial sweetener, acesulfame, has persisted at high concentrations in the Long Point plume for at least 15 years (and this timing agrees with tritium/helium-3 dating) and this compound likely occurs at uniquely high concentrations in domestic wastewater. As such, it holds considerable promise as a powerful new tracer of wastewater impact in groundwater.
Sugar Price Supports and Taxation: A Public Health Policy Paradox.
Dilk, Abby; Savaiano, Dennis A
2017-05-01
Domestic US sugar production has been protected by government policy for the past 82 years, resulting in elevated domestic prices and an estimated annual (2013) $1.4 billion dollar "tax" on consumers. These elevated prices and the simultaneous federal support for domestic corn production have ensured a strong market for high-fructose corn syrup. Americans have dramatically increased their consumption of caloric sweeteners during the same period. Consumption of "empty" calories (ie, foods with low-nutrient/high-caloric density)-sugar and high-fructose corn syrup being the primary sources-is considered by most public health experts to be a key contributing factor to the rise in obesity. There have been substantial efforts to tax sugar-sweetened beverages (SSBs) to both reduce consumption and provide a source of funds for nutrition education, thereby emulating the tobacco tax model. Volume-based SSB taxes levy the tax rate per ounce of liquid, where some are only imposed on beverages with added sugar content exceeding a set threshold. Nonetheless, volume-based taxes have significant limitations in encouraging consumers to reduce their caloric intake due to a lack of transparency at the point of purchase. Thus, it is hypothesized that point-of-purchase, nutrient-specific excise taxes on SSBs would be more effective at reducing sugar consumption. However, all SSB taxes are limited by the possibility that consumers may compensate their decreased intake from SSBs with other high-calorie junk foods. Furthermore, there are no existing studies to provide evidence on how SSB taxes will impact obesity rates in the long term. The paradox of sugar prices is that Americans have paid higher prices for sugar to protect domestic production for more than 80 years, and now, Americans are being asked to pay even more to promote public health. The effective use of sugar taxes should be considered based on their merits in reducing sugar consumption and making available a new source of funds to support nutrition education, not on lobbying efforts by the food industry or sugar and corn producers.
Wind-tunnel Modelling of Dispersion from a Scalar Area Source in Urban-Like Roughness
NASA Astrophysics Data System (ADS)
Pascheke, Frauke; Barlow, Janet F.; Robins, Alan
2008-01-01
A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T / U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness.
NASA Astrophysics Data System (ADS)
Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.
2016-12-01
Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.
NASA Astrophysics Data System (ADS)
Martin, Rachael; Dowling, Kim
2013-11-01
Significant global consumption of spring and mineral water is fuelled by perceived therapeutic and medicinal qualities, cultural habits and taste. The Central Victorian Mineral Springs Region, Australia comprises approximately 100 naturally effervescent, cold, high CO2 content springs with distinctive tastes linked to a specific spring or pump. The area has a rich settlement history. It was first settled by miners in the 1840s closely followed by the first commercial operations of a health resort 1895. The landscape is clearly affected by gold mining with geographically proximal mine waste, mullock heaps or tailings. Repeated mineral springs sampling since 1985 has revealed elevated arsenic concentrations. In 1985 an arsenic concentration five times the current Australian Drinking Water Guideline was recorded at a popular tourist spring site. Recent sampling and analyses have confirmed elevated levels of heavy metals/metalloids, with higher concentrations occurring during periods of low rainfall. Despite the elevated levels, mineral water source points remain accessible to the public with some springs actively promoting the therapeutic benefits of the waters. In light of our analysis, the risk to consumers (some of whom are likely to be negatively health-affected or health-compromised) needs to be considered with a view to appropriate and verified analyses made available to the public.
Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.
2002-01-01
Arsenicals have been used extensively in agriculture in the United States as insecticides and herbicides. Mono- and disodium methylarsonate and dimethylarsinic acid are organoarsenicals used to control weeds in cotton fields and as defoliation agents applied prior to cotton harvesting. Because the toxicity of most organoarsenicals is less than that of inorganic arsenic species, the introduction of these compounds into the environment might seem benign. However, biotic and abiotic degradation reactions can produce more problematic inorganic forms of arsenic, such as arsenite [As(III)] and arsenate [As(V)]. This study investigates the occurrences of these compounds in samples of soil and associated surface and groundwaters. Preliminary results show that surface water samples from cotton-producing areas have elevated concentrations of methylarsenic species (>10 ??g of As/L) compared to background areas (<1 ??g of As/L). Species transformations also occur between surface waters and adjacent soils and groundwaters, which also contain elevated arsenic. The data indicate that point sources of arsenic related to agriculture might be responsible for increased arsenic concentrations in local irrigation wells, although the elevated concentrations did not exceed the new (2002) arsenic maximum contaminant level of 10 ??g/L in any of the wells sampled thus far.
Objected-oriented remote sensing image classification method based on geographic ontology model
NASA Astrophysics Data System (ADS)
Chu, Z.; Liu, Z. J.; Gu, H. Y.
2016-11-01
Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.
Maslov, Mikhail Y.; Edelman, Elazer R.; Pezone, Matthew J.; Wei, Abraham E.; Wakim, Matthew G.; Murray, Michael R.; Tsukada, Hisashi; Gerogiannis, Iraklis S.; Groothuis, Adam; Lovich, Mark A.
2014-01-01
Prior studies in small mammals have shown that local epicardial application of inotropic compounds drives myocardial contractility without systemic side effects. Myocardial capillary blood flow, however, may be more significant in larger species than in small animals. We hypothesized that bulk perfusion in capillary beds of the large mammalian heart enhances drug distribution after local release, but also clears more drug from the tissue target than in small animals. Epicardial (EC) drug releasing systems were used to apply epinephrine to the anterior surface of the left heart of swine in either point-sourced or distributed configurations. Following local application or intravenous (IV) infusion at the same dose rates, hemodynamic responses, epinephrine levels in the coronary sinus and systemic circulation, and drug deposition across the ventricular wall, around the circumference and down the axis, were measured. EC delivery via point-source release generated transmural epinephrine gradients directly beneath the site of application extending into the middle third of the myocardial thickness. Gradients in drug deposition were also observed down the length of the heart and around the circumference toward the lateral wall, but not the interventricular septum. These gradients extended further than might be predicted from simple diffusion. The circumferential distribution following local epinephrine delivery from a distributed source to the entire anterior wall drove drug toward the inferior wall, further than with point-source release, but again, not to the septum. This augmented drug distribution away from the release source, down the axis of the left ventricle, and selectively towards the left heart follows the direction of capillary perfusion away from the anterior descending and circumflex arteries, suggesting a role for the coronary circulation in determining local drug deposition and clearance. The dominant role of the coronary vasculature is further suggested by the elevated drug levels in the coronary sinus effluent. Indeed, plasma levels, hemodynamic responses, and myocardial deposition remote from the point of release were similar following local EC or IV delivery. Therefore, the coronary vasculature shapes the pharmacokinetics of local myocardial delivery of small catecholamine drugs in large animal models. Optimal design of epicardial drug delivery systems must consider the underlying bulk capillary perfusion currents within the tissue to deliver drug to tissue targets and may favor therapeutic molecules with better potential retention in myocardial tissue. PMID:25234821
Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China.
Song, Shiming; Mathur, Ryan; Ruiz, Joaquin; Chen, Dandan; Allin, Nicholas; Guo, Kunyi; Kang, Wenkai
2016-02-15
Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS2 has a 'tight' cluster of Cu isotope values (-0.15‰ to +1.65‰; +0.37 ± 0.6‰, 1σ, n=10), and the second mineral source, pyrite (FeS2), has a much larger range of Cu isotope values (-4‰ to +11.9‰; 2.7 ± 4.3‰, 1σ, n=16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately +1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (<0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ(65)Cu ranging between +2 to +5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Al-Khaza'leh, Ja'far Mansur; Reiber, Christoph; Al Baqain, Raid; Valle Zárate, Anne
2015-01-01
Goat production is an important agricultural activity in Jordan. The country is one of the poorest countries in the world in terms of water scarcity. Provision of sufficient quantity of good quality drinking water is important for goats to maintain feed intake and production. This study aimed to evaluate the seasonal availability and quality of goats' drinking water sources, accessibility, and utilization in different zones in the Karak Governorate in southern Jordan. Data collection methods comprised interviews with purposively selected farmers and quality assessment of water sources. The provision of drinking water was considered as one of the major constraints for goat production, particularly during the dry season (DS). Long travel distances to the water sources, waiting time at watering points, and high fuel and labor costs were the key reasons associated with the problem. All the values of water quality (WQ) parameters were within acceptable limits of the guidelines for livestock drinking WQ with exception of iron, which showed slightly elevated concentration in one borehole source in the DS. These findings show that water shortage is an important problem leading to consequences for goat keepers. To alleviate the water shortage constraint and in view of the depleted groundwater sources, alternative water sources at reasonable distance have to be tapped and monitored for water quality and more efficient use of rainwater harvesting systems in the study area is recommended.
Guy, Kristy K.; Plant, Nathaniel G.
2014-01-01
This Data Series Report contains lidar elevation data collected on July 12 and 14, 2013, for Dauphin Island, Alabama, and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. Classified point cloud data—data points described in three dimensions—in lidar data exchange format (LAS) and bare earth digital elevation models (DEMs) in ERDAS Imagine raster format (IMG) are available as downloadable files. Photo Science, Inc., was contracted by the U.S. Geological Survey (USGS) to collect and process these data. The lidar data were acquired at a horizontal spacing (or nominal pulse spacing) of 1 meter (m) or less. The USGS surveyed points within the project area from July 14–23, 2013, for use in ground control and accuracy assessment. Photo Science, Inc., calculated a vertical root mean square error (RMSEz) of 0.012 m by comparing 10 surveyed points to an interpolated elevation surface of unclassified lidar data. The USGS also checked the data using 80 surveyed points and unclassified lidar point elevation data and found an RMSEz of 0.073 m. The project specified an RMSEz of 0.0925 m or less. The lidar survey was acquired to document the short- and long-term changes of several different barrier island systems. Specifically, this survey supports detailed studies of Chandeleur and Dauphin Islands that resolve annual changes in beaches, berms and dunes associated with processes driven by storms, sea-level rise, and even human restoration activities. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.
Ebert, Sandra; Zeretzke, Moritz; Nau, Roland; Michel, Uwe
2007-02-21
Activin A levels are elevated in the cerebrospinal fluid (CSF) of patients with meningitis and in the sera of patients with sepsis. The source(s) of the elevated concentrations of activin A in CSF and serum have not yet been discovered. Here we demonstrate that primary mouse microglial cells and peritoneal macrophages release activin A after treatment with agonists of Toll-like receptor (TLR) 2, 4, and 9. These findings provide further evidence for a role of activin in the innate immune response and suggest that microglial cells and macrophages are a source of elevated activin A concentrations observed in the CSF during bacterial meningitis and in the systemic circulation during sepsis.
Chirico, Peter G.
2005-01-01
EXPLANATION The purpose of developing a new 10m resolution digital elevation model (DEM) of the Charleston Region was to more accurately depict geologic structure, surfical geology, and landforms of the Charleston County Region. Previously, many areas northeast and southwest of Charleston were originally mapped with a 20 foot contour interval. As a result, large areas within the National Elevation Dataset (NED) depict flat terraced topography where there was a lack of higher resolution elevation data. To overcome these data voids, the new DEM is supplemented with additional elevation data and break-lines derived from aerial photography and topographic maps. The resultant DEM is stored as a raster grid at uniform 10m horizontal resolution. The elevation model contained in this publication was prodcued utilizing the ANUDEM algorthim. ANUDEM allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the development of the elevation model. A preliminary statistical analysis using over 788 vertical elevation check points, primarily located in the northeastern part of the study area, derived from USGS 7.5 Minute Topographic maps reveals that the final DEM, has a vertical accuracy of ?3.27 meters. A table listing the elevation comparison between the elevation check points and the final DEM is provided.
p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrand, Jerome; Xu, Beibei; Morrissy, Steve
2011-11-15
Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significantmore » changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.« less
Not Available
1981-01-29
Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.
Tokarz, Richard D.
1983-01-01
Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.
Analytical Incorporation of Velocity Parameters into Ice Sheet Elevation Change Rate Computations
NASA Astrophysics Data System (ADS)
Nagarajan, S.; Ahn, Y.; Teegavarapu, R. S. V.
2014-12-01
NASA, ESA and various other agencies have been collecting laser, optical and RADAR altimetry data through various missions to study the elevation changes of the Cryosphere. The laser altimetry collected by various airborne and spaceborne missions provides multi-temporal coverage of Greenland and Antarctica since 1993 to now. Though these missions have increased the data coverage, considering the dynamic nature of the ice surface, it is still sparse both spatially and temporally for accurate elevation change detection studies. The temporal and spatial gaps are usually filled by interpolation techniques. This presentation will demonstrate a method to improve the temporal interpolation. Considering the accuracy, repeat coverage and spatial distribution, the laser scanning data has been widely used to compute elevation change rate of Greenland and Antarctica ice sheets. A major problem with these approaches is non-consideration of ice sheet velocity dynamics into change rate computations. Though the correlation between velocity and elevation change rate have been noticed by Hurkmans et al., 2012, the corrections for velocity changes were applied after computing elevation change rates by assuming linear or higher polynomial relationship. This research will discuss the possibilities of parameterizing ice sheet dynamics as unknowns (dX and dY) in the adjustment mathematical model that computes elevation change (dZ) rates. It is a simultaneous computation of changes in all three directions of the ice surface. Also, the laser points between two time epochs in a crossover area have different distribution and count. Therefore, a registration method that does not require point-to-point correspondence is required to recover the unknown elevation and velocity parameters. This research will experiment the possibilities of registering multi-temporal datasets using volume minimization algorithm, which determines the unknown dX, dY and dZ that minimizes the volume between two or more time-epoch point clouds. In order to make use of other existing data as well as to constrain the adjustment, InSAR velocity will be used as initial values for the parameters dX and dY. The presentation will discuss the results of analytical incorporation of parameters and the volume based registration method for a test site in Greenland.
Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis.
NASA Technical Reports Server (NTRS)
Pike, R. J.; Wilson, S. E.
1971-01-01
Mathematical proof establishes identity of hypsometric integral and elevation-relief ratio, two quantitative topographic descriptors developed independently of one another for entirely different purposes. Operationally, values of both measures are in excellent agreement for arbitrarily bounded topographic samples, as well as for low-order fluvial watersheds. By using a point-sampling technique rather than planimetry, elevation-relief ratio (defined as mean elevation minus minimum elevation divided by relief) is calculated manually in about a third of the time required for the hypsometric integral.
Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments.
Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P
2010-02-01
Diffusive equilibration in thin films was used to study the cycling of phosphorus and nitrogen at the sediment-water interface in situ and with minimal disturbance to redox conditions. Soluble reactive phosphate (SRP), nitrate, nitrite, ammonium, sulfate, iron, and manganese profiles were measured in a rural stream, 12 m upstream, adjacent to, and 8 m downstream of a septic tank discharge. Sewage fungus adjacent to the discharge resulted in anoxic conditions directly above the sediment. SRP and ammonium increased with depth through the fungus layer to environmentally significant concentrations (440 and 1800 microM, respectively) due to release at the sediment surface. This compared to only 0.8 microM of SRP and 2.0 microM of ammonium in the water column upstream of the discharge. Concomitant removal of ammonium, nitrite and nitrate within 0.5 cm below the fungus-water interface provided evidence for anaerobic ammonium oxidation (anammox). "Hotspots" of porewater SRP (up to 350 microM) at the downstream site demonstrated potential in-stream storage of the elevated P concentrations from the effluent. These results provide direct in situ evidence of phosphorus and nitrogen release from river-bed sediments under anoxic conditions created by sewage-fungus, and highlight the wider importance of redox conditions and rural point sources on in-stream nutrient cycling.
27 CFR 9.183 - Yamhill-Carlton District.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the 200-foot elevation line's intersection with Spring Hill Road, section 58, T2S, R3W (Laurelwood Quadrangle); then (2) Proceed south 1.1 miles on Spring Hill Road, which becomes North Valley Road at... elevation line's intersection with Stag Hollow Road, north of Hendricks Road and 190-foot elevation point...
Schmitt, C.J.; Lemly, A.D.; Winger, P.V.
1993-01-01
Data from several sources were collated and analyzed by correlation, regression, and principal components analysis to define surrrogate variables for use in the brook trout (Salvelinus fontinalis) habitat suitability index (HSI) model, and to evaluate the applicability of the model for assessing habitat in high elevation streams of the southern Blue Ridge Province (SBRP). In all data sets examined, pH and alkalinity were highly correlated, and both declined with increasing elevation; however, the magnitude of the decline varied with underlying rock formations and other factors, thereby restricting the utility of elevation as a surrogate for pH. In the data sets that contained biological information, brook trout abundance (as biomass, density, or both) tended to increase with elevation and decrease with the abundance of rainbow trout (Oncorhynchus mykiss), and was not significantly correlated (P >0.05) with the abundance of most benthic macroinvertebrate taxa normally construed as important in the diet of brook trout. Using multiple linear regression, the authors formulated an alternative HSI model A? based on point estimates of gradient, pH, elevation, stream width, and rainbow trout density A? which explained 40 to 50 percent of the variance in brook trout density in 256 stream reaches. Although logically developed, the present U.S. Fish and Wildlife Service HSI model, proposed in 1982, seems deficient in several areas, especially when applied to SBRP streams. The authors recommend that the water quality component in the model be updated and reevaluated, focusing on the differential sensitivities of each life stage, the stochastic nature of the water quality variables, and the possible existence of habitat requirements that differ among brook trout strains.
132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, ...
132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, BUDOCKS, OCTOBER 14, 1943. QP ACC 9689. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI
145. ELECTRONICS SHOP (BUILDING 60), FIRST FLOOR PLAN AND ELEVATION, ...
145. ELECTRONICS SHOP (BUILDING 60), FIRST FLOOR PLAN AND ELEVATION, CHARLES A. MAGUIRE, MARCH 25, 1952. PWD 10332. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI
Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.
2016-01-01
Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites. PMID:27991554
John H. Fryer; F. Thomas Ledig
1972-01-01
Balsam fir seedlings were grown under uniform conditions from seed collected along an elevational gradient in the White Mountains of New Hampshire. Photosynthetic temperature optimum of the seedlings decreased with increasing elevation of the seed source. The change in temperature optimum with elevation was similar to the adiabatic lapse rate, suggesting a precise...
NASA Technical Reports Server (NTRS)
Welch, Bryan W.; Piasecki, Marie T.; Schrage, Dean S.
2015-01-01
The Space Communications and Navigation (SCaN) Testbed project completed installation and checkout testing of a new S-Band ground station at the NASA Glenn Research Center in Cleveland, Ohio in 2015. As with all ground stations, a key alignment process must be conducted to obtain offset angles in azimuth (AZ) and elevation (EL). In telescopes with AZ-EL gimbals, this is normally done with a two-star alignment process, where telescope-based pointing vectors are derived from catalogued locations with the AZ-EL bias angles derived from the pointing vector difference. For an antenna, the process is complicated without an optical asset. For the present study, the solution was to utilize the gimbal control algorithms closed-loop tracking capability to acquire the peak received power signal automatically from two distinct NASA Tracking and Data Relay Satellite (TDRS) spacecraft, without a human making the pointing adjustments. Briefly, the TDRS satellite acts as a simulated optical source and the alignment process proceeds exactly the same way as a one-star alignment. The data reduction process, which will be discussed in the paper, results in two bias angles which are retained for future pointing determination. Finally, the paper compares the test results and provides lessons learned from the activity.
Closed-Form 3-D Localization for Single Source in Uniform Circular Array with a Center Sensor
NASA Astrophysics Data System (ADS)
Bae, Eun-Hyon; Lee, Kyun-Kyung
A novel closed-form algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of a single source in a uniform circular array (UCA) with a center sensor. Based on the centrosymmetry of the UCA and noncircularity of the source, the proposed algorithm decouples and estimates the 2-D direction of arrival (DOA), i.e. azimuth and elevation angles, and then estimates the range of the source. Notwithstanding a low computational complexity, the proposed algorithm provides an estimation performance close to that of the benchmark estimator 3-D MUSIC.
Estimating Coastal Digital Elevation Model (DEM) Uncertainty
NASA Astrophysics Data System (ADS)
Amante, C.; Mesick, S.
2017-12-01
Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.
1. Occident Terminal Elevator and annex, (l)1930/workhouse and annex 1925 ...
1. Occident Terminal Elevator and annex, (l)-1930/workhouse and annex 1925 with train shed Peavey Duluth Terminal Annex on left 1930-workhouse 1908 (white silos). - Occident Terminal Elevator & Storage Annex, South side of second slip, north from outer end of Rice's Point, east of Garfield Avenue, Duluth, St. Louis County, MN
Bio-based thermosetting copolymers of eugenol and tung oil
NASA Astrophysics Data System (ADS)
Handoko, Harris
There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.
Poppenga, Sandra K.; Worstell, Bruce B.
2016-01-01
Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal regions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... from an affected facility at a grain elevator. (i) Capture system means the equipment such as sheds..., railcar, barge, or ship. (l) Grain handling operations include bucket elevators or legs (excluding legs... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Grain Elevators § 60.301 Definitions. As...
Code of Federal Regulations, 2011 CFR
2011-07-01
... from an affected facility at a grain elevator. (i) Capture system means the equipment such as sheds..., railcar, barge, or ship. (l) Grain handling operations include bucket elevators or legs (excluding legs... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Grain Elevators § 60.301 Definitions. As...
Code of Federal Regulations, 2012 CFR
2012-07-01
... from an affected facility at a grain elevator. (i) Capture system means the equipment such as sheds..., railcar, barge, or ship. (l) Grain handling operations include bucket elevators or legs (excluding legs... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Grain Elevators § 60.301 Definitions. As...
Code of Federal Regulations, 2013 CFR
2013-07-01
... from an affected facility at a grain elevator. (i) Capture system means the equipment such as sheds..., railcar, barge, or ship. (l) Grain handling operations include bucket elevators or legs (excluding legs... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Grain Elevators § 60.301 Definitions. As...
Code of Federal Regulations, 2010 CFR
2010-07-01
... from an affected facility at a grain elevator. (i) Capture system means the equipment such as sheds..., railcar, barge, or ship. (l) Grain handling operations include bucket elevators or legs (excluding legs... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Grain Elevators § 60.301 Definitions. As...
Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission
NASA Technical Reports Server (NTRS)
Bents, D. J.
1989-01-01
Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near-term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for LEO applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated s
NASA Astrophysics Data System (ADS)
Bunds, M. P.
2017-12-01
Point clouds are a powerful data source in the geosciences, and the emergence of structure-from-motion (SfM) photogrammetric techniques has allowed them to be generated quickly and inexpensively. Consequently, applications of them as well as methods to generate, manipulate, and analyze them warrant inclusion in undergraduate curriculum. In a new course called Geospatial Field Methods at Utah Valley University, students in small groups use SfM to generate a point cloud from imagery collected with a small unmanned aerial system (sUAS) and use it as a primary data source for a research project. Before creating their point clouds, students develop needed technical skills in laboratory and class activities. The students then apply the skills to construct the point clouds, and the research projects and point cloud construction serve as a central theme for the class. Intended student outcomes for the class include: technical skills related to acquiring, processing, and analyzing geospatial data; improved ability to carry out a research project; and increased knowledge related to their specific project. To construct the point clouds, students first plan their field work by outlining the field site, identifying locations for ground control points (GCPs), and loading them onto a handheld GPS for use in the field. They also estimate sUAS flight elevation, speed, and the flight path grid spacing required to produce a point cloud with the resolution required for their project goals. In the field, the students place the GCPs using handheld GPS, and survey the GCP locations using post-processed-kinematic (PPK) or real-time-kinematic (RTK) methods. The students pilot the sUAS and operate its camera according to the parameters that they estimated in planning their field work. Data processing includes obtaining accurate locations for the PPK/RTK base station and GCPs, and SfM processing with Agisoft Photoscan. The resulting point clouds are rasterized into digital surface models, assessed for accuracy, and analyzed in Geographic Information System software. Student projects have included mapping and analyzing landslide morphology, fault scarps, and earthquake ground surface rupture. Students have praised the geospatial skills they learn, whereas helping them stay on schedule to finish their projects is a challenge.
NASA Astrophysics Data System (ADS)
Tomljenovic, Ivan; Tiede, Dirk; Blaschke, Thomas
2016-10-01
In the past two decades Object-Based Image Analysis (OBIA) established itself as an efficient approach for the classification and extraction of information from remote sensing imagery and, increasingly, from non-image based sources such as Airborne Laser Scanner (ALS) point clouds. ALS data is represented in the form of a point cloud with recorded multiple returns and intensities. In our work, we combined OBIA with ALS point cloud data in order to identify and extract buildings as 2D polygons representing roof outlines in a top down mapping approach. We performed rasterization of the ALS data into a height raster for the purpose of the generation of a Digital Surface Model (DSM) and a derived Digital Elevation Model (DEM). Further objects were generated in conjunction with point statistics from the linked point cloud. With the use of class modelling methods, we generated the final target class of objects representing buildings. The approach was developed for a test area in Biberach an der Riß (Germany). In order to point out the possibilities of the adaptation-free transferability to another data set, the algorithm has been applied ;as is; to the ISPRS Benchmarking data set of Toronto (Canada). The obtained results show high accuracies for the initial study area (thematic accuracies of around 98%, geometric accuracy of above 80%). The very high performance within the ISPRS Benchmark without any modification of the algorithm and without any adaptation of parameters is particularly noteworthy.
Effects of elevation and seed source on tracheid length in young ponderosa pine
R. M. Echols
1973-01-01
Tracheid lengths in 30-year-old ponderosa pine progeny test plantations in the central Sierra Nevada of California were analyzed for effects of (a) elevation of seed parents and (b) elevation and location of test sites. The influence of elevation of seed parents on progeny tracheid length was not significant. Plantation location was significant, but interaction between...
Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.
2010-11-30
The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, anmore » intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.« less
NASA Technical Reports Server (NTRS)
Muller, Jordan R.; Harding, David J.
2006-01-01
Inverse modeling of slip on the Seattle fault system, constrained by elevations of uplifted marine terraces, provides a well-constrained estimate of the magnitude of the largest known upper-crust earthquake in the Puget Sound region within the past 2500 years. The terrace elevations that constrain the slip inversion are extracted from elevation and slope images generated from LIDAR surveys of the Puget Sound collected in 1996-2002. The images reveal a single uplifted terrace, dated to 1000 cal yr B.P. near Restoration Point, which is morphologically continuous along the southern shoreline of Bainbridge Island and is visible at comparable elevations within a 25 km by 12 km region encompassing coastlines of West Seattle, Bremerton, East Bremerton, Port Orchard, and Waterman Point. Considering sea level changes since A.D. 900, the maximum uplift magnitudes of shoreline inner edges approach 9 m and are located at the southernmost coastline of Bainbridge Island and the northern tip of Waterman Point, while tilt magnitudes are modest - approaching 0.1 degrees. For each of several different Seattle fault geometry interpretations, we use a linear inversion code to solve for distributed slip on the fault surfaces. Moment magnitudes of 7.2 to 7.4 are calculated directly from the different slip solutions. In general, the greatest slip of the A.D. 900 event was confined to the frontal thrust of the Seattle fault system and was centered beneath Puget Sound between Restoration Point and Alki Point.
Hämmerle, Martin; Höfle, Bernhard
2014-01-01
3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383
Digital terrain tapes: user guide
,
1980-01-01
DMATC's digital terrain tapes are a by-product of the agency's efforts to streamline the production of raised-relief maps. In the early 1960's DMATC developed the Digital Graphics Recorder (DGR) system that introduced new digitizing techniques and processing methods into the field of three-dimensional mapping. The DGR system consisted of an automatic digitizing table and a computer system that recorded a grid of terrain elevations from traces of the contour lines on standard topographic maps. A sequence of computer accuracy checks was performed and then the elevations of grid points not intersected by contour lines were interpolated. The DGR system produced computer magnetic tapes which controlled the carving of plaster forms used to mold raised-relief maps. It was realized almost immediately that this relatively simple tool for carving plaster molds had enormous potential for storing, manipulating, and selectively displaying (either graphically or numerically) a vast number of terrain elevations. As the demand for the digital terrain tapes increased, DMATC began developing increasingly advanced digitizing systems and now operates the Digital Topographic Data Collection System (DTDCS). With DTDCS, two types of data elevations as contour lines and points, and stream and ridge lines are sorted, matched, and resorted to obtain a grid of elevation values for every 0.01 inch on each map (approximately 200 feet on the ground). Undefined points on the grid are found by either linear or or planar interpolation.
Utah FORGE Gravity Data Shapefile
Joe Moore
2016-03-13
This is a zipped GIS compatible shapefile of gravity data points used in the Milford, Utah FORGE project as of March 21st, 2016. The shapefile is native to ArcGIS, but can be used with many GIS software packages. Additionally, there is a .dbf (dBase) file that contains the dataset which can be read with Microsoft Excel. The Data was downloaded from the PACES (Pan American Center for Earth and Environmental Studies) hosted by University of Texas El Paso (http://research.utep.edu/Default.aspx?alias=research.utep.edu/paces) Explanation:Source: data source code if available LatNAD83: latitude in NAD83 [decimal degrees] LonNAD83: longitude in NAD83 [decimal degrees]zWGS84: elevation in WGS84 (ellipsoidal) [m]OBSless976: observed gravity minus 976000 mGalIZTC: inner zone terrain correction [mGal]OZTC: outer zone terrain correction [mGal]FA: Free Air anomaly value [mGal]CBGA: Complete Bouguer gravity anomaly value [mGal
Synder, J W; Mains, C N; Anderson, R E; Bissonnette, G K
1995-01-01
The water quality of 24 rural, domestic groundwater supplies treated with point-of-use, powdered activated carbon (PAC) filters was monitored to determine how such treatment might impact the bacteriological quality of private, residential drinking water supplies. Heterotrophic-plate-count (HPC) and total coliform analyses were performed on raw, PAC-treated, and overnight or stagnant (first-draw) PAC-treated water samples. Densities of HPC bacteria were elevated by 0.86 and 0.20 orders of magnitude for spring and well water systems, respectively, in PAC-treated effluents following overnight stagnation compared with levels in untreated treated effluents. Densities of HPC bacteria in PAC-treated effluents were significantly reduced (P < 0.01) below influent levels, however, after the point-of-use device was flushed for 2 min. While PAC significantly reduced the number of coliforms in product waters (P < 0.01), these indicator organisms were still detected in some effluents. Seasonal variations were evident in microbial counts from spring but not well water systems. It appears that aside from periods following stagnant-water use, such as overnight, PAC treatment does not compromise the bacteriological quality of drinking water obtained from underground sources. PMID:8534096
Topographic mapping using a monopulse SAR system
NASA Technical Reports Server (NTRS)
Zink, M.; Oettl, H.; Freeman, A.
1993-01-01
Terrain height variations in mountainous areas cause two problems in the radiometric correction of SAR images: the first being that the wrong elevation angle may be used in correcting for the radiometric variation of the antenna pattern; the second that the local incidence angle used in correcting the projection of the pixel area from slant range to ground range coordinates may vary from that given by the flat earth assumption. We propose a novel design of a SAR system which exploits the monopulse principle to determine the elevation angle and thus the height at the different parts of the image. The key element of such a phase monopulse system is an antenna, which can be divided into a lower and upper half in elevation using a monopulse comparator. In addition to the usual sum pattern, the elevation difference pattern can be generated by a -pi phase shift on one half of the antenna. From the ratios of images radiometrically modulated by the difference and sum antenna pattern in cross-track direction, we can derive the appropriate elevation angle at any point in the image. Together with the slant range we can calculate the height of the platform above this point using information on the antenna pointing and the platform attitude. This operation, repeated at many locations throughout the image, allows us to build up a topographic map of the height of the aircraft above each location. Inversion of this map, using the precisely determined aircraft altitude and the accurate flight path, leads to the actual topography of the imaged surface. The precise elevation of one point in the image could also be used to convert the height map to a topographic map. In this paper, we present design considerations for a corresponding airborne SAR system in X-Band and give estimates of the error due to system noise and azimuth ambiguities as well as the expected performance and precision in topographic mapping.
Kenney, Terry A.
2010-01-01
Operational procedures at U.S. Geological Survey gaging stations include periodic leveling checks to ensure that gages are accurately set to the established gage datum. Differential leveling techniques are used to determine elevations for reference marks, reference points, all gages, and the water surface. The techniques presented in this manual provide guidance on instruments and methods that ensure gaging-station levels are run to both a high precision and accuracy. Levels are run at gaging stations whenever differences in gage readings are unresolved, stations may have been damaged, or according to a pre-determined frequency. Engineer's levels, both optical levels and electronic digital levels, are commonly used for gaging-station levels. Collimation tests should be run at least once a week for any week that levels are run, and the absolute value of the collimation error cannot exceed 0.003 foot/100 feet (ft). An acceptable set of gaging-station levels consists of a minimum of two foresights, each from a different instrument height, taken on at least two independent reference marks, all reference points, all gages, and the water surface. The initial instrument height is determined from another independent reference mark, known as the origin, or base reference mark. The absolute value of the closure error of a leveling circuit must be less than or equal to ft, where n is the total number of instrument setups, and may not exceed |0.015| ft regardless of the number of instrument setups. Closure error for a leveling circuit is distributed by instrument setup and adjusted elevations are determined. Side shots in a level circuit are assessed by examining the differences between the adjusted first and second elevations for each objective point in the circuit. The absolute value of these differences must be less than or equal to 0.005 ft. Final elevations for objective points are determined by averaging the valid adjusted first and second elevations. If final elevations indicate that the reference gage is off by |0.015| ft or more, it must be reset.
Wang, Lijuan; Feng, Liangshu; Yao, Yan; Wang, Yuzhi; Chen, Ying; Feng, Jiachun; Xing, Yingqi
2015-01-01
Ultrasonography of the optic nerve sheath diameter (ONSD) is a non-invasive and rapid method that might be helpful in the identification of increased intracranial pressure (ICP). The use of an ONSD greater than 5 mm on ultrasound as an indicator of increased ICP in a Caucasian population has been studied. However, the cut-off point of this predictor in Chinese patients has not been established. Thus, we conducted this study to identify the ONSD criterion for the detection of elevated opening pressure on lumbar puncture (LP) in a Chinese population and to investigate the influencing factors. This study was a blind cross-sectional study. Patients who presented with suspected increased ICP were included. The opening pressure on LP of each participant was confirmed. We analyzed the clinical differences between the groups of patients with abnormal and normal opening pressures on LP. A receiver operating characteristic curve was constructed to determine the ONSD cut-off point for the identification of abnormal opening pressure on LP. In total, 279 patients were recruited, and 101 patients presented with elevated opening pressure on LP. ONSD was a significant independent predictor of elevated opening pressure on LP (p<0.001). However, no statistical significance was observed regarding the factors that might have affected this relationship including gender, age, body mass index, waistline, head circumference, hypertension and pathological subtype. The ONSD cut-off point for the identification of elevated opening pressure on LP was 4.1 mm; this cut-off yielded a sensitivity of 95% and a specificity of 92%. ONSD is a strong and accurate predictor of elevated opening pressure on LP. The cut-off point of this predictor in a Chinese population was remarkably lower than that found in a Caucasian population. Thus, ethnic differences should be noted when using the ONSD as an indicator of increased ICP.
NASA Astrophysics Data System (ADS)
Bowers, R. M.; Mccubbin, I. B.; Hallar, A. G.; Fierer, N.
2012-12-01
Airborne bacteria are a large component of the near-surface atmospheric aerosol; however we know surprisingly little about their spatiotemporal dynamics and even less about their distributions at high-elevation. With this work, we describe seasonal shifts in bacterial abundances, total particle abundances, and bacterial community structure at a high-elevation research station located in Colorado, USA. In addition, we describe the unique composition of these high-elevation airborne bacterial communities as compared to the bacteria commonly observed throughout the lower elevation atmosphere as well as bacteria common to major sources such as leaf surfaces, soils, water bodies and various other surfaces. To address these knowledge gaps, we collected aerosol samples on the rooftop of Storm Peak Laboratory (3200 m ASL) over the course of 2-3 week periods during each of the four calendar seasons. Total bacterial abundances were assessed via flow cytometry, total particle abundances were calculated with an aerodynamic particle sizer, and bacterial communities were characterized using a high-throughput barcoded DNA sequencing approach. The airborne bacterial communities at Storm Peak Lab were then used in a meta-analysis comparing Storm Peak bacteria to other near-surface (lower elevation) bacterial communities and to the communities of likely source environments. Bacterial abundances varied by season, which was similar but not identical to the changes in total particle abundances across the same sampling period. Airborne bacterial community structure varied significantly by season, with the summer communities being the most distinct. Season specific bacterial groups were identified, suggesting that a large proportion of the airborne community may be derived from nearby sources. However following a multi-environment meta-analysis using several air and source derived bacterial community datasets, the high-elevation air communities were the most distinct as compared to the other airborne communities used in the analysis. Furthermore, a very low proportion of the Storm Peak airborne community could be explained by the source environments used in the meta-analysis, suggesting a unique airborne community at high-elevation. High-alpine bacterial communities appear to make up a large fraction of the total atmospheric aerosol, however the different seasonal patterns between bacterial counts and total particle counts suggest that distinct factors control the quantities of different particles making it into the atmosphere. Furthermore, the characteristics of local terrestrial sources that undergo seasonal cycles seem to have a large influence on the airborne communities, but these sources could not explain the occurrence of all airborne bacterial taxa. As airborne bacteria are more commonly being recognized as a ubiquitous component of the atmosphere, a better understanding of their temporal dynamics in the high-alpine environment may give us insight into their many potential roles in atmospheric dynamics, free troposphere atmospheric dispersal patterns, and their role in human and environmental health.
Herzog, Sebastian K.; Hamel-Leigue, A. Caroli; Larsen, Trond H.; Mann, Darren J.; Soria-Auza, Rodrigo W.; Gill, Bruce D.; Edmonds, W. D.; Spector, Sacha
2013-01-01
Insect macroecology and conservation biogeography studies are disproportionately scarce, especially in the Neotropics. Dung beetles are an ideal focal taxon for biodiversity research and conservation. Using distribution and body size data on the ecologically important Phanaeini, the best-known Neotropical dung beetle tribe, we determined elevational patterns of species richness, endemism, body size, and elevational range in Bolivia, specifically testing Bergmann’s and Rapoport’s rule. Richness of all 39 species and of 15 ecoregional endemics showed a hump-shaped pattern peaking at 400 m, but overall declined strongly with elevation up to 4000 m. The relationship between endemic and total species richness appeared to be curvilinear, providing only partial support for the null hypothesis that species-rich areas are more likely to be centers of endemism by chance alone. An elevational increase in the proportion of ecoregional endemics suggests that deterministic factors also appear to influence endemism in the Andes. When controlling for the effect of area using different species-area relationships, the statistically significant richness peak became more pronounced and shifted upslope to 750 m. Larger species did not have higher elevational mid-points, and mean body size decreased significantly with elevation, contradicting Bergmann’s rule. Rapoport’s rule was supported: species with higher elevational mid-points had broader elevational ranges, and mean elevational range increased significantly with elevation. The elevational decrease of phanaeine richness is in accordance with studies that demonstrated the combined influence of temperature and water availability on species diversity, but also is consistent with niche conservatism. For invertebrates, confirmation of Rapoport’s and refutation of Bergmann’s rule appear to be scale-invariant general patterns. Analyses of biogeographic patterns across elevational gradients can provide important insights for identifying conservation priorities. Phanaeines with narrow elevational ranges on isolated low-elevation mountains in eastern Bolivia are at greatest climate-change related extinction risk from range-shift gaps and mountaintop extinctions. PMID:23717678
Herzog, Sebastian K; Hamel-Leigue, A Caroli; Larsen, Trond H; Mann, Darren J; Soria-Auza, Rodrigo W; Gill, Bruce D; Edmonds, W D; Spector, Sacha
2013-01-01
Insect macroecology and conservation biogeography studies are disproportionately scarce, especially in the Neotropics. Dung beetles are an ideal focal taxon for biodiversity research and conservation. Using distribution and body size data on the ecologically important Phanaeini, the best-known Neotropical dung beetle tribe, we determined elevational patterns of species richness, endemism, body size, and elevational range in Bolivia, specifically testing Bergmann's and Rapoport's rule. Richness of all 39 species and of 15 ecoregional endemics showed a hump-shaped pattern peaking at 400 m, but overall declined strongly with elevation up to 4000 m. The relationship between endemic and total species richness appeared to be curvilinear, providing only partial support for the null hypothesis that species-rich areas are more likely to be centers of endemism by chance alone. An elevational increase in the proportion of ecoregional endemics suggests that deterministic factors also appear to influence endemism in the Andes. When controlling for the effect of area using different species-area relationships, the statistically significant richness peak became more pronounced and shifted upslope to 750 m. Larger species did not have higher elevational mid-points, and mean body size decreased significantly with elevation, contradicting Bergmann's rule. Rapoport's rule was supported: species with higher elevational mid-points had broader elevational ranges, and mean elevational range increased significantly with elevation. The elevational decrease of phanaeine richness is in accordance with studies that demonstrated the combined influence of temperature and water availability on species diversity, but also is consistent with niche conservatism. For invertebrates, confirmation of Rapoport's and refutation of Bergmann's rule appear to be scale-invariant general patterns. Analyses of biogeographic patterns across elevational gradients can provide important insights for identifying conservation priorities. Phanaeines with narrow elevational ranges on isolated low-elevation mountains in eastern Bolivia are at greatest climate-change related extinction risk from range-shift gaps and mountaintop extinctions.
[A landscape ecological approach for urban non-point source pollution control].
Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing
2005-05-01
Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.
Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park
Peterson, D.L.; Bowers, Darci
1999-01-01
We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.
Transcriptional response of Pasteurella multocida to defined iron sources.
Paustian, Michael L; May, Barbara J; Cao, Dongwei; Boley, Daniel; Kapur, Vivek
2002-12-01
Pasteurella multocida was grown in iron-free chemically defined medium supplemented with hemoglobin, transferrin, ferritin, and ferric citrate as iron sources. Whole-genome DNA microarrays were used to monitor global gene expression over seven time points after the addition of the defined iron source to the medium. This resulted in a set of data containing over 338,000 gene expression observations. On average, 12% of P. multocida genes were differentially expressed under any single condition. A majority of these genes encoded P. multocida proteins that were involved in either transport and binding or were annotated as hypothetical proteins. Several trends are evident when the data from different iron sources are compared. In general, only two genes (ptsN and sapD) were expressed at elevated levels under all of the conditions tested. The results also show that genes with increased expression in the presence of hemoglobin did not respond to transferrin or ferritin as an iron source. Correspondingly, genes with increased expression in the transferrin and ferritin experiments were expressed at reduced levels when hemoglobin was supplied as the sole iron source. Finally, the data show that genes that were most responsive to the presence of ferric citrate did not follow a trend similar to that of the other iron sources, suggesting that different pathways respond to inorganic or organic sources of iron in P. multocida. Taken together, our results demonstrate that unique subsets of P. multocida genes are expressed in response to different iron sources and that many of these genes have yet to be functionally characterized.
Buckman, Kate L.; Marvin-DiPasquale, Mark C.; Taylor, Vivien F.; Chalmers, Ann T.; Broadley, Hannah J.; Agee, Jennifer L.; Jackson, Brian P.; Chen, Celia Y.
2015-01-01
In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g–1 dry wt) and total mercury (THg; 10–30× increase, mean ± SD: 2045 ± 2669 ng g–1 dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g–1 dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g–1 dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L–1) and dissolved (0.76 ng L–1) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2–9 ng g–1 d–1 dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g–1 d–1 dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration.
Buckman, Kate L; Marvin-DiPasquale, Mark; Taylor, Vivien F; Chalmers, Ann; Broadley, Hannah J; Agee, Jennifer; Jackson, Brian P; Chen, Celia Y
2015-07-01
In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10-40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g(-1) dry wt) and total mercury (THg; 10-30× increase, mean ± SD: 2045 ± 2669 ng g(-1) dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3-7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g(-1) dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g(-1) dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L(-1)) and dissolved (0.76 ng L(-1)) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2-9 ng g(-1) d(-1) dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g(-1) d(-1) dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration. © 2015 SETAC.
Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji
Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less
2. Elevation view of north end of Bunker 104 showing ...
2. Elevation view of north end of Bunker 104 showing steps and slope of earthen roof. Camera pointed W. - Puget Sound Naval Shipyard, Munitions Storage Bunker, Naval Ammunitions Depot, South of Campbell Trail, Bremerton, Kitsap County, WA
Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan
2016-01-01
Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes.
Gesch, D.; Williams, J.; Miller, W.
2001-01-01
Elevation models produced from Shuttle Radar Topography Mission (SRTM) data will be the most comprehensive, consistently processed, highest resolution topographic dataset ever produced for the Earth's land surface. Many applications that currently use elevation data will benefit from the increased availability of data with higher accuracy, quality, and resolution, especially in poorly mapped areas of the globe. SRTM data will be produced as seamless data, thereby avoiding many of the problems inherent in existing multi-source topographic databases. Serving as precursors to SRTM datasets, the U.S. Geological Survey (USGS) has produced and is distributing seamless elevation datasets that facilitate scientific use of elevation data over large areas. GTOPO30 is a global elevation model with a 30 arc-second resolution (approximately 1-kilometer). The National Elevation Dataset (NED) covers the United States at a resolution of 1 arc-second (approximately 30-meters). Due to their seamless format and broad area coverage, both GTOPO30 and NED represent an advance in the usability of elevation data, but each still includes artifacts from the highly variable source data used to produce them. The consistent source data and processing approach for SRTM data will result in elevation products that will be a significant addition to the current availability of seamless datasets, specifically for many areas outside the U.S. One application that demonstrates some advantages that may be realized with SRTM data is delineation of land surface drainage features (watersheds and stream channels). Seamless distribution of elevation data in which a user interactively specifies the area of interest and order parameters via a map server is already being successfully demonstrated with existing USGS datasets. Such an approach for distributing SRTM data is ideal for a dataset that undoubtedly will be of very high interest to the spatial data user community.
Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan
2016-01-01
Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes. PMID:27337100
75 FR 29253 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-25
.... Approximately 100 feet None +109 downstream of State Road 77. Flat Creek At the confluence with None +50...: * Elevation in feet (NGVD) + Elevation in feet (NAVD) Depth in feet above State City/town/county Source of... Virginia City of Hampton......... Newmarket Creek Approximately 275 feet downstream of Big Bethel Road...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... sources in Pierce County, Washington. On April 16, 2012, FEMA published a proposed rulemaking at 77 FR...-2013-0002; Internal Agency Docket No. FEMA-B-7748] Proposed Flood Elevation Determinations for Pierce... proposed rule concerning proposed flood elevation determinations for Pierce County, Washington, and...
Bjartmar Sveinbjornsson; Matthew Smith; Tumi Traustason; Roger W. Ruess; Patrick F. Sullivan
2010-01-01
Two opposing hypotheses have been presented to explain reduced tree growth at the treeline, compared with growth in lower elevation or lower latitude forests: the carbon source and sink limitation hypotheses. The former states that treeline trees have an unfavorable carbon balance and cannot support growth of the magnitude observed at lower elevations or latitudes,...
Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera)
Lakes-Harlan, Reinhard; Scherberich, Jan
2015-01-01
A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear. PMID:26543574
Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera).
Lakes-Harlan, Reinhard; Scherberich, Jan
2015-06-01
A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear.
Enhanced radiation resistant fiber optics
Lyons, Peter B.; Looney, Larry D.
1993-01-01
A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.
Enhanced radiation resistant fiber optics
Lyons, P.B.; Looney, L.D.
1993-11-30
A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.
The Measurement of the Flux and Spectrum of the Crab by HAWC
NASA Astrophysics Data System (ADS)
Smith, Andrew; HAWC Collaboration Collaboration
2017-01-01
The HAWC observatory was completed and began full operation in early 2015. Located at an elevation of 4100m, HAWC has an energy threshold for gamma-ray detection well below 1 TeV and a sensitivity to TeV-scale gamma-ray sources an order of magnitude better than previous air-shower arrays. The detector operates 24 hours/day and observes the overhead sky (2 sr), making it an ideal survey instrument. We describe the details of the high significance detection (>100 sigma) of the Crab PWN and explain in detail the measurement the VHE spectrum of this important gamma-ray source. At the high end of the VHE range, above 10 TeV, HAWC's sensitivity is better than that of IACTs due mainly to its large effective area and unprecedented exposure. Measuring the high energy behavior of this source is critical to the understanding of the acceleration dynamics and the environment in vicinity of the pulsar. Furthermore, as the Crab is bright, point-like and steady, as detected by VHE gamma-ray instruments, it serves as the best source for verification of detector performance and measurement of systematic errors. This presentation will also describe in detail the analysis methodology utilized by a number of presentations from the HAWC collaboration.
75 FR 47751 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... Ferry Road and Black Point Road. Along the shoreline at +8 +24 the intersection of Black Point Road and.... Knight, Deputy Federal Insurance and Mitigation Administrator, Mitigation, Department of Homeland...
Topographic maps: Tools for planning
Kaufman, George A.
1980-01-01
Topographic maps are a detailed record of a land area, giving geographic positions and elevations for both natural and man-made features. They show the shape of the land the mountains, valleys, and plains by means of brown contour lines (lines of equal elevation above sea level). In steep mountainous areas, contours are closely spaced; in flatter areas, they are far apart. The elevation of any point on the map can be estimated by referring to the elevations of the contour lines above and below it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Burton, E.; Duran, A.
Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digitalmore » elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.« less
Wintertime Reactive Chlorine Sources and Speciation in the Great Salt Lake, UT Region
NASA Astrophysics Data System (ADS)
Goldberger, L.; Franchin, A.; Middlebrook, A. M.; Brown, S.; Womack, C.; Moravek, A.; McDuffie, E. E.; Fibiger, D. L.; Baasandorj, M.; Thornton, J. A.
2017-12-01
Several chlorine species were measured in both gas and particle phase using a high-resolution time of flight chemical ionization mass spectrometer (HRToF-CIMS) and an Aerosol Mass Spectrometer (AMS) aboard the NOAA Twin Otter aircraft as part of the Utah Winter Fine Particle Study (UWFPS). The abundance and speciation of gas-phase reactive chlorine species are presented, evaluated during both night and day flights across a range of meteorological conditions and repeated flight paths conducted over the Great Salt Lake region from January 16th to February 12th 2017. Mean, or background, concentrations of HCl, Cl2, ClNO2, and HOCl are measured near zero or on order of tens of ppt. Maximum concentrations of these species are found consistently in Tooele County on order of several ppb to ppm. Elevated levels of HCl and ClNO2 (at night) on order of hundreds of ppt have been observed over urban areas in Salt Lake and Utah Counties as well. Both of these species can form by heterogeneous reactions of acidic gases with sodium chloride in salt particles. The high concentrations of HCl and ClNO2 indicate large point sources of these species or acidic gases in the region, which are characterized by enhancement ratios of species to NOx and SO2 measured by the CIMS and a cavity ring down spectrometer also on board the aircraft. The emission fluxes of these point sources are characterized and their contribution to the regional background of reactive chlorine are evaluated.
Inferring Models of Bacterial Dynamics toward Point Sources
Jashnsaz, Hossein; Nguyen, Tyler; Petrache, Horia I.; Pressé, Steve
2015-01-01
Experiments have shown that bacteria can be sensitive to small variations in chemoattractant (CA) concentrations. Motivated by these findings, our focus here is on a regime rarely studied in experiments: bacteria tracking point CA sources (such as food patches or even prey). In tracking point sources, the CA detected by bacteria may show very large spatiotemporal fluctuations which vary with distance from the source. We present a general statistical model to describe how bacteria locate point sources of food on the basis of stochastic event detection, rather than CA gradient information. We show how all model parameters can be directly inferred from single cell tracking data even in the limit of high detection noise. Once parameterized, our model recapitulates bacterial behavior around point sources such as the “volcano effect”. In addition, while the search by bacteria for point sources such as prey may appear random, our model identifies key statistical signatures of a targeted search for a point source given any arbitrary source configuration. PMID:26466373
Late Quaternary Glaciation of the Naches River Drainage Basin, Washington Cascades
NASA Astrophysics Data System (ADS)
Sheffer, H. B.; Goss, L.; Shimer, G.; Carson, R. J.
2014-12-01
The Naches River drainage basin east of Mount Rainer includes tributary valleys of the Little Naches, American, Bumping, and Tieton rivers. An investigation of surface boulder frequency, weathering rind thicknesses, and soil development on moraines in these valleys identified two stages of Pleistocene glaciations in the American, Bumping, and Tieton drainages, followed by Neoglaciation. These stages include a more extensive early glaciation (Hayden Creek?), and the later Evans Creek Glaciation (25-15 ka). Thick forest cover, limited road cuts, and widespread post-glacial mass wasting hamper efforts to determine the maximum extent of glaciation. However, glacial striations at Chinook Pass, moraine complexes in the vicinity of Goose Egg Mountain, ice-transported boulders and striations on Pinegrass Ridge, and a boulder field possibly derived from an Evans Creek jökulhaup in the Tieton River valley, all point to extensive Pleistocene ice in the central tributaries of the Naches River. Lowest observed ice elevations in the Tieton (780 m), Bumping (850 m), and American (920 m) drainages increase towards the north, while glacial lengths decrease from 40 to 28 km. The Little Naches is the northernmost drainage in the study, but despite a maximum elevation (1810 m) that exceeds the floor of ice caps to the south, glacially-derived sediments are not evident and the surrounding peaks lack cirques. The absence of ice in the Little Naches drainage, along with the systematic northward change in glacial length and lowest observed ice elevations in the other drainages, are likely due to a precipitation shadow northeast of Mount Rainier. In contrast, the source of glacial ice in the Tieton drainage to the southeast was the Goat Rocks peaks. Ground-based study of neoglacial moraines and analysis of 112 years of topographic maps and satellite imagery point to rapid retreat of the remaining Goat Rocks glaciers following the Little Ice Age.
Moranda, Arianna
2017-01-01
A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities. PMID:29270328
Paladino, Ombretta; Moranda, Arianna; Seyedsalehi, Mahdi
2017-01-01
A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities.
NASA Astrophysics Data System (ADS)
Liu, W.; Kuo, Y. M.
2016-12-01
The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.
Frederick, H.S.; Kinsella, M.A.
1959-02-24
An elevator is described, which is arranged for movement both in a horizontal and in a vertical direction so that the elevating mechanism may be employed for servicing equipment at separated points in a plant. In accordance with the present invention, the main elevator chassis is suspended from a monorail. The chassis, in turn supports a vertically moveable carriage, a sub- carriage vertically moveable on the carriage, and a turntable carried by the sub- carriage and moveable through an arc of 90 with the equipment attached thereto. In addition, the chassis supports all the means required to elevate or rotate the equipment.
Elevation data fitting and precision analysis of Google Earth in road survey
NASA Astrophysics Data System (ADS)
Wei, Haibin; Luan, Xiaohan; Li, Hanchao; Jia, Jiangkun; Chen, Zhao; Han, Leilei
2018-05-01
Objective: In order to improve efficiency of road survey and save manpower and material resources, this paper intends to apply Google Earth to the feasibility study stage of road survey and design. Limited by the problem that Google Earth elevation data lacks precision, this paper is focused on finding several different fitting or difference methods to improve the data precision, in order to make every effort to meet the accuracy requirements of road survey and design specifications. Method: On the basis of elevation difference of limited public points, any elevation difference of the other points can be fitted or interpolated. Thus, the precise elevation can be obtained by subtracting elevation difference from the Google Earth data. Quadratic polynomial surface fitting method, cubic polynomial surface fitting method, V4 interpolation method in MATLAB and neural network method are used in this paper to process elevation data of Google Earth. And internal conformity, external conformity and cross correlation coefficient are used as evaluation indexes to evaluate the data processing effect. Results: There is no fitting difference at the fitting point while using V4 interpolation method. Its external conformity is the largest and the effect of accuracy improvement is the worst, so V4 interpolation method is ruled out. The internal and external conformity of the cubic polynomial surface fitting method both are better than those of the quadratic polynomial surface fitting method. The neural network method has a similar fitting effect with the cubic polynomial surface fitting method, but its fitting effect is better in the case of a higher elevation difference. Because the neural network method is an unmanageable fitting model, the cubic polynomial surface fitting method should be mainly used and the neural network method can be used as the auxiliary method in the case of higher elevation difference. Conclusions: Cubic polynomial surface fitting method can obviously improve data precision of Google Earth. The error of data in hilly terrain areas meets the requirement of specifications after precision improvement and it can be used in feasibility study stage of road survey and design.
Smith, Kate E; Shafer, Martin M; Weiss, Debora; Anderson, Henry A; Gorski, Patrick R
2017-05-01
Exposure to the neurotoxic element lead (Pb) continues to be a major human health concern, particularly for children in US urban settings, and the need for robust tools for assessment of exposure sources has never been greater. The latest generation of multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) instrumentation offers the capability of using Pb isotopic signatures as a tool for environmental source tracking in public health. We present a case where MC-ICPMS was applied to isotopically resolve Pb sources in human clinical samples. An adult male and his child residing in Milwaukee, Wisconsin, presented to care in August 2015 with elevated blood lead levels (BLLs) (>200 μg/dL for the adult and 10 μg/dL for the child). The adult subject is a gunshot victim who had multiple bullet fragments embedded in soft tissue of his thigh for approximately 10 years. This study compared the high-precision isotopic fingerprints (<1 ‰ 2σ external precision) of Pb in the adult's and child's whole blood (WB) to the following possible Pb sources: a surgically extracted bullet fragment, household paint samples and tap water, and a Pb water-distribution pipe removed from servicing a house in the same neighborhood. Pb in the bullet and adult WB were nearly isotopically indistinguishable (matching within 0.05-0.56 ‰), indicating that bullet fragments embedded in soft tissue could be the cause of both acute and chronic elevated blood Pb levels. Among other sources investigated, no single source dominated the child's exposure profile as reflected in the elevated BLL.
A New Era in Geodesy and Cartography: Implications for Landing Site Operations
NASA Technical Reports Server (NTRS)
Duxbury, T. C.
2001-01-01
The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global dataset has ushered in a new era for Mars local and global geodesy and cartography. These data include the global digital terrain model (Digital Terrain Model (DTM) radii), the global digital elevation model (Digital Elevation Model (DEM) elevation with respect to the geoid), and the higher spatial resolution individual MOLA ground tracks. Currently there are about 500,000,000 MOLA points and this number continues to grow as MOLA continues successful operations in orbit about Mars, the combined processing of radiometric X-band Doppler and ranging tracking of MGS together with millions of MOLA orbital crossover points has produced global geodetic and cartographic control having a spatial (latitude/longitude) accuracy of a few meters and a topographic accuracy of less than 1 meter. This means that the position of an individual MOLA point with respect to the center-of-mass of Mars is know to an absolute accuracy of a few meters. The positional accuracy of this point in inertial space over time is controlled by the spin rate uncertainty of Mars which is less than 1 km over 10 years that will be improved significantly with the next landed mission.
Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...
Improving the geological interpretation of magnetic and gravity satellite anomalies
NASA Technical Reports Server (NTRS)
Hinze, William J.; Braile, Lawrence W.; Vonfrese, Ralph R. B.
1987-01-01
Quantitative analysis of the geologic component of observed satellite magnetic and gravity fields requires accurate isolation of the geologic component of the observations, theoretically sound and viable inversion techniques, and integration of collateral, constraining geologic and geophysical data. A number of significant contributions were made which make quantitative analysis more accurate. These include procedures for: screening and processing orbital data for lithospheric signals based on signal repeatability and wavelength analysis; producing accurate gridded anomaly values at constant elevations from the orbital data by three-dimensional least squares collocation; increasing the stability of equivalent point source inversion and criteria for the selection of the optimum damping parameter; enhancing inversion techniques through an iterative procedure based on the superposition theorem of potential fields; and modeling efficiently regional-scale lithospheric sources of satellite magnetic anomalies. In addition, these techniques were utilized to investigate regional anomaly sources of North and South America and India and to provide constraints to continental reconstruction. Since the inception of this research study, eleven papers were presented with associated published abstracts, three theses were completed, four papers were published or accepted for publication, and an additional manuscript was submitted for publication.
Porter, Stephen D.; White, Kevin D.; Clark, J.R.
1995-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is designed to provide a nationally consistent description of the current status of water quality, to define water-quality trends, and to relate past and present water-quality conditions to natural features, uses of land and water, and other water-quality effects from human activities. The Kentucky River Basin is one of four NAWQA pilot projects that focused primarily on the quality of surface water. Water, sediment, and bedrock samples were collected in the Kentucky River Basin during 1987-90 for the purpose of (1) describing the spatial distribution, transport, and temporal variability of metals and other trace elements in streams of the basin; (2) estimating mean annual loads, yields, and trends of constituent concentrations and identifying potential causes (or sources) of spatial patterns; (3) providing baseline information for concentrations of metals in streambed and suspended sediments; (4) identifying stream reaches in the Kentucky River Basin with chronic water-quality problems; and (5) evaluating the merits of the NAWQA pilot study-approach for the assessment of metals and other trace elements in a river system. The spatial distribution of metals and other trace elements in streambed sediments of the Kentucky River Basin is associated with regional differences of geology, land use and cover, and the results of human activities. Median concentrations of constituents differed significantly among physiographic regions of the basin because of relations to bedrock geochemistry and land disturbance. Concentrations of potentially toxic metals were large in urban and industrial areas of the basin. Elevated concentrations of certain metals were also found in streambed sediments of the Knobs Region because of the presence of Devonian shale bedrock. Elevated concentrations of lead and zinc found in streambed sediments of the Bluegrass Region are likely associated with urban stormwater runoff, point-source discharges, and waste-management practices. Concentrations of cadmium, chromium, copper, mercury, and silver were elevated in streambed sediments downstream from wastewater-treatment plant discharges. Streambed-sediment concentrations of barium, chromium, and lithium were elevated in streams that receive brine discharges from oil production. Elevated concentrations of antimony, arsenic, molybdenum, selenium, strontium, uranium, and vanadium in streambed sediments of the Kentucky River Basin were generally associated with natural sources. Concentrations of metals and other trace elements in water samples from fixed stations (stations where water-quality samples were collected for 3.5 years) in the Kentucky River Basin were generally related to stream discharge and the concentration of suspended sediment, whereas constituent concentrations in the suspended-sediment matrix were indicative of natural and human sources. Estimated mean annual loads and yields for most metals and other trace elements were associated with the transport of suspended sediment. Land disturbance, such as surface mining and agriculture, contribute to increased transport of sediment in streams, thereby increasing concentrations of metals in water samples during periods of intense or prolonged rainfall and increased stream discharge. Concentrations of many metals and trace elements were reduced during low streamflow. Although total-recoverable and dissolved concentrations of certain metals and trace elements were large in streams affected by land disturbance, concentrations of constituents in the suspendedsediment matrix were commonly large in streams in the Knobs and Eastern Coal Field Regions (because of relations with bedrock geochemistry) and in streams that receive wastewater or oil-well-brine discharges. Concentrations and mean annual load estimates for aluminum, chromium, copper, iron, lead, manganese, and mercury were larger than those obtained from data collected by a State agency, probably because of differences in sample-collection methodology, the range of discharge associated with water-quality samples, and laboratory analytical procedures. However, concentrations, loads, and yields of arsenic, barium, and zinc were similar to those determined from the State data. Significant upward trends in the concentrations of aluminum, iron, magnesium, manganese, and zinc were indicated at one or more fixed stations in the Kentucky River Basin during the past 10 to 15 years. Upward trends for concentrations of aluminum, iron, and manganese were found at sites that receive drainage from coal mines in the upper Kentucky River Basin, whereas upward trends for zinc may be associated with urban sources. Water-quality criteria established by the U.S. Environmental Protection Agency (USEPA) or the State of Kentucky for concentrations of aluminum, beryllium, cadmium, chromium, copper, iron, manganese, nickel, silver, and zinc were exceeded at one or more fixed stations in the Kentucky River Basin. On a qualitative basis, dissolved concentrations of certain metals and trace elements were large during low streamflow at sites where (1) concentrations of these constituents in underlying streambed sediments were large, or (2) dissolvedoxygen concentrations were small. Concentrations of barium, lithium, and strontium were large during low streamflow, which indicates the influence of ground-water baseflows on the quality of surface water during low flow. The effects of point-source discharges, landfills, and other wastemanagement practices are somewhat localized in the Kentucky River Basin and are best indicated by the spatial distribution of metals and other trace elements in streambed sediments and in the suspended-sediment fraction of water samples at stream locations near the source. It was not possible to quantify the contribution of point sources to the total transport of metals and other trace elements at fixed stations because data were not available for wastewater effluents. Quantification of baseline concentrations of metals and other trace elements in streambed sediments provides a basis for the detection of water-quality changes that may result from improvements in wastewater treatment or the implementation of best-management practices for controlling contamination from nonpoint sources in the Kentucky River Basin.
Accuracy assessment of a mobile terrestrial lidar survey at Padre Island National Seashore
Lim, Samsung; Thatcher, Cindy A.; Brock, John C.; Kimbrow, Dustin R.; Danielson, Jeffrey J.; Reynolds, B.J.
2013-01-01
The higher point density and mobility of terrestrial laser scanning (light detection and ranging (lidar)) is desired when extremely detailed elevation data are needed for mapping vertically orientated complex features such as levees, dunes, and cliffs, or when highly accurate data are needed for monitoring geomorphic changes. Mobile terrestrial lidar scanners have the capability for rapid data collection on a larger spatial scale compared with tripod-based terrestrial lidar, but few studies have examined the accuracy of this relatively new mapping technology. For this reason, we conducted a field test at Padre Island National Seashore of a mobile lidar scanner mounted on a sport utility vehicle and integrated with a position and orientation system. The purpose of the study was to assess the vertical and horizontal accuracy of data collected by the mobile terrestrial lidar system, which is georeferenced to the Universal Transverse Mercator coordinate system and the North American Vertical Datum of 1988. To accomplish the study objectives, independent elevation data were collected by conducting a high-accuracy global positioning system survey to establish the coordinates and elevations of 12 targets spaced throughout the 12 km transect. These independent ground control data were compared to the lidar scanner-derived elevations to quantify the accuracy of the mobile lidar system. The performance of the mobile lidar system was also tested at various vehicle speeds and scan density settings (e.g. field of view and linear point spacing) to estimate the optimal parameters for desired point density. After adjustment of the lever arm parameters, the final point cloud accuracy was 0.060 m (east), 0.095 m (north), and 0.053 m (height). The very high density of the resulting point cloud was sufficient to map fine-scale topographic features, such as the complex shape of the sand dunes.
Google Earth elevation data extraction and accuracy assessment for transportation applications
Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung
2017-01-01
Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications. PMID:28445480
Google Earth elevation data extraction and accuracy assessment for transportation applications.
Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung
2017-01-01
Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications.
Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream
Flanders, J.R.; Turner, R.R.; Morrison, T.; Jensen, R.; Pizzuto, J.; Skalak, K.; Stahl, R.
2010-01-01
Concentrations of Hg remain elevated in physical and biological media of the South River (Virginia, USA), despite the cessation of the industrial use of Hg in its watershed nearly six decades ago, and physical characteristics that would not seem to favor Hg(II)-methylation. A 3-a study of inorganic Hg (IHg) and methylmercury (MeHg) was conducted in physical media (soil, sediment, surface water, porewater and soil/sediment extracts) to identify non-point sources, transport mechanisms, and potential controls on Hg(II)-methylation. Data collected from surface water and sediment indicate that the majority of the non-point sources of IHg to the South River are within the first 14. km downstream from the historic point source. Partitioning data indicate that particle bound IHg is introduced in this reach, releasing dissolved and colloidal bound IHg, which is transported downstream. Extraction experiments revealed that floodplain soils released a higher fraction of their IHg content in aqueous extractions than fine-grained sediment (FGS). Based on ultrafiltration [<5000 nominal molecular weight cutoff (NMWC)] the majority of soil IHg released was colloidal in nature, providing evidence for the continued evolution of IHg for Hg(II)-methylation from soil. Strong seasonal patterns in MeHg concentrations were observed in surface water and sediment. The highest concentrations of MeHg in surface water were observed at moderate temperatures, suggesting that other factors limit net Hg(II)-methylation. Seasonal changes in sediment organic content and the fraction of 1. N KOH-extractable THg were also observed and may be important factors in controlling net Hg(II)-methylation rates. Sulfate concentrations in surface water are low and the evidence suggests that Fe reduction may be an important Hg(II)-methylation process. The highest sediment MeHg concentrations were observed in habitats with large amounts of FGS, which are more prevalent in the upper half of the study area due to the lower hydrologic gradient and agricultural impacts. Past and present land use practices and other geomorphologic controls contribute to the erosion of banks and accumulation of fine-grained sediment in this section of the river, acting as sources of IHg. ?? 2010 Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, G.J.; Samant, H.S.; Vaidya, O.C.
1988-06-01
The harvesting of marine plants on a commercial scale was a significant industry in the Maritime Provinces of Canada by the end of World War II. These seaweeds have been traditionally utilized as foodstuffs either as a processed extract or a semi-processed plant. The Maritime coastline is becoming industrialized; there is also potential for expansion of the marine plant industry beyond traditional harvest areas. Therefore, the quality of material from new areas must be examined prior to exploitation as well as monitoring of traditional areas. The bioaccumulated of metals by marine plants was recognized in early measurements of trace elementmore » concentrations which were above ambient water values. Before growth and reproductive inhibition are caused by severe effects of heavy metal pollution, food quality changes may occur. The Food Chemical Code (U.S.A.) limits heavy metals in the extracts of seaweeds. Sediment and water samples taken in connection with the Ocean Dumping Control Act of Canada have identified several sites with elevated heavy metal content in the Maritimes. The purpose of this study was to examine heavy metal levels in commercially important seaweeds from traditional harvest areas and areas near point sources of pollution. The authors wished to provide a baseline for the future and identify existing problem areas.« less
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, David O.
1998-01-01
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.
Karatzi, Kalliopi; Moschonis, George; Polychronopoulou, Maria Christina; Chrousos, George P; Lionis, Christos; Manios, Yannis
2016-10-01
Excessive fat storage is accompanied by several comorbidities in children and early identification of elevated abdominal fat may be extremely valuable in early prevention of cardiometabolic risk. The aim of the present study was to establish cutoff points for waist circumference trunk and visceral fat, thus identifying increased likelihood of elevated inflammatory markers and adipokines in children. A representative sample of schoolchildren (aged 9-13 y) participated in a cross-sectional epidemiologic study conducted in Greece. Anthropometric and physical examination data, biochemical indices, and socioeconomic information (collected from parents) were assessed for all children. Central adiposity markers (trunk and visceral fat) were collected with bioelectrical impedance analysis for 999 children. Specific cutoff values of abdominal adiposity indices indicating increased likelihood of elevated levels of C-reactive protein, interleukin-6, and leptin and decreased levels of adiponectin were calculated by sex. These cutoff values were; 67.5 cm for boys and 69.5 cm for girls for waist circumference, 17.75% for boys and 22.65% for girls for trunk fat mass percentage, and 3.95 for boys and 2.55 for girls for visceral fat rating. To our knowledge, this is the first study to establish simple cutoff points for abdominal adiposity indices identifying children at high risk for elevated inflammatory markers and decreased adipokine levels. Future studies are essential to confirm these findings. Copyright © 2016 Elsevier Inc. All rights reserved.
ICESat Observations of Southern Alaska Glaciers
NASA Technical Reports Server (NTRS)
Sauber, Jeanne; Molnia, Bruce F.; Mitchell, Darius
2003-01-01
In late February and March, 2003, the Ice, Cloud, and land Elevation Satellite (ICESat) measured ice and land elevations along profiles across southern Alaska. During this initial data acquisition stage ICESat observations were made on 8-day repeat tracks to enable calibration and validation of the ICESat data products. Each profile consists of a series of single point values derived from centroid elevations of an $\\approx$70 m diameter laser footprint. The points are s4pakated by $\\approx$172 m along track. Data siets of 8-day observations (an ascending and descending ground track) crossed the Bering and Malaspina Glacier. Following its 1993--1995 surge; the Bering Glacier has undergone major terminus retreat as well as ike thinning in the abtation zone. During the later part of the 20th century, parts of the Malaspina thinned by about 1 m/yr. The multiple observation profiles across the Bering and Malaspina piedmont lobes obtained in February/March are being geolocated on Landsat images and the elevation profiles will be used for a number o scientific objectives. Based on our simulations of ICESat performance over the varied ice surface of the Jakobshavn Glacier of GReenland, 2003, we expect to measure annual, and possibly seasonal, ice elevation changes on the large Alaskan glaciers. Using elevation data obtained from a second laser, we plan to estimate ice elevation changes on the Bering Glacier between March and October 2003.
NASA Technical Reports Server (NTRS)
Herzfeld, Ute Christina; McDonald, Brian W.; Neumann, Thomas Allen; Wallin, Bruce F.; Neumann, Thomas A.; Markus, Thorsten; Brenner, Anita; Field, Christopher
2014-01-01
NASA's Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission is a decadal survey mission (2016 launch). The mission objectives are to measure land ice elevation, sea ice freeboard, and changes in these variables, as well as to collect measurements over vegetation to facilitate canopy height determination. Two innovative components will characterize the ICESat-2 lidar: 1) collection of elevation data by a multibeam system and 2) application of micropulse lidar (photon-counting) technology. A photon-counting altimeter yields clouds of discrete points, resulting from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of the returned points to reflectors of interest. The objective of this paper is to derive an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2 data, based on airborne observations with a Sigma Space micropulse lidar. The mathematical algorithm uses spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors, and geostatistical classification parameters and hyperparameters. Validation shows that ground and canopy elevation, and hence canopy height, can be expected to be observable with high accuracy by ICESat-2 for all expected beam energies considered for instrument design (93.01%-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp), and 72.85%-98.68% for 0.48 msp). The algorithm derived here is generally applicable for elevation determination from photoncounting lidar altimeter data collected over forested areas, land ice, sea ice, and land surfaces, as well as for cloud detection.
Athearn, N.D.; Takekawa, John Y.; Jaffe, B.; Hattenbach, B.J.; Foxgrover, A.C.
2010-01-01
The southern edge of San Francisco Bay is surrounded by former salt evaporation ponds, where tidal flow has been restricted since the mid to late 1890s. These ponds are now the focus of a large wetland restoration project, and accurate measurement of current pond bathymetry and adjacent mud flats has been critical to restoration planning. Aerial light detection and ranging (lidar) has become a tool for mapping surface elevations, but its accuracy had rarely been assessed for wetland habitats. We used a singlebeam echosounder system we developed for surveying shallow wetlands to map submerged pond bathymetry in January of 2004 and compared those results with aerial lidar surveys in two ponds that were dry in May of 2004. From those data sets, we compared elevations for 5164 (Pond E9, 154 ha) and 2628 (Pond E14, 69 ha) echosounder and lidar points within a 0.375-m radius of each other (0.750-m diameter lidar spot size). We found that mean elevations of the lidar points were lower than the echosounder results by 5 ?? 0.1 cm in Pond E9 and 2 ?? 0.2 cm in Pond E14. Only a few points (5% in Pond E9, 2% in Pond E14) differed by more than 20 cm, and some of these values may be explained by residual water in the ponds during the lidar survey or elevation changes that occurred between surveys. Our results suggest that aerial lidar may be a very accurate and rapid way to assess terrain elevations for wetland restoration projects. ?? 2010 Coastal Education and Research Foundation.
Modeling diffuse phosphorus emissions to assist in best management practice designing
NASA Astrophysics Data System (ADS)
Kovacs, Adam; Zessner, Matthias; Honti, Mark; Clement, Adrienne
2010-05-01
A diffuse emission modeling tool has been developed, which is appropriate to support decision-making in watershed management. The PhosFate (Phosphorus Fate) tool allows planning best management practices (BMPs) in catchments and simulating their possible impacts on the phosphorus (P) loads. PhosFate is a simple fate model to calculate diffuse P emissions and their transport within a catchment. The model is a semi-empirical, catchment scale, distributed parameter and long-term (annual) average model. It has two main parts: (a) the emission and (b) the transport model. The main input data of the model are digital maps (elevation, soil types and landuse categories), statistical data (crop yields, animal numbers, fertilizer amounts and precipitation distribution) and point information (precipitation, meteorology, soil humus content, point source emissions and reservoir data). The emission model calculates the diffuse P emissions at their source. It computes the basic elements of the hydrology as well as the soil loss. The model determines the accumulated P surplus of the topsoil and distinguishes the dissolved and the particulate P forms. Emissions are calculated according to the different pathways (surface runoff, erosion and leaching). The main outputs are the spatial distribution (cell values) of the runoff components, the soil loss and the P emissions within the catchment. The transport model joins the independent cells based on the flow tree and it follows the further fate of emitted P from each cell to the catchment outlets. Surface runoff and P fluxes are accumulated along the tree and the field and in-stream retention of the particulate forms are computed. In case of base flow and subsurface P loads only the channel transport is taken into account due to the less known hydrogeological conditions. During the channel transport, point sources and reservoirs are also considered. Main results of the transport algorithm are the discharge, dissolved and sediment-bounded P load values at any arbitrary point within the catchment. Finally, a simple design procedure has been built up to plan BMPs in the catchments and simulate their possible impacts on diffuse P fluxes as well as calculate their approximately costs. Both source and transport controlling measures have been involved into the planning procedure. The model also allows examining the impacts of alterations of fertilizer application, point source emissions as well as the climate change on the river loads. Besides this, a simple optimization algorithm has been developed to select the most effective source areas (real hot spots), which should be targeted by the interventions. The fate model performed well in Hungarian pilot catchments. Using the calibrated and validated model, different management scenarios were worked out and their effects and costs evaluated and compared to each other. The results show that the approach is suitable to effectively design BMP measures at local scale. Combinative application of the source and transport controlling BMPs can result in high P reduction efficiency. Optimization of the interventions can remarkably reduce the area demand of the necessary BMPs, consequently the establishment costs can be decreased. The model can be coupled with a larger scale catchment model to form a "screening and planning" modeling system.
Toward perception-based navigation using EgoSphere
NASA Astrophysics Data System (ADS)
Kawamura, Kazuhiko; Peters, R. Alan; Wilkes, Don M.; Koku, Ahmet B.; Sekman, Ali
2002-02-01
A method for perception-based egocentric navigation of mobile robots is described. Each robot has a local short-term memory structure called the Sensory EgoSphere (SES), which is indexed by azimuth, elevation, and time. Directional sensory processing modules write information on the SES at the location corresponding to the source direction. Each robot has a partial map of its operational area that it has received a priori. The map is populated with landmarks and is not necessarily metrically accurate. Each robot is given a goal location and a route plan. The route plan is a set of via-points that are not used directly. Instead, a robot uses each point to construct a Landmark EgoSphere (LES) a circular projection of the landmarks from the map onto an EgoSphere centered at the via-point. Under normal circumstances, the LES will be mostly unaffected by slight variations in the via-point location. Thus, the route plan is transformed into a set of via-regions each described by an LES. A robot navigates by comparing the next LES in its route plan to the current contents of its SES. It heads toward the indicated landmarks until its SES matches the LES sufficiently to indicate that the robot is near the suggested via-point. The proposed method is particularly useful for enabling the exchange of robust route informa-tion between robots under low data rate communications constraints. An example of such an exchange is given.
Global multi-resolution terrain elevation data 2010 (GMTED2010)
Danielson, Jeffrey J.; Gesch, Dean B.
2011-01-01
In 1996, the U.S. Geological Survey (USGS) developed a global topographic elevation model designated as GTOPO30 at a horizontal resolution of 30 arc-seconds for the entire Earth. Because no single source of topographic information covered the entire land surface, GTOPO30 was derived from eight raster and vector sources that included a substantial amount of U.S. Defense Mapping Agency data. The quality of the elevation data in GTOPO30 varies widely; there are no spatially-referenced metadata, and the major topographic features such as ridgelines and valleys are not well represented. Despite its coarse resolution and limited attributes, GTOPO30 has been widely used for a variety of hydrological, climatological, and geomorphological applications as well as military applications, where a regional, continental, or global scale topographic model is required. These applications have ranged from delineating drainage networks and watersheds to using digital elevation data for the extraction of topographic structure and three-dimensional (3D) visualization exercises (Jenson and Domingue, 1988; Verdin and Greenlee, 1996; Lehner and others, 2008). Many of the fundamental geophysical processes active at the Earth's surface are controlled or strongly influenced by topography, thus the critical need for high-quality terrain data (Gesch, 1994). U.S. Department of Defense requirements for mission planning, geographic registration of remotely sensed imagery, terrain visualization, and map production are similarly dependent on global topographic data. Since the time GTOPO30 was completed, the availability of higher-quality elevation data over large geographic areas has improved markedly. New data sources include global Digital Terrain Elevation Data (DTEDRegistered) from the Shuttle Radar Topography Mission (SRTM), Canadian elevation data, and data from the Ice, Cloud, and land Elevation Satellite (ICESat). Given the widespread use of GTOPO30 and the equivalent 30-arc-second DTEDRegistered level 0, the USGS and the National Geospatial-Intelligence Agency (NGA) have collaborated to produce an enhanced replacement for GTOPO30, the Global Land One-km Base Elevation (GLOBE) model and other comparable 30-arc-second-resolution global models, using the best available data. The new model is called the Global Multi-resolution Terrain Elevation Data 2010, or GMTED2010 for short. This suite of products at three different resolutions (approximately 1,000, 500, and 250 meters) is designed to support many applications directly by providing users with generic products (for example, maximum, minimum, and median elevations) that have been derived directly from the raw input data that would not be available to the general user or would be very costly and time-consuming to produce for individual applications. The source of all the elevation data is captured in metadata for reference purposes. It is also hoped that as better data become available in the future, the GMTED2010 model will be updated.
An improved DPSM technique for modelling ultrasonic fields in cracked solids
NASA Astrophysics Data System (ADS)
Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique
2007-04-01
In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.
On the assessment of spatial resolution of PET systems with iterative image reconstruction
NASA Astrophysics Data System (ADS)
Gong, Kuang; Cherry, Simon R.; Qi, Jinyi
2016-03-01
Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.
NASA Technical Reports Server (NTRS)
Katow, M. S.
1990-01-01
The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described.
A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations
NASA Technical Reports Server (NTRS)
Parrott, M. H.; Hinze, W. J.; Braile, L. W.
1985-01-01
Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, D.O.
1998-01-06
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.
77 FR 55784 - Proposed Flood Elevation Determinations; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... the flooding sources for Franklin County, North Carolina and Incorporated Areas. The flooding source... ``Franklin County, North Carolina, and Incorporated Areas'' addressed several flooding sources, including Taylors Creek. The proposed rule incorrectly listed the flooding source name as Taylors Branch instead of...
Nasadem Global Elevation Model: Methods and Progress
NASA Astrophysics Data System (ADS)
Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; Nguyen, Q.; Rosen, P.; Shimada, J.; Simard, M.; Tung, W.
2016-06-01
NASADEM is a near-global elevation model that is being produced primarily by completely reprocessing the Shuttle Radar Topography Mission (SRTM) radar data and then merging it with refined ASTER GDEM elevations. The new and improved SRTM elevations in NASADEM result from better vertical control of each SRTM data swath via reference to ICESat elevations and from SRTM void reductions using advanced interferometric unwrapping algorithms. Remnant voids will be filled primarily by GDEM3, but with reduction of GDEM glitches (mostly related to clouds) and therefore with only minor need for secondary sources of fill.
NASA Astrophysics Data System (ADS)
Mouratidis, Antonios
2013-04-01
Digital Elevation Models (DEMs) are an inherently interdisciplinary topic, both due to their production and validation methods, as well as their significance for numerous disciplines. The most utilized contemporary topographic datasets worldwide are those of global DEMs. Several space-based sources have been used for the production of (almost) global DEMs, namely satellite Synthetic Aperture Radar (SAR) Interferometry/InSAR, stereoscopy of multispectral satellite images and altimetry, producing several versions of autonomous or mixed products (i.e. SRTM, ACE, ASTER-GDEM). Complementary space-based observations, such as those of Global Navigation Satellite Systems (GNSS), are also used, mainly for validation purposes. The apparent positive impact of these elevation datasets so far has been consolidated by the plethora of related scientific, civil and military applications. Topography is a prominent element for almost all Earth sciences, but in Geomorphology it is even more fundamental. In geomorphological studies, elevation data and thus DEMs can be extensively used for the extraction of both qualitative and quantitative information, such as relief classification, determination of slope and slope orientation, delineation of drainage basins, extraction of drainage networks and much more. Global DEMs are constantly becoming finer, i.e. of higher spatial resolution and more "sensitive" to elevation changes, i.e. of higher vertical accuracy and these progresses are undoubtedly considered as a major breakthrough, each time a new improved global DEM is released. Nevertheless, for Geomorphology in particular, if not already there, we are close to the point in time, where the need for discrimination between DSM (Digital Surface Model) and DTM (Digital Terrain Model) is becoming critical; if the distinction between vegetation and man-made structures on one side (DSM), and actual terrain elevation on the other side (DTM) cannot be made, then, in many cases, any further increase of elevation accuracy in DEMs will have little impact on geomorphological studies. After shortly reviewing the evolution of satellite-based global DEMs, the purpose of this paper is to address their current limitations and challenges from the perspective of a geomorphologist. Subsequently, the implications for geomorphological studies are discussed, with respect to the expected near-future advances in the field, such as the TanDEM-X Global Digital Elevation Model ("WorldDEM", 2014), as well as spaceborne LIDAR (Light Detection and Ranging) approaches (e.g. Lidar Surface Topography/LIST mission, 2016-2020).
Analysis of Screen Channel LAD Bubble Point Tests in Liquid Methane at Elevated Temperature
NASA Technical Reports Server (NTRS)
Hartwig, Jason; McQuillen, John
2012-01-01
This paper examines the effect of varying the liquid temperature and pressure on the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid methane using gaseous helium across a wide range of elevated pressures and temperatures. Testing of a 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenic Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 105 to 160K and 0.0965 - 1.78 MPa. Bubble point is shown to be a strong function of the liquid temperature and a weak function of the amount of subcooling at the LAD screen. The model predicts well for saturated liquid but under predicts the subcooled data.
Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan
2017-04-01
In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.
A new morphology algorithm for shoreline extraction from DEM data
NASA Astrophysics Data System (ADS)
Yousef, Amr H.; Iftekharuddin, Khan; Karim, Mohammad
2013-03-01
Digital elevation models (DEMs) are a digital representation of elevations at regularly spaced points. They provide an accurate tool to extract the shoreline profiles. One of the emerging sources of creating them is light detection and ranging (LiDAR) that can capture a highly dense cloud points with high resolution that can reach 15 cm and 100 cm in the vertical and horizontal directions respectively in short periods of time. In this paper we present a multi-step morphological algorithm to extract shorelines locations from the DEM data and a predefined tidal datum. Unlike similar approaches, it utilizes Lowess nonparametric regression to estimate the missing values within the DEM file. Also, it will detect and eliminate the outliers and errors that result from waves, ships, etc by means of anomality test with neighborhood constrains. Because, there might be some significant broken regions such as branches and islands, it utilizes a constrained morphological open and close to reduce these artifacts that can affect the extracted shorelines. In addition, it eliminates docks, bridges and fishing piers along the extracted shorelines by means of Hough transform. Based on a specific tidal datum, the algorithm will segment the DEM data into water and land objects. Without sacrificing the accuracy and the spatial details of the extracted boundaries, the algorithm should smooth and extract the shoreline profiles by tracing the boundary pixels between the land and the water segments. For given tidal values, we qualitatively assess the visual quality of the extracted shorelines by superimposing them on the available aerial photographs.
Long-wavelength Magnetic and Gravity Anomaly Correlations of Africa and Europe
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J. (Principal Investigator); Olivier, R.
1984-01-01
Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic Shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.
Long-wavelength magnetic and gravity anomaly correlations on Africa and Europe
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Olivier, R.; Hinze, W. J.
1985-01-01
Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.
Viger, R.J.
2008-01-01
The GIS Weasel is a freely available, open-source software package built on top of ArcInfo Workstation?? [ESRI, Inc., 2001, ArcInfo Workstation (8.1 ed.), Redlands, CA] for creating maps and parameters of geographic features used in environmental simulation models. The software has been designed to minimize the need for GIS expertise and automate the preparation of the geographic information as much as possible. Although many kinds of data can be exploited with the GIS Weasel, the only information required is a raster dataset of elevation for the user's area of interest (AOI). The user-defined AOI serves as a starting point from which to create maps of many different types of geographic features, including sub-watersheds, streams, elevation bands, land cover patches, land parcels, or anything else that can be discerned from the available data. The GIS Weasel has a library of over 200 routines that can be applied to any raster map of geographic features to generate information about shape, area, or topological association with other features of the same or different maps. In addition, a wide variety of parameters can be derived using ancillary data layers such as soil and vegetation maps.
NASA Astrophysics Data System (ADS)
Caceres, Jhon
Three-dimensional (3D) models of urban infrastructure comprise critical data for planners working on problems in wireless communications, environmental monitoring, civil engineering, and urban planning, among other tasks. Photogrammetric methods have been the most common approach to date to extract building models. However, Airborne Laser Swath Mapping (ALSM) observations offer a competitive alternative because they overcome some of the ambiguities that arise when trying to extract 3D information from 2D images. Regardless of the source data, the building extraction process requires segmentation and classification of the data and building identification. In this work, approaches for classifying ALSM data, separating building and tree points, and delineating ALSM footprints from the classified data are described. Digital aerial photographs are used in some cases to verify results, but the objective of this work is to develop methods that can work on ALSM data alone. A robust approach for separating tree and building points in ALSM data is presented. The method is based on supervised learning of the classes (tree vs. building) in a high dimensional feature space that yields good class separability. Features used for classification are based on the generation of local mappings, from three-dimensional space to two-dimensional space, known as "spin images" for each ALSM point to be classified. The method discriminates ALSM returns in compact spaces and even where the classes are very close together or overlapping spatially. A modified algorithm of the Hough Transform is used to orient the spin images, and the spin image parameters are specified such that the mutual information between the spin image pixel values and class labels is maximized. This new approach to ALSM classification allows us to fully exploit the 3D point information in the ALSM data while still achieving good class separability, which has been a difficult trade-off in the past. Supported by the spin image analysis for obtaining an initial classification, an automatic approach for delineating accurate building footprints is presented. The physical fact that laser pulses that happen to strike building edges can produce very different 1st and last return elevations has been long recognized. However, in older generation ALSM systems (<50 kHz pulse rates) such points were too few and far between to delineate building footprints precisely. Furthermore, without the robust separation of nearby trees and vegetation from the buildings, simply extracting ALSM shots where the elevation of the first return was much higher than the elevation of the last return, was not a reliable means of identifying building footprints. However, with the advent of ALSM systems with pulse rates in excess of 100 kHz, and by using spin-imaged based segmentation, it is now possible to extract building edges from the point cloud. A refined classification resulting from incorporating "on-edge" information is developed for obtaining quadrangular footprints. The footprint fitting process involves line generalization, least squares-based clustering and dominant points finding for segmenting individual building edges. In addition, an algorithm for fitting complex footprints using the segmented edges and data inside footprints is also proposed.
Francy, Donna S.; Bertke, Erin E.; Finnegan, Dennis P.; Kephart, Christopher M.; Sheets, Rodney A.; Rhoades, John; Stumpe, Lester
2006-01-01
Source-tracking tools were used to identify potential sources of fecal contamination at two Lake Erie bathing beaches: an urban beach (Edgewater in Cleveland, Ohio) and a beach in a small city (Lakeshore in Ashtabula, Ohio). These tools included identifying spatial patterns of Escherichia coli (E. coli) concentrations in each area, determining weather patterns that caused elevated E. coli, and applying microbial source tracking (MST) techniques to specific sites. Three MST methods were used during this study: multiple antibiotic resistance (MAR) indexing of E. coli isolates and the presence of human-specific genetic markers within two types of bacteria, the genus Bacteroides and the species Enterococcus faecium. At Edgewater, sampling for E. coli was done during 2003-05 at bathing-area sites, at nearshore lake sites, and in shallow ground water in foreshore and backshore areas. Spatial sampling at nearshore lake sites showed that fecal contamination was most likely of local origin; E. coli concentrations near the mouths of rivers and outfalls remote to the beach were elevated (greater than 235 colony-forming units per 100 milliliters (CFU/100 mL)) but decreased along transport pathways to the beach. In addition, E. coli concentrations were generally highest in bathing-area samples collected at 1- and 2-foot water depths, midrange at 3-foot depths, and lowest in nearshore lake samples typically collected 150 feet from the shoreline. Elevated E. coli concentrations at bathing-area sites were generally associated with increased wave heights and rainfall, but not always. E. coli concentrations were often elevated in shallow ground-water samples, especially in samples collected less than 10 feet from the edge of water (near foreshore area). The interaction of shallow ground water and waves may be a mechanism of E. coli storage and accumulation in foreshore sands. Infiltration of bird feces through sand with surface water from rainfall and high waves may be concentrating E. coli in shallow ground water in foreshore and backshore sands. At Lakeshore, sampling for E. coli was done at bathing-area, nearshore lake, and parking-lot sites during 2004-05. Low concentrations of E. coli at nearshore lake sites furthest from the shoreline indicated that fecal contamination was most likely of local origin. High concentrations of E. coli in water and bed sediments at several nearshore lake sites showed that contamination was emanating from several points along the shoreline during wet and dry weather, including the boat ramp, an area near the pond drainage, and parking-lot sediments. Physical evidence confirmed that runoff from the parking lot leads to degradation of water quality at the beach. MST samples were collected to help interpret spatial findings and determine whether sources of fecal contamination were from wastewater or bird feces and if a human-specific marker was present. MAR indices were useful in distinguishing between bird feces and wastewater sources because they were about 10 times higher in the latter. The results from MAR indices agreed with results from the two human-specific markers in some but not all of the samples tested. Bacteroides and enterococci human-specific markers were found on one day at Edgewater and two days at Lakeshore. On three days at Edgewater and two days at Lakeshore, the MAR index indicated a mixed source, but neither marker was found in bathing-water samples; this may be because bacterial indicator concentrations were too low to detect a marker. Multiple tools are needed to help identify sources of fecal contamination at coastal beaches. Spatial sampling identified patterns in E. coli concentrations and yielded information on the physical pathways of contamination. MST methods provided information on whether the source was likely of human or nonhuman origin only; however, MST did not provide information on the pathways of contamination.
Comparative Analysis of Data Structures for Storing Massive Tins in a Dbms
NASA Astrophysics Data System (ADS)
Kumar, K.; Ledoux, H.; Stoter, J.
2016-06-01
Point cloud data are an important source for 3D geoinformation. Modern day 3D data acquisition and processing techniques such as airborne laser scanning and multi-beam echosounding generate billions of 3D points for simply an area of few square kilometers. With the size of the point clouds exceeding the billion mark for even a small area, there is a need for their efficient storage and management. These point clouds are sometimes associated with attributes and constraints as well. Storing billions of 3D points is currently possible which is confirmed by the initial implementations in Oracle Spatial SDO PC and the PostgreSQL Point Cloud extension. But to be able to analyse and extract useful information from point clouds, we need more than just points i.e. we require the surface defined by these points in space. There are different ways to represent surfaces in GIS including grids, TINs, boundary representations, etc. In this study, we investigate the database solutions for the storage and management of massive TINs. The classical (face and edge based) and compact (star based) data structures are discussed at length with reference to their structure, advantages and limitations in handling massive triangulations and are compared with the current solution of PostGIS Simple Feature. The main test dataset is the TIN generated from third national elevation model of the Netherlands (AHN3) with a point density of over 10 points/m2. PostgreSQL/PostGIS DBMS is used for storing the generated TIN. The data structures are tested with the generated TIN models to account for their geometry, topology, storage, indexing, and loading time in a database. Our study is useful in identifying what are the limitations of the existing data structures for storing massive TINs and what is required to optimise these structures for managing massive triangulations in a database.
Proceedings: 2002 Workshop on Pressurized Water Reactor Elevated Feedwater Iron Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2002-11-01
Some pressurized water reactor (PWR) stations have experienced difficulty with maintaining feedwater (FW) iron concentrations below recommended concentration on a regular basis. A workshop held on September 17-18 in Dana Point, California, addressed the challenge of elevated feedwater iron transport in PWRs.
Sloto, Ronald A.
2003-01-01
The Potomac-Raritan-Magothy (PRM) aquifer system is an important sole-source ground-water supply in Camden and Gloucester Counties, N.J. Elevated iron concentrations are a persistent water-quality problem associated with ground water from the PRM. In Philadelphia, the PRM no longer is usable as a water supply because of highly elevated concentrations of iron (as high as 429 mg/L [milligrams per liter]), manganese (as high as 4 mg/L), and sulfate (as high as 1,720 mg/L). A strongly reducing environment in the PRM in south Philadelphia causes these constituents to be remobilized by reductive dissolution of the aquifer matrix.By the 1920s, ground-water pumping changed the natural ground-water-flow patterns, and ground water flowed toward pumping centers in Philadelphia. By 1940, recharge areas changed from the topographically high areas east of Trenton, N.J., to the outcrop area of the PRM in Philadelphia, and the Delaware River became a source of recharge instead of a point of ground-water discharge. By 1954, the cone of depression caused by pumping at the former Philadelphia Naval Ship Yard (PNSY) exceeded 50 feet below NGVD 29, and the direction of ground-water flow was from New Jersey toward Philadelphia. Because of highly elevated concentrations of iron and manganese, pumping at the former PNSY ceased in the mid-1960s. Beginning about 1951, increased ground-water withdrawals from the PRM in New Jersey reversed the hydraulic gradient so that ground-water flow was from Philadelphia toward New Jersey under the Delaware River, making Philadelphia a recharge area for the PRM aquifer system in parts of Camden and Gloucester Counties. By 1988, water levels in the lower aquifer of the PRM in New Jersey had declined to 103 feet below NAVD 88.In 1943, dissolved iron concentrations ranged from 0.07 to 0.6 mg/L at the former PNSY. By 1967 when the wells at the PNSY were abandoned, dissolved iron concentrations had reached 46 mg/L. Dissolved iron concentrations in water from industrial wells in Philadelphia increased from 0.17 mg/L in 1949 to 19 mg/L in 1979. The concentration of dissolved iron in water from wells screened in the lower aquifer in New Jersey also increased with time. By 1985, dissolved iron concentrations were as high as 16 mg/L for Eagle Point refinery wells.
An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 1. Theory
Yen, Chung-Cheng; Guymon, Gary L.
1990-01-01
An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.
An Efficient Deterministic-Probabilistic Approach to Modeling Regional Groundwater Flow: 1. Theory
NASA Astrophysics Data System (ADS)
Yen, Chung-Cheng; Guymon, Gary L.
1990-07-01
An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.
Point source emission reference materials from the Emissions Inventory Improvement Program (EIIP). Provides point source guidance on planning, emissions estimation, data collection, inventory documentation and reporting, and quality assurance/quality contr
Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment
For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid m...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yun Kyung; Kim, Gunha; Park, Serah
2012-01-13
Highlights: Black-Right-Pointing-Pointer Lysolecithin-induced demyelination elevated EpoR expression in OPCs. Black-Right-Pointing-Pointer In association with elevated EpoR, EPO increased OPCs proliferation. Black-Right-Pointing-Pointer EPO enhanced the oligodendrogenesis via activation of JAK2 pathway. Black-Right-Pointing-Pointer EPO promoted myelin repair following lysolecithin-induced demyelination. -- Abstract: Here, we sought to delineate the effect of EPO on the remyelination processes using an in vitro model of demyelination. We report that lysolecithin-induced demyelination elevated EPO receptor (EpoR) expression in oligodendrocyte progenitor cells (OPCs), facilitating the beneficial effect of EPO on the formation of oligodendrocytes (oligodendrogenesis). In the absence of EPO, the resultant remyelination was insufficient, possibly due to amore » limiting number of oligodendrocytes rather than their progenitors, which proliferate in response to lysolecithin-induced injury. By EPO treatment, lysolecithin-induced proliferation of OPCs was accelerated and the number of myelinating oligodendrocytes and myelin recovery was increased. EPO also enhanced the differentiation of neural progenitor cells expressing EpoR at high level toward the oligodendrocyte-lineage cells through activation of cyclin E and Janus kinase 2 pathways. Induction of myelin-forming oligodendrocytes by high dose of EPO implies that EPO might be the key factor influencing the final differentiation of OPCs. Taken together, our data suggest that EPO treatment could be an effective way to enhance remyelination by promoting oligodendrogenesis in association with elevated EpoR expression in spinal cord slice culture after lysolecithin-induced demyelination.« less
NASA Astrophysics Data System (ADS)
Knudsen, Steven; Golubovic, Leonardo
2015-04-01
With the advent of ultra-strong materials, the Space Elevator has changed from science fiction to real science. We discuss computational and theoretical methods we developed to explore classical and statistical mechanics of rotating Space Elevators (RSE). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a motion which is nearly a superposition of two rotations: geosynchronous rotation around the Earth, and yet another faster rotational motion of the string which goes on around a line perpendicular to the Earth at its equator. Strikingly, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth (starting point) whereas the other one is deeply in the outer space. The RSE concept thus solves a major problem in space elevator science which is how to supply energy to the climbers moving along space elevator strings. The exploration of the dynamics of a floppy string interacting with objects sliding along it has required development of novel finite element algorithms described in this presentation. We thank Prof. Duncan Lorimer of WVU for kindly providing us access to his computational facility.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Song, JinXi; Liu, WanQing
2017-12-01
Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. Weihe River Watershed above Huaxian Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load(CSLD) method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the normal, rainy and wet period in turn.
Calculating NH3-N pollution load of wei river watershed above Huaxian section using CSLD method
NASA Astrophysics Data System (ADS)
Zhu, Lei; Song, JinXi; Liu, WanQing
2018-02-01
Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. So it is taken as the research objective in this paper and NH3-N is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load (CSLD)method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly. The non-point source pollution load proportions of total pollution load of NH3-N decrease in the normal, rainy and wet period in turn.
Kresse, Timothy M.; Clark, Brian R.
2008-01-01
Water-quality data from approximately 2,500 sites were used to investigate the distribution of chloride concentrations in the Mississippi River Valley alluvial aquifer in southeastern Arkansas. The large volume and areal distribution of the data used for the investigation proved useful in delineating areas of elevated (greater than 100 milligrams per liter) chloride concentrations, assessing potential sources of saline water, and evaluating trends in chloride distribution and concentration over time. Irrigation water containing elevated chloride concentrations is associated with negative effects to rice and soybeans, two of the major crops in Arkansas, and a groundwater chloride concentration of 100 milligrams per liter is recommended as the upper limit for use on rice. As such, accurately delineating areas with high salinity ground water, defining potential sources of chloride, and documenting trends over time is important in assisting the agricultural community in water management. The distribution and range of chloride concentrations in the study area revealed distinct areas of elevated chloride concentrations. Area I includes an elongated, generally northwest-southeast trending band of moderately elevated chloride concentrations in the northern part of the study area. This band of elevated chloride concentrations is approximately 40 miles in length and varies from approximately 2 to 9 miles in width, with a maximum chloride concentration of 360 milligrams per liter. Area II is a narrow, north-south trending band of elevated chloride concentrations in the southern part of the study area, with a maximum chloride concentration of 1,639 milligrams per liter. A zone of chloride concentrations exceeding 200 milligrams per liter is approximately 25 miles in length and 5 to 6 miles in width. In Area I, low chloride concentrations in samples from wells completed in the alluvial aquifer next to the Arkansas River and in samples from the upper Claiborne aquifer, which underlies the alluvial aquifer, indicate that leakage from the river and upward flow of saline water in underlying aquifers are not likely sources for the saline water in the alluvial aquifer in Area I. A good comparison was noted for chloride concentrations in Area I and surface geomorphology. In the majority of cases, elevated chloride concentrations occurred in backswamp deposits, with low concentrations (less than 50 milligrams per liter) in areas of active or abandoned channel deposits. The fine-grained, clay-rich deposits associated with backswamp areas likely restrict recharge, induce increased ratios between evapotranspiration and recharge, and experience minimal flushing of salts concentrated during evapotranspiration. In Area II, chloride isoconcentration maps of the underlying upper Claiborne aquifer, in addition to samples from wells completed in the middle and lower Claiborne aquifers, showed a similar chloride distribution to that of the alluvial aquifer with decreasing chloride concentrations to the east of the zone of elevated chloride concentrations, which suggests a deeper source of saline water that affects Tertiary and Quaternary aquifer systems. Mixing curves developed from bromide/chloride ratios in water samples from the alluvial aquifer, Tertiary aquifers, and samples of brine water from the Jurrasic Smackover Formation additionally discounted upward flow of saline water from underlying Tertiary formations as a potential mechanism for salinity in the alluvial aquifer in Area II. A review of information on oil exploration wells in Chicot County revealed that most of these wells were drilled from 1960 to 1980, after the elevated chloride concentrations were detected in the early 1950s. The elongated nature of the zone of elevated chloride concentrations in Area II suggests a line source or linear conduit connection with the source. Maps of a fractured limestone in the Smackover Formation in Arkansas, Mississippi, and Louisiana for purpose
Hydrogeochemistry of the Catskill Mountains of New York.
Parisio, Steven J; Halton, Casey R; Bowles, Emily K; Keimowitz, Alison R; Corey, Karen; Myers, Kellie; Adams, Morton S
2013-09-01
Major ion chemistry of Catskill region groundwater is characterized on the basis of 207 analyses compiled from three sources, including a web-based U.S. Geological Survey database, state agency regulatory compliance data, and sampling of trailside springs performed by the authors. All samples were analyzed for the complete set of major ions, including calcium, magnesium, sodium, potassium, bicarbonate, chloride, sulfate, and nitrate. Groundwater in pristine, high-elevation areas of the Catskill Peaks was found to be predominantly of calcium bicarbonate, calcium sulfate, or calcium bicarbonate-sulfate types, with relatively low ionic strength. Groundwater at lower elevations along the margins of the region or in valley bottoms was predominantly of sodium-chloride or sodium-bicarbonate types, showing the effects of road salt and other local pollution sources. Nitrate and sulfate enrichment attributable to regional air pollution sources were most evident in the high-elevation spring samples, owing to the generally low concentrations of other major ions. Trailside springs appear to be viable low-cost sources for obtaining samples representative of groundwater, especially in remote and inaccessible areas of the Catskill forest preserve. © 2013 New York Academy of Sciences.
Quantification of soil losses from tourist trails - use of Digital Elevation Models
NASA Astrophysics Data System (ADS)
Tomczyk, Aleksandra
2010-05-01
Tourism impacts in protected mountain areas are one of the main concerns for land managers. Impact to environment is most visible at locations of highly concentrated activities like tourist trails, campsites etc. The main indicators of the tourist trail degradation are: vegetation loss (trampling of vegetation cover), change of vegetation type and composition, widening of the trails, muddiness and soil erosion. The last one is especially significant, since it can cause serious transformation of the land surface. Such undesirable changes cannot be repaired without high-cost management activities, and, in some cases they can made the trails difficult and unsafe to use. Scientific understanding of soil erosion related to human impact can be useful for more effective management of the natural protected areas. The aim of this study was to use of digital elevation models (DEMs) to precisely quantify of soil losses from tourist trails. In the study precise elevation data were gathered in several test fields of 4 by 5 m spatial dimension. Measurements were taken in 13 test fields, located in two protected natural areas in south Poland: Gorce National Park and Popradzki Landscape Park. The measuring places were located on trails characterized by different slope, type of vegetation and type of use. Each test field was established by four special marks, firmly dug into the ground. Elevation data were measured with the electronic total station. Irregular elevation points were surveying with essential elements of surrounding terrain surface being included. Moreover, surveys in fixed profile lines were done. For each test field a set of 30 measurements in control points has been collected and these data provide the base for verification of digital elevation models. Average density of the surveying was 70 points per square meter (1000 - 1500 elevation points per each test fields). Surveys in each test field were carried out in August and September of 2008, June 2009 and August 2009. Based on the gathered elevation data, several digital elevation models with spatial resolution 5 x 5 cm and 1 x 1 cm were generated. Subtraction of the DEMs from subsequent time periods gives the amount of material which was transported within the test fields and shows the spatial distribution of earth-surface changes. Spatial and temporal analysis of transformations of trail surfaces revealed that the changes are not evenly distributed neither in time nor space. In most of the test fields only the small portion of trail were subjected to distinct (more than 1 cm per year) erosion or accumulation. Moreover, degree of changes between June 2009 and August 2009 (3 months) was similar to the degree of changes between August - September 2008 and June 2009 (9 months). Main factors influence patterns of erosion are slope and type of use.
Space Station tethered elevator system
NASA Technical Reports Server (NTRS)
Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.
1989-01-01
The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.
49 CFR 172.325 - Elevated temperature materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... square-on-point configuration having the same outside dimensions as a placard. (See § 172.302(b) for size... paragraph (a) of this section. (c) If the identification number is displayed on a white-square-on-point... of the same white-square-on-point display configuration. The word “HOT” must be in black letters...
49 CFR 172.325 - Elevated temperature materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... square-on-point configuration having the same outside dimensions as a placard. (See § 172.302(b) for size... paragraph (a) of this section. (c) If the identification number is displayed on a white-square-on-point... of the same white-square-on-point display configuration. The word “HOT” must be in black letters...
49 CFR 172.325 - Elevated temperature materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... square-on-point configuration having the same outside dimensions as a placard. (See § 172.302(b) for size... paragraph (a) of this section. (c) If the identification number is displayed on a white-square-on-point... of the same white-square-on-point display configuration. The word “HOT” must be in black letters...
20. PHOTOCOPY OF PHOTOGRAPH. View south of north elevation under ...
20. PHOTOCOPY OF PHOTOGRAPH. View south of north elevation under construction, ca. 1954. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
NASA Astrophysics Data System (ADS)
Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo
2014-05-01
In shallow or unconfined aquifers the infiltration of contaminated river water might be a major threat to groundwater quality. Thus, the identification of possible contamination sources in coupled surface- and groundwater systems is of paramount importance to ensure water quality. Micropollutants like artificial sweeteners are promising markers for domestic waste water in natural water bodies. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants, leaky sewer systems or septic tanks and are ubiquitously found in waste water receiving waters. The hereby presented field study aims at the (1) identification of contamination sources and (2) delineation of infiltration zones in a connected river-aquifer system. River bank filtrate in the groundwater body was assessed qualitatively and quantitatively using a combined approach of hydrochemical analysis and artificial sweeteners (acesulfame ACE) as waste water markers. The investigated aquifer lies within a mesoscale alpine head water catchment and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners at the investigated site. The municipal waste water treatment plant was identified as point-source for ACE in the river network. In the aquifer ACE was present in more than 80% of the monitoring wells. In addition, water samples were classified according to their hydrochemical composition, identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from local recharge. In combination with ACE concentrations a third type of water could be discriminated: (3) groundwater influence by bank filtrate but infiltrated prior to the waste water treatment plant. Moreover, the presence of ACE at elevated concentrations in aquifer zones dominated by local recharge indicated another point-source of domestic waste water. The combined analysis of ACE and conventional hydrochemical data proved to be useful to identify different sources of waste water. It is shown that the combination of physicochemical parameters and artificial sweeteners allow for a clear delineation of infiltration areas in the investigated aquifer system.
Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A.
NASA Astrophysics Data System (ADS)
Lyman, Seth; Tran, Trang
2015-12-01
The Uintah Basin in Utah, U.S.A. experiences high concentrations of ozone during some winters due to strong, multi-day temperature inversions that facilitate the buildup of pollution from local sources, including the oil and gas industry. Together, elevation of monitoring sites and proximity to oil and gas wells explain as much as 90% of spatial variability in surface ozone concentrations during inversion episodes (i.e., R2 = 0.90). Inversion conditions start earlier and last longer at lower elevations, at least in part because lower elevations are more insulated from winds aloft that degrade inversion conditions and dilute produced ozone. Surface air transport under inversions is dominated by light, diurnal upslope-downslope flow that limits net transport distances. Thus, different areas of the Basin are relatively isolated from each other, allowing spatial factors like elevation and proximity to sources to strongly influence ozone concentrations at individual sites.
Quan, Erik; Mahmood, Rizwan; Naik, Amar; Sargon, Peter; Shastri, Nikhil; Venu, Mukund; Parada, Jorge P; Gupta, Neil
2018-05-21
There have been reported outbreaks of carbapenem-resistant Enterobacteriaceae infections linked to endoscopes with elevator mechanisms. Adenosine triphosphate (ATP) testing has been used as a marker for bioburden and monitoring manual cleaning for flexible endoscopes with and without an elevator mechanism. The objective of this study was to determine whether routine ATP testing could identify areas of improvement in cleaning of endoscopes with an elevator mechanism. ATP testing after manual cleaning of TJF-Q180V duodenoscopes and GF-UCT180 linear echoendoscopes (Olympus America Inc, Center Valley, PA) was implemented. Samples were tested from the distal end, the elevator mechanism, and water flushed through the lumen of the biopsy channel. Data were recorded and compared by time point, test point, and reprocessing technician. Overall failure rate was 6.99% (295 out of 4,219). The highest percentage of failed ATP tests (17.05%) was reported in the first quarter of routine testing, with an overall decrease in rates over time. The elevator mechanism and working channel lumen had higher failure rates than the distal end. Quality of manual cleaning between reprocessing technicians showed variation. ATP testing is effective in identifying residual organic material and improving quality of manual cleaning of endoscopes with an elevator mechanism. Cleaning efficacy is influenced by reprocessing technicians and location tested on the endoscope. Close attention to the working channel and elevator mechanism during manual cleaning is warranted. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Study on high-resolution representation of terraces in Shanxi Loess Plateau area
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Tang, Guo'an; Ma, Lei
2008-10-01
A new elevation points sampling method, namely TIN-based Sampling Method (TSM) and a new visual method called Elevation Addition Method (EAM), are put forth for representing the typical terraces in Shanxi loess plateau area. The DEM Feature Points and Lines Classification (DEPLC) put forth by the authors in 2007 is perfected for depicting the main path in the study area. The EAM is used to visualize the terraces and the path in the study area. 406 key elevation points and 15 feature constrained lines sampled by this method are used to construct CD-TINs which can depict the terraces and path correctly and effectively. Our case study shows that the new sampling method called TSM is reasonable and feasible. The complicated micro-terrains like terraces and path can be represented with high resolution and high efficiency successfully by use of the perfected DEPLC, TSM and CD-TINs. And both the terraces and the main path are visualized very well by use of EAM even when the terrace height is not more than 1m.
Karashima, Shigehiro; Tsuda, Toyonobu; Wakabayashi, Yusuke; Kometani, Mitsuhiro; Demura, Masashi; Ichise, Taro; Kawashiri, Masa-Aki; Takeda, Yoshiyu; Hayashi, Kenshi; Yoneda, Takashi
2018-02-01
A J wave is a common electrocardiographic finding in the general population. Individuals with prominent J waves in multiple electrocardiogram (ECG) leads have a higher risk of lethal arrhythmias than those with low-amplitude J waves. There are few reports about the relationship between thyroid function and J-wave amplitude. We report the case of a 45-year-old man who had unexpected ventricular fibrillation (VF). He had dynamic J-point elevation in multiple ECG leads. Possible early repolarization syndrome was diagnosed. He also had thyrotoxicosis caused by silent thyroiditis, and his J-wave amplitude decreased according to changes in thyroid function because of spontaneous remission of silent thyroiditis. There was a positive correlation between serum triiodothyronine levels and J-wave amplitudes. The findings in case suggested silent thyroiditis may contribute to the occurrence of VF in a patient with dynamic changes in J-point elevation in multiple ECG leads. Thyrotoxicosis is a relatively common endocrine disease; therefore, clinicians should pay attention to J-wave amplitude in the ECG of patients with thyrotoxicosis.
Spatiotemporal exposure modeling of ambient erythemal ultraviolet radiation.
VoPham, Trang; Hart, Jaime E; Bertrand, Kimberly A; Sun, Zhibin; Tamimi, Rulla M; Laden, Francine
2016-11-24
Ultraviolet B (UV-B) radiation plays a multifaceted role in human health, inducing DNA damage and representing the primary source of vitamin D for most humans; however, current U.S. UV exposure models are limited in spatial, temporal, and/or spectral resolution. Area-to-point (ATP) residual kriging is a geostatistical method that can be used to create a spatiotemporal exposure model by downscaling from an area- to point-level spatial resolution using fine-scale ancillary data. A stratified ATP residual kriging approach was used to predict average July noon-time erythemal UV (UV Ery ) (mW/m 2 ) biennially from 1998 to 2012 by downscaling National Aeronautics and Space Administration (NASA) Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) gridded remote sensing images to a 1 km spatial resolution. Ancillary data were incorporated in random intercept linear mixed-effects regression models. Modeling was performed separately within nine U.S. regions to satisfy stationarity and account for locally varying associations between UV Ery and predictors. Cross-validation was used to compare ATP residual kriging models and NASA grids to UV-B Monitoring and Research Program (UVMRP) measurements (gold standard). Predictors included in the final regional models included surface albedo, aerosol optical depth (AOD), cloud cover, dew point, elevation, latitude, ozone, surface incoming shortwave flux, sulfur dioxide (SO 2 ), year, and interactions between year and surface albedo, AOD, cloud cover, dew point, elevation, latitude, and SO 2 . ATP residual kriging models more accurately estimated UV Ery at UVMRP monitoring stations on average compared to NASA grids across the contiguous U.S. (average mean absolute error [MAE] for ATP, NASA: 15.8, 20.3; average root mean square error [RMSE]: 21.3, 25.5). ATP residual kriging was associated with positive percent relative improvements in MAE (0.6-31.5%) and RMSE (3.6-29.4%) across all regions compared to NASA grids. ATP residual kriging incorporating fine-scale spatial predictors can provide more accurate, high-resolution UV Ery estimates compared to using NASA grids and can be used in epidemiologic studies examining the health effects of ambient UV.
Body mass index cut-points to identify cardiometabolic risk in black South Africans.
Kruger, H Salome; Schutte, Aletta E; Walsh, Corinna M; Kruger, Annamarie; Rennie, Kirsten L
2017-02-01
To determine optimal body mass index (BMI) cut-points for the identification of cardiometabolic risk in black South African adults. We performed a cross-sectional study of a weighted sample of healthy black South Africans aged 25-65 years (721 men, 1386 women) from the North West and Free State Provinces. Demographic, lifestyle and anthropometric measures were taken, and blood pressure, fasting serum triglycerides, high-density lipoprotein (HDL) cholesterol and blood glucose were measured. We defined elevated cardiometabolic risk as having three or more risk factors according to international metabolic syndrome criteria. Receiver operating characteristic curves were applied to identify an optimal BMI cut-point for men and women. BMI had good diagnostic performance to identify clustering of three or more risk factors, as well as individual risk factors: low HDL-cholesterol, elevated fasting glucose and triglycerides, with areas under the curve >.6, but not for high blood pressure. Optimal BMI cut-points averaged 22 kg/m 2 for men and 28 kg/m 2 for women, respectively, with better sensitivity in men (44.0-71.9 %), and in women (60.6-69.8 %), compared to a BMI of 30 kg/m 2 (17-19.1, 53-61.4 %, respectively). Men and women with a BMI >22 and >28 kg/m 2 , respectively, had significantly increased probability of elevated cardiometabolic risk after adjustment for age, alcohol use and smoking. In black South African men, a BMI cut-point of 22 kg/m 2 identifies those at cardiometabolic risk, whereas a BMI of 30 kg/m 2 underestimates risk. In women, a cut-point of 28 kg/m 2 , approaching the WHO obesity cut-point, identifies those at risk.
Research on optimal DEM cell size for 3D visualization of loess terraces
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Tang, Guo'an; Ji, Bin; Ma, Lei
2009-10-01
In order to represent the complex artificial terrains like loess terraces in Shanxi Province in northwest China, a new 3D visual method namely Terraces Elevation Incremental Visual Method (TEIVM) is put forth by the authors. 406 elevation points and 14 enclosed constrained lines are sampled according to the TIN-based Sampling Method (TSM) and DEM Elevation Points and Lines Classification (DEPLC). The elevation points and constrained lines are used to construct Constrained Delaunay Triangulated Irregular Networks (CD-TINs) of the loess terraces. In order to visualize the loess terraces well by use of optimal combination of cell size and Elevation Increment Value (EIV), the CD-TINs is converted to Grid-based DEM (G-DEM) by use of different combination of cell size and EIV with linear interpolating method called Bilinear Interpolation Method (BIM). Our case study shows that the new visual method can visualize the loess terraces steps very well when the combination of cell size and EIV is reasonable. The optimal combination is that the cell size is 1 m and the EIV is 6 m. Results of case study also show that the cell size should be at least smaller than half of both the terraces average width and the average vertical offset of terraces steps for representing the planar shapes of the terraces surfaces and steps well, while the EIV also should be larger than 4.6 times of the terraces average height. The TEIVM and results above is of great significance to the highly refined visualization of artificial terrains like loess terraces.
27 CFR 9.139 - Santa Lucia Highlands.
Code of Federal Regulations, 2014 CFR
2014-04-01
... boundary follows Limekiln Creek for approximately 1.25 miles northeast to the 100 foot elevation. (2) Then following the 100 foot contour in a southeasterly direction for approximately 1 mile, where the boundary... approximately 6.50 miles, to the point where the 160 foot elevation crosses River Road. (6) Then following River...
27 CFR 9.139 - Santa Lucia Highlands.
Code of Federal Regulations, 2012 CFR
2012-04-01
... boundary follows Limekiln Creek for approximately 1.25 miles northeast to the 100 foot elevation. (2) Then following the 100 foot contour in a southeasterly direction for approximately 1 mile, where the boundary... approximately 6.50 miles, to the point where the 160 foot elevation crosses River Road. (6) Then following River...
27 CFR 9.139 - Santa Lucia Highlands.
Code of Federal Regulations, 2013 CFR
2013-04-01
... boundary follows Limekiln Creek for approximately 1.25 miles northeast to the 100 foot elevation. (2) Then following the 100 foot contour in a southeasterly direction for approximately 1 mile, where the boundary... approximately 6.50 miles, to the point where the 160 foot elevation crosses River Road. (6) Then following River...
Remeasuring tree heights on permanent plots using rectangular coordinates and one angle per tree
Robert L. Neal
1973-01-01
Heights of permanent sample trees with tops visible from any point can be measured from that point with any clinometer, measuring one vertical angle per tree. Two horizontal angles and one additional vertical angle per observation point are necessary to orient the point to the plot. Permanently recorded coordinates and elevations of tree locations are used with the...
Heart Disease Death Rates in Low Versus High Land Elevation Counties in the U.S.
Hart, John
2015-01-01
Previous research on land elevation and cancer death rates in the U.S. revealed lower cancer death rates in higher elevations. The present study further tests the possible effect of land elevation on a diffident health outcome, namely, heart disease death rates. U.S. counties not overlapping in their land elevations according to their lowest and highest elevation points were identified. Using an ecological design, heart disease death rates for two races (black and white) corresponding to lower elevation counties were compared to heart disease death rates in higher land elevation counties using the two-sample t-test and effect size statistics. Death rates in higher land elevation counties for both races were lower compared to the death rates in lower land elevation counties (p < 0.001) with large effect sizes (of > 0.70). Since this is an observational study, no causal inference is claimed, and further research is indicated to verify these findings.
Heart Disease Death Rates in Low Versus High Land Elevation Counties in the U.S
2015-01-01
Previous research on land elevation and cancer death rates in the U.S. revealed lower cancer death rates in higher elevations. The present study further tests the possible effect of land elevation on a diffident health outcome, namely, heart disease death rates. U.S. counties not overlapping in their land elevations according to their lowest and highest elevation points were identified. Using an ecological design, heart disease death rates for two races (black and white) corresponding to lower elevation counties were compared to heart disease death rates in higher land elevation counties using the two-sample t-test and effect size statistics. Death rates in higher land elevation counties for both races were lower compared to the death rates in lower land elevation counties (p < 0.001) with large effect sizes (of > 0.70). Since this is an observational study, no causal inference is claimed, and further research is indicated to verify these findings. PMID:26674102
NASA Astrophysics Data System (ADS)
Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie
2017-04-01
Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants
Dong, Jinlong; Xu, Qiao; Gruda, Nazim; Chu, Wenying; Li, Xun; Duan, Zengqiang
2018-02-25
Elevated carbon dioxide (CO 2 ) and nitrogen (N) availability can interactively promote cucumber yield, but how the yield increase is realized remains unclear, whilst the interactive effects on fruit quality are unknown. In this study, cucumber plants (Cucumis sativus L. cv. Jinmei No. 3) were grown in a paddy soil under three CO 2 concentrations - 400 (ambient CO 2 ), 800 (elevated CO 2 , eCO 2 ) and 1200 µmol mol -1 (super-elevated CO 2 ) - and two N applications - 0.06 (low N) and 0.24 g N kg -1 soil (high N). Compared with ambient CO 2 , eCO 2 increased yield by 106% in high N but the increase in total biomass was only 33%. This can result from greater carbon translocation to fruits from other organs, indicated by the increased biomass allocation from stems and leaves, particularly source leaves, to fruits and the decreased concentrations of fructose and glucose in source leaves. Super-elevated CO 2 reduced the carbon allocation to fruits thus yield increase (71%). Additionally, eCO 2 also increased the concentrations of fructose and glucose in fruits, maintained the concentrations of dietary fiber, phosphorus, potassium, calcium, magnesium, sulfur, manganese, copper, molybdenum and sodium, whilst it decreased the concentrations of nitrate, protein, iron, and zinc in high N. Compared with eCO 2 , super-elevated CO 2 can still improve the fruit quality to some extent in low N availability. Elevated CO 2 promotes cucumber yield largely by carbon allocation from source leaves to fruits in high N availability. Besides a dilution effect, carbon allocation to fruits, carbohydrate transformation, and nutrient uptake and assimilation can affect the fruit quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Long, S. A. T.
1974-01-01
Formulas are derived for the root-mean-square (rms) displacement, slope, and curvature errors in an azimuth-elevation image trace of an elongated object in space, as functions of the number and spacing of the input data points and the rms elevation error in the individual input data points from a single observation station. Also, formulas are derived for the total rms displacement, slope, and curvature error vectors in the triangulation solution of an elongated object in space due to the rms displacement, slope, and curvature errors, respectively, in the azimuth-elevation image traces from different observation stations. The total rms displacement, slope, and curvature error vectors provide useful measure numbers for determining the relative merits of two or more different triangulation procedures applicable to elongated objects in space.
Chemical quality of water, sediment, and fish in Mountain Creek Lake, Dallas, Texas, 1994-97
Van Metre, Peter C.; Jones, S.A.; Moring, J. Bruce; Mahler, B.J.; Wilson, Jennifer T.
2003-01-01
The occurrence, trends, and sources of numerous inorganic and organic contaminants were evaluated in Mountain Creek Lake, a reservoir in Dallas, Texas. The study, done in cooperation with the Southern Division Naval Facilities Engineering Command, was prompted by the Navy’s concern for potential off-site migration of contaminants from two facilities on the shore of Mountain Creek Lake, the Naval Air Station Dallas and the Naval Weapons Industrial Reserve Plant. Sampling of stormwater (including suspended sediment), lake water, bottom sediment (including streambed sediment), and fish was primarily in Mountain Creek Lake but also was in stormwater outfalls from the Navy facilities, nearby urban streams, and small streams draining the Air Station.Volatile organic compounds, predominantly solvents from the Reserve Plant and fuel-related compounds from the Air Station, were detected in stormwater from both Navy facilities. Fuel-related compounds also were detected in Mountain Creek Lake at two locations, one near the Air Station inlet where stormwater from a part of the Air Station enters the lake and one at the center of the lake. Concentrations of volatile organic compounds at the two lake sites were small, all less than 5 micrograms per liter.Elevated concentrations of cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc, from 2 to 4 times concentrations at background sites and urban reference sites, were detected in surficial bottom sediments in Cottonwood Bay, near stormwater outfalls from the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, compared to background and urban reference sites, were detected in surficial sediments in Cottonwood Bay. Elevated concentrations of polycyclic aromatic hydrocarbons, indicative of urban sources, also were detected in Cottonwood Creek, which drains an urbanized area apart from the Navy facilities. Elevated concentrations of polychlorinated biphenyls were detected in two inlets near the Air Station shoreline. Polycyclic aromatic hydrocarbon and heavy metal concentrations near the Air Station shoreline were not elevated compared to urban reference sites.Much larger concentrations of selected heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were detected in deeper, older sediments than in surficial sediments in Cottonwood Bay. The decreases in concentrations coincide with changes in wastewater discharge practices at the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls also were detected in older sediments in the Air Station inlet.On the basis of dated sediment cores and contaminant discharge histories, contaminant accumulation rates in Cottonwood Bay were much greater historically than recently. Most heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls that accumulated in the central and eastern parts of Cottonwood Bay appear to have come from the west lagoon on the Reserve Plant. Treated sewage and industrial-process wastewater were discharged to the west lagoon from about 1941 to 1974. Estimated annual contaminant accumulation rates in Cottonwood Bay decreased by from 1 to 2 orders of magnitude after 1974, when most point-source discharges to the west lagoon ceased.Polychlorinated biphenyls were detected in 61 of 62 individual fish-tissue samples. The largest average concentrations were in eviscerated channel catfish and the smallest were in largemouth bass fillets. Polychlorinated biphenyl and selenium concentrations from analyses of this study were large enough to prompt the Texas State Department of Health to issue a fish-possession ban for Mountain Creek Lake in 1996.Suspended sediments in stormwater at the lagoon outfalls and at sites on Cottonwood Creek were sampled and analyzed for major and trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. The suspended sediments from the outfalls contained about the same mixture of heavy metals and organic compounds, in elevated concentrations compared to reference sites, as bottom sediments from the lagoons and surficial bottom sediments in Cottonwood Bay.Diagnostic ratios of polycyclic aromatic hydrocarbons indicate that uncombusted fuel sources contribute to older sediments and that pyrogenic sources of polycyclic aromatic hydrocarbons dominate recently deposited sediments in Cottonwood Bay and along the Air Station shoreline.
Automatic Extraction of Road Markings from Mobile Laser Scanning Data
NASA Astrophysics Data System (ADS)
Ma, H.; Pei, Z.; Wei, Z.; Zhong, R.
2017-09-01
Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS) and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS) system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.
Giotto, Nina; Gerard, Jean-François; Ziv, Alon; Bouskila, Amos; Bar-David, Shirli
2015-01-01
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore's space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat selection analyses. We studied the endangered Asiatic wild ass (Equus hemionus) in the Negev Desert, Israel, using GPS monitoring and direct observation. We found that the main landscape-related factors affecting the species' space-use patterns, on a daily and seasonal basis, were vegetation cover, water sources and topography. Two main habitat types were selected: high-elevation sites during the day (specific microclimate: windy on warm summer days) and streambed surroundings during the night (coupled with high vegetation when the animals were active in summer). Distribution of recursion times (duration between visits) revealed a 24-hour periodicity, a pattern that could be widespread among large herbivores. Characterizing frequently revisited sites suggested that recursion movements were mainly driven by a few landscape features (water sources, vegetation patches, high-elevation points), but also by social factors, such as territoriality, which should be further explored. This study provided complementary insights into the space-use patterns of E. hemionus. Understanding of the species' space-use patterns, at both large and fine spatial scale, is required for developing appropriate conservation protocols. Our approach could be further applied for studying the space-use patterns of other species in heterogeneous landscapes.
Giotto, Nina; Gerard, Jean-François; Ziv, Alon; Bouskila, Amos; Bar-David, Shirli
2015-01-01
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore’s space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat selection analyses. We studied the endangered Asiatic wild ass (Equus hemionus) in the Negev Desert, Israel, using GPS monitoring and direct observation. We found that the main landscape-related factors affecting the species’ space-use patterns, on a daily and seasonal basis, were vegetation cover, water sources and topography. Two main habitat types were selected: high-elevation sites during the day (specific microclimate: windy on warm summer days) and streambed surroundings during the night (coupled with high vegetation when the animals were active in summer). Distribution of recursion times (duration between visits) revealed a 24-hour periodicity, a pattern that could be widespread among large herbivores. Characterizing frequently revisited sites suggested that recursion movements were mainly driven by a few landscape features (water sources, vegetation patches, high-elevation points), but also by social factors, such as territoriality, which should be further explored. This study provided complementary insights into the space-use patterns of E. hemionus. Understanding of the species’ space-use patterns, at both large and fine spatial scale, is required for developing appropriate conservation protocols. Our approach could be further applied for studying the space-use patterns of other species in heterogeneous landscapes. PMID:26630393
Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe
2016-05-01
Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.
Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels.
Asensio, Jose Salvador Rubio; Rachmilevitch, Shimon; Bloom, Arnold J
2015-05-01
A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3 (-)) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3 (-) assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3 (-) assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3 (-) or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3 (-), shoot organic N, (15)N isotope fractionation, (15)NO3 (-) assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3 (-) assimilation and thus decreased dark respiration in the plants reliant on NO3 (-). These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. © 2015 American Society of Plant Biologists. All Rights Reserved.
Rachmilevitch, Shimon
2015-01-01
A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3−) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3− assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3− assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3− or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3−, shoot organic N, 15N isotope fractionation, 15NO3− assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3− assimilation and thus decreased dark respiration in the plants reliant on NO3−. These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. PMID:25755253
2011-11-21
Color coding in this image of Gale Crater on Mars represents differences in elevation. The vertical difference from a low point inside the landing ellipse for NASA Mars Science Laboratory yellow dot to a high point on the mountain inside the crater.
NASA Astrophysics Data System (ADS)
Harvey, P.; Taylor, M. P.; Handley, H. K.
2016-12-01
Multiple lines of geochemical and biological evidence are applied to identify and fingerprint the nature and source of alleged contamination emanating from a chicken slaughterhouse on the urban fringe of Sydney, Australia. The slaughterhouse has a long history of alleged environmental misconduct. The impact of the facility on catchment source waters by the slaughterhouse has been the subject of controversy. The facility owner has persistently denied breach of their licence condition and maintains it is `a very environmentally conscious operation'. The disputed nature of the possible sources of discharges and its contaminants required a detailed forensic environmental assessment. Water samples collected from off-site discharge points associated with the facility show highly elevated concentrations of faecal coliforms (max 68,000 cfu), ammonia-N (51,000 µg/L), total nitrogen (98,000 µg/L) and phosphorous (32,000 µg/L). Upstream and adjacent watercourses were markedly less contaminated. Water discharge points associated with the slaughterhouse and natural catchment runoff were sampled for arsenic speciation, including assessment for the organoarsenic compound Roxarsone. Roxarsone is used as a chicken growth promoter. Water draining the slaughterhouse facility contained concentrations around 10 times local background levels. The Roxarsone compound was not detected in any waters, but inorganic arsenic, As(V), was present in all waters with the greatest concentrations in waters draining from the slaughterhouse. The environmental evidence was compiled over a series of discharges events and presented to the NSW EPA. Subsequent to receipt of the data supported by their own investigations, the NSW EPA mandated that the slaughterhouse be subject to a pollution reduction program. The efficacy of the pollution reduction program to stem the release of highly contaminated effluent is currently subject to ongoing investigation using a suite of water chemistry measures including DNA analysis.
NASA Technical Reports Server (NTRS)
Wahid, Parveen
1995-01-01
This project involved the determination of the effective radiated power of lightning sources and the polarization of the radiating source. This requires the computation of the antenna patterns at all the LDAR site receiving antennas. The known radiation patterns and RF signal levels measured at the antennas will be used to determine the effective radiated power of the lightning source. The azimuth and elevation patterns of the antennas in the LDAR system were computed using flight test data that was gathered specifically for this purpose. The results presented in this report deal with the azimuth patterns for all the antennas and the elevation patterns for three of the seven sites.
Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems
Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao
2016-01-01
In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm. PMID:26985896
Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems.
Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao
2016-03-12
In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.
Engineering Design and Operation Report: Biological ...
Many regions in the United States have excessive levels of ammonia in their drinking water sources (e.g., ground and surface waters) as a result of naturally occurring processes, agricultural and urban runoff, concentrated animal feeding operations, municipal wastewater treatment plants, and other sources. Ammonia is not regulated by the U.S. Environmental Protection Agency (EPA) as a contaminant. Based on a 2003 World Health Organization (WHO) assessment, ammonia levels in groundwater are typically below 0.2 milligrams per liter (mg/L), and do not pose a direct health concern at levels expected in drinking water (WHO 2003); however, they may pose a concern when nitrification of significant levels of ammonia from the source water occurs in the drinking water distribution system. Specifically, this nitrification, which is the conversion of the ammonia to nitrite and nitrate by bacteria, leads to water quality issues, such as potential corrosion problems, oxidant demand, taste and odor complaints, and elevated nitrite levels (Bremer et al.,2001; Fleming et al., 2005; Lee et al., 1980; Odell et al., 1996; Rittman & Snoeyink, 1984; Suffet et al., 1996). The EPA’s regulatory limits for nitrite and nitrate (at the entry point to the distribution system) are 0.1 and 10 mg N/L, respectively. Ammonia in water may also pose problems with water treatment effectiveness. For example, in source waters containing both ammonia and arsenic, the ammonia may negatively impact
NASA Astrophysics Data System (ADS)
Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.
2013-04-01
In this paper we discuss the possibility of locating radioactive sources in space using a scanning-based method, relative to the three-dimensional location of the detector. The scanning system comprises an organic liquid scintillator detector, a tungsten collimator and an adjustable equatorial mount. The detector output is connected to a bespoke fast digitiser (Hybrid Instruments Ltd., UK) which streams digital samples to a personal computer. A radioactive source has been attached to a vertical wall and the data have been collected in two stages. In the first case, the scanning system was placed a couple of metres away from the wall and in the second case it moved few centimetres from the previous location, parallel to the wall. In each case data were collected from a grid of measurement points (set of azimuth angles for set of elevation angles) which covered the source on the wall. The discrimination of fast neutrons and gamma rays, detected by the organic liquid scintillator detector, is carried out on the basis of pulse gradient analysis. Images are then produced in terms of the angular distribution of events for total counts, gamma rays and neutrons for both cases. The three-dimensional location of the neutron source can be obtained by considering the relative separation of the centres of the corresponding images of angular distribution of events. The measurements have been made at the National Physical Laboratory, Teddington, Middlesex, UK.
Assessing land leveling needs and performance with unmanned aerial system
NASA Astrophysics Data System (ADS)
Enciso, Juan; Jung, Jinha; Chang, Anjin; Chavez, Jose Carlos; Yeom, Junho; Landivar, Juan; Cavazos, Gabriel
2018-01-01
Land leveling is the initial step for increasing irrigation efficiencies in surface irrigation systems. The objective of this paper was to evaluate potential utilization of an unmanned aerial system (UAS) equipped with a digital camera to map ground elevations of a grower's field and compare them with field measurements. A secondary objective was to use UAS data to obtain a digital terrain model before and after land leveling. UAS data were used to generate orthomosaic images and three-dimensional (3-D) point cloud data by applying the structure for motion algorithm to the images. Ground control points (GCPs) were established around the study area, and they were surveyed using a survey grade dual-frequency GPS unit for accurate georeferencing of the geospatial data products. A digital surface model (DSM) was then generated from the 3-D point cloud data before and after laser leveling to determine the topography before and after the leveling. The UAS-derived DSM was compared with terrain elevation measurements acquired from land surveying equipment for validation. Although 0.3% error or root mean square error of 0.11 m was observed between UAS derived and ground measured ground elevation data, the results indicated that UAS could be an efficient method for determining terrain elevation with an acceptable accuracy when there are no plants on the ground, and it can be used to assess the performance of a land leveling project.
Geometric correction and digital elevation extraction using multiple MTI datasets
Mercier, Jeffrey A.; Schowengerdt, Robert A.; Storey, James C.; Smith, Jody L.
2007-01-01
Digital Elevation Models (DEMs) are traditionally acquired from a stereo pair of aerial photographs sequentially captured by an airborne metric camera. Standard DEM extraction techniques can be naturally extended to satellite imagery, but the particular characteristics of satellite imaging can cause difficulties. The spacecraft ephemeris with respect to the ground site during image collects is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy, while a large angle of separation can cause an excessive number of erroneous points in the DEM from occlusion of ground areas. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of some sensors, such as the Multispectral Thermal Imager (MTI), allows for multiple collects of the same area from different perspectives. This functionality of MTI makes it a good candidate for the implementation of a DEM extraction algorithm using multiple images for improved accuracy. Evaluation of this capability and development of algorithms to geometrically model the MTI sensor and extract DEMs from multi-look MTI imagery are described in this paper. An RMS elevation error of 6.3-meters is achieved using 11 ground test points, while the MTI band has a 5-meter ground sample distance.
The effects of narrow and elevated path walking on aperture crossing.
Hackney, Amy L; Cinelli, Michael E; Denomme, Luke T; Frank, James S
2015-06-01
The study investigated the impact that action capabilities have on identifying possibilities for action, particularly how postural threat influences the passability of apertures. To do this, the ability to maintain balance was challenged by manipulating the level of postural threat while walking. First, participants walked along a 7m path and passed through two vertical obstacles spaced 1.1-1.5×the shoulder width apart during normal walking. Next, postural threat was manipulated by having participants complete the task either walking on a narrow, ground level path or on an elevated/narrow path. Despite a decrease in walking speed as well as an increase in trunk sway in both the narrow and elevated/narrow walking conditions, the passability of apertures was only affected when the consequence of instability was greatest. In the elevated/narrow walking condition, individuals maintained a larger critical point (rotated their shoulders for larger aperture widths) compared to normal walking. However, this effect was not observed for the narrow path walking suggesting that the level of postural threat was not enough to impose similar changes to the critical point. Therefore, it appears that manipulating action capabilities by increasing postural threat does indeed influence aperture crossing behavior, however the consequence associated with instability must be high before both gait characteristics and the critical point are affected. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying
2013-12-01
A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.
Spilki, Fernando Rosado; da Luz, Roger Bordin; Fabres, Rafael Bandeira; Soliman, Mayra Cristina; Kluge, Mariana; Fleck, Juliane Deise; Rodrigues, Manoela Tressoldi; Comerlato, Juliana; Cenci, Alexander; Cerva, Cristine; Dasso, Maurício Gautério; Roehe, Paulo Michel
2013-01-01
Viral gastroenteritis and other waterborne diseases are a major concern for health in Brazil. A number of studies were conducted about the presence of viruses on water samples from Brazilian areas. However, the knowledge about the occurrence of viral contamination of drinking water sources in rural settings of the country is insufficient. On the present work, 15 samples from 5 dairy farms located at the municipality of Tenente Portela were collected and analysed for the presence of human adenoviruses (HAdV), as well as human enteroviruses (EV) and rotaviruses (RV). HAdV was present on 66.66% of the water samples, and have been found in all samples from artesian wells and springs, which are used as sources of drinking water for the individuals inhabiting those farms. EV and RV found only in one sample each. The detection rates of HAdV on the water from these dairy farms are alarming and point towards a situation of elevated environmental contamination by fecal microorganisms of human origin and poor basic sanitation conditions. PMID:24516464
NASA Technical Reports Server (NTRS)
Fried, Alan; Olson, Jennifer R.; Walega, Jim; Crawford, Jim H.; Chen, Gao; Weibring, Petter; Richter, Dirk; Roller, Chad; Tittel, Frank; Porter, Michael;
2007-01-01
Measurements of CH2O from a tunable diode laser absorption spectrometer (TDLAS) were acquired onboard the NASA DC-8 during the summer 2004 INTEX-NA (Intercontinental Chemical Transport Experiment - North America) campaign to test our understanding of convection and production mechanisms in the upper troposphere (UT, 6-12-km) over continental North America and the North Atlantic Ocean. Point-by-point comparisons with box model calculations, when MHP (CH3OOH) measurements were available for model constraint, resulted in a median CH2O measurement/model ratio of 0.91 in the UT. Multiple tracers were used to arrive at a set of UT CH2O background and perturbed air mass periods, and 46% of the TDLAS measurements fell within the latter category. At least 66% to 73% of these elevated UT observations were caused by enhanced production from CH2O precursors rather than direct transport of CH2O from the boundary layer. This distinction is important, since the effects from the former can last for over a week or more compared to one day or less in the case of convective transport of CH2O itself. In general, production of CH2O from CH4 was found to be the dominant source term, even in perturbed air masses. This was followed by production from MHP, methanol, PAN type compounds, and ketones, in descending order of their contribution. In the presence of elevated NO from lightning and potentially from the stratosphere, there was a definite trend in the CH2O discrepancy, which for the highest NO mixing ratios produced a median CH2O measurement/model ratio of 3.9 in the 10-12-km range. Discrepancies in CH2O and HO2 in the UT with NO were highly correlated and this provided further information as to the possible mechanism(s) responsible. These discrepancies with NO are consistent with additional production sources of both gases involving CH3O2 + NO reactions, most likely caused by unmeasured hydrocarbons.
Sugar Price Supports and Taxation
Dilk, Abby; Savaiano, Dennis A.
2017-01-01
Domestic US sugar production has been protected by government policy for the past 82 years, resulting in elevated domestic prices and an estimated annual (2013) $1.4 billion dollar “tax” on consumers. These elevated prices and the simultaneous federal support for domestic corn production have ensured a strong market for high-fructose corn syrup. Americans have dramatically increased their consumption of caloric sweeteners during the same period. Consumption of “empty” calories (ie, foods with low-nutrient/high-caloric density)—sugar and high-fructose corn syrup being the primary sources—is considered by most public health experts to be a key contributing factor to the rise in obesity. There have been substantial efforts to tax sugar-sweetened beverages (SSBs) to both reduce consumption and provide a source of funds for nutrition education, thereby emulating the tobacco tax model. Volume-based SSB taxes levy the tax rate per ounce of liquid, where some are only imposed on beverages with added sugar content exceeding a set threshold. Nonetheless, volume-based taxes have significant limitations in encouraging consumers to reduce their caloric intake due to a lack of transparency at the point of purchase. Thus, it is hypothesized that point-of-purchase, nutrient-specific excise taxes on SSBs would be more effective at reducing sugar consumption. However, all SSB taxes are limited by the possibility that consumers may compensate their decreased intake from SSBs with other high-calorie junk foods. Furthermore, there are no existing studies to provide evidence on how SSB taxes will impact obesity rates in the long term. The paradox of sugar prices is that Americans have paid higher prices for sugar to protect domestic production for more than 80 years, and now, Americans are being asked to pay even more to promote public health. The effective use of sugar taxes should be considered based on their merits in reducing sugar consumption and making available a new source of funds to support nutrition education, not on lobbying efforts by the food industry or sugar and corn producers. PMID:28649143
Riedel, Timothy E; Thulsiraj, Vanessa; Zimmer-Faust, Amity G; Dagit, Rosi; Krug, Jenna; Hanley, Kaitlyn T; Adamek, Krista; Ebentier, Darcy L; Torres, Robert; Cobian, Uriel; Peterson, Sophie; Jay, Jennifer A
2015-03-15
Elevated levels of fecal indicator bacteria (FIB) have been observed at Topanga Beach, CA, USA. To identify the FIB sources, a microbial source tracking study using a dog-, a gull- and two human-associated molecular markers was conducted at 10 sites over 21 months. Historical data suggest that episodic discharge from the lagoon at the mouth of Topanga Creek is the main source of bacteria to the beach. A decline in creek FIB/markers downstream from upper watershed development and a sharp increase in FIB/markers at the lagoon sites suggest sources are local to the lagoon. At the lagoon and beach, human markers are detected sporadically, dog marker peaks in abundance mid-winter, and gull marker is chronically elevated. Varied seasonal patterns of FIB and source markers were identified showing the importance of applying a suite of markers over long-term spatial and temporal sampling to identify a complex combination of sources of contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Creating Digital Elevation Model Using a Mobile Device
NASA Astrophysics Data System (ADS)
Durmaz, A. İ.
2017-11-01
DEM (Digital Elevation Models) is the best way to interpret topography on the ground. In recent years, lidar technology allows to create more accurate elevation models. However, the problem is this technology is not common all over the world. Also if Lidar data are not provided by government agencies freely, people have to pay lots of money to reach these point clouds. In this article, we will discuss how we can create digital elevation model from less accurate mobile devices' GPS data. Moreover, we will evaluate these data on the same mobile device which we collected data to reduce cost of this modeling.
Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S
2013-11-01
To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p < 0.0001) and ultrasound pachymetry (p = < .0001). Ultrasound pachymetry readings had better 95% limits of agreement with swept source optical coherence tomography than slit scanning topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p < 0.05 for all). Overall, reproducibility coefficients and intraclass correlation coefficients were significantly better with swept source optical coherence tomography for measurement of central corneal thickness, anterior best-fit sphere and, posterior best-fit sphere (all p < 0.001). Corneal thickness and elevation measurements were significantly different between swept source optical coherence tomography and slit scanning topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Topographic lidar survey of the Chandeleur Islands, Louisiana, February 6, 2012
Guy, Kristy K.; Plant, Nathaniel G.; Bonisteel-Cormier, Jamie M.
2014-01-01
This Data Series Report contains lidar elevation data collected February 6, 2012, for Chandeleur Islands, Louisiana. Point cloud data in lidar data exchange format (LAS) and bare earth digital elevation models (DEMs) in ERDAS Imagine raster format (IMG) are available as downloadable files. The point cloud data—data points described in three dimensions—were processed to extract bare earth data; therefore, the point cloud data are organized into the following classes: 1– and 17–unclassified, 2–ground, 9–water, and 10–breakline proximity. Digital Aerial Solutions, LLC, (DAS) was contracted by the U.S. Geological Survey (USGS) to collect and process these data. The lidar data were acquired at a horizontal spacing (or nominal pulse spacing) of 0.5 meters (m) or less. The USGS conducted two ground surveys in small areas on the Chandeleur Islands on February 5, 2012. DAS calculated a root mean square error (RMSEz) of 0.034 m by comparing the USGS ground survey point data to triangulated irregular network (TIN) models built from the lidar elevation data. This lidar survey was conducted to document the topography and topographic change of the Chandeleur Islands. The survey supports detailed studies of Louisiana, Mississippi and Alabama barrier islands that resolve annual and episodic changes in beaches, berms and dunes associated with processes driven by storms, sea-level rise, and even human restoration activities. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.
Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W
2017-05-01
In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, Jia; Shen, Hua; Zhu, Rihong; Gao, Jinming; Sun, Yue; Wang, Jinsong; Li, Bo
2018-06-01
The precision of the measurements of aspheric and freeform surfaces remains the primary factor restrict their manufacture and application. One effective means of measuring such surfaces involves using reference or probe beams with angle modulation, such as tilted-wave-interferometer (TWI). It is necessary to improve the measurement efficiency by obtaining the optimum point source array for different pieces before TWI measurements. For purpose of forming a point source array based on the gradients of different surfaces under test, we established a mathematical model describing the relationship between the point source array and the test surface. However, the optimal point sources are irregularly distributed. In order to achieve a flexible point source array according to the gradient of test surface, a novel interference setup using fiber array is proposed in which every point source can be independently controlled on and off. Simulations and the actual measurement examples of two different surfaces are given in this paper to verify the mathematical model. Finally, we performed an experiment of testing an off-axis ellipsoidal surface that proved the validity of the proposed interference system.
Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China
NASA Astrophysics Data System (ADS)
Zhu, Lei; Liu, WanQing
2018-02-01
TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.
GARLIC, A SHIELDING PROGRAM FOR GAMMA RADIATION FROM LINE- AND CYLINDER- SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, M.
1959-06-01
GARLlC is a program for computing the gamma ray flux or dose rate at a shielded isotropic point detector, due to a line source or the line equivalent of a cylindrical source. The source strength distribution along the line must be either uniform or an arbitrary part of the positive half-cycle of a cosine function The line source can be orierted arbitrarily with respect to the main shield and the detector, except that the detector must not be located on the line source or on its extensionThe main source is a homogeneous plane slab in which scattered radiation is accountedmore » for by multiplying each point element of the line source by a point source buildup factor inside the integral over the point elements. Between the main shield and the line source additional shields can be introduced, which are either plane slabs, parallel to the main shield, or cylindrical rings, coaxial with the line source. Scattered radiation in the additional shields can only be accounted for by constant build-up factors outside the integral. GARLlC-xyz is an extended version particularly suited for the frequently met problem of shielding a room containing a large number of line sources in diHerent positions. The program computes the angles and linear dimensions of a problem for GARLIC when the positions of the detector point and the end points of the line source are given as points in an arbitrary rectangular coordinate system. As an example the isodose curves in water are presented for a monoenergetic cosine-distributed line source at several source energies and for an operating fuel element of the Swedish reactor R3, (auth)« less
NASA Astrophysics Data System (ADS)
Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.
2015-12-01
Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.
Improving pointing of Toruń 32-m radio telescope: effects of rail surface irregularities
NASA Astrophysics Data System (ADS)
Lew, Bartosz
2018-03-01
Over the last few years a number of software and hardware improvements have been implemented to the 32-m Cassegrain radio telescope located near Toruń. The 19-bit angle encoders have been upgraded to 29-bit in azimuth and elevation axes. The control system has been substantially improved, in order to account for a number of previously-neglected, astrometric effects that are relevant for milli-degree pointing. In the summer 2015, as a result of maintenance works, the orientation of the secondary mirror has been slightly altered, which resulted in worsening of the pointing precision, much below the nominal telescope capabilities. In preparation for observations at the highest available frequency of 30-GHz, we use One Centimeter Receiver Array (OCRA), to take the most accurate pointing data ever collected with the telescope, and we analyze it in order to improve the pointing precision. We introduce a new generalized pointing model that, for the first time, accounts for the rail irregularities, and we show that the telescope can have root mean square pointing accuracy at the level < 8″ and < 12″ in azimuth and elevation respectively. Finally, we discuss the implemented pointing improvements in the light of effects that may influence their long-term stability.
NASA Astrophysics Data System (ADS)
Ward, Ray; Purnell, Sarah; Ebdon, James; Nnane, Daniel; Taylor, Huw
2013-04-01
The Water Framework Directive (WFD) regulates surface water quality standards in the European Union (EU). The Directive call for the identification and management of point and diffuse sources of pollution and requires the establishment of a 'programme of measures' for identified river basin districts, in order to achieve a "good status" by 2015. The hygienic quality of water is normally monitored using faecal indicator organisms (FIO), such as Escherichia coli, which indicate a potential risk to public health from human waterborne pathogens. Environmental factors influence the transmission of these pathogens and indicator organisms, and statistically significant relationships have been found between rainfall and outbreaks of waterborne disease. Climate change has been predicted to lead to an increase in severe weather events in many parts of Europe, including an increase in the frequency of extreme rainfall events. This in turn is likely to lead to an increase in incidents of human waterborne disease in Europe, unless measures are taken to predict and mitigate for such events. This study investigates a variety of environmental factors that influence the concentration of FIO in surface waters receiving faecal contamination from a variety of sources. Levels of FIO, including Escherichia coli, intestinal enterococci, somatic coliphage and GB124 (a human-specific microbial source tracking marker), were monitored in the Sussex Ouse catchment in Southeast England over a period of 26 months. These data were combined with geoinformatic environmental data within a GIS to map faecal contamination within the river. Previously, precipitation and soil erosion have been identified as major factors that can influence the concentration of these faecal markers, and studies have shown that slope, soil type and vegetation influence both the mechanisms and the rate by which erosion occurs in river catchments. Of the environmental variables studied, extreme precipitation was found to be a major factor contributing to increased levels of FIO. This study identifies areas within the catchment that are likely to demonstrate elevated erosion rates during extreme precipitation events, which are likely to result in raised levels of FIO. The results also demonstrate that increases in the human faecal marker were associated with the discharge points of wastewater treatment works, and that levels of the marker increased whenever the works discharged untreated wastewaters during extreme precipitation. Spatial analysis also highlighted locations where human faecal pollution was present in areas away from wastewater treatment plants, highlighting the potential significance of inputs from septic tanks and other un-sewered domestic wastewater systems. Increases in the frequency of extreme precipitation events in many parts of Europe are likely to result in increased levels of water pollution from both point- and diffuse-sources, increasing the input of pathogens into surface waters, and elevating the health risks to downstream consumers of abstracted drinking water. This study suggests an approach that integrates water microbiology and geoinformatic data to support a 'prediction and prevention' approach, in place of the traditional focus on water quality monitoring. This work may therefore make a significant contribution to future European water resource management and health protection.
NASA Astrophysics Data System (ADS)
Wasklewicz, Thad; Zhu, Zhen; Gares, Paul
2017-12-01
Rapid technological advances, sustained funding, and a greater recognition of the value of topographic data have helped develop an increasing archive of topographic data sources. Advances in basic and applied research related to Earth surface changes require researchers to integrate recent high-resolution topography (HRT) data with the legacy datasets. Several technical challenges and data uncertainty issues persist to date when integrating legacy datasets with more recent HRT data. The disparate data sources required to extend the topographic record back in time are often stored in formats that are not readily compatible with more recent HRT data. Legacy data may also contain unknown error or unreported error that make accounting for data uncertainty difficult. There are also cases of known deficiencies in legacy datasets, which can significantly bias results. Finally, scientists are faced with the daunting challenge of definitively deriving the extent to which a landform or landscape has or will continue to change in response natural and/or anthropogenic processes. Here, we examine the question: how do we evaluate and portray data uncertainty from the varied topographic legacy sources and combine this uncertainty with current spatial data collection techniques to detect meaningful topographic changes? We view topographic uncertainty as a stochastic process that takes into consideration spatial and temporal variations from a numerical simulation and physical modeling experiment. The numerical simulation incorporates numerous topographic data sources typically found across a range of legacy data to present high-resolution data, while the physical model focuses on more recent HRT data acquisition techniques. Elevation uncertainties observed from anchor points in the digital terrain models are modeled using "states" in a stochastic estimator. Stochastic estimators trace the temporal evolution of the uncertainties and are natively capable of incorporating sensor measurements observed at various times in history. The geometric relationship between the anchor point and the sensor measurement can be approximated via spatial correlation even when a sensor does not directly observe an anchor point. Findings from a numerical simulation indicate the estimated error coincides with the actual error using certain sensors (Kinematic GNSS, ALS, TLS, and SfM-MVS). Data from 2D imagery and static GNSS did not perform as well at the time the sensor is integrated into estimator largely as a result of the low density of data added from these sources. The estimator provides a history of DEM estimation as well as the uncertainties and cross correlations observed on anchor points. Our work provides preliminary evidence that our approach is valid for integrating legacy data with HRT and warrants further exploration and field validation. [Figure not available: see fulltext.
110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same
Veal, B.W.; Downey, J.W.; Lam, D.J.; Paulikas, A.P.
1992-12-22
A superconductor is disclosed consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi[sub 2]O[sub 3], SrCO[sub 3], CaCO[sub 3] and CuO into a particulate compact wherein the atom ratios are Bi[sub 2], Sr[sub 1.2-2.2], Ca[sub 1.8-2.4], Cu[sub 3]. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K. 7 figs.
110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same
Veal, Boyd W.; Downey, John W.; Lam, Daniel J.; Paulikas, Arvydas P.
1992-01-01
A superconductor consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi.sub.2 O.sub.3, SrCO.sub.3, CaCO.sub.3 and CuO into aparticulate compact wherein the atom ratios are Bi.sub.2, Sr.sub.1.2-2.2, Ca.sub.1.8-2.4, Cu.sub.3. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K.
Enhancements to the MCNP6 background source
McMath, Garrett E.; McKinney, Gregg W.
2015-10-19
The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutronmore » background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.« less
Stanislawski, Larry V.; Survila, Kornelijus; Wendel, Jeffrey; Liu, Yan; Buttenfield, Barbara P.
2018-01-01
This paper describes a workflow for automating the extraction of elevation-derived stream lines using open source tools with parallel computing support and testing the effectiveness of procedures in various terrain conditions within the conterminous United States. Drainage networks are extracted from the US Geological Survey 1/3 arc-second 3D Elevation Program elevation data having a nominal cell size of 10 m. This research demonstrates the utility of open source tools with parallel computing support for extracting connected drainage network patterns and handling depressions in 30 subbasins distributed across humid, dry, and transitional climate regions and in terrain conditions exhibiting a range of slopes. Special attention is given to low-slope terrain, where network connectivity is preserved by generating synthetic stream channels through lake and waterbody polygons. Conflation analysis compares the extracted streams with a 1:24,000-scale National Hydrography Dataset flowline network and shows that similarities are greatest for second- and higher-order tributaries.
Scheurer, Marco; Nödler, Karsten; Freeling, Finnian; Janda, Joachim; Happel, Oliver; Riegel, Marcel; Müller, Uwe; Storck, Florian Rüdiger; Fleig, Michael; Lange, Frank Thomas; Brunsch, Andrea; Brauch, Heinz-Jürgen
2017-12-01
Elevated concentrations of trifluoroacetate (TFA) of more than 100 μg/L in a major German river led to the occurrence of more than 20 μg/L TFA in bank filtration based tap waters. Several spatially resolved monitoring programs were conducted and discharges from an industrial company were identified as the point source of TFA contamination. Treatment options for TFA removal were investigated at full-scale waterworks and in laboratory batch tests. Commonly applied techniques like ozonation or granulated activated carbon filtration are inappropriate for TFA removal, whereas TFA was partly removed by ion exchange and completely retained by reverse osmosis. Further investigations identified wastewater treatment plants (WWTPs) as additional TFA dischargers into the aquatic environment. TFA was neither removed by biological wastewater treatment, nor by a retention soil filter used for the treatment of combined sewer overflows. WWTP influents can even bear a TFA formation potential, when appropriate CF 3 -containing precursors are present. Biological degradation and ozonation batch experiments with chemicals of different classes (flurtamone, fluopyram, tembotrione, flufenacet, fluoxetine, sitagliptine and 4:2 fluorotelomer sulfonate) proved that there are yet overlooked sources and pathways of TFA, which need to be addressed in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Factors influencing atmospheric composition over subarctic North America during summer
NASA Technical Reports Server (NTRS)
Wofsy, Steven C.; Fan, S. -M.; Blake, D. R.; Bradshaw, J. D.; Sandholm, S. T.; Singh, H. B.; Sachse, G. W.; Harriss, R. C.
1994-01-01
Elevated concentrations of hydrocarbons, CO, and nitrogen oxides were observed in extensive haze layers over northeastern Canada in the summer of 1990, during ABLE 3B. Halocarbon concentrations remained near background in most layers, indicating a source from biomass wildfires. Elevated concentrations of C2Cl4 provided a sensitive indicator for pollution from urban/industrial sources. Detailed analysis of regional budgets for CO and hydrocarbons indicates that biomass fires accounted for approximately equal to 70% of the input to the subarctic for most hydrocarbons and for acetone and more than 50% for CO. Regional sources for many species (including CO) exceeded chemical sinks during summer, and the boreal region provided a net source to midlatitudes. Interannual variations and long-term trends in atmospheric composition are sensitive to climatic change; a shift to warmer, drier conditions could increase the areas burned and thus the sources of many trace gases.
Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Daniel; Hansen, Clifford W.
Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less
NASA Astrophysics Data System (ADS)
Legeay, Pierre-Louis; Moatar, Florentina; Gascuel-Odoux, Chantal; Gruau, Gérard
2015-04-01
In intensive agricultural regions with important livestock farming, long-term land application of Phosphorus (P) both as chemical fertilizer and animal wastes, have resulted in elevated P contents in soils. Since we know that high P concentrations in rivers is of major concern, few studies have been done at to assess the spatiotemporal variability of P loads in rivers and apportionment of point and nonpoint source in total loads. Here we focus on Brittany (Western France) where even though P is a great issue in terms of human and drinking water safety (cyano-toxins), environmental protection and economic costs for Brittany with regards to the periodic proliferations of cyanobacteria that occur every year in this region, no regional-scale systematic study has been carried out so far. We selected a set of small rivers (stream order 3-5) with homogeneous agriculture and granitic catchment. By gathering data from three water quality monitoring networks, covering more than 100 measurements stations, we provide a regional-scale quantification of the spatiotemporal variability of dissolved P (DP) and total P (TP) interannual loads from 1992 to 2012. Build on mean P load in low flows and statistical significance tests, we developed a new indicator, called 'low flow P load' (LFP-load), which allows us to determine the importance of domestic and industrial P sources in total P load and to assess their spatiotemporal variability compared to agricultural sources. The calculation and the map representation of DP and TP interannual load variations allow identification of the greatest and lowest P contributory catchments over the study period and the way P loads of Brittany rivers have evolved through time. Both mean DP and TP loads have been divided by more than two over the last 20 years. Mean LFDP-load decreased by more than 60% and mean LFTP-load by more than 45% on average over the same period showing that this marked temporal decrease in total load is largely due to the decrease of domestic and industrial P effluents. A global shift in P inputs apportionment to freshwaters thus occurred in Brittany since 20 years as agricultural nonpoint sources now contribute a greater portion of inputs showing the efficiency of the recent control of point sources by enhancement of water treatment plant and removal of phosphates in detergents. The spatialized P loads provided by this study could give a basis for a better understanding of the factors that drives the P transfers in Brittany soils and hotspots of P emissions while the LFP-load indicator can be a tool to assess effects of point-source P mitigation plans.
77 FR 51743 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... modified elevations, and communities affected for the City of Newport News, Virginia. Specifically, it.... The table, entitled ``City of Newport News, Virgina'' addressed the flooding sources Newmarket Creek... Modified City of Newport News, Virginia Virginia City of Newport News.... Newmarket Creek Approximately 0...
Vertilus, Shawyntee M.; Austin, Stephanie L.; Foster, Kimberly S.; Boyette, Keri E.; Bali, Deeksha; Li, Jennifer S.; Kishnani, Priya S.; Wechsler, Stephanie Burns
2013-01-01
Purpose Glycogen Storage Disease (GSD) type III, glycogen debranching enzyme deficiency, causes accumulation of glycogen in liver, skeletal, and cardiac muscle. Some patients develop increased left ventricular (LV) thickness by echocardiography, but the rate of increase and its significance remain unclear. Methods We evaluated 33 patients with GSD type III, 23 with IIIa and 10 with IIIb, ages 1 month – 55.5 yrs, by echocardiography for wall thickness, LV mass, shortening and ejection fractions, at 1 time point (n = 33) and at 2 time points in patients with more than 1 echocardiogram (13 of the 33). Results Of 23 cross-sectional patients with type IIIa, 12 had elevated LV mass, 11 had elevated wall thickness. One type IIIb patient had elevated LV mass but 4 had elevated wall thickness. For those with multiple observations, 9 of 10 with type IIIa developed increased LV mass over time, with 3 already increased at first measurement. Shortening and ejection fractions were generally normal. Conclusion Elevated LV mass and wall thickness is more common in patients with type IIIa but develops rarely in type IIIb, though ventricular systolic function is preserved. This suggests serial echocardiograms with attention to LV thickness and mass are important for care of these patients. PMID:20526204
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Daughney, Christopher J.
2012-08-01
SummaryWe identified natural baseline groundwater quality and impacts caused by land use intensification by relating groundwater chemistry with water age. Tritium, the most direct tracer for groundwater dating, including the time of water passage through the unsaturated zone, was overwhelmed over the recent decades by contamination from bomb-tritium from nuclear weapons testing in the early 1960s. In the Southern Hemisphere, this situation has changed now with the fading of the bomb-tritium, and tritium has become a tool for accurate groundwater dating. Tritium dating will become efficient also in the Northern Hemisphere over the next decade. Plotting hydrochemistry and field parameters versus groundwater age allowed us to identify those parameters that have increasing concentrations with age and are therefore from geological sources. These indicators for natural groundwater evolution are: Na, HCO3, SiO2, F, PO4, the redox-sensitive elements and compounds Fe, Mn, NH4, CH4, and pH and conductivity. In young groundwater that was recharged after the intensification of agriculture, nitrate, sulphate, CFC-11 and CFC-12, and pesticides are the most representative indicators for the impact of land-use intensification on groundwater quality, with 66% of the sites showing such an impact. Elevated concentrations of nitrate in oxic groundwater allowed us to reconstruct the timing and magnitude of the impact of land-use intensification on groundwater which in New Zealand occurred in two stages. Old pristine groundwater reflects the natural baseline quality. A transition to slightly elevated concentration due to low-intensity land-use was observed in groundwater recharged since around 1880. A sharp increase in nitrate and other agrochemicals due to high-intensity agriculture was observed in groundwater recharged since 1955. The threshold concentrations that distinguish natural baseline quality water from low-intensity land-use water, and low-intensity from high intensity land-use water, are 0.25 and 2.5 mg/L NO3-N, respectively. The change in groundwater quality from pristine baseline to low-intensity impact around 1880 coincides with the start of the meat export industry. The change in groundwater quality from low to high intensity landuse impact around 1955 coincides with the start of industrialised agriculture. No elevated levels of phosphate, a main compound in agricultural fertilisers and, together with nitrogen, a trigger of algae blooms in lakes, were found in young groundwater. This implies that fertiliser phosphate from non-point sources is still retained in the soil and has not yet reached the saturated groundwater systems. The source of elevated PO4, observed only in old groundwater, is therefore due purely to natural geochemical factors.
40 CFR 51.35 - How can my state equalize the emission inventory effort from year to year?
Code of Federal Regulations, 2012 CFR
2012-07-01
... approach: (1) Each year, collect and report data for all Type A (large) point sources (this is required for all Type A point sources). (2) Each year, collect data for one-third of your sources that are not Type... save 3 years of data and then report all emissions from the sources that are not Type A point sources...
40 CFR 51.35 - How can my state equalize the emission inventory effort from year to year?
Code of Federal Regulations, 2010 CFR
2010-07-01
... approach: (1) Each year, collect and report data for all Type A (large) point sources (this is required for all Type A point sources). (2) Each year, collect data for one-third of your sources that are not Type... save 3 years of data and then report all emissions from the sources that are not Type A point sources...
40 CFR 51.35 - How can my state equalize the emission inventory effort from year to year?
Code of Federal Regulations, 2014 CFR
2014-07-01
... approach: (1) Each year, collect and report data for all Type A (large) point sources (this is required for all Type A point sources). (2) Each year, collect data for one-third of your sources that are not Type... save 3 years of data and then report all emissions from the sources that are not Type A point sources...
Jódar, J; Custodio, E; Liotta, M; Lambán, L J; Herrera, C; Martos-Rosillo, S; Sapriza, G; Rigo, T
2016-04-15
The time series of stable water isotope composition relative to IAEA-GNIP meteorological stations located in alpine zones are analyzed in order to study how the amplitude of the seasonal isotopic composition of precipitation (Aδ) varies along a vertical transect. A clear relationship between Aδ and local evaporation is obtained, with slopes of -0.87 ‰/100mm/yr and -7.3 ‰/100mm/yr for Aδ(18)O and Aδ(2)H, respectively. When all sampling points of the vertical transect receive the same moisture sources, then a linear relationship between Aδ and elevation is obtained, with vertical gradients of 0.16 ‰/100mm/yr and 1.46 ‰/100mm/yr forAδ(18)O and Aδ(2)H, respectively. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
NASA Astrophysics Data System (ADS)
Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.
2017-12-01
The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on flood inundation, we examine the NWM outputs from Hurricane Matthew, which devastated southeastern North Carolina in October 2016. When compared with numerous surveyed high water marks across the coastal plain, this assessment provides insight on the impacts of grid resolution on flood inundation extent.
The Encoding of Sound Source Elevation in the Human Auditory Cortex.
Trapeau, Régis; Schönwiesner, Marc
2018-03-28
Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the tuning functions in low-level auditory cortex underlie the perceived elevation of a sound source. Copyright © 2018 the authors 0270-6474/18/383252-13$15.00/0.
David J. Millar; David J. Cooper; Kathleen A. Dwire; Robert M. Hubbard; Joseph von Fischer
2016-01-01
Mountain fens found in western North America have sequestered atmospheric carbon dioxide (CO2) for millennia, provide important habitat for wildlife, and serve as refugia for regionally-rare plant species typically found in boreal regions. It is unclear how Rocky Mountain fens are responding to a changing climate. It is possible that fens found at lower elevations may...
Active point out-of-plane ultrasound calibration
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Guo, Xiaoyu; Zhang, Haichong K.; Kang, Hyunjae; Etienne-Cummings, Ralph; Boctor, Emad M.
2015-03-01
Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common intraoperative medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the transducer and the ultrasound image. Point-based phantoms are considered to be accurate, but their calibration framework assumes that the point is in the image plane. In this work, we present the use of an active point phantom and a calibration framework that accounts for the elevational uncertainty of the point. Given the lateral and axial position of the point in the ultrasound image, we approximate a circle in the axial-elevational plane with a radius equal to the axial position. The standard approach transforms all of the imaged points to be a single physical point. In our approach, we minimize the distances between the circular subsets of each image, with them ideally intersecting at a single point. We simulated in noiseless and noisy cases, presenting results on out-of-plane estimation errors, calibration estimation errors, and point reconstruction precision. We also performed an experiment using a robot arm as the tracker, resulting in a point reconstruction precision of 0.64mm.
Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles
NASA Astrophysics Data System (ADS)
Sasikumar, Kiran
Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy. Separately, we also demonstrate the role of extreme temperature gradients (108-1010 K/m) in elevating the boiling point of liquids. We show that, assuming local thermal equilibrium, the observed elevation of the boiling point is associated with the interplay between the "bulk" driving force for the phase change and surface tension of the liquid-vapor interface that suppresses the transformation. In transient simulations that mimic laser-heating experiments we observe the formation and collapse of vapor bubbles around the nanoparticles beyond a threshold. Detailed analysis of the cavitation dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.
Goldfield, Eugene C; Buonomo, Carlo; Fletcher, Kara; Perez, Jennifer; Margetts, Stacey; Hansen, Anne; Smith, Vincent; Ringer, Steven; Richardson, Michael J; Wolff, Peter H
2010-04-01
Coordination between movements of individual tongue points, and between soft palate elevation and tongue movements, were examined in 12 prematurely born infants referred from hospital NICUs for videofluoroscopic swallow study (VFSS) due to poor oral feeding and suspicion of aspiration. Detailed post-evaluation kinematic analysis was conducted by digitizing images of a lateral view of digitally superimposed points on the tongue and soft palate. The primary measure of coordination was continuous relative phase of the time series created by movements of points on the tongue and soft palate over successive frames. Three points on the tongue (anterior, medial, and posterior) were organized around a stable in-phase pattern, with a phase lag that implied an anterior to posterior direction of motion. Coordination between a tongue point and a point on the soft palate during lowering and elevation was close to anti-phase at initiation of the pharyngeal swallow. These findings suggest that anti-phase coordination between tongue and soft palate may reflect the process by which the tongue is timed to pump liquid by moving it into an enclosed space, compressing it, and allowing it to leave by a specific route through the pharynx. Copyright 2009 Elsevier Inc. All rights reserved.
Data Processing and Quality Evaluation of a Boat-Based Mobile Laser Scanning System
Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri
2013-01-01
Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0–1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data. PMID:24048340
Data processing and quality evaluation of a boat-based mobile laser scanning system.
Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri
2013-09-17
Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0-1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data.
A general-purpose balloon-borne pointing system for solar scientific instruments
NASA Technical Reports Server (NTRS)
Polites, M. E.
1990-01-01
A general purpose balloonborne pointing system for accommodating a wide variety of solar scientific instruments is described. It is designed for precise pointing, low cost, and quick launch. It offers the option of three-axis control, pitch-yaw-roll, or two-axis control, pitch-yaw, depending on the needs of the solar instrument. Simulation results are presented that indicate good pointing capability at Sun elevation angles ranging from 10 to 80 deg.
NASA Astrophysics Data System (ADS)
Dupas, Rémi; Tittel, Jörg; Jordan, Phil; Musolff, Andreas; Rode, Michael
2018-05-01
A common assumption in phosphorus (P) load apportionment studies is that P loads in rivers consist of flow independent point source emissions (mainly from domestic and industrial origins) and flow dependent diffuse source emissions (mainly from agricultural origin). Hence, rivers dominated by point sources will exhibit highest P concentration during low-flow, when flow dilution capacity is minimal, whereas rivers dominated by diffuse sources will exhibit highest P concentration during high-flow, when land-to-river hydrological connectivity is maximal. Here, we show that Soluble Reactive P (SRP) concentrations in three forested catchments free of point sources exhibited seasonal maxima during the summer low-flow period, i.e. a pattern expected in point source dominated areas. A load apportionment model (LAM) is used to show how point sources contribution may have been overestimated in previous studies, because of a biogeochemical process mimicking a point source signal. Almost twenty-two years (March 1995-September 2016) of monthly monitoring data of SRP, dissolved iron (Fe) and nitrate-N (NO3) were used to investigate the underlying mechanisms: SRP and Fe exhibited similar seasonal patterns and opposite to that of NO3. We hypothesise that Fe oxyhydroxide reductive dissolution might be the cause of SRP release during the summer period, and that NO3 might act as a redox buffer, controlling the seasonality of SRP release. We conclude that LAMs may overestimate the contribution of P point sources, especially during the summer low-flow period, when eutrophication risk is maximal.
NASA Astrophysics Data System (ADS)
Zhang, S.; Tang, L.
2007-05-01
Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a distributed model, it is possible to view model output as it varies across the basin, so the critical areas and reaches can be found in the study area. According to the simulation results, it is found that different land uses can yield different results and fertilization in rainy season has an important impact on the non- point source pollution. The limitations of the SWAT model are also discussed and the measures of the control and prevention of non- point source pollution for Panjiakou Reservoir are presented according to the analysis of model calculation results.
ICESAT Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis
NASA Technical Reports Server (NTRS)
Luthcke, Scott B.; Rowlands, D. D.; Carabajal, C. C.; Harding, D. H.; Bufton, J. L.; Williams, T. A.
2003-01-01
On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfully placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which has a primary measurement of short-pulse laser- ranging to the Earth s surface at 1064nm wavelength at a rate of 40 pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS s surface returns, the spots from which the laser energy reflects on the Earth s surface, is a critical issue in the scientific application of these data. Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. ICESat laser altimeter data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers in order to calibrate pointing, ranging and timing. The calibration methodology and current calibration results are discussed along with future efforts.
NASA Technical Reports Server (NTRS)
Lutchke, Scott B.; Rowlands, David D.; Harding, David J.; Bufton, Jack L.; Carabajal, Claudia C.; Williams, Teresa A.
2003-01-01
On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfUlly placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which consists of three near-infrared lasers that operate at 40 short pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS's surface returns, the spots from which the laser energy reflects on the Earth's surface, is a critical issue in the scientific application of these data Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. Early mission ICESat data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers resulting in a preliminary calibration of laser pointing, ranging and timing. The calibration methodology and early mission analysis results are summarized in this paper along with future calibration activities
NASA Astrophysics Data System (ADS)
Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Kramer, WIlliam; Bauer, Greg; Bates, Brian; Williamson, Cathleen
2017-04-01
Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. Two new projects are using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency and open source photogrammetry software to produce a time-tagged 2m posting elevation model of the Arctic and an 8m posting reference elevation model for the Antarctic. When complete, this publically available data will be at higher resolution than any elevation models that cover the entirety of the Western United States. These two polar projects are made possible due to three equally important factors: 1) open-source photogrammetry software, 2) petascale computing, and 3) sub-meter imagery licensed to the United States Government. Our talk will detail the technical challenges of using automated photogrammetry software; the rapid workflow evolution to allow DEM production; the task of deploying the workflow on one of the world's largest supercomputers; the trials of moving massive amounts of data, and the management strategies the team needed to solve in order to meet deadlines. Finally, we will discuss the implications of this type of collaboration for future multi-team use of leadership-class systems such as Blue Waters, and for further elevation mapping.
Terrestrial-based lidar beach topography of Fire Island, New York, June 2014
Brenner, Owen T.; Hapke, Cheryl J.; Lee, Kathryn G.; Kimbrow, Dustin R.
2016-02-19
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Florida and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collaborated to gather alongshore terrestrial-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on June 11, 2014, to characterize beach topography and document ongoing beach evolution and recovery, and is part of the ongoing beach monitoring within the Hurricane Sandy Supplemental Project GS2-2B. This USGS data series includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).
Elevation change (2000-2004) on the Malaspina Glacier, Alaska
NASA Technical Reports Server (NTRS)
Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.
2005-01-01
The glaciers of the southeastern Alaska coastal region are the largest temperate glacier meltwater source on Earth and may contribute one third of the total glacier meltwater entering the global ocean. Since melt onset and refreeeze timing in this region show a tendency toward earlier onset and longer ablation seasons, accelerated glacier wastage may be occurring. In this study we focus on one of the largest temperate glacier systems on Earth, the Malaspina Glacier. This glacier, with a length of approximately 110 km and an area of approximately square 5,000 km, has the largest piedmont lobe of any temperate glacier. The entire lobe, which lies at elevations below 600 m, is within the ablation zone. We report and interpret ice elevation change between a digital elevation model (DEM) derived from the Shuttle Radar Topography Mission (SRTM C band) observations in Feb. 2000 and ICESat Laser 1-3 observations between Feb. 2003 and Nov. 2004. We use these elevation change results, along with earlier studies, to address the spatial and temporal variability in wastage of the piedmont lobe. Between 2000 and 2004 ice elevation changes of 10-30 meters occurred across the central Malaspina piedmont lobe. From 1972/73 (USGS DEM) to 1999 (SRTM corrected for estimated winter snow accumulation) Malaspina's (Agassiz, Seward Lobe, and Marvine) mean ice thinning was estimated at -47 m with maximum thinning on parts of the lobes to -160 m. The Malaspina's accumulation area is only slightly larger than its ablation area (2,575 km2 vs. 2,433 km2); unfortunately few glaciological observations are available from this source region. Snow accumulation rates have been largely inferred from low-altitude precipitation and temperature data. Comparing sequential ICESat observations in the Malaspina source region, we estimated short-term elevation increases of up to 5 meters during the winter of 2003/04.
2018-01-01
To date, a few studies have investigated the potential use of a short-pulsed laser in selective tumor cell destruction or its mechanism of cell killing. Computer simulation of the spatial and temporal profiles of temperature elevation after pulsed laser irradiation on an infinitesimal point source estimated that the temperature reached its highest point at ∼35 ns after a single 15 ns laser pulse. Moreover, temperature elevation was confined to a radius of sub-micrometer and returned to baseline within 100 ns. To investigate the effect of 15 ns laser pulses on A431 tumor cells, we conjugated hollow gold nanospheres (HAuNSs) to an antibody (C225) directed at the epithelial growth factor receptor. The resulting nanoparticles, C225-HAuNSs, bound to the cell membrane, internalized, and distributed throughout the cytoplasm, with some nanoparticles transported to the vicinity of the nuclear membrane. On using an optical microscope mounted to a tunable pulsed Ti:sapphire laser, rapid and extensive damage of live cancer cells was observed, whereas irradiation of A431 cells pretreated with nontargeted HAuNSs with a pulsed laser or pretreated with C225-HAuNSs with a continuous-wave laser-induced minimal cellular damage. Furthermore, after a single 15 ns laser pulse, C225-HAuNS-treated A431 cells cocultured with 3T3 fibroblasts showed signs of selective destruction. Thus, compared with a continuous-wave laser, shots of a short-pulsed laser were the most damaging to tumor cells that bound HAuNSs and generated the least heat to the surrounding environment. This mode of action by a short-pulsed laser on cancer cells (i.e., confined photothermolysis) may have potential applications in selective tumor cell destruction. PMID:29876540
Ku, Geng; Huang, Qian; Wen, Xiaoxia; Ye, John; Piwnica-Worms, David; Li, Chun
2018-05-31
To date, a few studies have investigated the potential use of a short-pulsed laser in selective tumor cell destruction or its mechanism of cell killing. Computer simulation of the spatial and temporal profiles of temperature elevation after pulsed laser irradiation on an infinitesimal point source estimated that the temperature reached its highest point at ∼35 ns after a single 15 ns laser pulse. Moreover, temperature elevation was confined to a radius of sub-micrometer and returned to baseline within 100 ns. To investigate the effect of 15 ns laser pulses on A431 tumor cells, we conjugated hollow gold nanospheres (HAuNSs) to an antibody (C225) directed at the epithelial growth factor receptor. The resulting nanoparticles, C225-HAuNSs, bound to the cell membrane, internalized, and distributed throughout the cytoplasm, with some nanoparticles transported to the vicinity of the nuclear membrane. On using an optical microscope mounted to a tunable pulsed Ti:sapphire laser, rapid and extensive damage of live cancer cells was observed, whereas irradiation of A431 cells pretreated with nontargeted HAuNSs with a pulsed laser or pretreated with C225-HAuNSs with a continuous-wave laser-induced minimal cellular damage. Furthermore, after a single 15 ns laser pulse, C225-HAuNS-treated A431 cells cocultured with 3T3 fibroblasts showed signs of selective destruction. Thus, compared with a continuous-wave laser, shots of a short-pulsed laser were the most damaging to tumor cells that bound HAuNSs and generated the least heat to the surrounding environment. This mode of action by a short-pulsed laser on cancer cells (i.e., confined photothermolysis) may have potential applications in selective tumor cell destruction.
Code of Federal Regulations, 2014 CFR
2014-04-01
... straight line approximately one mile to an unnamed pass with an elevation of 1485 feet, located on Soda Canyon Road; (3) Then easterly in a straight line approximately 0.5 miles to an unnamed peak of 2135 feet... miles to the highest point of an unnamed peak of 1268 feet elevation in section 12, T. 6 N., R. 4 W. on...
Code of Federal Regulations, 2011 CFR
2011-04-01
... straight line approximately one mile to an unnamed pass with an elevation of 1485 feet, located on Soda Canyon Road; (3) Then easterly in a straight line approximately 0.5 miles to an unnamed peak of 2135 feet... miles to the highest point of an unnamed peak of 1268 feet elevation in section 12, T. 6 N., R. 4 W. on...
Code of Federal Regulations, 2012 CFR
2012-04-01
... straight line approximately one mile to an unnamed pass with an elevation of 1485 feet, located on Soda Canyon Road; (3) Then easterly in a straight line approximately 0.5 miles to an unnamed peak of 2135 feet... miles to the highest point of an unnamed peak of 1268 feet elevation in section 12, T. 6 N., R. 4 W. on...
Code of Federal Regulations, 2013 CFR
2013-04-01
... straight line approximately one mile to an unnamed pass with an elevation of 1485 feet, located on Soda Canyon Road; (3) Then easterly in a straight line approximately 0.5 miles to an unnamed peak of 2135 feet... miles to the highest point of an unnamed peak of 1268 feet elevation in section 12, T. 6 N., R. 4 W. on...
Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan
2016-03-29
Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.
NASA Astrophysics Data System (ADS)
McMurtry, G. M.; Campbell, J. F.; Fryer, G. J.; Tappin, D. R.; Fietzke, J.
2010-12-01
Sandy, basalt-coral conglomerates associated with both beachrock and coral reefs are found at high elevations on Oahu, Hawaii. They have been attributed to either brief, sea level high-stands or storms. The Kahe Point conglomerates are at 12.5 m elevation, whereas the main stage MIS-5e reef at this location has a maximum elevation of 8.2 m. They are loosely consolidated and poorly cemented, graded, poorly sorted, and with varying amounts of basalt and coral clasts ranging from cobble to boulder size. Coral in these deposits has been U-series dated by us at between 120-125 ka (n=5). Four distinct beds, with a gently seaward tilt, are recognized in a road cut section, with each bed composed of a few cm-thick topset bed of fine-grained, shelly, calcareous sand to silt. Similar high elevation conglomerates and 5e reefs are also described at Mokapu and Kaena Points on Oahu, indicating an island-wide deposit. Older coral clasts, dated at 130 to 142 ka (n=6; oldest by alpha spectrometry) found in association with the stage 5e corals suggest reworking and incorporation of older low-stand reef material. The coarse grain size of the conglomerates indicates deposition from a high-energy event; thus a high-stand source is ruled out. We also consider that the overall lithology and up to 0.5 m bed thickness not to be the result of storms; a series of high frequency storm events is considered unlikely. The weight of the evidence in our opinion clearly indicates deposition by a series of tsunami waves. If correct, this has implications for “probabilistic” models of sea level peaks at least 6.6 m higher than present at stage 5e that use such data in their models (e. g., Kopp et al., 2009), at least for Oahu. Within about 2 km of the Kahe deposit, in a road cut at Ko Olina, there is another markedly similar high-energy, sandy basalt-bearing coral conglomerate sequence at 21 to 25 m elevation. There are at least two distinct beds about one meter in thickness, both gently seaward tilting and with bed layer containing a few cm-thick topset of fine, shelly, calcareous sand to silt. The sediments are loosely consolidated and poorly cemented, graded, moderately sorted, with coral clasts ranging from pebble to boulder size, predominately cobble. Compared to the deposits at Kahe, those at Ko Olina are more heavily dominated by rounded coral clasts that are U-series dated at between 302-363 ka (n=5); broadly correlative with MIS stage 9. Previously described as a high-stand reef deposit, we suggest it is more likely to be a tsunami deposit too; perhaps considering its’ elevation, laid down from a mega-tsunami, if it was deposited prior to the MIS stage 9 high-stand at approximately 325 ka.
Pediatric lead exposure and the water crisis in Flint, Michigan.
DeWitt, Rachel D
2017-02-01
Changing the source of the water supply to save money had the unintended consequence of exposing residents of Flint, Mich., to elevated lead levels in their drinking water. A study done at Flint's Hurley Children's Hospital demonstrated that the incidence of elevated blood lead levels of children living in the affected area nearly doubled after the change in the water source. This article reviews the recommendations for lead screening and for reporting, following, and treating children with blood lead levels greater than 5 mcg/dL.
NASA Astrophysics Data System (ADS)
Freed, Rina
Effective stream remediation of non-point source contaminants, such as Chernobyl fallout, requires an understanding of the areas within watersheds that are contributing contamination to streams, the pathways of contaminant migration to streams, and the mechanisms controlling concentration changes in streams. From 1998--2002, the migration of 90Sr was studied in the Borschi watershed, a small (8.5 km2) catchment, three km south of the Chernobyl Nuclear Power Plant. Estimates of 90Sr depletion from soil cores (based on the ratio of 90Sr to the relatively immobile 154Eu) were used to map the effective source area that has contributed 90Sr loading into the main channel. The effective source areas include the channel bottom sediments, a wetland in the central region of the watershed, and periodically flooded soils surrounding the wetland. The estimated 90Sr leaching rate considering the effective source areas agrees with the estimate based on monitoring observations of stream water quality and flow rate in 1999--2001, 2.0% per year. In approximately 44 years, 90% of the remaining 90Sr could be removed from the effective source areas. We hypothesize that during discharge periods, the pore waters in the wetland represent the 90Sr concentration of advecting groundwater while during stagnant periods, the pore waters represent the concentration of 90Sr in equilibrium with the sediment. This proposed explanation is supported using PHREEQC in a dual porosity mode. Using independent estimates of the model parameters, the pore water concentration profiles could be successfully matched with the assumption of advective transport during the discharge period and diffusive transport of 90Sr during near-stagnant conditions. Changes in the 90Sr concentration of the Borschi stream are correlated with the elevation of the water table in the vicinity of the wetlands. The elevation of the water table is a surrogate variable for the area of submerged soil. As the area of submerged soil increases, more of the contaminant in the upper soil horizon is saturated and more 90Sr is released into the stream. In contrast to the prevailing assumption that the mechanism of 90Sr migration to streams is overland flow during storm events, over 70% of the annual flux occurs during baseflow conditions.
Effects of wind on background particle concentrations at truck freight terminals.
Garcia, Ronald; Hart, Jaime E; Davis, Mary E; Reaser, Paul; Natkin, Jonathan; Laden, Francine; Garshick, Eric; Smith, Thomas J
2007-01-01
Truck freight terminals are predominantly located near highways and industrial facilities. This proximity to pollution sources, coupled with meteorological conditions and wind patterns, may affect occupational exposures to particles at these work locations. To understand this process, data from an environmental sampling study of particles at U.S. trucking terminals, along with weather and geographic maps, were analyzed to determine the extent to which the transportation of particles from local pollutant sources elevated observed occupational exposures at these locations. To help identify potential upwind sources, wind direction weighted averages and speed measurements were used to construct wind roses that were superimposed on overhead photos of the terminal and examined for upwind source activity. Statistical tests were performed on these "source" and "nonsource" directions to determine whether there were significant differences in observed particle levels between the two groups. Our results provide evidence that nearby upwind pollution sources significantly elevated background concentrations at only a few of the locations sampled, whereas the majority provided little to no evidence of a significant upwind source effect.
NASA Astrophysics Data System (ADS)
Tran, H. N. Q.; Tran, T. T.; Mansfield, M. L.; Lyman, S. N.
2014-12-01
Contributions of emissions from oil and gas activities to elevated ozone concentrations in the Uintah Basin - Utah were evaluated using the CMAQ Integrated Source Apportionment Method (CMAQ-ISAM) technique, and were compared with the results of traditional budgeting methods. Unlike the traditional budgeting method, which compares simulations with and without emissions of the source(s) in question to quantify its impacts, the CMAQ-ISAM technique assigns tags to emissions of each source and tracks their evolution through physical and chemical processes to quantify the final ozone product yield from the source. Model simulations were performed for two episodes in winter 2013 of low and high ozone to provide better understanding of source contributions under different weather conditions. Due to the highly nonlinear ozone chemistry, results obtained from the two methods differed significantly. The growing oil and gas industry in the Uintah Basin is the largest contributor to the elevated zone (>75 ppb) observed in the Basin. This study therefore provides an insight into the impact of oil and gas industry on the ozone issue, and helps in determining effective control strategies.
76 FR 56724 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
.../town/county Source of flooding Location ** ground [caret] Elevation in meters (MSL) Existing Modified... Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to... upstream of Cradduck Road None +876 Oklahoma Unincorporated Areas of Town Branch Approximately 400 feet...
11. Buttress rising above stream bed elevation. Concrete mixing plant ...
11. Buttress rising above stream bed elevation. Concrete mixing plant is at right, west tower and placement tower boom are visible. Photographer unknown, November 24, 1926. Source: Ralph Pleasant. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
Ghost imaging with bucket detection and point detection
NASA Astrophysics Data System (ADS)
Zhang, De-Jian; Yin, Rao; Wang, Tong-Biao; Liao, Qing-Hua; Li, Hong-Guo; Liao, Qinghong; Liu, Jiang-Tao
2018-04-01
We experimentally investigate ghost imaging with bucket detection and point detection in which three types of illuminating sources are applied: (a) pseudo-thermal light source; (b) amplitude modulated true thermal light source; (c) amplitude modulated laser source. Experimental results show that the quality of ghost images reconstructed with true thermal light or laser beam is insensitive to the usage of bucket or point detector, however, the quality of ghost images reconstructed with pseudo-thermal light in bucket detector case is better than that in point detector case. Our theoretical analysis shows that the reason for this is due to the first order transverse coherence of the illuminating source.
Distinguishing dark matter from unresolved point sources in the Inner Galaxy with photon statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Samuel K.; Lisanti, Mariangela; Safdi, Benjamin R., E-mail: samuelkl@princeton.edu, E-mail: mlisanti@princeton.edu, E-mail: bsafdi@princeton.edu
2015-05-01
Data from the Fermi Large Area Telescope suggests that there is an extended excess of GeV gamma-ray photons in the Inner Galaxy. Identifying potential astrophysical sources that contribute to this excess is an important step in verifying whether the signal originates from annihilating dark matter. In this paper, we focus on the potential contribution of unresolved point sources, such as millisecond pulsars (MSPs). We propose that the statistics of the photons—in particular, the flux probability density function (PDF) of the photon counts below the point-source detection threshold—can potentially distinguish between the dark-matter and point-source interpretations. We calculate the flux PDFmore » via the method of generating functions for these two models of the excess. Working in the framework of Bayesian model comparison, we then demonstrate that the flux PDF can potentially provide evidence for an unresolved MSP-like point-source population.« less
Software For Tie-Point Registration Of SAR Data
NASA Technical Reports Server (NTRS)
Rignot, Eric; Dubois, Pascale; Okonek, Sharon; Van Zyl, Jacob; Burnette, Fred; Borgeaud, Maurice
1995-01-01
SAR-REG software package registers synthetic-aperture-radar (SAR) image data to common reference frame based on manual tie-pointing. Image data can be in binary, integer, floating-point, or AIRSAR compressed format. For example, with map of soil characteristics, vegetation map, digital elevation map, or SPOT multispectral image, as long as user can generate binary image to be used by tie-pointing routine and data are available in one of the previously mentioned formats. Written in FORTRAN 77.
NASA Astrophysics Data System (ADS)
Nagasaka, Yosuke; Nozu, Atsushi
2017-02-01
The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This result indicates the necessity for improving the pseudo point-source model, by introducing azimuth-dependent corner frequency for example, so that it can incorporate the effect of rupture directivity.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Moser, Gerald; Brenzinger, Kristof; Gorenflo, Andre; Clough, Tim; Braker, Gesche; Müller, Christoph
2017-04-01
To reduce the emissions of greenhouse gases (CO2, CH4 & N2O) it is important to quantify main sources and identify the respective ecosystem processes. While the main sources of N2O emissions in agro-ecosystems under current conditions are well known, the influence of a projected higher level of CO2 on the main ecosystem processes responsible for N2O emissions has not been investigated in detail. A major result of the Giessen FACE in a managed temperate grassland was that a +20% CO2 level caused a positive feedback due to increased emissions of N2O to 221% related to control condition. To be able to trace the sources of additional N2O emissions a 15N tracing study was conducted. We measured the N2O emission and its 15N signature, together with the 15N signature of soil and plant samples. The results were analyzed using a 15N tracing model which quantified the main changes in N transformation rates under elevated CO2. Directly after 15N fertilizer application a much higher dynamic of N transformations was observed than in the long run. Absolute mineralisation and DNRA rates were lower under elevated CO2 in the short term but higher in the long term. During the one year study period beginning with the 15N labelling a 1.8-fold increase of N2O emissions occurred under elevated CO2. The source of increased N2O was associated with NO3- in the first weeks after 15N application. Elevated CO2 affected denitrification rates, which resulted in increased N2O emissions due to a change of gene transcription rates (nosZ/(nirK+nirS)) and resulting enzyme activity (see: Brenzinger et al.). Here we show that the reported enhanced N2O emissions for the first 8 FACE years do prevail even in the long-term (> 15 years). The effect of elevated CO2 on N2O production/emission can be explained by altered activity ratios within a stable microbial community.
STATISTICS OF GAMMA-RAY POINT SOURCES BELOW THE FERMI DETECTION LIMIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Dmitry; Hogg, David W., E-mail: dm137@nyu.edu
2011-09-10
An analytic relation between the statistics of photons in pixels and the number counts of multi-photon point sources is used to constrain the distribution of gamma-ray point sources below the Fermi detection limit at energies above 1 GeV and at latitudes below and above 30 deg. The derived source-count distribution is consistent with the distribution found by the Fermi Collaboration based on the first Fermi point-source catalog. In particular, we find that the contribution of resolved and unresolved active galactic nuclei (AGNs) to the total gamma-ray flux is below 20%-25%. In the best-fit model, the AGN-like point-source fraction is 17%more » {+-} 2%. Using the fact that the Galactic emission varies across the sky while the extragalactic diffuse emission is isotropic, we put a lower limit of 51% on Galactic diffuse emission and an upper limit of 32% on the contribution from extragalactic weak sources, such as star-forming galaxies. Possible systematic uncertainties are discussed.« less
Nitrification in drinking water distribution systems is a concern of many drinking water systems. Although chloramination as a source of nitrification (i.e., addition of excess ammonia or breakdown of chloramines) has drawn the most attention, many source waters contain signific...
MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID
Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...
X-ray Point Source Populations in Spiral and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.
2001-12-01
In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.
Thompson, Michael; Gamage, Dananjali; Hirotsu, Naoki; Martin, Anke; Seneweera, Saman
2017-01-01
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO2]) are predicted to continue to rise. Elevated [CO2] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO2]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO2]. At elevated [CO2], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO2]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO2]. PMID:28848452
Thompson, Michael; Gamage, Dananjali; Hirotsu, Naoki; Martin, Anke; Seneweera, Saman
2017-01-01
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO 2 ]) are predicted to continue to rise. Elevated [CO 2 ] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO 2 ]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO 2 ]. At elevated [CO 2 ], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO 2 ]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO 2 ].
Kassotis, Christopher D; Alvarez, David A; Taylor, Julia A; vom Saal, Frederick S; Nagel, Susan C; Tillitt, Donald E
2015-08-15
Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities. Published by Elsevier B.V.
Kassotis, Christopher D.; Alvarez, David A.; Taylor, Julia A.; vom Saal, Frederick S.; Nagel, Susan C.; Tillitt, Donald E.
2015-01-01
Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrationspresent in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.
NASA Astrophysics Data System (ADS)
Khan, A. L.; McKnight, D. M.; Williams, M. W.; Armstrong, R. L.
2016-12-01
To investigate the impacts of the 2015 earthquakes on water quality and resources in the Gokyo Valley, drinking water samples were collected in the Khumbu region of Nepal in early 2016 and compared to baseline data from November 2012. This study was part of a larger USAID funded project housed at the National Snow and Ice Data Center to understand Contributions to High Asian Run-off from Ice and Snow (CHARIS) which has more than 10 local partners across 8 countries in High Asia. The Gokyo Valley is home to the Ngozumba Glacier and the Gokyo Lakes, which serve as the headwaters to the Dudh Koshi River. Samples were collected from tributary streams, which serve as the local drinking water sources and contribute to the Dudh Koshi watershed, along a transect from Lukla, 9181 ft, to Gokyo, 15, 557 ft. Water samples were analyzed in the field with the Aquagenx, Compartment Bag Test, a low cost method to detect E.coli, an indicator bacteria of fecal contamination. E.coli was present at the lowest elevations. Water samples were also shipped back to CU-Boulder for further chemical analysis including dissolved organic carbon (DOC), total dissolved nitrogen (TDN), arsenic, and oxygen isotopes to identify changes in hydrologic flow paths. These samples are being analyzed over the summer of 2016. Snow samples were also collected along a transect from Namche Bazaar at 11,657 ft to Gokyo Ri at 17,500 ft and have been analyzed for refractory black carbon (rBC). In general, rBC concentrations decreased with increasing elevation, except near local point-sources. Impurities like these reduce surface albedo and increase the amount of solar radiation absorbed by snow/ice, leading to enhanced melt.
51. Photocopy of drawing (Source unknown, 1928) Rapid Blue Print ...
51. Photocopy of drawing (Source unknown, 1928) Rapid Blue Print Co., Los Angeles, CA, Photographer, Date unknown EXTERIOR, ELEVATION DETAILS - Richfield Oil Building, 555 South Flower Street, Los Angeles, Los Angeles County, CA
46. Photocopy of drawing (Source unknown, 1928) Rapid Blue Print ...
46. Photocopy of drawing (Source unknown, 1928) Rapid Blue Print Co., Los Angeles, CA, Photographer, Date unknown NORTH ELEVATION - Richfield Oil Building, 555 South Flower Street, Los Angeles, Los Angeles County, CA
47. Photocopy of drawing (Source unknown, 1928) Rapid Blue Print ...
47. Photocopy of drawing (Source unknown, 1928) Rapid Blue Print Co., Los Angleles, CA, Photographer, Date unknown WEST ELEVATION - Richfield Oil Building, 555 South Flower Street, Los Angeles, Los Angeles County, CA
NASA Astrophysics Data System (ADS)
Sarangapani, R.; Jose, M. T.; Srinivasan, T. K.; Venkatraman, B.
2017-07-01
Methods for the determination of efficiency of an aged high purity germanium (HPGe) detector for gaseous sources have been presented in the paper. X-ray radiography of the detector has been performed to get detector dimensions for computational purposes. The dead layer thickness of HPGe detector has been ascertained from experiments and Monte Carlo computations. Experimental work with standard point and liquid sources in several cylindrical geometries has been undertaken for obtaining energy dependant efficiency. Monte Carlo simulations have been performed for computing efficiencies for point, liquid and gaseous sources. Self absorption correction factors have been obtained using mathematical equations for volume sources and MCNP simulations. Self-absorption correction and point source methods have been used to estimate the efficiency for gaseous sources. The efficiencies determined from the present work have been used to estimate activity of cover gas sample of a fast reactor.
NASA Astrophysics Data System (ADS)
Yang, Yang; Chu, Zhigang; Shen, Linbang; Ping, Guoli; Xu, Zhongming
2018-07-01
Being capable of demystifying the acoustic source identification result fast, Fourier-based deconvolution has been studied and applied widely for the delay and sum (DAS) beamforming with two-dimensional (2D) planar arrays. It is, however so far, still blank in the context of spherical harmonics beamforming (SHB) with three-dimensional (3D) solid spherical arrays. This paper is motivated to settle this problem. Firstly, for the purpose of determining the effective identification region, the premise of deconvolution, a shift-invariant point spread function (PSF), is analyzed with simulations. To make the premise be satisfied approximately, the opening angle in elevation dimension of the surface of interest should be small, while no restriction is imposed to the azimuth dimension. Then, two kinds of deconvolution theories are built for SHB using the zero and the periodic boundary conditions respectively. Both simulations and experiments demonstrate that the periodic boundary condition is superior to the zero one, and fits the 3D acoustic source identification with solid spherical arrays better. Finally, four periodic boundary condition based deconvolution methods are formulated, and their performance is disclosed both with simulations and experimentally. All the four methods offer enhanced spatial resolution and reduced sidelobe contaminations over SHB. The recovered source strength approximates to the exact one multiplied with a coefficient that is the square of the focus distance divided by the distance from the source to the array center, while the recovered pressure contribution is scarcely affected by the focus distance, always approximating to the exact one.
Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico.
Sracek, Ondra; Armienta, María Aurora; Rodríguez, Ramiro; Villaseñor, Guadalupe
2010-01-01
There are two principal sources of arsenic in Zimapán. Point sources are linked to mining and smelting activities and especially to mine tailings. Diffuse sources are not well defined and are linked to regional flow systems in carbonate rocks. Both sources are caused by the oxidation of arsenic-rich sulfidic mineralization. Point sources are characterized by Ca-SO(4)-HCO(3) ground water type and relatively enriched values of deltaD, delta(18)O, and delta(34)S(SO(4)). Diffuse sources are characterized by Ca-Na-HCO(3) type of ground water and more depleted values of deltaD, delta(18)O, and delta(34)S(SO(4)). Values of deltaD and delta(18)O indicate similar altitude of recharge for both arsenic sources and stronger impact of evaporation for point sources in mine tailings. There are also different values of delta(34)S(SO(4)) for both sources, presumably due to different types of mineralization or isotopic zonality in deposits. In Principal Component Analysis (PCA), the principal component 1 (PC1), which describes the impact of sulfide oxidation and neutralization by the dissolution of carbonates, has higher values in samples from point sources. In spite of similar concentrations of As in ground water affected by diffuse sources and point sources (mean values 0.21 mg L(-1) and 0.31 mg L(-1), respectively, in the years from 2003 to 2008), the diffuse sources have more impact on the health of population in Zimapán. This is caused by the extraction of ground water from wells tapping regional flow system. In contrast, wells located in the proximity of mine tailings are not generally used for water supply.
78 FR 5738 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... in feet (NGVD) + Elevation in feet (NAVD) Depth in feet State City/town/county Source of flooding... feet upstream of I-15 +3433 Areas of (westbound). Cascade County. Approximately 1.2 miles upstream of I... feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES Unincorporated...
Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.
1985-01-01
A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.
Panayotou, N.F.; Green, D.R.; Price, L.S.
A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.
NASA Astrophysics Data System (ADS)
Chhetri, R.; Ekers, R. D.; Morgan, J.; Macquart, J.-P.; Franzen, T. M. O.
2018-06-01
We use Murchison Widefield Array observations of interplanetary scintillation (IPS) to determine the source counts of point (<0.3 arcsecond extent) sources and of all sources with some subarcsecond structure, at 162 MHz. We have developed the methodology to derive these counts directly from the IPS observables, while taking into account changes in sensitivity across the survey area. The counts of sources with compact structure follow the behaviour of the dominant source population above ˜3 Jy but below this they show Euclidean behaviour. We compare our counts to those predicted by simulations and find a good agreement for our counts of sources with compact structure, but significant disagreement for point source counts. Using low radio frequency SEDs from the GLEAM survey, we classify point sources as Compact Steep-Spectrum (CSS), flat spectrum, or peaked. If we consider the CSS sources to be the more evolved counterparts of the peaked sources, the two categories combined comprise approximately 80% of the point source population. We calculate densities of potential calibrators brighter than 0.4 Jy at low frequencies and find 0.2 sources per square degrees for point sources, rising to 0.7 sources per square degree if sources with more complex arcsecond structure are included. We extrapolate to estimate 4.6 sources per square degrees at 0.04 Jy. We find that a peaked spectrum is an excellent predictor for compactness at low frequencies, increasing the number of good calibrators by a factor of three compared to the usual flat spectrum criterion.
Kitao, M; Hida, T; Eguchi, N; Tobita, H; Utsugi, H; Uemura, A; Kitaoka, S; Koike, T
2016-01-01
We measured leaf photosynthetic traits in shade-grown seedlings of four tree species native to northern Japan, raised under an elevated CO2 condition, to investigate the effects of elevated CO2 on shade tolerance of deciduous broadleaf tree species with different successional traits. We considered Betula platyphylla var. japonica and Betula maximowicziana as pioneer species, Quercus mongolica var. crispula as a mid-successional species, and Acer mono as a climax species. The plants were grown under shade conditions (10% of full sunlight) in a CO2 -regulated phytotron. Light compensation points (LCPs) decreased in all tree species when grown under elevated CO2 (720 μmol·mol(-1) ), which were accompanied by higher apparent quantum yields but no photosynthetic down-regulation. LCPs in Q. mongolica and A. mono grown under elevated CO2 were lower than those in the two pioneer birch species. The LCP in Q. mongolica seedlings was not different from that of A. mono in each CO2 treatment. However, lower dark respiration rates were observed in A. mono than in Q. mongolica, suggesting higher shade tolerance in A. mono as a climax species in relation to carbon loss at night. Thus, elevated CO2 may have enhanced shade tolerance by lowering LCPs in all species, but the ranking of shade tolerance related to successional traits did not change among species under elevated CO2 , i.e. the highest shade tolerance was observed in the climax species (A. mono), followed by a gap-dependent species (Q. mongolica), while lower shade tolerance was observed in the pioneer species (B. platyphylla and B. maximowicziana). © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
1. VIEW, LOOKING SOUTH, OF THE NORTH ELEVATION OF BUILDING ...
1. VIEW, LOOKING SOUTH, OF THE NORTH ELEVATION OF BUILDING 792A. BUILDING 792A, AT PORTAL 3, IS ONE OF THREE PEDESTRIAN ACCESS POINTS THROUGH THE PERIMETER SECURITY ZONE INTO THE PROTECTED AREA. - Rocky Flats Plant, Access Control Building, North of building 771, in parking area 71, just south of North Perimeter Road, Golden, Jefferson County, CO
Devaraj, Srikant; Patel, Pankaj C
Although variation in-patient outcomes based on hospitals' geographic location has been studied, altitude of hospitals above sea level may also affect patient outcomes. Possibly, because of negative physical and psychological effects of altitude on hospital employees, hospital efficiency may decline at higher altitudes. Greater focus on hospital efficiency, despite decreasing efficiency at higher altitudes, could increase demands on hospital employees and further deteriorate patient outcomes. Using data envelopment analysis on a sample of 840 hospital-year observations representing 95,504 patients with acute myocardial infarction (AMI) in the United States, and controlling for patient, hospital, and county characteristics and controlling for hospital, state, and year fixed effects, we find support for the negative association between hospital altitude and efficiency; for 1 percentage point increase in efficiency and every 1,000 feet increase in altitude above the sea level, the mortality of patients with AMI increases by 0.66 percentage points. The findings have implications for hospital performance at increasing geographic elevation and introduces to the literature the notion of "health economics of elevation," to suggest that elevation of a hospital may be an important criterion for consideration for policy makers and insurance firms.
MicMac GIS application: free open source
NASA Astrophysics Data System (ADS)
Duarte, L.; Moutinho, O.; Teodoro, A.
2016-10-01
The use of Remotely Piloted Aerial System (RPAS) for remote sensing applications is becoming more frequent as the technologies on on-board cameras and the platform itself are becoming a serious contender to satellite and airplane imagery. MicMac is a photogrammetric tool for image matching that can be used in different contexts. It is an open source software and it can be used as a command line or with a graphic interface (for each command). The main objective of this work was the integration of MicMac with QGIS, which is also an open source software, in order to create a new open source tool applied to photogrammetry/remote sensing. Python language was used to develop the application. This tool would be very useful in the manipulation and 3D modelling of a set of images. The main objective was to create a toolbar in QGIS with the basic functionalities with intuitive graphic interfaces. The toolbar is composed by three buttons: produce the points cloud, create the Digital Elevation Model (DEM) and produce the orthophoto of the study area. The application was tested considering 35 photos, a subset of images acquired by a RPAS in the Aguda beach area, Porto, Portugal. They were used in order to create a 3D terrain model and from this model obtain an orthophoto and the corresponding DEM. The code is open and can be modified according to the user requirements. This integration would be very useful in photogrammetry and remote sensing community combined with GIS capabilities.
NASA Astrophysics Data System (ADS)
Wu, M. S.; Feakins, S. J.; Ponton, C.; West, A. J.; Galy, V.
2017-12-01
The carbon and hydrogen isotopic compositions (respectively δ13C and δD) of plant wax biomarkers have been widely used to reconstruct past climate and environment. To understand how leaf waxes are sourced within a river catchment, and how their isotopic signature is transferred from source to sink, we study δ13C and δD of C29 n-alkanes and C30 n-alkanoic acids in the Madre de Dios River catchment along the eastern flank of the Peruvian Andes. We sampled soils across a 3.5km elevation transect and find gradients in δ13Cwax (ca. +1.5‰/km) and δDwax (ca. -10 ‰/km) similar to gradients in tree canopy leaves (Feakins et al., 2016 GCA; Wu et al., 2017 GCA). We also collected river suspended sediment samples along the Madre de Dios River and its tributaries, which together drain an area of 75,400 km2 and 6 km of elevation. We utilize soil data and a digital elevation model to construct isoscapes, delineate catchments for each river sampling location, predict river values assuming spatial uniform integration, and compare our predictions with observed values. Although both compounds generally follow isotopic gradients defined by catchment elevations, the dual isotope and compound-class comparison reveals additional processes. For C30 n-alkanoic acid we find an up to 1km lower-than-expected catchment signal, indicating degradation of upland contributions in transit and replacement with lowland inputs. In contrast, mountain-front river locations are susceptible to upland-biases (up to 1km higher sourcing) in C29 n-alkane sourcing, likely due to enhanced erosion and higher leaf wax stock in Andean soil compared to the lowland, and greater persistence of n-alkanes than n-alkanoic acids. For both compounds, the bias is eliminated with several hundred km of river transit across the floodplain. In one location, we identify significant petrogenic contamination of n-alkanes but not n-alkanoic acids. These results indicate the power in combining dual compound classes and dual isotopes to analyze source-to-sink processes and to evaluate sourcing of river exported plant wax biomarkers.
Internal sensations as a source of fear: exploring a link between hypoxia and flight phobia.
Vanden Bogaerde, Anouk; De Raedt, Rudi
2013-01-01
Although flight phobia is very common in the general population, knowledge of the underlying mechanisms is limited. The aim of the current study is to determine whether hypoxia is selectively associated with flight anxiety. We wanted to explore levels of oxygen saturation (SpO2) and the associated subjective somatic sensations in flight phobics and controls. The data collected in this study were obtained from 103 participants: 54 had flight phobia, 49 were controls. SpO2 as well as a subjective report of somatic sensations and anxiety were measured during short haul flights, both at ground level and at cruising altitude. Results indicated that both flight phobics and controls showed a comparable clinical significant decrease in SpO2 from sea level to cruising altitude. Next, at ground level the flight phobic group reported more somatic sensations, most likely due to the elevated levels of anxiety at that point. However, at cruising altitude the flight phobic group still reported more somatic sensations while the level of anxiety was no longer significantly different from controls. This finding points to altered symptom perception in flight phobia and stresses the importance of somatic sensations in this particular phobia.
Deep water tsunami simulation at global scale using an elastoacoustic approach
NASA Astrophysics Data System (ADS)
Salazar Monroy, E. F.; Ramirez-Guzman, L.; Bielak, J.; Sanchez-Sesma, F. J.
2017-12-01
In this work, we present the results for the first stage of a tsunami global simulation project using an elastoacoustic approach. The solid-fluid interaction, which is only valid on a global scale and far distances from the coast, is modelled using a finite element scheme for a 2D geometry. Comparing analytic and numerical solutions, we observe a good fit for a homogeneous domain - with an extension of 20 km - using 15 points per wavelength. Subsequently, we performed 2D realizations taking a section from a global 3D model and projecting the Tohoku-Oki source obtained by the USGS. The 3D Global model uses the ETOPO1 and the Preliminary Reference Earth Model (Dziewonski and Anderson, 1981). We analysed 3 cross sections, defined using DART buoys as a reference for each section (i.e., initial and final profile point). Surface water elevation obtained with this coupling strategy is constrained at low frequencies (0.2 Hz). We expect that this coupling strategy could approximate the model to high frequencies and realistic scenarios considering other geometries (i.e., 3D) and a complete domain (i.e., surface and deep).
NASA Astrophysics Data System (ADS)
Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.
2015-12-01
Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and transport pathways models for better estimation of emission of dust during dust storms, particulate air pollution, public health risk assessment tools and decision support systems.
The Coordinate Transformation Method of High Resolution dem Data
NASA Astrophysics Data System (ADS)
Yan, Chaode; Guo, Wang; Li, Aimin
2018-04-01
Coordinate transformation methods of DEM data can be divided into two categories. One reconstruct based on original vector elevation data. The other transforms DEM data blocks by transforming parameters. But the former doesn't work in the absence of original vector data, and the later may cause errors at joint places between adjoining blocks of high resolution DEM data. In view of this problem, a method dealing with high resolution DEM data coordinate transformation is proposed. The method transforms DEM data into discrete vector elevation points, and then adjusts positions of points by bi-linear interpolation respectively. Finally, a TIN is generated by transformed points, and the new DEM data in target coordinate system is reconstructed based on TIN. An algorithm which can find blocks and transform automatically is given in this paper. The method is tested in different terrains and proved to be feasible and valid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
Observation of a point source of astrophysical neutrinos would be a “smoking gun” signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν{sub μ} interacting inside the detector, we reduce the atmospheric background while retainingmore » efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (∼100 TeV) starting event in the sample found that this event alone represents a 2.8 σ deviation from the hypothesis that the data consists only of atmospheric background.« less
NASA Technical Reports Server (NTRS)
Glende, W. L. B.
1974-01-01
The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.
NASA Astrophysics Data System (ADS)
Pikridas, Michael; Sciare, Jean; Vrekoussis, Mihalis; Oikonomou, Konstantina; Merabet, Hamza; Mihalopoulos, Nikos; Yassaa, Nouredine; Savvides, Chrysanthos
2016-04-01
As part of MISTRALS-ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/), and MISTRALS-ENVI-Med "CyAr" (Cyprus Aerosols and gas precursors) programs, a 1-month intensive field campaign has been performed in December 2014 at an urban background site of Nicosia (Cyprus) - a typical European city of the Eastern Mediterranean - with the objective to document the major (local versus imported) sources responsible for wintertime particulate (PM1) pollution. Several near real-time analyzers were deployed for that purpose (TEOM 1400, OPC Grimm 1.108, Q-ACSM, Aethalometer AE31) allowing to investigate in near-real time the major chemical components of submicron aerosols (Black Carbon, Organics, Sulphate, Nitrate, Ammonium). Quality control of Q-ACSM and Aethalometer datasets was performed through closure studies (using co-located TEOM / OPC Grimm). Comparisons were also performed with other on-line / off-line measurements performed by the local Air quality network (DLI) at other locations in Nicosia with the objective to check the consistency and representativeness of our observations. Very high levels of Black Carbon and OA were systematically observed every night (with maximum concentrations around 22:00 local time) pointing to local combustion sources most probably related to domestic heating. Source apportionment of organic aerosols (OA) was performed using the SourceFinder software (SoFi, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between various primary/secondary OA sources and helped us to better characterize the combustion sources being responsible for the observed elevated nighttime PM1 levels. Acknowledgements: This campaign has been funded by MISTRALS (ChArMEx et ENVI-Med CyAr programs), CNRS-INSU, CEA, CyI, DLI, CDER and ECPL.
Coastal On-line Assessment and Synthesis Tool 2.0
NASA Technical Reports Server (NTRS)
Brown, Richard; Navard, Andrew; Nguyen, Beth
2011-01-01
COAST (Coastal On-line Assessment and Synthesis Tool) is a 3D, open-source Earth data browser developed by leveraging and enhancing previous NASA open-source tools. These tools use satellite imagery and elevation data in a way that allows any user to zoom from orbit view down into any place on Earth, and enables the user to experience Earth terrain in a visually rich 3D view. The benefits associated with taking advantage of an open-source geo-browser are that it is free, extensible, and offers a worldwide developer community that is available to provide additional development and improvement potential. What makes COAST unique is that it simplifies the process of locating and accessing data sources, and allows a user to combine them into a multi-layered and/or multi-temporal visual analytical look into possible data interrelationships and coeffectors for coastal environment phenomenology. COAST provides users with new data visual analytic capabilities. COAST has been upgraded to maximize use of open-source data access, viewing, and data manipulation software tools. The COAST 2.0 toolset has been developed to increase access to a larger realm of the most commonly implemented data formats used by the coastal science community. New and enhanced functionalities that upgrade COAST to COAST 2.0 include the development of the Temporal Visualization Tool (TVT) plug-in, the Recursive Online Remote Data-Data Mapper (RECORD-DM) utility, the Import Data Tool (IDT), and the Add Points Tool (APT). With these improvements, users can integrate their own data with other data sources, and visualize the resulting layers of different data types (such as spatial and spectral, for simultaneous visual analysis), and visualize temporal changes in areas of interest.
NASA Astrophysics Data System (ADS)
Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.
2015-12-01
The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land use history.
Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces.
Schimpf, Paul H
2017-09-15
This article examines the localization errors of equivalent dipolar sources inverted from the surface electroencephalogram in order to determine the feasibility of using their location as classification parameters for non-invasive brain computer interfaces. Inverse localization errors are examined for two head models: a model represented by four concentric spheres and a realistic model based on medical imagery. It is shown that the spherical model results in localization ambiguity such that a number of dipolar sources, with different azimuths and varying orientations, provide a near match to the electroencephalogram of the best equivalent source. No such ambiguity exists for the elevation of inverted sources, indicating that for spherical head models, only the elevation of inverted sources (and not the azimuth) can be expected to provide meaningful classification parameters for brain-computer interfaces. In a realistic head model, all three parameters of the inverted source location are found to be reliable, providing a more robust set of parameters. In both cases, the residual error hypersurfaces demonstrate local minima, indicating that a search for the best-matching sources should be global. Source localization error vs. signal-to-noise ratio is also demonstrated for both head models.
Online, On Demand Access to Coastal Digital Elevation Models
NASA Astrophysics Data System (ADS)
Long, J.; Bristol, S.; Long, D.; Thompson, S.
2014-12-01
Process-based numerical models for coastal waves, water levels, and sediment transport are initialized with digital elevation models (DEM) constructed by interpolating and merging bathymetric and topographic elevation data. These gridded surfaces must seamlessly span the land-water interface and may cover large regions where the individual raw data sources are collected at widely different spatial and temporal resolutions. In addition, the datasets are collected from different instrument platforms with varying accuracy and may or may not overlap in coverage. The lack of available tools and difficulties in constructing these DEMs lead scientists to 1) rely on previously merged, outdated, or over-smoothed DEMs; 2) discard more recent data that covers only a portion of the DEM domain; and 3) use inconsistent methodologies to generate DEMs. The objective of this work is to address the immediate need of integrating land and water-based elevation data sources and streamline the generation of a seamless data surface that spans the terrestrial-marine boundary. To achieve this, the U.S. Geological Survey (USGS) is developing a web processing service to format and initialize geoprocessing tasks designed to create coastal DEMs. The web processing service is maintained within the USGS ScienceBase data management system and has an associated user interface. Through the map-based interface, users define a geographic region that identifies the bounds of the desired DEM and a time period of interest. This initiates a query for elevation datasets within federal science agency data repositories. A geoprocessing service is then triggered to interpolate, merge, and smooth the data sources creating a DEM based on user-defined configuration parameters. Uncertainty and error estimates for the DEM are also returned by the geoprocessing service. Upon completion, the information management platform provides access to the final gridded data derivative and saves the configuration parameters for future reference. The resulting products and tools developed here could be adapted to future data sources and projects beyond the coastal environment.
Investigating error structure of shuttle radar topography mission elevation data product
NASA Astrophysics Data System (ADS)
Becek, Kazimierz
2008-08-01
An attempt was made to experimentally assess the instrumental component of error of the C-band SRTM (SRTM). This was achieved by comparing elevation data of 302 runways from airports all over the world with the shuttle radar topography mission data product (SRTM). It was found that the rms of the instrumental error is about +/-1.55 m. Modeling of the remaining SRTM error sources, including terrain relief and pixel size, shows that downsampling from 30 m to 90 m (1 to 3 arc-sec pixels) worsened SRTM vertical accuracy threefold. It is suspected that the proximity of large metallic objects is a source of large SRTM errors. The achieved error estimates allow a pixel-based accuracy assessment of the SRTM elevation data product to be constructed. Vegetation-induced errors were not considered in this work.
Ground-based lidar beach topography of Fire Island, New York, April 2013
Brenner, Owen T.; Hapke, Cheryl J.; Spore, Nicholas J.; Brodie, Katherine L.; McNinch, Jesse E.
2015-01-01
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, strong winter storms. The ongoing beach monitoring is part of the Hurricane Sandy Supplemental Project GS2-2B. This USGS data series includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).
In order to protect estuarine resources, managers must be able to discern the effects of natural conditions and non-point source effects, and separate them from multiple anthropogenic point source effects. Our approach was to evaluate benthic community assemblages, riverine nitro...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Palaseanu-Lovejoy, Monica; Thatcher, Cindy A.; Barras, John A.
2014-01-01
This study explores the feasibility of using airborne lidar surveys to construct high-resolution digital elevation models (DEMs) and develop an automated procedure to extract levee longitudinal elevation profiles for both federal levees in Atchafalaya Basin and local levees in Lafourche Parish, south Lousiana. This approach can successfully accommodate a high degree of levee sinuosity and abrupt changes in levee orientation (direction) in planar coordinates, variations in levee geometries, and differing DEM resolutions. The federal levees investigated in Atchafalaya Basin have crest elevations between 5.3 and 12 m while the local counterparts in Lafourche Parish are between 0.76 and 2.3 m. The vertical uncertainty in the elevation data is considered when assessing federal crest elevation against the U.S. Army Corps of Engineers minimum height requirements to withstand the 100-year flood. Only approximately 5% of the crest points of the two federal levees investigated in the Atchafalaya Basin region met this requirement.
Occurrence of Surface Water Contaminations: An Overview
NASA Astrophysics Data System (ADS)
Shahabudin, M. M.; Musa, S.
2018-04-01
Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.
Metals associated with stormwater-relevant brake and tire samples
McKenzie, Erica R.; Money, Jon E.; Green, Peter G.; Young, Thomas M.
2009-01-01
Properly apportioning the loads of metals in highway stormwater runoff to the appropriate sources requires accurate data on source composition, especially regarding constituents that help to distinguish among sources. Representative tire and brake samples were collected from privately owned vehicles and aqueous extracts were analyzed for twenty-eight elements. Correlation principal components analysis (PCA) revealed that tires were most influenced by Zn, Pb, and Cu, while brakes were best characterized by Na and Fe followed by Ba, Cu, Mg, Mn, and K; the latter three may be due to roadside soil contributions. Notably elevated Cd contributions were found in several brake samples. A targeted Cd-plated brake rotor was sampled, producing results consistent with the elevated levels found in the larger sample population. This enriched source of Cd is of particular concern due to high toxicity of Cd in aquatic ecosystems. PMID:19709720
NASA Astrophysics Data System (ADS)
Brocklehurst, Aidan; Boon, Alex; Barlow, Janet; Hayden, Paul; Robins, Alan
2014-05-01
The source area of an instrument is an estimate of the area of ground over which the measurement is generated. Quantification of the source area of a measurement site provides crucial context for analysis and interpretation of the data. A range of computational models exists to calculate the source area of an instrument, but these are usually based on assumptions which do not hold for instruments positioned very close to the surface, particularly those surrounded by heterogeneous terrain i.e. urban areas. Although positioning instrumentation at higher elevation (i.e. on masts) is ideal in urban areas, this can be costly in terms of installation and maintenance costs and logistically difficult to position instruments in the ideal geographical location. Therefore, in many studies, experimentalists turn to rooftops to position instrumentation. Experimental validations of source area models for these situations are very limited. In this study, a controlled tracer gas experiment was conducted in a wind tunnel based on a 1:200 scale model of a measurement site used in previous experimental work in central London. The detector was set at the location of the rooftop site as the tracer was released at a range of locations within the surrounding streets and rooftops. Concentration measurements are presented for a range of wind angles, with the spread of concentration measurements indicative of the source area distribution. Clear evidence of wind channeling by streets is seen with the shape of the source area strongly influenced by buildings upwind of the measurement point. The results of the wind tunnel study are compared to scalar concentration source areas generated by modelling approaches based on meteorological data from the central London experimental site and used in the interpretation of continuous carbon dioxide (CO2) concentration data. Initial conclusions will be drawn as to how to apply scalar concentration source area models to rooftop measurement sites and suggestions for their improvement to incorporate effects such as channeling.
NASA Astrophysics Data System (ADS)
Smith, Hugh G.; Sheridan, Gary J.; Nyman, Petter; Child, David P.; Lane, Patrick N. J.; Hotchkis, Michael A. C.; Jacobsen, Geraldine E.
2012-02-01
Fine sediment supply has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides ( 137Cs, 210Pb ex and 239,240Pu) as tracers to measure proportional contributions of fine sediment (< 10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While 137Cs and 210Pb ex have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The ranges in estimated proportional hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment were 22-69% and 32-74%. The greater susceptibility of 210Pb ex to apparent reductions in the ash content of channel deposits relative to hillslope sources resulted in its exclusion from the final analysis. No systematic change in the proportional source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the tracing analysis with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and fine sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on changing source contributions of fine sediment during debris flow events.
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturgeon, Richard W.
This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources.more » This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.« less
NASA Astrophysics Data System (ADS)
Griesbaum, Luisa; Marx, Sabrina; Höfle, Bernhard
2017-07-01
In recent years, the number of people affected by flooding caused by extreme weather events has increased considerably. In order to provide support in disaster recovery or to develop mitigation plans, accurate flood information is necessary. Particularly pluvial urban floods, characterized by high temporal and spatial variations, are not well documented. This study proposes a new, low-cost approach to determining local flood elevation and inundation depth of buildings based on user-generated flood images. It first applies close-range digital photogrammetry to generate a geo-referenced 3-D point cloud. Second, based on estimated camera orientation parameters, the flood level captured in a single flood image is mapped to the previously derived point cloud. The local flood elevation and the building inundation depth can then be derived automatically from the point cloud. The proposed method is carried out once for each of 66 different flood images showing the same building façade. An overall accuracy of 0.05 m with an uncertainty of ±0.13 m for the derived flood elevation within the area of interest as well as an accuracy of 0.13 m ± 0.10 m for the determined building inundation depth is achieved. Our results demonstrate that the proposed method can provide reliable flood information on a local scale using user-generated flood images as input. The approach can thus allow inundation depth maps to be derived even in complex urban environments with relatively high accuracies.
Mainhagu, Jon; Morrison, C.; Truex, Michael J.; ...
2014-08-05
A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less
NASA Astrophysics Data System (ADS)
da Silva, Rodrigo; Pearce, Jonathan V.; Machin, Graham
2017-06-01
The fixed points of the International Temperature Scale of 1990 (ITS-90) are the basis of the calibration of standard platinum resistance thermometers (SPRTs). Impurities in the fixed point material at the level of parts per million can give rise to an elevation or depression of the fixed point temperature of order of millikelvins, which often represents the most significant contribution to the uncertainty of SPRT calibrations. A number of methods for correcting for the effect of impurities have been advocated, but it is becoming increasingly evident that no single method can be used in isolation. In this investigation, a suite of five aluminium fixed point cells (defined ITS-90 freezing temperature 660.323 °C) have been constructed, each cell using metal sourced from a different supplier. The five cells have very different levels and types of impurities. For each cell, chemical assays based on the glow discharge mass spectroscopy (GDMS) technique have been obtained from three separate laboratories. In addition a series of high quality, long duration freezing curves have been obtained for each cell, using three different high quality SPRTs, all measured under nominally identical conditions. The set of GDMS analyses and freezing curves were then used to compare the different proposed impurity correction methods. It was found that the most consistent corrections were obtained with a hybrid correction method based on the sum of individual estimates (SIE) and overall maximum estimate (OME), namely the SIE/Modified-OME method. Also highly consistent was the correction technique based on fitting a Scheil solidification model to the measured freezing curves, provided certain well defined constraints are applied. Importantly, the most consistent methods are those which do not depend significantly on the chemical assay.
Analysis of Screen Channel LAD Bubble Point Tests in Liquid Oxygen at Elevated Temperature
NASA Technical Reports Server (NTRS)
Hartwig, Jason; McQuillen, John
2011-01-01
The purpose of this paper is to examine the key parameters that affect the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid oxygen at elevated pressures and temperatures. An in depth analysis of the effect of varying temperature, pressure, and pressurization gas on bubble point is presented. Testing of a 200 x 1400 and 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenics Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 92 to 130K and 0.138 - 1.79 MPa. Bubble point is shown to be a strong function of temperature with a secondary dependence on pressure. The pressure dependence is believed to be a function of the amount of evaporation and condensation occurring at the screen. Good agreement exists between data and theory for normally saturated liquid but the model generally under predicts the bubble point in subcooled liquid. Better correlation with the data is obtained by using the liquid temperature at the screen to determine surface tension of the fluid, as opposed to the bulk liquid temperature.
NASA Technical Reports Server (NTRS)
Vanek, Michael D. (Inventor)
2014-01-01
A method for creating a digital elevation map ("DEM") from frames of flash LIDAR data includes generating a first distance R(sub i) from a first detector i to a first point on a surface S(sub i). After defining a map with a mesh THETA having cells k, a first array S(k), a second array M(k), and a third array D(k) are initialized. The first array corresponds to the surface, the second array corresponds to the elevation map, and the third array D(k) receives an output for the DEM. The surface is projected onto the mesh THETA, so that a second distance R(sub k) from a second point on the mesh THETA to the detector can be found. From this, a height may be calculated, which permits the generation of a digital elevation map. Also, using sequential frames of flash LIDAR data, vehicle control is possible using an offset between successive frames.
Revealing topographic lineaments through IHS enhancement of DEM data. [Digital Elevation Model
NASA Technical Reports Server (NTRS)
Murdock, Gary
1990-01-01
Intensity-hue-saturation (IHS) processing of slope (dip), aspect (dip direction), and elevation to reveal subtle topographic lineaments which may not be obvious in the unprocessed data are used to enhance digital elevation model (DEM) data from northwestern Nevada. This IHS method of lineament identification was applied to a mosiac of 12 square degrees using a Cray Y-MP8/864. Square arrays from 3 x 3 to 31 x 31 points were tested as well as several different slope enhancements. When relatively few points are used to fit the plane, lineaments of various lengths are observed and a mechanism for lineament classification is described. An area encompassing the gold deposits of the Carlin trend and including the Rain in the southeast to Midas in the northwest is investigated in greater detail. The orientation and density of lineaments may be determined on the gently sloping pediment surface as well as in the more steeply sloping ranges.
Staudenmayer, Herman; Phillips, Scott
2007-01-01
Idiopathic environmental intolerance (IEI) is a descriptor for nonspecific complaints that are attributed to environmental exposure. The Minnesota Multiphasic Personality Inventory 2 (MMPI-2) was administered to 50 female and 20 male personal injury litigants alleging IEI. The validity scales indicated no overreporting of psychopathology. Half of the cases had elevated scores on validity scales suggesting defensiveness, and a large number had elevations on Fake Bad Scale (FBS) suggesting overreporting of unauthenticated symptoms. The average T-score profile for females was defined by the two-point code type 3-1 (Hysteria-Hypochondriasis), and the average T-score profile for males was defined by the three-point code type 3-1-2 (Hysteria, Hypochondriasis-Depression). On the content scales, Health Concerns (HEA) scale was significantly elevated. Idiopathic environmental intolerance litigants (a) are more defensive about expressing psychopathology, (b) express distress through somatization, (c) use a self-serving misrepresentation of exaggerated health concerns, and (d) may exaggerate unauthenticated symptoms suggesting malingering.
Application of glas laser altimetry to detect elevation changes in East Antarctica
NASA Astrophysics Data System (ADS)
Scaioni, M.; Tong, X.; Li, R.
2013-10-01
In this paper the use of ICESat/GLAS laser altimeter for estimating multi-temporal elevation changes on polar ice sheets is afforded. Due to non-overlapping laser spots during repeat passes, interpolation methods are required to make comparisons. After reviewing the main methods described in the literature (crossover point analysis, cross-track DEM projection, space-temporal regressions), the last one has been chosen for its capability of providing more elevation change rate measurements. The standard implementation of the space-temporal linear regression technique has been revisited and improved to better cope with outliers and to check the estimability of model's parameters. GLAS data over the PANDA route in East Antarctica have been used for testing. Obtained results have been quite meaningful from a physical point of view, confirming the trend reported by the literature of a constant snow accumulation in the area during the two past decades, unlike the most part of the continent that has been losing mass.
Characterization of Stormwater Runoff from a Light Rail Transit Area.
Sajjad, Raja Umer; Kim, Kyoung Jin; Memon, Sheeraz; Sukhbaatar, Chinzorig; Paule, Ma Cristina; Lee, Bum-Yeon; Lee, Chang-Hee
2015-09-01
The monitoring of stormwater runoff from Light Rail Transit (LRT) facilities is insufficient in many regions around the world. In this study, runoff quality and quantity were monitored during operational and non-operational LRT phases during 2010-2013. The event mean concentration (EMC) of pollutants showed little statistical variability during both phases. The antecedent dry day (ADD) showed a strong to moderate positive correlation with most pollutant EMCs during the non-operational phase. The existence and magnitude of the first flush from LRT runoff was found to be similar to those from other transportation land uses. The comparison of LRT runoff data with an adjacent road bridge site showed that the pollutant EMC and unit load were 2 to 9 times higher from the road bridge. It was suggested that LRT automated operation and the elevated track makes this transportation mode a viable option for the management of non-point source pollution.