Sample records for elevated soil temperature

  1. Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice.

    PubMed

    Bhattacharyya, P; Roy, K S; Neogi, S; Manna, M C; Adhya, T K; Rao, K S; Nayak, A K

    2013-10-01

    Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.

  2. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall.

    PubMed

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin

    2017-11-15

    Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1  year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1  year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.

  3. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    PubMed

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  4. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    PubMed Central

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-01-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070

  5. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    NASA Astrophysics Data System (ADS)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  6. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    PubMed

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL CARBON DENSITY FRACTIONS IN A DOUGLAS FIR MESOCOSM STUDY

    EPA Science Inventory

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  8. DOES SOIL CO2 EFFLUX ACCLIMATIZETO ELEVATED TEMPERATURE AND CO2 DURING LONG-TERM TREATMENT OF DOUGLAS-FIR SEEDLINGS?

    EPA Science Inventory

    We investigated the effects of elevated soil temperature and atmospheric CO2 efflux (SCE) during the third an fourth years of study. We hypothesized that elevated temperature would stimulate SCE, and elevated CO2 would also stimulate SCE with the stimulation being greater at hig...

  9. ELEVATED TEMPERATURE, SOIL MOISTURE AND SEASONALITY BUT NOT CO2 AFFECT CANOPY ASSIMILATION AND SYSTEM RESPIRATION IN SEEDLING DOUGLAS-FIR ECOSYSTEMS

    EPA Science Inventory

    We investigated the effects of elevated atmospheric CO2 and air temperature on C cycling in trees and associated soil system, focusing on canopy CO2 assimilation (Asys) and system CO2 loss through respiration (Rsys). We hypothesized that both elevated CO2 and elevated temperature...

  10. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau.

    PubMed

    Zhao, Kang; Kong, Weidong; Khan, Ajmal; Liu, Jinbo; Guo, Guangxia; Muhanmmad, Said; Zhang, Xianzhou; Dong, Xiaobin

    2017-09-01

    Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.

  11. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    PubMed

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  12. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    NASA Astrophysics Data System (ADS)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland Tropical Rainforest), a new soil warming experiment being undertaken on Barro Colorado Island, Panama, designed to improve our understanding of biogeochemical feedbacks to climate warming in lowland tropical forests.

  13. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J.

    2011-01-01

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  14. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    PubMed

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

  15. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    PubMed

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  16. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten Jr, Charles T; Classen, Aimee T; Norby, Richard J

    2009-01-01

    Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatmentsmore » with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.« less

  17. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Liang; Zhou, Hang; Link, Timothy E

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  18. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE PAGES

    Wei, Liang; Zhou, Hang; Link, Timothy E; ...

    2018-05-16

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  19. Warming and increased precipitation frequency on the Colorado Plateau: Implications for biological soil crusts and soil processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelikova TJ; Hosman DC; Grote EE

    2011-03-21

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundancemore » of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.« less

  20. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization.

    PubMed

    Achmon, Yigal; Harrold, Duff R; Claypool, Joshua T; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2016-02-01

    Pomaces from tomato paste and wine production are the most abundant fruit processing residues in California. These residues were examined as soil amendments for solarization to promote conditions conducive to soil disinfestation (biosolarization). Simulated biosolarization studies were performed in both aerobic and anaerobic soil environments and soil temperature elevation, pH, and evolution of CO2, H2 and CH4 gases were measured as metrics of soil microbial activity. Tomato pomace amendment induced conditions associated with soil pest inactivation, including elevation of soil temperature by up to 2°C for a duration of 4days under aerobic conditions and a reduction of soil pH from 6.5 to 4.68 under anaerobic conditions. White wine grape pomace amendment showed similar trends but to a lesser extent. Red wine grape pomace was generally less suitable for biosolarization due to significantly lower soil temperature elevations, reduced acidification relative to the other pomaces and induction of methanogenesis in the soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline.

    PubMed

    Li, Guixiang; Xu, Guorui; Shen, Congcong; Tang, Yong; Zhang, Yuxin; Ma, Keming

    2016-11-01

    Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil conditions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly decreasing pattern in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community.

  2. Effects of soil pyrene contamination on growth and phenolics in Norway spruce (Picea abies) are modified by elevated temperature and CO2.

    PubMed

    Zhang, Yaodan; Virjamo, Virpi; Du, Wenchao; Yin, Ying; Nissinen, Katri; Nybakken, Line; Guo, Hongyan; Julkunen-Tiitto, Riitta

    2018-05-01

    With the constant accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and increasing temperature and CO 2 levels, plants will inevitably be exposed to combined stress. Studies on the effects of such combined stresses are needed to develop mitigation and adaptation measures. Here, we investigated the effects of soil pyrene contamination (50 mg kg -1 ) on growth and phenolics of 1-year-old Norway spruce seedlings from five different origins in Finland at elevated temperature (+ 2 °C) and CO 2 (+ 360 ppm). Pyrene significantly decreased spruce height growth (0-48%), needle biomass (0-44%), stem biomass (0-43%), and total phenolic concentrations in needles (2-13%) and stems (1-19%) compared to control plants. Elevated temperature alone did not affect growth but led to lower concentrations of total phenolics in needles (5-29%) and stems (5-18%) in both soil treatments. By contrast, elevated CO 2 led to higher needle biomass (0-39%) in pyrene-spiked soils and higher concentrations of stem phenolics (0-18%) in pyrene-spiked and control soils compared to ambient treatments. The decrease in height growth and phenolic concentrations caused by pyrene was greater at elevated temperature, while elevated CO 2 only marginally modified the response. Seedlings from different origins showed different responses to the combined environmental stressors. The changes in growth and in the quantity and quality of phenolics in this study suggest that future climate changes will aggravate the negative influence of soil pyrene pollution on northern conifer forest ecosystems.

  3. A comparison of soil climate and biological activity along an elevation gradient in the eastern Mojave Desert

    USGS Publications Warehouse

    Amundson, R.G.; Chadwick, O.A.; Sowers, J.M.

    1989-01-01

    Soil temperature, moisture, and CO2 were monitored at four sites along an elevation transect in the eastern Mojave Desert from January to October, 1987. Climate appeared to be the major factor controlling CO2 partial pressures, primarily through its influence of rates of biological reactions, vegetation densities, and organic matter production. With increasing elevation, and increasing actual evapotranspiration, the organic C, plant density, and the CO2 content of the soils increased. Between January and May, soil CO2 concentrations at a given site were closely related to variations in soil temperature. In July and October, temperatures had little effect on CO2, presumably due to low soil moisture levels. Up to 75% of litter placed in the field in March was lost by October whereas, for the 3 lower elevations, less than 10% of the litter placed in the field in April was lost through decomposition processes. ?? 1989 Springer-Verlag.

  4. Ecological effects of feral biofuel crops in constructed oak ...

    EPA Pesticide Factsheets

    The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesocosm held three tubs. One had six native plant species; one had five native species with the annual crop Sorghum bicolor and one had five native species along with the weedy perennial Sorghum halepense. The experimental treatments were ambient (control), elevated temperature, drought, or a combination of elevated temperature and drought. Total aboveground biomass of the community was greatest in the control and drought treatments, lowest with elevated temperature + drought, and intermediate in high temperature treatments (P<0.0001). Sorghum species produced significantly less biomass than the native grass species (P< 0.05). S. bicolor seed biomass was greatest under elevated temperature and lowest in the elevated temperature + drought treatment (P=0.0002). Neither of the Sorghum species significantly affected active soil bacterial biomass. Active bacterial biomass was lowest in the drought and elevated temperature and drought treatments (P<0.05). Active soil fungal biomass was highest in the tubs containing S. bicolor. Percent total carbon in the soil increased between 2010 and 2011 (P=0.0054); it was lowest in the elevated temperature and drought mesocosms (P<0.05). Longer term studi

  5. Dynamics of soil available phosphorus and its impact factors under simulated climate change in typical farmland of Taihu Lake region, China.

    PubMed

    Yu, Kaihao; Chen, Xiaomin; Pan, Genxing; Zhang, Xuhui; Chen, Can

    2016-02-01

    Global climate change affects the availability of soil nutrients, thereby influencing crop productivity. This research was conducted to investigate the effects of elevated CO2, elevated temperature, and the interaction of the elevated CO2 and temperature on the soil available phosphorus (P) of a paddy-wheat rotation in the Taihu Lake region, China. Winter wheat (Triticum aestivum L.) was cultivated during the study period from 2011 to 2014 at two CO2 levels (350 μL•L(-1) ambient and 500 μL•L(-1) elevated by 150 μL•L(-1)) and two temperatures (ambient and 2 °C above the ambient). Soil available P content increased at the first season and decreased at the last season during the three wheat growing seasons. Soil available P content showed seasonal variation, whereas dynamic changes were not significant within each growing season. Soil available P content had no obvious trends under different treatments. But for the elevated temperature, CO2, and their combination treatments, soil available P content decreased in a long time period. During the period of wheat ripening stage, significant positive correlations were found between soil available P content and saturated hydraulic conductivity (Ks) and organic matter, but significant negative correlations with soil clay content and pH value; the correlation coefficients were 0.9400 (p < 0.01), 0.9942 (p < 0.01), -0.9383 (p < 0.01), and -0.6403 (p < 0.05), respectively. Therefore, Ks, organic matter, soil clay, and pH were the major impact factors on soil available P content. These results can provide a basis for predicting the trend of soil available P variation, as well as guidance for managing the soil nutrients and best fertilization practices in the future climate change scenario.

  6. A MIXED MODEL ANALYSIS OF SOIL CO2 EFFLUX AND NIGHT-TIME RESPIRATION RESPONSES TO ELEVATED CO2 AND TEMPERATURE

    EPA Science Inventory

    Abstract: We investigated the effects of elevated soil temperature and atmospheric CO2 on soil CO2 efflux and system respiration responses. The study was conducted in sun-lit controlled-environment chambers using two-year-old Douglas-fir seedlings grown in reconstructed litter-so...

  7. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China.

    PubMed

    Wang, Guobing; Zhou, Yan; Xu, Xia; Ruan, Honghua; Wang, Jiashe

    2013-01-01

    Soil organic carbon (SOC) actively participates in the global carbon (C) cycle. Despite much research, however, our understanding of the temperature sensitivity of soil organic carbon (SOC) mineralization is still very limited. To investigate the responses of SOC mineralization to temperature, we sampled surface soils (0-10 cm) from evergreen broad-leaf forest (EBF), coniferous forest (CF), sub-alpine dwarf forest (SDF), and alpine meadow (AM) along an elevational gradient in the Wuyi Mountains, China. The soil samples were incubated at 5, 15, 25, and 35°C with constant soil moisture for 360 days. The temperature sensitivity of SOC mineralization (Q(10)) was calculated by comparing the time needed to mineralize the same amount of C at any two adjacent incubation temperatures. Results showed that the rates of SOC mineralization and the cumulative SOC mineralized during the entire incubation significantly increased with increasing incubation temperatures across the four sites. With the increasing extent of SOC being mineralized (increasing incubation time), the Q(10) values increased. Moreover, we found that both the elevational gradient and incubation temperature intervals significantly impacted Q(10) values. Q(10) values of the labile and recalcitrant organic C linearly increased with elevation. For the 5-15, 15-25, and 25-35°C intervals, surprisingly, the overall Q(10) values for the labile C did not decrease as the recalcitrant C did. Generally, our results suggest that subtropical forest soils may release more carbon than expected in a warmer climate.

  8. Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape.

    PubMed

    Vincent, Andrea G; Sundqvist, Maja K; Wardle, David A; Giesler, Reiner

    2014-01-01

    Phosphorus (P) is an important macronutrient in arctic and subarctic tundra and its bioavailability is regulated by the mineralization of organic P. Temperature is likely to be an important control on P bioavailability, although effects may differ across contrasting plant communities with different soil properties. We used an elevational gradient in northern Sweden that included both heath and meadow vegetation types at all elevations to study the effects of temperature, soil P sorption capacity and oxalate-extractable aluminium (Alox) and iron (Feox) on the concentration of different soil P fractions. We hypothesized that the concentration of labile P fractions would decrease with increasing elevation (and thus declining temperature), but would be lower in meadow than in heath, given that N to P ratios in meadow foliage are higher. As expected, labile P in the form of Resin-P declined sharply with elevation for both vegetation types. Meadow soils did not have lower concentrations of Resin-P than heath soils, but they did have 2-fold and 1.5-fold higher concentrations of NaOH-extractable organic P and Residual P, respectively. Further, meadow soils had 3-fold higher concentrations of Alox + Feox and a 20% higher P sorption index than did heath soils. Additionally, Resin-P expressed as a proportion of total soil P for the meadow was on average half that in the heath. Declining Resin-P concentrations with elevation were best explained by an associated 2.5-3.0 °C decline in temperature. In contrast, the lower P availability in meadow relative to heath soils may be associated with impaired organic P mineralization, as indicated by a higher accumulation of organic P and P sorption capacity. Our results indicate that predicted temperature increases in the arctic over the next century may influence P availability and biogeochemistry, with consequences for key ecosystem processes limited by P, such as primary productivity.

  9. Bioavailable Soil Phosphorus Decreases with Increasing Elevation in a Subarctic Tundra Landscape

    PubMed Central

    Vincent, Andrea G.; Sundqvist, Maja K.; Wardle, David A.; Giesler, Reiner

    2014-01-01

    Phosphorus (P) is an important macronutrient in arctic and subarctic tundra and its bioavailability is regulated by the mineralization of organic P. Temperature is likely to be an important control on P bioavailability, although effects may differ across contrasting plant communities with different soil properties. We used an elevational gradient in northern Sweden that included both heath and meadow vegetation types at all elevations to study the effects of temperature, soil P sorption capacity and oxalate-extractable aluminium (Alox) and iron (Feox) on the concentration of different soil P fractions. We hypothesized that the concentration of labile P fractions would decrease with increasing elevation (and thus declining temperature), but would be lower in meadow than in heath, given that N to P ratios in meadow foliage are higher. As expected, labile P in the form of Resin-P declined sharply with elevation for both vegetation types. Meadow soils did not have lower concentrations of Resin-P than heath soils, but they did have 2–fold and 1.5–fold higher concentrations of NaOH-extractable organic P and Residual P, respectively. Further, meadow soils had 3-fold higher concentrations of Alox + Feox and a 20% higher P sorption index than did heath soils. Additionally, Resin-P expressed as a proportion of total soil P for the meadow was on average half that in the heath. Declining Resin-P concentrations with elevation were best explained by an associated 2.5–3.0°C decline in temperature. In contrast, the lower P availability in meadow relative to heath soils may be associated with impaired organic P mineralization, as indicated by a higher accumulation of organic P and P sorption capacity. Our results indicate that predicted temperature increases in the arctic over the next century may influence P availability and biogeochemistry, with consequences for key ecosystem processes limited by P, such as primary productivity. PMID:24676035

  10. [Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China].

    PubMed

    Pan, Xin-li; Lin, Bo; Liu, Qing

    2008-08-01

    To investigate the effects of elevated temperature on the soil organic carbon content, soil respiration rate, and soil enzyme activities in subalpine Picea asperata plantations in western Sichuan Province of China, a simulation study was conducted in situ with open-top chambers from November 2005 to July 2007. The results showed that under elevated temperature, the mean air temperature and soil temperature were 0.42 degrees C and 0.25 degrees C higher than the control, respectively. In the first and the second year, the increased temperature had somewhat decreasing effects on the soil organic carbon and the C/N ratio at the soil depths of 0-10 cm and 10-20 cm. In the first year the soil organic carbon and the C/N ratio in 0-10 cm soil layer decreased by 8.69%, and 8.52%, respectively; but in the second year, the decrements were lesser. Soil respiration rate was significantly enhanced in the first year of warming, but had no significant difference with the control in the second year. In the first year of warming, the activities of soil invertase, polyphenol oxidase, catalase, protease, and urease increased, and the invertase and polyphenol oxidase activities in 0-10 cm soil layer were significantly higher than the control. In the second year of warming, the activities of invertase, protease and urease still had an increase, but those of catalase and polyphenol oxidase had a downtrend, compared with the control.

  11. A STABLE ISOTOPE ANALYSIS OF SOIL CARBON DENSITY FRACTIONS FOLLOWING 4 YEARS OF CONTINUOUS CLIMATE CHANGE EXPOSURE IN A DOUGLAS FIR MESOCOSM STUDY

    EPA Science Inventory

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  12. Local plant adaptation across a subarctic elevational gradient

    PubMed Central

    Kardol, Paul; De Long, Jonathan R.; Wardle, David A.

    2014-01-01

    Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3°C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature. PMID:26064553

  13. Temperature and Soil Moisture Regimes In and Adjacent to the Fernow Experimental Forest

    Treesearch

    Jerry T. Crews; Linton Wright

    2000-01-01

    The effects of elevation, aspect, ambient air temperature, and soil moisture on soil temperature were examined in and adjacent to the Fernow Experimental Forest in West Virginia to determine the extent of frigid soils. The mean annual temperature of frigid soils ranges from 1? to 7?C at a depth of 50 cm; the difference between mean winter and mean summer temperatures...

  14. Microbial response of an acid forest soil to experimental soil warming

    Treesearch

    S.S. Arnold; I.J. Fernandez; L.E. Rustad; L.M. Zibilske

    1999-01-01

    Effects of increased soil temperature on soil microbial biomass and dehydrogenase activity were examined on organic (O) horizon material in a low-elevation spruce-fir ecosystem. Soil temperature was maintained at 5 °C above ambient during the growing season in the experimental plots, and soil temperature, moisture, microbial biomass, and dehydrogenase activity were...

  15. A hot future for European droughts

    NASA Astrophysics Data System (ADS)

    Teuling, Adriaan J.

    2018-05-01

    Low soil moisture conditions can induce drought but also elevate temperatures. Detailed modelling of the drought-temperature link now shows that rising global temperature will bring drier soils and higher heatwave temperatures in Europe.

  16. Increasing soil temperature in a northern hardwood forest: effects on elemental dynamics and primary productivity

    Treesearch

    Patrick J. McHale; Myron J. Mitchell; Dudley J. Raynal; Francis P. Bowles

    1996-01-01

    To investigate the effects of elevated soil temperatures on a forest ecosystem, heating cables were buried at a depth of 5 cm within the forest floor of a northern hardwood forest at the Huntington Wildlife Forest (Adirondack Mountains, New York). Temperature was elevated 2.5, 5.0 and 7.5?C above ambient, during May - September in both 1993 and 1994. Various aspects of...

  17. Mixture and method for simulating soiling and weathering of surfaces

    DOEpatents

    Sleiman, Mohamad; Kirchstetter, Thomas; Destaillats, Hugo; Levinson, Ronnen; Berdahl, Paul; Akbari, Hashem

    2018-01-02

    This disclosure provides systems, methods, and apparatus related to simulated soiling and weathering of materials. In one aspect, a soiling mixture may include an aqueous suspension of various amounts of salt, soot, dust, and humic acid. In another aspect, a method may include weathering a sample of material in a first exposure of the sample to ultraviolet light, water vapor, and elevated temperatures, depositing a soiling mixture on the sample, and weathering the sample in a second exposure of the sample to ultraviolet light, water vapor, and elevated temperatures.

  18. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil

    PubMed Central

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-01-01

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710

  19. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    PubMed

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  20. Evaluating the Impact of Global Warming on Water Balance of Maize by High-precision Controlled Experiment and MLCan model

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Song, X.; Kumar, P.; Wu, Y.; Woo, D.; Le, P. V.; Ma, C.

    2016-12-01

    Increased temperature affects the agricultural hydrologic cycle not only by changing precipitation levels, evapotranspiration and the magnitude and timing of run-off, but also by impacting water flows and soil water dynamics. Accurate prediction of hydrologic change under global warming requires high-precision experiment and mathematical model to determine water interaction between interfaces in the soil-plant-atmosphere continuum. In this study, the weighting lysimeter and chamber were coupled to monitor water balance component dynamics of maize under controlled ambient temperature and elevated temperature of 2°C conditions. A mechanistic multilayer canopy-soil-root system model (MLCan) was used to predict hydrologic fluxes variation under different elevated temperature scenarios after calibration with experimental results. The results showed that maize growth period reduced 8 days under increased temperature of 2°C. The mean daily evapotranspiration, soil water storage change, and drainage was 2.66 mm, -2.75 mm, and 0.22 mm under controlled temperature condition, respectively. When temperature was elevated by 2°C, the average daily ET for maize significantly increased about 6.7% (p<0.05). However, there were non-significant impacts of increased temperature on the daily soil water storage change and drainage (p>0.05). Quantification of changes in water balance components induced by temperature increase for maize is critical for optimizing irrigation water management practices and improving water use efficiency.

  1. Effects of slope aspect and site elevation on seasonal soil carbon dynamics in a forest catchment in the Austrian Limestone Alps

    NASA Astrophysics Data System (ADS)

    Kobler, Johannes; Zehetgruber, Bernhard; Jandl, Robert; Dirnböck, Thomas; Schindlbacher, Andreas

    2017-04-01

    Own to the complexity of landscape morphology, mountainous landscapes are characterized by substantial changes of site parameters (i.e. elevation, slope, aspect) within short distances. As these site parameters affect the spatial-temporal dynamics of landscape climate and therefore the spatial patterns of forest carbon (C) distribution, they pose a substantial impact on landscape-related soil C dynamics. Aspect and elevation form natural temperature gradients and thereby can be used as a surrogate to infer to potential climate change effects on forest C. We aimed at studying how slope aspect affected soil respiration, soil C stocks, tree increment and litter production along two elevation gradients in the Zöbelboden catchment, northern limestone Alps, Austria during 2015 and 2016. A preliminary assessment showed that soil respiration was significantly higher at the west facing slope across all elevations. Soil temperature was only slightly higher at the west facing slope, and warmer soil only partly explained the large difference in soil respiration between east and west facing slopes. Aspect had no clear effect on soil moisture, which seemed to be strongly affected by stocking density at the different forest sites. The dense grassy ground vegetation at some of the sites further seems to play a key role in determining soil respiration rates and litter input. A detailed analysis and C-budgets along the elevation gradients will be presented at the conference.

  2. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    PubMed Central

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg−1 dry weight soil, dws season−1 to 112.2 mg kg−1 dws season−1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change. PMID:27090814

  3. ELEVATED CO2 AND ELEVATED TEMPERATURE HAVE NO EFFECT ON DOUGLAS-FIR FINE-ROOT DYNAMICS IN NITROGEN-POOR SOIL

    EPA Science Inventory

    Here, we investigate fine-root production, mortality and standing crop of Douglas-fir (Pseudotsuga menziesii) seedlings exposed to elevated atmospheric CO2 and elevated air temperature. We hypothesized that these treatments would increase fine-root production, but that mortality ...

  4. Climate change effects on soil microarthropod abundance and community structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J

    2011-01-01

    Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but notmore » in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil microarthropod abundance and community composition may have important impacts on ecosystem functions, such as decomposition, under future climatic change.« less

  5. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature.

    PubMed

    Arend, M; Brem, A; Kuster, T M; Günthardt-Goerg, M S

    2013-01-01

    Oaks are commonly considered as drought- and heat-tolerant trees that might benefit from a warmer and drier climate. Their tolerance to drought has been frequently studied in the past, whereas studies dealing with elevated temperature or its combination with drought are very limited in number. In this study we investigated seasonal photosynthetic patterns in three European oak species (Quercus robur, Q. petraea, Q. pubescens) exposed in lysimeter-based open-top chambers (OTC) to elevated daytime temperature, drought and their combination. Stomatal and non-stomatal traits of photosynthesis were followed over an entire growing season and related to changes in daytime temperature, soil moisture and pre-dawn leaf water potential (Ψ(PD) ). Elevated daytime temperature enhanced net photosynthesis (P(N) ) in a season-dependent manner, with higher mid-summer rates than in controls exposed to ambient temperature. Drought imposed in early and mid-summer reduced the soil moisture content and caused a gradual decline in Ψ(PD) , stomatal conductance (g(S) ) and P(N) . Drought effects on Ψ(PD) and P(N) were exacerbated when drought was combined with elevated daytime temperature. In general, P(N) tended to be more affected by low soil moisture content or low Ψ(PD) in Q. robur than in Q. petraea and Q. pubescens. Non-stomatal limitations may have contributed to the drought-induced decline of P(N) in Q. robur, as indicated by a down-regulation of PSII photochemistry (F(V) /F(M) ) and decreased chlorophyll content. Taken together, our findings show that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Impact of elevated CO2, water table, and temperature changes on CO2 and CH4 fluxes from arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter

    2015-04-01

    Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.

  7. Effect of biochar application and soil temperature on characteristics of organic matter associated with aggregate-size and density fractions

    NASA Astrophysics Data System (ADS)

    Kaiser, Michael; Grunwald, Dennis; Marhan, Sven; Poll, Christian; Bamminger, Chris; Ludwig, Bernard

    2016-04-01

    Potential increases in soil temperature due to climate change might result in intensified soil organic matter (SOM) decomposition and thus higher CO2 emissions. Management options to increase and stabilize SOM include the application of biochar. However, the effects of biochar amendments under elevated soil temperatures on SOM dynamics are largely unknown. The objective of this study was to analyze the effect of biochar application and elevated soil temperature on the amount and composition of OM associated with fractions of different turnover kinetics. Samples were taken from four treatments of the Hohenheim Climate Change Experiment with the factors temperature (ambient or elevated by 2.5 °C in 4 cm depth, six years before sampling) and biochar (control and 30 t / ha Miscanthus pyrolysis biochar, one year before sampling) in two depths (0 - 5 and 5 - 15 cm). Basal respiration and microbial biomass C were analyzed within an incubation experiment. Aggregate size-fractions were separated by wet-sieving and the free light, occluded light (oLF), and heavy fractions were isolated by density fractionation. All fractions were analyzed for organic C and δ13C as well as by infrared spectroscopy. Preliminary data suggest that biochar significantly increased basal respiration and that the microbial biomass C was significantly affected by elevated temperature. No biochar-C was found in the microbial biomass. Biochar and elevated temperature had only minor effects on the organic C associated with aggregate-size classes, although biochar was incorporated into all fractions already after one year of application. Biochar application significantly increased the organic C associated with oLF. In most samples affected by biochar, the proportion of C=O groups was significantly increased. The results suggest that already after one year, biochar-mineral interactions were formed leading to an aggregate occlusion of applied biochar. At least in the short-term, the effect of biochar on the amount and composition of OM associated with different aggregate-size and density fractions seem to be independent from soil temperature.

  8. Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient

    USGS Publications Warehouse

    Wu, Zhuoting; Koch, George W.; Dijkstra, Paul; Bowker, Matthew A.; Hungate, Bruce A.

    2011-01-01

    Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant–soil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.

  9. Planetary quarantine program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A quantitative means was developed to investigate the sensitivity of current spacecraft sterilization plans to variations in D-values. A quantitative expression was derived to represent the distribution of D-values among a population of naturally occurring organisms. An investigation was made of (1) the inactivation of both Bacillus subtilis var. niger spores and Cape Kennedy soil spores by gamma-radiation at room temperature in a nitrogen environment, and (2) the thermoradiation resistance of Cape Kennedy soil spores at elevated temperatures below 125 C. The relation between standard survival experiments with bacterial spores in soils and results obtained on spacecraft surfaces is discussed. Sporocidal properties of aqueous formaldehyde can be increased by elevating the temperature.

  10. Soils characterisation along ecological forest zones in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg

    2017-04-01

    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead of abrupt changes. We interpret these as manifestations of changes of temperature and precipitation with elevation which also drives forest zonation in these least anthropogenically influenced forest ecosystems. The elevational distribution of forest zones is correlated with the distribution of soil types and thus also reflects soil characteristics.

  11. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA

    Treesearch

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    The effect of soil warming on CO2 and CH4 flux from a spruce-fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May-November) in replicated 15 × 15-m plots using electric cables buried 1-2...

  12. Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop.

    PubMed

    Pramanik, P; Chakrabarti, Bidisha; Bhatia, Arti; Singh, S D; Maity, A; Aggarwal, P; Krishnan, P

    2018-03-14

    An attempt has been made to study the effect of elevated temperature on soil hydrothermal regimes and winter wheat growth under simulated warming in temperature gradient tunnel (TGT). Results showed that bulk density (BDs) of 0, 0.9, and 2.5 °C were significantly different whereas BDs of 2.8 and 3.5 °C were not significantly different. Water filled pore space (WFPS) was maximum at 3.5 °C temperature rise and varied between 43.80 and 98.55%. Soil surface temperature (ST) at different dates of sowing increased with rise in sensor temperature and highest ST was observed at S5 sensors (3.5 °C temperature rise). Temperature and its difference were high for the top soil, and were stable for the deep soil. Photosynthesis rate (μmol CO 2 m -2  s -1 ) of wheat was lower at higher temperature in different growth stages of wheat. In wheat, stomatal conductance declined from 0.67 to 0.44 mol m -2  s -1 with temperature rise. Stomatal conductance decreased with increase in soil temperature and gravimetric soil moisture content (SWC). In TGT, 0 °C temperature rise showed highest root weight density (RWD) (5.95 mg cm -3 ); whereas, 2.8 and 3.5 °C showed lowest RWD (4.90 mg cm -3 ). Harvest index was maximum (0.37) with 0 °C temperature rise, and it decreased with increase in temperature, which indicated that both grain and shoot biomass decreased with increase in temperature. Intensive studies are needed to quantify the soil hydrothermal regimes inside TGT along with the crop growth parameters.

  13. Hydrothermal deformation of granular quartz sand

    NASA Astrophysics Data System (ADS)

    Karner, Stephen L.; Kronenberg, Andreas K.; Chester, Frederick M.; Chester, Judith S.; Hajash, Andrew

    2008-05-01

    Isotropic and triaxial compression experiments were performed on porous aggregates of St Peter quartz sand to explore the influence of temperature (to 225°C). During isotropic stressing, samples loaded at elevated temperature exhibit the same sigmoidal stress-strain curves and non-linear acoustic emission rates as have previously been observed from room temperature studies on sands, sandstones, and soils. However, results from our hydrothermal experiments show that the critical effective pressure (P*) associated with the onset of significant pore collapse and pervasive cataclastic flow is lower at increased temperature. Samples subjected to triaxial loading at elevated temperature show yield behavior resembling that observed from room temperature studies on granular rocks and soils. When considered in terms of distortional and mean stresses, the yield strength data for a given temperature define an elliptical envelope consistent with critical state and CAP models from soil mechanics. For the conditions we tested, triaxial yield data at low effective pressure are essentially temperature-insensitive whereas yield levels at high effective pressure are lowered as a function of elevated temperature. We interpret our yield data in a manner consistent with Arrhenius behavior expected for thermally assisted subcritical crack growth. Taken together, our results indicate that increased stresses and temperatures associated with subsurface burial will significantly alter the yield strength of deforming granular media in systematic and predictable ways.

  14. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.

    PubMed

    Bauweraerts, Ingvar; Wertin, Timothy M; Ameye, Maarten; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2013-02-01

    The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2 ] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2 ]. Low soil moisture significantly decreased net photosynthesis (Anet ) and biomass in all [CO2 ] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2 ]. Although this reduction was relatively greater under elevated [CO2 ], Anet values during this heat wave were still 34% higher than under ambient [CO2 ]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2 ] and soil moisture conditions. © 2012 Blackwell Publishing Ltd.

  15. Modeling soil respiration and variations of source components using a multi-factor global climate change experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiongwen; Post, Wilfred M; Norby, Richard J

    2011-01-01

    Soil respiration is an important component of the global carbon cycle and is highly responsive to changes in soil temperature and moisture. Accurate prediction of soil respiration and its changes under future climatic conditions requires a clear understanding of the processes involved. In spite of this, most current empirical soil respiration models incorporate just few of the underlying mechanisms that may influence its response. In this study, a new partial process-based component model built on source components of soil respiration was tested using data collected from a multi-factor climate change experiment that manipulates CO2 concentrations, temperature and precipitation. These resultsmore » were then compared to results generated using several other established models. The component model we tested performed well across different treatments of global climate change. In contrast, some other models, which worked well predicting ambient environmental conditions, were unable to predict the changes under different climate change treatments. Based on the component model, the relative proportions of heterotrophic respiration (Rh) in the total soil respiration at different treatments varied from 0.33 to 0.85. There is a significant increase in the proportion of Rh under the elevated atmospheric CO2 concentration in comparison ambient conditions. The dry treatment resulted in higher proportion of Rh at elevated CO2 and ambient T than under elevated CO2 and elevated T. Also, the ratios between root growth and root maintenance respiration varied across different treatments. Neither increased temperature nor elevated atmospheric CO2 changed Q10 values significantly, while the average Q10 value at wet sites was significantly higher than it at dry sites. There was a higher possibility of increased soil respiration under drying relative to wetting conditions across all treatments based on monthly data, indicating that soil respiration may also be related to soil moisture at previous time periods. Our results reveal that the extent, time delay and contribution of different source components need to be included into mechanistic/processes-based soil respiration models at corresponding scale.« less

  16. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. © 2014 John Wiley & Sons Ltd.

  17. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  18. Methane Cycling in a Warming Wetland

    NASA Astrophysics Data System (ADS)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The ratio of CO2:CH4 decreased with increasing temperature in surface samples from both sites, indicating that anaerobic respiration in surface soil may become increasingly methanogenic with warming. In contrast, the rooting zone and deep soil samples showed the opposite trend, again suggesting that the soil profile will not respond consistently to warming.

  19. Diversity and Spatial-Temporal Distribution of Soil Macrofauna Communities Along Elevation in the Changbai Mountain, China.

    PubMed

    Yin, Xiuqin; Qiu, Lili; Jiang, Yunfeng; Wang, Yeqiao

    2017-06-01

    The understanding of patterns of vertical variation and diversity of flora and fauna along elevational change has been well established over the past century. However, it is unclear whether there is an elevational distribution pattern for soil fauna. This study revealed the diversity and spatial-temporal distribution of soil macrofauna communities in different vegetation zones from forest to alpine tundra along elevation of the Changbai Mountain, China. The abundance, richness, and Shannon-Wiener diversity index of soil macrofauna communities were compared in four distinguished vegetation zones including the coniferous and broadleaved mixed forest zone, the coniferous forest zone, the subalpine dwarf birch (Betula ermanii) forest zone, and the alpine tundra zone. Soil macrofauna were extracted in May, July, and September of 2009. In each season, the abundance and richness of the soil macrofauna decreased with the ascending elevation. The Shannon-Wiener diversity indices of the soil macrofauna were higher in the vegetation zones of lower elevation than of higher elevation. Significant differences were observed in the abundance, richness, and Shannon-Wiener diversity index for the studied vegetation zones. Soil macrofauna congregated mainly to the litter layer in the low-elevation areas and in the 0-5 cm soil layer of the higher elevation areas. The results emphasized that the diversity of soil macrofauna communities decreased as the elevation increased and possess the distinct characteristics of zonation in the mountain ecosystem. The diversity and distribution of soil macrofauna communities were influenced by mean annual precipitation, altitude, annual radiation quantity, and mean annual temperature. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Soil properties determine the elevational patterns of base cations and micronutrients in the plant-soil system up to the upper limits of trees and shrubs

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhen; Wang, Xue; Jiang, Yong; Cerdà, Artemi; Yin, Jinfei; Liu, Heyong; Feng, Xue; Shi, Zhan; Dijkstra, Feike A.; Li, Mai-He

    2018-03-01

    To understand whether base cations and micronutrients in the plant-soil system change with elevation, we investigated the patterns of base cations and micronutrients in both soils and plant tissues along three elevational gradients in three climate zones in China. Base cations (Ca, Mg, and K) and micronutrients (Fe, Mn, and Zn) were determined in soils, trees, and shrubs growing at lower and middle elevations as well as at their upper limits on Balang (subtropical, SW China), Qilian (dry temperate, NW China), and Changbai (wet temperate, NE China) mountains. No consistent elevational patterns were found for base cation and micronutrient concentrations in both soils and plant tissues (leaves, roots, shoots, and stem sapwood). Soil pH, soil organic carbon (SOC), total soil nitrogen (TN), the SOC to TN ratio (C : N), and soil extractable nitrogen (NO3- and NH4+) determined the elevational patterns of soil exchangeable Ca and Mg and available Fe, Mn, and Zn. However, the controlling role of soil pH and SOC was not universal as revealed by their weak correlations with soil base cations under tree canopies at the wet temperate mountain and with micronutrients under both tree and shrub canopies at the dry temperate mountain. In most cases, soil base cation and micronutrient availabilities played fundamental roles in determining the base cation and micronutrient concentrations in plant tissues. An exception existed for the decoupling of leaf K and Fe with their availabilities in the soil. Our results highlight the importance of soil physicochemical properties (mainly SOC, C : N, and pH) rather than elevation (i.e., canopy cover and environmental factors, especially temperature), in determining base cation and micronutrient availabilities in soils and subsequently their concentrations in plant tissues.

  1. Soil CO2 efflux from two mountain forests in the eastern Himalayas, Bhutan: components and controls

    NASA Astrophysics Data System (ADS)

    Wangdi, Norbu; Mayer, Mathias; Prasad Nirola, Mani; Zangmo, Norbu; Orong, Karma; Uddin Ahmed, Iftekhar; Darabant, Andras; Jandl, Robert; Gratzer, Georg; Schindlbacher, Andreas

    2017-01-01

    The biogeochemistry of mountain forests in the Hindu Kush Himalaya range is poorly studied, although climate change is expected to disproportionally affect the region. We measured the soil CO2 efflux (Rs) at a high-elevation (3260 m) mixed forest and a lower-elevation (2460 m) broadleaf forest in Bhutan, eastern Himalayas, during 2015. Trenching was applied to estimate the contribution of autotrophic (Ra) and heterotrophic (Rh) soil respiration. The temperature (Q10) and the moisture sensitivities of Rh were determined under controlled laboratory conditions and were used to model Rh in the field. The higher-elevation mixed forest had a higher standing tree stock, reflected in higher soil C stocks and basal soil respiration. Annual Rs was similar between the two forest sites (14.5 ± 1.2 t C ha-1 for broadleaf; 12.8 ± 1.0 t C ha-1 for mixed). Modelled annual contribution of Rh was ˜ 65 % of Rs at both sites with a higher heterotrophic contribution during winter and lower contribution during the monsoon season. Rh, estimated from trenching, was in the range of modelled Rh but showed higher temporal variability. The measured temperature sensitivity of Rh was similar at the mixed and broadleaf forest sites (Q10 2.2-2.3) under intermediate soil moisture but decreased (Q10 1.5 at both sites) in dry soil. Rs closely followed the annual course of field soil temperature at both sites. Covariation between soil temperature and moisture (cold dry winters and warm wet summers) was likely the main cause for this close relationship. Under the prevailing weather conditions, a simple temperature-driven model was able to explain more than 90 % of the temporal variation in Rs. A longer time series and/or experimental climate manipulations are required to understand the effects of eventually occurring climate extremes such as monsoon failures.

  2. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  3. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL C AND N: RESULTS OF A DOUGLAS FIR MESOCOSM STUDY

    EPA Science Inventory

    We conducted a 4-year study on the effects of elevated CO2 and elevated air temperature on Douglas fir seedlings growing under controlled exposure conditions in outdoor sun-lit mesocosms. 1+1 seedlings were planted in mesocosms in Corvallis, OR in the spring of 1993 in a reconstr...

  4. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    USGS Publications Warehouse

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  5. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    PubMed

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  6. Elevation alters ecosystem properties across temperate treelines globally

    NASA Astrophysics Data System (ADS)

    Mayor, Jordan R.; Sanders, Nathan J.; Classen, Aimée T.; Bardgett, Richard D.; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K.; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'Ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L.; Wardle, David A.

    2017-01-01

    Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.

  7. Elevation alters ecosystem properties across temperate treelines globally.

    PubMed

    Mayor, Jordan R; Sanders, Nathan J; Classen, Aimée T; Bardgett, Richard D; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L; Wardle, David A

    2017-02-02

    Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.

  8. A classification of forest environments in the south Umpqua Basin.

    Treesearch

    Don Minore

    1972-01-01

    Forest environments are classified by elevation, temperature, moisture, potential solar radiation, and soil type. Broad elevation classes are derived from topographic maps or altimeter measurements, measured temperature and moisture conditions are related to vegetation by using plant indicator species (illustrated), and tabular values are employed in estimating...

  9. Chemistry and Mineralogy of Antarctica Dry Valley Soils: Implications for Mars

    NASA Technical Reports Server (NTRS)

    Quinn, J. E.; Golden, D. C.; Graff, T. G.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; hide

    2011-01-01

    The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation almost always occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20 C. The ADV soils have previously been categorized into three soil moisture regimes: subxerous, xerous and ultraxerous, based on elevation and climate influences. The subxerous regime is predominately a coastal zone soil, and has the highest average temperature and precipitation, while the ultraxerous regime occurs at high elevation (>1000 m) and have very low temperature and precipitation. The amounts and types of salts present in the soils vary between regions. The nature, origin and significance of salts in the ADV have been previously investigated. Substantial work has focused on soil formation in the ADVs, however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented. The objective of this study was to characterize the chemistry and mineralogy, including the alteration mineralogy, of soils from two sites, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. The style of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars.

  10. Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil

    PubMed Central

    Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith

    2014-01-01

    The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22–0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5–3.4) and the mineral soil (2.1–2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming. PMID:25270905

  11. The clumped isotope geothermometer in soil and paleosol carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47) from long sequences of deeply buried (⩽5 km) paleosol carbonate in the Himalayan foreland in order to evaluate potential diagenetic resetting of clumped isotope composition. We found that paleosol carbonate faithfully records plausible soil T°C(47) down to 2.5-4 km burial depth, or ˜90-125 °C. Deeper than this and above this temperature, T°C(47) in paleosol carbonate is reset to temperatures >40 °C. We observe ˜40 °C as the upper limit for T°C(47) in modern soils from soil depths >25 cm, and therefore that T°C(47) >40 °C obtained from ancient soil carbonate indicates substantially warmer climate regimes compared to the present, or non-primary temperatures produced by resetting during diagenesis. If representative, this limits the use of T°C(47) to reconstruct ancient surface temperature to modestly buried (<3-4 km) paleosol carbonates. Despite diagenetic resetting of Δ47 values, δ18O and δ13C values of the same deeply buried paleosol carbonate appear unaltered. We conclude that solid-state reordering or recrystallization of clumping of carbon and oxygen isotopes can occur in the absence of open-system exchange of paleosol carbonate with significant quantities of water or other phases.

  12. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged

    USGS Publications Warehouse

    Wertin, Timothy M.; Belnap, Jayne; Reed, Sasha C.

    2016-01-01

    1. Drylands represent our planet's largest terrestrial biome and, due to their extensive area, maintain large stocks of carbon (C). Accordingly, understanding how dryland C cycling will respond to climate change is imperative for accurately forecasting global C cycling and future climate. However, it remains difficult to predict how increased temperature will affect dryland C cycling, as substantial uncertainties surround the potential responses of the two main C fluxes: plant photosynthesis and soil CO2 efflux. In addition to a need for an improved understanding of climate effects on individual dryland C fluxes, there is also notable uncertainty regarding how climate change may influence the relationship between these fluxes.2. To address this important knowledge gap, we measured a growing season's in situphotosynthesis, plant biomass accumulation, and soil CO2 efflux of mature Achnatherum hymenoides (a common and ecologically important C3 bunchgrass growing throughout western North America) exposed to ambient or elevated temperature (+2°C above ambient, warmed via infrared lamps) for three years.3. The 2°C increase in temperature caused a significant reduction in photosynthesis, plant growth, and soil CO2 efflux. Of important note, photosynthesis and soil respiration appeared tightly coupled and the relationship between these fluxes was not altered by the elevated temperature treatment, suggesting C fixation's strong control of both above-ground and below-ground dryland C cycling. Leaf water use efficiency was substantially increased in the elevated temperature treatment compared to the control treatment.4. Taken together, our results suggest notable declines in photosynthesis with relatively subtle warming, reveal strong coupling between above- and below-ground C fluxes in this dryland, and highlight temperature's strong effect on fundamental components of dryland C and water cycles.

  13. Climate impacts on soil carbon processes along an elevation gradient in the tropical Luquillo Experimental Forest

    Treesearch

    Dingfang Chen; Mei Yu; Grizelle González; Xiaoming Zou; Qiong Gao

    2017-01-01

    Tropical forests play an important role in regulating the global climate and the carbon cycle. With the changing temperature and moisture along the elevation gradient, the Luquillo Experimental Forest in Northeastern Puerto Rico provides a natural approach to understand tropical forest ecosystems under climate change. In this study, we conducted a soil translocation...

  14. Clumped Isotope Thermometry Reveals Variations in Soil Carbonate Seasonal Biases Over >4 km of Relief in the Semi-Arid Andes of Central Chile

    NASA Astrophysics Data System (ADS)

    Burgener, L. K.; Huntington, K. W.; Hoke, G. D.; Schauer, A. J.; Ringham, M. C.; Latorre Hidalgo, C.; Díaz, F.

    2015-12-01

    The application of carbonate clumped isotope thermometry to soil carbonates has the potential to shed new light on questions regarding terrestrial paleoclimate. In order to better utilize this paleoclimate tool, outstanding questions regarding seasonal biases in soil carbonate formation and the relationship between soil carbonate formation temperatures (T(Δ47)) and surface temperatures must be resolved. We address these questions by comparing C, O, and clumped isotope data from Holocene/modern soil carbonates to modern meteorological data. The data were collected along a 170 km transect with >4 km of relief in central Chile (~30°S). Previous studies have suggested that soil carbonates should record a warm season bias and form in isotopic equilibrium with soil water and soil CO2. We identify two discrete climate zones separated by the local winter snow line (~3200 m). Below this boundary, precipitation falls as rain and soil carbonate T(Δ47) values at depths >40 cm resemble summer soil temperatures; at higher elevations, precipitation falls as snow and T(Δ47) values resemble mean annual soil temperatures. Soil carbonates from the highest sample site (4700 m), which is devoid of vegetation and located near perennial snow fields, yield anomalous δ18O, δ13C, and T(Δ47) values, indicative of kinetic isotope effects that we attribute to cryogenic carbonate formation. Our results suggest that soil carbonates from depths <40 cm are affected by large, high frequency variations in temperature and precipitation, and should not be used as paleotemperature proxies. These findings (1) highlight the role of soil moisture in modulating soil carbonate formation and the resulting T(Δ47) values, (2) underscore the importance of understanding past soil moisture conditions when attempting to reconstruct paleotemperatures using carbonate clumped isotope thermometry, and (3) suggest that soil carbonates from high elevation or high latitude sites may form under non-equilibrium conditions.

  15. Soil science: Heat-proof carbon compound

    NASA Astrophysics Data System (ADS)

    Prescott, Cindy

    2008-12-01

    Two-thirds of terrestrial carbon is stored as organic matter in soils, but its response to warming has yet to be resolved. A soil warming experiment in a Canadian forest has revealed that the leaf-derived compound cutin is resistant to decomposition under elevated temperatures.

  16. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    USGS Publications Warehouse

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-01-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  17. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    NASA Astrophysics Data System (ADS)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-08-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  18. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  19. Experimental fire increases soil carbon dioxide efflux in a grassland long-term multifactor global change experiment.

    PubMed

    Strong, Aaron L; Johnson, Tera P; Chiariello, Nona R; Field, Christopher B

    2017-05-01

    Numerous studies have demonstrated that soil respiration rates increase under experimental warming, although the long-term, multiyear dynamics of this feedback are not well constrained. Less is known about the effects of single, punctuated events in combination with other longer-duration anthropogenic influences on the dynamics of soil carbon (C) loss. In 2012 and 2013, we assessed the effects of decadal-scale anthropogenic global change - warming, increased nitrogen (N) deposition, elevated carbon dioxide (CO 2 ), and increased precipitation - on soil respiration rates in an annual-dominated Mediterranean grassland. We also investigated how controlled fire and an artificial wet-up event, in combination with exposure to the longer-duration anthropogenic global change factors, influenced the dynamics of C cycling in this system. Decade-duration surface soil warming (1-2 °C) had no effect on soil respiration rates, while +N addition and elevated CO 2 concentrations increased growing-season soil CO 2 efflux rates by increasing annual aboveground net primary production (NPP) and belowground fine root production, respectively. Low-intensity experimental fire significantly elevated soil CO 2 efflux rates in the next growing season. Based on mixed-effects modeling and structural equation modeling, low-intensity fire increased growing-season soil respiration rates through a combination of three mechanisms: large increases in soil temperature (3-5 °C), significant increases in fine root production, and elevated aboveground NPP. Our study shows that in ecosystems where soil respiration has acclimated to moderate warming, further increases in soil temperature can stimulate greater soil CO 2 efflux. We also demonstrate that punctuated short-duration events such as fire can influence soil C dynamics with implications for both the parameterization of earth system models (ESMs) and the implementation of climate change mitigation policies that involve land-sector C accounting. © 2016 John Wiley & Sons Ltd.

  20. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    PubMed

    Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes.

  1. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes. PMID:27337100

  2. Community structure and elevational diversity patterns of soil Acidobacteria.

    PubMed

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Qu, Yuanyuan; Su, Xiujiang; Zhou, Jizhong; Li, Diqiang

    2014-08-01

    Acidobacteria is one of the most dominant and abundant phyla in soil, and was believed to have a wide range of metabolic and genetic functions. Relatively little is known about its community structure and elevational diversity patterns. We selected four elevation gradients from 1000 to 2800 m with typical vegetation types of the northern slope of Shennongjia Mountain in central China. The vegetation types were evergreen broadleaved forest, deciduous broadleaved forest, coniferous forest and sub-alpine shrubs. We analyzed the soil acidobacterial community composition, elevational patterns and the relationship between Acidobacteria subdivisions and soil enzyme activities by using the 16S rRNA meta-sequencing technique and multivariate statistical analysis. The result found that 19 known subdivisions as well as an unclassified phylotype were presented in these forest sites, and Subdivision 6 has the highest number of detectable operational taxonomic units (OTUs). A significant single peak distribution pattern (P<0.05) between the OTU number and the elevation was observed. The Jaccard and Bray-Curtis index analysis showed that the soil Acidobacteria compositional similarity significantly decreased (P<0.01) with the increase in elevation distance. Mantel test analysis showed the most of the soil Acidobacteria subdivisions had the significant relationship (P<0.01) with different soil enzymes. Therefore, soil Acidobacteria may be involved in different ecosystem functions in global elemental cycles. Partial Mantel tests and CCA analysis showed that soil pH, soil temperature and plant diversity may be the key factors in shaping the soil Acidobacterial community structure. Copyright © 2014. Published by Elsevier B.V.

  3. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  4. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    NASA Astrophysics Data System (ADS)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C4 plant Miscanthus was first put on top and then manually incorporated into 20-30 cm soil depth. Differences in the isotopic signature of the biochar and the soil organic matter make it possible to trace the flow of biochar-derived carbon into different labile C pools such as CO2 or microbial biomass. Spring barley litter of the previous growing season was mixed into soil together with the biochar. Rapeseed oil plants were sown one week after biochar application. Weekly gas sampling between the crop rows allows the determination of CO2, N2O and CH4 fluxes. In addition, 13CO2 will be measured at specific dates in order to calculate the proportion of biochar-C in emitted CO2. First soil sampling after biochar application was in November 2013 and soil was taken in three depths (0-5, 5-15 and 15-30 cm). After the first three months we could not observe any effect of biochar on CO2 and N2O emissions, but elevated soil temperature increased emissions of both gases. Data on soil microbial abundance and community composition will be available soon.

  5. Effects of elevated ozone concentration on the degradation of dichlorprop in soil.

    PubMed

    Haberhauer, G; Temmel, B; Gerzabek, M H

    1999-10-01

    An aerobic degradation study was conducted to estimate possible effects of elevated ozone concentration in air on the behaviour of dichlorprop. An average ozone concentration of 80 nL L-1 was chosen, which often occurs close to congested areas during late spring and summer. A control soil and an ozone exposed soil were kept under same conditions such as temperature, air flow and soil humidity. The use of 14C-labelled dichlorprop allowed to examine the fate of dichlorprop and follow the degradation products in soil. Exhaustive extraction of both soils yielded several fractions containing dichlorprop residues. Half lives of dichlorprop of both treatments were 5 days. After 32 days most of the residues in soil remained in the non extractable fraction. The elevated ozone concentration showed no significant effects on the degradation behaviour of dichlorprop and its metabolites but significant differences were found for the behaviour of the nonextractable residues and of the release of carbon dioxide, which were higher for control soil in comparison to the ozone variant. These findings suggest that even moderately elevated ozone concentration in air can effect mineralisation and fixation processes of dichlorprop.

  6. The isolation of the temperature effect on branched GDGT distribution in an elevation transect of the Eastern Cordillera, Colombia

    NASA Astrophysics Data System (ADS)

    Anderson, V. J.; Shanahan, T. M.; Saylor, J.; Horton, B. K.

    2012-12-01

    Recently, the distribution of branched GDGT's (glycerol dialkyl glycerol tetraethers) has been proposed as a proxy for temperature and pH in soils via the MBT/CBT index, and has been used to reconstruct past temperature variations in a number of settings ranging from marine sediments to loess deposits and paleosols. However, empirical calibrations of the MBT/CBT index against temperature show significant scatter, leading to uncertainties as large as ±2 degrees C . In this study we seek to add to and improve upon the existing soil calibration using a new set of samples spanning a large elevation (and temperature) gradient in the Eastern Cordillera of Colombia. At each site we buried temperature loggers to constrain the diurnal and seasonal temperature experienced by each soil sample. Located only 5 degrees north of the equator, our sites experience a very small seasonal temperature variation - most sites display an annual range of less than 4 degrees C. In addition, the pH of all of the soils is almost invariant across the transect, with the vast majority of samples having pH's between 4 and 5. This dataset represents a "best-case" scenario - small variations in seasonal temperature, pH, and well-constrained instrumental data - which allow us to examine the brGDGT-temperature relationship in the absence of major confounding factors such as seasonality and soil chemistry. Interestingly, the relationship between temperature and the MBT/CBT index is not improved using this dataset, suggesting that these factors are not the cause of the anomalous scatter in the calibration dataset. However, we find that using other parameterizations for the regression equation instead of the MBT and CBT indices, the errors in our temperature estimates are significantly reduced.

  7. Aspect has a greater impact on alpine soil bacterial community structure than elevation.

    PubMed

    Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin

    2017-03-01

    Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of < 1000 m, bacterial community composition was more closely related to the aspect of a site than its elevation. However, despite large differences in climate and resource-availability factors across elevation- and aspect-related gradients, bacterial community composition and richness were most strongly correlated with soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  9. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    USGS Publications Warehouse

    Kirwan, M.L.; Blum, L.K.

    2011-01-01

    Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments.

  10. Soil temperature and water content drive microbial carbon fixation in grassland of permafrost area on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Kong, W.; Guo, G.; Liu, J.

    2014-12-01

    Soil microbial communities underpin terrestrial biogeochemical cycles and are greatly influenced by global warming and global-warming-induced dryness. However, the response of soil microbial community function to global change remains largely uncertain, particularly in the ecologically vulnerable Tibetan plateau permafrost area with large carbon storage. With the concept of space for time substitution, we investigated the responses of soil CO2-fixing microbial community and its enzyme activity to climate change along an elevation gradient (4400-5100 m) of alpine grassland on the central Tibetan plateau. The elevation gradient in a south-facing hill slope leads to variation in climate and soil physicochemical parameters. The autotrophic microbial communities were characterized by quantitative PCR (qPCR), terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning/sequencing targeting the CO2-fixing gene (RubisCO). The results demonstrated that the autotrophic microbial community abundance, structure and its enzyme activity were mainly driven by soil temperature and water content. Soil temperature increase and water decrease dramatically reduced the abundance of the outnumbered form IC RubisCO-containing microbes, and significantly changed the structure of form IC, IAB and ID RubisCO-containing microbial community. Structural equation model revealed that the RubisCO enzyme was directly derived from RubisCO-containing microbes and its activity was significantly reduced by soil temperature increase and water content decrease. Thus our results provide a novel positive feedback loop of climate warming and warming-induced dryness by that soil microbial carbon fixing potential will reduce by 3.77%-8.86% with the soil temperature increase of 1.94oC and water content decrease of 60%-70%. This positive feedback could be capable of amplifying the climate change given the significant contribution of soil microbial CO2-fixing up to 4.9% of total soil organic carbon.

  11. The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon.

    PubMed

    Tang, Jie; Cheng, Hao; Fang, Changming

    2017-01-01

    The response of resistant soil organic matter to temperature change is crucial for predicting climate change impacts on C cycling in terrestrial ecosystems. However, the response of the decomposition of different soil organic carbon (SOC) fractions to temperature is still under debate. To investigate whether the labile and resistant SOC components have different temperature sensitivities, soil samples were collected from three forest and two grass land sites, along with a gradient of latitude from 18°40'to 43°17'N and elevation from 600 to 3510 m across China, and were incubated under changing temperature (from 12 to 32 oC) for at least 260 days. Soil respiration rates were positively related to the content of soil organic carbon and soil microbial carbon. The temperature sensitivity of soil respiration, presented as Q10 value, varies from 1.93 ± 0.15 to 2.60 ± 0.21. During the incubation, there were no significant differences between the Q10 values of soil samples from different layers of the same site, nor a clear pattern of Q10 values along with the gradient of latitude. The result of this study does not support current opinion that resistant soil carbon decomposition is more sensitive to temperature change than labile soil carbon.

  12. Organic matter losses in German Alps forest soils since the 1970s most likely caused by warming

    NASA Astrophysics Data System (ADS)

    Prietzel, Jörg; Zimmermann, Lothar; Schubert, Alfred; Christophel, Dominik

    2016-07-01

    Climate warming is expected to induce soil organic carbon losses in mountain soils that result, in turn, in reduced soil fertility, reduced water storage capacity and positive feedback on climate change. Here we combine two independent sets of measurements of soil organic carbon from forest soils in the German Alps--repeated measurements from 1976 to 2010 and from 1987 to 2011--to show that warming has caused a 14% decline in topsoil organic carbon stocks. The decreases in soil carbon occurred over a period of significant increases in six-month summer temperatures, with the most substantial decreases occurring at sites with large changes in mean annual temperature. Organic carbon stock decreases were largest--on average 32%--in forest soils with initial topsoil organic carbon stocks greater than 8 kg C m-2, which can be found predominantly on calcareous bedrock. However, organic carbon stocks of forest soils with lower initial carbon stocks, as well as soils under pasture or at elevations above 1,150 m, have not changed significantly. We conclude that warming is the most likely reason for the observed losses of soil organic carbon, but that site, land use and elevation may ameliorate the effects of climate change.

  13. Microbial C:P stoichiometry is shaped by redox conditions along an elevation gradient in humid tropical rainforests

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Gross, A.; Silver, W. L.

    2017-12-01

    Elemental stoichiometry of microorganisms is intimately related to ecosystem carbon and nutrient fluxes and is ultimately controlled by the chemical (plant tissue, soil, redox) and physical (temperature, moisture, aeration) environment. Previous meta-analyses have shown that the C:P ratio of soil microbial biomass exhibits significant variations among and within biomes. Little is known about the underlying causes of this variability. We examined soil microbial C:P ratios along an elevation gradient in the Luquillo Experimental Forest in Puerto Rico. We analyzed soils from mixed forest paired with monodominant palm forest every 100 m from 300 m to 1000 m a.s.l.. Mean annual precipitation increased with increasing elevation, resulting in stronger reducing conditions and accumulation of soil Fe(II) at higher elevations. The mean value and variability of soil microbial C:P ratios generally increased with increasing elevation except at 1000 m. At high elevations (600-900 m), the average value of microbial C:P ratio (108±10:1) was significantly higher than the global average ( 55:1). We also found that soil organic P increased with increasing elevation, suggesting that an inhibition of organic P mineralization, not decreased soil P availability, may cause the high microbial C:P ratio. The soil microbial C:P ratio was positively correlated with soil HCl-extractable Fe(II), suggesting that reducing conditions may be responsible for the elevational changes observed. In a follow-up experiment, soils from mixed forests at four elevation levels (300, 500, 700, and 1000 m) were incubated under aerobic and anaerobic conditions for two weeks. We found that anaerobic incubation consistently increased the soil microbial C:P ratio relative to the aerobic incubation. Overall, our results indicate that redox conditions can shift the elemental composition of microbial biomass. The high microbial C:P ratios induced under anoxic conditions may reflect inhibition of microbial P mineralization and/or immobilization under reducing conditions. These results will help us to better understand the patterns of nutrient cycling and microbial activity across macro-scale environmental gradients.

  14. Elevated growth temperatures alter hydraulic characteristics in trembling aspen (Populus tremuloides) seedlings: implications for tree drought tolerance

    Treesearch

    Danielle A. Way; Jean-Christophe Domec; Robert B. Jackson

    2013-01-01

    Although climate change will alter both soil water availability and evaporative demand, our understanding of how future climate conditions will alter tree hydraulic architecture is limited. Here, we demonstrate that growth at elevated temperatures (ambient +5 °C) affects hydraulic traits in seedlings of the deciduous boreal tree species Populus tremuloides, with the...

  15. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  16. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide.

    PubMed

    Pendall, Elise; Heisler-White, Jana L; Williams, David G; Dijkstra, Feike A; Carrillo, Yolima; Morgan, Jack A; Lecain, Daniel R

    2013-01-01

    The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate - carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate - carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil.

  17. Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide

    PubMed Central

    Pendall, Elise; Heisler-White, Jana L.; Williams, David G.; Dijkstra, Feike A.; Carrillo, Yolima; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate – carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate – carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil. PMID:23977180

  18. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.

    PubMed

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.

  19. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand

    PubMed Central

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity. PMID:28421053

  20. The Impacts of Thermal and Smouldering Remediation on Soil Properties Related to Rehabilitation and Plant Growth

    NASA Astrophysics Data System (ADS)

    Pape, A.; Knapp, C.; Switzer, C.

    2012-04-01

    Tens of thousands of sites worldwide are contaminated with toxic non-aqueous phase liquids (NAPLs) reducing their economic and environmental value. As a result a number of treatments involving heat and smouldering have been developed to desorb and extract or destroy these contaminants including; steam injection (<110°C), electrical heating (<110°C), microwave heating (ambient to 400°C),conductive heating (ambient to 800°C) and in-situ smouldering (800°C to 1200°C). Implemented correctly these treatments are efficient enough for the soil to be safe for use, but the heating may unintentionally reduce the capability of the soil to act as a growing media. To investigate the effects of elevated temperature soils samples were heated at fixed temperatures (ambient to 1000°C) for one hour or smouldered after artificial contamination. Temperatures up to 105°C resulted in very little change in soil properties but at 250°C nutrients became more available. At 500°C little organic matter or nitrogen remained in the soil and clay sized particles started to decompose and aggregate. By 1000°C total and available phosphorus were very low, cation exchange capacity had been reduced, pH had increased and the clay fraction had been completely lost. Similar changes were observed in smouldered soils with variations dependent upon remediation conditions. As a result the smouldered soils will require nutrient supplementation to facilitate plant growth. Nutrient addition will also improve the physical properties of the soil and serve to re-inoculate it with microbes, particularly if an organic source such as compost or sewage sludge is used. The soils may remain effective growing media during lower temperature treatments; however some sort of soil inoculant would also be beneficial as these temperatures are sufficient to sterilise the system, which may impact nutrient cycling. Further work involving months-long exposure to the elevated temperatures that are typical of thermal remediation would be necessary to evaluate these changes relative to treatment conditions. Using this information rehabilitation packages can be developed and tailored to specific treatments as part of a holistic soil regeneration process.

  1. Impact of elevated precipitation, nitrogen deposition and warming on soil respiration in a temperate desert

    NASA Astrophysics Data System (ADS)

    Yue, Ping; Cui, Xiaoqing; Gong, Yanming; Li, Kaihui; Goulding, Keith; Liu, Xuejun

    2018-04-01

    Soil respiration (Rs) is the most important source of carbon dioxide emissions from soil to atmosphere. However, it is unclear what the interactive response of Rs would be to environmental changes such as elevated precipitation, nitrogen (N) deposition and warming, especially in unique temperate desert ecosystems. To investigate this an in situ field experiment was conducted in the Gurbantunggut Desert, northwest China, from September 2014 to October 2016. The results showed that precipitation and N deposition significantly increased Rs, but warming decreased Rs, except in extreme precipitation events, which was mainly through its impact on the variation of soil moisture at 5 cm depth. In addition, the interactive response of Rs to combinations of the factors was much less than that of any single-factor, and the main response was a positive effect, except for the response from the interaction of increased precipitation and high N deposition (60 kg N ha-1 yr-1). Although Rs was found to show a unimodal change pattern with the variation of soil moisture, soil temperature and soil NH4+-N content, and it was significantly positively correlated to soil dissolved organic carbon (DOC) and pH, a structural equation model found that soil temperature was the most important controlling factor. Those results indicated that Rs was mainly interactively controlled by the soil multi-environmental factors and soil nutrients, and was very sensitive to elevated precipitation, N deposition and warming. However, the interactions of multiple factors largely reduced between-year variation of Rs more than any single-factor, suggesting that the carbon cycle in temperate deserts could be profoundly influenced by positive carbon-climate feedback.

  2. Total C and N Pools and fluxes vary with time, soil temperature, and moisture along an elevation, precipitation, and vegetation gradient in southern Appalachian Forests

    Treesearch

    Jennifer D. Knoepp; Craig R. See; James M. Vose; Chelcy F. Miniat; James S. Clark

    2018-01-01

    The interactions of terrestrial C pools and fluxes with spatial and temporal variation in climate are not well understood. We conducted this study in the southern Appalachian Mountains where complex topography provides variability in temperature, precipitation, and forest communities. In 1990, we established five large plots across an elevation gradient...

  3. Carbonate clumped isotopes and in situ temperature monitoring for Holocene soils in the San Luis Valley, USA indicate springtime carbonate formation

    NASA Astrophysics Data System (ADS)

    Hudson, A. M.; Paces, J. B.; Ruleman, C.

    2017-12-01

    Pedogenic carbonate horizons are abundant in semi-arid and arid regions worldwide and within the geologic record. They present a widely distributed archive of past environmental conditions, driven by global climate or tectonically-controlled elevation changes. Oxygen and carbon isotopes in calcite-rich nodules and clast rinds are widely-applied indicators of past soil water and CO2 composition linked to changing precipitation and plant communities. The temperature of carbonate formation, however, provides key constraint on past water/CO2 values and elucidate why they may have changed in the past. Clumped isotope thermometry can provide this constraint and additional climate information, given the carbonate forming system is well understood. We present preliminary clumped isotope (Δ47) temperatures for Holocene soil carbonates, constrained by 14C and U-Th disequilibrium dating, compared with two years of in situ soil temperature data to better understand the mechanism and seasonality of carbonate formation in the San Luis Valley region of the southern Rocky Mountains. Five temperature-monitoring sites ranging in elevation (1940-2450 m) and latitude (36.2-37.9°N) were installed in a variety of settings (range front, valley center, and canyon). The resulting records show indistinguishable seasonal temperature variations at >60 cm depth. This suggests Δ47 temperatures should be comparable at sites across the region. Temperatures based on Δ47 measurements of Holocene (>1.8 to 11.0 ka BP) carbonates at these sites yield consistent inter-site temperatures of 10±4°C, which are similar to modern springtime soil temperatures at depth. This seasonality matches previous results of isotopic modeling at sites further south along the Rio Grande corridor. Temperatures during March to May show multiple, abrupt warming and cooling cycles on weekly timescales caused by wetting and drying of the soil during spring precipitation events. This may drive carbonate precipitation under low pCO2 conditions before increased plant respiration increases soil pCO2 later in the season.

  4. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    NASA Astrophysics Data System (ADS)

    Kotas, Petr; Šantrůčková, Hana; Elster, Josef; Kaštovská, Eva

    2018-03-01

    The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  5. Soil warming response: field experiments to Earth system models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.

    2017-12-01

    The soil carbon response to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature response. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature response using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the Earth system model simulations to integrate the field with the simulated temperature response. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these Earth system models to inform emissions targets.

  6. Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet

    PubMed Central

    Fu, Gang; Shen, Zhen Xi

    2016-01-01

    Uncertainty about responses of vegetation index, aboveground biomass (AGB) and gross primary production (GPP) limits our ability to predict how climatic warming will influence plant growth in alpine regions. A field warming experiment was conducted in an alpine meadow at a low (4313 m), mid- (4513 m) and high elevation (4693 m) in the Northern Tibet since May 2010. Growing season vapor pressure deficit (VPD), soil temperature (Ts) and air temperature (Ta) decreased with increasing elevation, while growing season precipitation, soil moisture (SM), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), AGB and GPP increased with increasing elevation. The growing season Ta, Ts and VPD in 2015 was greater than that in 2014, while the growing season precipitation, SM, NDVI, SAVI, AGB and GPP in 2015 was lower than that in 2014, respectively. Compared to the mean air temperature and precipitation during the growing season in 1963–2015, it was a warmer and wetter year in 2014 and a warmer and drier year in 2015. Experimental warming increased growing season Ts, Ta,VPD, but decreased growing season SM in 2014–2015 at all the three elevations. Experimental warming only reduced growing season NDVI, SAVI, AGB and GPP at the low elevation in 2015. Growing season NDVI, SAVI, AGB and GPP increased with increasing SM and precipitation, but decreased with increasing VPD, indicating vegetation index and biomass production increased with environmental humidity. The VPD explained more variation of growing season NDVI, SAVI, AGB and GPP compared to Ts, Ta and SM at all the three elevations. Therefore, environmental humidity regulated the effect of experimental warming on vegetation index and biomass production in alpine meadows on the Tibetan Plateau. PMID:27798690

  7. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  8. The Role of Plant Abiotic Factors on the Interactions Between Cnaphalocrocis medinalis (Lepidoptera: Crambidae) and its Host Plant.

    PubMed

    Tu, Kun-Yu; Tsai, Shin-Fu; Guo, Tzu-Wei; Lin, Hou-Ho; Yang, Zhi-Wei; Liao, Chung-Ta; Chuang, Wen-Po

    2018-05-12

    Atmospheric temperature increases along with increasing atmospheric CO2 concentration. This is a major concern for agroecosystems. Although the impact of an elevated temperature or increased CO2 has been widely reported, there are few studies investigating the combined effect of these two environmental factors on plant-insect interactions. In this study, plant responses (phenological traits, defensive enzyme activity, secondary compounds, defense-related gene expression and phytohormone) of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) -susceptible and resistant rice under various conditions (environment, soil type, variety, C. medinalis infestation) were used to examine the rice-C. medinalis interaction. The results showed that leaf chlorophyll content and trichome density in rice were variety-dependent. Plant defensive enzyme activities were affected environment, variety, or C. medinalis infestation. In addition, total phenolic content of rice leaves was decreased by elevated CO2 and temperature and C. medinalis infestation. Defense-related gene expression patterns were affected by environment, soil type, or C. medinalis infestation. Abscisic acid and salicylic acid content were decreased by C. medinalis infestation. However, jasmonic acid content was increased by C. medinalis infestation. Furthermore, under elevated CO2 and temperature, rice plants had higher abscisic acid content than plants under ambient conditions. The adult morphological traits of C. medinalis also were affected by environment. Under elevated CO2 and temperature, C. medinalis adults had greater body length in the second and third generations. Taken together these results indicated that elevated CO2 and temperature not only affects plants but also the specialized insects that feed on them.

  9. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    USGS Publications Warehouse

    Kirwan, M.L.; Blum, L.K.

    2011-01-01

    Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments. ?? 2011 Author(s).

  10. Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber.

    PubMed

    Chen, Yinglong; Wang, Haimiao; Hu, Wei; Wang, Shanshan; Wang, Youhua; Snider, John L; Zhou, Zhiguo

    2017-03-01

    Soil waterlogging events and high temperature conditions occur frequently in the Yangtze River Valley, yet the effects of these co-occurring stresses on fiber elongation have received little attention. In the current study, the combined effect of elevated temperature (ET) and soil waterlogging (SW) more negatively affected final fiber length (reduced by 5.4%-11.3%) than either stress alone by altering the composition of osmotically active solutes (sucrose, malate, and K + ), where SW had the most pronounced effect. High temperature accelerated early fiber development, but limited the duration of elongation, thereby limiting final fiber length. Treatment of ET alone altered fiber sucrose content mainly through decreased source strength and the expression of the sucrose transporter gene GhSUT-1, making sucrose availability the primary determinant of final fiber length under ET. Waterlogging stress alone decreased source strength, down-regulated GhSUT-1 expression and enhanced SuSy catalytic activity for sucrose reduction. Waterlogging treatment alone also limited fiber malate production by down-regulating GhPEPC-1 & -2. However, combined elevated temperature and waterlogging limited primary cell wall synthesis by affecting GhCESAs genes and showed a negative impact on all three major osmotic solutes through the regulation of GhSUT-1, GhPEPC-1 & -2 and GhKT-1 expression and altered SuSy activity, which functioned together to produce a shorter fiber length. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identifying the microbial taxa that consistently respond to soil warming across time and space.

    PubMed

    Oliverio, Angela M; Bradford, Mark A; Fierer, Noah

    2017-05-01

    Soil microbial communities are the key drivers of many terrestrial biogeochemical processes. However, we currently lack a generalizable understanding of how these soil communities will change in response to predicted increases in global temperatures and which microbial lineages will be most impacted. Here, using high-throughput marker gene sequencing of soils collected from 18 sites throughout North America included in a 100-day laboratory incubation experiment, we identified a core group of abundant and nearly ubiquitous soil microbes that shift in relative abundance with elevated soil temperatures. We then validated and narrowed our list of temperature-sensitive microbes by comparing the results from this laboratory experiment with data compiled from 210 soils representing multiple, independent global field studies sampled across spatial gradients with a wide range in mean annual temperatures. Our results reveal predictable and consistent responses to temperature for a core group of 189 ubiquitous soil bacterial and archaeal taxa, with these taxa exhibiting similar temperature responses across a broad range of soil types. These microbial 'bioindicators' are useful for understanding how soil microbial communities respond to warming and to discriminate between the direct and indirect effects of soil warming on microbial communities. Those taxa that were found to be sensitive to temperature represented a wide range of lineages and the direction of the temperature responses were not predictable from phylogeny alone, indicating that temperature responses are difficult to predict from simply describing soil microbial communities at broad taxonomic or phylogenetic levels of resolution. Together, these results lay the foundation for a more predictive understanding of how soil microbial communities respond to soil warming and how warming may ultimately lead to changes in soil biogeochemical processes. © 2016 John Wiley & Sons Ltd.

  12. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

    Treesearch

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  13. Douglas-fir displays a range of growth responses to ...

    EPA Pesticide Factsheets

    Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) growth in the Pacific Northwest is affected by climatic, edaphic factors and Swiss needle cast (SNC) disease. We examine Douglas-fir growth responses to temperature, dewpoint deficit (DPD), soil moisture, and SNC using time series intervention analysis of intra-annual tree-ring width data collected at nine forest stands in western Oregon, USA. The effects of temperature and SNC were similar in importance on tree growth at all sites. Previous-year DPD during the annual drought period was a key factor limiting growth regionally. Winter temperature was more important at high elevation cool sites, whereas summer temperature was more important at warm and dry sites. Growth rate increased with summer temperature to an optimum (Topt) then decreased at higher temperatures. At drier sites, temperature and water affected growth interactively such that Topt decreased with decreasing summer soil moisture. With climate change, growth rates increased at high elevation sites and declined at mid-elevation inland sites since ~1990. Growth response to climate is masked by SNC regionally. We conclude that as temperature rises and precipitation patterns shift towards wetter winters and drier summers, Douglas-fir will experience greater temperature and water stress and an increase in severity of SNC. By the end of the 21st century, climate models predict hotter, drier summers and warmer, wetter winters in the Pac

  14. Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin

    USGS Publications Warehouse

    Rumsey, Christine; Miller, Matthew P.; Susong, David D.; Tillman, Fred D.; Anning, David W.

    2015-01-01

    Results suggest that approximately half of the streamflow in the UCRB is baseflow derived from groundwater discharge to streams. Higher baseflow yields typically occur in upper elevation areas of the UCRB. PCA identified precipitation, snow, sand content of soils, elevation, land surface slope, percent grasslands, and percent natural barren lands as being positively correlated with baseflow yield; whereas temperature, potential evapotranspiration, silt and clay content of soils, percent agriculture, and percent shrublands were negatively correlated with baseflow yield.

  15. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2016-08-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  16. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?

    PubMed

    Leibar, Urtzi; Aizpurua, Ana; Unamunzaga, Olatz; Pascual, Inmaculada; Morales, Fermín

    2015-05-01

    While photosynthetic responses to elevated CO2, elevated temperature, or water availability have previously been reported for grapevine as responses to single stress factors, reports on the combined effect of multiple stress factors are scarce. In the present work, we evaluated effects of simulated climate change [CC; 700 ppm CO2, 28/18 °C, and 33/53% relative humidity (RH), day/night] versus current conditions (375 ppm CO2, 24/14 °C, and 45/65% RH), water availability (well-irrigated vs. water deficit), and different types of soil textures (41, 19, and 8% of soil clay contents) on grapevine (Vitis vinifera L. cv. Tempranillo) photosynthesis. Plants were grown using the fruit-bearing cutting model. CC increased the photosynthetic activity of grapevine plants grown under well-watered conditions, but such beneficial effects of elevated CO2, elevated temperature, and low RH were abolished by water deficit. Under water-deficit conditions, plants subjected to CC conditions had similar photosynthetic rates as those grown under current conditions, despite their higher sub-stomatal CO2 concentrations. As expected, water deficit reduced photosynthetic activity in association with inducing stomatal closure that prevents water loss. Evidence for photosynthetic downregulation under elevated CO2 was observed, with decreases in photosynthetic capacity and leaf N content and increases in the C/N ratio in plants subjected to CC conditions. Soil texture had no marked effects on photosynthesis and did not modify the photosynthetic response to CC and water-deficit conditions. However, in mature well-irrigated plants grown in the soils with the highest sand content, an important decrease in stomatal conductance was observed as well as a slight decrease in the utilization of absorbed light in photosynthetic electron transport (measured as photochemical quenching), possibly related to a low water-retention capacity of these soils even under well-watered conditions.

  17. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE PAGES

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; ...

    2017-08-18

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  18. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  19. Elevation-dependent changes in n-alkane δD and soil GDGTs across the South Central Andes

    NASA Astrophysics Data System (ADS)

    Nieto-Moreno, Vanesa; Rohrmann, Alexander; van der Meer, Marcel T. J.; Sinninghe Damsté, Jaap S.; Sachse, Dirk; Tofelde, Stefanie; Niedermeyer, Eva M.; Strecker, Manfred R.; Mulch, Andreas

    2016-11-01

    Surface uplift of large plateaus may significantly influence regional climate and more specifically precipitation patterns and temperature, sometimes complicating paleoaltimetry interpretations. Thus, understanding the topographic evolution of tectonically active mountain belts benefits from continued development of reliable proxies to reduce uncertainties in paleoaltimetry reconstructions. Lipid biomarker-based proxies provide a novel approach to stable isotope paleoaltimetry and complement authigenic or pedogenic mineral proxy materials, in particular outside semi-arid climate zones where soil carbonates are not abundant but (soil) organic matter has a high preservation potential. Here we present δD values of soil-derived n-alkanes and mean annual air temperature (MAT) estimates based on branched glycerol dialkyl glycerol tetraether (brGDGT) distributions to assess their potential for paleoelevation reconstructions in the southern central Andes. We analyzed soil samples across two environmental and hydrological gradients that include a hillslope (26-28°S) and a valley (22-24°S) transect on the windward flanks of Central Andean Eastern Cordillera in NW Argentina. Our results show that present-day n-alkane δD values and brGDGT-based MAT estimates are both linearly related with elevation and in good agreement with present-day climate conditions. Soil n-alkanes show a δD lapse rate (Δ (δD)) of - 1.64 ‰ / 100 m (R2 = 0.91, p < 0.01) at the hillslope transect, within the range of δD lapse rates from precipitation and surface waters in other tropical regions in the Andes like the Eastern Cordillera in Colombia and Bolivia and the Equatorial and Peruvian Andes. BrGDGT-derived soil temperatures are similar to monitored winter temperatures in the region and show a lapse rate of ΔT = - 0.51 °C / 100 m (R2 = 0.91, p < 0.01), comparable with lapse rates from in situ soil temperature measurements, satellite-derived land-surface temperatures at this transect, and weather stations from the Eastern Cordillera at similar latitude. As a result of an increasing leeward sampling position along the valley transect lapse rates are biased towards lower values and display higher scatter (Δ (δD) = - 0.95 ‰ / 100 m, R2 = 0.76, p < 0.01 and ΔT = - 0.19 °C / 100 m, R2 = 0.48, p < 0.05). Despite this higher complexity, they are in line with lapse rates from stream-water samples and in situ soil temperature measurements along the same transect. Our results demonstrate that both soil n-alkane δD values and MAT reconstructions based on brGDGTs distributions from the hillslope transect (Δ (δD) = - 1.64 ‰ / 100 m, R2 = 0.91, p < 0.01 and ΔT = - 0.51 °C / 100 m, R2 = 0.91, p < 0.01) track the direct effects of orography on precipitation and temperature and hence the combined effects of local and regional hydrology as well as elevation.

  20. Role of vegetation and edaphic factors in controlling diversity and use of different carbon sources in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; McLain, J. E.; Harman, C. J.; Sivapalan, M.; Troch, P. A.

    2010-12-01

    Microbially-mediated soil carbon cycling is closely linked to soil moisture and temperature. Climate change is predicted to increase intra-annual precipitation variability (i.e. less frequent yet more intense precipitation events) and alter biogeochemical processes due to shifts in soil moisture dynamics and inputs of carbon. However, the responses of soil biology and chemistry to predicted climate change, and their concomitant feedbacks on ecosystem productivity and biogeochemical processes are poorly understood. We collected soils at three different elevations in the Santa Catalina Mountains, AZ and quantified carbon utilization during pre-monsoon precipitation conditions. Contrasting parent materials (schist and granite) were paired at each elevation. We expected climate to determine the overall activity of soil fungal and bacterial communities and diversity of soil C utilization, and differences in parent material to modify these responses through controls on soil physical properties. We used EcoPlateTM C utilization assays to determine the relative abundance of soil bacterial and fungal populations and rate and diversity of carbon utilization. Additional plates were incubated with inhibitors selective to fungal or bacterial activity to assess relative contribution of these microbial groups to overall C utilization. We analyzed soils for soil organic matter, total C and N, particle size analysis and soil moisture content via both gravimetric and volumetric methods to assess the influences of soil physical and chemical properties on the measured biological responses. Consistent with our expectations, overall microbial activity was highest at the uppermost conifer elevation sites compared to the middle and lower elevation sites. In contrast to our expectations, however, overall activity was lower at the mid elevation oak woodland sites compared to the low elevation desert sites. Also consistent with our expectations was the observation that overall activities were consistently higher in schist parent material compared to granite. Though differences between canopy and intercanopy carbon utilization were subtle, the diversity of carbon utilization differed, suggesting a potential role of root exudates in governing C utilization in these semiarid soils. Findings from this study suggest that soil physical properties due to parent material have primary impacts in constraining microbial growth and carbon utilization under changing climate conditions.

  1. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere

    NASA Astrophysics Data System (ADS)

    Hanson, Paul J.; Riggs, Jeffery S.; Nettles, W. Robert; Phillips, Jana R.; Krassovski, Misha B.; Hook, Leslie A.; Gu, Lianhong; Richardson, Andrew D.; Aubrecht, Donald M.; Ricciuto, Daniel M.; Warren, Jeffrey M.; Barbier, Charlotte

    2017-02-01

    This paper describes the operational methods to achieve and measure both deep-soil heating (0-3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem-warming scenarios within which immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO2 was also incorporated to test how temperature responses may be modified by atmospheric CO2 effects on carbon cycle processes. The WEW approach was successful in sustaining a wide range of aboveground and belowground temperature treatments (+0, +2.25, +4.5, +6.75 and +9 °C) in large 115 m2 open-topped enclosures with elevated CO2 treatments (+0 to +500 ppm). Air warming across the entire 10 enclosure study required ˜ 90 % of the total energy for WEW ranging from 64 283 mega Joules (MJ) d-1 during the warm season to 80 102 MJ d-1 during cold months. Soil warming across the study required only 1.3 to 1.9 % of the energy used ranging from 954 to 1782 MJ d-1 of energy in the warm and cold seasons, respectively. The residual energy was consumed by measurement and communication systems. Sustained temperature and elevated CO2 treatments were only constrained by occasional high external winds. This paper contrasts the in situ WEW method with closely related field-warming approaches using both aboveground (air or infrared heating) and belowground-warming methods. It also includes a full discussion of confounding factors that need to be considered carefully in the interpretation of experimental results. The WEW method combining aboveground and deep-soil heating approaches enables observations of future temperature conditions not available in the current observational record, and therefore provides a plausible glimpse of future environmental conditions.

  2. Some effects of topography, soil moisture, and sea-surface temperature on continental precipitation as computed with the GISS coarse mesh climate model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Cohen, C.

    1981-01-01

    The effects of terrain elevation, soil moisture, and zonal variations in sea/surface temperature on the mean daily precipitation rates over Australia, Africa, and South America in January were evaluated. It is suggested that evaporation of soil moisture may either increase or decrease the model generated precipitation, depending on the surface albedo. It was found that a flat, dry continent model best simulates the January rainfall over Australia and South America, while over Africa the simulation is improved by the inclusion of surface physics, specifically soil moisture and albedo variations.

  3. Temperature enhances the affinity of soil alkaline phosphatase to Cd.

    PubMed

    Tan, Xiangping; Machmuller, Megan B; Wang, Ziquan; Li, Xudong; He, Wenxiang; Cotrufo, M Francesca; Shen, Weijun

    2018-04-01

    Both elevated temperature and heavy metal contamination can have profound effects on microbial function and soil biogeochemical cycling. However, the interactive effects of heavy metal toxicity and temperature on microbial activity have been poorly understood. The aim of this study was to quantify the effect of temperature and cadmium (Cd) toxicity on alkaline phosphatase (ALP) produced by microbes to acquire phosphorus. To determine whether these effects were dependent on soil properties, we utilized 11 soil types from cropland throughout China. We measured ALP activities and kinetics across a temperature (17, 27, 37, and 47 °C) and Cd concentration gradient (0, 0.6, 5, 25, 50, 100, 200, 300, and 500 mg kg -1 ). We found that the half saturation constant (K m ) and the velocity constant (k) of ALP increased nonlinearly with temperature across all soil types. However, the maximum reaction velocity (V max ) increased linearly with temperature. Regardless of soil type and temperature, Cd had a non-competitive inhibitory mechanism. Soil pH, TOC, and clay content were the major factors controlling the affinity of ALP for Cd (K i ). The ecology dose (ED 50 ) for V max and k, and K i were negatively related to temperature, indicating that the toxicity of Cd on ALP is temperature-dependent. Additionally, higher temperatures led to more inhibition of Cd on ALP activity in alkaline soils than that in acidic and neutral soils. Our results suggest that global warming might accelerate the deficiency of available phosphorus in Cd contaminated soils due to higher inhibition of Cd on ALP activity, particularly in alkaline soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought.

    PubMed

    Reed, Charlotte C; Loik, Michael E

    2016-05-01

    Quantifying the variation in plant-water relations and photosynthesis over environmental gradients and during unique events can provide a better understanding of vegetation patterns in a future climate. We evaluated the hypotheses that photosynthesis and plant water potential would correspond to gradients in precipitation and soil moisture during a lengthy drought, and that experimental water additions would increase photosynthesis for the widespread evergreen shrub Artemisia tridentata ssp. vaseyana. We quantified abiotic conditions and physiological characteristics for control and watered plants at 2135, 2315, and 2835 m near Mammoth Lakes, CA, USA, at the ecotone of the Sierra Nevada and Great Basin ecoregions. Snowfall, total precipitation, and soil moisture increased with elevation, but air temperature and soil N content did not. Plant water potential (Ψ), stomatal conductance (g s), maximum photosynthetic rate (A max), carboxylation rate (V cmax), and electron transport rate (J max) all significantly increased with elevations. Addition of water increased Ψ, g s, J max, and A max only at the lowest elevation; g s contributed about 30 % of the constraints on photosynthesis at the lowest elevation and 23 % at the other two elevations. The physiology of this foundational shrub species was quite resilient to this 1-in-1200 year drought. However, plant water potential and photosynthesis corresponded to differences in soil moisture across the gradient. Soil re-wetting in early summer increased water potential and photosynthesis at the lowest elevation. Effects on water relations and photosynthesis of this widespread, cold desert shrub species may be disproportionate at lower elevations as drought length increases in a future climate.

  5. Belowground carbon responses to experimental warming regulated by soil moisture change in an alpine ecosystem of the Qinghai-Tibet Plateau.

    PubMed

    Xue, Xian; Peng, Fei; You, Quangang; Xu, Manhou; Dong, Siyang

    2015-09-01

    Recent studies found that the largest uncertainties in the response of the terrestrial carbon cycle to climate change might come from changes in soil moisture under the elevation of temperature. Warming-induced change in soil moisture and its level of influence on terrestrial ecosystems are mostly determined by climate, soil, and vegetation type and their sensitivity to temperature and moisture. Here, we present the results from a warming experiment of an alpine ecosystem conducted in the permafrost region of the Qinghai-Tibet Plateau using infrared heaters. Our results show that 3 years of warming treatments significantly elevated soil temperature at 0-100 cm depth, decreased soil moisture at 10 cm depth, and increased soil moisture at 40-100 cm depth. In contrast to the findings of previous research, experimental warming did not significantly affect NH 4 (+)-N, NO 3 (-)-N, and heterotrophic respiration, but stimulated the growth of plants and significantly increased root biomass at 30-50 cm depth. This led to increased soil organic carbon, total nitrogen, and liable carbon at 30-50 cm depth, and increased autotrophic respiration of plants. Analysis shows that experimental warming influenced deeper root production via redistributed soil moisture, which favors the accumulation of belowground carbon, but did not significantly affected the decomposition of soil organic carbon. Our findings suggest that future climate change studies need to take greater consideration of changes in the hydrological cycle and the local ecosystem characteristics. The results of our study will aid in understanding the response of terrestrial ecosystems to climate change and provide the regional case for global ecosystem models.

  6. Sensitivity of subalpine tree seedlings and alpine plants to natural and manipulated climate variation: Initial results from an Alpine Treeline Warming Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.

    2010-12-01

    Niche models and paleoecological studies indicate that future climate change will alter the geographic distributions of plant species. Changes in temperature, snowmelt timing, or moisture conditions at one edge of a species’ range may have different consequences for recruitment, carbon exchange, phenology, and survival than changes at another edge. Similarly, local genetic adaptation may constrain species and community responses to climate change. We have established a new experiment to investigate potential shifts in the distribution of subalpine tree species, and the alpine species they might replace. We are asking how tree species recruitment and alpine species growth and reproduction vary within their current ranges, and in response to temperature and soil moisture manipulations. We are also examining whether genetic provenance and ecosystem processes constrain tree seedling and alpine herb responses. Our Alpine Treeline Warming Experiment is located across three sites at Niwot Ridge, CO, ranging from near the lower limit of subalpine forest to alpine tundra. We use infrared heaters to raise growing season surface soil temperatures by 4-5°C, and to lengthen the growing season. The warming treatment is crossed with a soil moisture manipulation to distinguish effects due to higher temperatures from those due to drier soil. Each plot is a common garden sown with high and low elevation provenances of limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). We established an additional set of experimental plots to examine treatment effects on alpine species phenology, growth and reproduction. Under ambient conditions in 2009, tree seedling germination rate, lifespan, and first season survival was higher within the species’ current range than in the alpine, and for Engelmann spruce, was higher at the low elevation limit than the high elevation limit. Source population (low vs. high elevation) was a significant factor explaining natural variation in germination rates and timing, seedling physiology, and seedling survival. In 2010, the first season with experimental effects data, the timing of germination was substantially advanced with warming for both species, and warming appeared to increase germination rates for limber pine, but to depress rates for Engelmann spruce at treeline. Seedling carbon balance was negative at the warmest leaf temperatures and there is some indication that the low elevation provenance has a higher total assimilation rate and net carbon gain than the high elevation provenance. Water availability was an important driver of variation in carbon assimilation through the growing season. Our early results suggest that with higher germination rates and lower mortality rates, limber pine is better able to recruit into the alpine than Engelmann spruce, and that lower elevation provenances of limber pine are better at assimilating carbon for growth regardless of site. Ultimate success in seedling establishment may be more contingent on water availability than temperature, even at these high elevations.

  7. Effects of elevated CO2 and temperature on forest floor litter decomposition and chemistry

    EPA Science Inventory

    Forest floor can be a major component of the carbon held in forested soils. In mature forests it represents the balance between additions and decomposition under current climate conditions. Because of its position at the soil surface, this reservoir of C is highly susceptible...

  8. Dynamics of plant nutrients, utilization and uptake, and soil microbial community in crops under ambient and elevated carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    In natural settings such as under field conditions, the plant available soil nutrients in conjunction with other environmental factors such as, solar radiation, temperature, precipitation, and atmospheric carbon dioxide (CO2) concentration determine crop adaptation and productivity. Therefore, crop...

  9. A simple temperature-based method to estimate heterogeneous frozen ground within a distributed watershed model

    NASA Astrophysics Data System (ADS)

    Follum, Michael L.; Niemann, Jeffrey D.; Parno, Julie T.; Downer, Charles W.

    2018-05-01

    Frozen ground can be important to flood production and is often heterogeneous within a watershed due to spatial variations in the available energy, insulation by snowpack and ground cover, and the thermal and moisture properties of the soil. The widely used continuous frozen ground index (CFGI) model is a degree-day approach and identifies frozen ground using a simple frost index, which varies mainly with elevation through an elevation-temperature relationship. Similarly, snow depth and its insulating effect are also estimated based on elevation. The objective of this paper is to develop a model for frozen ground that (1) captures the spatial variations of frozen ground within a watershed, (2) allows the frozen ground model to be incorporated into a variety of watershed models, and (3) allows application in data sparse environments. To do this, we modify the existing CFGI method within the gridded surface subsurface hydrologic analysis watershed model. Among the modifications, the snowpack and frost indices are simulated by replacing air temperature (a surrogate for the available energy) with a radiation-derived temperature that aims to better represent spatial variations in available energy. Ground cover is also included as an additional insulator of the soil. Furthermore, the modified Berggren equation, which accounts for soil thermal conductivity and soil moisture, is used to convert the frost index into frost depth. The modified CFGI model is tested by application at six test sites within the Sleepers River experimental watershed in Vermont. Compared to the CFGI model, the modified CFGI model more accurately captures the variations in frozen ground between the sites, inter-annual variations in frozen ground depths at a given site, and the occurrence of frozen ground.

  10. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  11. Climate change and soil salinity: The case of coastal Bangladesh.

    PubMed

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.

  12. Soil microbial metabolic quotient (qCO2) of twelve ecosystems of Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Pabst, Holger; Gerschlauer, Friederike; Kiese, Ralf; Kuzyakov, Yakov

    2014-05-01

    Soil organic carbon, microbial biomass carbon (MBC) and the metabolic quotient qCO2 - as sensitive and important parameters for soil fertility and C turnover - are strongly affected by land-use changes all over the world. These effects are particularly distinct upon conversion of natural to agricultural ecosystems due to very fast carbon (C) and nutrient cycles and high vulnerability, especially in the tropics. In this study, we used an elevational gradient on Mt. Kilimanjaro to investigate the effects of land-use change and elevation on Corg, MBC and qCO2. Down to a soil depth of 18 cm we compared 4 natural (Helichrysum, Erica forest, Podocarpus forest, Ocotea forest), 5 seminatural (disturbed Podocarpus forest, disturbed Ocotea forest, lower montane forest, grassland, savannah), 1 sustainably used (homegarden) and 2 intensively used ecosystems (coffee plantation, maize field) on an elevation gradient from 950 to 3880 m a.s.l.. Using an incubation device, soil CO2-efflux of 18 cm deep soil cores was measured under field moist conditions and mean annual temperature. MBC to Corg ratios varied between 0.7 and 2.3%. qCO2 increased with magnitude of the disturbance, albeit this effect decreased with elevation. Following the annual precipitation of the ecosystems, both, Corg and MBC showed a hum-shaped distribution with elevation, whereas their maxima were between 2500 and 3000 m a.s.l.. Additionaly, Corg and MBC contents were significantly reduced in intensively used agricultural systems. We conclude that the soil microbial biomass and its activity in Mt. Kilimanjaro ecosystems are strongly altered by land-use. This effect is more distinct in lower than in higher elevated ecosystems and strongly dependent on the magnitude of disturbance.

  13. Responses of Soil Microbial Communities to Experimental Warming in Alpine Grasslands on the Qinghai-Tibet Plateau

    PubMed Central

    He, Xingyuan; Liu, Wenjie; Zhao, Qian; Zhao, Lin; Tian, Chunjie

    2014-01-01

    Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance and composition of soil microbial communities at 0–10 and 10–20 cm depths. Plots were passively warmed for 3 years using open-top chambers and compared to adjacent control plots at ambient temperature. Soil microbial communities were assessed using phospholipid fatty acid (PLFA) analysis. We found that 3 years of experimental warming consistently and significantly increased microbial biomass at the 0–10 cm soil depth of alpine swamp meadow (ASM) and alpine steppe (AS) grasslands, and at both the 0–10 and 10–20 cm soil depths of alpine meadow (AM) grasslands, due primarily to the changes in soil temperature, moisture, and plant coverage. Soil microbial community composition was also significantly affected by warming at the 0–10 cm soil depth of ASM and AM and at the 10–20 cm soil depth of AM. Warming significantly decreased the ratio of fungi to bacteria and thus induced a community shift towards bacteria at the 0–10 cm soil depth of ASM and AM. While the ratio of arbuscular mycorrhizal fungi to saprotrophic fungi (AMF/SF) was significantly decreased by warming at the 0–10 cm soil depth of ASM, it was increased at the 0–10 cm soil depth of AM. These results indicate that warming had a strong influence on soil microbial communities in the studied high-elevation grasslands and that the effect was dependent on grassland type. PMID:25083904

  14. The Impact of Elevated Temperatures on Continental Carbon Cycling in the Paleogene

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Handley, L.; Taylor, K. W.; Collinson, M. E.; Weijers, J.; Talbot, H. M.; Hollis, C. J.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    Recent climate and biogeochemical modelling suggests that methane flux from wetlands and soils was greater during past greenhouse climates, due to a combination of higher continental temperatures, an enhanced hydrological cycle, and elevated primary production. Here, we examine continental environments in the Paleogene using a range of biomarker proxies (complemented by palaeobotanical approaches), including air temperatures derived from the distribution of soil bacterial glycerol dialkyl glycerol tetraethers (the MBT/CBT proxy), as well as evidence from wetland and lacustrine settings for enhanced methane cycling. Previously published and new MBT/CBT records parallel sea surface temperature records, suggesting elevated continental temperatures during the Eocene even at mid- to high latitudes (New Zealand, 20-28°C; the Arctic, 17°C; across the Sierra Nevada, 15-25°C; and SE England, 20-30°C). Such temperatures are broadly consistent with paleobotanical records and would have directly led to increased methane production via the metabolic impact of temperature on rates of methanogenesis. To test this, we have determined the distributions and carbon isotopic compositions of archaeal ether lipids and bacterial hopanoids in thermally immature Eocene lignites. In particular, the Cobham lignite, deposited in SE England and spanning the PETM, is characterised by markedly higher concentrations of both methanogen and methanotroph biomarkers compared to modern and Holocene temperate peats. Elevated temperatures, by fostering either stratification and/or decreased oxygen solubility, could have also led to enhanced methane production in Paleogene lakes. Both the Messel Shale (Germany) and Green River Formation, specifically the Parachute Creek oil shale horizons (Utah and Wyoming), are characterised by strongly reducing conditions (including euxinic conditions in the latter), as well as abundant methanogen and methanotroph biomarkers. Such results confirm model predictions of elevated Eocene methane levels relative to the Holocene (x10), but suggest that even these could be underestimates as they do not take into account lacustrine production and are generally characterised by lower high latitude temperatures than proxies suggest.

  15. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research.

    PubMed

    Ryan, Michael G

    2013-11-01

    Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway spruce site with nutrient-poor soil. This special section on research at Flakaliden presents five papers that explore different facets of nutrition, atmospheric CO2 concentration, [CO2], and increased temperature treatments, using the original experiment as a base. Research at Flakaliden shows the dominant role of nutrition in controlling the response of growth to the increased photosynthesis promoted by elevated [CO2] and temperature. Experiments with whole-tree chambers showed that all treatments (air temperature warming, elevated [CO2] and optimum nutrition) increased shoot photosynthesis by 30-50%, but growth only increased with [CO2] when combined with the optimum nutrition treatment. Elevated [CO2] and temperature increased shoot photosynthesis by increasing the slope between light-saturated photosynthesis and foliar nitrogen by 122%, the initial slope of the light response curve by 52% and apparent quantum yield by 10%. Optimum nutrition also decreased photosynthetic capacity by 17%, but increased it by 62% in elevated [CO2], as estimated from wood δ(13)C. Elevated air temperature advanced spring recovery of photosynthesis by 37%, but spring frost events remained the controlling factor for photosynthetic recovery, and elevated [CO2] did not affect this. Increased nutrient availability increased wood growth primarily through a 50% increase in tracheid formation, mostly during the peak growth season. Other notable contributions of research at Flakaliden include exploring the role of optimal nutrition in large-scale field trials with foliar analysis, using an ecosystem approach for multifactor experiments, development of whole-tree chambers allowing inexpensive environmental manipulations, long-term deployment of shoot chambers for continuous measurements of gas exchange and exploring the ecosystem response to soil and aboveground tree warming. The enduring legacy of Flakaliden will be the rich data set of long-term, multifactor experiments that has been and will continue to be used in many modeling and cross-site comparison studies.

  16. Microclimatic Performance of a Free-Air Warming and CO2 Enrichment Experiment in Windy Wyoming, USA

    PubMed Central

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco

    2015-01-01

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time. PMID:25658313

  17. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeCain, Daniel; Smith, David; Morgan, Jack

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  18. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE PAGES

    LeCain, Daniel; Smith, David; Morgan, Jack; ...

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  19. Quantification of soil respiration in forest ecosystems across China

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan

    2014-09-01

    We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.

  20. Relationships between physical-geographical factors and soil degradation on agricultural land.

    PubMed

    Bednář, Marek; Šarapatka, Bořivoj

    2018-07-01

    It is a well-known fact that soil degradation is dramatically increasing and currently threatens agricultural soils all around the world. The objective of this study was to reveal the possible connection between soil degradation and seven physical-geographical factors - slope steepness, altitude, elevation differences, rainfall, temperature, soil texture and solar radiation - in the form of threshold values (if these exist), where soil degradation begins and ends. The analysis involved the whole area of the Czech Republic which consists of 13,027 cadasters (78,866 km 2 ). The greatest total degradation threat occurs in areas with slope steepness >7 degrees, average annual temperature <5.9 °C, elevation differences >10.54, altitude >766 m a.s.l. Similarly, the results for water erosion, wind erosion, soil compaction, loss of organic matter, acidification and heavy metal contamination were processed. The results enable us to identify the relationships of different levels of threats which could consequently be used in various ways - for classification of threatened areas, for more effective implementation of anti-degradation measures, or purely for a better understanding of the role of physical geographical factors in soil degradation in the Czech Republic, and thus could increase the chances of reducing vulnerability to land degradation not only in the Czech Republic. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range

    USGS Publications Warehouse

    Moyes, Andrew B.; Castanha, Cristina; Germino, Matthew J.; Kueppers, Lara M.

    2013-01-01

    Continued changes in climate are projected to alter the geographic distributions of plant species, in part by affecting where individuals can establish from seed. We tested the hypothesis that warming promotes uphill redistribution of subalpine tree populations by reducing cold limitation at high elevation and enhancing drought stress at low elevation. We seeded limber pine (Pinus flexilis) into plots with combinations of infrared heating and water addition treatments, at sites positioned in lower subalpine forest, the treeline ecotone, and alpine tundra. In 2010, first-year seedlings were assessed for physiological performance and survival over the snow-free growing season. Seedlings emerged in midsummer, about 5–8 weeks after snowmelt. Low temperature was not observed to limit seedling photosynthesis or respiration between emergence and October, and thus experimental warming did not appear to reduce cold limitation at high elevation. Instead, gas exchange and water potential from all sites indicated a prevailing effect of summer moisture stress on photosynthesis and carbon balance. Infrared heaters raised soil growing degree days (base 5 °C, p p 3 m-3 consistently corresponded with moderate and severe indications of drought stress in midday stem water potential, stomatal conductance, photosynthesis, and respiration. Seedling survival was greater in watered plots than in heated plots (p = 0.01), and negatively related to soil growing degree days and duration of exposure to θ 3 m-3 in a stepwise linear regression model (p < 0.0001). We concluded that seasonal moisture stress and high soil surface temperature imposed a strong limitation to limber pine seedling establishment across a broad elevation gradient, including at treeline, and that these limitations are likely to be enhanced by further climate warming.

  2. Initial Response of the Nitrogen Cycle to Soil Warming and Elevated CO2 in Northern Minnesota Peatlands

    EPA Science Inventory

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce an...

  3. Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in Hawaii

    Treesearch

    Paul G. Scowcroft; Douglas R. Turner; Peter M. Vitousek

    2000-01-01

    We examined interactions between temperature, soil development, and decomposition on three elevational gradients, the upper and lower ends of each being situated on a common lava flow or ash deposit. We used the reciprocal transplant technique to estimate decomposition rates of Metrosideros polymorpha leaf litter during a three-year period at warm...

  4. Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth?

    PubMed

    Schmidt, S K; Gendron, E M S; Vincent, K; Solon, A J; Sommers, P; Schubert, Z R; Vimercati, L; Porazinska, D L; Darcy, J L; Sowell, P

    2018-03-20

    Here we describe recent breakthroughs in our understanding of microbial life in dry volcanic tephra ("soil") that covers much of the surface area of the highest elevation volcanoes on Earth. Dry tephra above 6000 m.a.s.l. is perhaps the best Earth analog for the surface of Mars because these "soils" are acidic, extremely oligotrophic, exposed to a thin atmosphere, high UV fluxes, and extreme temperature fluctuations across the freezing point. The simple microbial communities found in these extreme sites have among the lowest alpha diversity of any known earthly ecosystem and contain bacteria and eukaryotes that are uniquely adapted to these extreme conditions. The most abundant eukaryotic organism across the highest elevation sites is a Naganishia species that is metabolically versatile, can withstand high levels of UV radiation and can grow at sub-zero temperatures, and during extreme diurnal freeze-thaw cycles (e.g. - 10 to + 30 °C). The most abundant bacterial phylotype at the highest dry sites sampled (6330 m.a.s.l. on Volcán Llullaillaco) belongs to the enigmatic B12-WMSP1 clade which is related to the Ktedonobacter/Thermosporothrix clade that includes versatile organisms with the largest known bacterial genomes. Close relatives of B12-WMSP1 are also found in fumarolic soils on Volcán Socompa and in oligotrophic, fumarolic caves on Mt. Erebus in Antarctica. In contrast to the extremely low diversity of dry tephra, fumaroles found at over 6000 m.a.s.l. on Volcán Socompa support very diverse microbial communities with alpha diversity levels rivalling those of low elevation temperate soils. Overall, the high-elevation biome of the Atacama region provides perhaps the best "natural experiment" in which to study microbial life in both its most extreme setting (dry tephra) and in one of its least extreme settings (fumarolic soils).

  5. Climate data by elevation in the Great Smoky Mountains: a database and graphical displays for 1947 - 1950 with comparison to long-term data

    USGS Publications Warehouse

    Busing, Richard T.; Stephens, Luther A.; Clebsch, Edward E.C.

    2004-01-01

    A climate data set is presented for four sites spanning the elevation gradient in the Great Smoky Mountains from Gatlinburg to Clingmans Dome. Monthly mean values for cloud cover, temperature, humidity, precipitation, and soil moisture are included. Stephens (1969) is the source of all summarized mean monthly data. Values are the averages of four years (1947-1950) with moderate to high precipitation. Graphical displays show strong climatic patterns of variation among seasons and elevations. The upper stations had lower temperatures and higher precipitation totals; however, temperature lapse rates and variation in vapor pressure deficits decreased at upper elevations. To examine how well the four-year sample represents the long-term climate, temperature and precipitation for the Gatlinburg (1460 ft elevation at park headquarters) station were compared between the years in the sample and the years in the full record from 1928 to 2003. Trends related to season and elevation are consistent with earlier studies and provide a basis for interpretation of climate dynamics in the southern Appalachian Mountains.

  6. A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Corey

    This funding represents a small sub-award related the larger project titled: A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed. The goal of the sub-award was to facilitate the characterization of carbon and radiocarbon data collected from the East River watershed outside Gothic, Colorado USA. During the period of funding from 8/1/15 until 7/31/17, we sampled 40 soil profiles and collected ~325 soil samples. This funding supported the collection, processing, and elemental analysis of each of these samples. In addition, the funding allowed for the further density separation of a subset of soil resulting inmore » 60 measurements of 13C and 14C of bulk soil and density separates. Funding also supported installation of temperature and moisture data sensors arrays, soil gas wells, and soil water lysimeters. From this infrastructure, a steady stream data including soil gas, water, and physical information have been generated to support the larger research project.« less

  7. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    PubMed

    Tito, Richard; Vasconcelos, Heraldo L; Feeley, Kenneth J

    2018-02-01

    One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order to maintain yields, farmers may be forced to change cultivation practices, the timing of cultivation, or even the type of crops grown. Alternatively, farmers can change the location where crops are cultivated (e.g., to higher elevations) to track suitable climates (in which case the plants will have to grow in different soils), as cultivated plants will otherwise have to tolerate warmer temperatures and possibly face novel enemies. We simulated these two last possible scenarios (for temperature increases of 1.3°C and 2.6°C) in the Peruvian Andes through a field experiment in which several traditionally grown varieties of potato and maize were planted at different elevations (and thus temperatures) using either the local soil or soil translocated from higher elevations. Maize production declined by 21%-29% in response to new soil conditions. The production of maize and potatoes declined by >87% when plants were grown under warmer temperatures, mainly as a result of the greater incidence of novel pests. Crop quality and value also declined under simulated migration and warming scenarios. We estimated that local farmers may experience severe economic losses of up to 2,300 US$ ha -1  yr -1 . These findings reveal that climate change is a real and imminent threat to agriculture and that there is a pressing need to develop effective management strategies to reduce yield losses and prevent food insecurity. Importantly, such strategies should take into account the influences of non-climatic and/or biotic factors (e.g., novel pests) on plant development. © 2017 John Wiley & Sons Ltd.

  8. The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion

    USGS Publications Warehouse

    Krushelnycky, P.D.; Joe, S.M.; Medeiros, A.C.; Daehler, C.C.; Loope, L.L.

    2005-01-01

    Analysis of long-term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species' limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree-day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species' current and future worldwide distribution. ?? 2005 Blackwell Publishing Ltd.

  9. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps

    PubMed Central

    Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas

    2011-01-01

    Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism. We focused on the effects of air and soil temperature on net photosynthesis (Pn) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall. In general, Pn was significantly lower in fall as compared to summer. Nevertheless, independent from season mean Pn values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement. Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime. PMID:21379394

  10. Application of a geographical information system approach for risk analysis of fascioliasis in southern Espírito Santo state, Brazil.

    PubMed

    Martins, Isabella Vilhena Freire; de Avelar, Barbara Rauta; Pereira, Maria Julia Salim; da Fonseca, Adevair Henrique

    2012-09-01

    A model based on geographical information systems for mapping the risk of fascioliasis was developed for the southern part of Espírito Santo state, Brazil. The determinants investigated were precipitation, temperature, elevation, slope, soil type and land use. Weightings and grades were assigned to determinants and their categories according to their relevance with respect to fascioliasis. Theme maps depicting the spatial distribution of risk areas indicate that over 50% of southern Espírito Santo is either at high or at very high risk for fascioliasis. These areas were found to be characterized by comparatively high temperature but relatively low slope, low precipitation and low elevation corresponding to periodically flooded grasslands or soils that promote water retention.

  11. Nutrient limitation in soils and trees of a treeline ecotone in Rolwaling Himal, Nepal

    NASA Astrophysics Data System (ADS)

    Drollinger, Simon; Müller, Michael; Schickhoff, Udo; Böhner, Jürgen; Scholten, Thomas

    2015-04-01

    At a global scale, tree growth and thus the position of natural alpine treelines is limited by low temperatures. At landscape and local scales, however, the treeline position depends on multiple interactions of influencing factors and mechanisms. The aim of our research is to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors, in a near-natural alpine treeline ecotone of Rolwaling Himal, Nepal. In total 48 plots (20 m x 20 m) were investigated. Three north-facing slopes were separated in four different altitudinal zones with the characteristic vegetation of tree species Rhododendron campanulatum, Abies spectabilis, Betula utilis, Sorbus microphylla and Acer spec. We collected 151 soil horizon samples (Ah, Ae, Bh, Bs), 146 litter layer samples (L), and 146 decomposition layer samples (Of) in 2013, as well as 251 leaves from standing biomass (SB) in 2013 and 2014. All samples were analysed for exchangeable cations or nutrient concentrations of C, N, P, K, Mg, Ca, Mn, Fe and Al. Soil moisture, soil and surface air temperatures were measured by 34 installed sensors. Precipitation and air temperatures were measured by three climate stations. The main pedogenic process is leaching of dissolved organic carbon, aluminium and iron from topsoil to subsoil. Soil types are classified as podzols with generally low nutrient concentrations. Soil acidity is extremely high and humus quality of mineral soils is poor. Our results indicate multilateral interactions and a great spatial variability of essential nutrients within the treeline ecotone. Both, soil nutrients and leave macronutrient concentrations of nitrogen (N), magnesium (Mg), potassium (K) decrease significantly with elevation in the treeline ecotone. Besides, phosphorus (P) foliar concentrations decrease significantly with elevation. Based on regression analyses, low soil temperatures and malnutrition most likely affect tree growth in high altitudes. Thus, we assume a high influence of soil properties and nutrient supply on the position of alpine treeline at a local scale. In addition, a manganese (Mn) excess in foliage of woody species was determined above treeline. With the help of multivariate statistical approaches, potential determining factors of treeline position could be quantified.

  12. Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest

    NASA Astrophysics Data System (ADS)

    D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.

    2011-12-01

    Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.

  13. Terrestrial C sequestration at elevated CO2 and temperature: the role of dissolved organic N loss

    USGS Publications Warehouse

    Rastetter, Edward B.; Perakis, Steven S.; Shaver, Gaius R.; Agren, Goran I.

    2005-01-01

    We used a simple model of carbon–nitrogen (C–N) interactions in terrestrial ecosystems to examine the responses to elevated CO2 and to elevated CO2 plus warming in ecosystems that had the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) loss. We postulate that DIN losses can be curtailed by higher N demand in response to elevated CO2, but that DON losses cannot. We also examined simulations in which DON losses were held constant, were proportional to the amount of soil organic matter, were proportional to the soil C:N ratio, or were proportional to the rate of decomposition. We found that the mode of N loss made little difference to the short‐term (<60 years) rate of carbon sequestration by the ecosystem, but high DON losses resulted in much lower carbon sequestration in the long term than did low DON losses. In the short term, C sequestration was fueled by an internal redistribution of N from soils to vegetation and by increases in the C:N ratio of soils and vegetation. This sequestration was about three times larger with elevated CO2 and warming than with elevated CO2 alone. After year 60, C sequestration was fueled by a net accumulation of N in the ecosystem, and the rate of sequestration was about the same with elevated CO2 and warming as with elevated CO2alone. With high DON losses, the ecosystem either sequestered C slowly after year 60 (when DON losses were constant or proportional to soil organic matter) or lost C (when DON losses were proportional to the soil C:N ratio or to decomposition). We conclude that changes in long‐term C sequestration depend not only on the magnitude of N losses, but also on the form of those losses.

  14. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem

    USGS Publications Warehouse

    Christensen, L.; Tague, C.L.; Baron, Jill S.

    2008-01-01

    Transpiration is an important component of soil water storage and stream-flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro-Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0.32 and 0.29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200-1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800-2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150-2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600-4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright ?? 2008 John Wiley & Sons, Ltd.

  15. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    PubMed

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. LIFETIME AND TEMPORAL OCCURRENCE OF ECTOMYCORRHIZAE ON PONDEROSA PINE (PINUS PONDEROSA LAWS.) SEEDLINGS GROWN UNDER VARIED ATMOSPHERIC CO-2 AND NITROGEN LEVELS

    EPA Science Inventory

    Climate change(elevated atmospheric CO-2,and altered air temperatures,precipitation amounts and seasonal patterns)may affect ecosystem processes by altering carbon allocation in plants,and carbon flux from plants to soil.Mycorrhizal fungi,as carbon sinks, are among the first soil...

  17. A new approach to predict soil temperature under vegetated surfaces.

    PubMed

    Dolschak, Klaus; Gartner, Karl; Berger, Torsten W

    2015-12-01

    In this article, the setup and the application of an empirical model, based on Newton's law of cooling, capable to predict daily mean soil temperature ( T soil ) under vegetated surfaces, is described. The only input variable, necessary to run the model, is a time series of daily mean air temperature. The simulator employs 9 empirical parameters, which were estimated by inverse modeling. The model, which primarily addresses forested sites, incorporates the effect of snow cover and soil freezing on soil temperature. The model was applied to several temperate forest sites, managing the split between Central Europe (Austria) and the United States (Harvard Forest, Massachusetts; Hubbard Brook, New Hampshire), aiming to cover a broad range of site characteristics. Investigated stands differ fundamentally in stand composition, elevation, exposition, annual mean temperature, precipitation regime, as well as in the duration of winter snow cover. At last, to explore the limits of the formulation, the simulator was applied to non-forest sites (Illinois), where soil temperature was recorded under short cut grass. The model was parameterized, specifically to site and measurement depth. After calibration of the model, an evaluation was performed, using ~50 % of the available data. In each case, the simulator was capable to deliver a feasible prediction of soil temperature in the validation time interval. To evaluate the practical suitability of the simulator, the minimum amount of soil temperature point measurements, necessary to yield expedient model performance was determined. In the investigated case 13-20 point observations, uniformly distributed within an 11-year timeframe, have been proven sufficient to yield sound model performance (root mean square error <0.9 °C, Nash-Sutcliffe efficiency >0.97). This makes the model suitable for the application on sites, where the information on soil temperature is discontinuous or scarce.

  18. Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming

    USDA-ARS?s Scientific Manuscript database

    Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2...

  19. Chapter 19: The carbon isotope composition of plants and soils as biomarkers of pollution

    Treesearch

    DE Pataki; JT Eanderson; W Want; MK Herzenach; NE Grulke

    2010-01-01

    Urban environments have been compared to the global environment predicted at the end of the twenty-first century, in that urban areas are currently experiencing elevated atmospheric C02 concentrations, warmer temperatures, increased nitrogen loads, and elevated concentrations of pollutants (Grimm et al. 2000). It is extremely difficult to predict...

  20. Soil development as limiting factor for shrub expansion in southwestern Greenland

    NASA Astrophysics Data System (ADS)

    Caviezel, Chatrina; Hunziker, Matthias; Zoller, Oliver; Wüthrich, Christoph; Kuhn, Nikolaus J.

    2014-05-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased shrub cover at the boreal - tundra border ecotone (Normand et al. 2013). These findings suggest the beginning of a greener Greenland in which tundra vegetation is transformed to a boreal woody flora. However, vegetation at borderline ecotones is influenced by further ecologic factors than just temperature. In this study, the ecologic conditions at a selection of sites along an elevation gradient near Igaliku in southern Greenland were examined to identify potential factors limiting the expansion of woody vegetation apart from temperature. The sites differ in elevation, topography, shrub density and soil parent material. The three study sites comprise i) well established birch shrubs growing between 50 and 180 m a.s.l., where the parent material origins from the Julianehab granite (Brooks 2012); ii) extended shrub patches at about 250 m a.s.l., where the parent material consists of Gardar Sandstones and Lavas (Brooks 2012) and iii) restricted shrub patches at an elevation of 250 m a.s.l., where the soil parent material originates from the Gardar intrusions (Brooks 2012). The extent of the shrub areas, topography and soil moisture were mapped, additionally soil samples were analyzed for C-and N-content, texture including coarse fraction and pH and used as soil development indicators. Our results show that the topographic setting regulates the existence or absence of soil while the soil parent material is an important limiting factor for soil moisture. According to these findings, we suggest that a high proportion of areas where temperature increase would allow the increase of shrub cover is not suitable for a woody flora. Brooks, Kent. 2012. "A Tale of Two Intrusions—where Familiar Rock Names No Longer Suffice." Geology Today 28 (1): 13-19. doi:10.1111/j.1365-2451.2012.00815.x. Masson-Delmotte, V., D. Swingedouw, A. Landais, M. S. Seidenkrantz, E. Gauthier, V. Bichet, C. Massa, B. Perren, V. Jomelli, and G. Adalgeirsdottir. 2012. "Greenland Climate Change: From the Past to the Future." Wiley Interdisciplinary Reviews: Climate Change. http://onlinelibrary.wiley.com/doi/10.1002/wcc.186/full. Normand, Signe, Christophe Randin, Ralf Ohlemüller, Christian Bay, Toke T. Høye, Erik D. Kjær, Christian Körner, et al. 2013. "A Greener Greenland? Climatic Potential and Long-Term Constraints on Future Expansions of Trees and Shrubs." Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1624) (August 19): 20120479. doi:10.1098/rstb.2012.0479.

  1. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere

    DOE PAGES

    Hanson, Paul J.; Riggs, Jeffery S.; Nettles, IV, W. Robert; ...

    2017-02-24

    This paper describes the operational methods to achieve and measure both deep-soil heating (0–3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem-warming scenarios within which immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO 2 was also incorporated to test how temperature responses may be modified by atmospheric CO 2 effects on carbon cycle processes. The WEW approach was successful in sustaining a widemore » range of aboveground and belowground temperature treatments (+0, +2.25, +4.5, +6.75 and +9 °C) in large 115 m 2 open-topped enclosures with elevated CO 2 treatments (+0 to +500 ppm). Air warming across the entire 10 enclosure study required ~90 % of the total energy for WEW ranging from 64 283 mega Joules (MJ) d –1 during the warm season to 80 102 MJ d –1 during cold months. Soil warming across the study required only 1.3 to 1.9 % of the energy used ranging from 954 to 1782 MJ d –1 of energy in the warm and cold seasons, respectively. The residual energy was consumed by measurement and communication systems. Sustained temperature and elevated CO 2 treatments were only constrained by occasional high external winds. This paper contrasts the in situ WEW method with closely related field-warming approaches using both aboveground (air or infrared heating) and belowground-warming methods. It also includes a full discussion of confounding factors that need to be considered carefully in the interpretation of experimental results. As a result, the WEW method combining aboveground and deep-soil heating approaches enables observations of future temperature conditions not available in the current observational record, and therefore provides a plausible glimpse of future environmental conditions.« less

  2. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Paul J.; Riggs, Jeffery S.; Nettles, IV, W. Robert

    This paper describes the operational methods to achieve and measure both deep-soil heating (0–3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem-warming scenarios within which immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO 2 was also incorporated to test how temperature responses may be modified by atmospheric CO 2 effects on carbon cycle processes. The WEW approach was successful in sustaining a widemore » range of aboveground and belowground temperature treatments (+0, +2.25, +4.5, +6.75 and +9 °C) in large 115 m 2 open-topped enclosures with elevated CO 2 treatments (+0 to +500 ppm). Air warming across the entire 10 enclosure study required ~90 % of the total energy for WEW ranging from 64 283 mega Joules (MJ) d –1 during the warm season to 80 102 MJ d –1 during cold months. Soil warming across the study required only 1.3 to 1.9 % of the energy used ranging from 954 to 1782 MJ d –1 of energy in the warm and cold seasons, respectively. The residual energy was consumed by measurement and communication systems. Sustained temperature and elevated CO 2 treatments were only constrained by occasional high external winds. This paper contrasts the in situ WEW method with closely related field-warming approaches using both aboveground (air or infrared heating) and belowground-warming methods. It also includes a full discussion of confounding factors that need to be considered carefully in the interpretation of experimental results. As a result, the WEW method combining aboveground and deep-soil heating approaches enables observations of future temperature conditions not available in the current observational record, and therefore provides a plausible glimpse of future environmental conditions.« less

  3. Temperature-dependant shifts in a wet tropical Hawaiian forest ecosystem: impact on belowground carbon stocks, dynamics, and processes

    NASA Astrophysics Data System (ADS)

    Crow, S. E.; Litton, C. M.; Giardina, C. P.

    2009-12-01

    Global patterns suggest a positive correlation between temperature and total belowground carbon (C) flux and partitioning in temperate and tropical regions, but these relationships have yet to be tested within a given ecosystem type. We established a transect of nine permanent forest plots along an elevation gradient (800-1600 m) in native-dominated Metrosideros polymorpha / Acacia koa rainforest developed in volcanic ash soils along the windward slope of Mauna Kea, Hawaii. Along the transect parent material, bedrock age, species composition, and plant available water are nearly constant and only mean annual temperature (MAT) varies substantially (13°C-18°C). We hypothesized that warmer temperatures at lower elevations would drive greater C flux and partitioning to belowground, which represents a direct input of C into belowground stocks. Roots are often sources of stabilized soil organic matter, thus we expected that increased belowground flux and partitioning of C at higher MATs would increase soil C stocks within recalcitrant C pools, even if bulk soil C stock decreases overall. In fact, our data suggest non-linear relationships between temperature and the distribution of C among soil pools based on sequential density fractionation at 1.6 and 2.4 g mL-1, and radiocarbon-based estimates of mean residence time. The proportion of C recovered within the mineral-associated heavy fraction (>2.4 g mL-1) was greatest at the highest MAT (nearly 30% of total soil C), initially declined at the mid-MAT plots (~10% of total soil C), but then increased again at the lowest MAT plots (~25%). Although the proportion of soil C within the heavy fraction was lowest at the mid-MAT plots, the mean residence time of heavy fraction C was greatest in these plots (570-663 yr for the mid-MAT plots versus 120-220 yr for the highest MAT plots and 64-308 for the lowest MAT plots), suggesting that the mineral-associated C in the mid-MAT plots was the most stabilized. In contrast, the proportion of C recovered within the rapidly cycling light fraction (<1.6 g mL-1) initially increased as MAT decreased, from <10% to a peak of nearly 50% of total soil C in the mid-MAT plots, but then decreased again in the plots with lowest MAT. High temperature both directly and indirectly stimulates weathering in these soils-which are thought to be within the phase of maximum nutrient availability, productivity, and potential SOM stabilization during ecosystem development-through increased belowground activity. However, complex feedbacks between temperature, resource allocation, weathering rate, and carbon storage may be driving non-linear relationships between temperature and soil processes.

  4. Predicting Individual Tree and Shrub Species Distributions with Empirically Derived Microclimate Surfaces in a Complex Mountain Ecosystem in Northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Holden, Z.; Cushman, S.; Evans, J.; Littell, J. S.

    2009-12-01

    The resolution of current climate interpolation models limits our ability to adequately account for temperature variability in complex mountainous terrain. We empirically derive 30 meter resolution models of June-October day and nighttime temperature and April nighttime Vapor Pressure Deficit (VPD) using hourly data from 53 Hobo dataloggers stratified by topographic setting in mixed conifer forests near Bonners Ferry, ID. 66%, of the variability in average June-October daytime temperature is explained by 3 variables (elevation, relative slope position and topographic roughness) derived from 30 meter digital elevation models. 69% of the variability in nighttime temperatures among stations is explained by elevation, relative slope position and topographic dissection (450 meter window). 54% of variability in April nighttime VPD is explained by elevation, soil wetness and the NDVIc derived from Landsat. We extract temperature and VPD predictions at 411 intensified Forest Inventory and Analysis plots (FIA). We use these variables with soil wetness and solar radiation indices derived from a 30 meter DEM to predict the presence and absence of 10 common forest tree species and 25 shrub species. Classification accuracies range from 87% for Pinus ponderosa , to > 97% for most other tree species. Shrub model accuracies are also high with greater than 90% accuracy for the majority of species. Species distribution models based on the physical variables that drive species occurrence, rather than their topographic surrogates, will eventually allow us to predict potential future distributions of these species with warming climate at fine spatial scales.

  5. The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil

    NASA Astrophysics Data System (ADS)

    Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.

    2017-12-01

    Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.

  6. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    DOE PAGES

    Berryman, E. M.; Barnard, H. R.; Adams, H. R.; ...

    2015-02-10

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. In this paper, we quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important formore » dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Finally, soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.« less

  7. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, E. M.; Barnard, H. R.; Adams, H. R.

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. In this paper, we quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important formore » dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Finally, soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.« less

  8. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    USGS Publications Warehouse

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  9. Processes regulating watershed chemical export during snowmelt, fraser experimental forest, Colorado

    USGS Publications Warehouse

    Stottlemyer, R.

    2001-01-01

    In the Central Rocky Mountains, snowfall dominates precipitation. Airborne contaminants retained in the snowpack can affect high elevation surface water chemistry during snowmelt. At the Fraser Experimental Forest (FEF), located west of the Continental Divide in Central Colorado, snowmelt dominates the annual hydrograph, and accounts for >95% of annual stream water discharge. During the winters of 1989-1993, we measured precipitation inputs, snowpack water equivalent (SWE) and ion content, and stream water chemistry every 7-10 days along a 3150-3500 m elevation gradient in the subalpine and alpine Lexen Creek watershed. The study objectives were to (1) quantify the distribution of SWE and snowpack chemical content with elevation and aspect, (2) quantify snowmelt rates, temperature of soil, snowpack, and air with elevation and aspect, and (3) use change in upstream-downstream water chemistry during snowmelt to better define alpine and subalpine flowpaths. The SWE increased with elevation (P - 3??C) temperatures throughout winter which resulted in significant snowpack ion loss. By snowpack PWE in mid May, the snowpack had lost almost half the cumulative precipitation H+, NH4+, and SO42- inputs and a third of the NO3- input. Windborne soil particulate inputs late in winter increased snowpack base cation content. Variation in subalpine SWE and snowpack ion content with elevation and aspect, and wind redistribution of snowfall in the alpine resulted in large year-to-year differences in the timing and magnitude of SWE, PWE, and snowpack ion content. The alpine stream water ion concentrations changed little during snowmelt indicating meltwater passed quickly through surface porous soils and was well mixed before entering the stream. Conversely, subalpine stream water chemistry was diluted during snowmelt suggesting much melt water moved to the stream as shallow subsurface lateral flow. Published by Elsevier Science B.V.

  10. Carbon dioxide effluxes and their environmental controls in sagebrush steppe ecosystems along an elevation gradient in the Reynolds Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.

    2017-12-01

    The spatial and temporal variation of carbon dioxide effluxes and their environmental controls are poorly constrained in cold shrub steppe ecosystems. The objectives of this study were to 1) analyze environmental parameters in determining soil CO2 efflux, 2) assess the level of agreement between manual chambers and force diffusion (FD) soil CO2 efflux chambers, when both measurements are extrapolated across the growing season, and lastly to compare respiration fluxes to modeled ecosystem respiration fluxes. We installed FD chambers at four sites co-located with eddy covariance (EC) towers and soil moisture and temperature sensors along an elevation gradient in the Reynolds Creek Critical Zone Observatory in SW Idaho. FD chamber fluxes were collected continuously at 15-minute intervals. We sampled soil CO2 efflux with manual chambers at plant and interplant spaces in five plots at each site biweekly to monthly during the growing season. The sites included a Wyoming big sagebrush site, a low sagebrush site, a post-fire mountain big sagebrush site, and a mountain big sagebrush site located at elevations of 1425, 1680, 1808 and 2111 m. Climate variation followed the montane elevation gradient; mean annual precipitation (MAP) at the sites is 290, 337, 425, and 795 mm, respectively, and mean annual temperature is 8.9, 8.4, 6.1, 5.4°C. Automated force diffusion chambers detected large differences in carbon dioxide pulse dynamics along the elevation gradient. Growing season carbon dioxide fluxes were 3 times higher at the 425 mm MAP site compared than the lowest elevation sites at 290 and 337 MAP sites and >1.5 higher than the 795 mm MAP site over the same period. Manual fluxes showed similar seasonal patterns as FD chamber fluxes but often higher and greater spatial variability in fluxes than FD chamber fluxes. Plant and interplant flux differences were surprisingly similar, especially at higher elevations. Soil respiration ranged from 0.2-0.48 of ecosystem respiration suggesting that aboveground maintenance costs were relatively high at all of these sites. We conclude that coupled FD chamber, EC tower, and manual estimates hold promise in helping to partition and scale carbon fluxes from the plot to landscape scale.

  11. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China.

    PubMed

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250-2000 μm), rather than within the microaggregates (53-250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.

  12. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China

    PubMed Central

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S.

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions. PMID:26964101

  13. Forest gradient response in Sierran landscapes: the physical template

    USGS Publications Warehouse

    Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.

    2000-01-01

    Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches to gradient analysis, and bear strongly on our ability to use correlative approaches in assessing the potential responses of montane forests to anthropogenic climatic change.

  14. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland

    NASA Astrophysics Data System (ADS)

    Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K.; Arndal, Marie F.; Beier, Claus; Mikkelsen, Teis N.; Ambus, Per; Larsen, Klaus S.; Pilegaard, Kim; Michelsen, Anders; Andresen, Louise C.; Haugwitz, Merian; Bergmark, Lasse; Priemé, Anders; Zaitsev, Andrey S.; Georgieva, Slavka; Dam, Marie; Vestergård, Mette; Christensen, Søren

    2017-01-01

    In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.

  15. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland

    PubMed Central

    Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K.; Arndal, Marie F.; Beier, Claus; Mikkelsen, Teis N.; Ambus, Per; Larsen, Klaus S.; Pilegaard, Kim; Michelsen, Anders; Andresen, Louise C.; Haugwitz, Merian; Bergmark, Lasse; Priemé, Anders; Zaitsev, Andrey S.; Georgieva, Slavka; Dam, Marie; Vestergård, Mette; Christensen, Søren

    2017-01-01

    In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term. PMID:28120893

  16. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland.

    PubMed

    Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K; Arndal, Marie F; Beier, Claus; Mikkelsen, Teis N; Ambus, Per; Larsen, Klaus S; Pilegaard, Kim; Michelsen, Anders; Andresen, Louise C; Haugwitz, Merian; Bergmark, Lasse; Priemé, Anders; Zaitsev, Andrey S; Georgieva, Slavka; Dam, Marie; Vestergård, Mette; Christensen, Søren

    2017-01-25

    In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO 2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO 2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO 2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO 2 -increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.

  17. Infrared heater system for warming tropical forest understory plants and soils

    Treesearch

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  18. Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians

    Treesearch

    Barton D. Clinton

    2003-01-01

    Small canopy openings often alter understory microclimate, leading to changes in forest structure and composition. It is generally accepted that physical changes in the understory (i.e., microclimatic) due to canopy removal drive changes in basic forest processes, particularly seedling recruitment which is intrinsically linked to soil moisture availability, light and,...

  19. Illustrating harvest effects on site microclimate in a high-elevation forest stand.

    Treesearch

    W.B. Fowler; T.D. Anderson

    1987-01-01

    Three-dimensional contour surfaces were drawn for physiologically active radiation (PAR) and air and soil temperatures from measurements taken at a high-elevation site (1450 m) near the crest of the Cascade Range in central Washington. Measurements in a clearcut were compared with measurements from an adjacent uncut stand. Data for 31 days in July and August 1985...

  20. Elevational Dependence of Catchment-scale Evapotranspiration Partitioning as Revealed by Water Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Yamanaka, T.; Sato, R.

    2017-12-01

    Transpiration (T) through plants (i.e., green water) does not induce isotopic fractionation, although evaporation (E) from soils and water surfaces do. Therefore, water stable isotopes offer a powerful tool to partition evapotranspiration (ET) components. We attempted to evaluate catchment-scale T/ET for five mountainous catchments in the central Japan, using river water isotopes and isotope maps of precipitation and soil water as well as climatic and radar precipitation maps. The estimated T/ET ranged from 56% to 79% (ET not including interception loss), and negatively correlated with mean elevation of the catchments (r = -0.88). This is due to decreasing transpiration (-82 mm/yr per 100 m) and slightly increasing evaporation (8 mm/yr per 100 m) with increasing elevation. Another estimation scheme using isotope data only showed a positive correlation between elevation and E/P*, where P* is effective precipitation defined by gross precipitation minus interception. Because the forest coverage within the catchments has positive correlation with catchment-mean-elevation, both decrease in transpiration and increase in soil evaporation seem to reflect structural change in forests (e.g., dense to sparse) along elevation and thus temperature gradients. Applying the space-for-time substitution, our results indicates that global warming will increase transpiration (and thus carbon intake) at mid-latitude mountainous landscapes.

  1. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.

    PubMed

    Yin, Huajun; Li, Yufei; Xiao, Juan; Xu, Zhenfeng; Cheng, Xinyin; Liu, Qing

    2013-07-01

    Despite the perceived importance of exudation to forest ecosystem function, few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes. In this study, we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature (ambient temperature and infrared heater warming) and two nitrogen levels (unfertilized and 25 g N m(-2)  a(-1) ). Here, we show that the trees exposed to an elevated temperature increased their exudation rates I (μg C g(-1) root biomass h(-1) ), II (μg C cm(-1)  root length h(-1) ) and III (μg C cm(-2)  root area h(-1) ) in the unfertilized plots. The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation. Moreover, these increases in root-derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N (R(2)  = 0.790; P = 0.038), which was coupled with stimulated microbial activity and accelerated N transformations in the unfertilized soils. In contrast, the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity, indicating that the stimulatory effects of experimental warming on root exudation depend on soil fertility. Collectively, our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation. Accordingly, the underlying mechanisms by which plant root-microbe interactions influence soil organic matter decomposition and N cycling should be incorporated into climate-carbon cycle models to determine reliable estimates of long-term C storage in forests. © 2013 Blackwell Publishing Ltd.

  2. Photosynthetic photon flux density, carbon dioxide concentration and temperature influence photosynthesis in crotalaria species

    USDA-ARS?s Scientific Manuscript database

    Crotalarias are tropical legumes grown as cover crops or as green manure to improve soil fertility. As an understory plant in plantation systems, these cover crops receive low levels of irradiance and are subjected to elevated levels of CO2 and temperatures. A greenhouse experiment was conducted to ...

  3. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps.

    PubMed

    Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas

    2010-04-01

    Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism.We focused on the effects of air and soil temperature on net photosynthesis (P(n)) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.In general, P(n) was significantly lower in fall as compared to summer. Nevertheless, independent from season mean P(n) values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.

  4. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    NASA Astrophysics Data System (ADS)

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    Increasing N deposition, land use change, elevated atmospheric CO2 concentrations and global warming have altered soil nitrogen (N) cycling during the last decades. Those changes affected ecosystem services, such as C and N sequestration in soils, which calls for a better understanding of soil N transformation processes. The cleavage of macromolecular organic N by extracellular enzymes maintains an ongoing flow of new bioavailable organic N into biotic systems and is considered to be the bottle neck of terrestrial N cycling in litter and soils. Recent studies showed that protein depolymerization is susceptible to changes in C and N availabilities. Based on general biological observations the temperature sensitivity of soil organic N processes is expected to depend on whether they are rather enzyme limited (i.e. Q10=2) or diffusion limited (i.e. Q10= 1.0 - 1.3). However, temperature sensitivities of protein depolymerization and amino acid immobilization are still unknown. We therefore here report short-term temperature effects on organic N transformation rates in soils differing in physicochemical parameters but not in climate. Soil samples were collected from two geologically distinct sites close to the LFZ Raumberg-Gumpenstein, Styria, Austria, each from three different management types (arable land, grassland, forest). Four replicates of mineral soil were taken from every site and management type. The area provides a unique opportunity to study geological and management controls in soils without confounding effects of climate and elevation. The soils differ in several soil chemical parameters, such as soil pH, base saturation, soil C: N ratio and SOM content as well as in soil physical parameters, such as soil texture, bulk density and water holding capacity. Soils were pre-incubated at 5, 15 and 25˚ C for one day. Protein depolymerization rates and amino acid immobilization rates were assessed by an isotope pool dilution assay with 15N labeled amino acids at the three different temperatures. Amino acid concentrations and at% 15N of amino acids were measured in soil extracts at two time points by a novel approach based on the conversion of α-amino groups to N2O and purge-and-trap isotope ratio mass spectrometry. Protein availability was measured by extraction in solvents of increasing extraction efficiency (water, salt, metaphosphate, hydroxide), followed by acid hydrolysis to free amino acids and reaction with orthophthaldialdehyde. Peptidase activity was also measured at 5, 15 and 25˚ C using fluorescence probes. We expect that soil texture (clay content) and pH will affect protein sorption and availability and thereby affect depolymerization rates. Soil C:N ratios may control the N demand of microorganisms and thus affect enzyme production and amino acid immobilization rates. Moreover, soil pH is a major control on microbial community structure and may thereby affect the production of extracellular enzymes involved in protein and peptide decomposition. Due to the differences in temperature sensitivity of diffusion and enzymatic processes we expect higher temperature sensitivities given that protein decomposition is enzyme- rather than substrate-limited. This study will therefore greatly advance our understanding of major controls of the soil N cycle and provide highly important data for refining soil N cycle models.

  5. The activation energy of stabilised/solidified contaminated soils.

    PubMed

    Chitambira, B; Al-Tabbaa, A; Perera, A S R; Yu, X D

    2007-03-15

    Developing an understanding of the time-related performance of cement-treated materials is essential in understanding their durability and long-term effectiveness. A number of models have been developed to predict this time-related performance. One such model is the maturity concept which involves use of the 'global' activation energy which derives from the Arrhenius equation. The accurate assessment of the activation energy is essential in the realistic modelling of the accelerated ageing of cement-treated soils. Experimentally, this model is applied to a series of tests performed at different elevated temperatures. Experimental work, related to the results of a time-related performance on a contaminated site in the UK treated with in situ stabilisation/solidification was carried out. Three different cement-based grouts were used on two model site soils which were both contaminated with a number of heavy metals and a hydrocarbon. Uncontaminated soils were also tested. Elevated temperatures up to 60 degrees C and curing periods up to 90 days were used. The resulting global activation energies for the uncontaminated and contaminated soils were compared. Lower values were obtained for the contaminated soils reflecting the effect of the contaminants. The resulting equivalent ages for the uncontaminated and contaminated mixes tested were 5.1-7.4 and 0.8-4.1 years, respectively. This work shows how a specific set of contaminants affect the E(a) values for particular cementitious systems and how the maturity concept can be applied to cement-treated contaminated soils.

  6. Interactive effects of preindustrial, current and future atmospheric CO2 concentrations and temperature on soil fungi associated with two Eucalyptus species.

    PubMed

    Anderson, Ian C; Drigo, Barbara; Keniry, Kerry; Ghannoum, Oula; Chambers, Susan M; Tissue, David T; Cairney, John W G

    2013-02-01

    Soil microbial processes have a central role in global fluxes of the key biogenic greenhouse gases and are likely to respond rapidly to climate change. Whether climate change effects on microbial processes lead to a positive or negative feedback for terrestrial ecosystem resilience is unclear. In this study, we investigated the interactive effects of [CO(2)] and temperature on soil fungi associated with faster-growing Eucalyptus saligna and slower-growing Eucalyptus sideroxylon, and fungi that colonised hyphal in-growth bags. Plants were grown in native soil under controlled soil moisture conditions, while subjecting the above-ground compartment to defined atmospheric conditions differing in CO(2) concentrations (290, 400, 650 μL L(-1)) and temperature (26 and 30 °C). Terminal restriction fragment length polymorphism and sequencing methods were used to examine effects on the structure of the soil fungal communities. There was no significant effect of host plant or [CO(2)]/temperature treatment on fungal species richness (α diversity); however, there was a significant effect on soil fungal community composition (β diversity) which was strongly influenced by eucalypt species. Interestingly, β diversity of soil fungi associated with both eucalypt species was significantly influenced by the elevated [CO(2) ]/high temperature treatment, suggesting that the combination of future predicted levels of atmospheric [CO(2)] and projected increases in global temperature will significantly alter soil fungal community composition in eucalypt forest ecosystems, independent of eucalypt species composition. These changes may arise through direct effects of changes in [CO(2)] and temperature on soil fungi or through indirect effects, which is likely the case in this study given the plant-dependent nature of our observations. This study highlights the role of plant species in moderating below-ground responses to future predicted changes to [CO(2)] and temperature and the importance of considering integrated plant-soil system responses. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Spatial heterogeneity in ecologically important climate variables at coarse and fine scales in a high-snow mountain landscape.

    PubMed

    Ford, Kevin R; Ettinger, Ailene K; Lundquist, Jessica D; Raleigh, Mark S; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.

  8. Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape

    PubMed Central

    Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277

  9. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.

    PubMed

    Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%.

  10. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe

    PubMed Central

    Aksoy, Ece

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%. PMID:27011357

  11. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with negligible changes in Topt, Tmin and Q10 for respiration. When these physiological changes were scaled with soil temperature data to estimate real-time variation in situ during three years, the warm-adaptation resulted in elevated microbial CUEs during summer temperatures in warm-adapted communities and reduced microbial CUEs during winter temperatures. By comparing simulated microbial CUEs in cold-adapted communities exposed to warmed conditions to microbial CUEs in the warm-adapted communities exposed to those temperatures, we could demonstrate that the shifts towards warm-adapted microbial communities had selected for elevated microbial CUEs for the full range of in situ soil temperatures during three years. Our results suggest that microbial adaptation to warming will enhance microbial CUEs, shifting their balance of C use from respiration to biomass production. If our estimates scale to ecosystem level, this would imply that warm-adapted microbial communities will ultimately have the potential to store more C in soil than their cold-adapted counter parts could when exposed to warmer temperatures.

  12. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{submore » 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.« less

  13. Phytolacca americana from contaminated and noncontaminated soils of South Korea: Effects of elevated temperature, CO2 and simulated acid rain on plant growth response

    USGS Publications Warehouse

    Kim, Y.-O.; Rodriguez, R.J.; Lee, E.J.; Redman, R.S.

    2008-01-01

    Chemical analyses performed on the invasive weed Phytolacca americana (pokeweed) growing in industrially contaminated (Ulsan) and noncontaminated (Suwon) sites in South Korea indicated that the levels of phenolic compounds and various elements that include some heavy metals (Al, As, B, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were statistically higher in Ulsan soils compared to Suwon soils with Al being the highest (>1,116 mg/l compared to 432 mg/l). Analysis of metals and nutrients (K, Na, Ca, Mg, Cl, NH4, N, P, S) in plant tissues indicated that accumulation occurred dominantly in plant leaves with Al levels being 33.8 times higher in Ulsan plants (PaU) compared to Suwon plants (PaS). The ability of PaU and PaS to tolerate stress was evaluated under controlled conditions by varying atmospheric CO2 and temperature and soil pH. When grown in pH 6.4 soils, the highest growth rate of PaU and PaS plants occurred at elevated (30??C) and non-elevated (25??C) temperatures, respectively. Both PaU and PaS plants showed the highest and lowest growth rates when exposed to atmospheric CO2 levels of 360 and 650 ppm, respectively. The impact of soil pH (2-6.4) on seed germination rates, plant growth, chlorophyll content, and the accumulation of phenolics were measured to assess the effects of industrial pollution and global-warming-related stresses on plants. The highest seed germination rate and chlorophyll content occurred at pH 2.0 for both PaU and PaS plants. Increased pH from 2-5 correlated to increased phenolic compounds and decreased chlorophyll content. However, at pH 6.4, a marked decrease in phenolic compounds, was observed and chlorophyll content increased. These results suggest that although plants from Ulsan and Suwon sites are the same species, they differ in the ability to deal with various stresses. ?? 2008 Springer Science+Business Media, LLC.

  14. Effects of experimental warming on soil temperature, moisture and respiration in northern Mongolia

    NASA Astrophysics Data System (ADS)

    Sharkhuu, A.; Plante, A. F.; Casper, B. B.; Helliker, B. R.; Liancourt, P.; Boldgiv, B.; Petraitis, P.

    2010-12-01

    Mean annual air temperature in the Lake Hövsgöl region of northern Mongolia has increased by 1.8 °C over the last 40 years, greater than global average temperature increases. A decrease of soil moisture due to changes in precipitation regime is also predicted over the northern region of Mongolia. Warmer temperatures generally result in higher soil CO2 efflux, but responses of soil efflux to climate change may differ among ecosystems due to response variations in soil temperature and moisture regime. The objectives of our study were to examine the environmental responses (soil temperature and moisture) to experimental warming, and to test responses of soil CO2 efflux to experimental warming, in three different ecozones. The experimental site is located in Dalbay Valley, on the eastern shore of Lake Hövsgöl in northern Mongolia (51.0234° N 100.7600° E; 1670 m elevation). Replicate plots with ITEX-style open-top passive warming chambers (OTC) and non-warmed control areas were installed in three ecosystems: (1) semi-arid grassland on the south-facing slope not underlain by permafrost, (2) riparian zone, and (3) larch forest on the north-facing slope underlain by permafrost. Aboveground air temperature and belowground soil temperature and moisture (10 and 20 cm) were monitored using sensors and dataloggers. Soil CO2 efflux was measured periodically using a portable infra-red gas analyzer with an attached soil respiration chamber. The warming chambers were installed and data collected during the 2009 and 2010 growing seasons. Passive warming chambers increased nighttime air temperatures; more so in grassland compared to the forest. Increases in daytime air temperatures were observed in the grassland, but were not significant in the riparian and forest areas. Soil temperatures in warmed plots were consistently higher in all three ecozones at 10 cm depth but not at 20 cm depth. Warming chambers had a slight drying effect in the grassland, but no consistent effect in forest and riparian areas. Measured soil CO2 efflux rates were highest in riparian area, and lowest in the grassland. Initial results of soil efflux measurements suggest that the effect of warming treatment significantly depends on the ecosystem type: soil efflux rates differed between warming treatments in forest plots, but not in riparian and grassland plots.

  15. Abiotic dechlorination of chlorinated ethenes in natural clayey soils: Impacts of mineralogy and temperature

    NASA Astrophysics Data System (ADS)

    Schaefer, Charles E.; Ho, Paul; Gurr, Christopher; Berns, Erin; Werth, Charles

    2017-11-01

    Laboratory batch experiments were performed to assess the impacts of temperature and mineralogy on the abiotic dechlorination of tetrachloroethene (PCE) or trichloroethene (TCE) due to the presence of ferrous minerals in natural aquifer clayey soils under anaerobic conditions. A combination of x-ray diffraction (XRD), magnetic susceptibility, and ferrous mineral content were used to characterize each of the 3 natural soils tested in this study, and dechlorination at temperatures ranging from 20 to 55 °C were examined. Results showed that abiotic dechlorination occurred in all 3 soils examined, yielding reduced gas abiotic dechlorination products acetylene, butane, ethene, and/or propane. Bulk first-order dechlorination rate constants (kbulk), scaled to the soil:water ratio expected for in situ conditions, ranged from 2.0 × 10- 5 day- 1 at 20 °C, to 32 × 10- 5 day- 1 at 55 °C in the soil with the greatest ferrous mineral content. For the generation of acetylene and ethene from PCE, the reaction was well described by Arrhenius kinetics, with an activation energy of 91 kJ/mol. For the generation of coupling products butane and propane, the Arrhenius equation did not provide a satisfactory description of the data, likely owing to the complex reaction mechanisms associated with these products and/or diffusional mass transfer processes associated with the ferrous minerals likely responsible for these coupling reactions. Although the data set was too limited to determine a definitive correlation, the two soils with elevated ferrous mineral contents had elevated abiotic dechlorination rate constants, while the one soil with a low ferrous mineral content had a relatively low abiotic dechlorination rate constant. Overall, results suggest intrinsic abiotic dechlorination rates may be an important long-term natural attenuation component in site conceptual models for clays that have the appropriate iron mineralogy.

  16. Elevated CO2, warmer temperatures and soil water deficit affect plant growth, physiology and water use of cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Changes in temperature, atmospheric [CO2] and precipitation under the scenarios of projected climate change present a challenge to crop production, and may have significant impacts on the physiology, growth and yield of cotton (Gossypium hirsutum L.). A glasshouse experiment explored the early growt...

  17. Probing soil C metabolism in response to temperature: results from experiments and modeling

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Dalder, J.; Blankinship, J.; Selmants, P. C.; Schwartz, E.; Koch, G. W.; Hart, S.; Hungate, B. A.

    2010-12-01

    C use efficiency (CUE) is one of the least understood aspects of soil C cycling, has a very large effect on soil respiration and C sequestration, and decreases with elevated temperature. CUE is directly related to substrate partitioning over energy production and biosynthesis. The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We have developed a new stable isotope approach using position-specific 13C-labeled metabolic tracers to measure these fundamental metabolic processes in intact soil communities (1). We use this new approach, combined with models of soil metabolic flux patterns, to analyze the response of microbial energy production, biosynthesis, and CUE to temperature. The method consists of adding small but precise amounts of position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through various metabolic pathways. A simplified metabolic model consisting of 23 reactions is iteratively solved using results of the metabolic tracer experiments and information on microbial precursor demand under different temperatures. This new method enables direct study of fundamental aspects of microbial energy production, C use efficiency, and soil organic matter formation in response to temperature. (1) Dijkstra P, Blankinship JC, Selmants PC, Hart SC, Koch GW, Schwarz E and Hungate BA. Probing metabolic flux patterns of soil microbial communities using parallel position-specific tracer labeling. Soil Biology and Biochemistry (accepted)

  18. Effects of different warming patterns on the translocations of cadmium and copper in a soil-rice seedling system.

    PubMed

    Ge, Liqiang; Cang, Long; Liu, Hui; Zhou, Dongmei

    2015-10-01

    Heavy-metal-polluted rice poses potential threats to food security and has received great attention in recent years, while how elevated temperature affects the translocation of heavy metals in soil-rice system is unclear. In this study, potting experiments were conducted in plant growth chambers for 24 days to evaluate the effects of different warming patterns on cadmium (Cd) and copper (Cu) migrations in soil-rice seedling system. Rice seedlings were cultivated under four different day/night temperature patterns: 25/18 °C (CK), 25/23 °C (N5), 30/18 °C (D5), and 30/23 °C (DN5), respectively. Non-contaminated soil (CS), Cd/Cu lightly polluted soil (LS), and highly polluted soil (HS) were chosen for experiments. The results showed that different warming patterns decreased soil pH and elevated available soil Cd/Cu concentrations. The shoot and root biomass were increased by 39.0-320 and 28.6-348 %, respectively. Warming induced significant (p < 0.05) increase of Cd/Cu uptake and translocation in rice seedlings, especially for the Cd concentration in shoot. The Cd concentrations of shoot increased by 5-12 times and up to 8 times for LS and HS, respectively. Meanwhile, the Cd concentration of shoot increased with warming while that of root kept unchanged, indicating that warming promoted cadmium translocation from root to shoot (about -four to nine times of CK), while warming changed the Cu concentration of shoot similarly to that of root and had no significant effects on Cu translocations in rice seedlings. Our study may provide improved understanding for Cd/Cu fates in soil-rice system by warming and imply that heavy metals had the higher environmental risk under the future global warming.

  19. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.

    PubMed

    Ambebe, Titus F; Dang, Qing-Lai

    2009-11-01

    White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.

  20. Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow

    NASA Astrophysics Data System (ADS)

    Kelleners, T.

    2015-12-01

    A numerical model is developed to calculate coupled water flow and heat transport in seasonally frozen soil and snow. Both liquid water flow and water vapor flow are included. The effect of dissolved ions on soil water freezing point depression is included by combining an expression for osmotic head with the Clapeyron equation and the van Genuchten soil water retention function. The coupled water flow and heat transport equations are solved using the Thomas algorithm and Picard iteration. Ice pressure is always assumed zero and frost heave is neglected. The new model is tested using data from a high-elevation rangeland soil that is subject to significant soil freezing and a mountainous forest soil that is snow-covered for about 8 months of the year. Soil hydraulic parameters are mostly based on measurements and only vegetation parameters are fine-tuned to match measured and calculated soil water content, soil & snow temperature, and snow height. Modeling statistics for both systems show good performance for temperature, intermediate performance for snow height, and relatively low performance for soil water content, in accordance with earlier results with an older version of the model.

  1. Warming and Carbon Dioxide Enrichment Alter Plant Production and Ecosystem gas Exchange in a Semi-Arid Grassland Through Direct Responses to Global Change Factors and Indirect Effects on Water Relations

    NASA Astrophysics Data System (ADS)

    Morgan, J. A.; Pendall, E.; Williams, D. G.; Bachman, S.; Dijkstra, F. A.; Lecain, D. R.; Follett, R.

    2007-12-01

    The Prairie Heating and CO2 Enrichment (PHACE) experiment was initiated in Spring, 2007 to evaluate the combined effects of warming and elevated CO2 on a northern mixed-grass prairie. Thirty 3-m diameter circular experimental plots were installed in Spring, 2006 at the USDA-ARS High Plains Grasslands Research Station, just west of Cheyenne, WY, USA. Twenty plots were assigned to a two-level factorial combination of two CO2 concentrations (present ambient, 380 ppmV; and elevated, 600 ppmV), and two levels of temperature (present ambient; and elevated temperature, 1.5/3.0 C warmer day/night), with five replications for each treatment. Five of the ten remaining plots were subjected to either frequent, small water additions throughout the growing season, and the other five to a deep watering once or twice during the growing season. The watering treatments were imposed to simulate hypothesized water savings in the CO2-enriched plots, and to contrast the influence of variable water dynamics on ecosystem processes. Carbon dioxide enrichment of the ten CO2- enriched plots is accomplished with Free Air CO2 Enrichment (FACE) technology and occurs during daylight hours of the mid-April - October growing season. Warming is done year-round with circularly-arranged ceramic heater arrays positioned above the ring perimeters, and with temperature feed-backs to control day/night canopy surface temperatures. Carbon dioxide enrichment began in Spring, 2006, and warming was added in Spring, 2007. Results from the first year of CO2 enrichment (2006) confirmed earlier reports that CO2 increases productivity in semi-arid grasslands (21% increase in peak seasonal above ground biomass for plants grown under elevated CO2 compared to non-enriched controls), and that the response was related to CO2- induced water savings. Growth at elevated CO2 reduced leaf carbon isotope discrimination and N concentrations in plants compared to results obtained in control plots, but the magnitude of changes were highly species specific. Ecosystem-level gas exchange measurements indicated that interactions between watering and CO2 enrichment increased C cycling over a range of soil moisture conditions, although watering had a greater relative impact on C fluxes than CO2 enrichment. Results from the combined warming and CO2 enrichment experiment in 2007 indicate soil fluxes of CO2 increased with elevated CO2 and warming, but decreased with warming later in the year compared to un-heated controls. Soil CH4 uptake was enhanced by elevated CO2 but reduced by warming, particularly later in the year. Soil fluxes of N2O were unaffected by treatment. These preliminary results indicate potentially strong feedbacks between carbon cycling and warming are mediated by ecosystem processes in this semiarid rangeland.

  2. Evidence that chytrids dominate fungal communities in high-elevation soils

    PubMed Central

    Freeman, K. R.; Martin, A. P.; Karki, D.; Lynch, R. C.; Mitter, M. S.; Meyer, A. F.; Longcore, J. E.; Simmons, D. R.; Schmidt, S. K.

    2009-01-01

    Periglacial soils are one of the least studied ecosystems on Earth, yet they are widespread and are increasing in area due to retreat of glaciers worldwide. Soils in these environments are cold and during the brief summer are exposed to high levels of UV radiation and dramatic fluctuations in moisture and temperature. Recent research suggests that these environments harbor immense microbial diversity. Here we use sequencing of environmental DNA, culturing of isolates, and analysis of environmental variables to show that members of the Chytridiomycota (chytrids) dominate fungal biodiversity and perhaps decomposition processes in plant-free, high-elevation soils from the highest mountain ranges on Earth. The zoosporic reproduction of chytrids requires free water, yet we found that chytrids constituted over 70% of the ribosomal gene sequences of clone libraries from barren soils of the Himalayas and Rockies; by contrast, they are rare in other soil environments. Very few chytrids have been cultured, although we were successful at culturing chytrids from high-elevation sites throughout the world. In a more focused study of our sites in Colorado, we show that carbon sources that support chytrid growth (eolian deposited pollen and microbial phototrophs) are abundant and that soils are saturated with water for several months under the snow, thus creating ideal conditions for the development of a chytrid-dominated ecosystem. Our work broadens the known biodiversity of the Chytridomycota, and describes previously unsuspected links between aquatic and terrestrial ecosystems in alpine regions. PMID:19826082

  3. Effects of elevated CO2, warming and summer drought on the carbon balance in a Danish heathland after seven treatment years - results from the CLIMAITE project

    NASA Astrophysics Data System (ADS)

    Steenberg Larsen, Klaus; Ambus, Per; Beier, Claus; Ibrom, Andreas; Ransijn, Johannes; Kappel Schmidt, Inger; Wu, Jian

    2013-04-01

    In a Danish heathland co-dominated by heather (Calluna vulgaris) and grasses (Deschampsia flexuosa) we simulated realistic future climate scenarios in a full-factorial design of elevated atmospheric CO2 (510 ppm), increased temperatures (0.5-1.5 °Celcius) and intensified summer drought events (4-6 weeks per year). Treatments were initiated in 2005. Using manual chamber techniques, we measured soil respiration (SR), ecosystem respiration (ER) and net ecosystem exchange of CO2 (NEE) and determined gross ecosystem photosynthesis (GEP) as NEE - ER. We also monitored carbon losses in the form of dissolved organic carbon (DOC) in leached soil water. The results indicate that across all combinations of treatments with elevated CO2, SR rates increased by 20-30%, whereas GEP rates increased by

  4. Shallow snowpack inhibits soil respiration in sagebrush steppe through multiple biotic and abiotic mechanisms

    DOE PAGES

    Tucker, Colin L.; Tamang, Shanker; Pendall, Elise; ...

    2016-05-01

    In sagebrush steppe, snowpack may govern soil respiration through its effect on multiple abiotic and biotic factors. Across the Intermountain West of the United States, snowpack has been declining for decades and is projected to decline further over the next century, making the response of soil respiration to snowpack a potentially important factor in the ecosystem carbon cycle. In this study, we evaluated the direct and indirect roles of the snowpack in driving soil respiration in sagebrush steppe ecosystems by taking advantage of highway snowfences in Wyoming to manipulate snowpack. An important contribution of this study is the use ofmore » Bayesian modeling to quantify the effects of soil moisture and temperature on soil respiration across a wide range of conditions from frozen to hot and dry, while simultaneously accounting for biotic factors (e.g., vegetation cover, root density, and microbial biomass and substrate-use diversity) affected by snowpack. Elevated snow depth increased soil temperature (in the winter) and moisture (winter and spring), and was associated with reduced vegetation cover and microbial biomass carbon. Soil respiration showed an exponential increase with temperature, with a temperature sensitivity that decreased with increasing seasonal temperature (Q 10 = 4.3 [winter], 2.3 [spring], and 1.7 [summer]); frozen soils were associated with unrealistic Q 10 approximate to 7989 due to the liquid-to-ice transition of soil water. Soil respiration was sensitive to soil water content; predicted respiration under very dry conditions was less than 10% of respiration under moist conditions. While higher vegetation cover increased soil respiration, this was not due to increased root density, and may reflect differences in litter inputs. Microbial substrate-use diversity was negatively related to reference respiration (i.e., respiration rate at a reference temperature and optimal soil moisture), although the mechanism remains unclear. Lastly, this study indicates that soil respiration is inhibited by shallow snowpack through multiple mechanisms; thus, future decreases in snowpack across the sagebrush steppe have the potential to reduce losses of soil C, potentially affecting regional carbon balance.« less

  5. Shallow snowpack inhibits soil respiration in sagebrush steppe through multiple biotic and abiotic mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Colin L.; Tamang, Shanker; Pendall, Elise

    In sagebrush steppe, snowpack may govern soil respiration through its effect on multiple abiotic and biotic factors. Across the Intermountain West of the United States, snowpack has been declining for decades and is projected to decline further over the next century, making the response of soil respiration to snowpack a potentially important factor in the ecosystem carbon cycle. In this study, we evaluated the direct and indirect roles of the snowpack in driving soil respiration in sagebrush steppe ecosystems by taking advantage of highway snowfences in Wyoming to manipulate snowpack. An important contribution of this study is the use ofmore » Bayesian modeling to quantify the effects of soil moisture and temperature on soil respiration across a wide range of conditions from frozen to hot and dry, while simultaneously accounting for biotic factors (e.g., vegetation cover, root density, and microbial biomass and substrate-use diversity) affected by snowpack. Elevated snow depth increased soil temperature (in the winter) and moisture (winter and spring), and was associated with reduced vegetation cover and microbial biomass carbon. Soil respiration showed an exponential increase with temperature, with a temperature sensitivity that decreased with increasing seasonal temperature (Q 10 = 4.3 [winter], 2.3 [spring], and 1.7 [summer]); frozen soils were associated with unrealistic Q 10 approximate to 7989 due to the liquid-to-ice transition of soil water. Soil respiration was sensitive to soil water content; predicted respiration under very dry conditions was less than 10% of respiration under moist conditions. While higher vegetation cover increased soil respiration, this was not due to increased root density, and may reflect differences in litter inputs. Microbial substrate-use diversity was negatively related to reference respiration (i.e., respiration rate at a reference temperature and optimal soil moisture), although the mechanism remains unclear. Lastly, this study indicates that soil respiration is inhibited by shallow snowpack through multiple mechanisms; thus, future decreases in snowpack across the sagebrush steppe have the potential to reduce losses of soil C, potentially affecting regional carbon balance.« less

  6. Carbon dioxide concentration in caves and soils in an alpine setting: implications for speleothem fabrics and their palaeoclimate significance

    NASA Astrophysics Data System (ADS)

    Borsato, Andrea; Frisia, Silvia; Miorandi, Renza

    2015-04-01

    Carbon dioxide concentration in soils controls carbonate dissolution, soil CO2 efflux to the atmosphere, and CO2 transfer to the subsurface that lead, ultimately, to speleothem precipitation. Systematic studies on CO2 concentration variability in soil and caves at regional scale are, however, few. Here, the systematic investigation of CO2 concentration in caves and soils in a temperate, Alpine region along a 2,100 m altitudinal range transect, which corresponds to a mean annual temperature (MAT) range of 12°C is presented. Soil pCO2 is controlled by the elevation and MAT and exhibits strong seasonality, which follows surface air temperature with a delay of about a month. The aquifer pCO2, by contrast, is fairly constant throughout the year, and it is primarily influenced by summer soil pCO2. Cave CO2 concentration is a balance between the CO2 influx and CO2 efflux, where the efflux is controlled by the cave ventilation, which is responsible for low pCO2 values recorded in most of the caves with respect to soil levels. Carbon dioxide in the innermost part of the studied caves exhibits a clear seasonal pattern. Thermal convection is the most common mechanism causing higher ventilation and low cave air pCO2 levels during the winter season: this promotes CO2 degassing and higher supersaturation in the drip water and, eventually, higher speleothem growth rates during winter. The combined influence of three parameters - dripwater pCO2, dripwater Ca content, and cave air pCO2 - all related to the infiltration elevation and MAT directly controls calcite supersaturation in dripwater. Four different altitudinal belts are then defined, which reflect temperature-dependent saturation state of dripwaters. These belts broadly correspond to vegetation zones: the lower montane (100 to 800 m asl), the upper montane (800 to 1600 m asl), the subalpine (1600 to 2200 m asl) and the Alpine (above 2200 m asl). Each altitudinal belt is characterised by different calcite fabrics, which can shift upward/downward in elevation as a response to temperature increase/decrease through time. In the lower and upper montane zones the columnar types (compact, open, fascicular optic) are the most common fabrics, with the microcrystalline type most typical of the upper montane zone. The dendritic fabric becomes predominant in the higher upper montane and lower subalpine zones. The higher subalpine to lower alpine zones the only speleothem actually forming is moonmilk. Eventually, the occurrence of "altitudinal" fabrics within the vertical growth axis of a stalagmite is indicative of changes in the MAT through time Therefore, fabric changes in fossil speleothems in temperate climate settings can be potentially used to reconstruct regional MAT changes in the past.

  7. Humic Acid Composition and Characteristics of Soil Organic Matter in Relation to the Elevation Gradient of Moso Bamboo Plantations.

    PubMed

    Wang, Hsueh-Ching; Chou, Chiao-Ying; Chiou, Chyi-Rong; Tian, Guanglong; Chiu, Chih-Yu

    2016-01-01

    Studying the influence of climatic and/or site-specific factors on soil organic matter (SOM) along an elevation gradient is important for understanding the response of SOM to global warming. We evaluated the composition of SOM and structure of humic acids along an altitudinal gradient from 600 to 1400 m in moso bamboo (Phyllostachys edulis) plantations in central Taiwan using NMR spectroscopy and photometric analysis. Total organic C and total nitrogen (N) content increased with increasing elevation. Aromaticity decreased and ΔlogK (the logarithm of the absorbance ratio of humic acids at 400 and 600 nm) increased with increasing elevation, which suggests that SOM humification decreased with increasing elevation. High temperature at low elevations seemed to enhance the decomposition (less accumulation of total organic C and N) and humification (high aromaticity and low ΔlogK). The alkyl-C/O-alkyl-C (A/O-A) ratio of humic acids increased with increasing elevation, which suggests that SOM humification increased with increasing elevation; this finding was contrary to the trend observed for ΔlogK and aromaticity. Such a discrepancy might be due to the relatively greater remaining of SOM derived from high alkyl-C broadleaf litter of previous forest at high elevations. The ratio of recalcitrant C to total organic C was low at low elevations, possibly because of enhanced decomposition of recalcitrant SOM from the previous broadleaf forest during long-term intensive cultivation and high temperature. Overall, the change in SOM pools and in the rate of humification with elevation was primarily affected by changes in climatic conditions along the elevation gradient in these bamboo plantations. However, when the composition of SOM, as assessed by NMR spectroscopy and photometric analysis was considered, site-specific factors such as residual SOM from previous forest and intensive cultivation history could also have an important effect on the humic acid composition and humification of SOM.

  8. Humic Acid Composition and Characteristics of Soil Organic Matter in Relation to the Elevation Gradient of Moso Bamboo Plantations

    PubMed Central

    Wang, Hsueh-Ching; Chou, Chiao-Ying; Chiou, Chyi-Rong; Tian, Guanglong

    2016-01-01

    Studying the influence of climatic and/or site-specific factors on soil organic matter (SOM) along an elevation gradient is important for understanding the response of SOM to global warming. We evaluated the composition of SOM and structure of humic acids along an altitudinal gradient from 600 to 1400 m in moso bamboo (Phyllostachys edulis) plantations in central Taiwan using NMR spectroscopy and photometric analysis. Total organic C and total nitrogen (N) content increased with increasing elevation. Aromaticity decreased and ΔlogK (the logarithm of the absorbance ratio of humic acids at 400 and 600 nm) increased with increasing elevation, which suggests that SOM humification decreased with increasing elevation. High temperature at low elevations seemed to enhance the decomposition (less accumulation of total organic C and N) and humification (high aromaticity and low ΔlogK). The alkyl-C/O-alkyl-C (A/O-A) ratio of humic acids increased with increasing elevation, which suggests that SOM humification increased with increasing elevation; this finding was contrary to the trend observed for ΔlogK and aromaticity. Such a discrepancy might be due to the relatively greater remaining of SOM derived from high alkyl-C broadleaf litter of previous forest at high elevations. The ratio of recalcitrant C to total organic C was low at low elevations, possibly because of enhanced decomposition of recalcitrant SOM from the previous broadleaf forest during long-term intensive cultivation and high temperature. Overall, the change in SOM pools and in the rate of humification with elevation was primarily affected by changes in climatic conditions along the elevation gradient in these bamboo plantations. However, when the composition of SOM, as assessed by NMR spectroscopy and photometric analysis was considered, site-specific factors such as residual SOM from previous forest and intensive cultivation history could also have an important effect on the humic acid composition and humification of SOM. PMID:27583451

  9. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    USGS Publications Warehouse

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  10. Mineralogy of Antarctica Dry Valley Soils: Implications for Pedogenic Processes on Mars

    NASA Technical Reports Server (NTRS)

    Quinn, J. E.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.

    2010-01-01

    The Antarctic Dry Valleys (ADVs) located in the Transantarctic Mountains are the coldest and driest locations on Earth. The mean annual air temperature is -20 C or less and the ADVs receive 100mm or less of precipitation annually in the form of snow. The cold and dry climate in the ADVs is one of the best terrestrial analogs for the climatic conditions on Mars [2]. The soils in the ADVs have been categorized into three soil moisture zones: subxerous, xerous and ultraxerous. The subxerous zone is a coastal region in which soils have ice-cemented permafrost relatively close to the surface. Moisture is available in relatively large amounts and soil temperatures are above freezing throughout the soil profile (above ice permafrost) in summer months. The xerous zone, the most widespread of the three zones, is an inland region with a climate midway between the subxerous and ultraxerous. The soils from this zone have dry permafrost at moderate depths (30-75cm) but have sufficient water in the upper soil horizons to allow leaching of soluble materials. The ultraxerous zone is a high elevation zone, where both temperature and precipitation amounts are very low resulting in dry permafrost throughout the soil profile. The three moisture regime regions are similar to the three microclimatic zones (coastal thaw, inland mixed, stable upland) defined by Marchant and Head.

  11. The Impact of Thermal Remediation on Soil Rehabilitation

    NASA Astrophysics Data System (ADS)

    Pape, Andrew; Switzer, Christine; Knapp, Charles

    2013-04-01

    In an effort to restore the social and economic value of brownfield sites contaminated by hazardous organic liquids, many new remediation techniques involving the use of elevated temperatures to desorb and extract or destroy these contaminants have been developed. These approaches are typically applied to heavily contaminated soils to effect substantial source removal from the subsurface. These processes operate over a range of temperatures from just above ambient to in excess of 1000˚C depending on technology choice and contaminant type. To facilitate the successful rehabilitation of treated soils for agriculture, biomass production, or habitat enrichment the effects of high temperatures on the ability of soil to support biological activity needs to be understood. Four soils were treated with high temperatures or artificially contaminated and subjected to a smouldering treatment (600-1100°C) in this investigation. Subsequent chemical analysis, plant growth trials and microbial analysis were used to characterise the impacts of these processes on soil geochemistry, plant health, and potential for recovery. Decreases were found in levels of carbon (>250˚C), nitrogen (>500˚C) and phosphorus (1000˚C) with intermediate temperatures having variable affects on bio-available levels. Macro and micro nutrients such as potassium, calcium, zinc and copper also showed changes with general trends towards reduced bioavailability at higher temperatures. Above 500°C, cation exchange capacity and phosphate adsorption were lowered indicating that nutrient retention will be a problem in some treated soils. In addition, these temperatures reduced the content of clay sized particles changing the texture of the soils. These changes had a statistically significant impact on plant growth with moderate growth reductions occurring at 250°C and 500°C. Above 750°C, growth was extremely limited and soils treated at these temperatures would need major restorative efforts. Microbial re-colonisation and activity were inhibited in soils treated above 500°C due to the lack of available carbon sources. Early experiments with organic amendments and green manures show promise in facilitating more rapid recolonisation. These results underscore the importance of considering long-term soil recovery as part of the remediation strategy.

  12. Drought causes substantial reductions in non-isothermal soil strength

    NASA Astrophysics Data System (ADS)

    Vahedifard, F.; Robinson, J. D.; Love, C. A.; AghaKouchak, A.

    2016-12-01

    The stability and settlement of natural slopes and engineering structures are governed primarily by the shear strength of foundation soil. Understanding soil-atmosphere interactions and their impacts on shear strength is imperative to evaluating drought impacts on the resilience of our infrastructure. This understanding is also important for assessing a variety of emerging science and engineering problems in a changing climate including analyzing existing and new infrastructures, landslides, soil carbon sequestration, land management, and managing traction and tillage in agriculture. While progress has been made in understanding shear strength response to soil moisture changes, the impacts of concurrent soil moisture and temperature changes on shear strength remain uncertain from a regional-scale perspective. Here we present a methodological framework based on various soil types, temperatures, and moistures, and surface fluxes, to quantify a non-isothermal soil shear strength. We employ a non-isothermal soil strength analysis (NISSA) to explore the extent to which elevated soil temperatures and low moistures, along with abnormal surface fluxes, during California's record-setting 2012 - 2015 drought reduced the soil's shear strength. Our results suggest that the prolonged California drought reduced the shear strength of fine-grained soil as much as 95%. In contrast, the NISSA suggests that drought impacts on coarse-grained soil were not as significant. These opposing behaviors are attributed to the existence and absence of intermolecular physico-chemical forces in fine- and coarse-grained soils, respectively. The outlined framework offers a unique avenue to explore how soil shear strength is likely to behave under extreme drought conditions.

  13. Differential Impact of Passive versus Active Irrigation on Urban Forests in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Luketich, A. M.; Papuga, S. A.; Crimmins, M.

    2017-12-01

    The network of trees within a city provides a variety of ecosystem services such as flood mitigation and reduced heat island effects. To maintain these `urban forests' in semiarid cities, the use of scarce water resources for irrigation is often necessary. Rainwater harvesting has been widely adopted in Tucson, AZ as a sustainable water source for trees, but the effects of passive water harvesting versus active irrigation on tree canopy productivity and microclimate is largely unquantified. We hypothesize that regardless of whether trees are passively or actively irrigated, deep soil moisture will be elevated compared to natural conditions; however, we expect that increased deep soil moisture conditions will be more frequent using active irrigation. Additionally, we hypothesize that similar to natural settings, urban trees will need access deep soil moisture for transpiration. Therefore, we expect that actively irrigated trees will have more periods of transpiration than passively irrigated trees and that this will result in elevated and sustained phenological activity. We also expect that this difference will translate to more ecosystem services for a longer portion of the year in actively irrigated urban forests. Here, we compare key ecohydrological indicators of passive and active irrigation systems at two sites in Tucson, AZ. Our measurements include soil moisture, transpiration, air temperature, soil temperature, below- and within- canopy temperatures, and canopy phenology. Our first year of results suggest there are differences in transpiration, canopy greening and microclimate between the two irrigation techniques and that the magnitude of these differences are highly seasonal. This research can help to improve understanding of the practices and function of green infrastructure in semiarid cities and inform models that attempt to aggregate the influence of these urban forests for understanding watershed management strategies.

  14. Environmental gradients and grassland trait variation: Insight into the effects of climate change

    NASA Astrophysics Data System (ADS)

    Tardella, Federico M.; Piermarteri, Karina; Malatesta, Luca; Catorci, Andrea

    2016-10-01

    The research aim was to understand how variation of temperature and water availability drives trait assemblage of seminatural grasslands in sub-Mediterranean climate, where climate change is expected to intensify summer aridity. In the central Italy, we recorded species abundance and elevation, slope aspect and angle in 129 plots. The traits we analysed were life span, growth form, clonality, belowground organs, leaf traits, plant height, seed mass, and palatability. We used Ellenberg's indicators as a proxy to assess air temperature and soil moisture gradients. From productive to harsh conditions, we observed a shift from tolerance to avoidance strategies, and a change in resource allocation strategies to face competition and stress or that maximize exploitation of patchily distributed soil resource niches. In addition, we found that the increase of temperature and water scarcity leads to the establishment of regeneration strategies that enable plants to cope with the unpredictability of changes in stress intensity and duration. Since the dry habitats of higher elevations are also constrained by winter cold stress, we argue that, within the sub-Mediterranean bioclimate, climate change will likely lead to a variation in dominance inside plant communities rather than a shift upwards of species ranges. At higher elevations, drought-adaptive traits might become more abundant on south-facing slopes that are less stressed by winter low temperatures; traits related to productive conditions and cold stress would be replaced on north-facing slopes by those adapted to overcome both the drought and the cold stresses.

  15. The soil-water balance simulations of a grassland in response to CO2, rainfall, and biodiversity manipulations at BioCON

    NASA Astrophysics Data System (ADS)

    Flinker, R. H.; Cardenas, M.; Caldwell, T. G.; Rich, R.; Reich, P.

    2013-12-01

    The BioCON (Biodiversity, CO2 and N) experiment has been continuously running since 1997. Operated by the University of Minnesota and located within the Cedar Creek Ecosystem Science Reserve in Minnesota, USA, BioCON is a Free-Air CO2 Enrichment (FACE) experiment that investigates plant community response to three key environmental variables: nitrogen, atmospheric CO2 and biodiversity. More recently rainfall exclusion and temperature manipulation were added to the experiment which amounts to 371 plots. The site attempts to replicate predicted average temperature increases and a northern shift of plant species and any associated consequences. FACE experiments have been conducted for a number of years in different countries, but the focus has generally been on how plant communities, soil respiration and microbes respond. Minimal work has been focused on the hydrologic aspects of these experiments which are potentially valuable for investigating global warming effects on local and plot-scale ecohydrology. Thus, the objective of this work is to characterize and model unsaturated flow for different CO2 and rainfall treatments in order to see how they affect soil moisture dynamics and groundwater recharge on grasslands of central Minnesota. Our study focuses on simulating soil moisture dynamics in eighteen of the BioCON plots: six bare plots with regular rainfall regimes (zero plant species, three plots with elevated atmospheric CO2 levels), six regular rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels) and six reduced rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels). The Simultaneous Heat and Water (SHAW) model, which solves the Richards equation for unsaturated zone water flow coupled to a comprehensive energy balance model, was parameterized with a combination of field and lab estimates of soil properties. Field estimates of saturated hydraulic conductivity using tension infiltrometers ranged from 9.8 x 10-4 to 6.7 x 10-3 cm/s. Soil cores were collected and analyzed for soil hydraulic properties (texture, unsaturated hydraulic conductivity and moisture retention). From the grain size analyzes of soil samples collected every 10 cm until 1m depth, the soil is homogenous and on average 87% sand, 11% silt and 2% clay. We will be presenting results from the simulations and statistical comparisons to observations of soil moisture at four depths in each plot.

  16. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland.

    PubMed

    Dijkstra, Feike A; Morgan, Jack A; Follett, Ronald F; Lecain, Daniel R

    2013-06-01

    Atmospheric concentrations of methane (CH4 ) and nitrous oxide (N2 O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2 O fluxes in a well-drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2 O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2 O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell-shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2 O emission and uptake occurred at our site with some years showing cumulative N2 O emission and other years showing cumulative N2 O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2 O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2 O expressed in CO2 -equivalents. © 2013 Blackwell Publishing Ltd.

  17. Comparison of evaporative fluxes from porous surfaces resolved by remotely sensed and in-situ temperature and soil moisture data

    NASA Astrophysics Data System (ADS)

    Wallen, B.; Trautz, A.; Smits, K. M.

    2014-12-01

    The estimation of evaporation has important implications in modeling climate at the regional and global scale, the hydrological cycle and estimating environmental stress on agricultural systems. In field and laboratory studies, remote sensing and in-situ techniques are used to collect thermal and soil moisture data of the soil surface and subsurface which is then used to estimate evaporative fluxes, oftentimes using the sensible heat balance method. Nonetheless, few studies exist that compare the methods due to limited data availability and the complexity of many of the techniques, making it difficult to understand flux estimates. This work compares different methods used to quantify evaporative flux based on remotely sensed and in-situ temperature and soil moisture data. A series of four laboratory experiments were performed under ambient and elevated air temperature conditions with homogeneous and heterogeneous soil configurations in a small two-dimensional soil tank interfaced with a small wind tunnel apparatus. The soil tank and wind tunnel were outfitted with a suite of sensors that measured soil temperature (surface and subsurface), air temperature, soil moisture, and tank weight. Air and soil temperature measurements were obtained using infrared thermography, heat pulse sensors and thermistors. Spatial and temporal thermal data were numerically inverted to obtain the evaporative flux. These values were then compared with rates of mass loss from direct weighing of the samples. Results demonstrate the applicability of different methods under different surface boundary conditions; no one method was deemed most applicable under every condition. Infrared thermography combined with the sensible heat balance method was best able to determine evaporative fluxes under stage 1 conditions while distributed temperature sensing combined with the sensible heat balance method best determined stage 2 evaporation. The approaches that appear most promising for determining the surface energy balance incorporates soil moisture rate of change over time and atmospheric conditions immediately above the soil surface. An understanding of the fidelity regarding predicted evaporation rates based upon stages of evaporation enables a more deliberate selection of the suite of sensors required for data collection.

  18. Subalpine forests

    Treesearch

    C.I. Millar; P.W. Rundel

    2016-01-01

    The subalpine forests of California comprise the highest elevation ecosystems that are dominated by upright trees. They are defined as a zone influenced primarily by abiotic controls, including persistent snowpack, desiccating winds, acute and chronic extreme temperatures, soil moisture and evapotranspirative stresses, and short growing seasons. Bounded at the...

  19. EVALUATION OF PERSONAL COOLING DEVICES FOR A DIOXIN CLEAN-UP OPERATION

    EPA Science Inventory

    The study investigated the use of personal coolers to increase worker productivity and safety while working at elevated, ambient temperatures cleaning up dioxin contaminated soil.^The study included laboratory tests to measure the thermal characteristics of the chemical protectiv...

  20. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  1. The Effect of Climate Change on Snow Pack at Sleepers River, Vermont, USA

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Chalmers, A.; Denner, J.; Clark, S.

    2017-12-01

    Sleepers River Research Watershed, a U.S. Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) site in northeastern Vermont, has a 58-year record (since 1959) of snow depth and snow water equivalence (SWE), one of the longest continuous records in eastern North America. Snow measurements occur weekly during the winter at the watershed using an Adirondack type snow tube sampler. Sleepers River averages about 1100 mm of precipitation annually of which 20 to 30 percent falls as snow. Snow cover typically persists from December to April. Length of snow cover and snow depth vary with elevation, aspect, and cover type. Sites include open field, and hardwood and conifer stand clearings from 225 to 630 meters elevation. We evaluated changes in snow depth, snow cover duration, and SWE relative to elevation, soil frost depth, air temperature, total precipitation, and the El Niño - Southern Oscillation (ENSO) cycle. Overall, warmer winter temperatures have resulted in more midwinter thaws, more rain during the winter, and more variable soil frost depth. Trends in snowpack amount and duration were compared to winter-spring streamflow center-of-mass to evaluate if shifts in the snow pack regime were leading to earlier snowmelt.

  2. Applications of HCMM data to soil moisture snow and estuarine current studies. [soil moisture in Minnesota and water circulation in the Delaware Bay and Potomac River

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.

    1979-01-01

    The author has identified the following significant results. Additional analyses of Luverne, Minnesota ground data revealed that soil moisture variations are independent of elevation effects. Tidal fluctuations in the Potomac River and Delaware Bay were examined as a function of surface temperature. Preliminary findings suggest that temperature boundaries are sufficient to detect various stages of the tidal cycle in Delaware Bay, but are as yet uncertain for prediction in the Potomac River. At least three additional cases are needed to completely evaluate the tidal cycle. An alphanumeric printout at a scale of 1:1,000,000 compares closely with a 1:1,000,000 scale DMD image of the Chesapeake Bay region.

  3. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms.

    PubMed

    Zhang, Peng; Sun, Hongwen; Min, Lujuan; Ren, Chao

    2018-05-01

    One interest of using biochar as soil amendment is to reduce pesticide adverse effects. In this paper, the sorption and degradation of thiacloprid (THI) in a black soil amended by various biochars were systematically investigated, and the mechanisms therein were explored by analyzing the changes in soil physicochemical properties, degrading enzymes and genes and microorganism community. Biochar amendment increased THI sorption in soil, which was associated with an increase in organic carbon and surface area and a decrease in H/C. Amendments of 300-PT (pyrolyzing temperature) biochar promoted the biodegradation of THI by increasing the microbe abundance and improving nitrile hydratase (NHase) activity. In contrast, 500- and 700-PT biochar amendments inhibited biodegradation by reducing THI availability and changing NHase activity and THI-degradative nth gene abundance, and instead promoted chemical degradation mainly through elevated pH, active groups on mineral surface and generation of •OH and other free radicals. Furthermore, THI shifted the soil microbial community, stimulated the NHase activity and elevated nth gene abundance. Biochar amendments also changed soil bacterial community by modulating soil pH, dissolved organic matter and nitrogen and phosphorus levels, which further influenced THI biodegradation. Therefore, the impact of biochars on the fate of a pesticide in soil depends greatly on their type and properties, which should be comprehensively examined when applying biochar to soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine treeline.

    PubMed

    Streit, Kathrin; Siegwolf, Rolf T W; Hagedorn, Frank; Schaub, Marcus; Buchmann, Nina

    2014-02-01

    Alpine treelines are temperature-limited vegetation boundaries. Understanding the effects of elevated [CO2 ] and warming on CO2 and H2 O gas exchange may help predict responses of treelines to global change. We measured needle gas exchange of Larix decidua Mill. and Pinus mugo ssp. uncinata DC trees after 9 years of free air CO2 enrichment (575 µmol mol(-1) ) and 4 years of soil warming (+4 °C) and analysed δ(13) C and δ(18) O values of needles and tree rings. Tree needles under elevated [CO2 ] showed neither nitrogen limitation nor end-product inhibition, and no down-regulation of maximal photosynthetic rate (Amax ) was found. Both tree species showed increased net photosynthetic rates (An ) under elevated [CO2 ] (L. decidua: +39%; P. mugo: +35%). Stomatal conductance (gH2O ) was insensitive to changes in [CO2 ], thus transpiration rates remained unchanged and intrinsic water-use efficiency (iWUE) increased due to higher An . Soil warming affected neither An nor gH2O . Unresponsiveness of gH2O to [CO2 ] and warming was confirmed by δ(18) O needle and tree ring values. Consequently, under sufficient water supply, elevated [CO2 ] induced sustained enhancement in An and lead to increased C inputs into this ecosystem, while soil warming hardly affected gas exchange of L. decidua and P. mugo at the alpine treeline. © 2013 John Wiley & Sons Ltd.

  5. Soil Surface Organic Layers in Alaska's Arctic Foothills: Development, Distribution and Microclimatic Feedbacks

    NASA Astrophysics Data System (ADS)

    Baughman, C. A.; Mann, D. H.; Verbyla, D.; Valentine, D.; Kunz, M. L.; Heiser, P. A.

    2013-12-01

    Accumulated organic matter at the ground surface plays an important role in arctic ecosystems. These soil surface organic layers (SSOLs) influence temperature, moisture, and chemistry in the underlying mineral soil and, on a global basis, comprise enormous stores of labile carbon. Understanding the dynamics of SSOLs is prerequisite to modeling the responses of arctic ecosystem processes to climate changes. Here, we ask three questions regarding SSOLs in the Arctic Foothills in northern Alaska: 1) What environmental factors control their spatial distribution? 2) How long do they take to form? 3) What is the relationship between SSOL thickness and mineral soil temperature through the growing season? The best topographically-controlled predictors of SSOL thickness and spatial distribution are duration of sunlight during the growing-season, upslope drainage area, slope gradient, and elevation. SSOLs begin to form within several decades following disturbance but require 500-700 years to reach equilibrium states. Once formed, mature SSOLs lower peak growing-season temperature and mean annual temperature in the underlying mineral horizon by 8° and 3° C respectively, which reduces available growing degree days within the upper mineral soil by nearly 80%. How ongoing climate change in northern Alaska will affect the region's SSOLs is an open and potentially crucial question.

  6. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Gao, Bing; Yang, Dawen; Qin, Yue; Wang, Yuhan; Li, Hongyi; Zhang, Yanlin; Zhang, Tingjun

    2018-02-01

    Frozen ground has an important role in regional hydrological cycles and ecosystems, particularly on the Qinghai-Tibetan Plateau (QTP), which is characterized by high elevations and a dry climate. This study modified a distributed, physically based hydrological model and applied it to simulate long-term (1971-2013) changes in frozen ground its the effects on hydrology in the upper Heihe basin, northeastern QTP. The model was validated against data obtained from multiple ground-based observations. Based on model simulations, we analyzed spatio-temporal changes in frozen soils and their effects on hydrology. Our results show that the area with permafrost shrank by 8.8 % (approximately 500 km2), predominantly in areas with elevations between 3500 and 3900 m. The maximum depth of seasonally frozen ground decreased at a rate of approximately 0.032 m decade-1, and the active layer thickness over the permafrost increased by approximately 0.043 m decade-1. Runoff increased significantly during the cold season (November-March) due to an increase in liquid soil moisture caused by rising soil temperatures. Areas in which permafrost changed into seasonally frozen ground at high elevations showed especially large increases in runoff. Annual runoff increased due to increased precipitation, the base flow increased due to changes in frozen soils, and the actual evapotranspiration increased significantly due to increased precipitation and soil warming. The groundwater storage showed an increasing trend, indicating that a reduction in permafrost extent enhanced the groundwater recharge.

  7. Survival of Pochonia chlamydosporia on the soil surface after different exposure intervals at ambient conditions.

    PubMed

    Fernandes, Rafael Henrique; Lopes, Everaldo Antônio; Borges, Darlan Ferreira; Bontempo, Amanda Ferreira; Zanuncio, José Cola; Serrão, José Eduardo

    Exposure of the nematophagous fungus Pochonia chlamydosporia to solar radiation and elevated temperatures before being incorporated into the soil can reduce its survival and efficiency as biocontrol agent. A field experiment was carried out to assess the effect of the exposure period on the viability of P. chlamydosporia applied on the soil surface. A commercial bionematicide based on P. chlamydosporia was sprayed on soil, and soil samples were collected before and at 0, 30, 60, 90, 120, and 150min after fungal application. Relative humidity (RH), the irradiance (IR), air temperature (AT), and soil temperature (ST) were recorded. The number of P. chlamydosporia colony forming units (CFUs) was evaluated after 20 days of incubation. P. chlamydosporia survival decreased over the time of exposure on the soil surface. Overall, the number of CFUs decreased by more than 90% at 150min after application. Exposure to RH ≥61%, ST and AT between 25-35°C and 19-29°C, and IR between 1172 and 2126μmol of photons m -2 s -1 induced a negative exponential effect on the survival of the fungus over the time. Exposure to climatic conditions on the soil surface reduces P. chlamydosporia viability. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Reduced Microbial Resilience after a 17-Year Climate Gradient Transplant Experiment

    NASA Astrophysics Data System (ADS)

    Bailey, V. L.; Fansler, S.; Bond-Lamberty, B. P.; Liu, C.; Smith, J. L.; Bolton, H.

    2012-12-01

    In 1994, a reciprocal soil transplant experiment was initiated between two elevations (310 m, warmer and drier, and 844 m, cooler and wetter) on Rattlesnake Mountain in southeastern Washington, USA. The original experiment sought to detect whether the microbial and biochemical dynamics developed under cool, moist conditions would be destabilized under hot, dry conditions. In March 2012 we resampled the original transplanted soils, control cores transplanted in situ, and native soils from each elevation, to study longer-term changes in microbial community composition, soil C and N dynamics, and soil physical structure. These resampled cores were randomly assigned to climate-control chambers simulating the diurnal conditions at either the lower or upper sites. We monitored respiration over 100 days, and couple these data with biogeochemical analyses conducted at time-zero, and at the end of the experiment, to examine the consequences of long-term climate change on microbial C cycling under new environmental stresses. All soil types incubated respired more C while in the simulated hotter, drier climate compared with the cooler, moister condition, except for those that had been transplanted from the lower elevation to the upper elevation in 1994, which actually respired less when returned to this, their original climate. These soils also exhibited almost no temperature sensitivity (Q10=1.07, 13-33 °C). Soils incubated in the cooler, moister chamber had greater N-acetylglucosaminidase and β-glucosidase potentials, suggesting that while loss of C as carbon dioxide respiration is reduced under these conditions, internal cycling of C may be enhanced. Ribosomal intergenic spacer analysis was used to fingerprint the bacterial community of all of these soils to identify possible high-level shifts in community composition in the 0-5, 5-10, and deeper depths in these soils. These results suggest that climate change has significantly altered the C dynamics in these soils, and that even after 17 years of adaptation, the soil microbial communities have not recovered to a condition similar to their new environment. These soils also appear to have lost some of their resilience to subsequent climate perturbations, raising more general questions of how current climate change will affect the capacity of soils to buffer against future, different perturbations.

  9. Sex-related responses of European aspen (Populus tremula L.) to combined stress: TiO2 nanoparticles, elevated temperature and CO2 concentration.

    PubMed

    Zhang, Yaodan; Virjamo, Virpi; Sobuj, Norul; Du, Wenchao; Yin, Ying; Nybakken, Line; Guo, Hongyan; Julkunen-Tiitto, Riitta

    2018-06-15

    The combined effects of climate change and chemical contaminants on plant performance are still not well understood. Especially, whether different sexes of dioecious plants respond differently to combined stresses is unknown. In order to study the sex-related responses of European aspen to soil nTiO 2 contamination (0, 50, 300 mg kg -1 ) under elevated temperature (+1.6 °C) and CO 2 (730 ppm), we conducted a study in greenhouses. Ti accumulated in roots exposed to nTiO 2 (1.1-3.3 and 2.7-21.1 mg kg -1 in 50 and 300 mg kg -1 treatments, respectively). Elevated CO 2 had no effects on Ti uptake, while elevated temperature increased it in the 300 mg kg -1 treatment. Males grew taller than females under ambient conditions, but females had greater height and biomass increment under elevated temperature. In all climate treatments, nTiO 2 increased leaf phenolics in females by 12-19% and 15-26% at 50 and 300 mg kg -1 , respectively. Leaf phenolics decreased under elevated temperature, but increased under elevated CO 2 in both sexes. Results suggest that females have better chemical defense against nTiO 2 than males under future climate conditions. In the longer run, this may cause changes in the competitive abilities of both sexes, which again may affect sex ratios and genetic variation in nature. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Wainwright, H. M.; Graham, D.; Torn, M. S.

    2017-12-01

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.

  11. Tree root dynamics in montane and sub-alpine mixed forest patches.

    PubMed

    Wang, Y; Kim, J H; Mao, Z; Ramel, M; Pailler, F; Perez, J; Rey, H; Tron, S; Jourdan, C; Stokes, A

    2018-02-28

    The structure of heterogeneous forests has consequences for their biophysical environment. Variations in the local climate significantly affect tree physiological processes. We hypothesize that forest structure also alters tree root elongation and longevity through temporal and spatial variations in soil temperature and water potential. We installed rhizotrons in paired vegetation communities of closed forest (tree islands) and open patches (canopy gaps), along a soil temperature gradient (elevations of 1400, 1700 and 2000 m) in a heterogeneous mixed forest. We measured the number of growing tree roots, elongation and mortality every month over 4 years. The results showed that the mean daily root elongation rate (RER) was not correlated with soil water potential but was significantly and positively correlated with soil temperature between 0 and 8 °C only. The RER peaked in spring, and a smaller peak was usually observed in the autumn. Root longevity was dependent on altitude and the season in which roots were initiated, and root diameter was a significant factor explaining much of the variability observed. The finest roots usually grew faster and had a higher risk of mortality in gaps than in closed forest. At 2000 m, the finest roots had a higher risk of mortality compared with the lower altitudes. The RER was largely driven by soil temperature and was lower in cold soils. At the treeline, ephemeral fine roots were more numerous, probably in order to compensate for the shorter growing season. Differences in soil climate and root dynamics between gaps and closed forest were marked at 1400 and 1700 m, but not at 2000 m, where canopy cover was more sparse. Therefore, heterogeneous forest structure and situation play a significant role in determining root demography in temperate, montane forests, mostly through impacts on soil temperature.

  12. Water Table and Soil Gas Emission Responses to Disturbance in Northern Forested Wetlands

    NASA Astrophysics Data System (ADS)

    Pypker, T. G.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Davis, J.; Wagenbrenner, J. W.; Sebestyen, S. D.; Kolka, R. K.

    2014-12-01

    Exotic pest infestations are increasingly common throughout North American forests. In forested wetlands, disturbance events may alter nutrient, carbon, and hydrologic pathways. Recently, ash (Fraxinus spp.) forests in North Central and Eastern North America have been exposed to the exotic emerald ash borer (EAB) (Burprestidae: Agrilus planipennis), and the rapid and extensive expansion of EAB populations since 2001 may soon eliminate most existing ash stands. Limited research has focused on post-establishment ecosystem impacts of an EAB disturbance, and to our knowledge, there are no studies that have evaluated the coupled response of black ash (Fraxinus nigra) wetland water tables, soil temperatures, and soil gas emissions to an EAB infestation. We present preliminary results that detail those responses to a simulated EAB disturbance. Water table position, soil temperature, and soil gas emissions (CO2 and CH4) were monitored in nine black ash wetlands in the Upper Peninsula of Michigan for three years, including one year of pre-treatment and two years of post-treatment data-collection. An EAB disturbance was simulated by girdling (Girdle) or felling (Clearcut) all black ash trees with diameters of 2.5 cm or greater within the wetland, and each treatment was applied to three sites. The results indicate that wetland water tables were insensitive to treatment effects, soil temperatures were significantly higher in the Clearcut treatment, soil gas flux was significantly higher in the Clearcut treatment, and the rate of soil gas flux was strongly regulated by water table position and temperature. No significant treatment effects were detected in the Girdle treatment during the first post-treatment year. Because water tables were insensitive to treatment, we concluded that water tables did not independently generate a soil gas flux response despite their strong regulatory influence. Furthermore, we concluded that the response of soil temperature to disturbance was largely the reason why elevated soil gas flux rates were observed in the Clearcut treatment.

  13. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.

    PubMed

    Häger, Achim

    2010-12-01

    On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that beta-diversity in the study area is largely driven by species with narrow spatial ranges, due to the interactions between topography, climate and soil formation processes, especially around the wind-exposed and cloud covered ridge area. The findings emphasize the extraordinary conservation value of tropical montane cloud forests in environmentally heterogeneous areas at mid-elevations.

  14. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature.

    PubMed

    Duan, Honglang; O'Grady, Anthony P; Duursma, Remko A; Choat, Brendan; Huang, Guomin; Smith, Renee A; Jiang, Yanan; Tissue, David T

    2015-07-01

    Future climate regimes characterized by rising [CO2], rising temperatures and associated droughts may differentially affect tree growth and physiology. However, the interactive effects of these three factors are complex because elevated [CO2] and elevated temperature may generate differential physiological responses during drought. To date, the interactive effects of elevated [CO2] and elevated temperature on drought-induced tree mortality remain poorly understood in gymnosperm species that differ in stomatal regulation strategies. Water relations and carbon dynamics were examined in two species with contrasting stomatal regulation strategies: Pinus radiata D. Don (relatively isohydric gymnosperm; regulating stomata to maintain leaf water potential above critical thresholds) and Callitris rhomboidea R. Br (relatively anisohydric gymnosperm; allowing leaf water potential to decline as the soil dries), to assess response to drought as a function of [CO2] and temperature. Both species were grown in two [CO2] (C(a) (ambient, 400 μl l(-1)) and C(e) (elevated, 640 μl l(-1))) and two temperature (T(a) (ambient) and T(e) (ambient +4 °C)) treatments in a sun-lit glasshouse under well-watered conditions. Drought plants were then exposed to a progressive drought until mortality. Prior to mortality, extensive xylem cavitation occurred in both species, but significant depletion of non-structural carbohydrates was not observed in either species. Te resulted in faster mortality in P. radiata, but it did not modify the time-to-mortality in C. rhomboidea. C(e) did not delay the time-to-mortality in either species under drought or T(e) treatments. In summary, elevated temperature (+4 °C) had greater influence than elevated [CO2] (+240 μl l(-1)) on drought responses of the two studied gymnosperm species, while stomatal regulation strategies did not generally affect the relative contributions of hydraulic failure and carbohydrate depletion to mortality under severe drought. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Relationships among environmental variables and distribution of tree species at high elevation in the Olympic Mountains

    USGS Publications Warehouse

    Woodward, Andrea

    1998-01-01

    Relationships among environmental variables and occurrence of tree species were investigated at Hurricane Ridge in Olympic National Park, Washington, USA. A transect consisting of three plots was established down one north-and one south-facing slope in stands representing the typical elevational sequence of tree species. Tree species included subalpine fir (Abies lasiocarpa), Douglas-fir (Pseudotsuga menziesii), mountain hemlock (Tsuga mertensiana), and Pacific silver fir (Abies amabilis). Air and soil temperature, precipitation, and soil moisture were measured during three growing seasons. Snowmelt patterns, soil carbon and moisture release curves were also determined. The plots represented a wide range in soil water potential, a major determinant of tree species distribution (range of minimum values = -1.1 to -8.0 MPa for Pacific silver fir and Douglas-fir plots, respectively). Precipitation intercepted at plots depended on topographic location, storm direction and storm type. Differences in soil moisture among plots was related to soil properties, while annual differences at each plot were most often related to early season precipitation. Changes in climate due to a doubling of atmospheric CO2 will likely shift tree species distributions within, but not among aspects. Change will be buffered by innate tolerance of adult trees and the inertia of soil properties.

  16. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

    PubMed

    Hayden, Helen L; Mele, Pauline M; Bougoure, Damian S; Allan, Claire Y; Norng, Sorn; Piceno, Yvette M; Brodie, Eoin L; Desantis, Todd Z; Andersen, Gary L; Williams, Amity L; Hovenden, Mark J

    2012-12-01

    The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P < 0.05). Fungal community diversity resulted in three groups based upon elevated [CO2], elevated [CO2] plus warming and ambient [CO2]. Overall bacterial community diversity was influenced primarily by depth. Specific bacterial taxa changed in richness and relative abundance in response to climate change factors when assessed by a high-resolution 16S rRNA microarray (PhyloChip). Operational taxonomic unit signal intensities increased under elevated [CO2] for both Firmicutes and Bacteroidetes, and increased under warming for Actinobacteria and Alphaproteobacteria. For the interaction of elevated [CO2] and warming there were 103 significant operational taxonomic units (P < 0.01) representing 15 phyla and 30 classes. The majority of these operational taxonomic units increased in abundance for elevated [CO2] plus warming plots, while abundance declined in warmed or elevated [CO2] plots. Bacterial abundance (16S rRNA gene copy number) was significantly different for the interaction of elevated [CO2] and depth (P < 0.05) with decreased abundance under elevated [CO2] at 5-10 cm, and for Firmicutes under elevated [CO2] (P < 0.05). Bacteria, archaea and fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    NASA Technical Reports Server (NTRS)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  18. Altered soil microbial community at elevated CO2 leads to loss of soil carbon

    PubMed Central

    Carney, Karen M.; Hungate, Bruce A.; Drake, Bert G.; Megonigal, J. Patrick

    2007-01-01

    Increased carbon storage in ecosystems due to elevated CO2 may help stabilize atmospheric CO2 concentrations and slow global warming. Many field studies have found that elevated CO2 leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon pool. Here we show that 6 years of experimental CO2 doubling reduced soil carbon in a scrub-oak ecosystem despite higher plant growth, offsetting ≈52% of the additional carbon that had accumulated at elevated CO2 in aboveground and coarse root biomass. The decline in soil carbon was driven by changes in soil microbial composition and activity. Soils exposed to elevated CO2 had higher relative abundances of fungi and higher activities of a soil carbon-degrading enzyme, which led to more rapid rates of soil organic matter degradation than soils exposed to ambient CO2. The isotopic composition of microbial fatty acids confirmed that elevated CO2 increased microbial utilization of soil organic matter. These results show how elevated CO2, by altering soil microbial communities, can cause a potential carbon sink to become a carbon source. PMID:17360374

  19. SIMULTANEOUS DESTRUCTION OF ORGANICS AND STABILIZATION OF METALS IN SOILS

    EPA Science Inventory

    The Sulchem Process reacts the material being treated with elemental sulfur at elevated temperatures in an inert reactor system. Organic hydrocarbons react with the sulfur to form an inert fine solid of carbon and sulfur, hydrogen sulfide gas, and modest amounts of carbon disulfi...

  20. Discerning environmental factors affecting current tree growth in Central Europe.

    PubMed

    Cienciala, Emil; Russ, Radek; Šantrůčková, Hana; Altman, Jan; Kopáček, Jiří; Hůnová, Iva; Štěpánek, Petr; Oulehle, Filip; Tumajer, Jan; Ståhl, Göran

    2016-12-15

    We examined the effect of individual environmental factors on the current spruce tree growth assessed from a repeated country-level statistical landscape (incl. forest) survey in the Czech Republic. An extensive set of variables related to tree size, competition, site characteristics including soil texture, chemistry, N deposition and climate was tested within a random-effect model to explain growth in the conditions of dominantly managed forest ecosystems. The current spruce basal area increment was assessed from two consecutive landscape surveys conducted in 2008/2009 and six years later in 2014/2015. Tree size, age and competition within forest stands were found to be the dominant explanatory variables, whereas the expression of site characteristics, environmental and climatic drives was weaker. The significant site variables affecting growth included soil C/N ratio and soil exchangeable acidity (pH KCl; positive response) reflecting soil chemistry, long-term N-deposition (averaged since 1975) in combination with soil texture (clay content) and Standardized Precipitation Index (SPI), a drought index expressing moisture conditions. Sensitivity of growth to N-deposition was positive, although weak. SPI was positively related to and significant in explaining tree growth when expressed for the growth season. Except SPI, no significant relation of growth was determined to altitude-related variables (temperature, growth season length). We identified the current spruce growth optimum at elevations about 800ma.s.l. or higher in the conditions of the country. This suggests that at lower elevations, limitation by a more pronounced water deficit dominates, whereas direct temperature limitation may concern the less frequent higher elevations. The mixed linear model of spruce tree growth explained 55 and 65% of the variability with fixed and random effects included, respectively, and provided new insights on the current spruce tree growth and factors affecting it within the environmental gradients of the country. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes.

    PubMed

    Nguyen, Thi; Bajwa, Ali Ahsan; Navie, Sheldon; O'Donnell, Chris; Adkins, Steve

    2017-04-01

    Climate change will have a considerable impact upon the processes that moderate weed invasion, in particular to that of parthenium weed (Parthenium hysterophorus L.). This study evaluated the performance of two Australian biotypes of parthenium weed under a range of environmental conditions including soil moisture (100 and 50% of field capacity), atmospheric carbon dioxide (CO 2 ) concentration (390 and 550 ppm), and temperature (35/20 and 30/15 °C/day/night). Measurements were taken upon growth, reproductive output, seed biology (fill, viability and dormancy) and soil seed longevity. Parthenium weed growth and seed output were significantly increased under the elevated CO 2 concentration (550 ppm) and in the cooler (30/15 °C) and wetter (field capacity) conditions. However, elevated CO 2 concentration could not promote growth or seed output when the plants were grown under the warmer (35/20 °C) and wetter conditions. Warm temperatures accelerated the growth of parthenium weed, producing plants with greater height biomass but with a shorter life span. Warm temperatures also affected the reproductive output by promoting both seed production and fill, and promoting seed longevity. Dryer soil conditions (50% of field capacity) also promoted the reproductive output, but did not retain high seed fill or promote seed longevity. Therefore, the rising temperatures, the increased atmospheric CO 2 concentration and the longer periods of drought predicted under climate change scenarios are likely to substantially enhance the growth and reproductive output of these two Australian parthenium weed biotypes. This may facilitate the further invasion of this noxious weed in tropical and sub-tropical natural and agro-ecosystems.

  2. Thermal removal of pyrene contamination from soil: basic studies and environmental health implications.

    PubMed Central

    Saito, H H; Bucalá, V; Howard, J B; Peters, W A

    1998-01-01

    Effects of temperature (400-1000 degrees C) and rate of heating to 550 degrees C (100, 1000, 5000 degrees C/sec) on reduction of pyrene contamination in a Superfund-related soil and on yields of volatile products (tars, CO, CO2, methane, acetylene, ethylene) have been measured. Fifty (+/- 3)-milligram thin layers (less than or equal to 150 micron) of 63- to 125-micron soil particles, neat (i.e., without exogenous chemicals), or pretreated with 4.75 wt% of pyrene, were heated for about 1 to 6 sec, under 3 psig (pounds per in.(2) gauge) of helium in a 12-liter sealed chamber. Pyrene removal, defined as the difference in weight loss of neat versus contaminated soil, was virtually immune to heating rate but increased strongly with increasing temperature, approaching 100% at about 530 degrees C. However, for pyrenepolluted soil, excess soil weight loss and modified CO yields were observed above about 500 degrees C for a 1000 degrees C/sec heating rate. These observations suggest that soil chemical reactions with pyrene or pyrene decomposition products augment soil volatilization. Consequently at elevated temperatures, the difference in weight loss protocol may overestimate polycyclic aromatic hydrocarbon (PAH) removal from soil. Increasing heating rate caused yields of CO, CO(2), and acetylene from pyrene-polluted soil to pass through maxima. Heating neat or contaminated soil resulted in at least two gaseous products of particular environmental interest:acetylene, a precursor to PAH in thermal synthesis, and CO, a toxin to human hemoglobin. Images Figure 1 Figure 2 PMID:9703498

  3. Simulated Seasonal Spatio-Temporal Patterns of Soil Moisture, Temperature, and Net Radiation in a Deciduous Forest

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.

    2011-01-01

    The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.

  4. Microbial Priming and Protected Carbon Responses to Elevated CO2 at Local to Global Scales: a New Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Oishi, C.; Shevliakova, E.; Pacala, S. W.

    2013-12-01

    The soil carbon formulations commonly used in global carbon cycle models and Earth System models (ESMs) are based on first-order decomposition equations, where turnover of carbon is determined only by the size of the carbon pool and empirical functions of responses to temperature and moisture. These models do not include microbial dynamics or protection of carbon in microaggregates and mineral complexes, making them incapable of simulating important soil processes like priming and the influence of soil physical structure on carbon turnover. We present a new soil carbon dynamics model - Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) - that explicitly represents microbial biomass and protected carbon pools. The model includes multiple types of carbon with different chemically determined turnover rates that interact with a single dynamic microbial biomass pool, allowing the model to simulate priming effects. The model also includes the formation and turnover of protected carbon that is inaccessible to microbial decomposers. The rate of protected carbon formation increases with microbial biomass. CORPSE has been implemented both as a stand-alone model and as a component of the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) ESM. We calibrated the model against measured soil carbon stocks from the Duke FACE experiment. The model successfully simulated the seasonal pattern of heterotrophic CO2 production. We investigated the roles of priming and protection in soil carbon accumulation by running the model using measured inputs of leaf litter, fine roots, and root exudates from the ambient and elevated CO2 plots at the Duke FACE experiment. Measurements from the experiment showed that elevated CO2 caused enhanced root exudation, increasing soil carbon turnover in the rhizosphere due to priming effects. We tested the impact of increased root exudation on soil carbon accumulation by comparing model simulations of carbon accumulation under elevated CO2 with and without increased root exudation. Increased root exudation stimulated microbial activity in the model, resulting in reduced accumulation of chemically recalcitrant carbon, but increasing the formation of protected carbon. This indicates that elevated CO2 could cause decreases in soil carbon storage despite increases in productivity in ecosystems where protection of soil carbon is limited. These effects have important implications for simulations of soil carbon response to elevated CO2 in current terrestrial carbon cycle models. The CORPSE model has been implemented in LM3, the terrestrial component of the GFDL ESM. In addition to the functionality described above, this model adds vertically resolved carbon pools and vertical transfers of carbon, leading to a decrease in carbon turnover rates with depth due to leaching of priming agents from the surface. We present preliminary global simulations using this model, including the variation of microbial activity and protected carbon with latitude and the resulting impacts on the sensitivity of soil carbon to climatic warming.

  5. Trend Assessment of Spatio-Temporal Change of Tehran Heat Island Using Satellite Images

    NASA Astrophysics Data System (ADS)

    Saradjian, M. R.; Sherafati, Sh.

    2015-12-01

    Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.

  6. EMERGING TECHNOLOGY SUMMARY - SIMULTANEOUS DESTRUCTION OF ORGANICS AND STABILIZATION OF METALS IN SOILS

    EPA Science Inventory

    The Sulchem Process reacts the material being treated with elemental sulfur at elevated temperatures in an inert reactor system. Organic hydrocarbons react with the sulfur to form an inert fine solid of carbon and sulfur, hydrogen sulfide gas, and modest amounts of carbon disulfi...

  7. Permafrost carbon cycles under multifactor global change: a modeling analysis

    NASA Astrophysics Data System (ADS)

    Li, J.; Natali, S.; Schaedel, C.; Schuur, E. A.; Luo, Y.

    2012-12-01

    Carbon dioxide (CO2) and methane (CH4) from permafrost zones are projected to be elevated under global change scenarios, but the magnitude and spatiotemporal variation of these greenhouse gas sources are still highly uncertain. Here we implement and evaluate the integration of a methane model into the Community Atmosphere-Biosphere Land Exchange model (CABLE v1.5 of CSIRO, Australia) in order to explore the carbon emissions under warming, elevated CO2 and altered precipitation. The weather data was obtained from a tundra site named eight mile lake in Alaska and the data of years 2004-2009 was used to tune and validate the model. First, data obtained from measurement were transformed to meet the input weather data required by the model. Second, model parameters regarding vegetation and soil were modified to accurately simulate the permafrost site. For example, we modified the resistivity of soil in the model so that the modeled energy balance was found to match with the observations. Currently, the modeled NPP are relatively higher but soil temperature is lower than the observations. Third, a new methane module is being integrated into the model. We simulate the methane production, oxidation and emission processes (ebullition, diffusion and plant-aided transport). We test new functions for soil pH and redox potential that impact microbial methane production and oxidation in soils. We link water table position (WTP) with the available amount of decomposable carbon for methanogens, in combination with spatially explicit simulation of soil temperature. We also validated the model and resolved the discrepancy between the model and observation. In this presentation, we will describe results of simulations to forecast CO2 and CH4 fluxes under climate change scenarios.

  8. Modeling short-term concentration fluctuations of semi-volatile pollutants in the soil-plant-atmosphere system.

    PubMed

    Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2016-11-01

    Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    USGS Publications Warehouse

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  10. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass

    PubMed Central

    Volder, Astrid; Gifford, Roger M.; Evans, John R.

    2015-01-01

    Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. ‘Holdfast’ was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10–60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue. PMID:26272874

  11. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    PubMed

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  12. Effect of elevated CO2, O3, and UV radiation on soils.

    PubMed

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  13. Effect of Elevated CO2, O3, and UV Radiation on Soils

    PubMed Central

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  14. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    PubMed

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D; Simmons, Breana L; Wall, Diana H

    2009-06-18

    Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not. Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils.

  15. Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios.

    PubMed

    Orem, William; Newman, Susan; Osborne, Todd Z; Reddy, K Ramesh

    2015-04-01

    Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10% increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10% reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10% increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.

  16. Impacts and Uncertainties of +2°C of Climate Change and Soil Degradation on European Crop Calorie Supply

    NASA Astrophysics Data System (ADS)

    Balkovič, Juraj; Skalský, Rastislav; Folberth, Christian; Khabarov, Nikolay; Schmid, Erwin; Madaras, Mikuláš; Obersteiner, Michael; van der Velde, Marijn

    2018-03-01

    Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from 10 major crops and vulnerability to soil degradation in Europe using crop modeling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX) was used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South-Eastern Europe. The mean impacts range from +30 Gcal ha-1 in the north, through +25 and +20 Gcal ha-1 in Western and Eastern Europe, respectively, to +10 Gcal ha-1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high-input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 50 Gcal ha-1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North-Eastern Europe. Uncertainties due to future potentials for crop intensification are about 2-50 times higher than climate change impacts.

  17. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys : 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less

  18. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys : 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    DOE PAGES

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; ...

    2017-11-17

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less

  19. Soil Temperature Effects on the Interaction of Grape Rootstocks and Plant-parasitic Nematodes.

    PubMed

    Ferris, H; Zheng, L; Walker, M A

    2013-03-01

    Resistance to Meloidogyne spp. in commonly used resistant grape rootstocks is slightly compromised at soil temperatures above 27°C. Newly released UCD-GRN series rootstocks, which have broad nematode resistance, exhibit trace infections by Meloidogyne spp. at elevated temperature. Pathotypes of M. incognita and M. arenaria that are virulent on 'Harmony' rootstock, as well as M. incognita Race 3, which is avirulent on 'Harmony', failed to produce egg masses on the UCD-GRN series rootstocks and other resistant selections at 24°C. At 27°C and above, there was increased nematode galling and egg mass production; at 30°C, egg mass production levels of M. incognita Race 3 on 'Harmony' were up to 12% of that on susceptible 'Colombard' while reproduction of the virulent pathotypes on the UCD-GRN series was less than 5% of that on 'Colombard'. Resistance of several of the parental genotypes of the UCD-GRN rootstock series was slightly compromised at soil temperatures of 30°C and above; however, others maintained their resistance to even the virulent M. arenaria pathotype A at high temperatures. Effects of high temperature on resistance to Xiphinema index could not be assessed because of temperature sensitivity of the nematodes while resistance to Mesocriconema xenoplax was not compromised at high soil temperature. Resistance to Meloidogyne spp. in the UCD-GRN series rootstocks was not compromised when plants and nematodes were subjected to cyclical high and low temperature conditions, indicating that once initiated, the resistance mechanism is not reversed.

  20. Soil Temperature Effects on the Interaction of Grape Rootstocks and Plant-parasitic Nematodes

    PubMed Central

    Ferris, H.; Zheng, L.; Walker, M. A.

    2013-01-01

    Resistance to Meloidogyne spp. in commonly used resistant grape rootstocks is slightly compromised at soil temperatures above 27°C. Newly released UCD-GRN series rootstocks, which have broad nematode resistance, exhibit trace infections by Meloidogyne spp. at elevated temperature. Pathotypes of M. incognita and M. arenaria that are virulent on ‘Harmony’ rootstock, as well as M. incognita Race 3, which is avirulent on ‘Harmony’, failed to produce egg masses on the UCD-GRN series rootstocks and other resistant selections at 24°C. At 27°C and above, there was increased nematode galling and egg mass production; at 30°C, egg mass production levels of M. incognita Race 3 on ‘Harmony’ were up to 12% of that on susceptible ‘Colombard’ while reproduction of the virulent pathotypes on the UCD-GRN series was less than 5% of that on ‘Colombard’. Resistance of several of the parental genotypes of the UCD-GRN rootstock series was slightly compromised at soil temperatures of 30°C and above; however, others maintained their resistance to even the virulent M. arenaria pathotype A at high temperatures. Effects of high temperature on resistance to Xiphinema index could not be assessed because of temperature sensitivity of the nematodes while resistance to Mesocriconema xenoplax was not compromised at high soil temperature. Resistance to Meloidogyne spp. in the UCD-GRN series rootstocks was not compromised when plants and nematodes were subjected to cyclical high and low temperature conditions, indicating that once initiated, the resistance mechanism is not reversed. PMID:23589660

  1. Sensitivity of soil permafrost to winter warming: Modeled impacts of climate change.

    NASA Astrophysics Data System (ADS)

    Bouskill, N.; Riley, W. J.; Mekonnen, Z. A.; Grant, R.

    2016-12-01

    High-latitude tundra soils are warming at nearly twice the rate of temperate ecosystems. Changes in temperature and soil moisture can feedback on the processes controlling the carbon balance of tundra soils by altering plant community composition and productivity and microbial decomposition rates. Recent field manipulation experiments have shown that elevated soil and air temperatures can stimulate both gross primary productivity and ecosystem respiration. However, the observed soil carbon gains following summer time stimulation of plant productivity have been more than offset by elevated decomposition rates during the rest of the year, and particularly over winter. A critical uncertainty is whether these short-term responses also represent the long-term trajectory of tundra ecosystems under chronic disturbance. Herein we employ a mechanistic land-model (ecosys) that represents many of the key above- and belowground processes regulating the carbon balance of tundra soils to simulate a winter warming experiment at Eight Mile Lake, Alaska. Using this model we examined the short-term (5 - 10 year) influence of soil warming through the wintertime by mimicking the accumulation of a deeper snow pack. This deeper snow pack was removed to a height equal to that of the snow pack over control plots prior to snow melt. We benchmarked the model using physical and biological measurements made over the course of a six-year experiment at the site. The model accurately represented the effect of the experimental manipulation on thaw depth, N mineralization, winter respiration, and ecosystem gross and net primary production. After establishing confidence in the modeled short-term responses, we extend the same chronic disturbance to 2050 to examine the long-term response of the plant and microbial communities to warming. We discuss our results in reference to the long-term trajectory of the carbon and nutrient cycles of high-latitude permafrost regions.

  2. Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2

    PubMed Central

    Andresen, Louise C.; Dungait, Jennifer A. J.; Bol, Roland; Selsted, Merete B.; Ambus, Per; Michelsen, Anders

    2014-01-01

    It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future changes in substrate availability and climatic factors. PMID:24454793

  3. Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands.

    PubMed

    Jackson-Blake, L; Helliwell, R C; Britton, A J; Gibbs, S; Coull, M C; Dawson, L

    2012-08-01

    Nitrogen (N) deposition continues to threaten upland ecosystems, contributing to acidification, eutrophication and biodiversity loss. We present results from a monitoring study aimed at investigating the fate of this deposited N within a pristine catchment in the Cairngorm Mountains (Scotland). Six sites were established along an elevation gradient (486-908 m) spanning the key habitats of temperate maritime uplands. Bulk deposition chemistry, soil carbon content, soil solution chemistry, soil temperature and soil moisture content were monitored over a 5 year period. Results were used to assess spatial variability in soil solution N and to investigate the factors and processes driving this variability. Highest soil solution inorganic N concentrations were found in the alpine soils at the top of the hillslope. Soil carbon stock, soil solution dissolved organic carbon (DOC) and factors representing site hydrology were the best predictors of NO(3)(-) concentration, with highest concentrations at low productivity sites with low DOC and freely-draining soils. These factors act as proxies for changing net biological uptake and soil/water contact time, and therefore support the hypothesis that spatial variations in soil solution NO(3)(-) are controlled by habitat N retention capacity. Soil percent carbon was a better predictor of soil solution inorganic N concentration than mass of soil carbon. NH(4)(+) was less affected by soil hydrology than NO(3)(-) and showed the effects of net mineralization inputs, particularly at Racomitrium heath and peaty sites. Soil solution dissolved organic N concentration was strongly related to both DOC and temperature, with a stronger temperature effect at more productive sites. Due to the spatial heterogeneity in N leaching potential, a fine-scale approach to assessing surface water vulnerability to N leaching is recommended over the broad scale, critical loads approach currently in use, particularly for sensitive areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    NASA Astrophysics Data System (ADS)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells D.; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2 concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085-2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of ˜ 70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater increased rate of 5.2 kg N ha-1 in nitrate yield relative to the watershed with a lower percent of croplands as a result of increased export of nitrate derived from fertilizer. The watershed dominated by poorly drained soils showed increased nitrate removal due do enhanced denitrification compared to the watershed dominated by well-drained soils. Our findings suggest that increased implementation of conservation practices would be necessary for this region to mitigate increased nitrate loads associated with predicted changes in future climate.

  5. Growth of mature boreal Norway spruce was not affected by elevated [CO(2)] and/or air temperature unless nutrient availability was improved.

    PubMed

    Sigurdsson, Bjarni D; Medhurst, Jane L; Wallin, Göran; Eggertsson, Olafur; Linder, Sune

    2013-11-01

    The growth responses of mature Norway spruce (Picea abies (L.) Karst.) trees exposed to elevated [CO(2)] (CE; 670-700 ppm) and long-term optimized nutrient availability or elevated air temperature (TE; ±3.9 °C) were studied in situ in northern Sweden in two 3 year field experiments using 12 whole-tree chambers in ca. 40-year-old forest. The first experiment (Exp. I) studied the interactions between CE and nutrient availability and the second (Exp. II) between CE and TE. It should be noted that only air temperature was elevated in Exp. II, while soil temperature was maintained close to ambient. In Exp. I, CE significantly increased the mean annual height increment, stem volume and biomass increment during the treatment period (25, 28, and 22%, respectively) when nutrients were supplied. There was, however, no significant positive CE effect found at the low natural nutrient availability. In Exp. II, which was conducted at the natural site fertility, neither CE nor TE significantly affected height or stem increment. It is concluded that the low nutrient availability (mainly nitrogen) in the boreal forests is likely to restrict their response to the continuous rise in [CO(2)] and/or TE.

  6. Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen

    PubMed Central

    Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars

    2017-01-01

    Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya–Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle’s elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya–Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide. PMID:28339461

  7. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Zak, Donald R

    2009-11-01

    We repeatedly sampled the surface mineral soil (0-20 cm depth) in three northern temperate forest communities over an 11-year experimental fumigation to understand the effects of elevated carbon dioxide (CO(2)) and/or elevated phyto-toxic ozone (O(3)) on soil carbon (C). After 11 years, there was no significant main effect of CO(2) or O(3) on soil C. However, within the community containing only aspen (Populus tremuloides Michx.), elevated CO(2) caused a significant decrease in soil C content. Together with the observations of increased litter inputs, this result strongly suggests accelerated decomposition under elevated CO(2.) In addition, an initial reduction in the formation of new (fumigation-derived) soil C by O(3) under elevated CO(2) proved to be only a temporary effect, mirroring trends in fine root biomass. Our results contradict predictions of increased soil C under elevated CO(2) and decreased soil C under elevated O(3) and should be considered in models simulating the effects of Earth's altered atmosphere.

  8. Soil temperature investigations using satellite acquired thermal-infrared data in semi-arid regions. Thesis. Final Report; [Utah

    NASA Technical Reports Server (NTRS)

    Day, R. L.; Petersen, G. W.

    1983-01-01

    Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation.

  9. The effect of soil moisture anomalies on maize yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis

    2018-03-01

    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.

  10. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica.

    PubMed

    Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G

    2016-07-01

    Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.

  11. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica

    PubMed Central

    Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G

    2016-01-01

    Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature −23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival. PMID:27323892

  12. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis.

    PubMed

    Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to decreased carbon:nutrient ratios, elevated temperature does not change submerged aquatic plant carbon:nutrient stoichiometry in a consistent manner. This effect is rather dependent on nutrient availability and may be species-specific. As changes in the carbon:nutrient stoichiometry of submerged aquatic plants can impact the transfer of energy to higher trophic levels, these results suggest that eutrophication may enhance plant consumption and decomposition, which could in turn have consequences for carbon sequestration.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.« less

  14. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China

    PubMed Central

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Xue, Yadong; Deng, Ye; Li, Hui; Zhou, Jizhong; Li, Diqiang

    2015-01-01

    Understanding biological diversity elevational pattern and the driver factors are indispensable to develop the ecological theories. Elevational gradient may minimize the impact of environmental factors and is the ideal places to study soil microbial elevational patterns. In this study, we selected four typical vegetation types from 1000 to 2800 m above the sea level on the northern slope of Shennongjia Mountain in central China, and analysed the soil bacterial community composition, elevational patterns and the relationship between soil bacterial diversity and environmental factors by using the 16S rRNA Illumina sequencing and multivariate statistical analysis. The results revealed that the dominant bacterial phyla were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Verrucomicrobia, which accounted for over 75% of the bacterial sequences obtained from tested samples, and the soil bacterial operational taxonomic unit (OTU) richness was a significant monotonous decreasing (P < 0.01) trend with the elevational increasing. The similarity of soil bacterial population composition decreased significantly (P < 0.01) with elevational distance increased as measured by the Jaccard and Bray–Curtis index. Canonical correspondence analysis and Mantel test analysis indicated that plant diversity and soil pH were significantly correlated (P < 0.01) with the soil bacterial community. Therefore, the soil bacterial diversity on Shennongjia Mountain had a significant and different elevational pattern, and plant diversity and soil pH may be the key factors in shaping the soil bacterial spatial pattern. PMID:26032124

  15. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    PubMed

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-09-01

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and foreseeable future. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Carbon Dioxide Emissions From Kill Zones Around the Resurgent Dome, Long Valley Caldera, CA

    NASA Astrophysics Data System (ADS)

    Bergfeld, D.; Evans, W. C.; Farrar, C. D.; Howle, J. F.

    2004-12-01

    An episode of seismic unrest beneath the resurgent dome at Long Valley caldera (LVC) in eastern California began in 1980 and is associated with approximately 80 cm of cumulative uplift on parts of the dome since that time. Studies of hydrologic and geochemical parameters can be useful in determining the source of uplift; and of particular relevance here, studies of diffuse soil degassing and temperature have been used to examine relations between gas emissions, uplift, and energy release. We present results from an eighteen-month investigation of soil temperature, soil-gas chemistry and CO2 efflux from fourteen discrete areas of vegetation kill that have appeared inside the caldera over the past two decades. Compared with the tree-kill around Mammoth Mountain on the southwest rim of the caldera, dead zones we studied around the resurgent dome are small. Individually the areas cover between 800 and 36,000 m2. All of the areas have some sites with elevated CO2 flux and elevated soil temperature. \\delta 13C values of CO2 from sites in eight of the studied areas are between -5.7 and -3.9\\permil, and are within the range of magmatic CO2. Results from the flux measurements indicate that on average total CO2 emissions from four of the areas sum about 10 tonnes per day. The other vegetation kill areas currently have only a few sites that exhibit anomalous soil temperatures and CO2 flux, and CO2 emissions from these areas are typically less than 0.3 of a tonne per day. The chemical composition of gas emissions from thermal ground in kill zones located 1.5 to 2 km northwest of the Casa Diablo geothermal power plant demonstrate a connection between some of the dead areas and perturbations related to geothermal fluid production. These results and estimates of thermal output from two of the high flux grids are used to evaluate the premise that the gaseous and thermal anomalies are related to magmatic intrusion beneath the resurgent dome.

  17. A Methodology for Soil Moisture Retrieval from Land Surface Temperature, Vegetation Index, Topography and Soil Type

    NASA Astrophysics Data System (ADS)

    Pradhan, N. R.

    2015-12-01

    Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.

  18. Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland

    USDA-ARS?s Scientific Manuscript database

    Concurrent changes in temperature, atmospheric CO2, and precipitation regimes are altering ecosystems globally, and may be especially important in water-limited ecosystems. Such ecosystems include the semi-arid grasslands of western North America which provide critical ecosystem services, including ...

  19. Predicting Southern Appalachian overstory vegetation with digital terrain data

    Treesearch

    Paul V. Bolstad; Wayne Swank; James Vose

    1998-01-01

    Vegetation in mountainous regions responds to small-scale variation in terrain, largely due to effects on both temperature and soil moisture. However, there are few studies of quantitative, terrain-based methods for predicting vegetation composition. This study investigated relationships between forest composition, elevation, and a derived index of terrain shape, and...

  20. Soil Carbon Decomposition: "Quality control" or logistic challenge?

    NASA Astrophysics Data System (ADS)

    Kleber, M.

    2011-12-01

    A long tradition of soil organic matter research has generated the belief that there is "stable" soil organic carbon, thought to be recalcitrant because molecular compounds such as aromatic rings and aliphatic chains are joined to polymeric macromolecules by processes of secondary syntheses. The Carbon-Quality Temperature (CQT) theory posits that such materials should be considered "low quality" substrates, because they would require large Arrhenius activation energies for full conversion to CO2. This, in turn, has generated the notion that recalcitrant organic matter should be more temperature sensitive to elevated temperatures than less complex, more "labile" soil organic matter. Yet the molecular properties of stable carbon are elusive - so far, it has not been possible to parameterize molecular recalcitrance in a context -independent fashion. Classic humic substances and even charcoal are readily broken down when placed in an environment where microorganisms with a suitable catabolic toolbox can resort to a plentiful supply of cometabolites and oxygen. At the same time we find labile substrates such as glucose to survive for decades when enclosed within soil aggregates. What then determines the temperature sensitivity of decomposition? Should the scientific community continue to hunt for some molecular proxy for organic matter quality (such as degree of polymerization, aromaticity, aqueous solubility etc) to predict the fate of soil organic carbon in a changing world? This contribution proposes a fundamentally different approach by treating soils as reaction vessels analogous to an industrial bioreactor. Soils are considered as capable of processing dead plant material in all its molecular variations. Decomposition is seen as constrained by environmental drivers, microbial ecology and community composition, and the physical structure of the soil environment. The hypotheses is put forward that, compared to variations in the logistic status of the soil reactor, molecular variations within the substrate are insignificant for the response of the system to rising temperatures. Three functional soil reactor types are distinguished, each representing a specific process space with unique, rate controlling logistics: a) the litter layer, b) the rhizosphere and c) the subsoil.

  1. Hydro-meteorological functioning of the Eastern Andean Tropical Montane Cloud Forests: Insight from a paired catchment study in the Orinoco river basin highlands

    NASA Astrophysics Data System (ADS)

    Ramirez, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Leemans, Rik

    2016-04-01

    Tropical forests regulate large scale precipitation patterns and catchment-scale streamflow, while tropical mountains influence runoff by orographic effects and snowmelt. Along tropical elevation gradients, these climate/ecosystem/hydrological interactions are specific and heterogeneous. These interactions are poorly understood and represented in hydro-meteorological monitoring networks and regional or global earth system models. A typical case are the South American Tropical Montane Cloud Forests (TMCF), whose water balance is strongly driven by fog persistence. This also depends on local and up wind temperature and moisture, and changes in this balance alter the impacts of changes in land use and climate on hydrology. These TMCFs were until 2010 only investigated up to 350km from the coast. Continental TMCFs are largely ignored. This gap is covered by our study area, which is part of the Orinoco river basin highlands and located on the northern Eastern Andes at an altitudinal range of 1550 to 2300m a.s.l. The upwind part of our study area is dominated by lowland savannahs that are flooded seasonally. Because meteorological stations are absent in our study area, we first describe the spatial and seasonal meteorological variability and analyse the corresponding catchment hydrology. Our hydro-meteorological data set is collected at three gauged neighbouring catchments with contrasting TMCF/grassland cover from June 2013 to May 2014 and includes hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and runoff measurements. We compare our results with recent TCMF studies in the eastern Andean highlands in the Amazon basin. The studied elevational range always shows wetter conditions at higher elevations. This indicates a positive relation between elevation and fog or rainfall persistence. Lower elevations are more seasonally variable. Soil moisture data indicate that TMCFs do not use persistently more water than grasslands. Runoff data from our three catchments reflect the interaction between ecosystems and elevation. The less-forested catchment at lower elevations has a more seasonally variable runoff and present the lowest base flows during the dry season. In this season, soil water storage and the wetter conditions at higher elevations are crucial to sustain their base flow. The hydro-meteorological patterns of our study area are similar to those at the eastern Andean TMCF sites, but differences in the elevation of fog and rainfall persistence suggest that specific upwind ecosystem conditions and distance to the coast are important to explain and understand regional seasonal differences.

  2. Elevation, Substrate, & Climate effects on Alpine & Sub-Alpine Plant Distribution in California & Nevada's High Mountains: Preliminary Data from the California and Nevada GLORIA Project

    NASA Astrophysics Data System (ADS)

    Barber, A.; Millar, C.

    2014-12-01

    Documenting plant response to global climate change in sensitive zones, such as the alpine, is a major goal for global change biology. Basic information on alpine plant distribution by elevation and substrate provides a basis for anticipating which species may decline in a warming climate. The Global Observation Research Initiative in Alpine Environments (GLORIA) is a worldwide effort to document vegetation changes over time in alpine settings using permanent multi-summit plots. The California/Nevada group currently monitors seven permanent GLORIA target regions, composed of 29 summits in alpine and subalpine zones. Summits range in elevations from 2918m to 4325m on substrates including dolomite, granite, quartzite, and volcanics. High-resolution plant occurrence and cover data from the upper 10 meters of each summit are presented. Plants from our target regions can be divided into three groups: summit specialists found only on the highest peaks, alpine species found predominantly within the alpine zone, and broadly distributed species found in the alpine zone and below. Rock substrate and microsite soil development have a strong influence on plant communities and species richness. We present the first set of five-year resurvey and temperature data from 18 summits. We have documented some annual variation in species presence/absence at almost all sites, but no dramatic changes in total diversity. Consistent with the expectation of rising global temperatures, our soil temperature loggers have documented temperature increases at most of our sites. These data are a baseline for assessing bioclimatic shifts and future plant composition in California and Nevada's alpine zone.

  3. Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across a wide range of soils

    PubMed Central

    Nord, Eric A.; Jaramillo, Raúl E.; Lynch, Jonathan P.

    2015-01-01

    Soils vary widely in mineral nutrient availability and physical characteristics, but the influence of this variability on plant responses to elevated CO2 remains poorly understood. As a first approximation of the effect of global soil variability on plant growth response to CO2, we evaluated the effect of CO2 on tall fescue (Festuca arundinacea) grown in soils representing 10 of the 12 global soil orders plus a high-fertility control. Plants were grown in small pots in continuously stirred reactor tanks in a greenhouse. Elevated CO2 (800 ppm) increased plant biomass in the high-fertility control and in two of the more fertile soils. Elevated CO2 had variable effects on foliar mineral concentration—nitrogen was not altered by elevated CO2, and phosphorus and potassium were only affected by CO2 in a small number of soils. While leaf photosynthesis was stimulated by elevated CO2 in six soils, canopy photosynthesis was not stimulated. Four principle components were identified; the first was associated with foliar minerals and soil clay, and the second with soil acidity and foliar manganese concentration. The third principle component was associated with gas exchange, and the fourth with plant biomass and soil minerals. Soils in which tall fescue did not respond to elevated CO2 account for 83% of global land area. These results show that variation in soil physical and chemical properties have important implications for plant responses to global change, and highlight the need to consider soil variability in models of vegetation response to global change. PMID:25774160

  4. Phosphorus Dynamics in High Latitude Soils

    NASA Astrophysics Data System (ADS)

    Vincent, A. G.; Vestergren, J.; Gröbner, G.; Wardle, D.; Schleucher, J.; Giesler, R.

    2016-12-01

    Phosphorus (P) is an important macronutrient in boreal forests and arctic and subarctic tundra, and elucidating the factors that control its bioavailability is essential to understand the function of these ecosystems, now and under global change. We tested several hypotheses about differences in soil P composition along natural gradients of temperature, ecosystem development, soil metal concentration, and fire frequency in Northern Sweden. To characterise P composition we used traditional soil P fractionation procedures as well as 1-dimensional 31P Nuclear Magnetic Resonance (NMR) and novel 2-dimensional 1H-31P NMR techniques. Here we synthesize the main patterns emerging from this work. Temperature seems to be an important driver of P bioavailability regardless of vegetation type in subarctic tundra, given a positive correlation between temperature and the concentration of bioavailable soil P along an elevational gradient. In boreal forest, stage of ecosystem development along a 7800 year old chronosequence created by glacial isostatic adjustment was associated with marked, yet not unidirectional, shifts in the composition of soil P, which suggests ongoing changes in unknown ecological processes. Naturally higher concentrations of iron and aluminium in soils due to groundwater recharge and discharge were related with higher concentrations of P compounds widely considered to be recalcitrant, such as inositol phosphates. Finally, retrogressive forest ecosystems with low productivity growing on old soils did not have a relatively higher proportion of recalcitrant organic P compounds, contrary to our expectations based on current biogeochemistry theory. Finally, one of our most enigmatic findings is the high relative abundance of labile P compounds such as RNA in soil. This would suggest that a great proportion of soil P is located within live microbial cells, and therefore that microbial dynamics are a crucial control on P bioavailability in these ecosystems.

  5. Effects of Climate Change and Organic Matter Amendments on the Fate of Soil Carbon and the Global Warming Potential of CO2, CH4, and N2O Emissions in an Upland Soil

    NASA Astrophysics Data System (ADS)

    Simmonds, M.; Muehe, E. M.; Fendorf, S. E.

    2017-12-01

    Our current understanding of the mechanisms driving carbon stabilization in soil organic matter (SOM) and its release to the atmosphere is insufficient for predicting the response of soil carbon dynamics to future climatic conditions. The persistence of SOM has been studied primarily within the context of biochemical, physical, and geochemical protection from decomposition. More recently, bioenergetic constraints on SOM decomposition due to oxygen limitations have been demonstrated in submerged soils. However, the relevance of anaerobic domains in upland soils is uncertain. To better understand how upland soils will respond to climate change, we conducted a 52-day incubation of an upland soil at constant soil moisture (field capacity) under varying air temperatures (32°C and 37°C), CO2 concentrations (398 and 850 ppmv), and soil organic carbon contents (1.3%, 2.4%). Overall, we observed a stimulatory effect of future climate (elevated temperature and CO2) and higher carbon inputs on net SOM mineralization rates (higher CO2, CH4 and N2O emissions). Importantly, CH4 emissions were observed in the soils with added plant residue, indicating anaerobic microsites are relevant in upland soils, and significantly impact microbial respiration pathways, rates of SOM mineralization, and the global warming potential of trace gas emissions. These findings have important implications for positive soil carbon-climate feedbacks, and warrant further investigation into representing anaerobic soil domains of upland soils in biogeochemical models.

  6. Understanding SMAP-L4 soil moisture estimation skill and their dependence with topography, precipitation and vegetation type using Mesonet and Micronet networks.

    NASA Astrophysics Data System (ADS)

    Moreno, H. A.; Basara, J. B.; Thompson, E.; Bertrand, D.; Johnston, C. S.

    2017-12-01

    Soil moisture measurements using satellite information can benefit from a land data assimilation model Goddard Earth Observing System (GEOS-5) and land data assimilation system (LDAS) to improve the representation of fine-scale dynamics and variability. This work presents some advances to understand the predictive skill of L4-SM product across different land-cover types, topography and precipitation totals, by using a dense network of multi-level soil moisture sensors (i.e. Mesonet and Micronet) in Oklahoma. 130 soil moisture stations are used across different precipitation gradients (i.e. arid vs wet), land cover (e.g. forest, shrubland, grasses, crops), elevation (low, mid and high) and slope to assess the improvements by the L4_SM product relative to the raw SMAP L-band brightness temperatures. The comparisons are conducted between July 2015 and July 2016 at the daily time scale. Results show the highest L4-SM overestimations occur in pastures and cultivated crops, during the rainy season and at higher elevation lands (over 800 meters asl). The smallest errors occur in low elevation lands, low rainfall and developed lands. Forested area's soil moisture biases lie in between pastures (max biases) and low intensity/developed lands (min biases). Fine scale assessment of L4-SM should help GEOS-5 and LDAS teams refine model parameters in light of observed differences and improve assimilation techniques in light of land-cover, topography and precipitation regime. Additionally, regional decision makers could have a framework to weight the utility of this product for water resources applications.

  7. Shift of fleshy fruited species along elevation: temperature, canopy coverage, phylogeny and origin

    PubMed Central

    Yu, Shunli; Katz, Ofir; Fang, Weiwei; Li, Danfeng; Sang, Weiguo; Liu, Canran

    2017-01-01

    Plant communities differ in their fruit type spectra, especially in the proportions of fleshy and non-fleshy fruit types. However, which abiotic and biotic factors drive this variability along elevation gradient and what drives the evolution of fruit type diversity still are puzzling. We analyzed the variations in proportions and richness of fleshy-fruited species and their correlations to various abiotic and biotic variables along elevation gradients in three mountains in the Beijing region, northeast China. Fleshy-fruited species, which are characterized by high fruit water contents, were found in great proportion and richness at relatively low elevations, where soil water content is low compared to high elevations. High temperatures in low elevations increase water availability for plants. Plants that grow in the shaded low-elevation thick-canopy forests are less exposed to evapotranspiration and thus possess water surpluses that can be invested in fleshy fruits. Such an investment in fleshy fruits is beneficial for these species because it makes the fruits more attractive to frugivores that act as seed dispersers in the close-canopied environments, where dispersion by wind is less effective. A hypothesis is proposed that plant internal water surpluses are the prerequisite conditions that permit evolution of fleshy fruits to occur. PMID:28084416

  8. Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils.

    PubMed

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei

    2016-11-01

    Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO 2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO 2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO 2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO 2 (700 μmol mol -1 ) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO 2  + heavy metals than under ambient CO 2 . The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO 2 ; and elevated CO 2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO 2 compared to ambient CO 2 . The combination of both metals and elevated CO 2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO 2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests.

    PubMed

    Smithers, Brian V; North, Malcolm P; Millar, Constance I; Latimer, Andrew M

    2018-02-01

    In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine-dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above-treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully "leap-frogging" over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early-stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal and establishment may result in future communities with very different specific composition. © 2017 John Wiley & Sons Ltd.

  10. Modeling critical zone processes in intensively managed environments

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Le, Phong; Woo, Dong; Yan, Qina

    2017-04-01

    Processes in the Critical Zone (CZ), which sustain terrestrial life, are tightly coupled across hydrological, physical, biochemical, and many other domains over both short and long timescales. In addition, vegetation acclimation resulting from elevated atmospheric CO2 concentration, along with response to increased temperature and altered rainfall pattern, is expected to result in emergent behaviors in ecologic and hydrologic functions, subsequently controlling CZ processes. We hypothesize that the interplay between micro-topographic variability and these emergent behaviors will shape complex responses of a range of ecosystem dynamics within the CZ. Here, we develop a modeling framework ('Dhara') that explicitly incorporates micro-topographic variability based on lidar topographic data with coupling of multi-layer modeling of the soil-vegetation continuum and 3-D surface-subsurface transport processes to study ecological and biogeochemical dynamics. We further couple a C-N model with a physically based hydro-geomorphologic model to quantify (i) how topographic variability controls the spatial distribution of soil moisture, temperature, and biogeochemical processes, and (ii) how farming activities modify the interaction between soil erosion and soil organic carbon (SOC) dynamics. To address the intensive computational demand from high-resolution modeling at lidar data scale, we use a hybrid CPU-GPU parallel computing architecture run over large supercomputing systems for simulations. Our findings indicate that rising CO2 concentration and air temperature have opposing effects on soil moisture, surface water and ponding in topographic depressions. Further, the relatively higher soil moisture and lower soil temperature contribute to decreased soil microbial activities in the low-lying areas due to anaerobic conditions and reduced temperatures. The decreased microbial relevant processes cause the reduction of nitrification rates, resulting in relatively lower nitrate concentration. Results from geomorphologic model also suggest that soil erosion and deposition plays a dominant role in SOC both above- and below-ground. In addition, tillage can change the amplitude and frequency of C-N oscillation. This work sheds light in developing practical means for reducing soil erosion and carbon loss when the landscape is affected by human activities.

  11. Gas exchange characteristics of Pinus edulis and Juniperus monosperma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, F.J.

    1987-07-01

    A shift in the relative dominance of Pinus edulis and Juniperus monosperma is associated with a complex elevational gradient in northern new Mexico. The ecophysiological parameters contributing to this dominance pattern were studied by determining the gas exchange characteristics of the two species in response to temperature, light and water stress under controlled conditions. P. edulis has a higher photosynthetic capacity than J. monosperma, and has a tendency to form ecotypes with individuals from mesic sites having higher rates of carbon gain than xeric site individuals. J. monosperma is more drought-tolerant than P. edulis. As soil moisture decreases, zero carbonmore » gain in J. monosperma occurs at a lower predawn leaf water potential (-4.6 MPa) than in P. edulis (-2.2 MPa). There is no significant difference between species in the temperature of peak carbon gain. J. monosperma has a significantly wider temperature optimum than P. edulis with the additional range being at high temperatures. The observed lower elevational limit of P. edulis coincides with its physiological tolerance of water stress as estimated by seasonal leaf carbon gain. Environmental limitations to the distribution of J. monosperma were not found at higher elevations where P. edulis is dominant.« less

  12. Biodiversity analysis of vegetation on the Nevada Test Site

    Treesearch

    W. K. Ostler; D. J. Hansen

    2001-01-01

    The Nevada Test Site (NTS) located in south-central Nevada encompasses approximately 3,567 km2 and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996 to 1998, more than 1,500 ecological landform units were...

  13. How will the two major Midwest crops respond to global climate change? Results from ten years of investigation at SoyFACE

    USDA-ARS?s Scientific Manuscript database

    The Soybean Free Air Concentration Enrichment (SoyFACE) facility is an open-air field "laboratory" for investigating the effects of elevated concentrations of CO2 and ozone, higher temperatures and altered soil water availability on field crops. For over a decade, experiments have examined the produ...

  14. Infrared heater system for warming tropical forest understory plants and soils.

    PubMed

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  15. Destabilization of emulsions by natural minerals.

    PubMed

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE PAGES

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; ...

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.« less

  17. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment.

    PubMed

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.

  18. Dynamic characteristics of soil respiration in Yellow River Delta wetlands, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Luo, Xianxiang; Jia, Hongli; Zheng, Hao

    2018-02-01

    The stable soil carbon (C) pool in coastal wetlands, referred to as "blue C", which has been extensively damaged by climate change and soil degradation, is of importance to maintain global C cycle. Therefore, to investigate the dynamic characteristics of soil respiration rate and evaluate C budgets in coastal wetlands are urgently. In this study, the diurnal and seasonal variation of soil respiration rate in the reed wetland land (RL) and the bare wetland land (BL) was measured in situ with the dynamic gas-infrared CO2 method in four seasons, and the factors impacted on the dynamic characteristics of soil respiration were investigated. The results showed that the diurnal variation of soil respiration rate consistently presented a "U" curve pattern in April, July, and September, with the maximum values at 12:00 a.m. and the minimum values at 6:00 a.m. In the same season, the diurnal soil respiration rate in RL was significantly greater than those in BL (P < 0.05). In April, July, and September, the mean diurnal soil respiration rate was 0.14, 0.42, and 0.39 μmol m-2 s-1 in RL, 0.05, 0.22, 0.13, and 0.01 μmol m-2 s-1 in BL, respectively. Soil surface temperature was the primary factor that influenced soil respiration, which was confirmed by the exponential positive correlation between the soil respiration rate and soil surface temperature in BL and RL (P < 0.05). In addition, the high salinity of soils suppressed soil respiration, confirming by the significantly negative correlation between soil respiration rate and the content of soluble salt. These results will be useful for understanding the mechanisms underlying soil respiration and elevating C sequestration potential in the coastal wetlands.

  19. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?

    PubMed

    Fréchette, Emmanuelle; Ensminger, Ingo; Bergeron, Yves; Gessler, Arthur; Berninger, Frank

    2011-11-01

    Future climate will alter the soil cover of mosses and snow depths in the boreal forests of eastern Canada. In field manipulation experiments, we assessed the effects of varying moss and snow depths on the physiology of black spruce (Picea -mariana (Mill.) B.S.P.) and trembling aspen (Populus tremuloides Michx.) in the boreal black spruce forest of western Québec. For 1 year, naturally regenerated 10-year-old spruce and aspen were grown with one of the following treatments: additional N fertilization, addition of sphagnum moss cover, removal of mosses, delayed soil thawing through snow and hay addition, or accelerated soil thawing through springtime snow removal. Treatments that involved the addition of insulating moss or snow in the spring caused lower soil temperature, while removing moss and snow in the spring caused elevated soil temperature and thus had a warming effect. Soil warming treatments were associated with greater temperature variability. Additional soil cover, whether moss or snow, increased the rate of photosynthetic recovery in the spring. Moss and snow removal, on the other hand, had the opposite effect and lowered photosynthetic activity, especially in spruce. Maximal electron transport rate (ETR(max)) was, for spruce, 39.5% lower after moss removal than with moss addition, and 16.3% lower with accelerated thawing than with delayed thawing. Impaired photosynthetic recovery in the absence of insulating moss or snow covers was associated with lower foliar N concentrations. Both species were affected in that way, but trembling aspen generally reacted less strongly to all treatments. Our results indicate that a clear negative response of black spruce to changes in root-zone temperature should be anticipated in a future climate. Reduced moss cover and snow depth could adversely affect the photosynthetic capacities of black spruce, while having only minor effects on trembling aspen.

  20. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    PubMed Central

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  1. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain.

    PubMed

    Kwon, Min Jung; Beulig, Felix; Ilie, Iulia; Wildner, Marcus; Küsel, Kirsten; Merbold, Lutz; Mahecha, Miguel D; Zimov, Nikita; Zimov, Sergey A; Heimann, Martin; Schuur, Edward A G; Kostka, Joel E; Kolle, Olaf; Hilke, Ines; Göckede, Mathias

    2017-06-01

    As surface temperatures are expected to rise in the future, ice-rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH 4 , and investigating effects of soil hydrology on CH 4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade-long drying manipulation on an Arctic floodplain influences CH 4 -associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage-induced changes may then modify CH 4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH 4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0-15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH 4 oxidation, thereby decreasing net CH 4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH 4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH 4 oxidation and leading to a decrease in net CH 4 fluxes compared to a control site. Drainage lowered CH 4 fluxes by a factor of 20 during the growing season, with postdrainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH 4 emissions increased by 10% in the drained areas during the nongrowing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long-term drainage considerably reduced CH 4 fluxes through modified ecosystem properties. © 2016 John Wiley & Sons Ltd.

  2. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    PubMed

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p < 0.05) higher values for the heavy metals cadmium, chromium, copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p < 0.05) lower than the control soil. Similar significant (p < 0.05) elevations were observed in the lake water temperature, salinity, pH, calcium, magnesium, sodium, potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  3. Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Cahoon, D.R.; Lynch, J.C.; Anderson, G.H.

    2005-01-01

    We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0?4 m), the shallow root zone (0?0.35 m), and the full sediment profile (0?6 m) in response to site hydrology (daily river stage and groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0?0.35 m], middle zone [0.35?4 m], and bottom zone [4?6 m]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly with changes in soil elevation for the entire profile (Adjusted R2 5 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 5 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.

  4. Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles.

    PubMed

    Vimercati, L; Hamsher, S; Schubert, Z; Schmidt, S K

    2016-09-01

    Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between -10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze-thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze-thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze-thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze-thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth.

  5. Interactive effects of elevated ozone and UV-B radiation on soil nematode diversity.

    PubMed

    Bao, Xuelian; Li, Qi; Hua, Jianfeng; Zhao, Tianhong; Liang, Wenju

    2014-01-01

    Ultraviolet-B (UV-B) radiation and elevated tropospheric ozone may cause reductions in the productivity and quality of important agricultural crops. However, research regarding their interactive effect is still scarce, especially on the belowground processes. Using the open top chambers experimental setup, we monitored the response of soil nematodes to the elevated O3 and UV-B radiation individually as well as in combination. Our results indicated that elevated O3 and UV-B radiation have impact not only on the belowground biomass of plants, but also on the community structure and functional diversity of soil nematodes. The canonical correspondence analysis suggested that soil pH, shoot biomass and microbial biomass C and N were relevant parameters that influencing soil nematode distribution. The interactive effects of elevated O3 and UV-B radiation was only observed on the abundance of bacterivores. UV-B radiation significantly increased the abundance of total nematodes and bacterivores in comparison with the control at pod-filling stage of soybean. Following elevated O3, nematode diversity index decreased and dominance index increased relative to the control at pod-filling stage of soybean. Nematode functional diversity showed response to the effects of elevated O3 and UV-B radiation at pod-bearing stage. Higher enrichment index and lower structure index in the treatment with both elevated O3 and UV-B radiation indicated a stressed soil condition and degraded soil food web. However, the ratios of nematode trophic groups suggested that the negative effects of elevated O3 on soil food web may be weakened by the UV-B radiations.

  6. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    PubMed

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  7. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales.

    PubMed

    Hendershot, John Nicholas; Read, Quentin D; Henning, Jeremiah A; Sanders, Nathan J; Classen, Aimée T

    2017-07-01

    Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a global meta-analysis of 325 soil communities across 20 studies conducted along temperature and soil pH gradients. Belowground taxa, whether bacterial or fungal, observed along a given gradient of temperature or soil pH were equally likely to show a linear increase, linear decrease, humped pattern, trough-shaped pattern, or no pattern in diversity along the gradient. Land-use intensity weakly affected the diversity-temperature relationship, but no other factor did so. Our study highlights disparities among diversity patterns of soil microbial communities. Belowground diversity may be controlled by the associated climatic and historical contexts of particular gradients, by factors not typically measured in community-level studies, or by processes operating at scales that do not match the temporal and spatial scales under study. Because these organisms are responsible for a suite of key processes, understanding the drivers of their distribution and diversity is fundamental to understanding the functioning of ecosystems. © 2017 by the Ecological Society of America.

  8. Climate Change, Soils, and Human Health

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

  9. Mean Annual Temperature Drives Microbial Nitrogen Cycling and Fine Root Nutrient Foraging Across a Tropical Montane Wet Forest Elevation Gradient

    NASA Astrophysics Data System (ADS)

    Pierre, S.; Litton, C. L. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P. M.; Hewson, I.; Fahey, T. J.

    2017-12-01

    Mean annual temperature (MAT) is positively correlated with rates of primary production and carbon (C) turnover in forests globally, but the underlying biotic drivers of these relationships remain poorly resolved. We hypothesized that (1) MAT increases nitrifier abundance and thereby nitrate (NO-) bioavailability in soils and (2) increased NO- bioavailability reduces fine root nitrogen (N) demand. We used an ecologically well-constrained natural elevation gradient (13˚C -18˚C) in a tropical wet motane forest on the Island of Hawaii to study to role of MAT in situ. Our previous work showed that MAT drives increased soil NO- bioavailability in situ (r²=0.79, P=0.003), and indicated that the abundance of ammonia oxidizing archaea is strongly and positively correlated with MAT in situ (r²=0.34, P<0.001; Pierre et. al. 2017). Using fertilized fine root ingrowth cores (+N, +P, +N+P, control) across the same MAT gradient, we found that increasing MAT and bulk soil NO- bioavailability produced a significant negative fine root response to the +N+P treatment (P=0.023), and no response to other fertilization treatments. Increasing MAT and soil NO- bioavailability led to increased percent arbuscular mycorrhizal (AM) colonization of fine roots (r²=0.43, P=0.004), but no treatment effect on AM colonization was observed. Our results suggest that N and P generally co-limit fine root foraging across the gradient, while higher MAT and bulk soil NO- bioavailability interact to reduce fine root foraging effort. Further, higher MAT and greater N fertility in soils may reduce the C limitation of AM fungal colonization. We conclude that MAT drives N-rich conditions, which allow for lower N foraging effort, but greater C investment in P acquisition through AM fine root colonization.

  10. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    PubMed

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  11. Temperature and altitudinal influence on karst dripwater chemistry: Implications for regional-scale palaeoclimate reconstructions from speleothems

    NASA Astrophysics Data System (ADS)

    Borsato, Andrea; Johnston, Vanessa E.; Frisia, Silvia; Miorandi, Renza; Corradini, Flavio

    2016-03-01

    The reconstruction of robust past climate records from speleothems requires a prior understanding of the environmental and hydrological conditions that lead to speleothem formation and the chemical signals encoded within them. On regional-scales, there has been little quantification of the dependency of cave dripwater geochemistry on meteorology (net infiltration, temperature), environmental and geographical factors (elevation, latitude, soil activity, vegetation cover, atmospheric aerosol composition) and geological properties of the aquifer (lithology, porosity and thickness). In the present study, we analysed over 200 karst waters collected in 11 caves of the Trentino region (NE Italy). The caves span sub-humid Mediterranean to cold-humid temperate climates and infiltration elevations (Zinf) ranging from 355 to 2400 m a.s.l., corresponding to infiltration mean annual temperatures (MATinf) between 12 and 0 °C. Since all the caves developed in pure carbonate rocks, soil pCO2 is found to be the main factor controlling the carbonate dissolution. For this reason, the parameters controlling the carbonate-carbonic acid system and calcite saturation state (SICC) are directly correlated with the MATinf, which influences the vegetation zones and eventually the production of CO2 in the soil. SICC linearly depends on MATinf (SICC = 0.09 MATinf - 0.4) and SICC = 0 is reached at Zinf = 1.66 km a.s.l., corresponding to a MATinf = 4.4 °C. This point identifies the ;speleothem limit; defined here as the elevation (or corresponding MATinf) above which no sparitic speleothem precipitation usually occurs. We demonstrate that due to temperature-forced changes in the soil and vegetation and subsequently SICC, the speleothem limit shifts to higher altitudes during maximum interglacial conditions. Speleothems from high altitude caves (1.5-2.5 km a.s.l.) thus can identify optimum interglacial periods. By contrast, speleothems formed at lower altitudes are better suited as archives of hydrological proxies. At altitudes below 1.2 km a.s.l., prior calcite precipitation (PCP) modifies percolating waters, particularly during periods of reduced infiltration. We introduce the use of the SiO2/Ca and SO4/Ca ratios in cave waters to complement Mg/Ca and Sr/Ca ratios as markers of PCP. SO4 and SiO2 are derived from atmospheric deposition and siliciclastic minerals in the soil zone, rather than carbonate host rocks (as in the case of Mg and Sr). By combing shifts to higher Mg/Ca, SiO2/Ca and SO4/Ca ratios along their characteristics PCP lines, we improve the robustness of the interpretation that this resulted from increasing PCP, rather than incongruent calcite dissolution (ICD). Our method permits the quantification of PCP between 0% and 40% for low elevation cave waters. This novel approach has important implications for speleothem-based paleoclimate studies where the distinction between PCP and ICD can be ambiguous and, in combination with Mg/Ca and Sr/Ca ratios, permits the quantification of net infiltration and/or rainfall amount from speleothem records.

  12. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.

  13. Variability of soil CO2 efflux in a semi-arid grassland in Arizona

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Meyers, T. P.; Heuer, M.

    2017-12-01

    Soil surface CO2 efflux or soil respiration (RS) is one of the most important components of the global carbon cycle. So it is critical to evaluate the response of soil respiration to environmental conditions to predict how future climate and land cover changes influence the ecosystem carbon balance. Continuous half-hourly measurements of RS were made between the end of March to December 2015 in a semi-arid temperate grassland located on the Audubon Research Ranch in south western Arizona (31.5907N, 110.5104W, elevation 1496 m), USA. This first time measurements of Rs over this site using an automated soil chamber were used to investigate the seasonal and diurnal variation of Rs and its relationship to environmental variables. The mean annual air temperature and precipitation at this site were 16 deg C and 370 mm with more than 60% of the annual precipitation was received during the North American monsoon period (July-September). Following the onset of the monsoon, drastic changes in vegetation growth occured turning the ecosystem to a carbon sink by August. Temporal variability in Rs was closely related to the changes in near surface soil temperature at 2 cm (Ts) and soil water content at 5 cm (θ). Half -hourly Rs varied from nearly 0.1 μmol m-2 s-1 in the winter months to a maximum of 5 μmol m-2 s-1 in the peak growing season in August. During the dry pre-monsoon period (May -June), Rs was relatively low (<2 μmol m-2 s-1) even though soil temperature was the highest at the site. Rs significantly increased following rain events during the warm growing season reaching its peak in August. With the end of the growing season Rs continue to decrease following the temporal variation in Ts. Results show that there is a threshold of θ below which Rs were significantly reduced. For θ > 0.0.08 m3 m-3, RS was positively correlated to soil temperature at the 2 cm depth following an exponential relationship. Below this value of θ, RS was largely decoupled from TS dropping to less than half of their maximum values during wet soil conditions. Analysis of daily mean nighttime Rs for the year showed that for periods with θ below the threshold, the sensitivity of RS to temperature were substantially reduced resulting in a Q10 significantly < 2, thereby confirming that RS was less affected by soil temperature under low soil water conditions at this site.

  14. Impact of elevated carbon dioxide on soil heat storage and heat flux under unheated low-tunnels conditions.

    PubMed

    Al-Kayssi, A W; Mustafa, S H

    2016-11-01

    Suboptimal regimes of air and soil temperature usually occur under unheated low-tunnels during winter crop cycles. CO2 is one of the most important gases linked to climate change and posing challenge to the current agricultural productivity. Field experiment was conducted in unheated low-tunnels (10.0 m long, 1.5 m wide and 1.0 m high) during winter and spring periods to evaluate the increasing CO2 concentration (352, 709, 1063, 1407, and 1761 ppm) on net radiation budget, soil-air thermal regime and pepper plants growth development and yield. CO2 was injected into each hollow space of the tunnel double-layer transparent polyethylene covers. Recorded integral net longwave radiation increased from 524.81 to 1111.84 Wm(-2) on January when CO2 concentration increased from 352 to 1761 ppm. A similar trend was recorded on February. Moreover, minimum soil surface and air temperatures were markedly increased from -1.3 and -6.8 °C to 3.4 and 0.6 °C, when CO2 concentration increased from 352 to 1761 ppm. Additionally, soil heat flux as well as soil heat storage increased with increasing CO2 concentrations accordingly. Increasing the tunnel minimum air and soil temperatures with the CO2 concentration treatments 1063, 1407 and 1761 ppm reflected in a significant pepper yield (3.19, 5.06 and 6.13 kg m(-2)) due to the modification of the surrounding plants microenvironment and prevented pepper plants from freezing and the accelerated the plant growth. On the contrary, the drop of minimum air and soil temperatures to freezing levels with the CO2 concentration treatments 352 and 709 ppm resulted in the deterioration of pepper plants development during the early growth stages on January. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    USGS Publications Warehouse

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085–2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of  ∼  70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater increased rate of 5.2 kg N ha−1 in nitrate yield relative to the watershed with a lower percent of croplands as a result of increased export of nitrate derived from fertilizer. The watershed dominated by poorly drained soils showed increased nitrate removal due do enhanced denitrification compared to the watershed dominated by well-drained soils. Our findings suggest that increased implementation of conservation practices would be necessary for this region to mitigate increased nitrate loads associated with predicted changes in future climate.

  16. Climatic role of terrestrial ecosystem under elevated CO2 : a bottom-up greenhouse gases budget.

    PubMed

    Liu, Shuwei; Ji, Cheng; Wang, Cong; Chen, Jie; Jin, Yaguo; Zou, Ziheng; Li, Shuqing; Niu, Shuli; Zou, Jianwen

    2018-05-07

    The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO 2 ) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO 2 . We show that elevated CO 2 significantly stimulates plant C pool (NPP) by 20%, soil CO 2 fluxes by 24%, and methane (CH 4 ) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH 4 uptake of upland soils by 3.8%. Elevated CO 2 causes insignificant increases in soil nitrous oxide (N 2 O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO 2 -induced increase in GHG emissions may decline with CO 2 enrichment levels. An elevated CO 2 -induced rise in soil CH 4 and N 2 O emissions (2.76 Pg CO 2 -equivalent year -1 ) could negate soil C enrichment (2.42 Pg CO 2 year -1 ) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO 2 year -1 ) under elevated CO 2 . Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO 2 might have been largely offset by its induced increases in soil GHGs source strength. © 2018 John Wiley & Sons Ltd/CNRS.

  17. Temperature and Precipitation Interactions Eliminate Benefits of Free-air CO2 Enrichment to Soybean Water Relations in Two Out of Five Years

    USDA-ARS?s Scientific Manuscript database

    A key assumption in projections of future food supply and ecosystem function is that elevated [CO2], through reduced stomatal conductance (gs), results in lower water use, conservation of soil moisture and amelioration of losses in productivity due to drought stress. A 5-year dataset from the soybea...

  18. Niche modeling predictions of the potential distribution of Marmota himalayana, the host animal of plague in Yushu County of Qinghai.

    PubMed

    Lu, Liang; Ren, Zhoupeng; Yue, Yujuan; Yu, Xiaotao; Lu, Shan; Li, Guichang; Li, Hailong; Wei, Jianchun; Liu, Jingli; Mu, You; Hai, Rong; Yang, Yonghai; Wei, Rongjie; Kan, Biao; Wang, Hu; Wang, Jinfeng; Wang, Zuyun; Liu, Qiyong; Xu, Jianguo

    2016-02-24

    After the earthquake on 14, April 2010 at Yushu in China, a plague epidemic hosted by Himalayan marmot (Marmota himalayana) became a major public health concern during the reconstruction period. A rapid assessment of the distribution of Himalayan marmot in the area was urgent. The aims of this study were to analyze the relationship between environmental factors and the distribution of burrow systems of the marmot and to predict the distribution of marmots. Two types of marmot burrows (hibernation and temporary) in Yushu County were investigated from June to September in 2011. The location of every burrow was recorded with a global positioning system receiver. An ecological niche model was used to determine the relationship between the burrow occurrence data and environmental variables, such as land surface temperature (LST) in winter and summer, normalized difference vegetation index (NDVI) in winter and summer, elevation, and soil type. The predictive accuracies of the models were assessed by the area under the curve of the receiving operator curve. The models for hibernation and temporary burrows both performed well. The contribution orders of the variables were LST in winter and soil type, NDVI in winter and elevation for the hibernation burrow model, and LST in summer, NDVI in summer, soil type and elevation in the temporary burrow model. There were non-linear relationships between the probability of burrow presence and LST, NDVI and elevation. LST of 14 and 23 °C, NDVI of 0.22 and 0.60, and 4100 m were inflection points. A substantially higher probability of burrow presence was observed in swamp soil and dark felty soil than in other soil types. The potential area for hibernation burrows was 5696 km(2) (37.7% of Yushu County), and the area for temporary burrows was 7711 km(2) (51.0% of Yushu County). The results suggested that marmots preferred warm areas with relatively low altitudes and good vegetation conditions in Yushu County. Based on these results, the present research is useful in understanding the niche selection and distribution pattern of marmots in this region.

  19. Photosynthetic and stomatal acclimation to elevated CO{sub 2} depends on soil type in Quercus prinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, J.A.

    1995-06-01

    Quercus prinus (L.) seedlings grown outdoors at ambient and elevated (ambient + 350 ppm) CO{sub 2} with a fertile soil had no photosynthetic acclimation to elevated CO{sub 2} and no stomatal response to growth or measurement CO{sub 2}. In contrast, seedlings grown with soil collected from a Q. prinus stand had photosynthetic and stomatal acclimation, and stomatal conductance was sensitive to measurement CO{sub 2}. In plants grown with the native soil, light-saturated stomatal conductance measured at the growth CO{sub 2} was reduced by 54% at elevated CO{sub 2}, compared to the short-term reduction of 36%. Photosynthetic acclimation in plants grownmore » with the native soil reduced the stimulation of light-saturated photosynthesis at elevated CO{sub 2} from a factor of 1.9 to a factor of 1.3. In contrast to the dependence of photosynthetic and stomatal acclimation on soil type, the response of leaf respiration to elevated CO{sub 2} was the same for both soils. Respiration of leaves was reduced in the elevated CO{sub 2} treatment by 41 % on a leaf area basis. However, this effect was immediately reversible by altering the measurement CO{sub 2}, indicating that no acclimation of respiration occurred.« less

  20. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems

    USGS Publications Warehouse

    Schwabedissen, Stacy G.; Lohse, Kathleen A.; Reed, Sasha C.; Aho, Ken A.; Magnuson, Timothy S.

    2017-01-01

    In drylands worldwide, biological soil crusts (BSC) form a thin photosynthetic cover across landscapes, and provide vital benefits in terms of stabilizing soil and fixing nitrogen (N) and carbon (C). Numerous studies have examined the effects of climate and disturbance on BSC functions; however, few have characterized these responses in rolling BSCs typical of northern ecosystems in the Intermountain West, US. With temperature increases and shifts in precipitation projected, it is unclear how BSCs in this region will respond to climate change, and how the response could affect their capacity to perform key ecosystem functions, such as providing ‘new’ N through biological N2 fixation. To address this important knowledge gap, we examined nitrogenase activity (NA) associated with rolling BSCs along a climatic gradient in southwestern Idaho, US, and quantified how acetylene reduction rates changed as a function of climate, grazing (using exclosures), and shrub-canopy association. Results show that warmer, drier climates at lower elevations hosted greater cover of late successional BSC communities (e.g., mosses and lichens), and higher NA compared with colder, wetter climates at higher elevations. Highest NA (0.5–29.3 µmol C2H4 m−2 h−1) occurred during the early summer/spring, when water was more available than in late summer/autumn. Activity was strongly associated with soil characteristics including pH and ammonium concentrations suggesting these characteristics as potentially strong controls on NA in BSCs. The relationship between grazing and NA varied with elevation. Specifically, lower elevation sites had lower NA at grazed locations, whereas higher elevation sites had higher NA with grazing. At both low and high ends of the elevation gradient, shrub-canopy associated BSCs maintained two to three times higher NA compared to BSCs in the interspace among shrubs. Taken together, our findings indicate that the controls and rates of NA in BSCs vary seasonally and strongly with climate in the Intermountain West, and that drier springs are likely to influence rates of NA more than warmer summers.

  1. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank.

    PubMed

    Hoyle, Gemma L; Venn, Susanna E; Steadman, Kathryn J; Good, Roger B; McAuliffe, Edward J; Williams, Emlyn R; Nicotra, Adrienne B

    2013-05-01

    Global warming is occurring more rapidly above the treeline than at lower elevations and alpine areas are predicted to experience above average warming in the future. Temperature is a primary factor in stimulating seed germination and regulating changes in seed dormancy status. Thus, plant regeneration from seed will be crucial to the persistence, migration and post disturbance recruitment of alpine plants in future climates. Here, we present the first assessment of the impact of soil warming on germination from the persistent alpine soil seed bank. Contrary to expectations, soil warming lead to reduced overall germination from the soil seed bank. However, germination response to soil temperature was species specific such that total species richness actually increased by nine with soil warming. We further explored the system by assessing the prevalence of seed dormancy and germination response to soil disturbance, the frequency of which is predicted to increase under climate change. Seeds of a significant proportion of species demonstrated physiological dormancy mechanisms and germination of several species appeared to be intrinsically linked to soil disturbance. In addition, we found no evidence of subalpine species and little evidence of exotic weed species in the soil, suggesting that the soil seed bank will not facilitate their invasion of the alpine zone. In conclusion, changes in recruitment via the alpine soil seed bank can be expected under climate change, as a result of altered dormancy alleviation and germination cues. Furthermore, the alpine soil seed bank, and the species richness therein, has the potential to help maintain local species diversity, support species range shift and moderate species dominance. Implications for alpine management and areas for further study are also discussed. © 2013 Blackwell Publishing Ltd.

  2. Increased seedling establishment via enemy release at the upper elevational range limit of sugar maple.

    PubMed

    Urli, Morgane; Brown, Carissa D; Narváez Perez, Rosela; Chagnon, Pierre-Luc; Vellend, Mark

    2016-11-01

    The enemy release hypothesis is frequently invoked to explain invasion by nonnative species, but studies focusing on the influence of enemies on natural plant range expansion due to climate change remain scarce. We combined multiple approaches to study the influence of plant-enemy interactions on the upper elevational range limit of sugar maple (Acer saccharum) in southeastern Québec, Canada, where a previous study had demonstrated intense seed predation just beyond the range limit. Consistent with the hypothesis of release from natural enemies at the range limit, data from both natural patterns of regeneration and from seed and seedling transplant experiments showed higher seedling densities at the range edge than in the core of the species' distribution. A growth chamber experiment manipulating soil origin and temperature indicated that this so-called "happy edge" was not likely caused by temperature (i.e., the possibility that climate warming has made high elevation temperatures optimal for sugar maple) or by abiotic soil factors that vary along the elevational gradient. Finally, an insect-herbivore-exclusion experiment showed that insect herbivory was a major cause of seedling mortality in the core of sugar maple's distribution, whereas seedlings transplanted at or beyond the range edge experienced minimal herbivory (i.e., enemy release). Insect herbivory did not completely explain the high levels of seedling mortality in the core of the species' distribution, suggesting that seedlings at or beyond the range edge may also experience release from pathogens. In sum, while some effects of enemies are magnified beyond range edges (e.g., seed predation), others are dampened at and beyond the range edge (e.g., insect herbivory), such that understanding the net outcome of different biotic interactions within, at and beyond the edge of distribution is critical to predicting species' responses to global change. © 2016 by the Ecological Society of America.

  3. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    PubMed

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  4. Stair-Step Pattern of Soil Bacterial Diversity Mainly Driven by pH and Vegetation Types Along the Elevational Gradients of Gongga Mountain, China

    PubMed Central

    Li, Jiabao; Shen, Zehao; Li, Chaonan; Kou, Yongping; Wang, Yansu; Tu, Bo; Zhang, Shiheng; Li, Xiangzhen

    2018-01-01

    Ecological understandings of soil bacterial community succession and assembly mechanism along elevational gradients in mountains remain not well understood. Here, by employing the high-throughput sequencing technique, we systematically examined soil bacterial diversity patterns, the driving factors, and community assembly mechanisms along the elevational gradients of 1800–4100 m on Gongga Mountain in China. Soil bacterial diversity showed an extraordinary stair-step pattern along the elevational gradients. There was an abrupt decrease of bacterial diversity between 2600 and 2800 m, while no significant change at either lower (1800–2600 m) or higher (2800–4100 m) elevations, which coincided with the variation in soil pH. In addition, the community structure differed significantly between the lower and higher elevations, which could be primarily attributed to shifts in soil pH and vegetation types. Although there was no direct effect of MAP and MAT on bacterial community structure, our partial least squares path modeling analysis indicated that bacterial communities were indirectly influenced by climate via the effect on vegetation and the derived effect on soil properties. As for bacterial community assembly mechanisms, the null model analysis suggested that environmental filtering played an overwhelming role in the assembly of bacterial communities in this region. In addition, variation partition analysis indicated that, at lower elevations, environmental attributes explained much larger fraction of the β-deviation than spatial attributes, while spatial attributes increased their contributions at higher elevations. Our results highlight the importance of environmental filtering, as well as elevation-related spatial attributes in structuring soil bacterial communities in mountain ecosystems. PMID:29636740

  5. Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment.

    PubMed

    Piñeiro, Juan; Ochoa-Hueso, Raúl; Delgado-Baquerizo, Manuel; Dobrick, Silvan; Reich, Peter B; Pendall, Elise; Power, Sally A

    2017-11-10

    Plant roots play a crucial role in regulating key ecosystem processes such as carbon (C) sequestration and nutrient solubilisation. Elevated (e)CO 2 is expected to alter the biomass of fine, coarse and total roots to meet increased demand for other resources such as water and nitrogen (N), however, the magnitude and direction of observed changes vary considerably between ecosystems. Here, we assessed how climate and soil properties mediate root responses to eCO 2 by comparing 24 field-based CO 2 experiments across the globe including a wide range of ecosystem types. We calculated response ratios (i.e. effect size) and used structural equation modelling (SEM) to achieve a system-level understanding of how aridity, mean annual temperature and total soil nitrogen simultaneously drive the response of total, coarse and fine root biomass to eCO 2 . Models indicated that increasing aridity limits the positive response of fine and total root biomass to eCO 2 , and that fine (but not coarse or total) root responses to eCO 2 are positively related to soil total N. Our results provide evidence that consideration of factors such as aridity and soil N status is crucial for predicting plant and ecosystem-scale responses to future changes in atmospheric CO 2 concentrations, and thus feedbacks to climate change.

  6. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile.

    PubMed

    Fajardo, Alex; Piper, Frida I

    2011-01-01

    • The focus of the trait-based approach to study community ecology has mostly been on trait comparisons at the interspecific level. Here we quantified intraspecific variation and covariation of leaf mass per area (LMA) and wood density (WD) in monospecific forests of the widespread tree species Nothofagus pumilio to determine its magnitude and whether it is related to environmental conditions and ontogeny. We also discuss probable mechanisms controlling the trait variation found. • We collected leaf and stem woody tissues from 30-50 trees of different ages (ontogeny) from each of four populations at differing elevations (i.e. temperatures) and placed at each of three locations differing in soil moisture. • The total variation in LMA (coefficient of variation (CV) = 21.14%) was twice that of WD (CV = 10.52%). The total variation in traits was never less than 23% when compared with interspecific studies. Differences in elevation (temperature) for the most part explained variation in LMA, while differences in soil moisture and ontogeny explained the variation in WD. Traits covaried similarly in the altitudinal gradient only. • Functional traits of N. pumilio exhibited nonnegligible variation; LMA varied for the most part with temperature, while WD mostly varied with moisture and ontogeny. We demonstrate that environmental variation can cause important trait variation without species turnover. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  7. Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan.

    PubMed

    Dixit, Prakash N; Telleria, Roberto; Al Khatib, Amal N; Allouzi, Siham F

    2018-01-01

    Different aspects of climate change, such as increased temperature, changed rainfall and higher atmospheric CO 2 concentration, all have different effects on crop yields. Process-based crop models are the most widely used tools for estimating future crop yield responses to climate change. We applied APSIM crop simulation model in a dry Mediterranean climate with Jordan as sentinel site to assess impact of climate change on wheat production at decadal level considering two climate change scenarios of representative concentration pathways (RCP) viz., RCP4.5 and RCP8.5. Impact of climatic variables alone was negative on grain yield but this adverse effect was negated when elevated atmospheric CO 2 concentrations were also considered in the simulations. Crop cycle of wheat was reduced by a fortnight for RCP4.5 scenario and by a month for RCP8.5 scenario at the approach of end of the century. On an average, a grain yield increase of 5 to 11% in near future i.e., 2010s-2030s decades, 12 to 16% in mid future i.e., 2040s-2060s decades and 9 to 16% in end of century period can be expected for moderate climate change scenario (RCP4.5) and 6 to 15% in near future, 13 to 19% in mid future and 7 to 20% increase in end of century period for a drastic climate change scenario (RCP8.5) based on different soils. Positive impact of elevated CO 2 is more pronounced in soils with lower water holding capacity with moderate increase in temperatures. Elevated CO 2 had greater positive effect on transpiration use efficiency (TUE) than negative effect of elevated mean temperatures. The change in TUE was in near perfect direct relationship with elevated CO 2 levels (R 2 >0.99) and every 100-ppm atmospheric CO 2 increase resulted in TUE increase by 2kgha -1 mm -1 . Thereby, in this environment yield gains are expected in future and farmers can benefit from growing wheat. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Source portioning of N_{2}O emissions after long term elevation of soil temperature in a permanent grassland soil

    NASA Astrophysics Data System (ADS)

    Jansen-Willems, Anne; Lanigan, Gary; Clough, Timothy; Andresen, Louise; Müller, Christoph

    2016-04-01

    Several methods, such as source portioning, have been used to quantify the contributions of individual N pools to N2O emissions. These methods however, assume the absence of hybrid reactions such as co-denitrification, which were previously identified as important. A straight forward method portioning N2O fluxes into four different production processes, including a hybrid reaction, was therefore developed. This method portioned the N2O fluxes in nitrification, denitrification, oxidation of organic matter and co-denitrification, using data on 45R and 46R of the N2O flux and the 15N content of the NO3- and NH4+ in the soil. This newly developed method was used to analyse the N2O emissions from incubated soil, which was previously subjected to 6 years of elevated soil temperature of +0, +1, +2 or +3 ° C. N2O emissions were measured and analysed at four time points in the six days following, NO315NH4 Gly or 15NO3NH4 Gly, label addition. The oxidation of organic N was found to be the main source of N2O fluxes at all sampling dates, comprising between 63 and 85% of the total N2O flux. The percentage contribution made by organic N to N2O fluxes increased over the sampling period, rising from a minimum of 40% in the control treatment, to virtually 100% across all treatments by Day 6. Compared to the control treatment, denitrification contributed less to N2O from soil subjected to +2 and +3 ° C warming (p <0.0001 and p=0.002, respectively). Co-denitrification only contributed to the N2O flux during the first day after substrate addition. The highest amount of N2O produced via co-denitrification was found under the control treatment. From soil subjected to +2 and +3 ° C treatments, the contribution of co-denitrification was minor. However, these differences in co-denitrification were not significant. This research showed the importance of the oxidation of organic N in N2O emissions. It should therefore not be omitted as a potential source in source portioning. Emissions of N2O in the first six days after fertilisation decreased for soils previously subjected to higher temperatures as a consequence of a reduction in the rates of denitrification and the oxidation of organic N.

  10. Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest

    USGS Publications Warehouse

    Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.

    2012-01-01

    Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.

  11. A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland.

    PubMed

    Yue, Ping; Li, Kaihui; Gong, Yanming; Hu, Yukun; Mohammat, Anwar; Christie, Peter; Liu, Xuejun

    2016-08-30

    It remains unclear how nitrogen (N) deposition affects soil methane (CH4) uptake in semiarid and arid zones. An in situ field experiment was conducted from 2010 to 2014 to systematically study the effect of various N application rates (0, 10, 30, and 90 kg N ha(-1) yr(-1)) on CH4 flux in alpine grassland in the Tianshan Mountains. No significant influence of N addition on CH4 uptake was found. Initially the CH4 uptake rate increased with increasing N application rate by up to 11.5% in 2011 and then there was gradual inhibition by 2014. However, the between-year variability in CH4 uptake was very highly significant with average uptake ranging from 52.9 to 106.6 μg C m(-2) h(-1) and the rate depended largely on seasonal variability in precipitation and temperature. CH4 uptake was positively correlated with soil temperature, air temperature and to a lesser extent with precipitation, and was negatively correlated with soil moisture and NO3(-)-N content. The results indicate that between-year variability in CH4 uptake was impacted by precipitation and temperature and was not sensitive to elevated N deposition in alpine grassland.

  12. A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland

    PubMed Central

    Yue, Ping; Li, Kaihui; Gong, Yanming; Hu, Yukun; Mohammat, Anwar; Christie, Peter; Liu, Xuejun

    2016-01-01

    It remains unclear how nitrogen (N) deposition affects soil methane (CH4) uptake in semiarid and arid zones. An in situ field experiment was conducted from 2010 to 2014 to systematically study the effect of various N application rates (0, 10, 30, and 90 kg N ha−1 yr−1) on CH4 flux in alpine grassland in the Tianshan Mountains. No significant influence of N addition on CH4 uptake was found. Initially the CH4 uptake rate increased with increasing N application rate by up to 11.5% in 2011 and then there was gradual inhibition by 2014. However, the between-year variability in CH4 uptake was very highly significant with average uptake ranging from 52.9 to 106.6 μg C m−2 h−1 and the rate depended largely on seasonal variability in precipitation and temperature. CH4 uptake was positively correlated with soil temperature, air temperature and to a lesser extent with precipitation, and was negatively correlated with soil moisture and NO3−-N content. The results indicate that between-year variability in CH4 uptake was impacted by precipitation and temperature and was not sensitive to elevated N deposition in alpine grassland. PMID:27571892

  13. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure

    USDA-ARS?s Scientific Manuscript database

    While previous elevated atmospheric CO2 research has addressed changes in belowground processes, its effects on soil structure remain virtually undescribed. This study examined the long-term effects of elevated CO2 and N fertilization on soil structural changes in a bahiagrass pasture grown on a san...

  14. SOIL RESPIRATION RESPONSE TO THREE YEARS OF ELEVATED CO-2 AND N FERTILIZATION IN PONDEROSA PINE (PINUS PONDEROSA DOUG. EX LAWS.)

    EPA Science Inventory

    We measured growing season soil CO-2 evolution under elevated atmospheric (CO-2) and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated (CO-2) treatments were applied in op...

  15. Establishment and analysis of High-Resolution Assimilation Dataset of water-energy cycle over China

    NASA Astrophysics Data System (ADS)

    Wen, Xiaohang; Liao, Xiaohan; Dong, Wenjie; Yuan, Wenping

    2015-04-01

    For better prediction and understanding of water-energy exchange process and land-atmospheric interaction, the in-situ observed meteorological data which were acquired from China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS), Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system were also integrated in the WRF model over China. Further, the High-Resolution Assimilation Dataset of water-energy cycle over China (HRADC) was produced by WRF model. This dataset include 25 km horizontal resolution near surface meteorological data such as air temperature, humidity, ground temperature, and pressure at 19 levels, soil temperature and soil moisture at 4 levels, green vegetation coverage, latent heat flux, sensible heat flux, and ground heat flux for 3 hours. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method; 2) Compare results of meteorological elements such as 2 m temperature, precipitation and ground temperature generated by the HRADC with the gridded observation data from CMA, and Global Land Data Assimilation System (GLDAS) output data from National Aeronautics and Space Administration (NASA). It is found that the results of 2 m temperature were improved compared with the control simulation and has effectively reproduced the observed patterns, and the simulated results of ground temperature, 0-10 cm soil temperature and specific humidity were as much closer to GLDAS outputs. Root mean square errors are reduced in assimilation run than control run, and the assimilation run of ground temperature, 0-10 cm soil temperature, radiation and surface fluxes were agreed well with the GLDAS outputs over China. The HRADC could be used in further research on the long period climatic effects and characteristics of water-energy cycle over China.

  16. Remediation of organochlorine pesticides (OCPs) contaminated site by successive methyl-β-cyclodextrin (MCD) and sunflower oil enhanced soil washing - Portulaca oleracea L. cultivation.

    PubMed

    Ye, Mao; Sun, Mingming; Hu, Feng; Kengara, Fredrick Orori; Jiang, Xin; Luo, Yongming; Yang, Xinlun

    2014-06-01

    An innovative ex situ soil washing technology was developed in this study to remediate organochlorine pesticides (OCPs)-contaminated site. Elevated temperature (50 °C) combined with ultrasonication (35 kHz, 30 min) at 25 g L(-1) methyl-β-cyclodextrin and 100 mL L(-1) sunflower oil were effective in extracting OCPs from the soil. After four successive washing cycles, the removal efficiency for total OCPs, DDTs, endosulfans, 1,2,3,4,5,6-hexachlorocyclohexanes, heptachlors, and chlordanes were all about 99%. The 4th washed soil with 3 months cultivation of Portulaca oleracea L. and nutrient addition significantly increase (p<0.05) the number, biomass carbon, nitrogen, and functioning diversity of soil microorganisms. This implied that the microbiological functioning of the soil was at least partially restored. This combined cleanup strategy proved to be effective and environmental friendly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. N cycling in SPRUCE (Spruce Peatlands Response Under ...

    EPA Pesticide Factsheets

    Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climate change. As climate warms, we expect peat decomposition may accelerate, altering the cycling of nitrogen. Alterations in the nitrogen cycle can have consequences on NO3, NH4 availability or pollution, and potentially increase nitrous oxide (N2O) emissions, a persistent greenhouse gas (GHG). These consequences can cascade to altering whole ecosystem functions and effecting human health.We are investigating nitrogen cycling response to elevated temperature and CO2 in a boreal peatland. Spruce and Peatland Responses Under Climate and Environmental Change (SPRUCE) project initiated soil warming in 2014 in ten peatland mesocosms (five temperature treatments from ambient (+0°C) to +9°C) and elevated CO2 in half of the mesocosms in 2016. Peat cores at three depths (acrotelm, catotelm, deep peat) were analyzed in the laboratory for denitrification, nitrification, and ammonification. We expect denitrification, nitrification, and ammonification rates to increase, and denitrification efficiency to decrease with rising temperatures- potentially contaminating water resources with NO3, NH4 and increase N2O concentrations in our atmosphere. This research will enhance the scientific understanding of how nitrogen cycling, an important functional eco-service, responds under environmental conditions including elevated CO2

  18. Controls of Parent Material and Topography on Soil Carbon Storage in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Patton, N. R.; Seyfried, M. S.; Lohse, K. A.; Link, T. E.

    2014-12-01

    Semi-arid environments make up a large percentage of the world's terrestrial ecosystems, and climate is a major factor influencing soil carbon storage and release. However, the roles of local controls such as parent material, aspect and microtopography have received less attention and are important for consideration in soil carbon modeling. The purpose of this study is to understand the role that parent material, aspect and micro-topography play in storage and release of soil carbon along an elevation gradient in a semi-arid climate. Johnston Draw (JD) is a first order watershed within the Reynolds Creek Critical Zone Observatory in southwestern Idaho with underlining late cretaceous, granitic Idaho batholith bedrock. Upper Sheep Creek (USC) is a first order watershed consisting of basalt. Both watersheds were chosen for this project due to similar size, aspect, elevation, vegetation and for the contrast in parent material. Two transects, totaling approximately nine soil pits, were excavated on both the north and south facing slopes of each watershed running parallel to the water channel. Soil carbon was generally higher in basalt compared to the granite parent material in pits with similar aspect, elevation and vegetation. Preliminary data using soil organic matter (SOM) as a proxy for organic carbon (OC) and soil water dynamics showed that percent OC declines markedly with elevation in JD and soil depth at lower elevations and is more homogenous throughout the profile moving up elevation (1646 meters 4.3-9.7%; 1707 meters 6.87-3.83%). Similarly, aspect controls patterns of SOM at depth more strongly at lower elevations. Findings from our study suggest that parent material and topography may play as important roles in semi-arid ecosystems as climate factors in controlling soil carbon storage.

  19. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2.

    PubMed

    Leakey, Andrew D B; Bishop, Kristen A; Ainsworth, Elizabeth A

    2012-06-01

    A key finding from elevated [CO(2)] field experiments is that the impact of elevated [CO(2)] on plant and ecosystem function is highly dependent upon other environmental conditions, namely temperature and the availability of nutrients and soil moisture. In addition, there is significant variation in the response to elevated [CO(2)] among plant functional types, species and crop varieties. However, experimental data on plant and ecosystem responses to elevated [CO(2)] are strongly biased to economically and ecologically important systems in the temperate zone. There is a multi-biome gap in experimental data that is most severe in the tropics and subtropics, but also includes high latitudes. Physiological understanding of the environmental conditions and species found at high and low latitudes suggest they may respond differently to elevated [CO(2)] than well-studied temperate systems. Addressing this knowledge gap should be a high priority as it is vital to understanding 21st century food supply and ecosystem feedbacks on climate change. Published by Elsevier Ltd.

  20. X-Ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.

    2015-01-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during soil formation, however, the limited interaction with water and low temperatures may result in the formation of "immature" X-ray amorphous or SRO materials. Perhaps, a similar process contributes to the formation of the high content of X-ray amorphous materials detected on Mars.

  1. Seasonal frost conditions in different periglacial landforms in the Eastern Pyrenees from 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio

    2016-04-01

    Glaciers shaped the headwaters and valley floors in the Eastern Pyrenees during the Last Glaciation at elevations above 2100-2200 m. Since the deglaciation of these areas, periglacial processes have generated a wide range of periglacial landforms, such as rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive for the degree of activity of periglacial processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes in the Eastern Pyrenees are driven by a seasonal frozen layer extending 5-7 months. In general, at 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing in 2003 we set up several monitoring sites along a vertical transect from the valley floors (1100 m) to the high plateaus (2700 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures has been conducted from 2003 to 2015 in different periglacial landforms using UTL and Hobo loggers. These loggers were installed at depths of 5, 20 and 50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey in Malniu and Das, and with two loggers installed in La Feixa and Meranges. No permafrost regime was detected in none of the sites. Data shows evidence of the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher elevation showing a thicker and longer snow cover, only 17 freeze-thaw cycles per year are recorded at 5 cm depth, with no cycles recorded at 50 cm depth. Soils remain unfrozen during years with a very thick snow cover. The snow cover is also largely conditioned by the microtopography and exposure to the dominant winds. These factors condition the distribution, duration and intensity of the frozen ground and, thus, determine the intensity of periglacial processes in these areas.

  2. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.

    2012-09-01

    The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

  3. Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site

    USGS Publications Warehouse

    Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich

    2016-01-01

    Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.

  4. Bryophyte Species Richness and Composition along an Altitudinal Gradient in Gongga Mountain, China

    PubMed Central

    Sun, Shou-Qin; Wu, Yan-Hong; Wang, Gen-Xu; Zhou, Jun; Yu, Dong; Bing, Hai-Jian; Luo, Ji

    2013-01-01

    An investigation of terrestrial bryophyte species diversity and community structure along an altitudinal gradient from 2,001 to 4,221 m a.s.l. in Gongga Mountain in Sichuan, China was carried out in June 2010. Factors which might affect bryophyte species composition and diversity, including climate, elevation, slope, depth of litter, vegetation type, soil pH and soil Eh, were examined to understand the altitudinal feature of bryophyte distribution. A total of 14 representative elevations were chosen along an altitudinal gradient, with study sites at each elevation chosen according to habitat type (forests, grasslands) and accessibility. At each elevation, three 100 m × 2 m transects that are 50 m apart were set along the contour line, and three 50 cm × 50 cm quadrats were set along each transect at an interval of 30 m. Species diversity, cover, biomass, and thickness of terrestrial bryophytes were examined. A total of 165 species, including 42 liverworts and 123 mosses, are recorded in Gongga mountain. Ground bryophyte species richness does not show any clear elevation trend. The terrestrial bryophyte cover increases with elevation. The terrestrial bryophyte biomass and thickness display a clear humped relationship with the elevation, with the maximum around 3,758 m. At this altitude, biomass is 700.3 g m−2 and the maximum thickness is 8 cm. Bryophyte distribution is primarily associated with the depth of litter, the air temperature and the precipitation. Further studies are necessary to include other epiphytes types and vascular vegetation in a larger altitudinal range. PMID:23472146

  5. [Distribution characteristics of heavy metals along an elevation gradient of montane forest].

    PubMed

    Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan

    2011-12-01

    In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

  6. [Responses of agricultural crops of free-air CO2 enrichment].

    PubMed

    Kimball, B A; Zhu, Jianguo; Cheng, Lei; Kobayashi, K; Bindi, M

    2002-10-01

    Over the past decade, free-air CO2 enrichment (FACE) experiments have been conducted on several agricultural crops: wheat(Triticum aestivum L.), perennial ryegrass (Lolium perenne), and rice(Oryza sativa L.) which are C3 grasses; sorghum (Sorghum bicolor (L.) Möench), a C4 grass; white clover (Trifolium repens), a C3 legume; potato (Solanum tuberosum L.), a C3 forb with tuber storage; and cotton (Gossypium hirsutum L.) and grape (Vitis vinifera L.) which are C3 woody perennials. Using reports from these experiments, the relative responses of these crops was discussed with regard to photosynthesis, stomatal conductance, canopy temperature, water use, water potential, leaf area index, shoot and root biomass accumulation, agricultural yield, radiation use efficiency, specific leaf area, tissue nitrogen concentration, nitrogen yield, carbohydrate concentration, phenology, soil microbiology, soil respiration, trace gas emissions, and soil carbon sequestration. Generally, the magnitude of these responses varied with the functional type of plant and with the soil nitrogen and water status. As expected, the elevated CO2 increased photosynthesis and biomass production and yield substantially in C3 species, but little in C4, and it decreased stomatal conductance and transpiration in both C3 and C4 species and greatly improved water-use efficiency in all the crops. Growth stimulations were as large or larger under water-stress compared to well-watered conditions. Growth stimulations of non-legumes were reduced at low soil nitrogen, whereas elevated CO2 strongly stimulated the growth of the clover legume both at ample and under low N conditions. Roots were generally stimulated more than shoots. Woody perennials had larger growth responses to elevated CO2, while at the same time, their reductions in stomatal conductance were smaller. Tissue nitrogen concentrations went down while carbohydrate and some other carbon-based compounds went up due to elevated CO2, with leaves and foliage affected more than other organs. Phenology was accelerated slightly in most but not all species. Elevated CO2 affected some soil microbes greatly but not others, yet overall activity appears to be stimulated. Detection of statistically significant changes in soil organic carbon in any one study was impossible, yet combining results from several sites and years, it appears that elevated CO2 did increase sequestration of soil carbon. Whenever possible, comparisons were made between the FACE results and those from prior chamber-based experiments reviewed in the literature. Over all the data and parameters considered in this review, there are only two parameters for which the FACE- and chamber-based data appear to be inconsistent. One is that elevated CO2 from FACE appears to reduce stomatal conductance about one and a half times more than observed in prior chamber experiments. Similarly, elevated CO2 appears to have stimulated root growth relatively more than shoot growth under FACE conditions compared to chamber conditions. Nevertheless, for the most part, the FACE- and chamber-based results have been consistent, which gives confidence that conclusions drawn from both types of data are accurate. However, the more realistic FACE environment and the larger plot size have enabled more extensive robust multidisciplinary data sets to be obtained under conditions representative of open fields in the future high-CO2 world.

  7. Biogeochemical Controls on Microbial CO2 and CH4 Production in Polygonal Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Herndon, E.; Gu, B.; Liang, L.; Wullschleger, S. D.

    2014-12-01

    Organic matter buried in Arctic soils and permafrost will become accessible to increased microbial degradation as the ground warms due to climate change. The rates of organic matter degradation and the proportion of CH4 and CO2 greenhouse gasses released in a potential warming feedback cycle depend on the microbial response to warming, organic carbon structure and availability, the pore-water quantity and geochemistry, and available electron acceptors. Significant amounts of iron(II) ions in organic and mineral soils of the active layer in low-centered ice wedge polygons indicate anoxic conditions in most soil horizons. To adapt and improve the representation of these Arctic subsurface processes in terrestrial ecosystem models for the NGEE Arctic project, we examined soil organic matter transformations from elevated and subsided areas of low- and high-centered polygons from interstitial tundra on the Barrow Environmental Observatory (Barrow, AK). Using microcosm incubations at fixed temperatures and controlled thawing systems for frozen soil cores, we investigated the microbiological processes and rates of soil organic matter degradation and greenhouse gas production under anoxic conditions, at ecologically relevant temperatures of -2, +4 or +8 °C. In contrast to the low-centered polygon incubations representing in situ water-saturated conditions, microcosms with unsaturated high-centered polygon samples displayed lower carbon mineralization as either CH4 or CO2. Substantial differences in CH4 and CO2 response curves from different microtopographic samples separate the thermodynamic controls on biological activity from the kinetic controls of microbial growth and migration that together determine the temperature response for greenhouse gas emissions in a warming Arctic.

  8. Sorption of water by biochar: Closer look at micropores

    NASA Astrophysics Data System (ADS)

    Spokas, Kurt; Hall, Kathleen; Joseph, Stephan; Kammann, Claudia; Novak, Jeffrey; Gámiz, Beatriz; Cox, Lucia

    2017-04-01

    Typically, biochar has been assumed to increase total water content of the soil system and thereby positively influence plant-soil moisture hydraulics. In this work, we focused on water's interaction with micro-pores (<2 nm) and its influence on water availability. In other words, the main question was if the driving force of water's behavior was the physics or chemistry of biochar pores. The temporal scale of liquid water entry into biochar's pore network is very complex, with observed bubbling occurring days, weeks, and even months after a piece of biochar is immersed under water at ambient conditions. Elevated temperature biochar typically has a positive heat of immersion measured calorimetrically, whereas the calculated BET energy of sorption from a water sorption isotherm typically decrease with production temperatures. To further complicate matters, different pieces of biochar interact differently with water even though the entire batch was created in the same reactor at the same time and after liquid water exposure the physical structure of biochar is irreversibly altered, sometimes negligible other times catastrophically. Nevertheless, based on the estimations of diffusion coefficients in biochar from drying curve analyses, pore surface moieties do reduce the effective diffusivity of water vapor in biochar. Contrary to the rule of thumb in soil physics, where higher gas filled porosity correlates with higher soil moisture holding capacities, our results indicate that biochar's water sorption rate and capacity is actually reduced at ambient conditions by an increase in microporous volume. Thereby, biochar's hydrophobic behavior is partly due to the entrapment of gas within the air-filled porosity which prevents liquid water's entry, even though these biochars possess elevated gas phase sorption capacities (e.g., BET N2/CO2 surface areas).

  9. Climatic controls on the isotopic composition and availability of soil nitrogen in mountainous tropical forests

    NASA Astrophysics Data System (ADS)

    Weintraub, S. R.; Cole, R. J.; Schmitt, C. G.; All, J.

    2014-12-01

    Tropical forests in mountainous regions are often assumed to be nitrogen (N) limited, yet N dynamics across rugged terrain can be complex due to gradients in climate and topography. Elucidating patterns of N availability and loss across such gradients is necessary to predict and manage tropical forest response to environmental changes such as increasing N deposition and rising temperatures. However, such data is currently lacking, particularly in remote locations that are of high conservation value. To address this gap, a research expedition organized by the American Climber Science Program recently made a coast-to-coast journey across a remote region of Costa Rica, travelling over the Cordillera Talamanca and through La Amistad International Park. Numerous biological, chemical and hydrologic measurements were made en-route across montane to premontane wet tropical forests, spanning nearly 2,000 m in elevation and 200 km. Surface soil samples collected at regular intervals along this transect illuminate environmental drivers of N dynamics across the region. The dataset reveals strong links between soil natural abundance N isotopic composition (δ15N) and elevation and temperature parameters, and weaker links to precipitation and topography. This is in general agreement with global scale observations, but divergence from some previously published works is apparent and will be discussed. δ15N mass balance models suggest that N isotope patterns reflect differences in forms of N loss and the relative importance of fractionating and non-fractionating pathways. When combined with data on several other edaphic properties, especially C:N stoichiometry, the results points toward notable variation in soil N availability and N constraints across the transect. This study illustrates large, but predictable, variation in key N cycle traits across the premontane to montane wet tropical forest transition. These findings have management-relevant implications for tropical regions.

  10. Methane production and consumption in an active volcanic environment of Southern Italy.

    PubMed

    Castaldi, Simona; Tedesco, Dario

    2005-01-01

    Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.

  11. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    NASA Astrophysics Data System (ADS)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  12. The influence of aeration and temperature on the structure of bacterial complexes in high-moor peat soil

    NASA Astrophysics Data System (ADS)

    Kukharenko, O. S.; Pavlova, N. S.; Dobrovol'Skaya, T. G.; Golovchenko, A. V.; Pochatkova, T. N.; Zenova, G. M.; Zvyagintsev, D. G.

    2010-05-01

    The number and taxonomic structure of the heterotrophic block of aerobic and facultative anaerobic bacteria were studied in monoliths from a high-moor peat (stored at room temperature and in a refrigerator) and in the peat horizons mixed in laboratory vessels. The monitoring lasted for a year. In the T0 horizon, spirilla predominated at room and low temperatures; in the T1 and T2 horizons, bacilli were the dominants. The continuous mixing of the peat layers increased the oxygen concentration and the peat decomposition; hence, the shares of actinomycetes and bacilli (bacteria of the hydrolytic complex) increased. In the peat studied, the bacilli were in the active state; i.e., vegetative cells predominated, whose amount ranged from 65 to 90%. The representatives of the main species of bacilli (the facultative anaerobic forms prevailed) hydrolyzed starch, pectin, and carboxymethylcellulose. Thus, precisely sporiferous bacteria can actively participate in the decomposition of plant polysaccharides in high-moor peat soils that are characterized by low temperatures and an oxygen deficit. The development of actinomycetes is inhibited by low temperatures; they can develop only under elevated temperature and better aeration.

  13. Effects of elevated CO2 and N fertilization on soil respiration from ponderosa pine (Pine ponderosa) in open-top chambers

    Treesearch

    James M. Vose; Katherine J. Elliott; Dale W. Johnson; Roger F. Walker; Mark G. Johnson; David T. Tingey

    1995-01-01

    We measured growing season soil CO2 evolution under elevated atmospheric CO2 and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and determine regulating mechanisms. Elevated CO2 treatments were applied in open-top chambers containing 3-...

  14. Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine (Pinus ponderosa Doug. ex Laws.)

    Treesearch

    James M. Vose; Katherine J. Elliott; Dale W. Johnson; David T. Tingey; Mark G. Johnson

    1997-01-01

    We measured growing season soil CO2 evolution under elevated atmospheric [CO2 and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated [CO2] treatments were applied in open-top chambers...

  15. Landscape and plant physiological controls on water dynamics and forest productivity within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, Jia; Jencso, Kelsey; Looker, Nathaniel; Martin, Justin; Hoylman, Zachary

    2015-04-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower elevation depending on deeper, more reliable water when the upper soils dried down during midsummer. These observations suggest that landscape topography influences the availability of soil water, which influences tree transpiration and productivity rates, thereby leading to watershed patterns of productivity.

  16. Landscape and plant physiological controls on water dynamics within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, J.; Looker, N. T.; Martin, J. T.; Hoylman, Z. H.; Jencso, K. G.

    2014-12-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower elevation depending on deeper, more reliable water when the upper soils dried down during midsummer. These observations suggest that landscape topography influences the availability of soil water, which influences tree transpiration and productivity rates, thereby leading to watershed patterns of productivity.

  17. Review of Thermosyphon Applications

    DTIC Science & Technology

    2014-02-11

    method (Johnston 1981) is typically used to protect permafrost. A passive method maintains the frozen state of the soil. The most widely used passive...technique is to incorporate ventilated air spaces beneath elevated buildings (Shur and Goering 2009). This method is recommended for locations with...permafrost temperatures be- low –3°C (Johnston 1981) and provides a measure of thermal stability. Ac- tive methods concentrate on removing the thaw

  18. Defining boundaries across borders: a case study extending a major land resource area into Mexico

    Treesearch

    Rebecca MacEwen; Roy S. Mann; Philip Heilman; Jeffry J. Stone; Alicia Melgoza Castillo; D. Phillip Guertin

    2005-01-01

    Geographic information science (GIS) and field work were applied to extend Major Land Resource Area (MLRA) 41, Southeastern Arizona Basin and Range, from Arizona and New Mexico into Sonora and Chihuahua, Mexico. The result of this analysis is a tentative boundary line that delineates MLRA 41 for both the United States and Mexico based on elevation, soils, temperature,...

  19. Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings.

    PubMed

    Centritto, Mauro; Brilli, Federico; Fodale, Roberta; Loreto, Francesco

    2011-03-01

    The effects of the interaction between high growth temperatures and water stress on gas-exchange properties of Populus nigra saplings were investigated. Water stress was expressed as a function of soil water content (SWC) or fraction of transpirable soil water (FTSW). Isoprene emission and photosynthesis (A) did not acclimate in response to elevated temperature, whereas dark (R(n)) and light (R(d)) respiration underwent thermal acclimation. R(d) was ~30% lower than R(n) irrespective of growth temperature and water stress level. Water stress induced a sharp decline, but not a complete inhibition, of both R(n) and R(d). There was no significant effect of high growth temperature on the responses of A, stomatal conductance (g(s)), isoprene emission, R(n) or R(d) to FTSW. High growth temperature resulted in a significant increase in the SWC endpoint. Photosynthesis was limited mainly by CO(2) acquisition in water-stressed plants. Impaired carbon metabolism became apparent only at the FTSW endpoint. Photosynthesis was restored in about a week following rewatering, indicating transient biochemical limitations. The kinetics of isoprene emission in response to FTSW confirmed that water stress uncouples the emission of isoprene from A, isoprene emission being unaffected by decreasing g(s). The different kinetics of A, respiration and isoprene emission in response to the interaction between high temperature and water stress led to rising R(d)/A ratio and amount of carbon lost as isoprene. Since respiration and isoprene sensitivity are much lower than A sensitivity to water stress, temperature interactions with water stress may dominate poplar acclimatory capability and maintenance of carbon homeostasis under climate change scenarios. Furthermore, predicted temperature increases in arid environments may reduce the amount of soil water that can be extracted before plant gas exchange decreases, exacerbating the effects of water stress even if soil water availability is not directly affected.

  20. A High Resolution, Integrated Approach to Modeling Climate Change Impacts to a Mountain Headwaters Catchment using ParFlow

    NASA Astrophysics Data System (ADS)

    Pribulick, C. E.; Maxwell, R. M.; Williams, K. H.; Carroll, R. W. H.

    2014-12-01

    Prediction of environmental response to global climate change is paramount for regions that rely upon snowpack for their dominant water supply. Temperature increases are anticipated to be greater at higher elevations perturbing hydrologic systems that provide water to millions of downstream users. In this study, the relationships between large-scale climatic change and the corresponding small-scale hydrologic processes of mountainous terrain are investigated in the East River headwaters catchment near Gothic, CO. This catchment is emblematic of many others within the upper Colorado River Basin and covers an area of 250 square kilometers, has a topographic relief of 1420 meters, an average elevation of 3266 meters and has varying stream characteristics. This site allows for the examination of the varying effect of climate-induced changes on the hydrologic response of three different characteristic components of the catchment: a steep high-energy mountain system, a medium-grade lower-energy system and a low-grade low-energy meandering floodplain. To capture the surface and subsurface heterogeneity of this headwaters system the basin has been modeled at a 10-meter resolution using ParFlow, a parallel, integrated hydrologic model. Driven by meteorological forcing, ParFlow is able to capture land surface processes and represents surface and subsurface interactions through saturated and variably saturated heterogeneous flow. Data from Digital Elevation Models (DEMs), land cover, permeability, geologic and soil maps, and on-site meteorological stations, were prepared, analyzed and input into ParFlow as layers with a grid size comprised of 1403 by 1685 cells to best represent the small-scale, high resolution model domain. Water table depth, soil moisture, soil temperature, snowpack, runoff and local energy budget values provide useful insight into the catchments response to the Intergovernmental Panel on Climate Change (IPCC) temperature projections. In the near term, coupling this watershed model with one describing a diverse suite of subsurface elemental cycling pathways, including carbon and nitrogen, will provide an improved understanding of the response of the subsurface ecosystems to hydrologic transitions induced as a result of global climate change.

  1. Can leaf wax n-alkane δ²H and GDGTs be used conjointly to reconstruct past environmental changes along altitudinal transects in East Africa?

    NASA Astrophysics Data System (ADS)

    Coffinet, Sarah; Huguet, Arnaud; Pedentchouk, Nikolai; Omuombo, Christine; Williamson, David; Bergonzini, Laurent; Wagner, Thomas; Derenne, Sylvie

    2016-04-01

    Leaf wax n-alkanes (C27-C31) and branched glycerol dialkyl glycerol tetraethers (br GDGTs) are increasingly being used as molecular proxies to investigate past environmental conditions. Indices were previously developed to relate the br GDGT distribution to temperature and pH in soils. Furthermore, the δ²Hwax of leaf wax n-alkanes in soils was shown to track the 'altitude effect', suggesting it could be used to reconstruct paleoelevation. Combination of these two proxies could bring information on both past uplift elevation and past temperature changes, as illustrated by the pioneer paleostudy of Hren et al. (2010) in the Sierra Nevada. In the present study, δ²Hwax and br GDGTs were analysed in ca. 60 surface soils collected along Mt. Rungwe (Southwest Tanzania) and Mt. Kenya (Central Kenya). A weak link was identified between δ²Hwax and altitude (R² = 0.33) along Mt. Kenya, whereas no trend was observed along Mt. Rungwe, as also previously shown by Peterse et al. (2009) for Mt. Kilimanjaro. This shows that the strength of the relationship between soil δ²Hwax and elevation depends on which mountain is considered in East Africa and can be overprinted by numerous poorly understood environmental and/or physiological parameters. In contrast, br GDGT-derived mean annual air temperature (MAAT) and temperature lapse rate (5 °C/1000 m) were in agreement with values recorded along both Mt. Rungwe and Mt. Kenya, highlighting the robustness of this proxy for paleotemperature reconstruction in East Africa. Moreover, the combination of these br GDGT data with previous results obtained from East African surface soils (along Mts. Kilimanjaro (Tanzania), Sinninghe Damsté et al., 2008; Rwenzori (Uganda), Loomis et al., 2011; Rungwe (Tanzania), Coffinet et al., 2014), allowed the establishment of a regional soil calibration between br GDGT distribution and MAAT. This new East African calibration, based on 105 samples, leads to a substantial improvement of both the R2 (0.75) and RMSE (2.4 °C) of brGDGT-derived MAAT with respect to the global soil calibration by Peterse et al. (2012; R2 0.61 and RMSE 5° C). References: Coffinet, S. et al., 2014. Org. Geochem. 68, 82-89. Hren, M.T. et al., 2010. Geology 38, 7-10. Loomis, S.E., et al., 2011. Org. Geochem. 42, 739-751. Peterse, F. et al., 2009. Biogeosciences 6, 2799-2807. Peterse, F. et al., 2012. Geochim. Cosmochim. Acta 96, 215-229. Sinninghe Damsté, J.S. et al., 2008. Org. Geochem. 39, 1072-1076.

  2. [Effects of elevated ozone concentrations on enzyme activities and organic acids content in wheat rhizospheric soil.

    PubMed

    Yin, Wei Qin; Jing, Hao Qi; Wang, Ya Bo; Wei, Si Yu; Sun, Yue; Wang, Sheng Sen; Wang, Xuai Zhi

    2018-02-01

    The elevated concentration of tropospheric ozone (O 3 ) is an important global climate change driver, with adverse impacts on soil ecological environment and crop growth. In this study, a pot experiment was carried out in an open top chamber (OTC), to investigate the effects of elevated ozone concentration on soil enzyme activities (catalase, polyphenol oxidase, dehydrogenase and invertase), organic acids contents (oxalic acid, citric acid and malic acid) at different growth stages (tillering, jointing, heading and ripening stages) of wheat, and combined with the rhizospheric soil physicochemical properties and plant root characteristics to analyze the underlying reasons. The results showed that, elevated ozone concentration increased soil catalase, polyphenol oxidase, dehydrogenase and invertase activities at wheat ripening period to different degrees, with the effects on the activities of catalase and polyphenol oxidase being statistically significant. At the heading stage, activities of dehydrogenase and invertase were significantly increased by up to 76.7%. At the ripening stage, elevated ozone concentration significantly increased the content of citric acid and malic acid and redox potential (Eh) in rhizospheric soil, but reduced soil pH, electrical conductivity, total carbon and nitrogen. For root characteristics, elevated ozone concentrations significantly reduced the wheat root biomass, total root length and root surface area but increased the average root diameter.

  3. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.

    2013-08-01

    Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  4. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.

    2013-03-01

    Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  5. MECO Warming Changes Continental Rainfall Patterns in Eocene Western North America

    NASA Astrophysics Data System (ADS)

    Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Gerdes, A.; Graham, S. A.; Chamberlain, C. P.

    2016-12-01

    Eocene hyperthermals represent temperature extremes superimposed on an existing warm climate. They dramatically affected the marine and terrestrial biosphere, but still remain among the most enigmatic phenomena of Cenozoic climate dynamics. To evaluate the impacts of global warm periods on terrestrial temperature and rainfall records in continental interiors, we sampled a suite of middle Eocene ( 40 Ma) paleosols from a high-elevation mammal fossil locality in the hinterland of the North American Cordillera (Sage Creek Basin, Montana, USA) and integrated laser ablation U-Pb dating of pedogenic carbonate, stable isotope (δ18O) and clumped isotope temperature (Δ47) records. Δ47 temperature data of soil carbonates progressively increase from 23 °C ±3 °C to peak temperatures of 32 °C ±3 °C and subsequently drop to 21 °C ±2 °C and delineate a rapid +9/-11 °C temperature excursion in the paleosol record. This hyperthermal event is accompanied by large and rapid shifts towards low δ18O values and reduced pedogenic CaCO3 contents. U-Pb geochronology of the paleosol carbonate confirms a middle Eocene age for soil carbonate formation (39.5 ±1.4 Ma and 40.1 ±0.8 Ma). Based on U-Pb geochronology, magneto- and biostratigraphy we suggest that the recorded Δ47 temperature excursion reflects peak warming during the Middle Eocene Climatic Optimum (MECO). The MECO in continental western North America appears to be characterized by warmer and wetter (sub-humid) conditions in this high-elevation site. Shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes and require modification of mid-latitude rainfall patterns, indicating a profound impact of the MECO on the hydrological cycle and consequently on atmospheric circulation patterns in the hinterland of the North American Cordillera.

  6. Determination of the Thermal Properties of Sands as Affected by Water Content, Drainage/Wetting, and Porosity Conditions for Sands With Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-05-01

    It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.

  7. Effects of experimental warming and elevated CO2 on surface methane and CO­2 fluxes from a boreal black spruce peatland

    NASA Astrophysics Data System (ADS)

    Gill, A. L.; Finzi, A.; Giasson, M. A.

    2015-12-01

    High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Belowground warming treatments were initiated in July 2014 and whole ecosystem warming and elevated CO2 treatments began in August 2015. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first two months of whole ecosystem manipulation. We also leverage the spatial and temporal density of measurements across the twenty autochambers to assess how physical (i.e., plant species composition, microtopography) and environmental (i.e., peat temperature, water table position, oxygen availability) factors influence observed rates of CH4 and CO2 loss. We find that methane fluxes increased significantly across warming treatments following the first year of belowground warming, while belowground warming alone had little influence on soil CO2 fluxes. Peat microtopography strongly influenced trace gas emission rates, with higher CH4 fluxes in hollow locations and higher CO2 fluxes in hummock locations. While there was no difference in the isotopic composition of the methane fluxes between hollow and hummock locations, δ13CH4 was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input.

  8. Warm temperatures or drought during seed maturation increase free alpha-tocopherol in seeds of soybean (Glycine max [L.] Merr.).

    PubMed

    Britz, Steven J; Kremer, Diane F

    2002-10-09

    Soybean seeds are an important source of dietary tocopherols, but like seeds of other dicotyledonous plants, they contain relatively little alpha-tocopherol, the form with the greatest vitamin E activity. To evaluate potential effects of environmental stress during seed maturation on tocopherols, soybeans were raised in greenhouses at nominal average temperatures of 23 degrees C or 28 degrees C during seed fill, with or without simultaneous drought (soil moisture at 10-25% of capacity), during normal growing seasons in 1999 (cvs. Essex and Forrest) and 2000 (cvs. Essex, Forrest, and Williams). Total free (nonesterified) tocopherols increased slightly in response to drought in Essex and Forrest. All three lines responded to elevated temperature and, to a lesser extent, drought with large (2-3-fold) increases in alpha-tocopherol and corresponding decreases in delta-tocopherol and gamma-tocopherol. The results suggest that weather or climate can significantly affect seed tocopherols. It may be possible to breed for elevated alpha-tocopherols by selecting for altered plant response to temperature.

  9. On site remediation of a fuel spill and soil reuse in Antarctica.

    PubMed

    McWatters, R S; Wilkins, D; Spedding, T; Hince, G; Raymond, B; Lagerewskij, G; Terry, D; Wise, L; Snape, I

    2016-11-15

    The first large-scale remediation of fuel contamination in Antarctica treated 10000L of diesel dispersed in 1700t of soil, and demonstrated the efficacy of on-site bioremediation. The project progressed through initial site assessment and natural attenuation, passive groundwater management, then active remediation and the managed reuse of soil. Monitoring natural attenuation for the first 12years showed contaminant levels in surface soil remained elevated, averaging 5000mg/kg. By contrast, in five years of active remediation (excavation and biopile treatment) contaminant levels decreased by a factor of four. Chemical indicators showed hydrocarbon loss was apportioned to both biodegradation and evaporative processes. Hydrocarbon degradation rates were assessed against biopile soil temperatures, showing a phase of rapid degradation (first 100days above soil temperature threshold of 0°C) followed by slower degradation (beyond 100days above threshold). The biopiles operated successfully within constraints typical of harsh climates and remote sites, including limitations on resources, no external energy inputs and short field seasons. Non-native microorganisms (e.g. inoculations) and other organic materials (e.g. bulking agents) are prohibited in Antarctica making this cold region more challenging for remediation than the Arctic. Biopile operations included an initial fertiliser application, biannual mechanical turning of the soil and minimal leachate recirculation. The biopiles are a practical approach to remediate large quantities of contaminated soil in the Antarctic and already 370t have been reused in a building foundation. The findings presented demonstrate that bioremediation is a viable strategy for Antarctica and other cold regions. Operators can potentially use the modelled relationship between days above 0°C (threshold temperature) and the change in degradation rates to estimate how long it would take to remediate other sites using the biopile technology with similar soil and contaminant types. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile

    USGS Publications Warehouse

    Quade, Jay; Rech, Jason A.; Latorre, Claudio; Betancourt, Julio L.; Gleeson, Erin; Kalin, Mary T.K.

    2007-01-01

    We evaluate the impact of exceptionally sparse plant cover (0–20%) and rainfall (2–114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from -8.2% at the wettest sites to +7.9% at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229–240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20–30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1%) of carbonate from the driest study sites indicates it formed&mdahs;perhaps abiotically—in the presence of pure atmospheric CO2. δ18O (VPDB) values from soil carbonate range from -5.9% at the wettest sites to +7.3% at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.

  11. The methods of geomorphometry and digital soil mapping for assessing spatial variability in the properties of agrogray soils on a slope

    NASA Astrophysics Data System (ADS)

    Gopp, N. V.; Nechaeva, T. V.; Savenkov, O. A.; Smirnova, N. V.; Smirnov, V. V.

    2017-01-01

    The relationships between the morphometric parameters (MPs) of topography calculated on the basis of digital elevation model (ASTER GDEM, 30 m) and the properties of the plow layer of agrogray soils on a slope were analyzed. The contribution of MPs to the spatial variability of the soil moisture reached 42%; to the content of physical clay (<0.01 mm particles), 59%; to the humus content, 46%; to the total nitrogen content, 31%; to the content of nitrate nitrogen, 28%; to the content of mobile phosphorus, 40%; to the content of exchangeable potassium, 45%; to the content of exchangeable calcium, 67%; to the content of exchangeable magnesium, 40%; and to the soil pH, 42%. A comparative analysis of the plow layer within the eluvial and transitional parts of the slope was performed with the use of geomorphometric methods and digital soil mapping. The regression analysis showed statistically significant correlations between the properties of the plow layer and the MPs describing surface runoff, geometric forms of surface, and the soil temperature regime.

  12. A Wetness Index Using Terrain-Corrected Surface Temperature and Normalized Difference Vegetation Index Derived from Standard MODIS Products: An Evaluation of Its Use in a Humid Forest-Dominated Region of Eastern Canada

    PubMed Central

    Hassan, Quazi K.; Bourque, Charles P.-A.; Meng, Fan-Rui; Cox, Roger M.

    2007-01-01

    In this paper we develop a method to estimate land-surface water content in a mostly forest-dominated (humid) and topographically-varied region of eastern Canada. The approach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectance as primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-based calculations of vertical atmospheric pressure to calculations of surface potential temperature (θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e., ∼101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-day composites of surface reflectance in the calculation of normalized difference vegetation index (NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation of scatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r2 = 95.7%). PMID:28903212

  13. Dissolved Organic Carbon in Headwater Streams and Riparian Soil Organic Carbon along an Altitudinal Gradient in the Wuyi Mountains, China

    PubMed Central

    Huang, Wei; McDowell, William H.; Zou, Xiaoming; Ruan, Honghua; Wang, Jiashe; Li, Liguang

    2013-01-01

    Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution. PMID:24265737

  14. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Progress report, May 1991, DOE Grant DE-FG09-84ER60255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, D.E.

    1991-05-01

    Experiments were performed to determine the effects of carbon dioxide on plants and on the insects feeding on these plants. Current progress is reported for the following experiments: Response of a Specialist-Feeding Insect Herbivore to Carbon Dioxide Induced Changes in Its Hostplant; Growth and Reproduction of Grasshoppers Feeding on a C{sub 4} Grass Under Elevated Carbon Dioxide; Elevated Carbon Dioxide and Temperature Effects on Growth and Defense of Big Sagebrush; Sagebrush and Grasshopper Responses to Atmospheric Carbon Dioxide Concentration; Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide; and Sagebrush Carbon Allocation Patterns and Grasshopper Nutrition:more » The Influence of Carbon Dioxide Enrichment and Soil Mineral Limitation.« less

  15. Will anticipated future climatic conditions affect belowground C utilization? - Insights into the role of microbial functional groups in a temperate heath/grassland.

    NASA Astrophysics Data System (ADS)

    Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa; Egsgaard, Helge; Kappel Schmidt, Inger; Jakobsen, Iver; Ambus, Per

    2013-04-01

    The global terrestrial soil organic matter stock is the biggest terrestrial carbon pool (1500 Pg C) of which about 4 % is turned over annually. Thus, terrestrial ecosystems have the potential to accelerate or diminish atmospheric climate change effects via belowground carbon processes. We investigated the effect of elevated CO2 (510 ppm), prolonged spring/summer droughts and increased temperature (1 ˚C) on belowground carbon allocation and on the recovery of carbon by the soil microbial community. An in-situ 13C-carbon pulse-labeling experiment was carried out in a temperate heath/grassland (Denmark) in May 2011. Recently assimilated 13C-carbon was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in microbial functional groups on the basis of phospholipid fatty acids (PLFAs) in roots. Gram-negative and gram-positive bacteria were distinguished from the decomposer groups of actinomycetes (belonging to the group of gram-positive bacteria) and saprophytic fungi. Mycorrhizal fungi specific PLFAs were not detected probably due to limited sample size in combination with restricted sensitivity of the used GC-c-IRMS setup. Climate treatments did not affect 13C allocation into roots, soil and microbial biomass carbon and also the total microbial biomass size stayed unchanged as frequently observed. However, climate treatments changed the composition of the microbial community: elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy) but did not affect the abundance of decomposers. Drought favored the bacterial community whereas increased temperatures showed reduced abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). However, not only the microbial community composition was affected by the applied climatic conditions, but also the activity of microbial functional groups in their utilization of recently assimilated carbon. Particularly the negative effect of the future treatment combination (CO2×T×D) on actinomycetes activity was surprising. By means of activity patterns of gram-negative bacteria, we observed the fastest carbon turnover rate under elevated CO2, and the slowest under extended drought conditions. A changed soil microbial community in combination with altered activities of different microbial functional groups leads to the conclusion that carbon allocation belowground was different under ambient and future climatic conditions and indicated reduced utilization of soil organic matter in the future due to a change of actinomycetes abundance and activity.

  16. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau.

    PubMed

    Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng

    2016-08-16

    Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland.

  17. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau

    PubMed Central

    Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng

    2016-01-01

    Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland. PMID:27527683

  18. A new method of applying a controlled soil water stress, and its effect on the growth of cotton and soybean seedlings at ambient and elevated carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    While numerous studies have shown that elevated carbon dioxide can delay soil water depletion by causing partial stomatal closure, few studies have compared responses of plant growth to the same soil water deficits imposed at ambient and elevated carbon dioxide. We applied a vacuum to ceramic cups ...

  19. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Pancost, Richard D.; Dang, Xinyue; Zhou, Xinying; Evershed, Richard P.; Xiao, Guoqiao; Tang, Changyan; Gao, Li; Guo, Zhengtang; Xie, Shucheng

    2014-02-01

    The bacterial membrane lipid-based continental paleothermometer, the MBT/CBT or MBT‧-CBT proxy (methylation index of branched tetraethers/cyclization of branched tetraethers), results in a large temperature deviation when applied in semiarid and arid regions. Here we propose new calibration models based on the investigation of >100 surface soils across a large climatic gradient, with a particular focus on semiarid and arid regions of China, and apply them to a loess-paleosol sequence. As reported elsewhere, MBT values exhibit a much higher correlation with MAAT than with summer temperature, suggesting a minimal seasonality bias; however, MBT is apparently insensitive to temperature <5 °C or >20 °C. Additional complexities are apparent in alkaline and arid soils, which are characterized by different relationships to climatic parameters than those in the complete Chinese (or global) dataset. For example, MBT and CBT indices exhibit a negative correlation in alkaline and arid soils, in contrast to their positive correlation in acid soils. Moreover, the cyclization ratio of bGDGTs (CBT), previously defined as a proxy for soil pH, is apparently primarily controlled by MAAT in these alkaline soils. Thus, we propose (1) a local Chinese calibration of the MBT-CBT proxy and (2) an alternative temperature proxy for use in semiarid and arid regions based on the fractional abundances of bGDGTs; the latter has a markedly higher determination factor and lower root mean square error in alkaline soils than the Chinese local calibration and is suggested to be preferred for paleotemperature reconstruction in Chinese loess/paleosol sequences. These new bGDGT proxies have been applied to the Weinan Holocene paleosol section of the Chinese Loess Plateau (CLP). The fractional abundance calibration, when applied in the Weinan Holocene paleosol, produces a total Holocene temperature variation of 5.2 °C and a temperature for the topmost sample that is consistent with the modern temperature. Previously, we showed that the ratio of archaeal isoprenoid GDGTs to bGDGTs (Ri/b) increases at MAP < 600 mm, and elevated Ri/b values (>0.5) in the CLP suggest the presence of enhanced aridity in the late Holocene in North China. In combination, the high Ri/b ratios (>0.5) and the associated low MBT values (<0.4) reveal the co-occurrence of dry and cold events, especially in the latest Holocene, in the loess-paleosol sequences in CLP, and probably also in cold and arid regions outside of CLP.

  20. Soil and stream chemistry relationships in high elevation waters

    Treesearch

    Jennifer Knoepp; Katherine J. Elliott; William A. Jackson; James M. Vose; Chelcy Ford Miniat; Stan Zarnoch

    2016-01-01

    High elevation watersheds in the southern Appalachian Mountains have unique soils and vegetation communities. They also receive greater inputs of acidic deposition as a result of increased precipitation compared to lower elevation sites.

  1. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient.

    PubMed

    Bowman, Elizabeth A; Arnold, A Elizabeth

    2018-04-01

    Understanding distributions of plant-symbiotic fungi is important for projecting responses to environmental change. Many coniferous trees host ectomycorrhizal fungi (EM) in association with roots and foliar endophytic fungi (FE) in leaves. We examined how EM and FE associated with Pinus ponderosa each vary in abundance, diversity, and community structure over a spatially constrained elevation gradient that traverses four plant communities, 4°C in mean annual temperature, and 15 cm in mean annual precipitation. We sampled 63 individuals of Pinus ponderosa in 10 sites along a 635 m elevation gradient that encompassed a geographic distance of 9.8 km. We used standard methods to characterize each fungal group (amplified and sequenced EM from root tips; isolated and sequenced FE from leaves). Abundance and diversity of EM were similar across sites, but community composition and distributions of the most common EM differed with elevation (i.e., with climate, soil chemistry, and plant communities). Abundance and composition of FE did not differ with elevation, but diversity peaked in mid-to-high elevations. Our results suggest relatively tight linkages between EM and climate, soil chemistry, and plant communities. That FE appear less linked with these factors may speak to limitations of a culture-based approach, but more likely reflects the small spatial scale encompassed by our study. Future work should consider comparable methods for characterizing these functional groups, and additional transects to understand relationships of EM and FE to environmental factors that are likely to shift as a function of climate change. © 2018 Botanical Society of America.

  2. Western juniper and ponderosa pine ecotonal climate-growth relationships across landscape gradients in southern Oregon

    USGS Publications Warehouse

    Knutson, K.C.; Pyke, D.A.

    2008-01-01

    Forecasts of climate change for the Pacific northwestern United States predict warmer temperatures, increased winter precipitation, and drier summers. Prediction of forest growth responses to these climate fluctuations requires identification of climatic variables limiting tree growth, particularly at limits of free species distributions. We addressed this problem at the pine-woodland ecotone using tree-ring data for western juniper (Juniperus occidentalis var. occidentalis Hook.) and ponderosa pine (Pinus ponderosa Dougl. ex Loud.) from southern Oregon. Annual growth chronologies for 1950-2000 were developed for each species at 17 locations. Correlation and linear regression of climate-growth relationships revealed that radial growth in both species is highly dependent on October-June precipitation events that recharge growing season soil water. Mean annual radial growth for the nine driest years suggests that annual growth in both species is more sensitive to drought at lower elevations and sites with steeper slopes and sandy or rocky soils. Future increases in winter precipitation could increase productivity in both species at the pine-woodland ecotone. Growth responses, however, will also likely vary across landscape features, and our findings suggest that heightened sensitivity to future drought periods and increased temperatures in the two species will predominantly occur at lower elevation sites with poor water-holding capacities. ?? 2008 NRC.

  3. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO 2

    DOE PAGES

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; ...

    2015-09-21

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O 2/CO 2) of gas exchange by photosynthesis and respiration a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. Here, this study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO 2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO 2 Enrichment. We measured changes in the carbon oxidation state (C ox)more » of biomass and soil carbon pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO 2]. However, the C ox of the soil carbon pool was 40% higher at elevated [CO 2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO 2] to 1.054 at elevated [CO 2]. A biochemical inventory of the soil organic matter ascribed the increases in C ox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO 2]. This implicates the heterotrophic soil community response to elevated [CO 2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O 2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O 2 sink to CO 2 uptake by the ocean. We find that the potential for climate-driven disequilibriua in the cycling of O 2 and CO 2 warrants further investigation.« less

  4. Assessing Soil Organic C Stability at the Continental Scale: An Analysis of Soil C and Radiocarbon Profiles Across the NEON Sites

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; McKnight, D. M.; Strahm, B. D.; Sanclements, M.

    2017-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of physicochemical parameters on soil C stocks and turnover, and their relative importance in comparison to climatic variables. Soils were cored at NEON sites, sampled by genetic horizon, and density separated into light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon abundance was correlated with pH, with variance also grouping by dominate vegetation type. Soil order was also identified as an important proxy variable for C and radiocarbon abundance. Preliminary results suggest that both integrative proxies as well as physicochemical properties may be needed to account for variation in soil C abundance and stability at the continental scale.

  5. Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR

    USGS Publications Warehouse

    Reddy, Ashwan D.; Hawbaker, Todd J.; Wurster, F.; Zhu, Zhiliang; Ward, S.; Newcomb, Doug; Murray, R.

    2015-01-01

    Peatlands are a major reservoir of global soil carbon, yet account for just 3% of global land cover. Human impacts like draining can hinder the ability of peatlands to sequester carbon and expose their soils to fire under dry conditions. Estimating soil carbon loss from peat fires can be challenging due to uncertainty about pre-fire surface elevations. This study uses multi-temporal LiDAR to obtain pre- and post-fire elevations and estimate soil carbon loss caused by the 2011 Lateral West fire in the Great Dismal Swamp National Wildlife Refuge, VA, USA. We also determine how LiDAR elevation error affects uncertainty in our carbon loss estimate by randomly perturbing the LiDAR point elevations and recalculating elevation change and carbon loss, iterating this process 1000 times. We calculated a total loss using LiDAR of 1.10 Tg C across the 25 km2 burned area. The fire burned an average of 47 cm deep, equivalent to 44 kg C/m2, a value larger than the 1997 Indonesian peat fires (29 kg C/m2). Carbon loss via the First-Order Fire Effects Model (FOFEM) was estimated to be 0.06 Tg C. Propagating the LiDAR elevation error to the carbon loss estimates, we calculated a standard deviation of 0.00009 Tg C, equivalent to 0.008% of total carbon loss. We conclude that LiDAR elevation error is not a significant contributor to uncertainty in soil carbon loss under severe fire conditions with substantial peat consumption. However, uncertainties may be more substantial when soil elevation loss is of a similar or smaller magnitude than the reported LiDAR error.

  6. The Role of Vegetation Response to Elevated CO2 in Modifying Land-Atmosphere Feedback Across the Central United States Agro-Ecosystem

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.

    2009-05-01

    Recent local-scale observational studies have demonstrated significant modifications to the partitioning of incident energy by two key mid-west agricultural species, soy and corn, as ambient atmospheric CO2 concentrations are experimentally augmented to projected future levels. The uptake of CO2 by soy, which utilizes the C3 photosynthetic pathway, has likewise been observed to significantly increase under elevated growth CO2 concentrations. Changes to the sensible and latent heat exchanges between the land surface and the atmospheric boundary layer (ABL) across large portions of the mid-western US has the potential to affect ABL growth and composition, and consequently feed-back to the near-surface environment (air temperature and vapor content) experienced by the vegetation. Here we present a simulation analysis that examines the changes in land-atmosphere feedbacks associated with projected increases in ambient CO2 concentrations over extended soy/corn agricultural areas characteristic of the US mid-west. The model canopies are partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport and root water uptake. Model skill in capturing the sub-diurnal variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy-top eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) FluxNet site. An evaluation of the ability of the model to simulate observed changes in energy balance components (canopy temperature, net radiation and soil heat flux) under elevated CO2 concentrations projected for 2050 (550 ppm) is made using observations collected at the SoyFACE Free Air Carbon Enrichment (FACE) experimental facilities located in central Illinois, by incorporating observed acclimations in leaf biochemsitry and canopy structure. The simulation control volume is then extended by coupling the canopy models to a simple model of daytime mixed-layer (ML) growth and composition, ie. air temperature and vapor content. Through this coupled canopy-ABL model we quantify the impact of elevated CO2 and vegetation acclimation on ML growth, temperature and vapor content and the consequent feedbacks to the land surface by way of the near-surface environment experienced by the vegetation. Particular focus is placed on the role of short-term drought, and possible changes in land cover composition between soy, a C3 crop, and corn, a more water-use efficient C4 crop, on modulating the strength of these CO2-induced feedbacks.

  7. Geometeorological data collected by the USGS Desert Winds Project at Desert Wells, Sonoran Desert, central-west Arizona, 1981 - 1996

    USGS Publications Warehouse

    Helm, Paula J.; Breed, Carol S.; Tigges, Richard; Creighton, Shawn

    1998-01-01

    The data in this report were obtained by instruments deployed on a GOES-satellite data collection station operated by the U.S. Geological Survey Desert Winds Project at Desert Wells (latitude 33° 42' 08" N, longitude 113° 48' 40" W), La Paz County, west-central Arizona. The elevation is 344 m (1,130 ft). From January 9, 1981 through May 31, 1995 the station recorded eight parameters: wind direction, wind speed, peak gust, air temperature, precipitation, humidity, barometric pressure, and soil temperature. On June 1, 1995, the station was upgraded by adding a SENSIT sand-flux sensor, which records grain impacts concurrently with wind speed and wind direction measurements. Included with the data is descriptive text on the geology, soils, climate, vegetation, and land use at the site, as well as text on data format, date retrieval software and instructions, and metadata

  8. Remote sensing as a tool to analyse lizards behaviour

    NASA Astrophysics Data System (ADS)

    Dos Santos, Remi; Teodoro, Ana C.; Carretero, Miguel; Sillero, Neftalí

    2016-10-01

    Although the spatial context is expected to be a major influence in the interactions among organisms and their environment, it is commonly ignored in ecological studies. This study is part of an investigation on home ranges and their influence in the escape behaviour of Iberian lizards. Fieldwork was conducted inside a 400 m2 mesocosm, using three acclimatized adult male individuals. In order to perform analyses at this local scale, tools with high spatial accuracy are needed. A total of 3016 GPS points were recorded and processed into a Digital Elevation Model (DEM), with a pixel resolution of 2 cm. Then, 1156 aerial photos were taken and processed to create an orthophoto. A refuge map, containing possible locations for retreats was generated with supervised image classification algorithms, obtaining four classes (refuges, vegetation, bare soil and organic soil). Furthermore, 50 data-loggers were randomly placed, recording evenly through the area temperature and humidity every 15'. After a month of recording, all environmental variables were interpolated using Kriging. The study area presented an irregular elevation. The humidity varied according to the topography and the temperature presented a West-East pattern. Both variables are of paramount importance for lizard activity and performance. In a predation risk scenario, a lizard located in a temperature close to its thermal optimum will be able to escape more efficiently. Integration of such ecologically relevant elements in a spatial context exemplifies how remote sensing tools can contribute to improve inference in behavioural ecology.

  9. Use of slope, aspect, and elevation maps derived from digital elevation model data in making soil surveys

    USGS Publications Warehouse

    Klingebiel, A.A.; Horvath, E.H.; Moore, D.G.; Reybold, W.U.

    1987-01-01

    Maps showing different classes of slope, aspect, and elevation were developed from U.S. Geological Survey digital elevation model data. The classes were displayed on clear Mylar at 1:24 000-scale and registered with topographic maps and orthophotos. The maps were used with aerial photographs, topographic maps, and other resource data to determine their value in making order-three soil surveys. They were tested on over 600 000 ha in Wyoming, Idaho, and Nevada under various climatic and topographic conditions. Field evaluations showed that the maps developed from digital elevation model data were accurate, except for slope class maps where slopes were <4%. The maps were useful to soil scientists, especially where (i) class boundaries coincided with soil changes, landform delineations, land use and management separations, and vegetation changes, and (ii) rough terrain and dense vegetation made it difficult to traverse the area. In hot, arid areas of sparse vegetation, the relationship of slope classes to kinds of soil and vegetation was less significant.

  10. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    PubMed

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  11. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China.

    PubMed

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Yu, Xueyang; Tan, Wenwen

    2018-03-01

    Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N 2 O fluxes and the N 2 O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N 2 O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N 2 O fluxes ranged from 6.62 to 9.34μgm -2 h -1 in the warming plot and ranged from 0.41 to 4.55μgm -2 h -1 in the control plots. Warming treatment increased N 2 O fluxes by 147% and transformed the boreal peatlands from a N 2 O sink to a source. The primary driving factors for N 2 O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N 2 O fluxes. The results indicated that warming promoted N 2 O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N 2 O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient

    PubMed Central

    Whitaker, Jeanette; Ostle, Nicholas; Nottingham, Andrew T; Ccahuana, Adan; Salinas, Norma; Bardgett, Richard D; Meir, Patrick; McNamara, Niall P; Austin, Amy

    2014-01-01

    1. The Andes are predicted to warm by 3–5 °C this century with the potential to alter the processes regulating carbon (C) cycling in these tropical forest soils. This rapid warming is expected to stimulate soil microbial respiration and change plant species distributions, thereby affecting the quantity and quality of C inputs to the soil and influencing the quantity of soil-derived CO2 released to the atmosphere. 2. We studied tropical lowland, premontane and montane forest soils taken from along a 3200-m elevation gradient located in south-east Andean Peru. We determined how soil microbial communities and abiotic soil properties differed with elevation. We then examined how these differences in microbial composition and soil abiotic properties affected soil C-cycling processes, by amending soils with C substrates varying in complexity and measuring soil heterotrophic respiration (RH). 3. Our results show that there were consistent patterns of change in soil biotic and abiotic properties with elevation. Microbial biomass and the abundance of fungi relative to bacteria increased significantly with elevation, and these differences in microbial community composition were strongly correlated with greater soil C content and C:N (nitrogen) ratios. We also found that RH increased with added C substrate quality and quantity and was positively related to microbial biomass and fungal abundance. 4. Statistical modelling revealed that RH responses to changing C inputs were best predicted by soil pH and microbial community composition, with the abundance of fungi relative to bacteria, and abundance of gram-positive relative to gram-negative bacteria explaining much of the model variance. 5. Synthesis. Our results show that the relative abundance of microbial functional groups is an important determinant of RH responses to changing C inputs along an extensive tropical elevation gradient in Andean Peru. Although we do not make an experimental test of the effects of climate change on soil, these results challenge the assumption that different soil microbial communities will be ‘functionally equivalent’ as climate change progresses, and they emphasize the need for better ecological metrics of soil microbial communities to help predict C cycle responses to climate change in tropical biomes. PMID:25520527

  13. Elevated CO2, not defoliation, enhances N cycling and increases short-term soil N immobilization regardless of N addition in a semiarid grassland

    USDA-ARS?s Scientific Manuscript database

    Elevated CO2 and defoliation effects on nitrogen (N) cycling in rangeland soils remain poorly understood. Here we tested whether effects of elevated CO2 and defoliation (clipping to 2.5 cm height) on N cycling depended on soil N availability (addition of 1 vs. 11 g N/m2) in intact mesocosms extracte...

  14. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska.

    PubMed

    Roy Chowdhury, Taniya; Herndon, Elizabeth M; Phelps, Tommy J; Elias, Dwayne A; Gu, Baohua; Liang, Liyuan; Wullschleger, Stan D; Graham, David E

    2015-02-01

    Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4 ) and CO2 production rates and concentrations were determined at -2, +4, or +8 °C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at -2 °C showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at -2 °C in all horizons. Such discontinuity in CH4 production between -2 °C and the elevated temperatures (+4 and +8 °C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4 . High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  15. Stoichiometry and temperature sensitivity of methanogenesis and CO 2 production from saturated polygonal tundra in Barrow, Alaska

    DOE PAGES

    Roy Chowdhury, Taniya; Herndon, Elizabeth M.; Phelps, Tommy J.; ...

    2014-11-26

    Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4) and CO2 production rates and concentrations were determined at 2, +4, or +8 C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at 2 Cmore » showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at 2 C in all horizons. Such discontinuity in CH4 production between 2 C and the elevated temperatures (+4 and +8 C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4. High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons.« less

  16. Tracing fresh assimilates through Larix decidua exposed to elevated CO₂ and soil warming at the alpine treeline using compound-specific stable isotope analysis.

    PubMed

    Streit, Kathrin; Rinne, Katja T; Hagedorn, Frank; Dawes, Melissa A; Saurer, Matthias; Hoch, Günter; Werner, Roland A; Buchmann, Nina; Siegwolf, Rolf T W

    2013-02-01

    How will carbon source-sink relations of 35-yr-old larch trees (Larix decidua) at the alpine treeline respond to changes in atmospheric CO(2) and climate? We evaluated the effects of previously elevated CO(2) concentrations (9 yr, 580 ppm, ended the previous season) and ongoing soil warming (4 yr, + 4°C). Larch branches were pulse labeled (50 at% (13)CO(2)) in July 2010 to trace fresh assimilates through tissues (buds, needles, bark and wood) and non-structural carbon compounds (NCC; starch, lipids, individual sugars) using compound-specific isotope analysis. Nine years of elevated CO(2) did not lead to increased NCC concentrations, nor did soil warming increase NCC transfer velocities. By contrast, we found slower transfer velocities and higher NCC concentrations than reported in the literature for lowland larch. As a result of low dilution with older carbon, sucrose and glucose showed the highest maximum (13)C labels, whereas labels were lower for starch, lipids and pinitol. Label residence times in needles were shorter for sucrose and starch (c. 2 d) than for glucose (c. 6 d). Although our treatments showed no persistent effect on larch carbon relations, low temperature at high altitudes clearly induced a limitation of sink activities (growth, respiration, root exudation), expressed in slower carbon transfer and higher NCC concentrations. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  18. Increased Activity of Rhizosphere and Hyphosphere Enzymes under Elevated CO2 in a Loblolly Pine Stand

    NASA Astrophysics Data System (ADS)

    Meier, I.; Phillips, R.

    2012-12-01

    The stimulatory effect of elevated atmospheric CO2 under global climate change on forest productivity has been predicted to decrease over time as pools of available N in soil become depleted, but empirical support for such progressive N limitation has been lacking. Increased N acquisition from soil depleted in inorganic nitrogen requires stimulation of the microbial processing of organic N, possibly through increasing C supply to soil by plant roots or mycorrhizal hyphae. Increases in (mycorr)rhizosphere C fluxes could stimulate microbes to produce extra-cellular enzymes that release N from SOM, feeding back from soil microsites to ecosystem-scale processes. We investigated the influence of elevated CO2 on root exudation and soil enzyme activity at the Duke Forest FACE site, USA, where loblolly pine (Pinus taeda L.) stands have been exposed to elevated CO2 for 14 years and N fertilization for five years. In each plot, root boxes containing acetate windows were installed in 2008. Two years after installation, we collected soils adjacent to root tips (the rhizosphere), hyphal tips (the hyphosphere) and bulk soil. We measured in situ root exudation rates from intact pine roots. Study objectives were to analyze (i) the influence of atmospheric CO2 on root exudation and extra-cellular enzyme activities, (ii) the influence of soil N availability in regulating these activities, and (iii) the relationship between the activities of enzymes involved in N cycling in soils and gross N transformations at soil microsites. Elevated atmospheric CO2 significantly increased the activity of β-1-4-N-acetylglucosaminidase (NAG) in the rhizosphere by almost 2.5 times (39 to 95 nmol h-1 g-1), and 1.6fold in the hyphosphere relative to ambient plots. NAG is an enzyme involved in the degradation of chitin from the cell walls of soil organisms, releasing absorbable forms of nitrogen. The activity of peroxidase, which degrades aromatic C compounds of SOM, increased significantly in the hyphosphere of stands exposed to elevated CO2. Nitrogen fertilization diminished this effect of elevated CO2 on enzyme activities at microsites. Our results show that the metabolism of microbial communities is shifted to the decomposition of organic N under elevated atmospheric CO2, presumably stimulated by N limitation and increased root C exudation.

  19. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.

    PubMed

    Matson, Amanda L; Corre, Marife D; Veldkamp, Edzo

    2014-12-01

    Although the canopy can play an important role in forest nutrient cycles, canopy-based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using (15) N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4 (+) transformations decreased with increasing elevation; gross rates of NO3 (-) transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient-addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long-term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system. © 2014 John Wiley & Sons Ltd.

  20. Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments.

    PubMed

    Achmon, Yigal; Fernández-Bayo, Jesús D; Hernandez, Katie; McCurry, Dlinka G; Harrold, Duff R; Su, Joey; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-01

    Biosolarization is a fumigation alternative that combines passive solar heating with amendment-driven soil microbial activity to temporarily create antagonistic soil conditions, such as elevated temperature and acidity, that can inactivate weed seeds and other pest propagules. The aim of this study was to use a mesocosm-based field trial to assess soil heating, pH, volatile fatty acid accumulation and weed seed inactivation during biosolarization. Biosolarization for 8 days using 2% mature green waste compost and 2 or 5% tomato processing residues in the soil resulted in accumulation of volatile fatty acids in the soil, particularly acetic acid, and >95% inactivation of Brassica nigra and Solanum nigrum seeds. Inactivation kinetics data showed that near complete weed seed inactivation in soil was achieved within the first 5 days of biosolarization. This was significantly greater than the inactivation achieved in control soils that were solar heated without amendment or were amended but not solar heated. The composition and concentration of organic matter amendments in soil significantly affected volatile fatty acid accumulation at various soil depths during biosolarization. Combining solar heating with organic matter amendment resulted in accelerated weed seed inactivation compared with either approach alone. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum

  2. Impacts of Projected Climate Warming and Wetting on Soil Microbial Communities in Alpine Grassland Ecosystems of the Tibetan Plateau.

    PubMed

    Zeng, Jun; Shen, Ju-Pei; Wang, Jun-Tao; Hu, Hang-Wei; Zhang, Cui-Jing; Bai, Ren; Zhang, Li-Mei; He, Ji-Zheng

    2018-05-01

    Climate change is projected to have impacts on precipitation and temperature regimes in drylands of high elevation regions, with especially large effects in the Qinghai-Tibetan Plateau. However, there was limited information about how the projected climate change will impact on the soil microbial community and their activity in the region. Here, we present results from a study conducted across 72 soil samples from 24 different sites along a temperature and precipitation gradient (substituted by aridity index ranging from 0.079 to 0.89) of the Plateau, to assess how changes in aridity affect the abundance, community composition, and diversity of bacteria, ammonia-oxidizers, and denitrifers (nirK/S and nosZ genes-containing communities) as well as nitrogen (N) turnover enzyme activities. We found V-shaped or inverted V-shaped relationships between the aridity index (AI) and soil microbial parameters (gene abundance, community structures, microbial diversity, and N turnover enzyme activities) with a threshold at AI = 0.27. The increasing or decreasing rates of the microbial parameters were higher in areas with AI < 0.27 (alpine steppes) than in mesic areas with 0.27 < AI < 0.89 (alpine meadow and swamp meadow). The results indicated that the projected warming and wetting have a strong impact on soil microbial communities in the alpine steppes.

  3. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests

    NASA Astrophysics Data System (ADS)

    Girardin, C. A. J.; Aragão, L. E. O. C.; Malhi, Y.; Huaraca Huasco, W.; Metcalfe, D. B.; Durand, L.; Mamani, M.; Silva-Espejo, J. E.; Whittaker, R. J.

    2013-01-01

    The key role of tropical forest belowground carbon stocks and fluxes is well recognised as one of the main components of the terrestrial ecosystem carbon cycle. This study presents the first detailed investigation of spatial and temporal patterns of fine root stocks and fluxes in tropical forests along an elevational gradient, ranging from the Peruvian Andes (3020 m) to lowland Amazonia (194 m), with mean annual temperatures of 11.8°C to 26.4 °C and annual rainfall values of 1900 to 1560 mm yr-1, respectively. Specifically, we analyse abiotic parameters controlling fine root dynamics, fine root growth characteristics, and seasonality of net primary productivity along the elevation gradient. Root and soil carbon stocks were measured by means of soil cores, and fine root productivity was recorded using rhizotron chambers and ingrowth cores. We find that mean annual fine root below ground net primary productivity in the montane forests (0-30 cm depth) ranged between 4.27±0.56 Mg C ha-1 yr-1 (1855 m) and 1.72±0.87 Mg C ha-1 yr-1 (3020 m). These values include a correction for finest roots (<0.6 mm diameter), which we suspect are under sampled, resulting in an underestimation of fine roots by up to 31% in current ingrowth core counting methods. We investigate the spatial and seasonal variation of fine root dynamics using soil depth profiles and an analysis of seasonal amplitude along the elevation gradient. We report a stronger seasonality of NPPFineRoot within the cloud immersion zone, most likely synchronised to seasonality of solar radiation. Finally, we provide the first insights into root growth characteristics along a tropical elevation transect: fine root area and fine root length increase significantly in the montane cloud forest. These insights into belowground carbon dynamics of tropical lowland and montane forests have significant implications for our understanding of the global tropical forest carbon cycle.

  4. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient.

    PubMed

    Collins, Courtney G; Stajich, Jason E; Weber, Sören E; Pombubpa, Nuttapon; Diez, Jeffrey M

    2018-04-19

    Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change. © 2018 John Wiley & Sons Ltd.

  5. The Influence of Processing Soil With a Coffee Grinder on Soil Classification

    DTIC Science & Technology

    2015-01-20

    shaker, sieves , coffee grinder, plastic limit tool, bowls, spatulas, and scoops. To classify soils, a dry sieve analysis is performed, as is a Plastic...processed with the coffee grinder for 90 seconds as described above. Sieve analysis using the wet preparation method was used to test and classify the soils...one 90 second cycle of Elevator Soil Figure 3: The blades after three 90 second cycles of Elevator Soil 71Page 4.2 Ottawa Sand Dry Sieve Analysis

  6. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts

    PubMed Central

    Háněl, Ladislav; Řeháková, Klára; Doležal, Jiří

    2017-01-01

    High-elevation cold deserts in Tibet and Himalaya are one of the most extreme environments. One consequence is that the diversity of macrofauna in this environment is often limited, and soil microorganisms have a more influential role in governing key surface and subsurface bioprocesses. High-elevation soil microfauna represent important components of cold ecosystems and dominant consumers of microbial communities. Still little is known about their diversity and distribution on the edge of their reproductive and metabolic abilities. In this study, we disentangle the impact of elevation and soil chemistry on diversity and distribution of rotifers, nematodes and tardigrades and their most frequent feeding strategies (microbial filter-feeders, bacterivores, fungivores, root-fungal feeders, omnivores) along two contrasting altitudinal gradients in Indian NW Himalaya (Zanskar transect from 3805 to 4714 m a.s.l.) and southwestern Tibet (Tso Moriri transect from 4477 to 6176 m a.s.l.), using a combination of multivariate analysis, variation partitioning and generalized additive models. Zanskar transect had higher precipitation, soil moisture, organic matter and available nutrients than dry Tso Moriri transect. In total, 40 species of nematodes, 19 rotifers and 1 tardigrade were discovered. Species richness and total abundance of rotifers and nematodes showed mid-elevation peaks in both investigated transects. The optimum for rotifers was found at higher elevation than for nematodes. Diversity and distribution of soil microfauna was best explained by soil nitrogen, phosphorus and organic matter. More fertile soils hosted more diverse and abundant faunal communities. In Tso Moriri, bacterivores represented 60% of all nematodes, fungivores 35%, root-fungal feeders 1% and omnivores 3%. For Zanskar the respective proportions were 21%, 13%, 56% and 9%. Elevational optima of different feeding strategies occurred in Zanskar in one elevation zone (4400–4500 m), while in Tso Moriri each feeding strategy had their unique optima with fungivores at 5300 m (steppes), bacterivores at 5500 m (alpine grassland), filter-feeders at 5600 m and predators and omnivores above 5700 m (subnival zone). Our results shed light on the diversity of microfauna in the high-elevation cold deserts and disentangle the role of different ecological filters in structuring microfaunal communities in the rapidly-warming Himalayas. PMID:29131839

  7. Aggregation and C dynamics along an elevation gradient in carbonate-containing grassland soils of the Alps

    NASA Astrophysics Data System (ADS)

    Garcia-Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Zistl-Schlingmann, Marcus; Kögel-Knabner, Ingrid

    2017-04-01

    C sequestration in mountainous grassland soils is regulated by physical, chemical and biological soil process. An improved knowledge of the relationship between these stabilization mechanisms is decisive to recommend the best management practices for climate change mitigation. In this regard, the identification of a successful indicator of soil structural improvement and C sequestration in mountainous grassland soils is necessary. Alpine and pre-alpine grassland soils in Bavaria represent a good example for mountainous grassland soils faced with climate change. We sampled grassland soils of the northern limestone alps in Bavaria along an elevation gradient from 550 to 1300 m above sea level. We analyzed C dynamics by a comparative analysis of the distribution of C according to aggregate size classes: large-macroaggregates (> 2000 µm), small-macroaggregates (250-2000 µm), microaggregates (63-250 µm), silt plus clay particles (<63 µm) and bulk soil. Our preliminary results showed higher C content and changed water-stable aggregate distribution in the high elevation sites compared to lower elevations. Magnesium carbonate seem to play an important role in stabilizing macroaggregates formed from fresh OM. In addition, the isolation of occluded microaggregates within macroaggregates will help us to improve our understanding on the effects of climate change on soil structure and on the sensitivity of different C stabilization mechanisms present in mountainous soils.

  8. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (< 0.5 meter) of two tree species with contrasting canopy and bark structure (Fagus grandifolia, vs. Liriodendron tulipifera), and evaluated for soil microbial structure via metagenomic analysis and soil C/N content. We hypothesize that soil moisture constraints coupled with increases in recalcitrant C will decrease gram negative bacteria (i.e., dependent on labile C) while increasing saprophytic fungal community abundance (i.e., specialist consuming recalcitrant C) within both surface and subsurface soils experiencing the greatest urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (< 20 cm) C concentrations due to decreased soil moisture constraining microbial activity (e.g., slower decay), and increased capture of recalcitrant C stocks from industrial/vehicle emission sources (e.g., black C). Our initial results support our hypotheses that urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  9. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils.

    PubMed

    Schmidt, S K; Reed, Sasha C; Nemergut, Diana R; Grandy, A Stuart; Cleveland, Cory C; Weintraub, Michael N; Hill, Andrew W; Costello, Elizabeth K; Meyer, A F; Neff, J C; Martin, A M

    2008-12-22

    Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.

  10. Distribution modelling of pre-Columbian California grasslands with soil phytoliths: New insights for prehistoric grassland ecology and restoration

    PubMed Central

    2018-01-01

    Historical reconstructions of plant community distributions are useful for biogeographic studies and restoration planning, but the quality of insights gained depends on the depth and reliability of historical information available. For the Central Valley of California, one of the most altered terrestrial ecosystems on the planet, this task is particularly difficult given poor historical documentation and sparse relict assemblages of pre-invasion plant species. Coastal and interior prairies were long assumed to have been dominated by perennial bunchgrasses, but this hypothesis has recently been challenged. We evaluated this hypothesis by creating species distribution models (SDMs) using a novel approach based on the abundance of soil phytoliths (microscopic particles of biogenic silica used as a proxy for long-term grass presence) extracted from soil samples at locations statewide. Modeled historical grass abundance was consistently high along the coast and to a lesser extent in higher elevation foothills surrounding the Central Valley. SDMs found strong associations with mean temperature, temperature variability, and precipitation variability, with higher predicted abundance in regions with cooler, equable temperatures and moderated rainfall, mirroring the pattern for modern perennial grass distribution across the state. The results of this study strongly suggest that the pre-Columbian Central Valley of California was not dominated by grasses. Using soil phytolith data as input for SDMs is a promising new method for predicting the extent of prehistoric grass distributions where alternative historical datasets are lacking. PMID:29617400

  11. Distribution modelling of pre-Columbian California grasslands with soil phytoliths: New insights for prehistoric grassland ecology and restoration.

    PubMed

    Fick, Stephen E; Evett, Rand R

    2018-01-01

    Historical reconstructions of plant community distributions are useful for biogeographic studies and restoration planning, but the quality of insights gained depends on the depth and reliability of historical information available. For the Central Valley of California, one of the most altered terrestrial ecosystems on the planet, this task is particularly difficult given poor historical documentation and sparse relict assemblages of pre-invasion plant species. Coastal and interior prairies were long assumed to have been dominated by perennial bunchgrasses, but this hypothesis has recently been challenged. We evaluated this hypothesis by creating species distribution models (SDMs) using a novel approach based on the abundance of soil phytoliths (microscopic particles of biogenic silica used as a proxy for long-term grass presence) extracted from soil samples at locations statewide. Modeled historical grass abundance was consistently high along the coast and to a lesser extent in higher elevation foothills surrounding the Central Valley. SDMs found strong associations with mean temperature, temperature variability, and precipitation variability, with higher predicted abundance in regions with cooler, equable temperatures and moderated rainfall, mirroring the pattern for modern perennial grass distribution across the state. The results of this study strongly suggest that the pre-Columbian Central Valley of California was not dominated by grasses. Using soil phytolith data as input for SDMs is a promising new method for predicting the extent of prehistoric grass distributions where alternative historical datasets are lacking.

  12. Determination of Fluxes and their Source Partitioning from high-resolution Profile Measurements of Wind Speed and Scalars within and above short Canopies

    NASA Astrophysics Data System (ADS)

    Graf, A.; Ney, P.

    2017-12-01

    A continuously moving elevator-based system is described to measure vertical profiles of wind speed, temperature, CO2 and H2O within and above short plant canopies with a vertical resolution in the centimeter range. On sample days in 2015 to 2017, we measured profiles from the soil surface to 2 m a.g.l. in a crop rotation including wheat, barley, bare soil, winter catch crops and sugarbeet, with canopy heights of up to 1 m. Profiles over bare soil or very short canopies could be described well by fitting Monin-Obukhov-like profiles, and the derived fluxes of momentum and all three scalars matched well those of a nearby eddy-covariance station. In green canopies during the day, CO2 profiles clearly indicated the plant sink and soil source by a local minimum in the canopy and a maximum at the soil surface. H2O profiles, indicating sources both in the canopy and at the soil surface, did or did not show a local minimum between both, depending on canopy structure and turbulence. Temperature profiles showed various shapes including solar incident angle effects, and often the expected opposing signs of thermal stability between the subcanopy and the roughness sublayer. Finally, we test different existing parametrizations to estimate the vertical source / sink distribution from the measured profiles, compare the resulting vertically integrated fluxes to eddy-covariance based net fluxes, and discuss limitations and needed improvements to quantify subcanopy soil respiration and evaporation from such approaches.

  13. Exploring the Abundance and Diversity of Bacterial Communities and Quantifying Antibiotic-Related Genes Along an Elevational Gradient in Taibai Mountain, China.

    PubMed

    Peng, Chu; Wang, He; Jiang, Yingying; Yang, Jinhua; Lai, Hangxian; Wei, Xiaomin

    2018-05-10

    Thus far, no studies have investigated the soil microbial diversity over an elevational gradient in Taibai Mountain, the central massif of the Qinling Mountain Range. Here, we used Illumina sequencing and quantitative PCR of the 16S rRNA gene to assess the diversity and abundance of bacterial communities along an elevational gradient in representative vegetation soils in Taibai Mountain. We identified the soil, climate, and vegetation factors driving the variations in soil bacterial community structure by Pearson correlation and redundancy analysis. We also evaluated the potential for antibiotic discovery by quantitative PCR of the PKS-I, PKS-II, and NRPS genes from Actinobacteria. The results showed that soil bacterial alpha diversity increased first and then decreased with an elevational rise in both the northern and southern slopes of Taibai Mountain. The bacterial abundance was significantly correlated with soil organic matter and nitrate nitrogen. The average relative abundance of Actinobacteria in Taibai Mountain was markedly higher than those in other mountain forest soils. The absolute abundance of PKS and NPRS gene was significantly higher in the tested soils compared with the gene copy numbers reported in tropical urban soils. Taibai Mountain is rich in actinomycete resources and has great potential for antibiotic excavation.

  14. Effects of elevated atmospheric CO2 on dissolution of geological fluorapatite in water and soil.

    PubMed

    Li, Zhen; Su, Mu; Tian, Da; Tang, Lingyi; Zhang, Lin; Zheng, Yangfan; Hu, Shuijin

    2017-12-01

    Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO 2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO 2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO 2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO 2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO 2 rise. This study sheds the light on understanding the geological cycle of phosphorus. Copyright © 2017. Published by Elsevier B.V.

  15. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  16. Long-Term Exposure of Tropical Soils to Pressure Treated Lumber, Barro Colorado Island, Panama: Impacts on Soil Metal Mobility and Microbial Community Structure

    NASA Astrophysics Data System (ADS)

    Marietta, M. L.; Fowle, D. A.; Roberts, J. A.

    2008-12-01

    Pressure treated lumber (CCA) has been used in a variety of structures for over seven decades, but recent concerns have been raised about leaching of metals such as chromium (Cr) and arsenic (As) into proximal soils and water supplies. Pressure treated lumber abundance and its continued use necessitate a thorough understanding of metal release and sequestration in the subsurface. To date, no long-term, in situ study on the migration of CCA compounds from lumber has been performed. Barro Colorado Island, Panama is the site of several previous CCA studies and provides an opportunity to investigate the long-term (>70 years) effects of pressure treated lumber in oxisols, where high rainfall and warm temperatures may represent an end-member condition for the leaching and mobility of these metals. Soil samples from CCA and control sites were measured for Cr, As, Cu, Zn, and Fe abundances, microbial biomass and community structure via phospholipid fatty acid analysis, along with basic soil properties. CCA lumber samples were also characterized for their metal abundance. Lumber treated with zinc meta-arsenite displayed advanced decay with elevated As, Cu, and Zn concentrations observed in the adjacent soil. Increased soil organic matter and microbial biomass correlate to decreases in Fe and Fe-associated metals compared to the control. High As concentrations persist to <1 m of the source. Lumber treated with potassium dichromate contained high chromium concentrations and displayed little decay, however, soil concentrations of Cr, Fe, and Cu were generally less than control soils. Over these same intervals, soil organic matter and microbial biomass increased, particularly the fraction of metal reducing bacteria (MRB). We hypothesize that organic carbon loading from lumber stimulates MRB, leading to mobilization of Fe and Fe-associated metals from these oxide-rich soils. Principal component analysis of PLFA data confirms a distinction between controls and samples with elevated metal abundance at each site. This study provides fundamental insight into the long-term persistence of CCA compounds in Fe-rich soils and could serve in practical applications related to CCA contamination.

  17. Experimental soil warming at the treeline shifts fungal communities species

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Björn; Dawes, Melissa; Peter, Martina; Rixen, Christian; Hagedorn, Frank

    2016-04-01

    In terrestrial ecosystems, fungi play a major role in decomposition processes, plant nutrient uptake and nutrient cycling. In high elevation ecosystems in Alpine and Arctic regions, the fungal community may be particularly sensitive to climate warming due to the removal of temperature limitation in the plant and soil system, faster nutrient cycling and changes in plant carbon allocation to maintain roots systems and sustain the rhizosphere. In our study, we estimated the effects of 9 years CO2 enrichment and three years of experimental soil warming on the community structure of fungal microorganisms in an alpine treeline ecosystem. In the Swiss Alps, we worked on a total of 40 plots, with c. 40-year-old Larix decidua and Pinus mugo ssp. uncinata trees (20 plots for each tree species). Half of the plots with each tree species were randomly assigned to an elevated CO2 treatment (ambient concentration +200 ppm), whereas the remaining plots received no supplementary CO2. Five individual plots for each combination of CO2 concentration and tree species were heated by an average of 4°C during the growing season with heating cables at the soil surface. At the treeline, the fungal diversity analyzed by high-throughput 454-sequencing of genetic markers, was generally low as compared to low altitude systems and mycorrhizal species made a particularly small contribution to the total fungal DNA. Soil warming led to a shift in the structure and composition of the fungal microbial community, with an increase of litter degraders and ectomycorrhizal fungi. We further observed changes in the productivity of specific fungal fruiting bodies (i.e. more Lactarius rufus sporocarps and less Hygrophorus lucorum sporocarps) during the course of the experiment, that were consistent with the 454-sequencing data. The warming effect was more pronounced in the Larix plots. These shifts were accompanied by an increased soil CO2 efflux (+40%), evidence of increased N availability and a substantial reduction in fine root biomass (-40%) in warmed soils. In comparison, CO2 enrichment had a weaker effect on the composition of the fungal community. Collectively, our results show that soil warming alters fungal communities both directly, by higher temperature, and indirectly, by an improved nitrogen availability associated with an enhanced SOM cycling. These changes may have a vital effect on several ecosystem processes and, in particular, may alter the rate at which soil organic matter is formed and decomposed.

  18. The Influence of Edaphic and Orographic Factors on Algal Diversity in Biological Soil Crusts on Bare Spots in the Polar and Subpolar Urals

    NASA Astrophysics Data System (ADS)

    Patova, E. N.; Novakovskaya, I. V.; Deneva, S. V.

    2018-03-01

    The influence of edaphic and orographic factors on the formation of algal diversity in biological soil crusts was studied in mountain tundras of the Polar and Subpolar Urals. Bare spots developed in the soils on different parent materials and overgrown to different extents were investigated. Overall, 221 algal species from six divisions were identified. Among them, eighty-eight taxa were new for the region studied. The Stigonema minutum, S. ocellatum, Nostoc commune, Gloeocapsopsis magma, Scytonema hofmannii, Leptolyngbya foveolarum, Pseudococcomyxa simplex, Sporotetras polydermatica species and species of the Cylindrocystis, Elliptochloris, Fischerella, Leptosira, Leptolyngbya, Myrmecia, Mesotaenium, Phormidium, Schizothrix genera were permanent components of biological soil crusts. The basis of the algal cenoses in soil crusts was composed of cosmopolitan cyanoprokaryotes, multicellular green algae with thickened covers and abundant mucus. The share of nitrogen fixers was high. The physicochemical properties of primary soils forming under the crusts of spots are described. The more important factors affecting the species composition of algae in the crusts are the elevation gradient, temperature, soil moisture, and the contents of Ca, Mg, mobile phosphorus, and total nitrogen.

  19. A Field-Scale Sensor Network Data Set for Monitoring and Modeling the Spatial and Temporal Variation of Soil Water Content in a Dryland Agricultural Field

    NASA Astrophysics Data System (ADS)

    Gasch, C. K.; Brown, D. J.; Campbell, C. S.; Cobos, D. R.; Brooks, E. S.; Chahal, M.; Poggio, M.

    2017-12-01

    We describe a soil water content monitoring data set and auxiliary data collected at a 37 ha experimental no-till farm in the Northwestern United States. Water content measurements have been compiled hourly since 2007 by ECH2O-TE and 5TE sensors installed at 42 locations and five depths (0.3, 0.6, 0.9, 1.2, and 1.5 m, 210 sensors total) across the R.J. Cook Agronomy Farm, a Long-Term Agro-Ecosystem Research Site stationed on complex terrain in a Mediterranean climate. In addition to soil water content readings, the data set includes hourly and daily soil temperature readings, annual crop histories, a digital elevation model, Bt horizon maps, seasonal apparent electrical conductivity, soil texture, and soil bulk density. Meteorological records are also available for this location. We discuss the unique challenges of maintaining the network on an operating farm and demonstrate the nature and complexity of the soil water content data. This data set is accessible online through the National Agriculture Library, has been assigned a DOI, and will be maintained for the long term.

  20. Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland

    USGS Publications Warehouse

    Belnap, Jayne; Phillips, Susan L.; Smith, Stanley D.

    2007-01-01

    Biological soil crusts are an integral part of dryland ecosystems. We monitored the cover of lichens and mosses, cyanobacterial biomass, concentrations of UV-protective pigments in both free-living and lichenized cyanobacteria, and quantum yield in the soil lichen species Collema in an undisturbed Mojave Desert shrubland. During our sampling time, the site received historically high and low levels of precipitation, whereas temperatures were close to normal. Lichen cover, dominated by Collema tenax and C. coccophorum, and moss cover, dominated by Syntrichia caninervis, responded to both increases and decreases in precipitation. This finding for Collema spp. at a hot Mojave Desert site is in contrast to a similar study conducted at a cool desert site on the Colorado Plateau in SE Utah, USA, where Collema spp. cover dropped in response to elevated temperatures, but did not respond to changes in rainfall. The concentrations of UV-protective pigments in free-living cyanobacteria at the Mojave Desert site were also strongly and positively related to rainfall received between sampling times (R2 values ranged from 0.78 to 0.99). However, pigment levels in the lichenized cyanobacteria showed little correlation with rainfall. Quantum yield in Collema spp. was closely correlated with rainfall. Climate models in this region predict a 3.5–4.0 °C rise in temperature and a 15–20% decline in winter precipitation by 2099. Based on our data, this rise in temperature is unlikely to have a strong effect on the dominant species of the soil crusts. However, the predicted drop in precipitation will likely lead to a decrease in soil lichen and moss cover, and high stress or mortality in soil cyanobacteria as levels of UV-protective pigments decline. In addition, surface-disturbing activities (e.g., recreation, military activities, fire) are rapidly increasing in the Mojave Desert, and these disturbances quickly remove soil lichens and mosses. These stresses combined are likely to lead to shifts in species composition and the local extirpation of some lichen or moss species. As these organisms are critical components of nutrient cycling, soil fertility, and soil stability, such changes are likely to reverberate throughout these ecosystems.

  1. SOIL RESPIRED D13C SIGNATURES REFLECT ROOT EXUDATE OR ROOT TURNOVER SIGNATURES IN AN ELEVATED CO2 AND OZONE MESOCOSM EXPERIMENT

    EPA Science Inventory

    Bulk tissue and root and soil respired d13C signatures were measured throughout the soil profile in a Ponderosa Pine mesocosm experiment exposed to ambient and elevated CO2 concentrations. For the ambient treatment, root (0-1mm, 1-2mm, and >2mm) and soil d13C signatures were ?24...

  2. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    PubMed Central

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-01-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m−2 yr−1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m−2 yr−1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m−2 yr−1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration. PMID:26678303

  3. Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown under free-air CO2 enrichment (FACE).

    PubMed

    Adachi, Minaco; Hasegawa, Toshihiro; Fukayama, Hiroshi; Tokida, Takeshi; Sakai, Hidemitsu; Matsunami, Toshinori; Nakamura, Hirofumi; Sameshima, Ryoji; Okada, Masumi

    2014-02-01

    To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].

  4. Is Obsidian Hydration Dating Affected by Relative Humidity?

    USGS Publications Warehouse

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  5. Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016

    DOE Data Explorer

    Shawn Serbin; Alistair Rogers; Kim Ely

    2017-02-10

    Data were collected during one season of prototyping associated with the development of a passive warming technology. An experimental chamber, the Zero Power Warming (ZPW) chamber, was fitted with apparatus to modulate venting of a field enclosure and enhance elevation of air temperature by solar radiation. The ZPW chamber was compared with a control chamber (Control) and an ambient open air plot (Ambient). The control chamber was identical to the ZPW chamber but lacked the apparatus necessary to modulate venting, the chamber vents in the control chamber were fixed open for the majority of the trial period. The three plots were located over Carex aquatilis growing in an area of moderately degraded permafrost. Chambers were placed on the same footprints that were used for a similar exercise in 2015 (no data) and therefore those plots had experienced some thaw and degradation prior to 2016. The following data were collected for 80 days at 1 minute intervals from within two chambers and an ambient plot: solar input, chamber venting, air temperature, relative humidity, soil temperature (at 5, 10 and 15 cm), soil moisture, downward and upward NIR.

  6. Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought1[OA

    PubMed Central

    Leakey, Andrew D.B.; Uribelarrea, Martin; Ainsworth, Elizabeth A.; Naidu, Shawna L.; Rogers, Alistair; Ort, Donald R.; Long, Stephen P.

    2006-01-01

    While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 μmol mol−1) and elevated [CO2] (550 μmol mol−1) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (−34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply. PMID:16407441

  7. Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-covered ecosystems.

    PubMed

    Templer, Pamela H; Reinmann, Andrew B; Sanders-DeMott, Rebecca; Sorensen, Patrick O; Juice, Stephanie M; Bowles, Francis; Sofen, Laura E; Harrison, Jamie L; Halm, Ian; Rustad, Lindsey; Martin, Mary E; Grant, Nicholas

    2017-01-01

    Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise.

  8. Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-covered ecosystems

    PubMed Central

    Templer, Pamela H.; Reinmann, Andrew B.; Sanders-DeMott, Rebecca; Sorensen, Patrick O.; Juice, Stephanie M.; Bowles, Francis; Sofen, Laura E.; Harrison, Jamie L.; Halm, Ian; Rustad, Lindsey; Martin, Mary E.; Grant, Nicholas

    2017-01-01

    Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise. PMID:28207766

  9. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert.

    PubMed

    Řeháková, Klára; Chroňáková, Alica; Krištůfek, Václav; Kuchtová, Barbora; Čapková, Kateřina; Scharfen, Josef; Čapek, Petr; Doležal, Jiří

    2015-01-01

    Although bacterial assemblages are important components of soils in arid ecosystems, the knowledge about composition, life-strategies, and environmental drivers is still fragmentary, especially in remote high-elevation mountains. We compared the quality and quantity of heterotrophic bacterial assemblages between the rhizosphere of the dominant cushion-forming plant Thylacospermum ceaspitosum and its surrounding bulk soil in two mountain ranges (East Karakoram: 4850-5250 m and Little Tibet: 5350-5850 m), in communities from cold steppes to the subnival zone in Ladakh, arid Trans-Himalaya, northwest India. Bacterial communities were characterized by molecular fingerprinting in combination with culture-dependent methods. The effects of environmental factors (elevation, mountain range, and soil physico-chemical parameters) on the bacterial community composition and structure were tested by multivariate redundancy analysis and conditional inference trees. Actinobacteria dominate the cultivable part of community and represent a major bacterial lineage of cold desert soils. The most abundant genera were Streptomyces, Arthrobacter, and Paenibacillus, representing both r- and K-strategists. The soil texture is the most important factor for the community structure and the total bacteria counts. Less abundant and diverse assemblages are found in East Karakoram with coarser soils derived from leucogranite bedrock, while more diverse assemblages in Little Tibet are associated with finer soils derived from easily weathering gneisses. Cushion rhizosphere is in general less diverse than bulk soil, and contains more r-strategists. K-strategists are more associated with the extremes of the gradient, with drought at lowest elevations (4850-5000 m) and frost at the highest elevations (5750-5850 m). The present study illuminates the composition of soil bacterial assemblages in relation to the cushion plant T. ceaspitosum in a xeric environment and brings important information about heterotrophic bacteria in Himalayan soil.

  10. The effect of elevated [CO{sub 2}] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roden, J.S.; Ball, M.C.

    1996-07-01

    Two species of eucalyptus (Eucalyptus macrorhyncha and Eucalyptus rossii) were grown for 8 weeks in either ambient (350 {mu}L L{sup {minus}1}) or elevated (700 {mu}L L{sup {minus}1}) CO{sub 2} concentrations, either well watered or without water additions, and subjected to a daily, 3-h high-temperature (45{degrees}C, maximum) and high-light (1250 {mu}mol photons m{sup {minus}2} s{sup {minus}1}, maximum) stress period. Water-stressed seedlings of E. macrorhyncha had higher leaf water potentials when grown in elevated [CO{sub 2}]. Growth analysis indicated that increased [CO{sub 2}] may allow eucalyptus species to perform better during conditions of low soil moisture. A down-regulation of photosynthetic capacity wasmore » observed for seedlings grown in elevated [CO{sub 2}] when well watered but not when water stressed. Well-water seedlings grown in elevated [CO{sub 2}] had lower quantum efficiencies as measured by chlorophyll fluorescence (the ratio of variable to maximal chlorophyll fluorescence [F{sub v}/F{sub m}]) than seedlings grown in ambine [CO{sub 2}] during the high-temperature stress period. However, no significant differences in F{sub v}/F{sub m} were observed between CO{sub 2} treatments when water was withheld. The reductions in dark-adapted F{sub v}/F{sub m} for plants grown in elevated [CO{sub 2}] were not well correlated with increased xanthophyll cycle photoprotection. However, reductions in the F{sub v}/F{sub m} were correlated with increased levels of nonstructural carbohydrates. The reduction in quantum efficiencies for plants grown in elevated [CO{sub 2}] is discussed in the context of feedback inhibition of electron transport associated with starch accumulation and variation in sink strength. 48 refs., 8 figs., 2 figs.« less

  11. Examining mechanisms in the final stages of the elimination of boreal tree species on vulnerable sites in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Jess, R.; Alix, C. M.; Verbyla, D.

    2015-12-01

    The boreal forest of Alaska and western Canada exist in a complex mosaic of environments determined by elevation, aspect of exposure, and longitudinal and latitudinal gradients of change from warm, dry continental to maritime-influenced conditions. This forest region is largely made up of trees with two growth responses to temperature increases. Trees that decrease in growth are termed negative responders, and occupy warm, dry sites at low elevations. Trees that increase in radial growth are termed positive responders, and are largely in western Alaska, and at high elevation of the Brooks and Alaska Ranges. Since the Pacific climate regime shift of the 1970s, mature trees at low elevation sites have experienced increasing climate stress in several quasi-decadal cycles of intensifying drought stress. NDVI trends and tree ring records demonstrating radial growth decline are coherent. Phenological monitoring of spruce height growth also indicates that depletion of spring soil moisture is a critical process driven by the interaction of early warm season temperatures and precipitation. Novel biotic disturbance agents including spruce budworm, outbreaks of which are triggered by warm temperature anomalies related to its biology, and aspen leaf miner are depressing realized growth below climatically predicted levels, suggesting a pathway by which tree death is likely to occur before absolute temperature limits. As a result, insect outbreaks are degrading the otherwise strong long-term climate signal in Alaska boreal trees. However, young tree (> 40 yrs.) regeneration generally does not yet display the symptoms of acute high temperature stress. Overall, on these vulnerable sites, if temperature increases similar to the past 40 years continue, long term survival prospects are questionable because the climate conditions would be outside the limits that have historically defined the species ranges of aspen, Alaska birch, and black and white spruce.

  12. An elevational gradient in snowpack chemical loading at Glacier National Park, Montana: implications for ecosystem processes

    USGS Publications Warehouse

    Fagre, Daniel; Tonnessen, Kathy; Morris, Kristi; Ingersoll, George; McKeon, Lisa; Holzer, Karen

    2000-01-01

    The accumulation and melting of mountain snowpacks are major drivers of ecosystem processes in the Rocky Mountains. These include the influence of snow water equivalent (SWE) timing and amount of release on soil moisture for annual tree growth, and alpine stream discharge and temperature that control aquatic biota life histories. Snowfall also brings with it atmospheric deposition. Snowpacks will hold as much as 8 months of atmospheric deposition for release into mountain ecosystems during the spring melt. These pulses of chemicals influence soil microbiota and biogeochemical processes affecting mountain vegetation growth. Increased atmospheric nitrogen inputs recently have been documented in remote parts of Colorado's mountain systems but no baseline data exist for the Northern Rockies. We examined patterns of SWE and snow chemistry in an elevational gradient stretching from west to east over the continental divide in Glacier National Park in March 1999 and 2000. Sites ranged from 1080m to 2192m at Swiftcurrent Pass. At each site, two vertically-integrated columns of snow were sampled from snowpits up to 600cm deep and analyzed for major cations and anions. Minor differences in snow chemistry, on a volumetric basis, existed over the elvational gradient. Snowpack chemical loading estimates were calculated for NH4, SO4 and NO3 and closely followed elevational increases in SWE. NO3 (in microequivalents/square meter) ranged from 1,000 ueq/m2 at low elevation sites to 8,000+ ueq/m2 for high elevation sites. Western slopes received greater amounts of SWE and chemical loads for all tested compounds.

  13. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    USGS Publications Warehouse

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  14. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    PubMed

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  15. Element interactions limit soil carbon storage

    PubMed Central

    van Groenigen, Kees-Jan; Six, Johan; Hungate, Bruce A.; de Graaff, Marie-Anne; van Breemen, Nico; van Kessel, Chris

    2006-01-01

    Rising levels of atmospheric CO2 are thought to increase C sinks in terrestrial ecosystems. The potential of these sinks to mitigate CO2 emissions, however, may be constrained by nutrients. By using metaanalysis, we found that elevated CO2 only causes accumulation of soil C when N is added at rates well above typical atmospheric N inputs. Similarly, elevated CO2 only enhances N2 fixation, the major natural process providing soil N input, when other nutrients (e.g., phosphorus, molybdenum, and potassium) are added. Hence, soil C sequestration under elevated CO2 is constrained both directly by N availability and indirectly by nutrients needed to support N2 fixation. PMID:16614072

  16. Environmental drivers of cambial phenology in Great Basin bristlecone pine.

    PubMed

    Ziaco, Emanuele; Biondi, Franco; Rossi, Sergio; Deslauriers, Annie

    2016-07-01

    The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine (Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April-early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant-soil water exchanges. Our results help build a physiological understanding of climate-growth relationships in P. longaeva, the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Long-term comparison of Kuparuk Watershed active layer maps, northern Alaska, USA

    NASA Astrophysics Data System (ADS)

    Nyland, K. E.; Queen, C.; Nelson, F. E.; Shiklomanov, N. I.; Streletskiy, D. A.; Klene, A. E.

    2017-12-01

    The active layer, or the uppermost soil horizon that thaws seasonally, is among the most dynamic components of the permafrost system. Evaluation of the thickness and spatial variation of the active layer is critical to many components of Arctic research, including climatology, ecology, environmental monitoring, and engineering. In this study we mapped active-layer thickness (ALT) across the 22,278 sq. km Kuparuk River basin on Alaska's North Slope throughout the summer of 2016. The Kuparuk River extends from the Brooks Range through the Arctic Foothills and across the Arctic Coastal Plain physiographic provinces, and drains into the Beaufort Sea. Methodology followed procedures used to produce an ALT map of the basin in 1995 accounting for the effects of topography, vegetation, topoclimate, and soils, using the same spatial sampling scheme for direct ALT and temperature measurement at representative locations and relating these parameters to vegetation-soil associations. A simple semi-empirical engineering solution was used to estimate thaw rates for the different associations. An improved lapse-rate formulation and a higher-resolution DEM were used to relate temperature to elevation. Three ALT maps were generated for the 2016 summer, combining measured thaw depth, temperature records, the 25 m ArcticDEM, high resolution remote sensed data, empirical laps rates, and a topoclimatic index through the thaw solution. These maps were used to track the spatial progression of thaw through the 2016 summer season and estimate a total volume of thawed soil. Maps produced in this study were compared to the 1995 map to track areas of significant geographic changes in patterns of ALT and total volume of thawed soil.

  18. Soil microbial responses to elevated CO2 and O3 in a nitrogen-aggrading agroecosystem

    USDA-ARS?s Scientific Manuscript database

    Despite decades of study, the underlying mechanisms by which soil microbes respond to rising atmospheric CO2 and ozone remain poorly understood. A prevailing hypothesis, which states that changes in C availability induced by elevated CO2 and ozone drive alterations in soil microbes and the processe...

  19. Interactive Effects of Climate Change and Decomposer Communities on the Stabilization of Wood-Derived Carbon Pools: Catalyst for a New Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resh, Sigrid C.

    Globally, forest soils store ~two-thirds as much carbon (C) as the atmosphere. Although wood makes up the majority of forest biomass, the importance of wood contributions to soil C pools is unknown. Even with recent advances in the mechanistic understanding of soil processes, integrative studies tracing C input pathways and biological fluxes within and from soils are lacking. Therefore, our research objectives were to assess the impact of different fungal decay pathways (i.e., white-rot versus brown-rot)—in interaction with wood quality, soil temperature, wood location (i.e., soil surface and buried in mineral soil), and soil texture—on the transformation of woody materialmore » into soil CO 2 efflux, dissolved organic carbon (DOC), and soil C pools. The use of 13C-depleted woody biomass harvested from the Rhinelander, WI free-air carbon dioxide enrichment (Aspen-FACE) experiment affords the unique opportunity to distinguish the wood-derived C from other soil C fluxes and pools. We established 168 treatment plots across six field sites (three sand and three loam textured soil). Treatment plots consisted of full-factorial design with the following treatments: 1. Wood chips from elevated CO 2, elevated CO 2 + O 3, or ambient atmosphere AspenFACE treatments; 2. Inoculated with white rot (Bjerkandera adusta) or brown rot (Gloeophyllum sepiarium) pure fungal cultures, or the original suite of endemic microbial community on the logs; and 3. Buried (15cm in soil as a proxy for coarse roots) or surface applied wood chips. We also created a warming treatment using open-topped, passive warming chambers on a subset of the above treatments. Control plots with no added wood (“no chip control”) were incorporated into the research design. Soils were sampled for initial δ 13C values, CN concentrations, and bulk density. A subset of plots were instrumented with lysimeters for sampling soil water and temperature data loggers for measuring soil temperatures. To determine the early pathways of decomposition, we measured soil surface CO 2 efflux, dissolved organic C (DOC), and DO 13C approximately monthly over two growing seasons from a subsample of the research plots. To determine the portion of soil surface CO 2 efflux attributable to wood-derived C, we used Keeling plot techniques to estimate the associated δ 13C values of the soil CO 2 efflux. We measured the δ 13CO 2 once during the peak of each growing season. Initial values for soil δ 13C values and CN concentrations averaged across the six sites were -26.8‰ (standard error = 0.04), 2.46% (se = 0.11), and 0.15% (se = 0.01), respectively. The labeled wood chips from the Aspen FACE treatments had an average δ13C value of -39.5‰ (se 0.10). The >12 ‰ isotopic difference between the soil and wood chip δ 13C values provides the basis for tracking the wood-derived C through the early stages of decomposition and subsequent storage in the soil. Across our six research sites, average soil surface CO 2 efflux ranged from 1.04 to 2.00 g CO 2 m -2 h -1 for the first two growing seasons. No wood chip controls had an average soil surface CO 2 efflux of 0.67 g CO 2 m -2 h -1 or about half of that of the wood chip treatment plots. Wood-derived CO 2 efflux was higher for loam textured soils relative to sands (0.70 and 0.54 g CO 2 m -2 h -1, respectively; p = 0.045)), for surface relative to buried wood chip treatments (0.92 and 0.39 g CO 2 m -2 h -1, respectively; p < 0.001), for warmed relative to ambient temperature treatments (0.99 and 0.78 g CO 2 m -2 h -1, respectively; 0.004), and for natural rot relative to brown and white rots (0.93, 0.82, and 0.78 g CO 2 m -2 h -1, respectively; p = 0.068). Our first two growing seasons of soil surface CO 2 efflux data show that wood chip location (i.e., surface vs. buried chip application) is very important, with surface chips loosing twice the wood-derived CO 2. The DOC data support this trend for greater loss of ecosystem C from surface chips. This has strong implications for the importance of root and buried wood for ecosystem C retention. This strong chip location effect on wood-derived C loss was significantly modified by soil texture, soil temperature, decomposer communities, and wood quality as effected by potential future CO 2 and O 3 levels.« less

  20. Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998

    USGS Publications Warehouse

    Wickland, K.P.; Striegl, Robert G.; Mast, M.A.; Clow, D.W.

    2001-01-01

    Carbon dioxide (CO2) and methane (CH4) exchange between the atmosphere and a subalpine wetland located in Rocky Mountain National Park, Colorado, at 3200 m elevation were measured during 1996-1998. Respiration, net CO2 flux, and CH4 flux were measured using the closed chamber method during snow-free periods and using gas diffusion calculations during snow-covered periods. The ranges of measured flux were 1.2-526 mmol CO2 m-2 d-1 (respiration), -1056-100 mmol CO2 m-2 d-1 (net CO2 exchange), and 0.1-36.8 mmol CH4 m-2 d-1 (a positive value represents efflux to the atmosphere). Respiration and CH4 emission were significantly correlated with 5 cm soil temperature. Annual respiration and CH4 emission were modeled by applying the flux-temperature relationships to a continuous soil temperature record during 1996-1998. Gross photosynthesis was modeled using a hyperbolic equation relating gross photosynthesis, photon flux density, and soil temperature. Modeled annual flux estimates indicate that the wetland was a net source of carbon gas to the atmosphere each of the three years: 8.9 mol C m-2 yr-1 in 1996, 9.5 mol C m-2 yr-1 in 1997, and 9.6 mol C m-2 yr-1 in 1998. This contrasts with the long-term carbon accumulation of ???0.7 mol m-2 yr-1 determined from 14C analyses of a peat core collected from the wetland.

  1. Climatic and Grazing Controls on Biological Soil Crust Nitrogen Fixation in Semi-arid Ecosystems

    NASA Astrophysics Data System (ADS)

    Schwabedissen, S. G.; Reed, S.; Lohse, K. A.; Magnuson, T. S.

    2014-12-01

    Nitrogen, next to water, is believed to be the main limiting resource in arid and semi-arid ecosystems. Biological soil crusts (biocrusts) -a surface community of mosses, lichens and cyanobacteria-have been found to be the main influx of "new" nitrogen (N) into many dryland ecosystems. Controls on biocrust N fixation rates include climate (temperature and moisture), phosphorus availability, and disturbance factors such as trampling, yet a systematic examination of climatic and disturbance controls on biocrusts communities is lacking. Biocrust samples were collected along an elevation gradient in the Reynolds Creek Experimental Watershed near Murphy, Idaho. Four sites were selected from a sagebrush steppe ecosystem with precipitation ranging from ≤250mm/yr to ≥1100mm/yr. Each site included 5 grazed plots and one historic exclosure plot that has been free from grazing for more than 40 years. Five samples each were collected from under plants and from interplant spaces from the grazed plots and exclosures and analyzed for potential N fixation using an acetylene reduction assay. We hypothesized that N fixation rates would be the highest in the exclosures of the two middle sites along the elevation gradient, due to the lack of disturbance and optimal temperature and moisture, respectively. As predicted, results showed higher rates of potential N fixation in exclosures than non-exclosures at a mid-elevation 8.4 ± 3.1 kg N/ha/yr in the exclosures compared to 1.8 ± 1.5 kg N/ha/yr indicating that grazing may reduce N fixation activity. Interestingly, rates were 2-5 times lower under plant canopies compared to interplant spaces at all but the highest elevation site. Findings from our study suggest that biocrust N fixation may be a dominant input of N into theses dryland systems and, in line with our hypotheses, that climate, location within the landscape, and disturbance may interact to regulate the rates of this fundamental ecosystem process.

  2. Effects of experimental warming and elevated CO2 on surface methane and CO­2 fluxes from a boreal black spruce peatland

    NASA Astrophysics Data System (ADS)

    Gill, A. L.; Finzi, A.; Hsieh, I. F.; Giasson, M. A.

    2016-12-01

    High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first season of whole ecosystem warming and elevated CO2 treatments. We find that peat methane fluxes are more sensitive to warming treatments than peat CO2 fluxes, particularly in hollow peat microforms. Surface CO2:CH4 flux ratios decreased across warming treatments, suggesting that the temperature sensitivity of methane production overshadows the effect of peat drying and surface aeration in the short term. δ13C of the emitted methane was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input. The measurement record demonstrates that belowground warming has measureable impacts on the nature of peat greenhouse gas emission within one year of treatment.

  3. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Cao, W.; Sheng, Y.

    2017-12-01

    The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different freezing-thawing stages; 4) the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20cm are slope, elevation and vegetation coverage. And the main factors influencing the soil moisture at the middle and lower depth are complex.

  4. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming.

    PubMed

    Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang

    2016-12-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.

  5. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective.

    PubMed

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H

    2015-04-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  6. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    NASA Astrophysics Data System (ADS)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.

  7. Temporal Dynamics of Abiotic and Biotic Factors on Leaf Litter of Three Plant Species in Relation to Decomposition Rate along a Subalpine Elevation Gradient

    PubMed Central

    Zhu, Jianxiao; Yang, Wanqin; He, Xinhua

    2013-01-01

    Relationships between abiotic (soil temperature and number of freeze-thaw cycles) or biotic factors (chemical elements, microbial biomass, extracellular enzymes, and decomposer communities in litter) and litter decomposition rates were investigated over two years in subalpine forests close to the Qinghai-Tibet Plateau in China. Litterbags with senescent birch, fir, and spruce leaves were placed on the forest floor at 2,704 m, 3,023 m, 3,298 m, and 3,582 m elevation. Results showed that the decomposition rate positively correlated with soil mean temperature during the plant growing season, and with the number of soil freeze-thaw cycles during the winter. Concentrations of soluble nitrogen (N), phosphorus (P) and potassium (K) had positive effects but C:N and lignin:N ratios had negative effects on the decomposition rate (k), especially during the winter. Meanwhile, microbial biomass carbon (MBC), N (MBN), and P (MBP) were positively correlated with k values during the first growing season. These biotic factors accounted for 60.0% and 56.4% of the variation in decomposition rate during the winter and the growing season in the first year, respectively. Specifically, litter chemistry (C, N, P, K, lignin, C:N and lignin:N ratio) independently explained 29.6% and 13.3%, and the microbe-related factors (MBC, MBN, MBP, bacterial and fungal biomass, sucrase and ACP activity) explained 22.9% and 34.9% during the first winter and the first growing season, respectively. We conclude that frequent freeze-thaw cycles and litter chemical properties determine the winter decomposition while microbe-related factors play more important roles in determining decomposition in the subsequent growing season. PMID:23620803

  8. Soil geochemistry controls fire severity: A soil approach to improved understanding of forest fire consequences in southwest Montana.

    NASA Astrophysics Data System (ADS)

    Callahan, R.; Hartshorn, T.

    2014-12-01

    Fire severity can be defined using satellite imagery to ratio mid (~2.2 um) to near (~0.8 um) infrared reflectance values. We examined how lithology and topography affected burn severity, and how post-fire soils data could be used to ground-truth burn severity at two sites in southwestern Montana. A burned area reflectance classification (BARC), lithology, and terrain attributes were used to predict burn severity for the Millie Fire, which was triggered two years ago by lightning and burned ~4,000 ha. Burn severity showed a strong dependence on lithology: the ratio of areas with high burn severity vs. low or moderate burn severities was 2.9 for gneiss (vs. 0.3 for volcanics). The high-severity burn area for the gneiss was larger than the volcanics, despite the latter lithology covering ~270% greater area (~2,600 ha). Aspect and elevation also influenced burn severity with lower severity at higher elevations (2,600-3,000 m) and higher severity at lower elevations (1,800-2,400 m). Southern and western aspects burned more severely than northern and eastern aspects. To clarify whether post-fire soil geochemical changes might predict ground-based estimates of fire severity, a lab experiment was carried out . We expected residual enrichment of trace metal concentrations, as soil organic matter (SOM) was combusted, which we quantified as loss on ignition (LOI). To test this approach, burned and unburned soils were sampled from the ~6000 ha Beartrap 2 fire, which also burned two years. We simulated differing fire severities on unburned soil using a muffle furnace factorially (duration [5, 15, 30, 45, or 60 minutes] x temperature [50, 100, 200, 300, 400, or 500ºC]). Consistent with expectations, unburned samples had a lower mean (±1SD) concentrations for 23 of 30 elements than field-burned samples. For example, barium concentrations ([Ba]) in unburned samples were (708±37μg/g), 16% lower than field-burned [Ba] (841±7 μg/g). Simulated burning yielded smaller [Ba] (732±9 μg/g). Of the 30 trace metals examined, barium explained the greatest fraction of variance in post-burn LOI (R2 =0.79); gallium explained slightly less variance (R2=0.67). Our results document the promise of post-burn soil geochemistry to indicate soil burn severity, which could complement vegetation-based and remotely sensed indices.

  9. Trace elements quantified by the APXS on Mars

    NASA Astrophysics Data System (ADS)

    Gellert, R.; Berger, J. A.; Boyd, N.; O'Connell-Cooper, C.; Desouza, E.; Thompson, L. M.; VanBommel, S.; Yen, A.

    2017-12-01

    The APXS accurately quantifies many trace elements within the dime-sized sample: Ni, Cu, Zn, Ga, Ge, Pb, Br, Se, As, and Y with 20 ppm detection limit (DL) and Rb, Sr, Zr, Co, Cr, and Mn with 200 ppm DL. Together with the major and minor elements, this gives important constraints for a variety of formation processes of the investigated soils, floats or extensive bedrock on Mars. The global soil, found at all rover landing sites, was used to define an average Mars value for Ni, Zn, Cr and Mn, with a consistent value of Fe/Mn 50 for soils and igneous rocks. All other APXS trace elements are below DL. Strong enrichments or depletions can both give evidence for the formation processes and link together groups of rocks and indicate their common diagenetic origin. Felsic rocks at Gale and Gusev have Cr, Ni and Zn far below soil, indicating their likely igneous origin. Further, similarly low values are found in elevated silica samples in the Murray Fm. at Gale where these elements have been mobilized and leached by fluids. High Sr and Ga was found in the host rock surrounding the Garden City vein system, which contains also high Ge, Mn and Cu, indicating mobilization in high temperature and/or acidic fluids after the Murray was lithified. The fracture fill sample Stephen at Windjana is high in Zn, Co and Cu. Germanium is enriched in the Murray Fm with very consistent values of about 100 ppm over many kilometers and 200 meters elevation, similar to perviously found bedrock at Yellowknife Bay and Windjana in Gale. Zinc is highly elevated but changes significantly with elevation in Murray, often correlated with Fe/Mn, possibly indicating changing redox conditions. Pb and Se are highly enriched at Pahrump (150, 75 ppm, resp.), drop first to low values and increase again uphill towards HematiteRidge. Nodules found at Pahrump show striking evidence for (Mg, Ni)-sulfates with Nickel up to 4% in the sulfates. All together these trends might indicate hydrothermal activity. The MER APXS instruments with somewhat higher DL found similar patterns. Elevated Ge was found at Home plate, Gusev crater, and at the rim of Endeavour crater at Meridiani Planum. Together with detailed investigations of SNC meteorites, the APXS detected trace elements supplement the bulk chemistry significantly and allow new insights into the formation processes encountered on Mars

  10. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm.

    PubMed

    Olszyk, D M; Johnson, M G; Phillips, D L; Seidler, R J; Tingey, D T; Watrud, L S

    2001-01-01

    To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.

  11. Changes in fungal community composition in response to experimental soil warming at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Bjorn; Dawes, Melissa; Peter, Martina; Souza, Romulo; Rixen, Christian; Hagedorn, Frank

    2017-04-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the reduction of low temperature limitation in the plant-soil system, faster nitrogen cycling and changes in the carbon allocation of host plants to the rhizosphere. Shifts in fungal community composition due to global changes are likely to affect the routes of carbon and nitrogen flows in the plant-soil system and alter the rates at which organic matter is decomposed. The main aim of our study was to estimate the effects of multiple years of free air CO2 enrichment (ambient concentration +200 ppm) and soil warming (+ 4°C) on the fungal community structure and composition. At an alpine treeline in Switzerland featuring two key high-elevation tree species, Larix decidua and Pinus uncinata, fungal communities within different organic horizons were analysed by high-throughput 454-pyrosequencing of ITS2 amplicons. In addition, we assessed the ectomycorrhizal community composition on root tips and monitored changes in sporocarp productivity of fungal species during the course of the experiment. Three years of experimental warming at the alpine treeline altered the composition of the fungal community in the organic horizons, whereas nine years of CO2 enrichment had only weak effects. Tree species influenced the composition of the fungal community and the magnitude of the responses of fungal functional groups to soil warming differed between plots with Larix and those with Pinus. The abundance of ectomycorrhizal fungi was positively correlated with nitrogen availability, and ectomycorrhizal taxa specialized for conditions of high nitrogen availability proliferated with warming, corresponding to considerable increases in extractable inorganic nitrogen in warmed soils. Changes in productivity of specific fungal fruiting bodies in response to soil warming (e.g. more Lactarius rufus sporocarps and less Hygrophorus speciousus sporocarps) were consistent with the 454-sequencing data and the colonization of ectomycorrhizal root tips. Several fungal taxa known to be involved in needle degradation responded positively to the warming treatment by increasing in their relative abundance. These findings provide novel insights into the spatial distribution of functional groups of fungi both vertically in the soil and between different rhizospheres of trees. Moreover, they indicate that traits related to nitrogen utilization are important in determining responses of ectomycorrhizal fungi to warming in cold regions, such as high-elevation ecosystems, with low N availability. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem nitrogen cycling and carbon storage at the alpine treeline.

  12. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    PubMed

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  13. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Treesearch

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  14. Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, L.

    2017-12-01

    Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.

  15. Thermal reactivity of SOC linked to iron oxide content: Pyrolysis-AMS study of mineral-associated SOC on Kohala Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Grant, K. E.; Galy, V.; Derry, L. A.

    2016-12-01

    Soil organic carbon (SOC) is a heterogeneous mixture of carbon compounds. This mixture, especially under variable redox conditions, can form semi-stable associations with amorphous Fe and Al minerals, potentially leading to long-term stabilization of soil carbon. How stable are these interactions if soil conditions, such as precipitation, pH, or soil redox state, change? Sixteen samples characterized as andic haplustand to hydric haplaudand soils derived from a 400 ka Pololu (basaltic) lava flow formed on a precipitation gradient on Kohala Volcano, HI were analyzed on the ramped pyrolysis-AMS (PyRox) system at Woods Hole NOSAMS facility. Samples from 50-90 cm depth were analyzed to eliminate signals from converted pasture grasses on the lower, drier half of the precipitation gradient. Redox conditions change along the gradient, with increased Fe loss at higher, wetter elevations. Samples were freeze-dried, homogenized, and combusted under a programed temperature pyrolysis or oxidation regime from 25 to 900°C; evolved CO2 was collected in fractions for 14C analysis. Results comprise a combination of pyrolysis (no O2 during temperature ramp) and oxidation (6% O2 during temperature ramp) experiments. Subsamples were digested in a combination of HF/HNO3/HCL and analyzed by ICP-OES for major elements and ICP-MS for Ti and Zr. Soil samples with iron oxide concentration ranging from 3.8 to 57.3% Fe2O3 were run on the PyRox system. Iron loss, which becomes pronounced at high precipitation (>200 cm MAP), is associated with younger 14C ages. Bulk 14C ages ranged from 1,700 radiocarbon years to 10,100 radiocarbon years. The shape of the thermographs (i.e. thermal reactivity) and by extension chemical reactivity is a function of Fe content. Lower T-max values of the individual thermograms are correlated to increasing Fe2O3 values. PyRox analyses across Kohala transect sites have given uniform age distributions, meaning the 14C age of low and high temperature components is nearly identical, suggesting that SOC turnover is primarily controlled by mineral interactions as opposed to carbon chemical composition. This suggests that soil mineralogy, especially the presence of ferrihydrite, has a significant control on the turnover time of SOC in these highly weathered basaltic soils.

  16. Fungal communities and functional guilds shift along an elevational gradient in the southern Appalachian Mountains

    Treesearch

    Allison M. Veach; C. Elizabeth Stokes; Jennifer Knoepp; Ari Jumpponen; Richard Baird

    2017-01-01

    Nitrogen deposition alters forest ecosystems particularly in high elevation, montane habitats where nitrogen deposition is greatest and continues to increase. We collected soils across an elevational (788–1940 m) gradient, encompassing both abiotic (soil chemistry) and biotic (vegetation community) gradients, at eight locations in the southern Appalachian...

  17. Seasonality and Children’s Blood Lead Levels: Developing a Predictive Model Using Climatic Variables and Blood Lead Data from Indianapolis, Indiana, Syracuse, New York, and New Orleans, Louisiana (USA)

    PubMed Central

    Laidlaw, Mark A.S.; Mielke, Howard W.; Filippelli, Gabriel M.; Johnson, David L.; Gonzales, Christopher R.

    2005-01-01

    On a community basis, urban soil contains a potentially large reservoir of accumulated lead. This study was undertaken to explore the temporal relationship between pediatric blood lead (BPb), weather, soil moisture, and dust in Indianapolis, Indiana; Syracuse, New York; and New Orleans, Louisiana. The Indianapolis, Syracuse, and New Orleans pediatric BPb data were obtained from databases of 15,969, 14,467, and 2,295 screenings, respectively, collected between December 1999 and November 2002, January 1994 and March 1998, and January 1998 and May 2003, respectively. These average monthly child BPb levels were regressed against several independent variables: average monthly soil moisture, particulate matter < 10 μm in diameter (PM10), wind speed, and temperature. Of temporal variation in urban children’s BPb, 87% in Indianapolis (R2 = 0.87, p = 0.0004), 61% in Syracuse (R2 = 0.61, p = 0.0012), and 59% in New Orleans (R2 = 0.59, p = 0.0000078) are explained by these variables. A conceptual model of urban Pb poisoning is suggested: When temperature is high and evapotranspiration maximized, soil moisture decreases and soil dust is deposited. Under these combined weather conditions, Pb-enriched PM10 dust disperses in the urban environment and causes elevated Pb dust loading. Thus, seasonal variation of children’s Pb exposure is probably caused by inhalation and ingestion of Pb brought about by the effect of weather on soils and the resulting fluctuation in Pb loading. PMID:15929906

  18. [Ex-situ remediation of PAHs contaminated site by successive methyl-beta-cyclodextrin enhanced soil washing].

    PubMed

    Sun, Ming-Ming; Teng, Ying; Luo, Yong-Ming; Li, Zhen-Gao; Jia, Zhong-Jun; Zhang, Man-Yun

    2013-06-01

    Polycyclic aromatic hydrocarbon (PAH) polluted sites caused by abandoned coking plants have attracted great attentions. This study investigated the feasibility of using methyl-beta-cyclodextrin (MCD) solution to enhance ex situ soil washing for extracting PAHs. Treatment with elevated temperature (50 degrees C) in combination with ultrasonication (35 kHz, 30 min) at 100 g x L(-1) was effective. It was found that 96.7% +/- 2.4% of 3-ring PAH, 89.7% +/- 3.2% of 4-ring PAH, 76.3% +/- 2.2% of 5 (+6)-ring PAH and 91.3% +/- 3.1% of total PAHs were removed from soil after five successive washing cycles. The desorption kinetics of PAHs from contaminated soil was determined before and after successive washings. The 400 h Tenax extraction of PAHs from soil was decreasing gradually with increasing washing times. Furthermore, the F(r), F(sl), k(r), k(sl) and k(vl) were significantly lower than those of CK (P < 0.01). Therefore, considering the removal efficiency and potential environmental risk after soil )ashing, successive washing three times was selected as a reasonable parameter. These results have practical implications for site risk assessment and cleanup strategies.

  19. Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover.

    PubMed

    Beckett, Richard P; Zavarzina, Anna G; Liers, Christiane

    2013-06-01

    Lichens are symbiotic associations of a fungus (usually an Ascomycete) with green algae and/or a cyanobacterium. They dominate on 8 % of the world's land surface, mainly in Arctic and Antarctic regions, tundra, high mountain elevations and as components of dryland crusts. In many ecosystems, lichens are the pioneers on the bare rock or soil following disturbance, presumably because of their tolerance to desiccation and high temperature. Lichens have long been recognized as agents of mineral weathering and fine-earth stabilization. Being dominant biomass producers in extreme environments they contribute to primary accumulation of soil organic matter. However, biochemical role of lichens in soil processes is unknown. Our recent research has demonstrated that Peltigeralean lichens contain redox enzymes which in free-living fungi participate in lignocellulose degradation and humification. Thus lichen enzymes may catalyse formation and degradation of soil organic matter, particularly in high-stress communities dominated by lower plants. In the present review we synthesize recently published data on lichen phenol oxidases, peroxidases, and cellulases and discuss their possible roles in lichen physiology and soil organic matter transformations. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.

    2016-12-01

    Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N concentrations. This was further supported by the presence of acetyl glucosamine, a typical amino sugar, present in the chitin of fungi, under elevated than ambient CO2. Our results suggest that arid ecosystems, limited by water, may have a different C storage potential under changing climates than other ecosystems that are limited by N or P.

  1. Soil Degradation Evaluated by a 27 years Landsat image (Vis-Nir-Swir-Tir), climate and digital elevation derivatives

    NASA Astrophysics Data System (ADS)

    Dematte, J. A., Sr.; Santos, N. V.; de Almeida Malzoni, M. M.; Poppiel, R. R.; Fongaro, C. T.; Rizzo, R.; Safanelli, J. L.; Sayão, V. M.; Mendes, W. S.

    2017-12-01

    According to Food and Agriculture Organization of the United Nations, 30% of the global soils are degraded. Therefore, novel researches on soil degradation process are imperative to prevent damages on social and environmental dynamics. Since we have a wide world dimension, and few manpower, we have to focus on high dimensional evaluation techniques such as remote sensing. The main goal of this work was to develop a method, based on a 27 years time-series of satellite images (Landsat), from which determine the most important factors on soil degradation. The area is located in south Brazil with a 1400 km2 area. The steps of the method are as follows: a) we collected images from the area and based on a novel technique determined the areas with exposed soils; b) we quantified soil properties such as clay and capacity of ionic exchange based on pixel spectra signature; c) the technique also indicated how many times a single pixel was with bare soil during the period; d) we also determined the surface temperature based on band 6; e) using elevation model we created the layers LS factor, drainage density, topographic wetness index, solar radiation; f) we also determined climate information (water balance); g) organic matter (OM) was also estimated. All factors from item a to f were balanced and overlapped (GIS) to generate an index of soil degradation, SD (fig 1a) - values from 1 (low risk) to 5 (high risk). We concluded that 30% of the area is degraded. SD presented coherent values with OM and validate the method. We observed that areas with higher SD (5) contain 43.6% less OM than the ones with low risk (1). In addition, the soil spectral reflectance curve was analyzed concluding that degraded soils shows higher intensity. The current land use (fig 1b) was correlated demonstrating that a higher risk of SD happens mainly in sugar cane (41.6%) in contrast to pasture (16.9%) and forestry (11.7%). Therefore, this approach allows land uses decision-making and public policies.

  2. Ecohydrological Controls on Intra-Basin Alpine Subarctic Water Balances

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Ziegler, C. M.

    2007-12-01

    In the mountainous Canadian subarctic, elevation gradients control the disposition of vegetation, permafrost, and characteristics of the soil profile. How intra-basin ecosystems combine to control catchment-scale water and biogeochimcal cycling is uncertain. To this end, a multi-year ecohydrological investigation was undertaken in Granger Basin (GB), a 7.6 km2 sub-basin of the Wolf Creek Research Basin, Yukon Territory, Canada. GB was divided into four sub-basins based on the dominant vegetation and permafrost status, and the timing and magnitude of hydrological processes were compared using hydrometric and hydrochemical methods. Vegetation plays an important role in end-of-winter snow accumulation as snow redistribution by wind is controlled by roughness length. In sub-basins of GB with tall shrubs, snow accumulation is enhanced compared with areas of short shrubs and tundra vegetation. The timing of melt was staggered with elevation, although melt-rates were similar among the sub-basins. Runoff was enhanced at the expense of infiltration in tall shrub areas due to high snow water equivalent and antecedent soil moisture. In the high-elevation tundra sub-basin, thin soils with cold ground temperatures resulted in increased surface runoff. For the freshet period, the lower and upper sub-basins accounted for 81 % of runoff while accounting for 58 % of the total basin area. Two-component isotopic hydrograph separation revealed that during melt, pre-event water dominated in all sub-basins, yet those with greater permafrost disposition and taller shrubs had increased event-water. Dissolved organic carbon (DOC) spiked prior to peak freshet in each sub-basin except for the highest with thin soils, and was associated with flushing of surficial organic soils. For the post-melt period, all sub-basins have similar runoff contributions. Solute and stable isotope data indicate that in sub-basins dominated by permafrost, supra-permafrost runoff pathways predominate as flow pathways are confined above the permafrost aquitard. In contrast, lower elevation zones supply runoff via deeper subsurface flow pathways with increased levels of dissolved solutes. With regards to DOC, sub-basins dominated by permafrost supply the bulk of DOC to the stream because of near-surface pathways. Results highlight the importance of vegetation, the soil profile and frozen ground status in controlling hydrological and hydrochemical fluxes. Future changes in vegetation, which are occurring rapidly in the subarctic, are expected to have a large impact on the hydrology and biogeochemistry of these systems.

  3. The Raam regional soil moisture monitoring network in the Netherlands

    NASA Astrophysics Data System (ADS)

    Benninga, Harm-Jan F.; Carranza, Coleen D. U.; Pezij, Michiel; van Santen, Pim; van der Ploeg, Martine J.; Augustijn, Denie C. M.; van der Velde, Rogier

    2018-01-01

    We have established a soil moisture profile monitoring network in the Raam region in the Netherlands. This region faces water shortages during summers and excess of water during winters and after extreme precipitation events. Water management can benefit from reliable information on the soil water availability and water storing capacity in the unsaturated zone. In situ measurements provide a direct source of information on which water managers can base their decisions. Moreover, these measurements are commonly used as a reference for the calibration and validation of soil moisture content products derived from earth observations or obtained by model simulations. Distributed over the Raam region, we have equipped 14 agricultural fields and 1 natural grass field with soil moisture and soil temperature monitoring instrumentation, consisting of Decagon 5TM sensors installed at depths of 5, 10, 20, 40 and 80 cm. In total, 12 stations are located within the Raam catchment (catchment area of 223 km2), and 5 of these stations are located within the closed sub-catchment Hooge Raam (catchment area of 41 km2). Soil-specific calibration functions that have been developed for the 5TM sensors under laboratory conditions lead to an accuracy of 0.02 m3 m-3. The first set of measurements has been retrieved for the period 5 April 2016-4 April 2017. In this paper, we describe the Raam monitoring network and instrumentation, the soil-specific calibration of the sensors, the first year of measurements, and additional measurements (soil temperature, phreatic groundwater levels and meteorological data) and information (elevation, soil physical characteristics, land cover and a geohydrological model) available for performing scientific research. The data are available at https://doi.org/10.4121/uuid:dc364e97-d44a-403f-82a7-121902deeb56.

  4. Landscape heterogeneity modulates forest sensitivity to climate

    NASA Astrophysics Data System (ADS)

    Jencso, Kelsey; Hu, Jia; Hoylman, Zachary

    2015-04-01

    Elevation dependent snowmelt magnitude and timing strongly influences net ecosystem productivity in forested mountain watersheds. However, previous work has provided little insight into how internal watershed topography and organization may modulate plant available water and forest growth across elevation gradients. We collected 800 tree cores from four coniferous tree species across a range of elevation, topographic positions and aspects in the Lubrecht Experimental Forest, Montana, USA. We compared the annual basal area increment growth rate to precipitation and temperature from a 60-year SNOTEL data record, groundwater and soil moisture data in sideslope and hollow positions, and topographic indices derived from a LiDAR digital elevation model. At the watershed scale, we evaluated the relationships between topographic indices, LiDAR derived estimates of basal area and seasonal patterns of the Landsat derived Enhanced Vegetation Index. Preliminary results indicate strong relationships between the rates of annual basal growth and the topographic wetness index (TWI), with differing slopes dependent on tree species (P. menziesii R2 = 0.66-0.71, P. ponderosa R2 = 0.87, L. occidentalis R2 = 0.71) and elevation. Generally, trees located in wetter landscape positions (higher TWI) exhibited greater annual growth per unit of precipitation relative to trees located in drier landscape positions (lower TWI). Similarly, watershed scale analysis of LiDAR derived biomass and seasonal greenness indicates differential growth response due to local convergence and divergence across elevation and insolation gradients. These observations suggest that topographically driven water redistribution patterns may modulate the effects of large scale gradients in precipitation and temperature, thereby creating hotspots for conifer productivity in semiarid watersheds.

  5. Landscape Heterogeneity Modulates Forest Sensitivity to Climate

    NASA Astrophysics Data System (ADS)

    Hoylman, Z. H.; Jencso, K. G.; Hu, J.; Running, S. W.

    2014-12-01

    Elevation dependent snowmelt magnitude and timing strongly influences net ecosystem productivity in forested mountain watersheds. However, previous work has provided little insight into how internal watershed topography and organization may modulate plant available water and forest growth across elevation gradients. We collected 800 tree cores from five coniferous tree species across a range of elevations, topographic positions and aspects in the Lubrecht Experimental Forest, Montana, USA. We compared the annual basal area increment growth rate to precipitation and temperature from a 60-year SNOTEL data record, groundwater and soil moisture data in sideslope and hollow positions, and topographic indices derived from a LiDAR digital elevation model. At the watershed scale, we evaluated the relationships between topographic indices, LiDAR derived estimates of basal area and seasonal patterns of the Landsat derived Enhanced Vegetation Index. Preliminary results indicate strong relationships between the rates of annual basal growth and the topographic wetness index (TWI) , with differing slopes dependent on tree species (P. menziesii R2 = 0.66-0.71, P. ponderosa R2 = 0.87, L. occidentalis R2 = 0.71) and elevation. Generally, trees located in wetter landscape positions (higher TWI) exhibited greater annual growth per unit of precipitation relative to trees located in drier landscape positions (lower TWI). Watershed scale analysis of LiDAR derived biomass and seasonal greenness indicates differential growth response due to elevation gradients, irradiance and local convergence and divergence. These preliminary observations suggest that topographically driven water redistribution patterns may modulate the effects of large scale gradients in precipitation and temperature, thereby creating hotspots for conifer productivity in semiarid watersheds.

  6. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.

    PubMed

    Frei, Esther R; Ghazoul, Jaboury; Matter, Philippe; Heggli, Martin; Pluess, Andrea R

    2014-02-01

    Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations as a consequence of climate warming, as plasticity will buffer the detrimental effects of climate change in the three investigated nutrient-poor grassland species. © 2013 John Wiley & Sons Ltd.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucash, M.S.; Farnsworth, B.; Winner, W.E.

    This study tests the potential for interactions between root-zone temperature and CO{sub 2} for plants which co-occur in a habitat where root-zone temperature fluctuate throughout the day. Controlled environment studies were conducted to expose desert plants to combinations of low or high root zone temperatures and low or high CO{sub 2}. Artemisia tridentata, Sitanion hystrix, and Stipa thurberiana were chosen for study to represent eastern Oregon plants that differ in their life history strategies. Seeds were planted in pots containing native soils and were grown in environmentally controlled growth chambers for three months. Growth treatments were either ambient (380 ppm)more » or high (580 ppm) CO{sub 2} concentration and high (18{degrees}C) or low (13{degrees} C) root-zone temperature. A. tridentata (a perennial shrub) was relatively unresponsive to treatments. Growth of S. hystrix and S. thurberiana (both C{sub 3} grasses) was stimulated by root-zone warming at both ambient and elevated CO{sub 2} levels. CO{sub 2} stimulated growth occurred for both grass species at low root-zone temperatures but only for S. thurberiana at high root-zone temperatures. Biomass increases from elevated CO{sub 2} were enhanced by root-zone warming indicating treatment interactions. Leaf-level photosynthesis measurements were consistent across species, but could not explain growth responses to treatments. These studies indicate that grasses may be more responsive to environmental change than co-occurring shrubs.« less

  8. Effects of elevated carbon dioxide, elevated temperature, and rice growth stage on the community structure of rice root-associated bacteria.

    PubMed

    Okubo, Takashi; Tokida, Takeshi; Ikeda, Seishi; Bao, Zhihua; Tago, Kanako; Hayatsu, Masahito; Nakamura, Hirofumi; Sakai, Hidemitsu; Usui, Yasuhiro; Hayashi, Kentaro; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2014-01-01

    The effects of free-air carbon dioxide enrichment (FACE) and elevated soil and water temperature (warming) on the rice root-associated bacterial community were evaluated by clone library analysis of the 16S ribosomal RNA gene. Roots were sampled at the panicle initiation and ripening stages 41 and 92 days after transplanting (DAT), respectively. The relative abundances of the methanotrophs Methylosinus and Methylocystis were increased by warming and decreased by FACE at 92 DAT, which indicated that microbial methane (CH4) oxidation in rice roots may have been influenced by global warming. The relative abundance of Burkholderia kururiensis was increased by warming at 41 DAT and by FACE or warming at 92 DAT. The abundances of methanotrophs increased during rice growth, which was likely induced by an enhancement in the emission of CH4 from the paddy fields, suggesting that CH4 is one of the predominant factors affecting the structure of the microbial community in rice roots. Marked variations in the community structure were also observed during rice growth in other genera: Bradyrhizobium, Clostridium, and an unknown genus close to Epsilonproteobacteria were abundant at 92 DAT, whereas Achromobacter was abundant at 41 DAT. These results demonstrated that the community structures of rice root-associated bacteria were markedly affected by FACE, temperature, and the rice growth stage.

  9. Degradability studies of PLA nanocomposites under controlled water sorption and soil burial conditions

    NASA Astrophysics Data System (ADS)

    Norazlina, H.; Hadi, A. A.; Qurni, A. U.; Amri, M.; Mashelmie, S.; Kamal, Y.

    2018-04-01

    Polymer blended nanocomposites based on polylactic acid (PLA) were prepared via a simple melting process and investigated for its biodegradation behaviour. The treated CNTs were surface modified by using acid treatment and characterisations of composites were done by using Fourier Transform Infra-Red (FTIR) and UV-Vis. FTIR spectra and UV-Vis peak confirmed the surface modification of CNTs. The water uptake and weight loss behaviour based on CNTs and m-CNTs loading at different temperatures (25° and 45°C) were studied. It was found that the water absorption and weight loss of nanocomposites increased by the incorporation of CNTs and m-CNTs. Moisture induced degradation of composite samples was significant at elevated temperature. The addition of treated CNTs successfully reduced the water uptake and weight loss of nanocomposites due to less hydrolytic effect of water on nanocomposites. In soil burial test, the weight loss increases with addition of nanofiller. The loading of m-CNT reduced the ability of nanocomposites degradation.

  10. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    NASA Astrophysics Data System (ADS)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely offset temperature-related yield losses in irrigated maize.

  11. Two year soil moisture and temperature monitoring from two vegetation communities on olivine-basalt soils from Coppermine Peninsula, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Schaefer, Carlos; Thomazini, André; Michel, Roberto; Francelino, Márcio; Pereira, Antônio; Schünemann, Adriano; Mendonça, Eduardo Sá

    2017-04-01

    Current climate change is greatly affecting terrestrial ecosystems of Maritime Antarctica, especially due the variations in soil temperature and moisture content. The vegetation species distribution in Maritime Antarctica is highly heterogeneous on the landscape, being governed mainly by water regime and soil characteristics. Hence, the objective of this study was to evaluate soil temperature and moisture based on long-term in situ measurements from two well-developed vegetation communities in Coppermine Peninsula, Robert Island, Maritime Antarctica. The moss site (S1) is located in a marine terrace, highly influenced by ice/snow/permafrost melting (20 m a.s.l) not affected by permafrost. This site represents the most extensive moss carpet in Coppermine Peninsula, mainly constituted by Sanionia uncinata (Hedw.) Loeske, forming a dense carpet of 3-7 cm thickness. The moss/lichen site (S2) is located in an elevated area on basaltic ridge (29 m a.s.l.). The site has great influence of permafrost bellow the A horizon of the soil, at 50 cm depth. Vegetation species constitution is highly variable, with a significant occurrence of Polytrichastrum alpinum G.L. Smith. Musiccolas lichens populations of Psoroma cinnamomeum Malme, Ochrolechia frigida (Sw.). The monitoring systems consist of soil temperature probes (Campbell L107E thermocouple, accuracy of ± 0.2°C) and soil moisture probes (CS656 water content reflectometer, accuracy of ± 2.5%), placed in the active layer at 0-10 cm depths. Three probes were inserted at each site in triplicates, spaced at 2 m from each other. All probes were connected to a Campbell Scientific CR 1000 data logger, recording data at every 1 hour interval. We calculated the thawing days (TD), freezing days (FD); thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). This system recorded data of soil temperature and moisture from February 2014 to February 2016. A predominance of freezing conditions was observed to occur in S1 with only 1 thaw day in the studied period (23 thawed degree days, -1400 freeze degree days), whilst thawed days occur in January, February and March in S2 (118 thawed degree days, -1107 freeze degree days). Almeida et al (2014) attributed the thermal buffering effect under mosses primarily to higher moisture onsite, but recognized the possible contribution of a longer duration of the snowpack. Soil moisture presented less variation compared to values of soil temperature along the monitored period, hourly records show average soil moisture of 0.18 m3 m-3 (0.52 max, 0.09 min) and 0.11 m3 m-3 (0.38 max, 0.04 min) at S1 and S2, respectively. S1 presented a more pronounced buffering effect due to its position in the landscape where thawing of surrounding active layer continuously supply water, providing conditions for a thicker vegetation cover, On the other hand, the moss/lichen site is located in the middle of the slope, where drainage is facilitated.

  12. An analysis of carbon and radiocarbon profiles across a range ecosystems types

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; Strahm, B. D.; Sanclements, M.

    2016-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of mineralogical parameters on soil C stocks and turnover and their relative importance in comparison to climatic variables. Results are presented for a total of 11 NEON sites, spanning Alfisols, Entisols, Mollisols and Spodosols. Soils were sampled by genetic horizon, density separated according to density fractionation: light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon concentrations of the heavy fraction (mineral adsorbed) were significantly, though weakly, correlated with pH (r2 = 0.35, p = 0.02), though C concentrations were not. Data suggest an important role for both aggregation and soil chemistry in regulating soil C cycling across a diversity of soil orders. The current presented results serve as a preliminary report on a project spanning 40 NEON sites and a range of physiochemical analyses.

  13. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests

    DOE PAGES

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.; ...

    2016-02-04

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less

  14. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests.

    PubMed

    Carrino-Kyker, Sarah R; Kluber, Laurel A; Petersen, Sheryl M; Coyle, Kaitlin P; Hewins, Charlotte R; DeForest, Jared L; Smemo, Kurt A; Burke, David J

    2016-03-01

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less

  16. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland

    PubMed Central

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-01-01

    Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224

  17. Spatial variability of soils in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  18. Faster turnover of new soil carbon inputs under increased atmospheric CO2.

    PubMed

    van Groenigen, Kees Jan; Osenberg, Craig W; Terrer, César; Carrillo, Yolima; Dijkstra, Feike A; Heath, James; Nie, Ming; Pendall, Elise; Phillips, Richard P; Hungate, Bruce A

    2017-10-01

    Rising levels of atmospheric CO 2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO 2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1-4 years). Elevated CO 2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO 2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO 2 concentrations may be smaller than previously assumed. © 2017 John Wiley & Sons Ltd.

  19. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China.

    PubMed

    Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2016-02-01

    Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P < 0.05). The negative effects were correlated with the decrease in soil microbial biomass and fine root biomass due to soil acidification under the SAR. The temperature coefficients (Q10) of RT and its two components generally decreased with increasing levels of the SAR, but only the decrease of RT and RL was significant (P < 0.05). In addition, the contribution of RL to RT decreased significantly under the SAR, indicating that RL was more sensitive to the SAR than RS. In the context of elevated acid rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer.

  20. Rising Mean Annual Temperature Increases Carbon Flux and Alters Partitioning, but Does Not Change Ecosystem Carbon Storage in Hawaiian Tropical Montane Wet Forest

    NASA Astrophysics Data System (ADS)

    Litton, C. M.; Giardina, C. P.; Selmants, P.

    2014-12-01

    Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical forest C cycling.

  1. Nutrient availability in rangeland soils: influence of prescribed burning, herbaceous vegetation removal, overseeding with Bromus tectorum, season, and elevation

    Treesearch

    R. R. Blank; J. Chambers; B. Roundy; A. Whittaker

    2007-01-01

    Soil nutrient availability influences plant invasions. Resin capsules were used to examine soil nutrient bioavailability along 2 sagebrush-grassland elevation transects in the east Tintic Range (Utah) and Shoshone Range (Nevada). In the fall of 2001, treatments were applied to 3 replicate plots at each site, which included prescribed burning, herbaceous vegetation...

  2. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    PubMed

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Acid precipitation: compositional changes during throughfall; soil water. Technical completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R.

    1984-12-01

    Lysimeters were installed at two soil depths within each of the three major ecosystems on Camels Hump Mountain. Collections were made weekly during the frost-free season of 1982 and 1983. Samples were analyzed for pH, conductivity, and a broad range of metals, anionic and cationic constituents, and for other physical properties. The findings included: soil solutions obtained from the upper-elevations in a northern coniferous forest zone are significantly more acidic than those from the lower elevation hardwood forest zone; soil solutions for all ecological zones are more acidic in the spring during and shortly after snowmelt than they are latermore » in the frost free-season; aluminum in soil solutions from the upper elevations is present in concentrations known to be phytotoxic to seedlings of forest trees and to groundcover plants; cadmium, Pb, and Zn are, in the spring, present in concentrations that are close to being phytotoxic; there are changes in the ratios of divalent cations to specific metals during the season and as functions of altitude and forest zones; nitrate concentration in soil water are also elevation- and time dependent.« less

  4. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3

    Treesearch

    Kurt S. Pregitzer; Andrew J. Burton; John S. King; Donald R. Zak

    2008-01-01

    The Rhinelander free-air CO2 enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO2) and elevated tropospheric ozone (+O3). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to...

  5. Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests

    Treesearch

    Jennifer D. Knoepp; James M. Vose; Wayne T. Swank

    2008-01-01

    We studied nitrogen (N) cycling pools and processes across vegetation and elevation gradients in. the southern Appalachian Mountains in SE USA. Measurements included bulk deposition input, watershed export, throughfall fluxes, litterfall, soil N pools and processes, and soil solution N. N deposition increased with elevation and ranged from 9.5 to 12.4 kg ha-...

  6. Satellite Vegetation Index Data as a Tool to Forecast Population Dynamics of Medically Important Mosquitoes at Military Installations in the Continental United States

    DTIC Science & Technology

    2008-07-01

    for the two installations. We obtained monthly North American normalized differ- ence vegetation index ( NDVI ) satellite climate data sets for 1981-2005...from the Goddard Space Flight Center."*-" The NDVI measures the greenness of the earth, capturing in one index the combined effects of temperature...humidity, insola- tion, elevation, soils, land use. and precipitation on vegeta- tion. There is an almost-linear relationship between NDVI values and

  7. Oxygen Isotope Compositions of Meteoric Water Across an Elevation Gradient in Southern Peru

    NASA Astrophysics Data System (ADS)

    Xu, D. R.; White, E.; Cassel, E. J.; Lynch, B.; Yanites, B.; Breecker, D.

    2017-12-01

    The Central Andes is a prime example of elevated topography generated by oceanic plate subduction. Whereas previous stable isotope studies have investigated the paleoelevation of the Andean Eastern Cordillera, little is known about the paleoelevation of the Western Cordillera, where arc volcanism now occurs. As a first step towards studying the paleoelevation of this region, we investigated the change in δ18O values of modern soil waters across an elevation gradient from sea level to about 4725 meters in southern Peru. We sampled soil profiles from 5 to 80 cm in 15-20cm increments, and we sampled water from flowing natural streams at various elevations. We used cryogenic vacuum extraction to quantitatively remove non-structural water from soil samples. The δ18O values of water extracted from soil samples varies with the depth in the soil due to the diminishing effect of seasonality and evaporation. Every high elevation (>3500m) soil profile we measured had nearly constant δ18O values below 5cm and a total range of δ18O values between -12.8‰ and -17.1‰, apart from the Cusco profile. In the Cusco profile, the δ18O values ranged from -7.2 ‰ at 5 cm to -21.8 ‰ at 60 cm, defining a strong monotonic decrease not seen in other soil profiles. The δ18O trend in the Cusco profile may be different due to the impact of evaporation, soil hydrology, and/or seasonality in the δ18O values of precipitation. Further spatial analysis must be conducted to pinpoint a specific cause. Considering only the samples collected below 40cm, which are likely the best estimate of mean annual precipitation, the δ18O values decrease with increasing elevation at a rate higher than the global mean, suggesting that oxygen isotope paleoaltimetry can work in this study region.

  8. Evaluation of Topographic wetness index and catchment characteristics on spatially and temporally variable streams across an elevation gradient

    NASA Astrophysics Data System (ADS)

    Martin, C.

    2017-12-01

    Topography can be used to delineate streams and quantify the topographic control on hydrological processes of a watershed because geomorphologic processes have shaped the topography and streams of a catchment over time. Topographic Wetness index (TWI) is a common index used for delineating stream networks by predicting location of saturation excess overland flow, but is also used for other physical attributes of a watershed such as soil moisture, groundwater level, and vegetation patterns. This study evaluates how well TWI works across an elevation gradient and the relationships between the active drainage network of four headwater watersheds at various elevations in the Colorado Front Range to topography, geology, climate, soils, elevation, and vegetation in attempt to determine the controls on streamflow location and duration. The results suggest that streams prefer to flow along a path of least resistance which including faults and permeable lithology. Permeable lithologies created more connectivity of stream networks during higher flows but during lower flows dried up. Streams flowing over impermeable lithologies had longer flow duration. Upslope soil hydraulic conductivity played a role on stream location, where soils with low hydraulic conductivity had longer flow duration than soils with higher hydraulic conductivity.Finally TWI thresholds ranged from 5.95 - 10.3 due to changes in stream length and to factors such as geology and soil. TWI had low accuracy for the lowest elevation site due to the greatest change of stream length. In conclusion, structural geology, upslope soil texture, and the permeability of the underlying lithology influenced where the stream was flowing and for how long. Elevation determines climate which influences the hydrologic processes occurring at the watersheds and therefore affects the duration and timing of streams at different elevations. TWI is an adequate tool for delineating streams because results suggest topography has a primary control on the stream locations, but because intermittent streams change throughout the year a algorithm needs to be created to correspond to snow melt and rain events. Also geology indices and soil indices need be considered in addition to topography to have the most accurate derived stream network.

  9. Trends in Soil Moisture Reflect More Than Slope Position: Soils on San Cristóbal Island, Galápagos as a Case Study

    NASA Astrophysics Data System (ADS)

    Percy, M.; Singha, K.; Benninger, L. K.; Riveros-Iregui, D. A.; Mirus, B. B.

    2015-12-01

    The spatial and temporal distribution of soil moisture in tropical critical zones depends upon a number of variables including topographic position, soil texture, overlying vegetation, and local microclimates. We investigate the influences on soil moisture on a tropical basaltic island (San Cristóbal, Galápagos) across a variety of microclimates during the transition from the wetter to the drier season. We used multiple approaches to characterize spatial and temporal patterns in soil moisture at four sites across microclimates ranging from arid to very humid. The microclimates on San Cristóbal vary with elevation, so our monitoring includes two sites in the transitional zone at lower elevations, one in the humid zone at moderate elevations, and one in the very humid zone in higher elevations. We made over 250 near-surface point measurements per site using a Hydrosense II probe, and estimated the lateral variability in soil moisture across each site with an EM-31 electrical conductivity meter. We also monitored continuous time-series of in-situ soil moisture dynamics using three nested TDR probes collocated with meteorological stations at each of the sites. Preliminary analysis indicates that soils in the very humid zone have lower electrical conductivities across all the hillslopes as compared to the humid and transitional zones, which suggests that additional factors beyond climate and slope position are important. While soil texture across the very humid site is fairly uniform, variations in vegetation have a strong control on soil moisture patterns. At the remaining sites the vegetation patterns also have a very strong local influence on soil moisture, but correlation between the depth to clay layers and soil moisture patterns suggests that mineralogy is also important. Our findings suggest that the microclimatic setting is a crucial consideration for understanding relations between vegetation, soil texture, and soil-moisture dynamics in tropical critical zones.

  10. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    PubMed

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N deposition, and responses by local decomposer communities. © 2015 John Wiley & Sons Ltd.

  11. Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus

    PubMed Central

    Sharwood, Robert E.; Crous, Kristine Y.; Whitney, Spencer M.; Ellsworth, David S.

    2017-01-01

    Abstract Leaf-level photosynthetic processes and their environmental dependencies are critical for estimating CO2 uptake from the atmosphere. These estimates use biochemical-based models of photosynthesis that require accurate Rubisco kinetics. We investigated the effects of canopy position, elevated atmospheric CO2 [eC; ambient CO2 (aC)+240 ppm] and elevated air temperature (eT; ambient temperature (aT)+3 °C) on Rubisco content and activity together with the relationship between leaf N and Vcmax (maximal Rubisco carboxylation rate) of 7 m tall, soil-grown Eucalyptus globulus trees. The kinetics of E. globulus and tobacco Rubisco at 25 °C were similar. In vitro estimates of Vcmax derived from measures of E. globulus Rubisco content and kinetics were consistent, although slightly lower, than the in vivo rates extrapolated from gas exchange. In E. globulus, the fraction of N invested in Rubisco was substantially lower than for crop species and varied with treatments. Photosynthetic acclimation of E. globulus leaves to eC was underpinned by reduced leaf N and Rubisco contents; the opposite occurred in response to eT coinciding with growth resumption in spring. Our findings highlight the adaptive capacity of this key forest species to allocate leaf N flexibly to Rubisco and other photosynthetic proteins across differing canopy positions in response to future, warmer and elevated [CO2] climates. PMID:28064178

  12. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.

    PubMed

    Andrew, Nigel R; Hart, Robert A; Jung, Myung-Pyo; Hemmings, Zac; Terblanche, John S

    2013-09-01

    Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3°C; CT(max) = 46.1°C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6-57°C (equating to a body temperature of 24.5-43.1°C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Microbial community and nitrogen cycling shift with snowmelt in high-elevation barren soils of Mount Rainier National Park

    NASA Astrophysics Data System (ADS)

    Simpson, A.; Zabowski, D.

    2015-12-01

    Climate change and nutrient deposition have the potential to accelerate soil formation in high-elevation sediments recently exposed by glacier or snow melt. This process has implications not only for ecosystem formation on Earth but for the formation of Earth-like ecosystems on other planets and icy moons. Research into microbial communities shifting from subnival to mesotrophic conditions has mainly focused on changes on respiration and biomass, and is generally limited to one or two well-studied geographical locations. In particular, more information is needed on microbial shifts in snow-covered volcanic sediments, which may prove the closest analog to the most 'habitable' non-terrestrial environments for Earth microorganisms. We sampled in volcanic soil and sediment along gradients of elevation and snowmelt - dry soil, moist soil next to snowpack, and soil underneath snowpack - at the Muir Snowfields at Mount Rainier National Park, in order to investigate changes in carbon and nitrogen compounds, microbial diversity and gene expression. Initial results show a decrease in available ammonium and increase in microbial biomass carbon in exposed sediment with increasing soil moisture, and a sharp decrease in microbial C:N ratios after snowmelt and drying. Available/labile organic carbon and organic nitrogen decrease strongly with elevation, while microbial biomass carbon and nitrogen and mineral nitrogen compounds show no change with elevation. Though gene expression data is needed for confirmation, we hypothesize that these snowfields receive strong wind-borne deposits of carbon and nitrogen but that chemoautotrophic communities under semi-permanent snowpack do not shift to more mesotrophic communities until after exposed sediment has already begun to desiccate, limiting soil formation.

  14. Mechanism of matrix-bound phosphine production in response to atmospheric elevated CO2 in paddy soils.

    PubMed

    An, Shaorong; Niu, Xiaojun; Chen, Weiyi; Sheng, Hong; Lai, Senchao; Yang, Zhiquan; Gu, Xiaohong; Zhou, Shaoqi

    2018-04-12

    To explore the effect of elevated CO 2 concentrations ([CO 2 ]) on phosphine formation in paddy fields, the matrix-bound phosphine (MBP) content, different phosphorus fractions and various carbon forms in soil samples from rice cultivation under varying CO 2 concentrations of 400 ppm, 550 ppm and 700 ppm by indoor simulation experiment were determined. This study showed that MBP concentration did not increase significantly with elevated [CO 2 ] over four-week cultivation periods of rice seedlings, regardless of soil layers. MBP had a significant positive correlation with total phosphorus (TP) and inorganic phosphorus (IP), and multiple stepwise linear regression analysis further indicated that MBP preservation in neutral paddy soils with depths of 0-20 cm may have been due to conversion from FeP and CaP. Based on redundancy analysis and forward selection analysis, speculated that the formation of MBP in the neutral paddy soils as the response to atmospheric elevated [CO 2 ] was due to two processes: (i) FeP transformation affected by the changes of soil respiration (SCO 2 ) and TOC was the main precursor for the production of MBP; and (ii) CaP transformation resulting from variation in HCO 3 - was the secondary MBP source. The complex combination of these two processes is simultaneously controlled by SCO 2 . In a word, the soil environment in the condition of elevated [CO 2 ] was in favor of MBP storage in neutral paddy soils. The results of our study imply that atmospheric CO 2 participates in and has a certain impact on the global biogeochemical cycle of phosphorus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effects of phosphorus and nitrogen additions on tropical soil microbial activity in the context of experimental warming

    NASA Astrophysics Data System (ADS)

    Foley, M.; Nottingham, A.; Turner, B. L.

    2017-12-01

    Soil warming is generally predicted to increase microbial mineralization rates and accelerate soil C losses which could establish a positive feedback to climatic warming. Tropical rain forests account for a third of global soil C, yet the responseto of tropical soil C a warming climate remains poorly understood. Despite predictions of soil C losses, decomposition of soil organic matter (SOM) in tropical soils may be constrained by several factors including microbial nutrient deficiencies. We performed an incubation experiment in conjunction with an in-situ soil warming experiment in a lowland tropical forest on Barro Colorado Island, Panama, to measure microbial response to two key nutrient additions in shallow (0-10cm) and deep (50-100 cm) soils. We compared the response of lowland tropical soils to montane tropical soils, predicting that lowland soils would display the strongest response to phosphorus additions. Soils were treated with either carbon alone (C), nitrogen (CN), phosphorus (CP) or nitrogen and phosphorus combined (CNP). Carbon dioxide (CO2) production was measured by NaOH capture and titrimetric analysis for 10 days. Cumulative CO2 production in montane soils increased significantly with all additions, suggesting these soils are characterized by a general microbial nutrient deficiency. The cumulative amount of C respired in deep soils from the lowland site increased significantly with CP and CNP additions, suggesting that microbial processes in deep lowland tropical soils are phosphorus-limited. These results support the current understanding that lowland tropical forests are growing on highly weathered, phosphorus-deplete soils, and provide novel insight that deep tropical SOM may be stabilized by a lack of biologically-available phosphorus. Further, this data suggests tropical soil C losses under elevated temperature may be limited by a strong microbial phosphorus deficiency.

  16. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance.

    PubMed

    Killi, Dilek; Bussotti, Filippo; Raschi, Antonio; Haworth, Matthew

    2017-02-01

    Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (P N ) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on P N was most apparent in sunflower. The drought tolerant sunflower retained ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (G s ), we observed no change or a reduction in G s with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root-systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat-waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on P N was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi-arid regions. © 2016 Scandinavian Plant Physiology Society.

  17. World-Wide and Regional Examination of Substrates Facilitating Timberline Expansion

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Yeakley, J. A.

    2010-12-01

    Upward advance of timberlines, associated with climate warming, is occurring in the Pacific Northwest (PNW) as well as many other mountainous regions of the world. Examination of seedling establishment and survival of sensitive seedlings, rather than examination of older resilient trees, may give a clearer understanding of current climatic factors affecting potential expansion of timberline. Our investigation of seedling establishment along timberline edges in the PNW indicates that trees often germinate on small landforms known as microsites. Microsites include small convexities or concavities on the soil surface having a scale of centimeters to meters, but also include associations with slope, aspect, rocks or plants, or substrates dominated by mineral soil or wood. Growing on favorable microsites helps seedlings cope with some of the stresses that exist at high elevation sites including wind, cold temperatures, high radiation, drought, animal predation, and infestation by fungal pathogens found in snow and soil. Microsites, by providing warmer substrates, adequate moisture, and shelter, allow plants to function more affectively in mountain environments. Our summary of microsite type and associated timberline advance in a world-wide context indicates that factors such as snow accumulation, summer rainfall, and availability of microsites, will control timberline advance. In windswept timberline locations, rocks and plants provide shelter from wind and reduce the likelihood of night frost. In arid climates, concave microsites aid in snow deposition providing needed moisture to seedlings during periods of drought. In contrast, convex microsites and wood substrates, typical sites of regeneration in the PNW where precipitation typically exceeds 150 cm per year, facilitate early snow melt, thereby increasing growing season. Large trees at the edge of timberline fall into alpine meadows, decay, and provide sites for seedling establishment. These sites commonly called nurse logs, much better known as key microsites in lower elevation forests, have been found to be conspicuous sites of timberline forest regeneration extending from the forest edge into alpine meadows. Nurse logs appear to be particularly important sites of regeneration in wetter alpine areas of the world such as the North Cascade Mountains of Washington in the PNW. Depending upon aspect and slope, one tree can potentially advance timberline close to 20 meters, a typical length of a tree growing at timberline. Nurse log temperature during the growing season is significantly greater than the adjacent soil, particularly in areas with reduced overstory canopy. Increased substrate temperature, associated with increased root growth, has been found to facilitate growth of seedlings. Further, the water holding capacity of rotten logs, which often surpasses that of soils, aids in seedling growth during summer droughts.

  18. Response of Tree Rings Growth to Various Climatological Indices in the Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Shamir, E.; Kaliff, R.; Graham, R.; Lepley, K. S.; Meko, D. M.; Touchan, R.

    2017-12-01

    Tree rings properties have been used to reconstruct historic regional climatological proxies. In this study, we examine whether tree rings can inform us on the basin scale spatial variability of the snow pack and soil moisture. Cores from seven sites and nine tree species of conifers were sampled in a vertical transect along the American River watershed at the Sierra Nevada Mountains. The tree cores were then cross-dated and chronologies of total ring width, early wood width, late wood width and late wood density measured by blue intensity methodology were developed. For each sampling site, a high-resolution land surface model was implemented to simulate 6-hour climatological time series of snow and soil moisture that are congruent in time and space for 1912- 2016. These time series were then used to derive independent indices that represent key climatological features that were thought to impact the tree growth. These indices include for example the duration of the dormancy season (winter), the duration of the growth season (spring), the duration of the dry season (summer) and the available seasonal soil moisture at the root zone. A comprehensive analysis of these indices with respect to the tree chronologies revealed that although different sites responded differently to these indices, all the sites were relatively insensitive to the winter temperature. Initial results suggest that warming condition and early spring onset as during the recent (2012-2015) drought increase growth in the high elevation that had a short winter with ample moisture while suppressing growth in lower elevation that experiences long dry summers. It is also interesting to note that the growth at the high elevation sites was found to be associated with the available moisture from the previous year, while in lower elevations growth responded to moisture conditions of the current year.

  19. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  20. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation types. The interaction between these zones is of strong interest to understand the evolution of the landscape and the permafrost distribution. The obtained information is expected to be useful for improving predictions of Arctic ecosystem feedbacks to climate.

Top