Science.gov

Sample records for elevated temperature exposure

  1. Duration of Exposure to Elevated Temperature Affects Competitive Interactions in Juvenile Reef Fishes

    PubMed Central

    Warren, Donald T.; Donelson, Jennifer M.; McCormick, Mark I.; Ferrari, Maud C. O.; Munday, Philip L.

    2016-01-01

    Climate change will affect key ecological processes that structure natural communities, but the outcome of interactions between individuals and species will depend on their thermal plasticity. We tested how short- and long-term exposure to projected future temperatures affects intraspecific and interspecific competitive interactions in two species of coral reef damselfishes. In conspecific contests, juvenile Ambon damselfish, Pomacentrus amboinensis, exhibited no change in aggressive interactions after 4d exposure to higher temperatures. However, after 90d of exposure, fish showed a nonadaptive reduction in aggression at elevated temperatures. Conversely, 4d exposure to higher temperature increased aggression towards conspecifics in the lemon damselfish, Pomacentrus moluccensis. 90d exposure began to reduce this pattern, but overall there was little effect of temperature. Aggression in interspecific contests increased with short-term exposure, but was significantly lower after long-term exposure indicative of acclimation. Our results show how the length of exposure to elevated temperature can affect the outcome of competitive interactions. Furthermore, we illustrate that results from intraspecific contests may not accurately predict interspecific interactions, which will challenge our ability to generalise the effects of warming on competitive interactions. PMID:27736924

  2. Characteristics of ocular temperature elevations after exposure to quasi- and millimeter waves (18-40 GHz)

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi

    2015-04-01

    In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.

  3. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures

    SciTech Connect

    Kong, Daniel L.Y.; Sanjayan, Jay G. Sagoe-Crentsil, Kwesi

    2007-12-15

    This paper presents the results of a study on the effect of elevated temperatures on geopolymers manufactured using metakaolin and fly ash of various mixture proportions. Both types of geopolymers (metakaolin and fly ash) were synthesized with sodium silicate and potassium hydroxide solutions. The strength of the fly ash-based geopolymer increased after exposure to elevated temperatures (800 deg. C). However, the strength of the corresponding metakaolin-based geopolymer decreased after similar exposure. Both types of geopolymers were subjected to thermogravimetric, scanning electron microscopy and mercury intrusion porosimetry tests. The paper concludes that the fly ash-based geopolymers have large numbers of small pores which facilitate the escape of moisture when heated, thus causing minimal damage to the geopolymer matrix. On the other hand, metakaolin geopolymers do not possess such pore distribution structures. The strength increase in fly ash geopolymers is also partly attributed to the sintering reactions of un-reacted fly ash particles.

  4. FDTD computation of temperature elevation in the elderly for far-field RF exposures.

    PubMed

    Nomura, Tomoki; Laakso, Ilkka; Hirata, Akimasa

    2014-03-01

    Core temperature elevation and perspiration in younger and older adults is investigated for plane-wave exposure at whole-body averaged specific absorption rate of 0.4 W kg(-1). Numeric Japanese male model is considered together with a thermoregulatory response formula proposed in the authors' previous study. The frequencies considered were at 65 MHz and 2 GHz where the total power absorption in humans becomes maximal for the allowable power density prescribed in the international guidelines. From the computational results used here, the core temperature elevation in the older adult model was larger than that in the younger one at both frequencies. The reason for this difference is attributable to the difference of sweating, which is originated from the difference in the threshold activating the sweating and the decline in sweating in the legs.

  5. Effects of multigenerational exposure to elevated temperature on reproduction, oxidative stress, and Cu toxicity in Daphnia magna.

    PubMed

    Bae, Eunhye; Samanta, Palas; Yoo, Jisu; Jung, Jinho

    2016-10-01

    This study evaluated the effect of temperature (20 and 25°C) on reproduction, oxidative stress, and copper (Cu) toxicity in Daphnia magna across three generations (F0, F1, and F2). Exposing D. magna to elevated temperature significantly decreased the number of offspring per female per day, the time to first brood, and body length compared to exposure to the optimal temperature (p<0.05). In addition, elevated temperature induced a significantly higher production of reactive oxygen species and lipid peroxidation (p<0.05). These findings suggest that D. magna likely responded to thermal stress by investing more energy into defense mechanisms, rather than growth and reproduction. In addition, oxidative stress at the elevated temperature gradually increased with each generation, possibly owing to the reduced fitness of the offspring. Exposing D. magna to 25°C (EC50=34±3µgL(-1)) substantially increased the median effective concentration of Cu in all generations compared to exposure to 20°C (EC50=25±3µgL(-1)), indicating a decrease in acute toxicity at elevated temperature. However, elevated temperature significantly increased the oxidative stress induced by a sublethal concentration of Cu (10µgL(-1)). The interaction between elevated temperature and Cu exposure appears to be synergistic; however, this needs to be confirmed using multiple generations in a long-term experiment.

  6. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging.

    PubMed

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-04-21

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 degrees C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg(-1), which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 degrees C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 degrees C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 degrees C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  7. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-04-01

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  8. Effects of Long-Term Thermal Exposure on Commercially Pure Titanium Grade 2 Elevated-Temperature Tensile Properties

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2012-01-01

    Elevated-temperature tensile testing of commercially pure titanium (CP Ti) Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K (531 and 711 F) for times up to 5000 h. The tensile testing revealed some statistical differences between the 11 thermal treatments, but most thermal treatments were statistically equivalent. Previous data from room temperature tensile testing was combined with the new data to allow regression and development of mathematical models relating tensile properties to temperature and thermal exposure. The results indicate that thermal exposure temperature has a very small effect, whereas the thermal exposure duration has no statistically significant effects on the tensile properties. These results indicate that CP Ti Grade 2 will be thermally stable and suitable for long-duration space missions.

  9. Acoustic inspection of bond strength of steel-reinforced mortar after exposure to elevated temperatures

    PubMed

    Chiang; Tsai; Kan

    2000-03-01

    In order to evaluate the bond strength between the reinforcement and concrete after fire damage, a combination of acoustic through-transmission and pull-out tests were used. Previous studies have shown a 25% decrease in the ultrasonic pulse velocity at 90% of the maximum load at room temperature. The specimens were kept in the oven at an elevated temperature for 1, 2, or 3 h. They were then removed and cooled to room temperature. Inspection was conducted using a high-power ultrasonic pulse velocity system while a pull-out load was applied. The correlation between preheated temperature, acoustic wave velocity, and the applied load was analyzed. Initial results show that bond strength and pulse velocity decreased substantially as the temperature or the heating time increased.

  10. Fertility of male and female broiler breeders following exposure to elevated ambient temperatures.

    PubMed

    McDaniel, C D; Bramwell, R K; Wilson, J L; Howarth, B

    1995-06-01

    Because elevated ambient temperatures decrease fertility, this study was designed to segregate the male and female contribution to heat stress infertility in broiler breeders. Eighty hens and 16 roosters at 21 wk of age were divided equally among two heat stress (S) and two control (C) temperature chambers. For a 10-wk pretreatment period, all birds were maintained at an ambient temperature of 21.1 C and 40% relative humidity. Following the pretreatment period, birds in the S chambers were acclimated for 1 wk at a constant temperature of 29.4 C after which the temperature in the S chambers was increased to 32.2 C for 8 wk. The temperature in the two C chambers was maintained at 21.1 C. Hens in each chamber were artificially inseminated on a weekly basis with 5 x 10(7) sperm per 50 microL from either C or S males. Egg production, semen volume, spermatocrit, and percentage dead sperm were similar during the acclimation period, even though body temperature was significantly elevated in S birds (41.8 vs 41.3 C). Sperm penetration of the perivitelline layer overlying the germinal disc (GD) was decreased in eggs from hens inseminated with semen from S males compared to eggs from hens inseminated with semen from C males (9.5 vs 23.4 sperm per GD). Following the acclimation period, body temperature remained elevated in the S birds compared to the C birds (42.2 vs 41.3 C). Also, egg production was depressed in the S vs C hens (55.8 vs 82.9%). Semen volume, spermatocrit, and percentage dead sperm were not affected by S treatment. However, when hens were inseminated with semen from S males, sperm penetration of the perivitelline layer overlying the GD and egg fertility were decreased compared to hens inseminated with semen from C males (5.4 vs 14.9 sperm per GD, 45.5 vs 73.8% fertility). In conclusion, the male bird appears to contribute more to heat stress infertility than the female.

  11. Effect of Thermal Exposure on the Tensile Properties of Aluminum Alloys for Elevated Temperature Service

    NASA Technical Reports Server (NTRS)

    Edahl, Robert A., Jr.; Domack, Marcia

    2004-01-01

    Tensile properties were evaluated for four aluminum alloys that are candidates for airframe applications on high speed transport aircraft. These alloys included the Al-Cu-Mg-Ag alloys C415 and C416 and the Al-Cu-Li-Mg-Ag alloys RX818 and ML377. The Al-Cu-Mg alloys CM001, which was used on the Concorde SST, and 1143, which was modified from the alloy used on the TU144 Russian supersonic aircraft, were tested for comparison. The alloys were subjected to thermal exposure at 200 F, 225 F and 275 F for times up to 30,000 hours. Tensile tests were performed on thermally-exposed and as-received material at -65 F, room temperature, 200 F, 225 F and 275 F. All four candidate alloys showed significant tensile property improvements over CM001 and 1143. Room temperature yield strengths of the candidate alloys were at least 20% greater than for CM001 and 1143, for both the as-received and thermally-exposed conditions. The strength levels of alloy RX818 were the highest of all materials investigated, and were 5-10% higher than for ML377, C415 and C416 for the as-received condition and after 5,000 hours thermal exposure. RX818 was removed from this study after 5,000 hours exposure due to poor fracture toughness performance observed in a parallel study. After 30,000 hours exposure at 200 F and 225 F, the alloys C415, C416 and ML377 showed minor decreases in yield strength, tensile strength and elongation when compared to the as-received properties. Reductions in tensile strength from the as-received values were up to 25% for alloys C415, C416 and ML377 after 15,000 hours exposure at 275 F.

  12. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo.

  13. Phlorotannin and antioxidant responses upon short-term exposure to UV radiation and elevated temperature in three south Pacific kelps.

    PubMed

    Cruces, Edgardo; Huovinen, Pirjo; Gómez, Iván

    2012-01-01

    Rapid adjustments of the photosynthetic machinery and efficient antioxidant mechanisms to scavenge harmful ROS are physiologic adaptions exhibited by intertidal seaweeds to persist in temperate regions. This study examines short-term (3 h) responses of three large kelps from the cold-temperate coast of Chile, normally adapted to water temperatures <16°C, but exposed abruptly to simultaneous high temperatures and UV radiation during low tide in summer. The kelps were exposed in the laboratory to three temperatures (10, 20 and 28°C) with and without UV radiation, and photochemical reactions, concentration of phlorotannins and antioxidant activity were examined. The exposure to elevated temperature (slightly exacerbated by the presence of UV radiation) decreased photochemical processes (measured as fluorescence kinetics) in the three studied species and increased lipid peroxidation in two of them. The concentration of total soluble phlorotannins was variable and correlated with the antioxidant activity in the presence of UV radiation. Insoluble phlorotannins did not change during the exposure. In all, the downregulation of the photochemical machinery, which was expressed as dynamic photoinhibition, and the rapid induction of soluble phlorotannins triggered by UV radiation minimized the effects of oxidative stress and maintained the operation of photochemical processes during short-term thermal stress.

  14. Effects of crude oil exposure and elevated temperature on the liver transcriptome of polar cod (Boreogadus saida).

    PubMed

    Andersen, Øivind; Frantzen, Marianne; Rosland, Marte; Timmerhaus, Gerrit; Skugor, Adrijana; Krasnov, Aleksei

    2015-08-01

    Petroleum-related activities in the Arctic have raised concerns about the adverse effects of potential oil spill on the environment and living organisms. Polar cod plays a key role in the Arctic marine ecosystem and is an important species for monitoring oil pollution in this region. We examined potential interactions of oil pollution and global warming by analysing liver transcriptome changes in polar cod exposed to crude oil at elevated temperature. Adult males and females were kept at high (11°C) or normal (4°C) temperature for 5 days before exposure to mechanically dispersed crude oil for 2 days followed by recovery in clean sea water for 11 days at the two temperatures. Genome-wide microarray analysis of liver samples revealed numerous differentially expressed genes induced by uptake of oil as confirmed by increased levels of bile polycyclic aromatic hydrocarbon (PAH) metabolites. The hepatic response included genes playing important roles in xenobiotic detoxification and closely related biochemical processes, but also of importance for protein stress response, cell repair and immunity. Though magnitude of transcriptome responses was similar at both temperatures, the upregulated expression of cyp1a1 and several chaperone genes was much stronger at 11°C. Most gene expression changes returned to basal levels after recovery. The microarray results were validated by qPCR measurement of eleven selected genes representing both known and novel biomarkers to assess exposure to anthropogenic threats on polar cod. Strong upregulation of the gene encoding fibroblast growth factor 7 is proposed to protect the liver of polar fish with aglomerular kidneys from the toxic effect of accumulated biliary compounds. The highly altered liver transcriptome patterns after acute oil exposure and recovery suggests rapid responses in polar cod to oil pollutants and the ability to cope with toxicity in relatively short time.

  15. Effect of long-time, elevated-temperature exposures to vacuum and lithium on the properties of a tantalum alloy, T-111

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Sheffler, K. D.

    1974-01-01

    The effect of long-term, elevated-temperature vacuum and lithium exposures on the mechanical properties of T-111 (Ta-8W-2Hf) is determined. Exposure conditions were for 1000 hours at 980 or 1315 C, 5000 hours at 1315 C, and a duplex temperature exposure of 1000 hours at 980 C plus 4000 hours at 1040 C. The exposures resulted in reduced tensile and creep strengths of the T-111 in the 900 to 1100 C temperature range where a dynamic strain-age-strengthening mechanism is operative in this alloy. This strength reduction was attributed to the depletion of oxygen from solid solution in this alloy.

  16. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz.

    PubMed

    Oizumi, Takuya; Laakso, Ilkka; Hirata, Akimasa; Fujiwara, Osamu; Watanabe, Soichi; Taki, Masao; Kojima, Masami; Sasaki, Hiroshi; Sasaki, Kazuyuki

    2013-07-01

    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye.

  17. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  18. Elevated temperature envelope forming

    NASA Technical Reports Server (NTRS)

    Burg, Bruce M. (Inventor); Gane, David H. (Inventor); Starowski, Robert M. (Inventor)

    1992-01-01

    Elevated temperature envelope forming includes enclosing a part blank and form tool within an envelope sealed against the atmosphere, heat treating the combination while forming pressure holds the envelope and part against the form tool, and allowing part cool down to occur in an inert atmosphere with forming pressure removed. The forming pressure is provided by evacuating the envelope and may be aided by differential force applied between the envelope and the form tool.

  19. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  20. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz.

    PubMed

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-21

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg(-1), the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  1. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-01

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg-1, the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  2. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    A three year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for non-proportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved undertanding were through several critical non-proportional loading experiments. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C.

  3. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  4. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1989-01-01

    Alloy 718 crack growth experiments were conducted to assess the ability of the selected path-independent (P-I) integrals to describe the elevated temperature crack growth behavior. These tests were performed on single edge notch (SEN) specimens under displacement control with multiple extensometers to monitor the specimen and crack mouth opening displacement (CMOD). The displacements in these tests were sufficiently high to induce bulk cyclic inelastic deformation of the specimen. Under these conditions, the linear elastic fracture mechanics (LEFM) parameter K does not correlate the crack growth data. The experimentally measured displacement gradients at the end of specimen gage length were used as the boundary conditions in elastic-plastic finite element method (FEM) analyses. These analyses were performed with a node release approach using CYANIDE, a GEAE FEM code, which included a gap element which is capable of efficiently simulating crack closure. Excellent correlation was obtained between the experimentally measured and predicted variation of stress and CMOD with crack length and the stress-CMOD loops for Alloy 718 tests conducted at 538 C. This confirmed the accuracy of the FEM crack growth simulation approach. The experimentally measured crack growth rate data correlated well the selected P-I integrals. These investigations have produced significant progress in developing P-I integrals as non-linear fracture mechanics parameters. The results suggest that this methodology has the potential of accurately describing elevated temperature crack growth behavior under the combined influence of thermal cycling and bulk elastic-inelastic deformation states.

  5. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1985-01-01

    A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experiments. The direction of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful.

  6. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.

    PubMed

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-21

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings

  7. Ocular temperature elevation induced by threshold in vivo exposure to 1090-nm infrared radiation and associated heat diffusion

    NASA Astrophysics Data System (ADS)

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G.

    2014-10-01

    An in vivo exposure to 197 W/cm2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197 W/cm2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.

  8. Ocular temperature elevation induced by threshold in vivo exposure to 1090-nm infrared radiation and associated heat diffusion.

    PubMed

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G

    2014-01-01

    An in vivo exposure to 197  W/cm 2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197  W/cm 2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.

  9. [Effects of the microwave exposure at elevated ambient temperature on the thermo-compensatory responses of small laboratory animals].

    PubMed

    Kolganova, O I; Zhavoronkov, L P; Matrënina, V L; Posadskaia, V M

    2003-01-01

    Thermogenic effectiveness of electromagnetic irradiation (EMI) of UHF range (7 GHz) in the dependence on intensity (10-50 mW/cm2) and environmental temperature (22 degrees and 30 degrees C) was studied in experiments with mice and rats. Negative influence of high ambient temperature on thermoregulate responses of animals at microwave exposure was showed. It is concluded that this interaction should been taken into account for hygienic standardization of non-ionizing EMI.

  10. Exposure to elevated temperature and Pco(2) reduces respiration rate and energy status in the periwinkle Littorina littorea.

    PubMed

    Melatunan, Sedercor; Calosi, Piero; Rundle, Simon D; Moody, A John; Widdicombe, Stephen

    2011-01-01

    In the future, marine organisms will face the challenge of coping with multiple environmental changes associated with increased levels of atmospheric Pco(2), such as ocean warming and acidification. To predict how organisms may or may not meet these challenges, an in-depth understanding of the physiological and biochemical mechanisms underpinning organismal responses to climate change is needed. Here, we investigate the effects of elevated Pco(2) and temperature on the whole-organism and cellular physiology of the periwinkle Littorina littorea. Metabolic rates (measured as respiration rates), adenylate energy nucleotide concentrations and indexes, and end-product metabolite concentrations were measured. Compared with values for control conditions, snails decreased their respiration rate by 31% in response to elevated Pco(2) and by 15% in response to a combination of increased Pco(2) and temperature. Decreased respiration rates were associated with metabolic reduction and an increase in end-product metabolites in acidified treatments, indicating an increased reliance on anaerobic metabolism. There was also an interactive effect of elevated Pco(2) and temperature on total adenylate nucleotides, which was apparently compensated for by the maintenance of adenylate energy charge via AMP deaminase activity. Our findings suggest that marine intertidal organisms are likely to exhibit complex physiological responses to future environmental drivers, with likely negative effects on growth, population dynamics, and, ultimately, ecosystem processes.

  11. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures

    SciTech Connect

    Jeong, Dae-Ho; Choi, Myung-Je; Goto, Masahiro; Lee, Hong-Chul; Kim, Sangshik

    2014-09-15

    In this study, the fatigue crack propagation behavior of Inconel 718 turbine disc with different service times from 0 to 4229 h was investigated at 738 and 823 K. No notable change in microstructural features, other than the increase in grain size, was observed with increasing service time. With increasing service time from 0 to 4229 h, the fatigue crack propagation rates tended to increase, while the ΔK{sub th} value decreased, in low ΔK regime and lower Paris' regime at both testing temperatures. The fractographic observation using a scanning electron microscope suggested that the elevated temperature fatigue crack propagation mechanism of Inconel 718 changed from crystallographic cleavage mechanism to striation mechanism in the low ΔK regime, depending on the grain size. The fatigue crack propagation mechanism is proposed for the crack propagating through small and large grains in the low ΔK regime, and the fatigue crack propagation behavior of Inconel 718 with different service times at elevated temperatures is discussed. - Highlights: • The specimens were prepared from the Inconel 718 turbine disc used for 0 to 4229 h. • FCP rates were measured at 738 and 823 K. • The ΔK{sub th} values decreased with increasing service time. • The FCP behavior showed a strong correlation with the grain size of used turbine disc.

  12. Toxicity of chromium (VI) to two mussels and an amphipod in water-only exposures with or without a co-stressor of elevated temperature, zinc, or nitrate

    USGS Publications Warehouse

    Wang, Ning; Kunz, James L.; Ivey, Chris D.; Ingersoll, Christopher G.; Barnhart, M. Christopher; Glidewell, Elizabeth A.

    2017-01-01

    The objectives of the present study were to develop methods for propagating western pearlshell (Margaritifera falcata) for laboratory toxicity testing and evaluate acute and chronic toxicity of chromium VI [Cr(VI)] to the pearlshell and a commonly tested mussel (fatmucket, Lampsilis siliquoidea at 20 °C or in association with a co-stressor of elevated temperature (27 °C), zinc (50 µg Zn/L), or nitrate (35 mg NO3/L). A commonly tested invertebrate (amphipod, Hyalella azteca) also was tested in chronic exposures. Newly transformed pearlshell (~1 week old) were successfully cultured and tested in acute 96 h Cr exposures (control survival 100%). However, the grow-out of juveniles in culture for chronic toxicity testing was less successful and chronic 28-day Cr toxicity tests started with 4 month-old pearlshell failed due to low control survival (39–68%). Acute median effect concentration (EC50) for the pearlshell (919 µg Cr/L) and fatmucket (456 µg Cr/L) tested at 20 °C without a co-stressor decreased by a factor of > 2 at elevated temperature but did not decrease at elevated Zn or elevated NO3. Chronic 28-day Cr tests were completed successfully with the fatmucket and amphipod (control survival 83–98%). Chronic maximum acceptable toxicant concentration (MATC) for fatmucket at 20 °C (26 µg Cr/L) decreased by a factor of 2 at elevated temperature or NO3 but did not decrease at elevated Zn. However, chronic MATC for amphipod at 20 °C (13 µg Cr/L) did not decrease at elevated temperature, Zn, or NO3. Acute EC50s for both mussels tested with or without a co-stressor were above the final acute value used to derive United States Environmental Protection Agency acute water quality criterion (WQC) for Cr(VI); however, chronic MATCs for fatmucket at elevated temperature or NO3 and chronic MATCs for the amphipod at 20 °C with or without elevated Zn or NO3 were about equal to the chronic WQC. The results indicate that (1) the elevated temperature

  13. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  14. Embryonic response to long-term exposure of the marine crustacean Nephrops norvegicus to ocean acidification and elevated temperature

    PubMed Central

    Styf, Hannah K; Nilsson Sköld, Helen; Eriksson, Susanne P

    2013-01-01

    Due to anthropogenic CO2 emissions, our oceans have gradually become warmer and more acidic. To better understand the consequences of this, there is a need for long-term (months) and multistressor experiments. Earlier research demonstrates that the effects of global climate change are specific to species and life stages. We exposed berried Norway lobsters (Nephrops norvegicus), during 4 months to the combination of six ecologically relevant temperatures (5–18°C) and reduced pH (by 0.4 units). Embryonic responses were investigated by quantifying proxies for development rate and fitness including: % yolk consumption, mean heart rate, rate of oxygen consumption, and oxidative stress. We found no interactions between temperature and pH, and reduced pH only affected the level of oxidative stress significantly, with a higher level of oxidative stress in the controls. Increased temperature and % yolk consumed had positive effects on all parameters except on oxidative stress, which did not change in response to temperature. There was a difference in development rate between the ranges of 5–10°C (Q10: 5.4) and 10–18°C (Q10: 2.9), implicating a thermal break point at 10°C or below. No thermal limit to a further increased development rate was found. The insensitivity of N. norvegicus embryos to low pH might be explained by adaptation to a pH-reduced external habitat and/or internal hypercapnia during incubation. Our results thus indicate that this species would benefit from global warming and be able to withstand the predicted decrease in ocean pH in the next century during their earliest life stages. However, future studies need to combine low pH and elevated temperature treatments with hypoxia as hypoxic events are frequently and increasingly occurring in the habitat of benthic species. PMID:24455136

  15. Embryonic response to long-term exposure of the marine crustacean Nephrops norvegicus to ocean acidification and elevated temperature.

    PubMed

    Styf, Hannah K; Nilsson Sköld, Helen; Eriksson, Susanne P

    2013-12-01

    Due to anthropogenic CO2 emissions, our oceans have gradually become warmer and more acidic. To better understand the consequences of this, there is a need for long-term (months) and multistressor experiments. Earlier research demonstrates that the effects of global climate change are specific to species and life stages. We exposed berried Norway lobsters (Nephrops norvegicus), during 4 months to the combination of six ecologically relevant temperatures (5-18°C) and reduced pH (by 0.4 units). Embryonic responses were investigated by quantifying proxies for development rate and fitness including: % yolk consumption, mean heart rate, rate of oxygen consumption, and oxidative stress. We found no interactions between temperature and pH, and reduced pH only affected the level of oxidative stress significantly, with a higher level of oxidative stress in the controls. Increased temperature and % yolk consumed had positive effects on all parameters except on oxidative stress, which did not change in response to temperature. There was a difference in development rate between the ranges of 5-10°C (Q 10: 5.4) and 10-18°C (Q 10: 2.9), implicating a thermal break point at 10°C or below. No thermal limit to a further increased development rate was found. The insensitivity of N. norvegicus embryos to low pH might be explained by adaptation to a pH-reduced external habitat and/or internal hypercapnia during incubation. Our results thus indicate that this species would benefit from global warming and be able to withstand the predicted decrease in ocean pH in the next century during their earliest life stages. However, future studies need to combine low pH and elevated temperature treatments with hypoxia as hypoxic events are frequently and increasingly occurring in the habitat of benthic species.

  16. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  17. Elevated temperature crack propagation

    SciTech Connect

    Orange, T.W.

    1994-02-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  18. Elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Brittain, J. O.; Geslin, D.; Lei, J. F.

    1985-01-01

    Materials were evaluated that could be used in manufacturing electrical resistance strain gages for static strain measurements at temperatures at or above 1273 K. Strain gage materials must have a characteristic response to strain, temperature and time that is reproducible or that varies in a predictable manner within specified limits. Several metallic alloys were evaluated, as well as a series of transition metal carbides, nitrides and silicides.

  19. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1985-01-01

    The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data.

  20. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  1. Prenatal exposure to elevated maternal body temperature and risk of epilepsy in childhood: a population-based pregnancy cohort study.

    PubMed

    Sun, Yuelian; Vestergaard, Mogens; Christensen, Jakob; Olsen, Jørn

    2011-01-01

    Elevated maternal body temperature during pregnancy is of clinical concern as side effects have been reported. We estimated the association between maternal fever and sauna bathing during pregnancy and risk of epilepsy in the offspring. We identified 86,810 liveborn singletons from the Danish National Birth Cohort (DNBC) and followed them for up to 9 years of age. Information on fever including number, timing, level, duration, and symptoms of each fever episodes was collected in two computer-assisted telephone interviews around 17 and 32 gestational weeks; information on maternal use of a sauna was collected in the latter interview, and information on epilepsy was obtained from the Danish National Hospital Register. We applied Cox regression models to estimate the incidence rate ratios (IRR) of epilepsy for children exposed to maternal fever and sauna bathing during pregnancy. Maternal sauna bathing during pregnancy was not associated with an increased risk of epilepsy. Maternal fever during pregnancy in general was not associated with an increased risk of epilepsy in the offspring [IRR = 1.01, 95% confidence interval (CI) 0.85, 1.19], and no dose-response pattern was found according to number, level and duration of fever. However we did find an increased risk of epilepsy among children exposed to at least 3 fever episodes (IRR = 1.88, 95% CI 1.19, 2.98), to maternal fever with symptoms in the urinary system (IRR = 4.86, 95% CI 1.56, 15.17), and to one-day maternal fever of 39.0-39.4°C (IRR = 2.79, 95% CI 1.60, 4.84). Our findings do not support a strong association between hyperthermia and epilepsy but the associations between underlying causes of fever, especially prenatal infections, call for more research.

  2. Effect of long-term service exposure at elevated temperature on microstructural changes of 5Cr-0.5Mo steels

    NASA Astrophysics Data System (ADS)

    Das, S.; Joarder, A.

    1997-08-01

    Effects of long-term service exposure at elevated temperature on microstructural changes have been studied for both virgin and service-exposed process heater tube pipes of 5Cr-0.5Mo steels used in oil refineries. Samples selected for this study had experienced a nominal temperature range of 450 °C to 500 °C for about 20 to 25 years. Two different initial virgin microstructures were taken and designated by steel A and steel B. The virgin microstructure of steel A exhibited fine platelets of fibrous or hairlike M2C carbides within the ferrite grains and occasionally irregularly shaped M23C6, both along the grain boundaries and at the grain interiors, and very few spheroidally shaped M3C, either along the grain boundaries or at the grain interiors. The size, shape, position, distribution, and type of carbides in virgin steel A changed significantly due to 220,000 hours of service exposure in the temperature range of 450 °C to 500 °C. Massive M23C6 carbides precipitated along the grain boundaries. In addition, regular geometrically shaped M23C6 carbides, such as hexagonal, square, and triangular type, were observed to form at the grain interiors. The virgin steel B microstructure exhibited predominantly M23C6 carbides, either along the grain boundaries or at the lath boundaries. Occasionally, fine platelets of M2C carbides were also observed within the laths. The position, shape, distribution, and type of carbides did not change significantly due to 172,000 hours of service exposure in the temperature range of 450 °C to 500 °C. The average interparticle spacings of the carbides increased from 0.35 to 1.2 µm due to 172,000 hours of exposure.

  3. Properties of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) Materials after Long-Term Exposure to Elevated Temperatures

    DTIC Science & Technology

    1989-03-01

    4. TITLE (and Subside) 5. TYPE OF REPORT & PERIOD COVERED PROPERTIES OF YTTRIA- TETRAGONAL ZIRCONIA Final Report POLYCRYSTAL (Y- TZP ) MATERIALS AFTER...ABSTRACT Due to an unusual combination of high strength and toughness, tetragonal zirconia polycrystal ( TZP ) materials are candidates for use in...phenomenon’s effect on the properties. Seven commercially available yttria- tetragonal zirconia polycrystal (Y- TZP ) materials were evaluated. Ro 9 E temperature

  4. Elevated-Temperature Tribology of Metallic Materials

    SciTech Connect

    Blau, Peter Julian

    2010-01-01

    The wear of metals and alloys takes place in many forms, and the type of wear that dominates in each instance is influenced by the mechanics of contact, material properties, the interfacial temperature, and the surrounding environment. The control of elevated-temperature friction and wear is important for applications like internal combustion engines, aerospace propulsion systems, and metalworking equipment. The progression of interacting, often synergistic processes produces surface deformation, subsurface damage accumulation, the formation of tribolayers, and the creation of free particles. Reaction products, particularly oxides, play a primary role in debris formation and microstructural evolution. Chemical reactions are known to be influenced by the energetic state of the exposed surfaces, and that surface energy is in turn affected by localized deformation and fracture. At relatively low temperatures, work-hardening can occur beneath tribo-contacts, but exposure to high temperatures can modify the resultant defect density and grain structure to affect the mechanisms of re-oxidation. As research by others has shown, the rate of wear at elevated temperatures can either be enhanced or reduced, depending on contact conditions and nature of oxide layer formation. Furthermore, the thermodynamic driving force for certain chemical reactions is moderated by kinetics and microstructure. The role of deformation, oxidation, and tribo-corrosion in the elevated temperature tribology of metallic alloys will be exemplified by three examples involving sliding wear, single-point abrasion, and repetitive impact plus slip.

  5. Elevated Temperature and Allelopathy Impact Coral Recruitment.

    PubMed

    Ritson-Williams, Raphael; Ross, Cliff; Paul, Valerie J

    2016-01-01

    As climate change continues to alter seawater temperature and chemistry on a global scale, coral reefs show multiple signs of degradation. One natural process that could facilitate the recovery of reef ecosystems is coral recruitment, which can be influenced by the benthic organisms in a local habitat. We experimentally tested both a global stressor (increased seawater temperature) and a local stressor (exposure to microcolin A, a natural product from a common marine benthic cyanobacterium) to determine how these stressors impacted coral larval sublethal stress, survival and settlement. Larvae of Porites astreoides had the same survival and settlement as the controls after exposure to increased temperature alone, but elevated temperature did cause oxidative stress. When exposed to natural concentrations of microcolin A, larval survival and settlement were significantly reduced. When larvae were exposed to these two stressors sequentially there was no interactive effect; but when exposed to both stressors simultaneously, there was a synergistic reduction in larval survival and an increase in oxidative stress more than in either stressor treatment alone. Increased seawater temperatures made larvae more susceptible to a concurrent local stressor disrupting a key process of coral reef recovery and resilience. These results highlight the importance of understanding how interactive stressors of varying spatial scales can impact coral demographics.

  6. Elevated Temperature and Allelopathy Impact Coral Recruitment

    PubMed Central

    Ritson-Williams, Raphael; Ross, Cliff; Paul, Valerie J.

    2016-01-01

    As climate change continues to alter seawater temperature and chemistry on a global scale, coral reefs show multiple signs of degradation. One natural process that could facilitate the recovery of reef ecosystems is coral recruitment, which can be influenced by the benthic organisms in a local habitat. We experimentally tested both a global stressor (increased seawater temperature) and a local stressor (exposure to microcolin A, a natural product from a common marine benthic cyanobacterium) to determine how these stressors impacted coral larval sublethal stress, survival and settlement. Larvae of Porites astreoides had the same survival and settlement as the controls after exposure to increased temperature alone, but elevated temperature did cause oxidative stress. When exposed to natural concentrations of microcolin A, larval survival and settlement were significantly reduced. When larvae were exposed to these two stressors sequentially there was no interactive effect; but when exposed to both stressors simultaneously, there was a synergistic reduction in larval survival and an increase in oxidative stress more than in either stressor treatment alone. Increased seawater temperatures made larvae more susceptible to a concurrent local stressor disrupting a key process of coral reef recovery and resilience. These results highlight the importance of understanding how interactive stressors of varying spatial scales can impact coral demographics. PMID:27926916

  7. SEASONAL PATTERNS OF PHOTOSYNTHESIS IN DOUGLAS FIR SEEDLINGS DURING THE THIRD AND FOURTH YEAR OF EXPOSURE TO ELEVATED CO2 AND TEMPERATURE

    EPA Science Inventory

    We examined the interactive effects of elevated atmospheric CO2 and temperature on seasonal patterns of photosynthesis in Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers controlled to track either ambient (~400 ppm) CO2 or am...

  8. STOMATAL RESPONSES OF DOUGLAS-FIR SEEDLINGS TO ELEVATED CARBON DIOXIDE AND TEMPERATURE DURING THE THIRD AND FOURTH YEARS OF EXPOSURE

    EPA Science Inventory

    Two major components of climate change, increasing atmospheric [CO2] and increasing temperature, may substantially alter the effects of water availability to plants through effects on the rate of water loss from leaves. We examined the interactive effects of elevated [CO2] and t...

  9. The Mechanisms of Elevated Temperature Property Losses in High Performance Structural Epoxy Resin Matrix Materials after Exposures to High Humidity Environments

    DTIC Science & Technology

    1977-03-01

    tensile measurements, infrared spectroscopy , heat distortion tests, bomb creep tests, scanning electron microscopy, polarized-light photomlcroscopy, and... bsorption rate and raised the absorption level to values higher than equilibrium values for humidity only conditions. It was subsequently found that... Spectroscopy to detent any evidence of chemnical changes occurring 1<, 2 7 AFML-TR-76-153 during stress-temperature-humidity exposures. This

  10. HCF + LCF Interactions at Elevated Temperature

    DTIC Science & Technology

    2005-03-02

    4V alloy is a material typically selected for the construction of the front, low- temperature , stages of aero-engines because this alloy shows high ...contribution of HCF cycles to combined HCF+LCF FCG rates is reduced at elevated temperature especially at high stress ratios. f) An increase in temperature ...433. [2] Arakere NK, Goswami T, Krohn J and Ramachandran N. “ High temperature fatigue crack growth behaviour” of Ti-6Al-4V. High Temperature

  11. An elevated temperature titration calorimeter

    SciTech Connect

    Smith, J.R.; Zanonato, P.L.; Choppin, G.R. . Dept. of Chemistry)

    1991-06-01

    A variable-temperature (313 K to 353 K) titration calorimeter of high sensitivity has been constructed. The purpose of the calorimeter is to study temperature effects on the enthalpies of complex formation and of other reactions of metal cations such as hydrolysis and precipitation. Operation of the calorimetric system, including that final calculation of the heat released during titration, is automatic via computer control. Calibration tests of the calorimeter using 2-amino-2-hydroxymethyl-1,3-propanediol gave -(46.0 {plus minus} 0.3) kJ mol{sup {minus}1} and -(46.2 {plus minus} 0.2) kJ mol{sup {minus}1} for the enthalpy of protonation, at 318 K and at 343 K, respectively. For titrations of 2-bis(2-hydroxyethyl) amino-2-hydroxymethyl-1,3-propanediol, enthalpy of protonation values of -(28.4 {plus minus} 0.3) kJ mol{sup {minus}1} and -(29.3 {plus minus} 0.2) kJ mol{sup {minus}1} were obtained at 318 K and at 343 K, respectively. 6 refs., 3 figs., 2 tabs.

  12. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2

    PubMed Central

    Benner, Ina; Diner, Rachel E.; Lefebvre, Stephane C.; Li, Dian; Komada, Tomoko; Carpenter, Edward J.; Stillman, Jonathon H.

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming. PMID:23980248

  13. Tolerance of LSS Plant Component to Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, S. A.; Tikhomirov, A. A.

    2002-06-01

    Stability of LSS based on biological regeneration of water, air and food subject to damaging factors is largely dependent on the behavior of the photosynthesizing component represented, mainly, by higher plants. The purpose of this study is to evaluate the tolerance of uneven-aged wheat and radish cenoses to temperature effects different in time and value. Estimation of thermal tolerance of plants demonstrated that exposure for 20 h to the temperature increasing to 45°C brought about irreversible damage both in photosynthetic processes (up to 80% of initial value) and the processes of growth and development. Kinetics of visible photosynthesis during exposure to elevated temperatures can be used to evaluate critical exposure time within the range of which the damage of metabolic processes is reversible. With varying light intensity and air temperature it is possible to find a time period admissible for the plants to stay under adverse conditions without considerable damage of metabolic processes.

  14. Gas Generation Testing of Neptunium Oxide at Elevated Temperature

    SciTech Connect

    Duffey, JM

    2004-01-30

    Elevated temperature gas generation tests have been conducted using neptunium dioxide produced on a laboratory scale using the HB-Line Phase II flowsheet. These tests were performed to determine what effect elevated temperatures would have on the neptunium dioxide in comparison to neptunium dioxide tested at ambient temperature. The headspace gas compositions following storage at elevated temperatures associated with normal conditions of transport (NCT) have been measured. These test results show an increase in hydrogen generation rate at elevated temperature and significant removal of oxygen from the headspace gas. The elevated temperature gas generation tests described in this report involved heating small test vessels containing neptunium dioxide and measuring the headspace gas pressure and composition at the end of the test period. Four samples were used in these tests to evaluate the impact of process variables on the gas generation rate. Two samples were calcined to 600 degrees Celsius and two were calcined to 650 degrees Celsius. Each test vessel contained approximately 9.5 g of neptunium dioxide. Following exposure to 75 per cent relative humidity (RH) for five days, these samples were loaded in air and then heated to between 105 and 115 degrees Celsius for about one month. At the conclusion of the test period, the headspace gas of each container was analyzed using a micro-gas chromatograph installed in the glovebox where the experiments were conducted. The pressure, volume, and composition data for the headspace gas samples were used to calculate average H2 generation rates.

  15. Methods for structural design at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.

    1973-01-01

    A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.

  16. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  17. Elevated temperature static and fatigue testing techniques

    NASA Astrophysics Data System (ADS)

    Harmon, D. M.; Coffey, F. J.; Antolovich, S. D.; Brown, R. C.

    Aircraft of the future, such as an aerospace vehicle or an advanced fighter, will have expanded operating envelopes and therefore, will be subject to extreme environmental conditions. They will experience high temperatures combined with high external loads. Due to the complexity of full scale testing with combined thermal and mechanical loads, subcomponent and coupon testing play an extremely important role in the verification of structural integrity. This paper describes testing facilities designed for elevated temperature testing of coupon specimens. These facilities are capable of simultaneously applying spectrum loads and a detailed thermal profile. A method is also outlined for developing realistic thermal and mechanical load profiles for advanced aircraft.

  18. Elevated temperature forming method and preheater apparatus

    DOEpatents

    Krajewski, Paul E; Hammar, Richard Harry; Singh, Jugraj; Cedar, Dennis; Friedman, Peter A; Luo, Yingbing

    2013-06-11

    An elevated temperature forming system in which a sheet metal workpiece is provided in a first stage position of a multi-stage pre-heater, is heated to a first stage temperature lower than a desired pre-heat temperature, is moved to a final stage position where it is heated to a desired final stage temperature, is transferred to a forming press, and is formed by the forming press. The preheater includes upper and lower platens that transfer heat into workpieces disposed between the platens. A shim spaces the upper platen from the lower platen by a distance greater than a thickness of the workpieces to be heated by the platens and less than a distance at which the upper platen would require an undesirably high input of energy to effectively heat the workpiece without being pressed into contact with the workpiece.

  19. Effects of long-time elevated temperature exposures on hot-isostatically-pressed power-metallurgy Udimet 700 alloys with reduced cobalt contents

    NASA Technical Reports Server (NTRS)

    Hart, F. H.

    1984-01-01

    Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.

  20. Properties of yttria-tetragonal zirconia polycrystal (Y-TZP) materials after long-term exposure to elevated temperatures. Final report

    SciTech Connect

    Swab, J.J.

    1989-03-01

    Seven commercially available yttria-tetragonal zirconia polycrystal (Y-TZP) materials were evaluated. Room temperature properties were measured before and after heat treatments at 1000C. Microstructure and phase stability were also examined. In all but one case, the Y-TZPs showed very little change in room temperature properties after long times at this temperature. Results show that pressure-assisted processing greatly improves the strength by reducing porosity and keeping the grain size extremely fine, but this reduces the toughness because finer grains are more difficult to transform. In addition, a small amount of cubic zirconia appears to enhance the toughness of fine-grained Y-TZP while maintaining good strength. During processing, a small amount of cubic zirconia is formed and allowed to grow. This creates regions poor in yttria which can transform spontaneously in the presence of a crack-tip stress field.

  1. Crushed salt reconsolidation at elevated temperatures.

    SciTech Connect

    Holcomb, David Joseph; Clayton, Daniel James; Lee, Moo Yul; Bronowski, David R.

    2010-06-01

    There is a long history of testing crushed salt as backfill for the Waste Isolation Pilot Plant program, but testing was typically done at 100 C or less. Future applications may involve backfilling crushed salt around heat-generating waste packages, where near-field temperatures could reach 250 C or hotter. A series of experiments were conducted to investigate the effects of hydrostatic stress on run-of-mine salt at temperatures up to 250 C and pressures to 20 MPa. The results of these tests were compared with analogous modeling results. By comparing the modeling results at elevated temperatures to the experimental results, the adequacy of the current crushed salt reconsolidation model was evaluated. The model and experimental results both show an increase in the reconsolidation rate with temperature. The current crushed salt model predicts the experimental results well at a temperature of 100 C and matches the overall trends, but over-predicts the temperature dependence of the reconsolidation. Further development of the deformation mechanism activation energies would lead to a better prediction of the temperature dependence by the crushed salt reconsolidation model.

  2. Gas-Alloy Interactions at Elevated Temperatures

    SciTech Connect

    Arroyave, Raymundo; Gao, Michael

    2012-11-07

    The understanding of the stability of metals and alloys against oxidation and other detrimental reactions, to the catalysis of important chemical reactions and the minimization of defects associated with processing and synthesis have one thing in common: At the most fundamental level, all these scientific/engineering problems involve interactions between metals and alloys (in the solid or liquid state) and gaseous atmospheres at elevated temperatures. In this special issue, we have collected a series of articles that illustrate the application of different theoretical, computational, and experimental techniques to investigate gas-alloy interactions.

  3. Proteome analysis of heat shock protein expression in Pseudomonas alcaligenes NCIMB 9867 in response to gentisate exposure and elevated growth temperature.

    PubMed

    Zhao, Bing; Yeo, Chew Chieng; Tan, Chew Ling; Poh, Chit Laa

    2007-06-15

    Pseudomonas alcaligenes NCIMB 9867 (strain P25X) degrades xylenols and cresols via the gentisate pathway. P25X expresses two isofunctional gentisate 1,2-dioxygenases (GDO I and GDO II). The expression of both GDOs was not detected when P25X cells were grown at 42 degrees C, even in the presence of gentisate. A total of 19 heat shock proteins (Hsps) belonging to the Hsp100, Hsp90, Hsp70, Hsp60, Hsp45, and small heat shock protein (sHsp) families were identified among the protein spots that were either newly detected or were expressed at levels of at least twofold higher when P25X cells were cultured at 32 or 42 degrees C in the presence and absence of gentisate. Among these, 16 Hsps were commonly expressed at 42 degrees C. Two additional Hsps (H5 and H13) from the Hsp90 and Hsp60 families, respectively, were expressed only when P25X cells were grown at 42 degrees C and in the presence of gentisate. A protein of the sHsp (H16) family was expressed only in the presence of gentisate at 32 degrees C but not at 42 degrees C. The GroEL chaperonins of the Hsp60 family comprised the largest group of Hsps identified and exhibited high level of expression at 42 degrees C following gentisate exposure.

  4. Reducing temperature elevation of robotic bone drilling.

    PubMed

    Feldmann, Arne; Wandel, Jasmin; Zysset, Philippe

    2016-12-01

    This research work aims at reducing temperature elevation of bone drilling. An extensive experimental study was conducted which focused on the investigation of three main measures to reduce the temperature elevation as used in industry: irrigation, interval drilling and drill bit designs. Different external irrigation rates (0 ml/min, 15 ml/min, 30 ml/min), continuously drilled interval lengths (2 mm, 1 mm, 0.5 mm) as well as two drill bit designs were tested. A custom single flute drill bit was designed with a higher rake angle and smaller chisel edge to generate less heat compared to a standard surgical drill bit. A new experimental setup was developed to measure drilling forces and torques as well as the 2D temperature field at any depth using a high resolution thermal camera. The results show that external irrigation is a main factor to reduce temperature elevation due not primarily to its effect on cooling but rather due to the prevention of drill bit clogging. During drilling, the build up of bone material in the drill bit flutes result in excessive temperatures due to an increase in thrust forces and torques. Drilling in intervals allows the removal of bone chips and cleaning of flutes when the drill bit is extracted as well as cooling of the bone in-between intervals which limits the accumulation of heat. However, reducing the length of the drilled interval was found only to be beneficial for temperature reduction using the newly designed drill bit due to the improved cutting geometry. To evaluate possible tissue damage caused by the generated heat increase, cumulative equivalent minutes (CEM43) were calculated and it was found that the combination of small interval length (0.5 mm), high irrigation rate (30 ml/min) and the newly designed drill bit was the only parameter combination which allowed drilling below the time-thermal threshold for tissue damage. In conclusion, an optimized drilling method has been found which might also enable drilling in more

  5. Molten Composition B Viscosity at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zerkle, David K.; Núñez, Marcel P.; Zucker, Jonathan M.

    2016-10-01

    A shear-thinning viscosity model is developed for molten Composition B at elevated temperature from analysis of falling ball viscometer data. Results are reported with the system held at 85, 110, and 135°C. Balls of densities of 2.7, 8.0, and 15.6 g/cm3 are dropped to generate a range of strain rates in the material. Analysis of video recordings gives the speed at which the balls fall. Computer simulation of the viscometer is used to determine parameters for a non-Newtonian model calibrated to measured speeds. For the first time, viscosity is shown to be a function of temperature and strain rate-dependent maximum RDX (cyclotrimethylenetrinitramine) particle volume fraction.

  6. Elevated temperature fatigue testing of metals

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.

    1981-01-01

    The major technology areas needed to perform a life prediction of an aircraft turbine engine hot section component are discussed and the steps required for life prediction are outlined. These include the determination of the operating environment, the calculation of the thermal and mechanical loading of the component, the cyclic stress-strain and creep behavior of the material required for structural analysis, and the structural analysis to determine the local stress-strain-temperature-time response of the material at the critical location in the components. From a knowledge of the fatigue, creep, and failure resistance of the material, a prediction of the life of the component is made. Material characterization and evaluation conducted for the purpose of calculating fatigue crack initiation lives of components operating at elevated temperatures are emphasized.

  7. Strengths of serpentinite gouges at elevated temperatures

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Ma, S.; Summers, R.; Byerlee, J.D.

    1997-01-01

    Serpentinite has been proposed as a cause of both low strength and aseismic creep of fault zones. To test these hypotheses, we have measured the strength of chrysotile-, lizardite-, and antigorite-rich serpentinite gouges under hydrothermal conditions, with emphasis on chrysotile, which has thus far received little attention. At 25??C, the coefficient of friction, ??, of chrysotile gouge is roughly 0.2, whereas the lizardite- and antigorite-rich gouges are at least twice as strong. The very low room temperature strength of chrysotile is a consequence of its unusually high adsorbed water content. When the adsorbed water is removed, chrysotile is as strong as pure antigorite gouge at room temperature. Heating to ???200??C causes the frictional strengths of all three gouges to increase. Limited data suggest that different polytypes of a given serpentine mineral have similar strengths; thus deformation-induced changes in polytype should not affect fault strength. At 25??C, the chrysotile gouge has a transition from velocity strengthening at low velocities to velocity weakening at high velocities, consistent with previous studies. At temperatures up to ???200??C, however, chrysotile strength is essentially independent of velocity at low velocities. Overall, chrysotile has a restricted range of velocity-strengthening behavior that migrates to higher velocities with increasing temperature. Less information on velocity dependence is available for the lizardite and antigorite gouges, but their behavior is consistent with that outlined for chrysotile. The marked changes in velocity dependence and strength of chrysotile with heating underscore the hazards of using room temperature data to predict fault behavior at depth. The velocity behavior at elevated temperatures does not rule out serpentinite as a cause of aseismic slip, but in the presence of a hydrostatic fluid pressure gradient, all varieties of serpentine are too strong to explain the apparent weakness of faults such

  8. 49 CFR 172.325 - Elevated temperature materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be...

  9. 49 CFR 172.325 - Elevated temperature materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be...

  10. 49 CFR 172.325 - Elevated temperature materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be...

  11. 49 CFR 172.325 - Elevated temperature materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be...

  12. 49 CFR 172.325 - Elevated temperature materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be...

  13. Effect of outdoor exposure at ambient and elevated temperatures on fatigue life of Ti-6Al-4V titanium alloy sheet in the annealed and the solution treated and aged condition

    NASA Technical Reports Server (NTRS)

    Phillips, E. P.

    1974-01-01

    Specimens of Ti-6Al-4V titanium alloy sheet in the annealed and the solution-treated and aged heat-treatment condition were exposed outdoors at ambient and 560 K (550 F) temperatures to determine the effect of outdoor exposure on fatigue life. Effects of exposure were determined by comparing fatigue lives of exposed specimens to those of unexpected specimens. Two procedures for fatigue testing the exposed specimens were evaluated: (1) fatigue tests conducted outdoors by applying 1200 load cycles per week until failure occurred and (2) conventional fatigue tests (continuous cycling until failure occurred) conducted indoors after outdoor exposure under static load. The exposure period ranged from 9 to 28 months for the outdoor fatigue-test group and was 24 months for the static-load group. All fatigue tests were constant-amplitude bending of specimens containing a drilled hole (stress concentration factor of 1.6). The results of the tests indicate that the fatigue lives of solution-treated and aged specimens were significantly reduced by the outdoor exposure at 560 K but not by the exposure at ambient temperature. Fatigue lives of the annealed specimens were essentially unaffected by the outdoor exposure at either temperature. The two test procedures - outdoor fatigue test and indoor fatigue test after outdoor exposure - led to the same conclusions about exposure effects.

  14. MONOTERPENE LEVELS IN NEEDLES OF DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE

    EPA Science Inventory

    Levels of monoterpenes in current year needles of douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were measured at the conclusion of four years of exposure to ambient or elevated CO2 (+ 179 mmol.mol-1), and ambient or elevated temperature (+ 3.5 C). Eleven monoterpen...

  15. Tobacco exposure, weight status, and elevated blood pressure in adolescents.

    PubMed

    Huntington-Moskos, Luz; Turner-Henson, Anne; Rice, Marti

    2014-08-01

    The pathogenesis of hypertension begins in youth. An estimated 4% of US adolescents have diagnosed hypertension and 17% have elevated blood pressures, predisposing them to hypertension and cardiovascular disease (CVD) later in life. There is limited research on the clustering of CVD risk factors such as tobacco exposure and weight status that may be associated with high blood pressure in adolescents. The aim of this exploratory study was to determine the relationships between total smoke exposure (TSE; cigarette smoking and secondhand smoke), waist circumference, and blood pressure in a sample of rural adolescents, ages 15-18. A convenience sample of 148 adolescents ages 15-18 was recruited from two rural high schools (88 female and 60 male, all Caucasian). Adolescents were assessed for tobacco exposure (self-report, salivary cotinine), weight status (body mass index, waist circumference), and blood pressure. Self-report measures of tobacco exposure included the Uptake Continuum and Peer and Family Smoking measure. Age, gender, waist circumference and salivary cotinine contributed to 35% of the variance in systolic blood pressure and 18% in diastolic blood pressure. One-fourth (25%) of adolescent males and 11% of adolescent females had elevated systolic blood pressures. Approximately one-fifth of the sample (22%) had elevated salivary cotinine levels indicative of tobacco use and secondhand smoke exposure. TSE and waist circumference were predictors of elevated blood pressure in adolescents. Public health measures need to address clusters of risk factors including blood pressure, tobacco exposure, and weight status among adolescents in order to reduce CVD.

  16. Temperature elevation of biological tissue model exposed by focused ultrasound with acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Kudo, Nobuki; Akiyama, Iwaki

    2012-09-01

    Focused ultrasound with acoustic radiation force (ARF) is beginning to be used for imaging and measuring tissue elasticity. On the other hand, it was suggested that the temperature elevation near bone at focus may be significant within the limits of acoustic output regulation in diagnostic ultrasound devices (Herman; 2002). In this study, with the aim of obtaining the relationships between temperature elevations and parameters of ultrasound exposure with ARF, temperature elevations in two kinds of tissue models with or without bone were numerically evaluated. The results showed that the temperature elevation at focus on the surface of bone may exceed an allowable temperature elevation which WFUMB guideline recommends, even though the acoustic intensity is within the limits of acoustic output regulation in diagnostic ultrasound devices.

  17. Integrated research in constitutive modelling at elevated temperatures, part 1

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.; Allen, D. H.

    1986-01-01

    Topics covered include: numerical integration techniques; thermodynamics and internal state variables; experimental lab development; comparison of models at room temperature; comparison of models at elevated temperature; and integrated software development.

  18. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    PubMed

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L(-1)) or elevated (800 μmol mol(-1)) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature

  19. Fatigue of niobium at elevated temperatures

    SciTech Connect

    Stoloff, N.S.; Xiao, P.; Choudhury, R.

    1983-06-01

    High cycle and low cycle fatigue behavior of unalloyed niobium has been studied between room temperature and 800/sup 0/C. High cycle lives decrease monotonically in vacuum with temperature to 800/sup 0/C. However, low cycle fatigue lives in argon increase with temperature between 450 and 650/sup 0/C. Frequency effects on LCF are shown to be small in this range. Hold times imposed at peak loads also increases fatigue lives as well as the number of cycles to crack initiation in this temperature range. Fractographic examination revealed a transition from striated to dimpled fracture surfaces with increasing temperature for HCF specimens. LCF specimens, on the other hand, display large striations at 450 and 550 and extensive slip at 650/sup 0/C. Impurities in argon used for LCF tests appear to be responsible for extensive surface cracking. The results are compared to those in the literature for other bcc refractory metals and alloys. 18 figures.

  20. Growth rate of Enterobacteriaceae at elevated temperatures: limitation by methionine.

    PubMed

    Ron, E Z

    1975-10-01

    The effect of elevated temperatures on growth rate was studied in five strains of Enterobacteriaceae. In all the strains tested a shift to the elevated temperature resulted in an immediate decrease in growth rate which was due to limitation in the availability of endogenous methionine. The first biosynthetic enzyme of the methionine pathway-homoserine transsuccinylase-was studied in extracts of Aerobacter aerogenes, Salmonella typhimurium, and Escherichia coli and was shown to be temperature sensitive in all of them.

  1. Aluminum nanocomposites for elevated temperature applications

    NASA Astrophysics Data System (ADS)

    Borgonovo, C.; Apelian, D.; Makhlouf, M. M.

    2011-02-01

    Aluminum casting alloys conventionally used in the automotive and aerospace industries (i.e., Al-Zn-Mg, and Al-Cu-Mg systems) are able to achieve excellent tensile strength at room temperature. At high temperatures, such alloys lose dimensional stability and their mechanical properties rapidly degrade. Aluminum-based nanocomposites show the potential for enhanced performance at high temperatures. The manufacturing process, however, is difficult; a viable and effective method for large-scale applications has not been developed. In the current study, an innovative and cost-effective approach has been adopted to manufacture Al/AlN composites. A nitrogen-bearing gas is injected into the melt and AlN particles synthesize in-situ via chemical reaction. In a preliminary stage, a model able to predict the amount of reinforcement formed has been developed. AlN dispersoids have been succesfully synthesized in the matrix and the model has been experimentally validated.

  2. Rhenium/Oxygen Interactions at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Myers, Dwight; Zhu, Dong-Ming; Humphrey, Donald

    2000-01-01

    The oxidation of pure rhenium is examined from 600-1400 C in oxygen/argon mixtures. Linear weight loss kinetics are observed. Gas pressures, flow rates, and temperatures are methodically varied to determine the rate controlling steps. The reaction at 600 and 800 C appears to be controlled by a chemical reaction step at the surface; whereas the higher temperature reactions appear to be controlled by gas phase diffusion of oxygen to the rhenium surface. Attack of the rhenium appears to be along grain boundaries and crystallographic planes.

  3. Response of sugarcane to carbon dioxide enrichment and elevated temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four sugarcane cultivars (CP72-2086, CP73-1547, CP88-1508, and CP80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air, respectively. Each TGG maintained temperatures in four zones at Base temperature wit...

  4. Elevated-Temperature "Ultra" Fast Fracture Strength of Advanced Ceramics: An Approach to Elevated-Temperature "Inert" Strength

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    1999-01-01

    The determination of "ultra" fast fracture strengths of five silicon nitride ceramics at elevated temperatures has been made by using constant stress-rate ("dynamic fatigue") testing with a series of "ultra" fast test rates. The test material included four monolithic and one SiC whisker-reinforced composite silicon nitrides. Of the five test materials, four silicon nitrides exhibited the elevated -temperature strengths that approaches their respective room-temperature strengths at an "ultra" fast test rate of 3.3 x 10(exp 4) MPa/s. This implies that slow cracks growth responsible for elevated-temperature failure can be eliminated or minimized by using the "ultra" fast test rate. These ongoing experimental results have shed light on laying a theoretical and practical foundation on the concept and definition of elevated-temperature "inert" strength behavior of advanced ceramics.

  5. Determination of Plate Compressive Strengths at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Roberts, William M

    1950-01-01

    The results of local-instability tests of h-section plate assemblies and compressive stress-strain tests of extruded 75s-t6 aluminum alloy, obtained to determine flat-plate compressive strength under stabilized elevated temperature conditions, are given for temperatures up to 600 degrees F. The results show that methods available for calculating the critical compressive stress at room temperature can also be used at elevated temperatures if the applicable compressive stress-strain curve for the material is given.

  6. Plastic Responses to Elevated Temperature in Low and High Elevation Populations of Three Grassland Species

    PubMed Central

    Frei, Esther R.; Ghazoul, Jaboury; Pluess, Andrea R.

    2014-01-01

    Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate. PMID:24901500

  7. Elevated blood lead levels from exposure via a radiator workshop.

    PubMed

    Treble, R G; Thompson, T S; Morton, D N

    1998-04-01

    Elevated lead levels were discovered in blood samples collected from family members where both the father and the mother worked in a radiator repair workshop. The father and mother were found to have blood lead levels of 2.0 and 0.5 mumol/L (41.7 and 10.4 micrograms/dL), respectively. The father's blood lead level was just below the Canadian occupational health and safety intervention level (2.5 mumol/L or 52.1 micrograms/dL). The two children had blood lead levels of 1.0 and 0.8 mumol/L (20.8 and 16.7 micrograms/dL), both of which are in excess of the recommended guideline for intervention in the case of children (0.5 mumol/L or 10.4 micrograms/dL). The exposure of the two children was possibly due to a combination of pathways including exposure at the workshop itself during visits and also the transportation of lead-containing dust to the home environment.

  8. Investigation of the formability of aluminium alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Budai, D.; Kovács, P. Z.; Lukács, Zs

    2016-11-01

    Aluminium alloys are more and more widely applied in car body manufacturing. Increasing the formability of aluminium alloys are one of the most relevant tasks in todays’ research topics. In this paper, the focus will be on the investigation of the formability of aluminium alloys concerning those material grades that are more widely applied in the automotive industry including the 5xxx and 6xxx aluminium alloy series. Recently, besides the cold forming of aluminium sheets the forming of aluminium alloys at elevated temperatures became a hot research topic, too. In our experimental investigations, we mostly examined the EN AW 5754 and EN AW 6082 aluminium alloys at elevated temperatures. We analysed the effect of various material and process parameters (e.g. temperature, sheet thickness) on the formability of aluminium alloys with particular emphasis on the Forming Limit Diagrams at elevated temperatures in order to find the optimum forming conditions for these alloys.

  9. Performance of MOV Stem Lubricants at Elevated Temperatures

    SciTech Connect

    DeWall, Kevin George; Nitzel, Michael Everett; Watkins, John Clifford

    2001-07-01

    This paper documents the results of recent tests sponsored by the U. S. Nuclear Regulatory Commission (NRC) and performed by the Idaho National Engineering and Environmental Laboratory (INEEL). These tests address the effectiveness of the lubricant used on the threaded portion of the valve stem, where the stem nut turns on the stem. Recent testing indicates that an elevated temperature environment can lead to significant increases in the friction coefficient at the stem/stem-nut interface. Most valve actuator qualification tests are performed at room temperature. Similarly, in-service tests are run at ambient plant temperatures, usually 70 to 100°F. Since design conditions can lead to valve operating temperatures in the 200 to 300°F range, it is important to know whether a temperature-induced increase in friction at the stem/stem-nut interface will prevent the required operation of critical valves. Lubricant aging is another phenomenon that might have deleterious effects on the thrust output of a valve actuator. Laboratory experience and field experience both indicate that after long periods in elevated temperature environments, the lubricants may lose their lubrication qualities. The scope of the current test program includes testing of five different lubricants on four different valve stems. Pending completion of the testing, results of the tests conducted using two of the four stems are discussed. The test series included collection of baseline data at room temperature, single step temperature tests where the temperature of the test setup was elevated directly to 250°F, and step testing where the temperature was elevated in steps to 130, 190, and 250°F, then returned to 70°F. All greases tested showed evidence of physical change after elevated temperature tests. Except for one particular lubricant, all of the greases tested showed increased coefficients of friction at elevated temperatures. Numerous other preliminary conclusions are presented

  10. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers.

  11. Effects of nuclear radiation and elevated temperature storage on electroexplosive devices

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.

    1976-01-01

    Aerospace type electroexplosive devices (EEDs) were subjected to nuclear radiation. Components and chemicals used in the EEDs were also included. The kind of radiation and total dosage administered were those which may be experienced in a space flight of 10 years duration, based on information available at this time. After irradiation, the items were stored in elevated constant-temperature ovens to accelerate early effects of the exposure to radiation. Periodically, samples were withdrawn for visual observation and testing. Significant changes occurred which were attributed to elevated-temperature storage and not radiation.

  12. Mechanical properties of polyimide coated optical fibers at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Dyer, Robert S.; Lago, Ralph J.; Stolov, Andrei A.; Li, Jie

    2016-03-01

    High temperature mechanical strength and reliability of optical fibers have become important subjects as optical fibers are increasingly used for harsher environments. Theories and models of fiber mechanical properties established for traditional telecommunications applications may need to be validated for applications at elevated temperatures. In this paper, we describe the test setup for high temperature tensile strength of fiber and report initial results of dynamic tensile strength of polyimide coated optical fiber at 300 and 350ºC for different heating time intervals. The results are compared with room temperature strength data, data available in the literature, and our earlier work on thermogravimetric analysis (TGA) weight loss of the polyimide coating and the observations on surface morphology at elevated temperatures. Interesting observations are discussed and possible explanations are proposed.

  13. Buckling tests of aluminium columns at elevated temperatures

    SciTech Connect

    Langhelle, N.K.; Amdahl, J.; Eberg, E.; Lundberg, S.

    1996-12-31

    Accidental fires are events with severe catastrophe potential for all offshore structures, and in particular for aluminium structures. Due to aluminium`s rapid strength degradation at elevated temperatures, this is particular true for aluminium structures. Accurate prediction of fire resistance is therefore essential. Experimental tests are needed to evaluate current design rules and state-of-the-art material models for aluminium under elevated temperatures. An experimental investigation was undertaken in order to study the behavior of AA 6082 alloy aluminium columns at elevated temperatures. Some of the tests were carried out at constant load with increasing temperature. Other tests experienced constant temperature and increasing load. Buckling tests at ambient temperature were also conducted. Particular emphasis was put on high temperature creep effects. The purpose of the tests was to provide data for verification of the material model implemented in the computer program USFOS, for analysis of progressive collapse analyses of space frame structures. The performance of the tempers T4 and T6 as well as columns with transversal welds are compared internally as well as to column buckling curves given in current design codes.

  14. Dynamic Fracture Initiation Toughness of a Gamma (Met-PX) Titanium Aluminide at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan

    2009-06-01

    Recently, a new generation of titanium aluminide alloy named Gamma-Met PX (GKSS, Geesthacht, Germany) has been developed with better rolling and postrolling characteristics. Previous work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasistatic and high-strain-rate uniaxial compressive loading. However, its high-strain-rate tensile ductility at room and elevated temperatures is limited to ~1 pct. In the present article, the results of a study investigating the effects of the loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. A modified split Hopkinson pressure bar (MSHPB) was used along with high-speed photography, to determine the dynamic fracture initiation toughness. Three-point-bend fracture tests were conducted at impact speeds in the range 1 to 3.6 m/s and at test temperatures up to 1200 °C. Furthermore, the effect of long-time high-temperature air exposure on the fracture toughness was investigated. The results show that the dynamic fracture initiation toughness decreases at test temperatures beyond 600 °C. Moreover, the dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  15. Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures.

    PubMed

    Mayfield, Anderson B; Wang, Yu-Bin; Chen, Chii-Shiarng; Lin, Chung-Yen; Chen, Shu-Hwa

    2014-12-01

    Although rising ocean temperatures threaten scleractinian corals and the reefs they construct, certain reef corals can acclimate to elevated temperatures to which they are rarely exposed in situ. Specimens of the model Indo-Pacific reef coral Pocillopora damicornis collected from upwelling reefs of Southern Taiwan were previously found to have survived a 36-week exposure to 30°C, a temperature they encounter infrequently and one that can elicit the breakdown of the coral-dinoflagellate (genus Symbiodinium) endosymbiosis in many corals of the Pacific Ocean. To gain insight into the subcellular pathways utilized by both the coral hosts and their mutualistic Symbiodinium populations to acclimate to this temperature, mRNAs from both control (27°C) and high (30°C)-temperature samples were sequenced on an Illumina platform and assembled into a 236 435-contig transcriptome. These P. damicornis specimens were found to be ~60% anthozoan and 40% microbe (Symbiodinium, other eukaryotic microbes, and bacteria), from an mRNA-perspective. Furthermore, a significantly higher proportion of genes from the Symbiodinium compartment were differentially expressed after two weeks of exposure. Specifically, at elevated temperatures, Symbiodinium populations residing within the coral gastrodermal tissues were more likely to up-regulate the expression of genes encoding proteins involved in metabolism than their coral hosts. Collectively, these transcriptome-scale data suggest that the two members of this endosymbiosis have distinct strategies for acclimating to elevated temperatures that are expected to characterize many of Earth's coral reefs in the coming decades.

  16. Prolonged exposure to elevated temperature induces floral transition via up-regulation of cytosolic ascorbate peroxidase 1 and subsequent reduction of the ascorbate redox ratio in Oncidium hybrid orchid.

    PubMed

    Chin, Dan-Chu; Shen, Chin-Hui; SenthilKumar, Rajendran; Yeh, Kai-Wun

    2014-12-01

    The bolting time of the Oncidium hybrid orchid is not season dependent and so it is a useful year-round model system to study thermal-induced flowering mechanisms in planta. Previously, we reported that a low ascorbate (AsA) content is essential for floral transition in Oncidium; however, the environmental factors governing initiation of the flowering process remained to be elucidated. The current study revealed that a prolonged elevated temperature treatment (30°C over a 14 d period) induces floral transition. This floral induction in response to thermal stress was associated with a significantly increased reactive oxygen species (ROS) level and a lowered AsA redox ratio, as well as prominently up-regulated expression of cytosolic ascorbate peroxidase (cytAPX1). Transcriptome analysis confirmed that increased temperature affected the differential expression of genes involved in antioxidant metabolism. Likewise, transgenic Arabidopsis ectopically overexpressing Oncidium cytAPX1 displayed an early-flowering phenotype and low AsA redox ratio under thermal stress, while cytAPX1 mutants, apx1-1 and apx1-2, exhibited a delayed-flowering phenotype and a high AsA redox ratio. Our present data illustrate that the floral transition response to thermal stress is mediated by the AsA redox ratio, and that CytAPX plays a pivotal role in modulating the AsA redox ratio in Oncidium hybrid orchid. Taken together, the results from this investigation of the thermal-induced flowering mechanism indicated that the AsA redox ratio is a master switch to mediate phase transition from the vegetative to reproductive stage.

  17. Zeta Potential in Intact Natural Carbonates at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Al-Mahrouqi, D.; Vinogradov, J.; Jackson, M.

    2015-12-01

    Measurements of zeta potential have been used to monitor subsurface flows in many natural brine systems. Numerous studies report zeta potentials in carbonates using crushed samples at low ionic strength and laboratory temperatures. However, natural brines have much higher salinity; moreover, temperatures are considerably higher in many subsurface settings. The variation of zeta potentials with temperature has not been examined in natural carbonates. We report zeta potential values interpreted from streaming potential measurements in two intact carbonate rock samples, saturated with artificial brines at elevated temperatures. We measure streaming potential using an experimental set-up that incorporates in-situ measurements of saturated rock conductivity, brine temperature, brine pH, brine electrical conductivity, pressure difference and voltage at temperatures up to 120oC. The streaming potential measurements are complemented with brine effluent studies. We find that the interpreted zeta potential is negative and decreases in magnitude with increasing temperature at low ionic strength (0.01M) and independent of temperature at high ionic strength (0.5M); consistent with published zeta potential in intact natural sandstones. The concentration of Ca2+ (main potential determining ion) also decreases with temperature at low ionic strength, but remains constant at high ionic strength. The temperature dependence of the zeta potential is consistent between two different natural carbonate samples and can be explained by the temperature dependence of pCa2+. We suggest that zeta potential of carbonate is independent of temperature or pH when pCa2+ remains constant. A linear variation of pH vs. pCa2+ is exhibited, at ambient and elevated temperatures, when pCa2+ is allowed to change with pH. This linear variation explains the numerous published data that shows apparent relationship between zeta potential of carbonates and pH.

  18. Exfoliation and Dispersion of 2-Dimensional Materials by Elevating Temperature

    NASA Astrophysics Data System (ADS)

    Kwon, Sanghyuk; Kim, Jinseon; Kwon, Hyukjoon; Lee, Changgu; Graphene Engneering Lab Team

    It is known that graphene and other 2-dimensional materials are hard to dissolve in water without using chemicals or surfactants. Here, we present a facile method to exfoliate and disperse those materials in water by simply controlling temperature. Graphene, when sonicated in water at high temperature (60°C), was edge-functionalized due to the extremely high temperature and pressure locally induced by ultrasonic cavitation, and dissolved in water stably even for longer than 1 month. However, it was not dispersed at low temperature(30°C) because of less cavitation and reduced sonochemical reaction. Other 2-dimensional materials, such as h-BN, MoS2, and other layered metal chalcogenides, were also well dissolved in water as graphene, but even at low temperature. Their stable solution is from the electric double layer because their relatively high insulating property. Also elevated storage temperature (60°C) improved the long-term dispersion stability compared to lower storage temperature (20°C) Exfoliation and Dispersion of 2-Dimensional Materials by Elevating Temperature.

  19. Upsettability and forming limit of magnesium alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Park, Heung Sik; Kim, Si Pom; Park, Young Chul; Park, Joon Hong; Baek, Seung Gul

    2012-11-01

    In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. In this study, Microstructure, Vickers hardness and tensile tests were examined and performed for each specimen to verify effects of forming conditions. Also to verify upsettability and forming limit of the specimen at room temperature and elevated temperature, upsetting experiments were performed. For comparison, experiments at elevated temperature were performed for various Mg alloy, such as AZ31, AZ91, and AM50. The experimental results were compared with those of CAE analysis to propose forming limit of Magnesium alloys.

  20. Constitutive Modeling and Testing of Polymer Matrix Composites Incorporating Physical Aging at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.

  1. Effect of hydrogen on the integrity of aluminium-oxide interface at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xie, De-Gang; Ma, Evan; Li, Ju; Zhang, Xi-Xiang; Shan, Zhi-Wei

    2017-02-01

    Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal-oxide interface. Moreover, there exists a critical temperature of ~150 °C, above which the growth of cavities at the metal-oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures.

  2. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures

    PubMed Central

    Li, Meng; Xie, De-Gang; Ma, Evan; Li, Ju; Zhang, Xi-Xiang; Shan, Zhi-Wei

    2017-01-01

    Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal–oxide interface. Moreover, there exists a critical temperature of ∼150 °C, above which the growth of cavities at the metal–oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures. PMID:28218260

  3. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  4. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow

  5. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature

    NASA Astrophysics Data System (ADS)

    Jokiel, P. L.; Coles, S. L.

    1990-04-01

    Loss of symbiotic zooxanthellae, or “bleaching” is one of the first visible signs of thermal stress. Critical threshold temperatures for coral bleaching vary geographically, but can be expressed universally as fixed increments relative to the historical mean local summer maximum. Bleaching can be induced by short-term exposure (i.e. 1 2 days) at temperature elevations of 3°C to 4°C above normal summer ambient or by long-term exposure (i.e. several weeks) at elevations of 1°C to 2°C. Corals in both tropical and subtropical locations live at temperatures close to their lethal limits during the summer months. Temperature elevations above summer ambient, but still below the bleaching threshold, can impair growth and reproduction. Temperature and light interact synergistically; high light accelerates bleaching caused by elevated temperature. Bleaching susceptibility is correlated with respiration rate. Any factor that increases respiration (such as high incident light) accelerates bleaching at higher temperatures. Ultraviolet (UV) radiation is a detrimental factor associated with solar radiation. Increased UV due to thinning of the earth's protective ozone layer may aggravate bleaching and mortality caused by global warming. A warming trend in Hawaiian waters has been observed over the past decade. In 1986, 1987 and 1988 Hawaiian corals were perilously close to their bleaching threshold during the summer months, and localized bleachings did occur. In some cases, local warming of surface water on shallow reef flats exceeded this threshold temperature and caused localized coral bleaching. In other cases, heating of large mesoscale eddies in the lee of the larger islands apparently caused wide-scale bleaching of the most sensitive coral species ( Pocillopora meandrina) to depths of 20 m. A continuation of the warming trend in Hawaii would lead to mass bleachings similar to those observed recently in other geographic locations.

  6. Second Skin Protection against Low Temperature Exposure.

    DTIC Science & Technology

    against injurious effects from exposure to low temperatures. Vinyl plastisols with good viscosity stability have been developed. Accelerators are...of plasticol or silicone rubber foamed on the skin for thermal insulation and thin dense covering layer of plastisol or silicone rubber for abrasion resistance.

  7. Elevated body temperature enhances the laryngeal chemoreflex in decerebrate piglets.

    PubMed

    Curran, A K; Xia, L; Leiter, J C; Bartlett, D

    2005-03-01

    Hyperthermia and reflex apnea may both contribute to sudden infant death syndrome (SIDS). Therefore, we investigated the effect of increased body temperature on the inhibition of breathing produced by water injected into the larynx, which elicits the laryngeal chemoreflex (LCR). We studied decerebrated, vagotomized, neonatal piglets aged 3-15 days. Blood pressure, end-tidal CO(2), body temperature, and phrenic nerve activity were recorded. To elicit the LCR, we infused 0.1 ml of distilled water through a polyethylene tube passed through the nose and positioned just rostral to the larynx. Three to five LCR trials were performed with the piglet at normal body temperature. The animal's core body temperature was raised by approximately 2.5 degrees C, and three to five LCR trials were performed before the animal was cooled, and three to five LCR trials were repeated. The respiratory inhibition associated with the LCR was substantially prolonged when body temperature was elevated. Thus elevated body temperature may contribute to the pathogenesis of SIDS by increasing the inhibitory effects of the LCR.

  8. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    PubMed Central

    Talebi, Elnaz; Tahir, Mahmood Md.; Yasreen, Airil

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system. PMID:24526915

  9. Elevated Temperature Crack Growth Studies of Advanced Titanium Aluminides.

    DTIC Science & Technology

    1987-09-01

    titanium aluminide in gas turbine engines would reduce the United States dependence on foreign sources for superalloy constituent elements, and would...ELVTDTEMPERATURE CRACK GROWTH STUDIES OF ADVANCED 1I TITANIUM ALUMINIDES (U) SYSTRAN CORP DAYTON ON VENKATARAMAN SEP 87 AFUAL-TR-87-4t82 F32615-86-C...ELEVATED TEMPERATURE CRACK GROWTH STUDIES OF ADVANCED TITANIUM ALUMINIDES DTIC Dr. Srivathsan Venkataraman e’.- Systran Corporation 4126 Linden Avenue

  10. Corrosion resistant coatings suitable for elevated temperature application

    DOEpatents

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  11. Diffusive Gas Loss from Silica Glass Ampoules at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    1998-01-01

    Changes in the pressure of hydrogen, helium and neon due to diffusion through the wall of silica crystal growth ampoules at elevated temperatures were determined experimentally. We show that, while both He- and Ne-losses closely follow conventional model of diffusive gas permeation through the wall, hydrogen losses, in particular at low fill pressures, can be much larger. This is interpreted in terms of the high solubility of hydrogen in silica glasses.

  12. Promoted Metals Combustion at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    Promoted combustion testing of materials, Test 17 of NASA STD-6001, has been used to assess metal propensity to burn in oxygen rich environments. An igniter is used at the bottom end of a rod to promote ignition, and if combustion is sustained, the burning progresses from the bottom to the top of the rod. The physical mechanisms are very similar to the upward flammability test, Test 1 of NASA STD-6001. The differences are in the normal environmental range of pressures, oxygen content, and sample geometry. Upward flammability testing of organic materials can exhibit a significant transitional region between no burning to complete quasi-state burning. In this transitional region, the burn process exhibits a probabilistic nature. This transitional region has been identified for metals using the promoted combustion testing method at ambient initial temperatures. The work given here is focused on examining the transitional region and the quasi-steady burning region both at conventional ambient testing conditions and at elevated temperatures. A new heated promoted combustion facility and equipment at Marshall Space Flight Center have just been completed to provide the basic data regarding the metals operating temperature limits in contact with oxygen rich atmospheres at high pressures. Initial data have been obtained for Stainless Steel 304L, Stainless Steel 321, Haynes 214, and Inconel 718 at elevated temperatures in 100-percent oxygen atmospheres. These data along with an extended data set at ambient initial temperature test conditions are examined. The pressure boundaries of acceptable, non-burning usage is found to be lowered at elevated temperature.

  13. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine[OPEN

    PubMed Central

    2016-01-01

    Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature

  14. Global Economic Exposure to Future Temperature Changes

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2011-12-01

    In global-scale analyses of future climate change, "global average temperature change" is a commonly used summary statistic. Unfortunately, this statistic may not be useful for many types of economic analyses because it is an average over the planet's entire surface and is therefore dominated by changes over oceans and other uninhabited regions. Here, we attempt to summarize projected temperature changes in a manner that is more useful for economic analyses: we construct the distributions of future temperature exposure for a randomly selected person, a random hectare of cropland, and a random dollar of value-added. Our results streamline global cost analyses, enabling future studies to estimate global losses by combining their locally derived loss-functions with our estimates of global exposure. We demonstrate this application by estimating that low and middle income populations may suffer income losses of 9% annually due only to the effects of thermal stress on workers, a mechanism previously omitted from global cost estimates. In ancillary findings, we also document that (1) when exposure distributions are substituted for global average temperature change in standard models of economic costs, projected annual losses increase by trillions of dollars; (2) low and middle income populations will be twice as exposed to harmful temperatures as high income populations, based only on their locations; and (3) it is unlikely the direct effects of warming can have a positive net impact on the global economy.

  15. Grain boundary oxidation and fatigue crack growth at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1986-01-01

    Fatigue crack growth rate at elevated temperatures can be accelerated by grain boundary oxidation. Grain boundary oxidation kinetics and the statistical distribution of grain boundary oxide penetration depth were studied. At a constant delta K-level and at a constant test temperature, fatigue crack growth rate, da/dN, is a function of cyclic frequency, nu. A fatigue crack growth model of intermittent micro-ruptures of grain boundary oxide is constructed. The model is consistent with the experimental observations that, in the low frequency region, da/dN is inversely proportional to nu, and fatigue crack growth is intergranular.

  16. Complexation of Neptunium(V) with Fluoride at Elevated Temperatures

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin; Xia, Yuanxian; Friese, Judah I.

    2008-06-16

    Complexation of neptunium(V) with fluoride at elevated temperatures was studied by spectrophotometry and microcalorimetry. Two successive complexes, NpO{sub 2}F(aq) and NpO{sub 2}F{sub 2}{sup -}, were identified by spectrophotometry in the temperature range of 10-70 C. Thermodynamic parameters, including the equilibrium constants and enthalpy of complexation between Np(V) and fluoride at 10-70 C were determined. Results show that the complexation of Np(V) with fluoride is endothermic and that the complexation is enhanced by the increase in temperature - a two-fold increase in the stability constants of NpO{sub 2}F(aq) and more than five-fold increase in the stability constants of NpO{sub 2}F{sub 2}{sup -} as the temperature is increased from 10 to 70 C.

  17. High strain rate behavior of pure metals at elevated temperature

    NASA Astrophysics Data System (ADS)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Domenico, Gentile

    2013-06-01

    In many applications and technology processes, such as stamping, forging, hot working etc., metals and alloys are subjected to elevated temperature and high strain rate deformation process. Characterization tests, such as quasistatic and dynamic tension or compression test, and validation tests, such as Taylor impact and DTE - dynamic tensile extrusion -, provide the experimental base of data for constitutive model validation and material parameters identification. Testing material at high strain rate and temperature requires dedicated equipment. In this work, both tensile Hopkinson bar and light gas gun where modified in order to allow material testing under sample controlled temperature conditions. Dynamic tension tests and Taylor impact tests, at different temperatures, on high purity copper (99.98%), tungsten (99.95%) and 316L stainless steel were performed. The accuracy of several constitutive models (Johnson and Cook, Zerilli-Armstrong, etc.) in predicting the observed material response was verified by means of extensive finite element analysis (FEA).

  18. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    PubMed

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  19. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  20. Elevated temperature deformation of thoria dispersed nickel-chromium

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1974-01-01

    The deformation behavior of thoria nickel-chromium (TD-NiCr) was examined over the temperature range 593 C (1100 F) to 1260 C (2300 F) in tension and compression and at 1093 C (2000 F) in creep. Major emphasis was placed on: (1) the effects of the material and test related variables (grain size, temperature, stress and strain rate) on the deformation process; and (2) the evaluation of single crystal TD-NiCr material produced by a directional recrystallization process. Elevated temperature yield strength levels and creep activation enthalpies were found to increase with increasing grain size reaching maximum values for the single crystal TD-NiCr. Stress exponent of the steady state creep rate was also significantly higher for the single crystal TD-NiCr as compared to that determined for the polycrystalline materials. The elevated temperature deformation of TD-NiCr was analyzed in terms of two concurrent, parallel processes: diffusion controlled grain boundary sliding, and dislocation motion.

  1. Elevated environmental temperature enhances immunity in experimental Chagas' disease.

    PubMed

    Anderson, K J; Kuhn, R E

    1989-01-01

    C3H mice are highly susceptible to the Brazil strain of Trypanosoma cruzi. These mice usually die during the acute phase of infection and develop a profound immunosuppression to heterologous and parasite antigen. In this study, we confirmed earlier reports that infected mice maintained at elevated environmental temperature (36 degrees C) are significantly more resistant to T. cruzi than are mice kept at 20 to 24 degrees C. To determine whether the benefits of increased environmental temperature were due to alterations in the host immune system, the production of antibody to heterologous antigen and the development of parasite-specific T-helper cells were examined in noninfected and T. cruzi-infected mice. Mice were immunized with either sheep erythrocytes (SRBC) or trinitrophenyl groups (TNP) conjugated to fixed culture forms of T. cruzi, and the splenic direct plaque-forming cell (DPFC) responses to SRBC and to TNP-conjugated SRBC were determined. The DPFC response to SRBC from infected mice maintained at elevated environmental temperature was much higher than the suppressed response of infected mice held at room temperature and slightly higher than the response of age-matched noninfected control mice. Likewise, maintaining infected mice at 36 degrees C significantly enhanced the parasite-specific responses of T-helper cells, as reflected by anti-TNP DPFC responses of mice immunized with TNP-conjugated TC.

  2. Elevated environmental temperature enhances immunity in experimental Chagas' disease.

    PubMed Central

    Anderson, K J; Kuhn, R E

    1989-01-01

    C3H mice are highly susceptible to the Brazil strain of Trypanosoma cruzi. These mice usually die during the acute phase of infection and develop a profound immunosuppression to heterologous and parasite antigen. In this study, we confirmed earlier reports that infected mice maintained at elevated environmental temperature (36 degrees C) are significantly more resistant to T. cruzi than are mice kept at 20 to 24 degrees C. To determine whether the benefits of increased environmental temperature were due to alterations in the host immune system, the production of antibody to heterologous antigen and the development of parasite-specific T-helper cells were examined in noninfected and T. cruzi-infected mice. Mice were immunized with either sheep erythrocytes (SRBC) or trinitrophenyl groups (TNP) conjugated to fixed culture forms of T. cruzi, and the splenic direct plaque-forming cell (DPFC) responses to SRBC and to TNP-conjugated SRBC were determined. The DPFC response to SRBC from infected mice maintained at elevated environmental temperature was much higher than the suppressed response of infected mice held at room temperature and slightly higher than the response of age-matched noninfected control mice. Likewise, maintaining infected mice at 36 degrees C significantly enhanced the parasite-specific responses of T-helper cells, as reflected by anti-TNP DPFC responses of mice immunized with TNP-conjugated TC. PMID:2491831

  3. Cement minerals at elevated temperature: Thermodynamic and structural characteristics

    SciTech Connect

    Bruton, C.J.; Phillips, B.L.; Meike, A.; Martin, S.; Viani, B.E.

    1993-11-01

    Large quantities of cementitious materials may be used in the construction of a potential nuclear waste repository. Temperatures in the emplacement drifts may reach over 200 C owing to decay heat from radioactive waste for various ``extended-dry`` repository scenarios. Despite its potential significance, the mineralogic response of cement to elevated temperature is not well known. The chemistry of fluid introduced to the repository from cementitious materials can also have a significant impact on repository performance. The masses of water associated with the use of cementitious materials such as shotcrete, which includes both structural and pore water, can be sizable. Pore water may be driven out by heating, and structural water may be released through phase dehydration. An experimental and modeling program has been designed to elucidate the structural and thermodynamic response of cement minerals to elevated temperature. The components of the program include: (a) synthesis of hydrated Ca-silicates; (b) structural analysis of cement phases during heating and dehydration/rehydration; (c) mechanistic and thermodynamic descriptions of the hydration/dehydration behavior of hydrated Ca-silicates as a function of temperature, pressure and relative humidity; (d) study of naturally occurring hydrated Ca-silicates; and (e) measurements of thermodynamic data for hydrated Ca-silicates.

  4. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone.

    PubMed

    Riikonen, Johanna; Kontunen-Soppela, Sari; Vapaavuori, Elina; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina

    2013-03-01

    The effects of slightly elevated temperature (+0.8 °C), ozone (O3) concentration (1.3 × ambient O3 concentration) and their combination on over-wintering buds of Betula pendula Roth were studied after two growing seasons of exposure in the field. Carbohydrate concentrations, freezing stress resistance (FSR), bud dry weight to fresh weight ratio, and transcript levels of cytochrome oxidase (COX), alternative oxidase (AOX) and dehydrin (LTI36) genes were studied in two clones (clones 12 and 25) in December. Elevated temperature increased the bud dry weight to fresh weight ratio and the ratio of raffinose family oligosaccharides to sucrose and the transcript levels of the dehydrin (LTI36) gene (in clone 12 only), but did not alter the FSR of the buds. Genotype-specific alterations in carbohydrate metabolism were found in the buds grown under elevated O3. The treatments did not significantly affect the transcript level of the COX or AOX genes. No clear pattern of an interactive effect between elevated temperature and O3 concentration was found. According to these data, the increase in autumnal temperatures and slightly increasing O3 concentrations do not increase the risk for freeze-induced damage in winter in silver birch buds, although some alterations in bud physiology occur.

  5. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater.

    PubMed

    Dowd, W Wesley; Somero, George N

    2013-02-01

    Coping with environmental stress may involve combinations of behavioral and physiological responses. We examined potential interactions between adult mussels' simple behavioral repertoire - opening/closing of the shell valves - and thermal stress physiology in common-gardened individuals of three Mytilus congeners found on the West Coast of North America: two native species (M. californianus and M. trossulus) and one invasive species from the Mediterranean (M. galloprovincialis). We first continuously monitored valve behavior over three consecutive days on which body temperatures were gradually increased, either in air or in seawater. A temperature threshold effect was evident between 25 and 33°C in several behavioral measures. Mussels tended to spend much less time with the valves in a sealed position following exposure to 33°C body temperature, especially when exposed in air. This behavior could not be explained by decreases in adductor muscle glycogen (stores of this metabolic fuel actually increased in some scenarios), impacts of forced valve sealing on long-term survival (none observed in a second experiment), or loss of contractile function in the adductor muscles (individuals exhibited as many or more valve adduction movements following elevated body temperature compared with controls). We hypothesize that this reduced propensity to seal the valves following thermal extremes represents avoidance of hypoxia-reoxygenation cycles and concomitant oxidative stress. We further conjecture that prolonged valve gaping following episodes of elevated body temperature may have important ecological consequences by affecting species interactions. We then examined survival over a 90 day period following exposure to elevated body temperature and/or emersion, observing ongoing mortality throughout this monitoring period. Survival varied significantly among species (M. trossulus had the lowest survival) and among experimental contexts (survival was lowest after experiencing

  6. Thermodynamics of actinide complexation in solution at elevated temperatures: application of variable-temperature titration calorimetry.

    PubMed

    Rao, Linfeng

    2007-06-01

    Studies of actinide complexation in solution at elevated temperatures provide insight into the effect of solvation and the energetics of complexation, and help to predict the chemical behavior of actinides in nuclear waste processing and disposal where temperatures are high. This tutorial review summarizes the data on the complexation of actinides at elevated temperatures and describes the methodology for thermodynamic measurements, with the emphasis on variable-temperature titration calorimetry, a highly valuable technique to determine the enthalpy and, under appropriate conditions, the equilibrium constants of complexation as well.

  7. Characteristics of mercury desorption from sorbents at elevated temperatures

    SciTech Connect

    Ho, T.C.; Yang, P.; Kuo, T.H.; Hopper, J.R.

    1998-12-31

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. Elemental mercury and mercuric chloride were tested with activated carbon and bauxite. The experimental results indicated that mercury desorption from sorbents was strongly affected by the desorption temperature and the mercury-sorbent pair. Elemental mercury was observed to desorb faster than mercuric chloride and activated carbon appeared to have higher desorption limits than bauxite at low temperatures. A kinetic model considering the mechanisms of surface equilibrium, pore diffusion and external mass transfer was proposed to simulate the observed desorption profiles. The model was found to describe reasonably well the experimental results.

  8. Compressive Strength of Stainless-Steel Sandwiches at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E.; Pride, Richard A.

    1959-01-01

    Experimental results are presented from crippling tests of stainless-steel sandwich specimens in the temperature range from 80 F to 1,200 F. The specimens included resistance-welded 17-7 PH stainless-steel sandwiches with single-corrugated cores, type 301 stainless-steel sandwiches with double-corrugated cores, and brazed 17-7 PH stainless-steel sandwiches with honeycomb cores. The experimental strengths are compared with predicted buckling and crippling strengths. The crippling strengths were predicted from the calculated maximum strength of the individual plate elements of the sandwiches and from a correlation procedure which gives the elevated-temperature crippling strength when the experimental room-temperature crippling strengths are known. Photographs of some of the tested specimens are included to show the modes of failure.

  9. Literature survey on oxidations and fatigue lives at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1984-01-01

    Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.

  10. Elevated temperature fracture of RS/PM aluminum alloy 8009

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Yang, Leng; Gangloff, Richard P.

    1991-01-01

    The fracture behavior of advanced powder metallurgy Al-Fe-V-Si alloy 8009 (previously called FVS0812) is being characterized under monotonic loads, as a function of temperature. Particular attention is focused on contributions to the fracture mechanism from the fine grained dispersoid strengthened microstructure, dissolved solute from rapid solidification, and the moist air environment. Time-dependent crack growth is characterized in advanced aluminum alloys at elevated temperatures with the fracture mechanics approach, and cracking mechanisms are examined with a metallurgical approach. Specific tasks were to obtain standard load crack growth experimental information from a refined testing system; to correlate crack growth kinetics with the j-integral and time dependent C(sub t)(t); and to investigate the intermediate temperature embrittlement of 8009 alloy in order to understand crack growth mechanisms.

  11. Deflagration Behavior of PBX 9501 at Elevated Temperature and Pressure

    SciTech Connect

    Maienschein, J L; Koerner, J G

    2008-04-15

    We report the deflagration behavior of PBX 9501 at pressures up to 300 MPa and temperatures of 150-180 C where the sample has been held at the test temperature for several hours before ignition. The purpose is to determine the effect on the deflagration behavior of material damage caused by prolonged exposure to high temperature. This conditioning is similar to that experienced by an explosive while it being heated to eventual explosion. The results are made more complicated by the presence of a significant thermal gradient along the sample during the temperature ramp and soak. Three major conclusions are: the presence of nitroplasticizer makes PBX 9501 more thermally sensitive than LX-04 with an inert Viton binder; the deflagration behavior of PBX 9501 is more extreme and more inconsistent than that of LX-04; and something in PBX 9501 causes thermal damage to 'heal' as the deflagration proceeds, resulting in a decelerating deflagration front as it travels along the sample.

  12. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  13. Description of a system for interlocking elevated temperature mechanical tests

    SciTech Connect

    Schmale, D.T.; Poulter, G.A.

    1995-07-01

    Long term mechanical creep and fatigue testing at elevated temperatures requires reliable systems with safeguards to prevent destruction of equipment, loss of data and negative environmental impacts. Toward this goal, a computer controlled system has been developed and built for interlocking tests run on elevated temperature mechanical test facilities. Sensors for water flow, water pressure, water leakage, temperature, power and hydraulic status are monitored to control specimen heating equipment through solid state relays and water solenoid valves. The system is designed to work with the default interlocks present in the RF generators and mechanical tests systems. Digital hardware consists of two National Instruments 1/0 boards mounted in a Macintosh IIci computer. Software is written in National Instruments LabVIEW. Systems interlocked include two MTS closed loop servo controlled hydraulic test frames, one with an RF generator and one with both an RF generator and a quartz lamp furnace. Control for individual test systems is modularized making the addition of more systems simple. If any of the supporting utilities fail during tests, heating systems, chill water and hydraulics are powered down, minimizing specimen damage and eliminating equipment damage. The interlock control is powered by an uninterruptible power supply. Upon failure the cause is documented in an ASCII file.

  14. Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures

    PubMed Central

    Mayfield, Anderson B; Wang, Yu-Bin; Chen, Chii-Shiarng; Lin, Chung-Yen; Chen, Shu-Hwa

    2014-01-01

    Although rising ocean temperatures threaten scleractinian corals and the reefs they construct, certain reef corals can acclimate to elevated temperatures to which they are rarely exposed in situ. Specimens of the model Indo-Pacific reef coral Pocillopora damicornis collected from upwelling reefs of Southern Taiwan were previously found to have survived a 36-week exposure to 30°C, a temperature they encounter infrequently and one that can elicit the breakdown of the coral–dinoflagellate (genus Symbiodinium) endosymbiosis in many corals of the Pacific Ocean. To gain insight into the subcellular pathways utilized by both the coral hosts and their mutualistic Symbiodinium populations to acclimate to this temperature, mRNAs from both control (27°C) and high (30°C)-temperature samples were sequenced on an Illumina platform and assembled into a 236 435-contig transcriptome. These P. damicornis specimens were found to be ∼60% anthozoan and 40% microbe (Symbiodinium, other eukaryotic microbes, and bacteria), from an mRNA-perspective. Furthermore, a significantly higher proportion of genes from the Symbiodinium compartment were differentially expressed after two weeks of exposure. Specifically, at elevated temperatures, Symbiodinium populations residing within the coral gastrodermal tissues were more likely to up-regulate the expression of genes encoding proteins involved in metabolism than their coral hosts. Collectively, these transcriptome-scale data suggest that the two members of this endosymbiosis have distinct strategies for acclimating to elevated temperatures that are expected to characterize many of Earth's coral reefs in the coming decades. PMID:25354956

  15. Theoretical Determination of Lifetime of Compressed Plates at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Herrmann, George; Chu, Hu-Nan

    1959-01-01

    A method for the theoretical determination of the lifetime of com- pressed plates at elevated temperatures is presented. In this approach, linearized equations are used throughout with the assumption that the plate material is a standard linear solid. The critical time (lifetime) is determined by reducing the time-dependent behavior to the time- independent response of purely elastic buckling. Theoretically predicted lifetimes of 2024-T3 (formerly 24S-T3) aluminum-alloy plates at 450 F are compared with experimental values obtained in previous work.

  16. Variations of bubble cavitation and temperature elevation during acculysis

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2017-03-01

    High-intensity focused ultrasound (HIFU) is effective in both thermal ablations and soft-tissue fragmentation. Mechanical and thermal effects depend on the operating parameters and vary with the progress of therapy. Different types of lesions could be produced with the pulse duration of 5-30 ms, much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, bubble cavitation and temperature elevation in the focal region were measured by passive cavitation detection (PCD) and thermocouples, respectively. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Overall, it is suggested that appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.

  17. Hydrologic property alterations due to elevated temperatures at Yucca Mountain

    SciTech Connect

    Flint, A.L.; Nash, M.H.; Nash, M.S.

    1994-12-31

    Yucca Mountain is currently being evaluated as a potential site for a high level nuclear waste repository. The pre-emplacement hydrologic properties of the rock are important in determining the suitability of the site; however, post emplacement thermal loads and associated drying may permanently alter the character of the rock. A preliminary study was undertaken to determine the effects of elevated temperatures on hydrologic properties of the welded Topopah Spring member of the Paintbrush Tuff and a zeolitic, nonwelded tuff from the Tuffaceous Beds of Calico Hills. Rock outcrop samples were collected and dried in the laboratory at different temperatures (up to 400 degrees C). Hydrologic and physical properties -were tested before and after each of the drying cycles.

  18. Thermodynamics of Neptunium (V) Complexes with Phosphate at Elevated Temperatures

    SciTech Connect

    Xia, Y.; Friese, Judah I.; Bachelor, Paula P.; Moore, Dean A.; Rao, Linfeng

    2009-06-01

    Abstract – The complexation of Np(V) with phosphate at elevated temperatures was studied by a synergistic extraction method. A mixed buffer solution of TRIS and MES was used to maintain an appropriate pH value during the distribution experiments. The distribution ratio of Np(V) between the organic and aqueous phases was found to decrease as the concentrations of phosphate were increased. Stability constants of the 1:1 and 1:2 Np(V)-HPO42- complexes, dominant in the aqueous phase under the experimental conditions, were calculated from the effect of [HPO42-] on the distribution ratio. The thermodynamic parameters including enthalpy and entropy of complexation between Np(V) and HPO42- at 25o C – 55o C were calculated by the temperature coefficient method.

  19. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment

    NASA Astrophysics Data System (ADS)

    Mayfield, A. B.; Fan, T.-Y.; Chen, C.-S.

    2013-12-01

    Recent work has found that pocilloporid corals from regions characterized by unstable temperatures, such as those exposed to periodic upwelling, display a remarkable degree of phenotypic plasticity. In order to understand whether important reef builders from these upwelling reefs remain physiologically uncompromised at temperatures they will experience in the coming decades as a result of global climate change, a long-term elevated temperature experiment was conducted with Pocillopora damicornis specimens collected from Houbihu, a small embayment within Nanwan Bay, southern Taiwan that is characterized by 8-9 °C temperature changes during upwelling events. Upon nine months of exposure to nearly 30 °C, all colony (mortality and surface area), polyp ( Symbiodinium density and chlorophyll a content), tissue (total thickness), and molecular (gene expression and molecular composition)-level parameters were documented at similar levels between experimental corals and controls incubated at 26.5 °C, suggesting that this species can readily acclimate to elevated temperatures that cause significant degrees of stress, or even bleaching and mortality, in conspecifics of other regions of the Indo-Pacific. However, the gastrodermal tissue layer was relatively thicker in corals of the high temperature treatment sampled after nine months, possibly as an adaptive response to shade Symbiodinium from the higher photosynthetically active radiation levels that they were experiencing at that sampling time. Such shading may have prevented high light and high temperature-induced photoinhibition, and consequent bleaching, in these samples.

  20. Rotating disk electrode system for elevated pressures and temperatures

    SciTech Connect

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  1. Performance evaluation of fiber Bragg gratings at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Juergens, Jeffrey; Adamovsky, Grigory; Floyd, Bertram

    2004-03-01

    The development of integrated fiber optic sensors for smart propulsion systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor"s limits and how it responds under various environmental conditions. The sensor evaluation currently involves examining the performance of fiber Bragg gratings at elevated temperatures. Fiber Bragg gratings (FBG) are periodic variations of the refractive index of an optical fiber. These periodic variations allow the FBG to act as an embedded optical filter passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change what wavelengths are transmitted and what wavelengths are reflected by the grating. Both thermal and mechanical forces acting on the grating will alter its physical characteristics allowing the FBG sensor to detect both temperature variations and physical stresses, strain, placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. This paper reports on test results of the performance of FBGs at elevated temperatures. The gratings looked at thus far have been either embedded in polymer matrix materials or freestanding with the primary focus of this paper being on the freestanding FBGs. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. These parameters include the peak Bragg wavelength, the power of the Bragg wavelength, and total power returned by the FBG. Several test samples were subjected to identical test conditions to

  2. Performance Evaluation of Fiber Bragg Gratings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Juergens, Jeffrey; Adamovsky, Grigory; Floyd, Bertram

    2004-01-01

    The development of integrated fiber optic sensors for smart propulsion systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor s limits and how it responds under various environmental conditions. The sensor evaluation currently involves examining the performance of fiber Bragg gratings at elevated temperatures. Fiber Bragg gratings (FBG) are periodic variations of the refractive index of an optical fiber. These periodic variations allow the FBG to act as an embedded optical filter passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change what wavelengths are transmitted and what wavelengths are reflected by the grating. Both thermal and mechanical forces acting on the grating will alter its physical characteristics allowing the FBG sensor to detect both temperature variations and physical stresses, strain, placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. This paper reports on test results of the performance of FBGs at elevated temperatures. The gratings looked at thus far have been either embedded in polymer matrix materials or freestanding with the primary focus of this paper being on the freestanding FBGs. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. These parameters include the peak Bragg wavelength, the power of the Bragg wavelength, and total power returned by the FBG. Several test samples were subjected to identical test conditions to

  3. Automated Measurement of Crack Length and Load Line Displacement at Elevated Temperature,

    DTIC Science & Technology

    1988-02-01

    LINE DISPLACEMENT AT ELEVATED TEMPERATURE Test results reported in the literature show that, in creep cracking tests at elevated temperature under steady...set-up developed for elevated temperature creep cracking test in which crack length was measured with the electrical potential drop method and load...reported in the literature show that in creep cracking tests at elevated temperature under steady load, the crack growth rate correlates best with the

  4. Kinetics of Death of Bacterial Spores at Elevated Temperatures

    PubMed Central

    Wang, Daniel I-C.; Scharer, Jeno; Humphrey, Arthur E.

    1964-01-01

    The kinetics of death of Bacillus stearothermophilus spores (FS 7954) suspended in phosphate buffer (pH 7) were studied over a temperature range of 127.2 to 143.8 C and exposure times of 0.203 to 4.150 sec. These short exposure were achieved by use of a tubular flow reactor in which a suspension of spores was injected into a hot flowing stream at the entrance of the reactor. Thermal equilibria of the suspension with the hot stream was achieved within 0.0006 sec. After flow through a fixed length of reactor, the stream containing the spores was cooled by flash vaporization and then assayed for viable count. The death rate data were fitted by a logarithmic expression. However, logarithmic death rate was only approximated in the tail or high-kill regions of exposure. Death rate constants obtained from this portion of the data were found to correlate by Arrhenius as well as Absolute Reaction Rate Theory relationships. Thermal-death time curves were found to correlate the data rather poorly. The activation energy and frequency constant for an Arrhenius relationship fit of the data were found to be 83.6 kcal/gmole and 1047.2 min-1, respectively. The standard enthalpy and entropy changes for an Absolute Reaction Rate Theory relationship fit of the data were found to be 84.4 kcal/gmole and 157 cal/gmole-K, respectively. PMID:14215978

  5. Establishing isothermal contact at a known temperature under thermal equilibrium in elevated temperature instrumented indentation testing

    NASA Astrophysics Data System (ADS)

    Hou, X. D.; Alvarez, C. L. M.; Jennett, N. M.

    2017-02-01

    Instrumented indentation testing (IIT) at elevated temperatures has proved to be a useful tool to study plastic and elastic deformation and understand the performance of material components at (or nearer to) the actual temperatures experienced in-service. The value of elevated temperature IIT data, however, depends on the ability not only to achieve a stable, isothermal indentation contact at thermal equilibrium when taking data, but to be able to assign a valid temperature to that contact (and so to the data). The most common method found in the current literature is to use the calculated thermal drift rate as an indicator, but this approach has never been properly validated. This study proves that using the thermal drift rate to determine isothermal contact may lead to large errors in the determination of the real contact temperature. Instead, a more sensitive and validated method is demonstrated, based upon using the indenter tip and the tip heater control thermocouple as a reproducible and calibrated contact temperature sensor. A simple calibration procedure is described, along with step by step guidance to establish an isothermal contact at a known temperature under thermal equilibrium when conducting elevated temperature IIT experiments.

  6. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packaging for certain elevated temperature... Than Class 1 and Class 7 § 173.247 Bulk packaging for certain elevated temperature materials. When... constructed of carbon steel which is in elevated temperature material service is excepted from §...

  7. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packaging for certain elevated temperature... Than Class 1 and Class 7 § 173.247 Bulk packaging for certain elevated temperature materials. When... constructed of carbon steel which is in elevated temperature material service is excepted from §...

  8. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packaging for certain elevated temperature... Than Class 1 and Class 7 § 173.247 Bulk packaging for certain elevated temperature materials. When... constructed of carbon steel which is in elevated temperature material service is excepted from §...

  9. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packaging for certain elevated temperature... Than Class 1 and Class 7 § 173.247 Bulk packaging for certain elevated temperature materials. When... constructed of carbon steel which is in elevated temperature material service is excepted from §...

  10. Microscopic evaluation of vesicles shed by erythrocytes at elevated temperatures.

    PubMed

    Moore, Timothy; Sorokulova, Iryna; Pustovyy, Oleg; Globa, Ludmila; Pascoe, David; Rudisill, Mary; Vodyanoy, Vitaly

    2013-11-01

    The images of human erythrocytes and vesicles were analyzed by a light microscopy system with spatial resolution of better than 90 nm. The samples were observed in an aqueous environment and required no freezing, dehydration, staining, shadowing, marking, or any other manipulation. Temperature elevation resulted in significant concentration increase of structurally transformed erythrocytes (echinocytes) and vesicles in the blood. The process of vesicle separation from spiculated erythrocytes was video recorded in real time. At a temperature of 37°C, mean vesicle concentrations and diameters were found to be 1.50 ± 0.35 × 10(6) vesicles per microliter and 0.365 ± 0.065 μm, respectively. The vesicle concentration increased approximately threefold as the temperature increased from 37 to 40°C. It was estimated that 80% of all vesicles found in the blood are smaller than 0.4 μm. Accurate account of vesicle numbers and dimensions suggest that 86% of the lost erythrocyte material is lost not by vesiculation but by another, as yet, unknown mechanism.

  11. Electromigration in Sintered Nanoscale Silver Films at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Calata, Jesus N.; Lu, Guo-Quan; Ngo, Khai; Nguyen, Luu

    2014-01-01

    Sintered nanoscale silver is a promising interconnection material for semiconductor devices because it provides improved joint properties compared with solder and wire bonds. It has higher electrical and thermal conductivity and is capable of higher operating temperature. Joints with die shear strength above 20 MPa can be formed at around 250°C even without applied pressure. Sintered silver joints were also found to be an order of magnitude more reliable than solder joints and wire bonds. In this work, the electromigration behavior of sintered nanosilver material under conditions of high applied current density and elevated temperature was investigated. Thin strips of sintered nanosilver formed on ceramic substrates were tested under current densities exceeding 150 kA/cm2 at temperatures of 150°C and above. Results based on the percentage change in sample resistance showed that the sintered silver lasted at least ten times longer than aluminum wire bonds. Examination of failed strips revealed that hairline cracks formed during sintering were the main cause of failure. Otherwise, defect-free samples exhibited a 10-fold increase in lifetime over wire bonds under similar conditions.

  12. Dynamic restoration mechanisms in {alpha}-zirconium at elevated temperatures

    SciTech Connect

    Perez-Prado, M.T. . E-mail: tpprado@cenim.csic.es; Barrabes, S.R.; Kassner, M.E.; Evangelista, E.

    2005-02-01

    The creep behavior of {alpha}-zirconium at high temperatures is not understood. Recently, steady-state stress exponents between 5 and 7 have been suggested over a range of elevated temperatures, indicating the predominance of dislocation climb (dynamic recovery) as the restoration mechanism. However, the activation energies are significantly higher than those of self-diffusion of pure Zr, as expected from climb-controlled mechanisms. This discrepancy and the observations of increased high-angle grain boundary area with straining have been attributed to the possible occurrence of discontinuous recrystallization and/or grain growth as additional restoration mechanisms. Tension, torsion and creep tests to small and large strains were performed at temperatures from 400 to 800 deg C. The microstructure of the deformed samples was characterized by optical microscopy, transmission electron microscopy, as well as texture analysis using X-ray and electron backscatter diffraction. Dynamic recovery through dislocation climb appears to be the prevailing restoration mechanism. The increase in high angle boundary area with larger strains is a consequence of geometric dynamic recrystallization.

  13. Effects of Elevated Temperature on Concrete with Recycled Coarse Aggregates

    NASA Astrophysics Data System (ADS)

    Salau, M. A.; Oseafiana, O. J.; Oyegoke, T. O.

    2015-11-01

    This paper discusses the effects of heating temperatures of 200°C, 400°C and 600°C each for 2 hours at a heating rate of 2.5°C/min on concrete with the content of Natural Coarse Aggregates (NCA) partially replaced with Recycled Coarse Aggregates (RCA), obtained from demolished building in the ratio of 0%, 15% and 30%.There was an initial drop in strength from 100°C to 200°C which is suspected to be due to the relatively weak interfacial bond between the RCA and the hardened paste within the concrete matrix;a gradual increase in strength continued from 200°C to 450°C and steady drop occurred again as it approached 600°C.With replacement proportion of 0%, 15% and 30% of NCA and exposure to peak temperature of 600°C, a relative concrete strength of 23.6MPa, 25.3MPa and 22.2MPa respectively can be achieved for 28 days curing age. Furthermore, RAC with 15% NCA replacement when exposed to optimum temperature of 450°C yielded high compressive strength comparable to that of control specimen (normal concrete). In addition, for all concrete samples only slight surface hairline cracks were noticed as the temperature approached 400°C. Thus, the RAC demonstrated behavior just like normal concrete and may be considered fit for structural use.

  14. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  15. Hot deformation behaviour of alloys for applications at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Voyzelle, Benoit

    The present study investigated the deformation behaviour, microstructure evolution and fracture behaviour under hot working conditions of alloys designed for elevated-temperature applications. For this purpose, iron-aluminum and titanium-aluminum alloys were selected and their compositions are: Fe-8.5wt%Al-5.5Cr-2.0Mo-0.2Zr-0.03C, Fe-16.5Al-5.5Cr-1.0Nb-0.05C and Ti-33.3Al-2.8Mn-4.8Nb. These alloys were tested in the as-cast condition and in the form of hot-rolled + annealed plate for the iron-aluminum alloys and in the HIP'ed condition for the titanium-aluminum alloy. Isothermal compression tests were carried out with a Gleeble 2000 over a range of temperatures from 800 to 1250°C and constant strain rates from 10-3 to 10 s-1. In general, the flow curves are marked by a peak stress and softening which decline as temperature rises, and a flow stress which diminishes with rise in temperature and decrease in strain rate. The flow behaviour at peak stress (sigmap) and 0.5 true strain of these materials was described well by the Zener-Hollomon parameter Z=3˙exp /RTQHW , where Z=K3sinha sn . A numerical curve-fitting method was used to yield values of the following parameters: (i) stress exponent, n and (ii) activation energy, QHW . The dynamic material modeling approach was performed to extract from hot compression data: (i) the strain rate sensitivity parameter, m, (ii) the efficiency of power dissipation, eta, and (iii) the instability parameter, xi. The microstructure evolution and fracture behaviour were assessed using optical and electron microscopy. The deformation processes occuring were determined by correlation of the sigma-epsilon curves, m and microstructural observations. The resulting deformation map indicates that at lower temperatures and higher strain rates, the dominant restoration occurs by dynamic recovery, while at lower strain rates and higher temperatures dynamic recrystallization is the operative mode. At the highest temperatures, dynamic

  16. Shorter duration of breastfeeding at elevated exposures to perfluoroalkyl substances.

    PubMed

    Timmermann, Clara Amalie Gade; Budtz-Jørgensen, Esben; Petersen, Maria Skaalum; Weihe, Pál; Steuerwald, Ulrike; Nielsen, Flemming; Jensen, Tina Kold; Grandjean, Philippe

    2017-03-01

    The aim of this study was to determine whether maternal exposure to persistent perfluoroalkyl substances (PFASs) affect the capability to breastfeed. In two Faroese birth cohorts (N=1130), concentrations of five PFASs were measured in maternal serum during pregnancy or two weeks after term. Duration of breastfeeding was assessed by questionnaire and clinical interview. In adjusted linear regression models, a doubling of maternal serum PFASs was associated with a reduction in duration of both total and exclusive breastfeeding, most pronounced for perfluorooctane sulfonic acid (PFOS) where a doubling was associated with a reduction in total breastfeeding of 1.4 (95% CI: 0.6; 2.1) months and perfluorooctanoic acid (PFOA) where a doubling was associated with a reduction in exclusive breastfeeding of 0.5 (0.3; 0.7) months. The associations were evident among both primiparous and multiparous women, and thus cannot be explained by confounding from previous breastfeeding.

  17. ELEVATED CO2 AND ELEVATED TEMPERATURE AFFECT CARBON AND NITROGEN CONCENTRATIONS BUT NOT ACCUMULATION IN PSEUDOTSUGA MENZIESII SEEDLINGS

    EPA Science Inventory

    To determine the impact of climate change on concentrations and accumulation of C and N in trees, we grew Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings treated with ambient or elevated (+180 mol mol-1) CO2, and with ambient or elevated (+3.5 C) temperature for f...

  18. The Effects of Elevated pCO2, Hypoxia and Temperature on ...

    EPA Pesticide Factsheets

    Estuarine fish are acclimated to living in an environment with rapid and frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels; the physiology of these organisms is well suited to cope with extreme thermal, hypercapnic, and hypoxic stress. While the adverse effects of low dissolved oxygen levels on estuarine fish has been well-documented, the interaction between low DO and elevated pCO2 is not well understood. There is some evidence that low DO and elevated pCO2 interact antagonistically, however little information exists on how projected changes of pCO2 levels in near-shore waters may affect estuarine species, and how these changes may specifically interact with dissolved oxygen and temperature. We explored the survivability of 7-day post fertilization sheepshead minnow, Cyprinodon variegatus, using short term exposure to the combined effects of elevated pCO2 (~1300 µatm; IPCC RCP 8.5) and low dissolved oxygen levels (~2 mg/L). Additionally, we determined if the susceptibility of these fish to elevated pCO2 and low DO was influenced by increases in temperature from 27.5°C to 35°C. Results from this study and future studies will be used to identify estuarine species and lifestages sensitive to the combined effects of elevated pCO2 and low dissolved oxygen. This project was created in order to better understand the interactive effects of projected pCO2 levels and hypoxia in estuarine organisms. This work is currently focused on the se

  19. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius.

    PubMed

    Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing; Zhao, Chong

    2017-01-01

    Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming.

  20. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius

    PubMed Central

    Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing

    2017-01-01

    Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming. PMID:28348933

  1. DDT in fuel air mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Card, J.; Rival, D.; Ciccarelli, G.

    2005-11-01

    An experimental study was carried out to investigate flame acceleration and deflagration-to-detonation transition (DDT) in fuel air mixtures at initial temperatures up to 573 K and pressures up to 2 atm. The fuels investigated include hydrogen, ethylene, acetylene and JP-10 aviation fuel. The experiments were performed in a 3.1-m long, 10-cm inner-diameter heated detonation tube equipped with equally spaced orifice plates. Ionization probes were used to measure the flame time-of-arrival from which the average flame velocity versus propagation distance could be obtained. The DDT composition limits and the distance required for the flame to transition to detonation were obtained from this flame velocity data. The correlation developed by Veser et al. (run-up distance to supersonic flames in obstacle-laden tubes. In the proceedings of the 4th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, France (2002)) for the flame choking distance proved to work very well for correlating the detonation run-up distance measured in the present study. The only exception was for the hydrogen air data at elevated initial temperatures which tended to fall outside the scatter of the hydrocarbon mixture data. The DDT limits obtained at room temperature were found to follow the classical d/λ = 1 correlation, where d is the orifice plate diameter and λ is the detonation cell size. Deviations found for the high-temperature data could be attributed to the one-dimensional ZND detonation structure model used to predict the detonation cell size for the DDT limit mixtures. This simple model was used in place of actual experimental data not currently available.

  2. Elevated Temperature Compressive Properties of Zr-Modified Nial

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Noebe, R. D.

    1996-01-01

    Small Zr additions are known to substantially affect the deformation behavior and strength of polycrystalline NiAl, yet little information is currently available regarding the high-temperature properties of such alloys. Utilizing prealloyed powder technology, a series of four NiAl alloys have been produced containing from 0.05 to 0.7 at. pct Zr. The creep behavior of these alloys was characterized in compression between 1000 and 1400 K at strain rates ranging from approx. O.1 to 10(exp -9)/ sec. All the Zr-modified alloys were significantly stronger than binary NiAl under lower temperature and faster strain-rate conditions; however, the single-phase materials (Zr less than or equal to 0.1 at. pct) and binary NiAl had similar strengths at high temperatures and slow strain rates. The two-phase NiAl-Ni, AlZr alloys containing 0.3 and 0.7 at. pct Zr had nearly identical strengths. While the two-phase alloys were stronger than the single-phase materials at all test conditions, the degree of microstructural damage in the two-phase alloys due to internal oxidation during testing appeared to increase with Zr level. Balancing the poor oxidation behavior with the consistent strength advantage of the two-phase alloys, it is concluded that optimum elevated-temperature properties could be obtained in Heusler-strengthened NiAl containing between 0.1 and 0.3 at. pct Zr.

  3. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo

    2003-09-01

    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.

  4. Elevated temperature creep properties for selected active metal braze alloys

    SciTech Connect

    Stephens, J.J.

    1997-02-01

    Active metal braze alloys reduce the number of processes required for the joining of metal to ceramic components by eliminating the need for metallization and/or Ni plating of the ceramic surfaces. Titanium (Ti), V, and Zr are examples of active element additions which have been used successfully in such braze alloys. Since the braze alloy is expected to accommodate thermal expansion mismatch strains between the metal and ceramic materials, a knowledge of its elevated temperature mechanical properties is important. In particular, the issue of whether or not the creep strength of an active metal braze alloy is increased or decreased relative to its non-activated counterpart is important when designing new brazing processes and alloy systems. This paper presents a survey of high temperature mechanical properties for two pairs of conventional braze alloys and their active metal counterparts: (a) the conventional 72Ag-28Cu (Cusil) alloy, and the active braze alloy 62.2Ag- 36.2Cu-1.6Ti (Cusil ABA), and (b) the 82Au-18Ni (Nioro) alloy and the active braze alloy Mu-15.5M-0.75Mo-1.75V (Nioro ABA). For the case of the Cusil/Cusil ABA pair, the active metal addition contributes to solid solution strengthening of the braze alloy, resulting in a higher creep strength as compared to the non-active alloy. In the case of the Nioro/Nioro ABA pair, the Mo and V additions cause the active braze alloy to have a two-phase microstructure, which results in a reduced creep strength than the conventional braze alloy. The Garofalo sinh equation has been used to quantitatively describe the stress and temperature dependence of the deformation behavior. It will be observed that the effective stress exponent in the Garofalo sinh equation is a function of the instantaneous value of the stress argument.

  5. Factors Controlling Elevated Temperature Strength Degradation of Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    For 5 years, the cooperative agreement NCC3-763 has focused on the development and understanding of Sic-based composites. Most of the work was performed in the area of SiC fiber-reinforced composites for UEET and NGLT and in collaboration with Goodrich Corporation under a partially reimbursable Space Act Agreement. A smaller amount of work was performed on C fiber-reinforced SiC matrix composites for NGLT. Major accomplishments during this agreement included: Improvements to the interphase used in melt-infiltrated (MI) SiC/SiC composites which increases the life under stressed-oxidation at intermediate temperatures referred to as "outside-debonding". This concept is currently in the patent process and received a Space Act Award. Mechanistic-based models of intermediate temperature degradation for MI SiC/SiC Quantification and relatively robust relationships for matrix crack evolution under stress in SiC/SiC composites which serve as the basis for stress-strain and elevated temperature life models The furthering of acoustic emission as a useful tool in composite damage evolution and the extension of the technique to other composite systems Development of hybrid C-SiC fiber-reinforced SiC matrix composites Numerous presentations at conferences, industry partners, and government centers and publications in recognized proceedings and journals. Other recognition of the author's accomplishments by NASA with a TGIR award (2004), NASA's Medal for Public Service (2004), and The American Ceramic Society s Richard M. Fulrath Award (2005). The following will briefly describe the work of the past five years in the three areas of interest: SiC/SiC composite development, mechanistic understanding and modeling of SiC/SiC composites, and environmental durability of C/SiC composites. More detail can be found in the publications cited at the end of this report.

  6. Mechanisms of time-dependent crack growth at elevated temperature

    SciTech Connect

    Saxena, A.; Stock, S.R.

    1990-04-15

    Objective of this 3-y study was to conduct creep and creep-fatigue crack growth experiments and to characterize the crack tip damage mechanisms in a model material (Cu-1wt%Sb), which is known to cavitate at grain boundaries under creep deformation. Results were: In presence of large scale cavitation damage and crack branching, time rate of creep crack growth da/dt does not correlate with C[sub t] or C[sup *]. When cavitation damage is constrained, da/dt is characterized by C[sub t]. Area fraction of grain boundary cavitated is the single damage parameter for the extent of cavitation damage ahead of crack tips. C[sub t] is used for the creep-fatigue crack growth behavior. In materials prone to rapid cavity nucleation, creep cracks grow faster initially and then reach a steady state whose growth rate is determined by C[sub t]. Percent creep life exhausted correlates with average cavity diameter and fraction of grain boundary area occupied by cavities. Synchrotron x-ray tomographic microscopy was used to image individual cavities in Cu-1wt% Sb. A methodology was developed for predicting the remaining life of elevated temperature power plant components; (C[sub t])[sub avg] was used to correlate creep-fatigue crack growth in Cr-Mo and Cr-Mo-V steel and weldments.

  7. Fretting fatigue of anisotropic materials at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Haradanahalli, Murthy N.

    The purpose of this research is to develop an experimental procedure to characterize the contact between blade and disk in aircraft turbo-machinery and to develop a model to predict the life of components based on contact conditions. An experimental setup has been developed to conduct fretting fatigue tests at 610°C. Fretting fatigue lives are characterized for the contacting pair of IN100 and single crystal nickel subjected to a range of loading conditions. A well characterized set of experiments has been conducted to obtain the friction coefficient in the slip zone. Material principal axes and the crystallographic plane of fracture were determined. A robust quasi-analytical approach, based on solution to singular integral equations, has been used to analyze the contact stresses. Different multi-axial fatigue parameters have been investigated for their ability to predict the initiation life of the specimens, after applying a stressed area correction factor using weakest link approach. Multiaxial fatigue parameters also predicted crack nucleation at the edge of contact, consistent with observations of the fractured specimens. Crack propagation lives were evaluated using conventional fracture mechanics, after making certain assumptions to simplify the problem. Total life was estimated as the sum of nucleation life and propagation life. These predicted lives were compared with experimentally observed failure lives. The quality of the comparison provides confidence in the notion that conventional life prediction tools can be used to assess fretting fatigue at elevated temperatures.

  8. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  9. Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii.

    PubMed

    Strobel, Anneli; Leo, Elettra; Pörtner, Hans O; Mark, Felix C

    2013-09-01

    Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7°C) and hypercapnia- (0.2kPa CO2) acclimation vs. control conditions (1°C, 0.04kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2.

  10. Effects of episodic low aragonite saturation and elevated temperature on the physiology of Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Lürig, M.; Kunzmann, A.

    2015-05-01

    As global climate change is predicted to gradually alter the oceans' carbonate system and water temperature, knowledge about the effects an altered marine environment has on the physiology of reef building (hermatypic) coral species is more widely established. However, although it is recognized that seawater temperature and the carbonate system of a coral reef can change rapidly and with great amplitude, little is known about how the interaction of these natural fluctuations with long term effects of climate change may affect the metabolism and productivity of hermatypic corals. To investigate this, we acclimated the hermatypic coral Stylophora pistillata to a "worst case" scenario for carbon dioxide emissions (aragonite saturation state [ΩARAG] = 1.6), and tested how exposure to short term (24 h) elevated temperature (+ 3 °C) and further lowered ΩARAG (-1 unit) affected its photosynthesis and respiration. While episodic exposure to very low ΩARAG had only little effect on S. pistillata's physiology, short term heat stress caused a shift from net oxygen production to consumption and partial coral bleaching. Higher gross coral respiration, and lowered photosynthetic activity under episodically elevated temperature may have been the result of photoinhibition and partial coral bleaching. These findings suggest that fluctuating environmental conditions in combination with a low ΩARAG background signal may impair basic metabolic processes in calcifying corals. In a future high-CO2 world short term stress could be relevant for reef ecosystem processes, and may affect the resilience of coral reefs to other external influences and effects of climate change.

  11. Heat shock protein concentration and clarity of porcine lenses incubated at elevated temperatures

    PubMed Central

    Dzialoszynski, T. M.; Milne, K.J.; Trevithick, J.R.

    2016-01-01

    Purpose To quantify the concentration of heat shock proteins in lenses in lens organ culture at elevated temperatures, and to examine the relation between elevated temperature and lens clarity. Methods Pig lenses obtained from a local abattoir were dissected aseptically and incubated in medium M199 without serum for 4 days to stabilize, and lenses with protein leakage of less than 10 mg/l were obtained for heat shock exposure. Heat shock was performed by incubation for 1 h in M199 without serum at various temperatures ranging from 37 °C to 55 °C. After incubation for 24 h, cataract blurring of the images was assessed using Scantox™ and Scion Image analysis of the lens photographs. Lens homogenates were subsequently analyzed for Hsp70 and Hsp27 with western blotting. Results The degree of cataract blurring of the images increased with increasing temperature, but the two functional measures provided different results. Focal length inconsistency, as assessed with the back vertex distance standard error of the mean (BVD SEM; the variability in focal lengths measured at 20 equally spaced locations across the lens, Scantox™), increased nearly linearly with the heat treatment temperature. In contrast, decreased clarity, evident by a fuzzy image with lower contrast, was not markedly altered as the temperature rose until a threshold of approximately 47.5 °C. The inducible isoform of the Hsp70 family (Hsp70) of heat shock proteins was increased at all temperatures above the control except those above 50 °C. Changes in Hsp27 were less clear as the protein content increased only at the incubation temperatures of 39 °C and 48.5 °C. Conclusions The porcine lens demonstrates subtle changes in the variability of the focal length, and the variability increases as the incubation temperature rises. In contrast, lens clarity is relatively stable at temperatures up to 47.5 °C, above which dramatic changes, indicative of the formation of cataracts, occur. The lens content

  12. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress

    USGS Publications Warehouse

    Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2001-01-01

    In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium concentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.

  13. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    SciTech Connect

    Naus, Dan J

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  14. Estimation of surface temperature variations due to changes in sky and solar flux with elevation.

    USGS Publications Warehouse

    Hummer-Miller, S.

    1981-01-01

    Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author

  15. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings.

    PubMed

    Chang, Christine Y; Unda, Faride; Zubilewich, Alexandra; Mansfield, Shawn D; Ensminger, Ingo

    2015-01-01

    Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus) under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated temperature (ET, +1.5°C/+3°C during day/night). Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12 h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10 h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20-30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis, enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our field

  16. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings

    PubMed Central

    Chang, Christine Y.; Unda, Faride; Zubilewich, Alexandra; Mansfield, Shawn D.; Ensminger, Ingo

    2015-01-01

    Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus) under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated temperature (ET, +1.5°C/+3°C during day/night). Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12 h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10 h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20–30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis, enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our field

  17. Plant responses to elevational gradients of O sub 3 exposures in Virginia

    SciTech Connect

    Winner, W.E.; Greitner, C.S. ); Lefohn, A.S.; McEvoy, L.R. Jr. ); Cotter, I.S.; Nellessen, J.; Moore, L.D. ); Olson, R.L. ); Atkinson, C.J. )

    1989-11-01

    In Shenandoah National Park, O{sub 3} monitoring data were characterized and attempts were made to relate O{sub 3} concentration levels to visible foliar injury observed for five plant species surveyed. Foliar injury for three species increased with elevation. The 24-h monthly mean O{sub 3} concentrations tended to increase with elevation; however, the number of elevated hourly occurrences did not. Although the frequency of high hourly O{sub 3} concentrations did not consistently increase with elevation, O{sub 3} exposures in the park may have been high enough to provoke an effect that may have been enhanced by vegetation sensitivities that differed as a function of altitude.

  18. Effects of elevated CO(2) and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii).

    PubMed

    Guak, Sunghee; Olsyzk, David M.; Fuchigami, Leslie H.; Tingey, David T.

    1998-10-01

    We examined effects of elevated CO(2) and temperature on cold hardiness and bud burst of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Two-year-old seedlings were grown for 2.5 years in semi-closed, sunlit chambers at either ambient or elevated (ambient + ~ 4 degrees C) air temperature in the presence of an ambient or elevated (ambient + ~ 200 ppm) CO(2) concentration. The elevated temperature treatment delayed needle cold hardening in the autumn and slowed dehardening in the spring. At maximum hardiness, trees in the elevated temperature treatment were less hardy by about 7 degrees C than trees in the ambient temperature treatment. In general, trees exposed to elevated CO(2) were slightly less hardy during hardening and dehardening than trees exposed to ambient CO(2). For trees in the elevated temperature treatments, date to 30% burst of branch terminal buds was advanced by about 6 and 15 days in the presence of elevated CO(2) and ambient CO(2), respectively. After bud burst started, however, the rate of increase in % bud burst was slower in the elevated temperature treatments than in the ambient temperature treatments. Time of bud burst was more synchronous and bud burst was completed within a shorter period in trees at ambient temperature (with and without elevated CO(2)) than in trees at elevated temperature. Exposure to elevated temperature reduced final % bud burst of both leader and branch terminal buds and reduced growth of the leader shoot. We conclude that climatic warming will influence the physiological processes of dormancy and cold hardiness development in Douglas-fir growing in the relatively mild temperate region of western Oregon, reducing bud burst and shoot growth.

  19. Mechanical properties of three-component additive manufactured composites at elevated and cool temperatures

    NASA Astrophysics Data System (ADS)

    Chumaevskii, A. V.; Tarasov, S. Yu.; Eliseev, A. A.; Rubtsov, V. E.; Kolubaev, E. A.

    2016-11-01

    Elevated and cool temperature tensile tests on three-component composite materials made of carbon fibers, thermoplastic and thermosetting bonding agents have been carried out. The results of tests testify the increasing the composite strength at negative temperature -120°C and reducing it at elevated temperature +120°C. The low temperature fracture of samples resulted in formation of numerous small fragments by cracking and delamination in deformation. The high temperature tests produced numerous delaminated fibers.

  20. The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp.

    PubMed Central

    Goulet, Tamar L.; Shirur, Kartick P.; Ramsby, Blake D.; Iglesias-Prieto, Roberto

    2017-01-01

    Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify symbiont, host

  1. The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp.

    PubMed

    Goulet, Tamar L; Shirur, Kartick P; Ramsby, Blake D; Iglesias-Prieto, Roberto

    2017-01-01

    Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify symbiont, host

  2. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    SciTech Connect

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  3. Computation of temperature elevation in rabbit eye irradiated by 2.45-GHz microwaves with different field configurations.

    PubMed

    Hirata, Akimasa; Watanabe, Soichi; Taki, Masao; Fujiwara, Osamu; Kojima, Masami; Sasaki, Kazuyuki

    2008-02-01

    This study calculated the temperature elevation in the rabbit eye caused by 2.45-GHz near-field exposure systems. First, we calculated specific absorption rate distributions in the eye for different antennas and then compared them with those observed in previous studies. Next, we re-examined the temperature elevation in the rabbit eye due to a horizontally-polarized dipole antenna with a C-shaped director, which was used in a previous study. For our computational results, we found that decisive factors of the SAR distribution in the rabbit eye were the polarization of the electromagnetic wave and antenna aperture. Next, we quantified the eye average specific absorption rate as 67 W kg(-1) for the dipole antenna with an input power density at the eye surface of 150 mW cm(-2), which was specified in the previous work as the minimum cataractogenic power density. The effect of administrating anesthesia on the temperature elevation was 30% or so in the above case. Additionally, the position where maximum temperature in the lens appears is discussed due to different 2.45-GHz microwave systems. That position was found to appear around the posterior of the lens regardless of the exposure condition, which indicates that the original temperature distribution in the eye was the dominant factor.

  4. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  5. A National Assessment of Sea Level Rise Exposure Using Lidar Elevation Data

    NASA Astrophysics Data System (ADS)

    Strauss, B.; Kulp, S. A.; Tebaldi, C.

    2014-12-01

    The Third National Climate Assessment addressed sea level rise and aggravated coastal flood exposure in all regions, but was completed before high quality lidar-based elevation data became available throughout the entire coastal United States (excluding Alaska). Here we present what we believe to be the first full national assessment incorporating these data. The assessment includes tabulation of land less than 1-6 m above the local high tide line, and of a wide range of features sitting on that land, including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and a wide range of other infrastructure and critical facilities, as well as EPA-listed facilities that are potential sources of contamination during floods or permanent inundation. Tabulations span from zip code to national levels. Notable patterns include the strong concentration of exposure across multiple scales, with a small number of states accounting for most of the total national exposure; and a small number of zip codes accounting for a large proportion of the exposure within many states. Additionally, different features show different exposure patterns; in one example, land and road miles have relatively high exposure but population and property have relatively low exposure in North Carolina. The assessment further places this exposure analysis in the context of localized sea level rise projections integrated with coastal flood risk.

  6. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    PubMed

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity.

  7. Alterations in gill structure in tropical reef fishes as a result of elevated temperatures

    PubMed Central

    Bowden, A.J.; Gardiner, N.M.; Couturier, C.S.; Stecyk, J.A.W.; Nilsson, G.E.; Munday, P.L.; Rummer, J.L.

    2015-01-01

    Tropical regions are expected to be some of the most affected by rising sea surface temperatures (SSTs) because seasonal temperature variations are minimal. As temperatures rise, less oxygen dissolves in water, but metabolic requirements of fish and thus, the demand for effective oxygen uptake, increases. Gill remodelling is an acclimation strategy well documented in freshwater cyprinids experiencing large seasonal variations in temperature and oxygen as well as an amphibious killifish upon air exposure. However, no study has investigated whether tropical reef fishes remodel their gills to allow for increased oxygen demands at elevated temperatures. We tested for gill remodelling in five coral reef species (Acanthochromis polyacanthus, Chromis atripectoralis, Pomacentrus moluccensis, Dascyllus melanurus and Cheilodipterus quinquelineatus) from populations in northern Papua New Guinea (2° 35.765′ S; 150° 46.193′ E). Fishes were acclimated for 12-14 days to 29 and 31 °C, encompassing their seasonal range (29-31 °C), and 33 and 34 °C to account for end-of-century predicted temperatures. We measured lamellar perimeter, cross-sectional area, base thickness, and length for five filaments on the 2nd gill arches and qualitatively assessed 3rd gill arches via scanning electron microscopy (SEM). All species exhibited significant differences in the quantitative measurements made on the lamellae, but no consistent trends with temperature were observed. SEM only revealed alterations in gill morphology in P. moluccensis. The overall lack of changes in gill morphology with increasing temperature suggests that these near-equatorial reef fishes may fail to maintain adequate O2 uptake under future climate scenarios unless other adaptive mechanisms are employed. PMID:24862962

  8. Use of remotely sensed land surface temperature as a proxy for air temperatures at high elevations: Findings from a 5000 m elevational transect across Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Maeda, E. E.; Williams, R.

    2016-09-01

    High elevations are thought to be warming more rapidly than lower elevations, but there is a lack of air temperature observations in high mountains. This study compares instantaneous values of land surface temperature (10:30/22:30 and 01:30/13:30 local solar time) as measured by Moderate Resolution Imaging Spectroradiometer MOD11A2/MYD11A2 at 1 km resolution from the Terra and Aqua platforms, respectively, with equivalent screen-level air temperatures (in the same pixel). We use a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m, one of the biggest elevational ranges in the world. There are substantial differences between LST and Tair, sometimes up to 20°C. During the day/night land surface temperature tends to be higher/lower than Tair. LST-Tair differences (ΔT) show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope which faces the morning Sun. Differences are larger in the dry seasons (JF and JJAS) and reduce in cloudy seasons. Healthier vegetation (as measured by normalized difference vegetation index) and increased humidity lead to reduced daytime surface heating above air temperature and lower ΔT, but these relationships weaken with elevation. At high elevations transient snow cover cools LST more than Tair. The predictability of ΔT therefore reduces. It will therefore be challenging to use satellite data at high elevations as a proxy for in situ air temperatures in climate change assessments, especially for daytime Tmax. ΔT is smaller and more consistent at night, so it will be easier to use LST to monitor changes in Tmin.

  9. Nicotine and elevated body temperature reduce the complexity of the genioglossus and diaphragm EMG signals in rats during early maturation

    NASA Astrophysics Data System (ADS)

    Akkurt, David; Akay, Yasemin M.; Akay, Metin

    2009-10-01

    In this paper, we examined the effect of nicotine exposure and increased body temperature on the complexity (dynamics) of the genioglossus muscle (EMGg) and the diaphragm muscle (EMGdia) to explore the effects of nicotine and hyperthermia. Nonlinear dynamical analysis of the EMGdia and EMGg signals was performed using the approximate entropy method on 15 (7 saline- and 8 nicotine-treated) juvenile rats (P25-P35) and 19 (11 saline- and 8 nicotine-treated) young adult rats (P36-P44). The mean complexity values were calculated over the ten consecutive breaths using the approximate entropy method during mild elevated body temperature (38 °C) and severe elevated body temperature (39-40 °C) in two groups. In the first (nicotine) group, rats were treated with single injections of nicotine enough to produce brain levels of nicotine similar to those achieved in human smokers (2.5 (mg kg-1)/day) until the recording day. In the second (control) group, rats were treated with injections of saline, beginning at postnatal 5 days until the recording day. Our results show that warming the rat by 2-3 °C and nicotine exposure significantly decreased the complexity of the EMGdia and EMGg for the juvenile age group. This reduction in the complexity of the EMGdia and EMGg for the nicotine group was much greater than the normal during elevated body temperatures. We speculate that the generalized depressive effects of nicotine exposure and elevated body temperature on the respiratory neural firing rate and the behavior of the central respiratory network could be responsible for the drastic decrease in the complexity of the EMGdia and EMGg signals, the outputs of the respiratory neural network during early maturation.

  10. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.

    PubMed

    Salazar-Parra, Carolina; Aranjuelo, Iker; Pascual, Inmaculada; Erice, Gorka; Sanz-Sáez, Álvaro; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Araus, José Luis; Morales, Fermín

    2015-02-01

    Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700ppm vs. ambient, ca. 400ppm), temperature (ambient vs. elevated, ambient +4°C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment (13)C isotopic composition (δ(13)C) under elevated CO2 (from -10.30 to -24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress.

  11. 'Effects of Elevated Temperature on Dehalococcoides Dechlorination Performance and DNA and RNA Biomarker Abundance

    SciTech Connect

    Fletcher, Kelly E; Costanza, Jed; Cruz-Garcia, Claribel; Ramaswamy, Nivedhya; Pennell, Kurt; Loeffler, Frank E

    2011-01-01

    Coupling thermal treatment with microbial reductive dechlorination is a promising remedy for tetrachloroethene (PCE) and trichloroethene (TCE) contaminated source zones. Laboratory experiments evaluated Dehalococcoides (Dhc) dechlorination performance, viability, and biomarker gene (DNA) and transcript (mRNA) abundances during exposure to elevated temperatures. The PCE-dechlorinating consortia BDI and OW produced ethene when incubated at temperatures of 30 C, but vinyl chloride (VC) accumulated when cultures were incubated at 35 or 40 C. Cultures incubated at 40 C for less than 49 days resumed VC dechlorination following cooling; however, incubation at 45 C resulted in complete loss of dechlorination activity. Dhc 16S rRNA, bvcA, and vcrA gene abundances in cultures showing complete dechlorination to ethene at 30 C exceeded those measured in cultures incubated at higher temperatures, consistent with observed dechlorination activities. Conversely, biomarker gene transcript abundances per cell in cultures incubated at 35 and 40 C were generally at least one order-of-magnitude greater than those measured in ethene-producing cultures incubated at 30 C. Even in cultures accumulating VC, transcription of the vcrA gene, which is implicated in VC-to-ethene dechlorination, was up-regulated. Temperature stress caused the up-regulation of Dhc reductive dehalogenase gene expression indicating that Dhc gene expression measurements should be interpreted cautiously as Dhc biomarker gene transcript abundances may not correlate with dechlorination activity.

  12. Defect Monitoring at Elevated Temperatures (>500 °C) Using AN Array of Ultrasonic Waveguides

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J. C.; Cegla, F. B.

    2011-06-01

    This paper describes the development of an array of ultrasonic waveguides that can be permanently installed on high temperature pipework. The work was motivated by the need for monitoring of thermal fatigue cracks in power station boiler outlet pipes. The defect monitoring concept is described and simulated results are presented for the operating envelope of the array. The effects of component geometry, array location and signal to noise ratios on measured defect size were investigated. Results show that the array is capable of measuring defects ranging from the size of an ultrasonic wavelength to 40 percent thickness of the component to within ±0.2 mm of the defect length. Experimental tests using a prototype array attached to a 30 mm thick steel plate containing a 5 mm deep and 0.3 mm wide notch in a furnace at 550 °C showed that monitoring at elevated temperatures is possible. A mean defect length of 5.09 mm with standard deviation of 0.13 mm was measured over a 2 week period. Further tests at even higher temperatures (up to 730 °C) were used to accelerate creep in the attachment mechanism and showed that long-term exposure to temperatures at 550 °C should not have a detrimental effect on the system.

  13. Effects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc.

    PubMed

    Domenici, Paolo; Torres, Rodrigo; Manríquez, Patricio H

    2017-02-15

    Recent work has shown that the behaviour of marine organisms can be affected by elevated PCO2 , although little is known about the effect of multiple stressors. We therefore investigated the effect of elevated PCO2  and temperature on locomotion and behaviour during prey searching in the marine gastropod Concholepas concholepas, a predator characteristic of the southeastern Pacific coast. Movement duration, decision time, route finding and lateralization were measured using a T-maze tank with a prey positioned behind a barrier. Four treatments, representing present day and near-future scenarios of ocean acidification and warming were used in rearing the individuals for 6 months. Regardless of the treatment, no significant differences were found in relative and absolute lateralization before and after exposure for 6 months. However, relative lateralization was not repeatable for animals tested after 6 months at elevated PCO2  at both experimental temperatures, whereas it was repeatable in individuals kept at the present day level of PCO2 We suggest that these effects may be related to a behavioural malfunction caused by elevated PCO2 Movement duration, decision time and route finding were not repeatable. However, movement duration and decision time increased and route finding decreased in elevated PCO2  (at 15°C), suggesting that elevated PCO2  has negative effects on the locomotor and sensory performance of C. concholepas in the presence of a prey odour, thereby decreasing their ability to forage efficiently.

  14. Responses of growth, photosynthesis and VOC emissions of Pinus tabulaeformis Carr. Exposure to elevated CO2 and/or elevated O3 in an urban area.

    PubMed

    Xu, Sheng; Chen, Wei; Huang, Yanqing; He, Xingyuan

    2012-03-01

    Responses of growth, photosynthesis and emission of volatile organic compounds of Pinus tabulaeformis exposed to elevated CO(2) (700 ppm) and O(3) (80 ppb) were studied in open top chambers. Elevated CO(2) increased growth, but it did not significantly (p > 0.05) affect net photosynthetic rate, stomatal conductance, chlorophyll content, the maximum quantum yield of photosystem II, or the effective quantum yield of photosystem II electron transport after 90 d of gas exposure. Elevated O(3) decreased growth (by 42.2% in needle weight and 25.8% in plant height), net photosynthetic rate and stomatal conductance after 90 d of exposure, but its negative effects were alleviated by elevated CO(2). Elevated O(3) significantly (p < 0.05) increased the emission rate of volatile organic compounds, which may be a helpful response to protect photosynthetic apparatus against O(3) damage.

  15. Zeta potential in intact natural sandstones at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Vinogradov, Jan; Jackson, Matthew D.

    2015-08-01

    We report measurements of the zeta potential of natural sandstones saturated with NaCl electrolytes of varying ionic strengths at temperatures up to 150°C. The zeta potential is always negative but decreases in magnitude with increasing temperature at low ionic strength (0.01 M) and is independent of temperature at high ionic strength (0.5 M). The pH also decreases with increasing temperature at low ionic strength but remains constant at high ionic strength. The temperature dependence of the zeta potential can be explained by the temperature dependence of the pH. Our findings are consistent with published models of the zeta potential, so long as the temperature dependence of the pH at low ionic strength is accounted for and can explain the hitherto contradictory results reported in previous studies.

  16. Physiological ecology of desert biocrust moss following 10 years exposure to elevated CO₂: evidence for enhanced photosynthetic thermotolerance.

    PubMed

    Coe, Kirsten K; Belnap, Jayne; Grote, Edmund E; Sparks, Jed P

    2012-04-01

    In arid regions, biomes particularly responsive to climate change, mosses play an important biogeochemical role as key components of biocrusts. Using the biocrust moss Syntrichia caninervis collected from the Nevada Desert Free Air CO₂ Enrichment Facility, we examined the physiological effects of 10 years of exposure to elevated CO₂, and the effect of high temperature events on the photosynthetic performance of moss grown in CO₂-enriched air. Moss exposed to elevated CO₂ exhibited a 46% decrease in chlorophyll, a 20% increase in carbon and no difference in either nitrogen content or photosynthetic performance. However, when subjected to high temperatures (35-40°C), mosses from the elevated CO₂ environment showed higher photosynthetic performance and photosystem II (PSII) efficiency compared to those grown in ambient conditions, potentially reflective of a shift in nitrogen allocation to components that offer a higher resistance of PSII to heat stress. This result suggests that mosses may respond to climate change in markedly different ways than vascular plants, and observed CO₂-induced photosynthetic thermotolerance in S. caninervis will likely have consequences for future desert biogeochemistry.

  17. Physiological ecology of desert biocrust moss following 10 years exposure to elevated CO2: evidence for enhanced photosynthetic thermotolerance

    USGS Publications Warehouse

    Coe, Kirsten K.; Belnap, Jayne; Grote, Edmund E.; Sparks, Jed P.

    2012-01-01

    In arid regions, biomes particularly responsive to climate change, mosses play an important biogeochemical role as key components of biocrusts. Using the biocrust moss Syntrichia caninervis collected from the Nevada Desert Free Air CO2 Enrichment Facility, we examined the physiological effects of 10 years of exposure to elevated CO2, and the effect of high temperature events on the photosynthetic performance of moss grown in CO2-enriched air. Moss exposed to elevated CO2 exhibited a 46% decrease in chlorophyll, a 20% increase in carbon and no difference in either nitrogen content or photosynthetic performance. However, when subjected to high temperatures (35–40°C), mosses from the elevated CO2 environment showed higher photosynthetic performance and photosystem II (PSII) efficiency compared to those grown in ambient conditions, potentially reflective of a shift in nitrogen allocation to components that offer a higher resistance of PSII to heat stress. This result suggests that mosses may respond to climate change in markedly different ways than vascular plants, and observed CO2-induced photosynthetic thermotolerance in S. caninervis will likely have consequences for future desert biogeochemistry.

  18. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  19. Higher daytime leaf temperatures contribute to lower freeze tolerance under elevated CO2.

    PubMed

    Loveys, Beth R; Egerton, John J G; Ball, Marilyn C

    2006-06-01

    Elevated atmospheric CO2 adversely affects freezing tolerance in many evergreens, but the underlying mechanism(s) have been elusive. We compared effects of elevated CO2 with those of daytime warming on acclimation of snow gum (Eucalyptus pauciflora) to freezing temperatures under field conditions. Reduction in stomatal conductance g(c) under elevated CO2 was shown to cause leaf temperature to increase by up to 3 degrees C. In this study, this increase in leaf temperature was simulated under ambient CO2 conditions by using a free air temperature increase (FATI) system to warm snow gum leaves during daytime, thereby increasing the diurnal range in temperature without affecting temperature minima. Acclimation to freezing temperatures was assessed using measures of electrolyte leakage and photosynthetic efficiency of leaf discs exposed to different nadir temperatures. Here, we show that both elevated CO2 and daytime warming delayed acclimation to freezing temperatures for 2-3 weeks after which time freeze tolerance of the treated plants in both the FATI and open top chamber (OTC) experiments did not differ from control plants. Our results support the hypothesis that delayed development of freezing tolerance under elevated CO2 is because of higher daytime leaf temperatures under elevated CO2. Thus, potential gains in productivity in response to increasing atmospheric CO2 and prolonging the growing season may be reduced by an increase in freezing stress in frost-prone area.

  20. Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills.

    PubMed

    Jafari, Navid H; Stark, Timothy D; Thalhamer, Todd

    2017-01-01

    Elevated temperatures in waste containment facilities can pose health, environmental, and safety risks because they generate toxic gases, pressures, leachate, and heat. In particular, MSW landfills undergo changes in behavior that typically follow a progression of indicators, e.g., elevated temperatures, changes in gas composition, elevated gas pressures, increased leachate migration, slope movement, and unusual and rapid surface settlement. This paper presents two MSW landfill case studies that show the spatial and time-lapse movements of these indicators and identify four zones that illustrate the transition of normal MSW decomposition to the region of elevated temperatures. The spatial zones are gas front, temperature front, and smoldering front. The gas wellhead temperature and the ratio of CH4 to CO2 are used to delineate the boundaries between normal MSW decomposition, gas front, and temperature front. The ratio of CH4 to CO2 and carbon monoxide concentrations along with settlement strain rates and subsurface temperatures are used to delineate the smoldering front. In addition, downhole temperatures can be used to estimate the rate of movement of elevated temperatures, which is important for isolating and containing the elevated temperature in a timely manner.

  1. Response of sunshine bass to ration at elevated culture temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature and ammonia increase dramatically during summer production of sunshine bass. Global temperatures are projected to increase. A factorial experiment investigated the effects of three digestible protein (DP; 33, 40, 47%), two lipid (L; 10, 18 %) and two ration levels (satiation, restricted)...

  2. Large-amplitude random plate vibration at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Jon

    1993-04-01

    At elavated temperatures the dynamics of vibrating plate (or shell) must include the three thermal effects: (i) the global expansion by uniform plate temperature, (ii) the local expansion by temperature variation over the plate, and (iii) the thermal moment induced by temperature gradient across the plate thickness. For the single-mode prototype model of Galerkin representation, (i) and (ii) gives rise to the combined stiffness that is responsible for thermal buckling, whereas (iii) contributes to the combined forcing of acoustic and thermal excitations. For the high-temperature sonic fatigue test facility being fabricated at the Wright Laboratory, the present study provides the mean square estimates on transverse displacement and normal strain/stress by the equivalent linearization technique.

  3. Interactive effects of elevated temperature and CO(2) levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria).

    PubMed

    Matoo, Omera B; Ivanina, Anna V; Ullstad, Claus; Beniash, Elia; Sokolova, Inna M

    2013-04-01

    Marine bivalves such as the hard shell clams Mercenaria mercenaria and eastern oysters Crassostrea virginica are affected by multiple stressors, including fluctuations in temperature and CO2 levels in estuaries, and these stresses are expected to be exacerbated by ongoing global climate change. Hypercapnia (elevated CO2 levels) and temperature stress can affect survival, growth and development of marine bivalves, but the cellular mechanisms of these effects are not yet fully understood. In this study, we investigated whether oxidative stress is implicated in cellular responses to elevated temperature and CO2 levels in marine bivalves. We measured the whole-organism standard metabolic rate (SMR), total antioxidant capacity (TAOC), and levels of oxidative stress biomarkers in the muscle tissues of clams and oysters exposed to different temperatures (22 and 27°C) and CO2 levels (the present day conditions of ~400ppm CO2 and 800ppm CO2 predicted by a consensus business-as-usual IPCC emission scenario for the year 2100). SMR was significantly higher and the antioxidant capacity was lower in oysters than in clams. Aerobic metabolism was largely temperature-independent in these two species in the studied temperature range (22-27°C). However, the combined exposure to elevated temperature and hypercapnia led to elevated SMR in clams indicating elevated costs of basal maintenance. No persistent oxidative stress signal (measured by the levels of protein carbonyls, and protein conjugates with malondialdehyde and 4-hydroxynonenal) was observed during the long-term exposure to moderate warming (+5°C) and hypercapnia (~800ppm CO2). This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects of elevated CO2 and temperature must be explained by other cellular mechanisms.

  4. Elevated Temperature Fatigue Endurance of Three Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Verrilli, Michael J.

    2007-01-01

    High-cycle fatigue endurance of three candidate materials for the acoustic liners of the Enabling Propulsion Materials Nozzle Program was investigated. The ceramic matrix composite materials investigated were N720/AS (Nextel 720, 3M Corporation), Sylramic S200 (Dow Corning), and UT 22. High-cycle fatigue tests were conducted in air at 910 C on as-machined specimens and on specimens subjected to tensile cyclic load excursions every 160 hr followed by thermal exposure at 910 C in a furnace up to total exposure times of 2066 and 4000 hr. All the fatigue tests were conducted in air at 100 Hz with a servohydraulic test machine. In the as-machined condition, among the three materials investigated only the Sylramic S200 exhibited a deterministic type of high-cycle fatigue behavior. Both the N720/AS and UT-22 exhibited significant scatter in the experimentally observed high-cycle fatigue lives. Among the thermally exposed specimens, N720/AS and Sylramic S200 materials exhibited a reduction in the high-cycle fatigue lives, particularly at the exposure time of 4000 hr.

  5. Shell structures in aluminum nanocontacts at elevated temperatures

    PubMed Central

    2012-01-01

    Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572

  6. Undercoat prevents blistering of silver plating at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1967-01-01

    Gold undercoat prevents blistering in the silver plating of Inconel 718 seals from steam at high temperatures. The undercoat is diffused into the surface of the parent metal by baking prior to silver plating.

  7. Hardness of polycrystalline tungsten and molybdenum oxides at elevated temperatures

    SciTech Connect

    Lee, M.; Flom, D.G. . Corporate Research and Development Center)

    1990-07-01

    Vickers hardness of WO{sub 3} W{sub 18}O{sub 49} and MoO{sub 2} is reported for temperatures up to 800{degrees}C. Polycrystalline samples of the oxides were prepared by hot-pressing, and hardness was determined using a Vickers hardness tester modified for high-temperature applications. The hardness of a heavily deformed tungsten rod was also measured as a reference.

  8. Polymeric Binders which Reversibly Dissociate at Elevated Temperatures

    DTIC Science & Technology

    1978-05-01

    materials must be used which are capable of regenerating the free isocyana.e on heating and will not undergo undesirable side reactions . The most widely...such as imidazole, indazole and benzotriazole, exhibit a marked tendency to dissociate at temperatures as low as 80*C to 100*C. With 4,5...only undergo a Diels-Alder reaction at room temperature with a variety of dienes, but it will also react with other functional groups. Many of these

  9. Fluorescence spectroscopy of anisole at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Tran, K. H.; Morin, C.; Kühni, M.; Guibert, P.

    2014-06-01

    Laser-induced fluorescence of anisole as tracer of isooctane at an excitation wavelength of 266 nm was investigated for conditions relevant to rapid compression machine studies and for more general application of internal combustion engines regarding temperature, pressure, and ambient gas composition. An optically accessible high pressure and high temperature chamber was operated by using different ambient gases (Ar, N2, CO2, air, and gas mixtures). Fluorescence experiments were investigated at a large range of pressure and temperature (0.2-4 MPa and 473-823 K). Anisole fluorescence quantum yield decreases strongly with temperature for every considered ambient gas, due to efficient radiative mechanisms of intersystem crossing. Concerning the pressure effect, the fluorescence signal decreases with increasing pressure, because increasing the collisional rate leads to more important non-radiative collisional relaxation. The quenching effect is strongly efficient in oxygen, with a fluorescence evolution described by Stern-Volmer relation. The dependence of anisole fluorescence versus thermodynamic parameters suggests the use of this tracer for temperature imaging in specific conditions detailed in this paper. The calibration procedure for temperature measurements is established for the single-excitation wavelength and two-color detection technique.

  10. Phonons in Si24 at simultaneously elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Tong, Xiao; Xu, Xiaolin; Fultz, B.; Zhang, Haidong; Strobel, Timothy A.; Kim, Duck Young

    2017-03-01

    Raman spectroscopy was used to measure the frequencies of phonons in Si24 with an open clathrate structure at temperatures from 80 to 400 K with simultaneous pressures of 0 to 8 GPa. The frequency shifts of the different phonons were substantially different under either temperature or pressure. The quasiharmonic behavior was isolated by varying pressure at low temperatures, and the anharmonic behavior was isolated by varying temperature at low pressures. Phonon modes dominated by bond bending were anomalous, showing stiffening with temperature and softening with pressure. Both the quasiharmonic behavior and the anharmonic behavior changed markedly with simultaneous changes in temperature Δ T and pressure Δ P . With Δ T =320 K and Δ P =8 GPa , some frequency shifts that scaled with the product Δ T Δ P were as large as the shifts from Δ T and Δ P alone. The thermodynamic entropy of this material likely has a dependence on Δ T and Δ P that cannot be obtained by adding effects from quasiharmonicity and phonon-phonon anharmonicity.

  11. Automation of the temperature elevation test in transformers with insulating oil.

    PubMed

    Vicente, José Manuel Esteves; Rezek, Angelo José Junqueira; de Almeida, Antonio Tadeu Lyrio; Guimarães, Carlos Alberto Mohallem

    2008-01-01

    The automation of the temperature elevation test is outlined here for both the oil temperature elevation and the determination of the winding temperature elevation. While automating this test it is necessary to use four thermometers, one three-phase wattmeter, a motorized voltage variator and a Kelvin bridge to measure the resistance. All the equipments must communicate with a microcomputer, which will have the test program implemented. The system to be outlined here was initially implemented in the laboratory and, due to the good results achieved, is already in use in some transformer manufacturing plants.

  12. Elevated temperature stress strain behavior of beryllium powder product

    SciTech Connect

    Abeln, S.P.; Field, R.; Mataya, M.C.

    1995-09-01

    Several grades of beryllium powder product were tested under isothermal conditions in compression over a temperature range of room temperature to 1000 C and a strain rate range from 0.001 s{sup {minus}1} to 1 s{sup {minus}1}. Samples were compressed to a total strain of 1 (64% reduction in height). It is shown that all the grades are strain rate sensitive and that strain rate sensitivity increases with temperature. Yield points were exhibited by some grades up to a temperature of 500 C, and appeared to be primarily dependent on prior thermal history which determined the availability of mobile dislocations. Serrated flow in the form of stress drops was seen in all the materials tested and was most pronounced at 500 C. The appearance and magnitude of the stress drops were dependent on accumulated strain, strain rate, sample orientation, and composition. The flow stress and shape of the flow curves differed significantly from grade to grade due to variations in alloy content, the size and distribution of BeO particles, aging precipitates, and grain size. The ductile-brittle transition temperature (DBTT) was determined for each grade of material and shown to be dependent on composition and thermal treatment. Structure/property relationships are discussed using processing history, microscopy (light and transmission), and property data.

  13. Technology for Elevated Temperature Tests of Structural Panels

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1999-01-01

    A technique for full-field measurement of surface temperature and in-plane strain using a single grid imaging technique was demonstrated on a sample subjected to thermally-induced strain. The technique is based on digital imaging of a sample marked by an alternating line array of La2O2S:Eu(+3) thermographic phosphor and chromium illuminated by a UV lamp. Digital images of this array in unstrained and strained states were processed using a modified spin filter. Normal strain distribution was determined by combining unstrained and strained grid images using a single grid digital moire technique. Temperature distribution was determined by ratioing images of phosphor intensity at two wavelengths. Combined strain and temperature measurements demonstrated on the thermally heated sample were DELTA-epsilon = +/- 250 microepsilon and DELTA-T = +/- 5 K respectively with a spatial resolution of 0.8 mm.

  14. Gasification Reaction Characteristics of Ferro-Coke at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Jian-liang; Gao, Bing

    2017-01-01

    In this paper, the effects of temperature and atmosphere on the gasification reaction of ferro-coke were investigated in consideration of the actual blast furnace conditions. Besides, the microstructure of the cokes was observed by scanning electron microscope (SEM). It is found that the weight loss of ferro-coke during the gasification reaction is significantly enhanced in the case of increasing either the reaction temperature or the CO2 concentration. Furthermore, compared with the normal type of metallurgical coke, ferro-coke exhibits a higher weight loss when they are gasified at the same temperature or under the same atmosphere. As to the microstructure, inside the reacted ferro-coke are a large amount of pores. Contrary to the normal coke, the proportions of the large-size pores and the through holes are greatly increased after gasification, giving rise to thinner pore walls and hence a degradation in coke strength after reaction (CSR).

  15. Behavior of reinforcement SCC beams under elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fathi, Hamoon; Farhang, Kianoosh

    2015-09-01

    This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.

  16. Wear Potential Due to Low EHD Films During Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Leville, Alan; Ward, Peter

    2014-01-01

    An earlier study showed that EHD films could be accurately measured in a running bearing and that the EHD film eventually runs-in to a steady state value [1]. In the present paper, we report on additional tests conducted on bearings with more lubricants, wider speeds, and higher temperatures. The new results consistently show that all lubricants tested, including MAC-based lubricants have EHD film levels that are lower than model predictions in some situations. In addition, the MAC lubricants studied have lower film thickness than traditional hydrocarbons. Figure 1 is taken from [1] and shows room temperature data of MAC oil and Corey 100 oil, illustrating the smaller EHD film results when using this MAC oil. Since higher temperatures produce lower films by changing the viscosity, the concern we have is that the EHD films may be too small to prevent ball/race metal contact and resulting wear at lower speeds. Best bearing practices would have the EHD film thickness be at least three (3) times the composite surface roughness. In this paper, we will present measured EHD thicknesses of lubricant films at speeds up to several thousand RPM for bearing bore sizes from as low as 6 mm (0.2 in) to as large as 35 mm (1.4 in) using MAC, Corey and KG-80. Ambient temperatures from room temperature to 52C (125F) are used. Testing was done with the base oils as well as formulated greases. Greases eventually ran in to the same EHD values as the base oil but took longer times to get there. The results clearly indicate that wear is very possible in all steel bearings when using MAC lubricants and that this condition worsens with higher temperatures and smaller bearing size.

  17. Changes in CdS/CdTe Solar Cells Subjected to Elevated Temperature, Voltage and Illumination

    NASA Astrophysics Data System (ADS)

    Demtsu, Samuel; Nagle, Tim

    2003-10-01

    CdTe/CdS solar cells have been known to exhibit degradation in performance after being subjected to elevated temperature, voltage and illumination. These conditions are collectively referred to as "stress". We have studied and presented CdTe/CdS cell degradation under different stress conditions of devices from First Solar Inc., the University of South Florida and the University of Toledo. All cells were stressed in the light (close to 100 mW/cm2) for 56 days at elevated temperature of 900C at two different biases, short circuit (SC) and open circuit (OC). The stress condition surpasses the operation conditions expected in the field. To characterize the cells, we have measured current density as function of the applied voltage (JV), capacitance vs bias voltage (CV) and quantum efficiency (QE) measurements before and after exposure to stress. To investigate the spatial non-uniformity of photocurrent collection induced by stress we have done Light Beam-Induced Current (LBIC) measurement. The effect of the stress on the photovoltaic parameters short-circuit current (Jsc), open-circuit voltage (Voc), Fill-Factor (FF), and efficiency is presented and discussed. Carrier density as a function of the distance from the semiconductor junction is extracted from the C-V measurements. We have seen some variations between cells and degradation was not monotonic with stress time. The highly probable explanation for the degradation of the cells after the stress is that mobile copper ions diffuse out of the back contact towards the primary junction leaving a depletion of Cu in the back contact, which increases the contact barrier.

  18. Hydrolytic Stability of 3-Aminopropylsilane Coupling Agent on Silica and Silicate Surfaces at Elevated Temperatures.

    PubMed

    Okhrimenko, Denis V; Budi, Akin; Ceccato, Marcel; Cárdenas, Marité; Johansson, Dorte B; Lybye, Dorthe; Bechgaard, Klaus; Andersson, Martin P; Stipp, Susan L S

    2017-03-08

    3-Aminopropylsilane (APS) coupling agent is widely used in industrial, biomaterial, and medical applications to improve adhesion of polymers to inorganic materials. However, during exposure to elevated humidity and temperature, the deposited APS layers can decompose, leading to reduction in coupling efficiency, thus decreasing the product quality and the mechanical strength of the polymer-inorganic material interface. Therefore, a better understanding of the chemical state and stability of APS on inorganic surfaces is needed. In this work, we investigated APS adhesion on silica wafers and compared its properties with those on complex silicate surfaces such as those used by industry (mineral fibers and fiber melt wafers). The APS was deposited from aqueous and organic (toluene) solutions and studied with surface sensitive techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), streaming potential, contact angle, and spectroscopic ellipsometry. APS configuration on a model silica surface at a range of coverages was simulated using density functional theory (DFT). We also studied the stability of adsorbed APS during aging at high humidity and elevated temperature. Our results demonstrated that APS layer formation depends on the choice of solvent and substrate used for deposition. On silica surfaces in toluene, APS formed unstable multilayers, while from aqueous solutions, thinner and more stable APS layers were produced. The chemical composition and substrate roughness influence the amount of deposited APS. More APS was deposited and its layers were more stable on fiber melt than on silica wafers. The changes in the amount of adsorbed APS can be successfully monitored by streaming potential. These results will aid in improving industrial- and laboratory-scale APS deposition methods and increasing adhesion and stability, thus increasing the quality and effectiveness of materials where APS is used as a coupling agent.

  19. Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems.

    PubMed

    Li, Wei; Xu, Xiaoguang; Fujibayashi, Megumu; Niu, Qigui; Tanaka, Nobuyuki; Nishimura, Osamu

    2016-10-01

    To estimate the combined effects of elevated CO2 and temperature on microalgae, three typical and worldwide freshwater species, the green alga Scenedesmus acuminatus, the diatom Cyclotella meneghiniana, and the cyanobacterium Microcystis aeruginosa, as well as mixes of these three species were continuously cultured in controlled environment chambers with CO2 at 390 and 1000 ppm and temperatures of 20, 25, and 30 °C. CO2 and temperature significantly affected the production of microalgae. The cell productivity increased under elevated CO2 and temperature. Although the green alga dominated in the mixed culture within all CO2 and temperature conditions, rising temperature and CO2 intensified the competition of the cyanobacterium with other microalgae. CO2 affected the extracellular polymeric substances (EPS) characteristics of the green alga and the cyanobacterium. Elevated CO2 induced the generation of humic substances in the EPS fractions of the green alga, the cyanobacterium, and the mixed culture. The extracellular carbohydrates of the diatom and the extracellular proteins of the cyanobacterium increased with elevated CO2 and temperature, while the extracellular carbohydrates and proteins of the green alga and the mixes increased under elevated CO2 and temperature. There were synergistic effects of CO2 and temperature on the productivity and the EPS of microalgae. Climate change related CO2 and temperature increases will promote autochthonous organic carbon production in aquatic ecosystems and facilitate the proliferation of cyanobacteria, which potentially changes the carbon cycling and undermines the functioning of ecosystems.

  20. Reduction of the elevator illusion from continued hypergravity exposure and visual error-corrective feedback

    NASA Technical Reports Server (NTRS)

    Welch, R. B.; Cohen, M. M.; DeRoshia, C. W.

    1996-01-01

    Ten subjects served as their own controls in two conditions of continuous, centrifugally produced hypergravity (+2 Gz) and a 1-G control condition. Before and after exposure, open-loop measures were obtained of (1) motor control, (2) visual localization, and (3) hand-eye coordination. During exposure in the visual feedback/hypergravity condition, subjects received terminal visual error-corrective feedback from their target pointing, and in the no-visual feedback/hypergravity condition they pointed open loop. As expected, the motor control measures for both experimental conditions revealed very short lived underreaching (the muscle-loading effect) at the outset of hypergravity and an equally transient negative aftereffect on returning to 1 G. The substantial (approximately 17 degrees) initial elevator illusion experienced in both hypergravity conditions declined over the course of the exposure period, whether or not visual feedback was provided. This effect was tentatively attributed to habituation of the otoliths. Visual feedback produced a smaller additional decrement and a postexposure negative after-effect, possible evidence for visual recalibration. Surprisingly, the target-pointing error made during hypergravity in the no-visual-feedback condition was substantially less than that predicted by subjects' elevator illusion. This finding calls into question the neural outflow model as a complete explanation of this illusion.

  1. The effects of elevated body temperature on the complexity of the diaphragm EMG signals during maturation.

    PubMed

    Akkurt, David; Akay, Yasemin M; Akay, Metin

    2009-04-01

    In this paper, we examine the effect of elevated body temperature on the complexity of the diaphragm electromyography (EMGdia), the output of the respiratory neural network--using the approximate entropy method. The diaphragm EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) in chronically instrumented rats were recorded at two postnatal ages: 25-35 days age (juvenile, n = 5) and 36-44 days age (early adult, n = 6) groups during control (36-37 degrees C), mild elevated body temperature (38 degrees C) and severe elevated body temperature (39-40 degrees C). Three to five trials of the recordings were performed at normal body temperature before raising the animal's core temperature by 1-4 degrees C with an electric heating pad. At the elevated temperature, another 3-5 trials were performed. Finally, the animal was cooled to the original temperature, and trials were again repeated. Complexity values of the diaphragm EMG signal were estimated and evaluated using the approximate entropy method (ApEn) over the ten consecutive breaths. Our results suggested that the mean approximate entropy values for the juvenile age group were 1.01 +/- 0.01 (standard error) during control, 0.91 +/- 0.02 during mild elevated body temperature and 0.81 +/- 0.02 during severe elevated body temperature. For the early adult age group, these values were 0.94 +/- 0.01 during control, 0.93 +/- 0.01 during mild elevated body temperature and 0.92 +/- 0.01 during severe elevated body temperature. Our results show that the complexity values and the durations of the diaphragm EMG (EMGdia) were significantly decreased when the elevated body temperature was shifted from control or mild to severe body temperature (p < 0.05) for the juvenile age group. However, for the early adult age group, an increase in body temperature slightly reduced the complexity measures and the duration of the EMGdia. But, these changes were not statistically

  2. ELEVATED TEMPERATURE RESISTANT MODIFIED EPOXIDE RESIN ADHESIVES FOR METALS

    DTIC Science & Technology

    composed of Epon 1001 resin, Plyophen 5023, and dicyandiamide as the curing agent. Al dust was used as the reinforcing filler. The adhesive was cured at...to the development of the following formula (parts by weight): 33 Epon 1001 + 67 Polyophen 5023 + 100 Al dust + 6 dicyandiamide . Higher Epon 1001...or curing without dicyandiamide reduced adhesive shear strength, especially at room temperature.

  3. Whey protein concentrate storage at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  4. Elevated and Low Temperature Deformation of Cast Depleted Uranium

    SciTech Connect

    Vogel, Sven C.

    2015-02-20

    Goals: Understand crystal structure and micro-structure changes during high and low temperature deformation of uranium, in particular texture, and develop constitutive micro-structure based model for uranium deformation. Deliverables achieved: Completed texture measures for 11 pre- and post-dU compression samples, quantified texture pre- and post-deformation, and provided data to constrain deformation models.

  5. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  6. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  7. Microstructural changes to AlCu6Ni1 alloy after prolonged annealing at elevated temperature.

    PubMed

    Wierzbińska, M; Sieniawski, J

    2010-03-01

    This work presents results of microstructure examination of AlCu(6)Ni(1) aluminium alloy. The commercial AlCu(4)Ni(2)Mg(2) (M-309) alloy is widely used for elements of aircraft and automotive engines. Modification its chemical composition was aimed at improving the stability of mechanical properties of the alloy subjected to long-term exposure to high temperature. The alloy after standard T6 heat treatment (solution heat treated at 818 K/10 h/water quenched followed by ageing at 498 K/8 h/air cooled) was annealed for 150 h at elevated temperature of 573 K corresponding to the maximum value at which structural elements of jet piston engines made of aluminium alloys operate. It was found that applied heat treatment caused an increasing in the particles of hardening phase (theta'-Al(2)Cu) size. The significant growth of the length of theta'-Al(2)Cu precipitations was observed in particularly. Nevertheless, it did not strongly result in change of its shape - the 'crystallites' and 'rods' were still characteristic of hardening phase morphology. The phenomena of the growth of theta'-Al(2)Cu precipitates caused decreasing the mechanical properties of the alloy, what is the subject of further investigations by the authors.

  8. Elevated-temperature tensile and creep properties of several ferritic stainless steels

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The elevated-temperature mechanical properties of several ferritic stainless steels were determined. The alloys evaluated included Armco 18SR, GE 1541, and NASA-18T-A. Tensile and creep strength properties at 1073 and 1273 K and residual room temperature tensile properties after creep testing were measured. In addition, 1273 K tensile and creep tests and residual property testing were conducted with Armco 18SR and GE 1541 which were exposed for 200 hours to a severe oxidizing environment in automotive thermal reactors. Aside from the residual tensile properties for Armco 18SR, prior exposure did not affect the mechanical properties of either alloy. The 1273 K creep strength parallel to the sheet-rolling direction was similar for all three alloys. At 1073 K, NASA-18T-A had better creep strength than either Armco 18SR or GE 1541. NASA-18T-A possesses better residual properties after creep testing than either Armco 18SR or Ge 1541.

  9. Response of sugarcane to carbon dioxide enrichment and elevated air temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four sugarcane cultivars (CP 72-2086, CP 73-1547, CP 88-1508, and CP 80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air (ppm, mole fraction basis), respectively. Elevated CO2 was maintained by injection...

  10. Large deformation micromechanics of particle filled acrylics at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Gunel, Eray Mustafa

    The main aim of this study is to investigate stress whitening and associated micro-deformation mechanism in thermoformed particle filled acrylic sheets. For stress whitening quantification, a new index was developed based on image histograms in logarithmic scale of gray level. Stress whitening levels in thermoformed acrylic composites was observed to increase with increasing deformation limit, decreasing forming rate and increasing forming temperatures below glass transition. Decrease in stress whitening levels above glass transition with increasing forming temperature was attributed to change in micro-deformation behavior. Surface deformation feature investigated with scanning electron microscopy showed that source of stress whitening in thermoformed samples was a combination of particle failure and particle disintegration depending on forming rate and temperature. Stress whitening level was strongly correlated to intensity of micro-deformation features. On the other hand, thermoformed neat acrylics displayed no surface discoloration which was attributed to absence of micro-void formation on the surface of neat acrylics. Experimental damage measures (degradation in initial, secant, unloading modulus and strain energy density) have been inadequate in describing damage evolution in successive thermoforming applications on the same sample at different levels of deformation. An improved version of dual-mechanism viscoplastic material model was proposed to predict thermomechanical behavior of neat acrylics under non-isothermal conditions. Simulation results and experimental results were in good agreement and failure of neat acrylics under non-isothermal conditions ar low forming temperatures were succesfully predicted based on entropic damage model. Particle and interphase failure observed in acrylic composites was studied in a multi-particle unit cell model with different volume fractions. Damage evolution due to particle failure and interphase failure was simulated

  11. Physiological responses of three species of unionid mussels to intermittent exposure to elevated carbon dioxide

    PubMed Central

    Hannan, Kelly D.; Jeffrey, Jennifer D.; Hasler, Caleb T.; Suski, Cory D.

    2016-01-01

    Freshwater systems are at risk owing to increasing carbon dioxide (CO2) levels, and one of the possible reasons for these elevations is the deployment of non-physical fish barriers to prevent invasive fish movements. Carbon dioxide barriers have the potential to create short, chronic and intermittent exposures of CO2 for surrounding freshwater biota. Although intermittent exposures to a stressor may be more ecologically relevant, the majority of laboratory tests use chronic or short-term time periods to determine how organisms will respond to an environmental stressor. Measurements of the physiological responses of three species of unionid mussel, giant floaters (Pyganodon grandis), threeridge (Amblema plicata) and plain pocketbook (Lampsilis cardium), exposed to control pCO2 (~1000 µatm) or intermittent conditions of pCO2 (ranging from ~1000 to ~55 000 µatm) 12 times per day over a 28 day period were gathered. There was no indication of recovery in the physiological responses of mussels between applications of CO2, suggesting that the recovery time between CO2 pulses (1.5 h) was not sufficient for recovery from the CO2 exposure period (0.5 h). Observations of acid–base and stress responses were consistent with what has been observed in chronic studies of freshwater mussels exposed to elevated pCO2 (i.e. elevations in HCO3 −, Ca2+, Na+ and glucose, and decreases in Mg2+ and Cl−). However, species differences were observed across almost all variables measured, which emphasizes the need for multispecies studies. PMID:28066552

  12. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer.

    PubMed

    Kroner, Yulia; Way, Danielle A

    2016-08-01

    Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark .

  13. Enhanced thermoelectric performance of carbon nanotubes at elevated temperature.

    PubMed

    Jiang, P H; Liu, H J; Fan, D D; Cheng, L; Wei, J; Zhang, J; Liang, J H; Shi, J

    2015-11-07

    The electronic and transport properties of the (10, 0) single-walled carbon nanotube are studied by performing first-principles calculations and semi-classical Boltzmann theory. It is found that the (10, 0) tube exhibits a considerably large Seebeck coefficient and electrical conductivity which are highly desirable for good thermoelectric materials. Together with the lattice thermal conductivity predicted by non-equilibrium molecular dynamics simulations, the room temperature ZT value of the (10, 0) tube is estimated to be 0.15 for p-type carriers. Moreover, the ZT value exhibits strong temperature dependence and can reach to 0.77 at 1000 K. Such a ZT value can be further enhanced to as high as 1.9 by isotopic substitution and chemisorptions of hydrogen on the tube surface.

  14. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  15. Microscopic structure of water at elevated pressures and temperatures

    PubMed Central

    Sahle, Christoph J.; Sternemann, Christian; Schmidt, Christian; Lehtola, Susi; Jahn, Sandro; Simonelli, Laura; Huotari, Simo; Hakala, Mikko; Pylkkänen, Tuomas; Nyrow, Alexander; Mende, Kolja; Tolan, Metin; Hämäläinen, Keijo; Wilke, Max

    2013-01-01

    We report on the microscopic structure of water at sub- and supercritical conditions studied using X-ray Raman spectroscopy, ab initio molecular dynamics simulations, and density functional theory. Systematic changes in the X-ray Raman spectra with increasing pressure and temperature are observed. Throughout the studied thermodynamic range, the experimental spectra can be interpreted with a structural model obtained from the molecular dynamics simulations. A spatial statistical analysis using Ripley’s K-function shows that this model is homogeneous on the nanometer length scale. According to the simulations, distortions of the hydrogen-bond network increase dramatically when temperature and pressure increase to the supercritical regime. In particular, the average number of hydrogen bonds per molecule decreases to ≈0.6 at 600 °C and p = 134 MPa. PMID:23479639

  16. Elevated temperature properties of boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Sullivan, P. G.

    1978-01-01

    The high temperature properties of boron/aluminum composites, fabricated by an air diffusion bonding technique utilizing vacuum-bonded monolayer tape are reported. Seventeen different combinations of matrix alloy, reinforcement diameter, reinforcement volume percent, angle-ply and matrix enhancement (i.e. titanium cladding and interleaves) were fabricated, inspected, and tested. It is shown that good to excellent mechanical properties could be obtained for air-bonded boron/aluminum composites and that these properties did not decrease significantly up to a test temperature of at least 260 C. Composites made with 8 mil B/W fiber show a much greater longitudinal strength dependence on volume percent fiber than composites made with 5.6 mil fiber. The addition of titanium caused difficulties in composite bonding and yielded composites with reduced strength.

  17. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Lowell, C. E.

    1982-01-01

    The failure of a ZrO2-8%Y2O3/Ni-14% Al-0.1% Zr coating system on Rene 41 in Mach 0.3 burner rig tests was characterized. High flame and metal temperatures were employed in order to accelerate coating failure. Failure by delamination was shown to precede surface cracking or spalling. This type of failure could be duplicated by cooling down the specimen after a single long duration isothermal high temperature cycle in a burner rig or a furnace, but only if the atmosphere was oxidizing. Stresses due to thermal expansion mismatch on cooling coupled with the effects of plastic deformation of the bond coat and oxidation of the irregular bond coat are the probable life limiting factors. Heat up stresses alone could not fail the coating in the burner rig tests. Spalling eventually occurs on heat up but only after the coating has already failed through delamination.

  18. Dimethyl ether oxidation at elevated temperatures (295-600 K).

    PubMed

    Rosado-Reyes, Claudette M; Francisco, Joseph S; Szente, Joseph J; Maricq, M Matti; Frøsig Østergaard, Lars

    2005-12-08

    Dimethyl ether (DME) has been proposed for use as an alternative fuel or additive in diesel engines and as a potential fuel in solid oxide fuel cells. The oxidation chemistry of DME is a key element in understanding its role in these applications. The reaction between methoxymethyl radicals and O(2) has been examined over the temperature range 295-600 K and at pressures of 20-200 Torr. This reaction has two product pathways. The first produces methoxymethyl peroxy radicals, while the second produces OH radicals and formaldehyde molecules. Real-time kinetic measurements are made by transient infrared spectroscopy to monitor the yield of three main products-formaldehyde, methyl formate, and formic acid-to determine the branching ratio for the CH(3)OCH(2) + O(2) reaction pathways. The temperature and pressure dependence of this reaction is described by a Lindemann and Arrhenius mechanism. The branching ratio is described by f = 1/(1 + A(T)[M]), where A(T) = (1.6(+2.4)(-1.0) x 10(-20)) exp((1800 +/- 400)/T) cm(3) molecule(-1). The temperature dependent rate constant of the methoxymethyl peroxy radical self-reaction is calculated from the kinetics of the formaldehyde and methyl formate product yields, k(4) = (3.0 +/- 2.1) x 10(-13) exp((700 +/- 250)/T) cm(3) molecule(-1) s(-1). The experimental and kinetics modeling results support a strong preference for the thermal decomposition of alkoxy radicals versus their reaction with O(2) under our laboratory conditions. These characteristics of DME oxidation with respect to temperature and pressure might provide insight into optimizing solid oxide fuel cell operating conditions with DME in the presence of O(2) to maximize power outputs.

  19. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  20. Production of recalcitrant organic matter under the influence of elevated carbon dioxide and temperature.

    PubMed

    Ki, Bomin; Park, Suyoung; Choi, Jung Hyun

    2014-09-01

    The effects of elevated CO2 and temperature on the quantity and quality of dissolved organic carbon (DOC) of wetland sediments were investigated by measuring organic matter decomposition rates and phenolic compounds as target recalcitrant organic matter. Mean rates of anaerobic microbial metabolism were consistently higher both in vegetated sediments and in elevated CO2 and temperature, although the differences were not statistically significant (P < 0.05). Concentrations of phenolic compounds in sediments with vegetation are significantly different (P < 0.05) from those in sediments without vegetation. Regarding the biodegradability of the phenolic compounds, vegetated sediments showed higher concentrations of 2-chlorophenol and 2,4-dimethylphenol under elevated CO2 and temperature conditions, which means that more refractory material can be produced through enhanced organic matter degradation by elevated CO2 and temperature. The produced phenolic compounds can be transported to the freshwater ecosystem and influence the recalcitrance of DOC.

  1. Effects of elevated water temperature on physiological responses in adult freshwater mussels

    USGS Publications Warehouse

    Ganser, Alissa M.; Newton, Teresa J.; Haro, Roger J.

    2015-01-01

    These data suggest that elevated temperatures can alter metabolic rates in native mussels and may decrease the amount of energy that is available for key biological processes, such as survival, growth and reproduction.

  2. Elevated urinary excretion of beta-aminoisobutyric acid and exposure to inorganic lead.

    PubMed

    Farkas, W R; Fischbein, A; Solomon, S; Buschman, F; Borek, E; Sharma, O K

    1987-01-01

    beta-Aminoisobutyric acid (beta-AIB), a normal degradation product of thymine, a constituent of DNA and, to a lesser extent, of transfer RNA, is excreted in low levels in human urine. We found that a group of iron workers occupationally exposed to inorganic lead excreted high levels of urinary beta-AIB. Elevated urinary excretion of beta-AIB was also observed in marmosets, Callithrix jacchus, that received lead acetate in drinking water. Our results suggest that increased urinary excretion of beta-AIB could stem from damage to DNA on exposure to lead.

  3. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats

    SciTech Connect

    Hayden, L.J.; Goeden, H.; Roth, S.H. )

    1990-09-01

    Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and in the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.

  4. Effect of Preloading on Fatigue Strength in Dynamic Fatigue Testing of Ceramic Materials at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1995-01-01

    Previously derived solutions of fatigue strength as a function of preloading were verified by applying preloads to elevated temperature dynamic fatigue tests of 96 wt% alumina at 1000 C and NC 132 silicon nitride at 1100 C. The technique was found very useful in identification and control of the governing failure mechanism when multiple failure mechanisms, such as slow crack growth, creep and oxidation occurred simultaneously at elevated temperatures.

  5. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.

    PubMed

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP

  6. Elevated temperature tribology of cobalt and tantalum-based alloys

    SciTech Connect

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; Michael, J. R.; Robino, C. V.

    2014-12-31

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volume gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10–4 mm3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.

  7. HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE

    SciTech Connect

    James A. Guin; Ganesh Ramakrishnan; Keiji Asada

    2000-04-07

    During this past six months we continued our ongoing studies of the diffusion controlled uptake of coal and petroleum asphaltenes into a porous carbon catalyst. Toluene was used as the solvent for experiments at 20 C and 75 C while 1-methylnaphthalene was the solvent for the higher temperature experiments at 100 C, 150 C and 250 C. All runs were made at a pressure of 250 psi (inert He gas). Experiments were performed at 20 C and 75 C, for the petroleum asphaltene/toluene system. For the coal asphaltene/toluene system, experiments were performed at 75 C. Experiments were performed at 100 C, 150 C and 250 C for the coal asphaltene/1-methylnaphthalene system. A comparison between the experimental data and model simulated data showed that the mathematical model satisfactorily fitted the adsorptive diffusion of both the coal and petroleum asphaltenes onto a porous activated carbon. The adsorption constant decreases with an increase in temperature for both, the coal asphaltene/1-methylnaphthalene system as well as the petroleum asphaltene/toluene system. It was found that the adsorption constant for the coal asphaltene/toluene system at 75 C was much higher than that of the petroleum asphaltene/toluene system at the same temperature providing evidence of the greater affinity of the coal asphaltenes for the carbon surface. This could be due to the presence of more functional heteroatomic groups in the coal asphaltenes compared to their petroleum counterparts. Also during this time period, a new carbon catalyst support was prepared in our laboratory which will be used in adsorption experiments during the next phase of work.

  8. Elevated temperature tribology of cobalt and tantalum-based alloys

    DOE PAGES

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; ...

    2014-12-31

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10–4 mm3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less

  9. Solid/liquid lubrication of ceramics at elevated temperatures

    SciTech Connect

    Erdemir, A.; Erck, R.A.; Fenske, G.R.; Hong, H.

    1996-04-01

    This study investigates the effect of solid and liquid lubrication on friction and wear performance of silicon nitride (Si{sub 3}N{sub 4}) and cast iron. The solid lubricant was a thin silver film ({approx}2 {mu}m thick) produced on Si{sub 3}N{sub 4} by ion-beam-assisted deposition. A high-temperature polyol-ester-base synthetic oil served as the liquid lubricant. Friction and wear tests were performed with pin-on-disk and oscillating-slider wear test machines at temperatures up to 300{degrees}C. Without the silver films, the friction coefficients of Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} test pairs were 0.05 to 0.14, and the average wear rates of Si{sub 3}N{sub 4} pins were {approx}5 x 10{sup -8} mm{sup 3} N{sup -1}. The friction coefficients of Si{sub 3}N{sub 4}/cast iron test pairs ranged from 0.08 to 0.11, depending on test temperature. The average specific wear rates of cast iron pins were {approx}3 x 10{sup -7} mm{sup 3} N{sup -1} m{sup -1}. However, simultaneous use of the solid-lubricant silver and synthetic oil on the sliding surfaces reduced friction coefficients to 0.02 to 0.08. Moreover, the wear of Si{sub 3}N{sub 4} pins and silver-coated Si{sub 3}N{sub 4} disks was so low that it was difficult to assess by a surface profilometer. The wear rates of cast iron pins were {approx}7 x 10{sup -9} mm{sup 3} N{sup -1} m{sup -1} up to 250{degrees}C, but showed a tendency to increase slightly at much higher temperatures. In general, the test results demonstrated that the solid/liquid lubrication of ceramic and/or metallic components is both feasible and effective in controlling friction and wear.

  10. Hardness of irradiated poly(methyl methacrylate) at elevated temperatures

    SciTech Connect

    Lu, K.-P.; Lee, Sanboh; Cheng, Cheu Pyeng

    2001-08-15

    The decrease in hardness induced by gamma irradiation in poly(methyl methacrylate) (PMMA) has been investigated. The hardness is assumed to decrease linearly with the concentration of radiation-induced defects. Annealing at high temperatures induces defect annihilation as tracked by an increase in hardness. The annihilation follows first-order kinetics during isothermal annealing. The dependence of hardness on the reciprocal of the time constant satisfies the Arrhenius equation, and the corresponding activation energy of the kinetic process decreases with increasing dose. The hardness of postannealed PMMA decreases linearly with increasing dose. {copyright} 2001 American Institute of Physics.

  11. Interactions of Water Vapor with Oxides at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  12. Crack Growth Processes at Elevated Temperatures in Advanced Materials

    DTIC Science & Technology

    1992-02-01

    aluminum alloys, 8 CORONA -5, the titanium aluminide alloy 2411, fine grained Astroloy, and partially stabilized zirconia . This similarity in closure...4V C equiaxed cx-P, recryst. annealed, ingot 6 CORONA -5 C lamellar (x-P, ingot 7 AI-Fe-X A dispersion strengthed, P/M 5 8 Super ca2 A equiaxed a-P...temperature through two a+13 titanium alloys, Ti-6AI-4V (RA) [1] and CORONA -5, [2] and two a2 +13 titanium aluminide alloys, Super Alpha 2, I [3] and 2411

  13. Microplastic Deformation of Submicrocrystalline Copper at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Pochivalova, G. P.; Tabachenko, A. N.; Maletkina, T. Yu.; Skosyrskii, A. B.; Osipov, D. A.

    2017-02-01

    of investigations of submicrocrystalline copper subjected to cold rolling after abc pressing by methods of backscatter electron diffraction and x-ray diffraction analysis are presented. It is demonstrated that after such combined intensive plastic deformation, the submicrocrystalline structure with average grain-subgrain structure elements having sizes of 0.63 μm is formed with relative fraction of high-angle grain boundaries of 70% with texture typical for rolled copper. Results of investigation of microplastic deformation of copper with such structure at temperatures in the interval 295-473 K and with submicrocrystalline structure formed by cold rolling of coarse-grained copper are presented.

  14. Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation

    SciTech Connect

    Yunus, Abdul S.; Jackson, Trent P.; Crisafi, Katherine; Burimski, Irina; Kilgore, Nicole R.; Zoumplis, Dorian; Allaway, Graham P.; Wild, Carl T.; Salzwedel, Karl

    2010-01-20

    Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by the fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 deg. C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of

  15. Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment.

    PubMed

    Shaked-Sachray, Liat; Weiss, David; Reuveni, Moshe; Nissim-Levi, Ada; Oren-Shamir, Michal

    2002-04-01

    Temperature is one of the main external factors affecting anthocyanin accumulation in plant tissues: low temperatures cause an increase and elevated temperatures cause a decrease in anthocyanin concentration. Several metals have been shown to increase the half-life time of anthocyanins, by forming complexes with them. We studied the combined effect of elevated temperatures and increased metal concentrations on the accumulation of anthocyanins in aster 'Sungal' flowers. It has been found that magnesium treatment of aster plants or detached flower buds, partially prevents colour fading at elevated temperatures. Anthocyanin concentration of aster 'Sungal' flowers grown at 29 degrees C/21 degrees C day/night, respectively, was about half that of flowers grown at 17 degrees C/9 degrees C. The activity of phenylalanine ammonia-lyase (PAL) and chalcone isomerase (CHI) decreased as the temperature increased. Treatment of both whole plants and detached flower buds grown at elevated temperatures in the presence of magnesium salts, increased flower anthocyanin concentration by up to 80%. Measurement of magnesium following these treatments revealed an increased level of the metal in the petals, suggesting a direct effect. Magnesium treatment does not seem to cause increased synthesis of anthocyanin through a stress-related reaction, since the activities of both PAL and CHI did not increase due to this treatment. The results of this study show that increasing magnesium levels in aster petals prevents the deleterious effect of elevated temperatures on anthocyanin accumulation, thus enhancing flower colour.

  16. Exposures to environmental phenols in Southern California firefighters and findings of elevated urinary benzophenone-3 levels.

    PubMed

    Waldman, Jed M; Gavin, Qi; Anderson, Meredith; Hoover, Sara; Alvaran, Josephine; Ip, Ho Sai Simon; Fenster, Laura; Wu, Nerissa T; Krowech, Gail; Plummer, Laurel; Israel, Leslie; Das, Rupali; She, Jianwen

    2016-03-01

    Firefighters are at increased risk for exposure to toxic chemicals compared to the general population, but few studies of this occupational group have included biomonitoring. We measured selected phenolic chemicals in urine collected from 101 Southern California firefighters. The analytes included bisphenol A (BPA), triclosan, benzophenone-3 (BP-3), and parabens, which are common ingredients in a range of consumer products. BP-3, BPA, triclosan, and methyl paraben were detected in almost all study subjects (94-100%). The BP-3 geometric mean for firefighters was approximately five times higher than for a comparable National Health and Nutrition Examination Survey (NHANES) subgroup. Demographic and exposure data were collected from medical records and via a questionnaire, and covariates were examined to assess associations with BP-3 levels. BP-3 levels were elevated across all firefighter age groups, with the highest levels observed in the 35 to 39year old group. Body fat percentage had a significant inverse association with BP-3 concentrations. Our results indicate pervasive exposure to BP-3, BPA, triclosan, and methyl paraben in this population of firefighters, consistent with studies of other populations. Further research is needed to investigate possible explanations for the higher observed BP-3 levels, such as occupational or California-specific exposures.

  17. HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE

    SciTech Connect

    James A. Guin; Ganesh Ramakrishnan

    1999-10-07

    During this time period, experiments were performed to study the diffusion controlled uptake of quinoline and a coal asphaltene into porous carbon catalyst pellets. Cyclohexane and toluene were used as solvents for quinoline and the coal asphaltene respectively. The experiments were performed at 27 C and 75 C, at a pressure of 250 psi (inert gas) for the quinoline/cyclohexane system. For the coal asphaltene/toluene system, experiments were performed at 27 C, also at a pressure of 250 psi. These experiments were performed in a 20 cm{sup 3} microautoclave, the use of which is advantageous since it is economical from both a chemical procurement and waste disposal standpoint due to the small quantities of solvents and catalysts used. A C++ program was written to simulate data using a mathematical model which incorporated both diffusional and adsorption mechanisms. The simulation results showed that the mathematical model satisfactorily fitted the adsorptive diffusion of quinoline and the coal asphaltene onto a porous activated carbon. For the quinoline/cyclohexane system, the adsorption constant decreased with an increase in temperature. The adsorption constant for the coal asphaltene/toluene system at 27 C was found to be much higher than that of the quinoline/cyclohexane system at the same temperature. Apparently the coal asphaltenes have a much greater affinity for the surface of the carbon catalyst than is evidenced by the quinoline molecule.

  18. Thermal diffusivity of igneous rocks at elevated pressure and temperature

    SciTech Connect

    Durham, W.B.; Mirkovich, V.V.; Heard, H.C.

    1987-10-10

    Thermal diffusivity measurements of seven igneous rocks were made to temperatures of 400 /sup 0/C and pressures of 200 MPa. The measuring method was based on the concept of cylindrical symmetry and periodic heat pulses. The seven rocks measured were Westerly (Rhode Island) granite, Climax Stock (Nevada) quartz monzonite, Pomona (Washington) basalt, Atikokan (Ontario, Canada) granite, Creighton (Ontario, Canada) gabbro, East Bull Lake (Ontario, Canada) gabbro, and Stripa (Sweden) granite. The diffusivity of all the rocks showed a positive linear dependence on inverse temperature and, excluding the East Bull Lake gabbro, showed a linear dependence on quartz content. (Quartz content varied from 0 to 31% by volume.) Diffusivity in all cases rose or remained steady with increasing confining pressure. The pressure effect was strongest at lowest pressures and vanished by levels between 10 and 100 MPa, depending on rock type. The pressure effect (measured as a percentage change in diffusivity) is stronger in the four rocks of granite composition than in the three of basaltic composition. Our results agree well with existing thermal diffusivity measurements at atmospheric pressure.

  19. HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE

    SciTech Connect

    James A. Guin; Ganesh Ramakrishnan; Keiji Asada; Brian Mosley

    2000-09-29

    During this time period work proceeded in two main areas, the performance and analysis of petroleum asphaltene diffusional uptake experiments at 325 C and the preparation and testing of some new carbon based catalysts. In the first area, we performed studies of the diffusion controlled uptake of petroleum asphaltenes into a porous carbon catalyst at 325 C. The experiments were performed under an inert He atmosphere using 1-methylnaphthalene as a solvent. These purpose of these experiments was to extend our previous data which was taken and reported in the prior semi-annual report. These previous experiments were performed only up to a temperature of 250 C. A comparison between the experimental data and model simulated data showed that the mathematical model satisfactorily fitted the adsorptive diffusion of the petroleum asphaltenes onto the porous carbon at 325 C. Comparing with previous results, the adsorption constant continued to decrease with an increase in temperature for the petroleum asphaltene/1-methylnaphthalene system. Also during this time period, some carbon catalyst supports were prepared in our laboratory and several sets of data were obtained in adsorption-diffusion uptake experiments using a petroleum asphaltene with toluene as solvent. These data are presented in this report, although, complete fitting of the data with the mathematical model has not yet been performed. These calculations will be performed during the next time period.

  20. Reaction of cobalt in SO2 atmospheric at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Worrell, W. L.

    1983-01-01

    The reaction rate of cobalt in SO2 argon environments was measured at 650 C, 700 C, 750 C and 800 C. Product scales consist primarily of an interconnected sulfide phase in an oxide matrix. At 700 C to 800 C a thin sulfide layer adjacent to the metal is also observed. At all temperatures, the rapid diffusion of cobalt outward through the interconnected sulfide appears to be important. At 650 C, the reaction rate slows dramatically after five minutes due to a change in the distribution of these sulfides. At 700 C and 750 C the reaction is primarily diffusion controlled values of diffusivity of cobalt (CoS) calculated from this work show favorable agreement with values of diffusivity of cobalt (CoS) calculated from previous sulfidation work. At 800 C, a surface step becomes rate limiting.

  1. Reaction of cobalt in SO2 atmospheres at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Worrell, W. L.

    1984-01-01

    The reaction rate of cobalt in SO2 argon environments was measured at 650 C, 700 C, 750 C and 800 C. Product scales consist primarily of an interconnected sulfide phase in an oxide matrix. At 700 C to 800 C, a thin sulfide layer adjacent to the metal is also observed. At all temperatures, the rapid diffusion of cobalt outward through the interconnected sulfide appears to be important. At 650 C, the reaction rate slows dramatically after five minutes due to a change in the distribution of these sulfides. At 700 C and 750 C, the reaction is primarily diffusion controlled; values of diffusivity of cobalt (CoS) calculated from this work show favorable agreement with values of diffusivity of cobalt (CoS) calculated from previous sulfidation work. At 800 C, a surface step becomes rate limiting. Previously announced in STAR as N83-35104

  2. Permittivity measurement of thermoplastic composites at elevated temperature.

    PubMed

    Ku, H S; Horsfield, B; Ball, J A; Siores, E

    2001-01-01

    The material properties of greatest importance in microwave processing of a dielectric are the complex relative permittivity epsilon = epsilon'-jepsilon", and the loss tangent, tan delta = epsilon"/epsilon'. This paper describes two convenient laboratory based methods to obtain epsilon', epsilon" and hence tan delta of fibre-reinforced thermoplastic (FRTP) composites. One method employs a microwave network analyzer in conjunction with a waveguide transmission technique, chosen because it provides the widest possible frequency range with high accuracy. The values of the dielectric constant and dielectric loss of glass fibre reinforced (33%) low density polyethylene, LDPE/GF (33%), polystyrene, PS/GF (33%), and Nylon 66/GF (33%), were obtained. Results are compared with those obtained by another method using a high-temperature dielectric probe.

  3. Failure modes at room and elevated temperatures. Technical report

    SciTech Connect

    Braun, L.M.

    1995-04-01

    Successful development of reliable ceramic composites will depend on an understanding of matrix cracking and damage mechanisms in these materials. Therefore, the objective of the Failure Models subtask is to investigate failure and damage mechanisms in fiber reinforced ceramic composites. Issues such as how fiber coatings, the fiber/matrix interface, residual stresses, and fiber volume fraction affect frictional stresses, fiber debonding, fiber pull-out and failure modes will be examined. The effect of these microstructural parameters on matrix crack initiation, propagation and damage will also be determined. The resulting observations and measurements data will be used to develop theoretical models for damage mechanisms in fiber reinforced composites. This report presents results concerning the effect of temperature on the failure modes of continuous fiber ceramic composites performed during the last quarter of FY 1993 and FY 1994. The Raman stress measurements and calculations were performed during the last quarter of FY 1994 and the first quarter of FY 1995.

  4. HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE

    SciTech Connect

    James A. Guin; Ganesh Ramakrishnan; Keiji Asada; Brian Mosley

    2001-04-01

    The mathematical model which we have developed previously for diffusion controlled adsorption was extended to allow for the inclusion of the effects of extraparticle film mass transfer resistance as embodied in a finite Sherwood number. A Mathcad based program was used to simulate the experimental data using summation of a large number of terms in the infinite series solution. Parametric studies and accompanying plots revealed that the effects of film resistance on the uptake process were found to increase in significance as the adsorption capacity parameter in the model decreased. In addition, the two carbon catalyst supports prepared in our own laboratory were tested for their diffusional characteristics in uptake experiments using petroleum asphaltenes dissolved in toluene at three temperatures. The resulting experimental data were simulated with the mathematical model developed in the report.

  5. Fracture mechanics applied to elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Meyers, G. J.

    1989-01-01

    Twenty-six isothermal crack growth tests were performed on Hastelloy-X tubular specimens at a variety of temperatures and strain ranges. Conditions were selected to include nominally elastic and nominally plastic conditions. A number of parameters including the stress intensity factor, strain intensity factor, J-integral, Crack Opening Displacement, and Tompkins model were examined for their ability to correlate the data. Test conditions were selected such that growth rates at a single value of the parameter were obtained at radially different crack lengths, thus exploring the geometry independence of the correlating parameter. None of the parameters were fully satisfactory. However, COD calculated from J-integral appeared to be the most successful.

  6. Ultra-Fast Fracture Strength of Advanced Ceramics at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1998-01-01

    An attempt was made to determine elevated-temperature, 'ultra'-fast fracture strengths of one alumina, two silicon nitrides and one silicon carbide by using constant stress-rate ('dynamic fatigue') testing with a series of 'ultra'-fast test rates. Of the materials tested, the alumina exhibited a convergence of strength at stress rates below 3.3 x 10(exp 4) MPa/s. The strength approached approximately the room-temperature inert strength. By contrast, the silicon nitrides and silicon carbide did not reveal a strength approach, but exhibited elevated-temperature strengths 10 and 20% lower than their respective room-temperature strengths. Although the analytical results imply that the elevated-temperature 'inert' strength of a ceramic material can be obtained by using sufficiently high stress rates, the experimental testing rates were only sufficient to demonstrate convergence for the alumina.

  7. The impact of seasonality in temperature on thermal tolerance and elevational range size.

    PubMed

    Sheldon, Kimberly S; Tewksbury, Joshua J

    2014-08-01

    Environmental temperature variation can influence physiology, biogeography, and life history, with large consequences for ecology, evolution, and the impacts of climate change. Based on the seasonality hypothesis, greater annual temperature variation at high latitudes should result in greater thermal tolerance and, consequently, larger elevational ranges in temperate compared to tropical species. Despite the mechanistic nature of this hypothesis, most research has used latitude as a proxy for seasonality, failing to directly examine the impact of temperature variation on physiology and range size. We used phylogenetically matched beetles from locations spanning 60 degrees of latitude to explore links between seasonality, physiology and elevational range. Thermal tolerance increased with seasonality across all beetle groups, but realized seasonality (temperature variation restricted to the months species are active) was a better predictor of thermal tolerance than was annual seasonality. Additionally, beetles with greater thermal tolerance had larger elevational ranges. Our results support a mechanistic framework linking variation in realized temperature to physiology and distributions.

  8. Surface film formation on nickel electrodes in a propylene carbonate solution at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Mogi, Ryo; Inaba, Minoru; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi

    The effect of temperature on surface film formation on nickel electrode was studied in 1 mol dm -3 bis(perfluoroethylsulfonyl)imide dissolved in propylene carbonate by atomic force microscopy (AFM) and ac impedance spectroscopy. Cyclic voltammetry measurements revealed that electrolyte decomposition reactions are accelerated at elevated temperatures, especially at 60 and 80 °C. In situ AFM measurements showed that the film formation is fast and the resulting surface film is thicker at 80 °C than at room temperature. Furthermore, it was confirmed by ac impedance measurements that the resistance of surface film was very low at elevated temperatures. These results were discussed in relation to superior cycling characteristics of lithium deposition and dissolution at the elevated temperatures.

  9. Elevated temperature fretting fatigue of nickel based alloys

    NASA Astrophysics Data System (ADS)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  10. Elevated temperature alters proteomic responses of individual organisms within a biofilm community

    DOE PAGES

    Mosier, Annika C.; Li, Zhou; Thomas, Brian C.; ...

    2014-07-22

    Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. In this paper, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entiremore » community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Finally, overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.« less

  11. Elevated temperature alters proteomic responses of individual organisms within a biofilm community

    SciTech Connect

    Mosier, Annika C.; Li, Zhou; Thomas, Brian C.; Hettich, Robert L.; Pan, Chongle; Banfield, Jillian F.

    2014-07-22

    Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. In this paper, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entire community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Finally, overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.

  12. Elevated temperature alters proteomic responses of individual organisms within a biofilm community

    PubMed Central

    Mosier, Annika C; Li, Zhou; Thomas, Brian C; Hettich, Robert L; Pan, Chongle; Banfield, Jillian F

    2015-01-01

    Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. Here, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entire community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses. PMID:25050524

  13. Effects of elevated CO2 and temperature on Gynostemma pentaphyllum physiology and bioactive compounds.

    PubMed

    Chang, Jia-Dong; Mantri, Nitin; Sun, Bin; Jiang, Li; Chen, Ping; Jiang, Bo; Jiang, Zhengdong; Zhang, Jialei; Shen, Jiahao; Lu, Hongfei; Liang, Zongsuo

    2016-06-01

    Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720μmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties.

  14. Microstructure and tensile properties of tungsten at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shen, Tielong; Dai, Yong; Lee, Yongjoong

    2016-01-01

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250-300 °C for the HR tungsten and about 350 °C for the HF tungsten.

  15. Response of ferritic steels to nonsteady loading at elevated temperatures

    SciTech Connect

    Swindeman, R.W.

    1984-04-01

    High-temperature operating experience is lacking in pressure vessel materials that have strength levels above 586 MPa. Because of their tendency toward strain softening, we have been concerned about their behavior under nonsteady loading. Testing was undertaken to explore the extent of softening produced by monotonic and cyclic strains. The specific materials included bainitic 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel containing vanadium, titanium, and boron, and a martensitic 9Cr-1Mo-V-Nb steel. Tests included tensile, creep, variable stress creep, relaxation, strain cycling, stress cycling, and non-isothermal creep ratchetting experiments. We found that these steels had very low uniform elongation and exhibited small strains to the onset of tertiary creep compared to annealed 2 1/4Cr-1Mo steel. Repeated relaxation test data also indicated a limited capacity for strain hardening. Reversal strains produced softening. The degree of softening increased with increased initial strength level. We concluded that the high strength bainitic and martensitic steels should perform well when used under conditions where severe cyclic operation does not occur.

  16. Elevational variation in body-temperature response to immune challenge in a lizard

    PubMed Central

    Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981

  17. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-11-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  18. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam.

    PubMed

    Amid, C; Olstedt, M; Gunnarsson, J S; Le Lan, H; Tran Thi Minh, H; Van den Brink, P J; Hellström, M; Tedengren, M

    2017-01-22

    The combined effects of the herbicide glyphosate and elevated temperature were studied on the tropical staghorn coral Acropora formosa, in Nha Trang bay, Vietnam. The corals were collected from two different reefs, one close to a polluted fish farm and one in a marine-protected area (MPA). In the laboratory, branches of the corals were exposed to the herbicide glyphosate at ambient (28 °C) and at 3 °C elevated water temperatures (31 °C). Effects of herbicide and elevated temperature were studied on coral bleaching using photography and digital image analysis (new colorimetric method developed here based on grayscale), chlorophyll a analysis, and symbiotic dinoflagellate (Symbiodinium, referred to as zooxanthellae) counts. All corals from the MPA started to bleach in the laboratory before they were exposed to the treatments, indicating that they were very sensitive, as opposed to the corals collected from the more polluted site, which were more tolerant and showed no bleaching response to temperature increase or herbicide alone. However, the combined exposure to the stressors resulted in significant loss of color, proportional to loss in chlorophyll a and zooxanthellae. The difference in sensitivity of the corals collected from the polluted site versus the MPA site could be explained by different symbiont types: the resilient type C3u and the stress-sensitive types C21 and C23, respectively. The additive effect of elevated temperatures and herbicides adds further weight to the notion that the bleaching of coral reefs is accelerated in the presence of multiple stressors. These results suggest that the corals in Nha Trang bay have adapted to the ongoing pollution to become more tolerant to anthropogenic stressors, and that multiple stressors hamper this resilience. The loss of color and decrease of chlorophyll a suggest that bleaching is related to concentration of chloro-pigments. The colorimetric method could be further fine-tuned and used as a precise, non

  19. Exposure to Elevated Carbon Monoxide Levels at an Indoor Ice Arena--Wisconsin, 2014.

    PubMed

    Creswell, Paul D; Meiman, Jon G; Nehls-Lowe, Henry; Vogt, Christy; Wozniak, Ryan J; Werner, Mark A; Anderson, Henry

    2015-11-20

    On December 13, 2014, the emergency management system in Lake Delton, Wisconsin, was notified when a male hockey player aged 20 years lost consciousness after participation in an indoor hockey tournament that included approximately 50 hockey players and 100 other attendees. Elevated levels of carbon monoxide (CO) (range = 45 ppm-165 ppm) were detected by the fire department inside the arena. The emergency management system encouraged all players and attendees to seek medical evaluation for possible CO poisoning. The Wisconsin Department of Health Services (WDHS) conducted an epidemiologic investigation to determine what caused the exposure and to recommend preventive strategies. Investigators abstracted medical records from area emergency departments (EDs) for patients who sought care for CO exposure during December 13-14, 2014, conducted a follow-up survey of ED patients approximately 2 months after the event, and conducted informant interviews. Ninety-two persons sought ED evaluation for possible CO exposure, all of whom were tested for CO poisoning. Seventy-four (80%) patients had blood carboxyhemoglobin (COHb) levels consistent with CO poisoning; 32 (43%) CO poisoning cases were among hockey players. On December 15, the CO emissions from the propane-fueled ice resurfacer were demonstrated to be 4.8% of total emissions when actively resurfacing and 2.3% when idling, both above the optimal range of 0.5%-1.0%. Incomplete fuel combustion by the ice resurfacer was the most likely source of elevated CO. CO poisonings in ice arenas can be prevented through regular maintenance of ice resurfacers, installation of CO detectors, and provision of adequate ventilation.

  20. The Environmental Cost of Misinformation: Why the Recommendation to Use Elevated Temperatures for Handwashing is Problematic

    PubMed Central

    Carrico, Amanda R.; Spoden, Micajah; Wallston, Kenneth A.; Vandenbergh, Michael P.

    2013-01-01

    Multiple government and health organizations recommend the use of warm or hot water in publications designed to educate the public on best practices for washing one’s hands. This is despite research suggesting that the use of an elevated water temperature does not improve handwashing efficacy, but can cause hand irritation. There is reason to believe that the perception that warm or hot water is more effective at cleaning one’s hands is pervasive, and may be one factor that is driving up unnecessary energy consumption and greenhouse gas emissions. We examine handwashing practices and beliefs about water temperature using a survey of 510 adults in the United States. The survey included measures of handwashing frequency, duration, the proportion of time an elevated temperature was used, and beliefs about water temperature and handwashing efficacy. We also estimate the energy consumed and resultant carbon dioxide equivalent emissions (CO2eq) in the U.S. due to the use of elevated temperatures during handwashing. Participants used an elevated temperature 64% of the time, causing 6.3 million metric tons (MMt) of CO2eq which is 0.1% of total annual emissions and 0.3% of commercial and residential sector emissions. Roughly 69% of the sample believed that elevated temperatures improve handwashing efficacy. Updating these beliefs could prevent 1 MMt of CO2eq annually, exceeding the total emissions from many industrial sources in the U.S. including the Lead and Zinc industries. In addition to causing skin irritation, the recommendation to use an elevated temperature during handwashing contributes to another major threat to public health—climate change. Health and consumer protection organizations should consider advocating for the use of a “comfortable” temperature rather than warm or hot water. PMID:23814480

  1. Spermatogenic capacity in fertile men with elevated exposure to polychlorinated biphenyls

    PubMed Central

    Petersen, MS; Halling, J; Weihe, P; Jensen, TK; Grandjean, P; Nielsen, F; Jørgensen, N

    2015-01-01

    Background Endocrine disrupting industrial chemicals, such as polychlorinated biphenyls (PCBs), are suspected to adversely affect male reproductive functions. Objectives The Faroe Islands community exhibits an unusually wide range of exposures to dietary contaminants, and in this setting we examined the possible association between PCB exposure and semen quality and reproductive hormones in fertile Faroese men. Methods Participants in this cross-sectional study include 266 proven fertile men residing in the Faroe Islands. PCB levels and hormone profiles were measured in serum samples taken at the clinical examination that included semen quality parameters. Results A significant positive association was seen between serum-PCB and the testosterone/estradiol ratio (p=0.04). In the unadjusted analyses, elevated PCB exposure was associated with increased serum concentrations of SHBG (p=0.01) and FSH (p=0.05). We found no association between the serum PCB concentration and the semen quality variables. Conclusion In this population of highly exposed fertile men, the current serum-PCB concentration was associated with higher androgen/estrogen ratio. Further studies are needed to establish the findings and further document PCB-associated hormonal effects, any time windows of increased susceptibility, and the role of PCB in sub-fecundity. PMID:25766940

  2. Rise in lens temperature on exposure to sunlight or high ambient temperature.

    PubMed Central

    Al-Ghadyan, A. A.; Cotlier, E.

    1986-01-01

    The effect of increase ambient temperature and sunlight on the temperatures of the rabbit lens and posterior chamber (PC) aqueous humour was measured by needle thermistor probes while the rectal temperature was monitored. Exposure of rabbits to sunlight (35 degrees-42 degrees C), in New Haven, Connecticut, USA, resulted in significant temperature increases in PC (4.3 degrees C), lens (3.2 degrees C), and rectum (2.3 degrees C). Returning animals to the shade resulted in a progressive decrease in the temperatures of the PC or lens in the tested eye, but repeating exposure to sunlight resulted in significant increases of the baseline (PC) temperature (increase 2.68 degrees C) of the second eye. Exposure of rabbits to sunlight at 49 degrees C in Chandigarh, India, resulted in increased PC temperature of 4.48 degrees C after 9 minutes. Increased PC and lens temperatures after exposure to sunlight are due both to an ambient temperature effect through the cornea and to increased body temperature. In dry and hot tropical areas of the world temperature increases in the lens after exposure to sunlight may initiate or accelerate the formation of senile cataracts. PMID:3718905

  3. Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life History Stages of the Coral Acropora tenuis

    PubMed Central

    Noonan, Sam H. C.; Willis, Bette L.; Fabricius, Katharina E.; Negri, Andrew P.

    2016-01-01

    Inshore coral reefs are experiencing the combined pressures of excess nutrient availability associated with coastal activities and warming seawater temperatures. Both pressures are known to have detrimental effects on the early life history stages of hard corals, but studies of their combined effects on early demographic stages are lacking. We conducted a series of experiments to test the combined effects of nutrient enrichment (three levels) and elevated seawater temperature (up to five levels) on early life history stages of the inshore coral Acropora tenuis, a common species in the Indo-Pacific and Red Sea. Gamete fertilization, larval survivorship and larval settlement were all significantly reduced as temperature increased, but only fertilization was further affected by simultaneous nutrient enrichment. Combined high temperatures and nutrient enrichment affected fertilization in an additive manner, whereas embryo abnormalities increased synergistically. Higher than normal temperatures (32°C) increased coral juvenile growth rates 1.6-fold, but mortality also increased by 50%. The co-occurrence of nutrient enrichment with high temperatures reduced juvenile mortality to 36%, ameliorating temperature stress (antagonistic interaction). Overall, the types of effect (additive vs synergistic or antagonistic) and their magnitude varied among life stages. Gamete and embryo stages were more affected by temperature stress and, in some cases, also by nutrient enrichment than juveniles. The data suggest that coastal runoff events might exacerbate the impacts of warming temperatures on fertilization if these events co-occur during corals spawning. The cumulative impacts of simultaneous exposure to nutrient enrichment and elevated temperatures over all early life history stages increases the likelihood for failure of larval supply and recruitment for this coral species. Our results suggest that improving the water quality of river discharges into coastal areas might help to

  4. Elevated CO2 and temperature increase soil C losses from a soy-maize ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warming temperatures and increasing CO2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for three years within the 9th-11th ...

  5. Chemical and anatomical changes in Liquidambar styraciflua L. xylem after long term exposure to elevated CO2.

    PubMed

    Kim, Keonhee; Labbé, Nicole; Warren, Jeffrey M; Elder, Thomas; Rials, Timothy G

    2015-03-01

    The anatomical and chemical characteristics of sweetgum were studied after 11 years of elevated CO2 (544 ppm, ambient at 391 ppm) exposure. Anatomically, branch xylem cells were larger for elevated CO2 trees, and the cell wall thickness was thinner. Chemically, elevated CO2 exposure did not impact the structural components of the stem wood, but non-structural components were significantly affected. Principal component analysis (PCA) was employed to detect differences between the CO2 treatments by considering numerous structural and chemical variables, as well as tree size, and data from previously published sources (i.e., root biomass, production and turnover). The PCA results indicated a clear separation between trees exposed to ambient and elevated CO2 conditions. Correlation loadings plots of the PCA revealed that stem structural components, ash, Ca, Mg, total phenolics, root biomass, production and turnover were the major responses that contribute to the separation between the elevated and ambient CO2 treated trees.

  6. Microstructural Stability and Oxidation Resistance of 9-12 Chromium Steels at Elevated Temperatures

    SciTech Connect

    Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

    2006-05-01

    Various martensitic 9-12 Cr steels are utilized currently in fossil fuel powered energy plants for their good elevated temperature properties such as creep strength, steam side oxidation resistance, fire side corrosion resistance, and thermal fatigue resistance. Need for further improvements on the properties of 9-12 Cr steels for higher temperature (>600oC) use is driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption). In this paper, we will discuss the results of the research done to explore new subsitutional solute solution and precipitate hardening mechanisms for improved strength of 9-12 Cr martensitic steels. Stability of the phases present in the steels will be evaluated for various temperature and time exposures. A comparison of microstructural properties of the experimental steels and commercial steels will also be presented.

    The influence of a Ce surface treatment on oxidation behavior of a commercial (P91) and several experimental steels containing 9 to 12 weight percent Cr was examined at 650ºC in flowing dry and moist air. The oxidation behavior of all the alloys without the Ce modification was significantly degraded by the presence of moisture in the air during testing. For instance the weight gain for P91 was two orders of magnitude greater in moist air than in dry air. This was accompanied by a change in oxide scale from the formation of Cr-based scales in dry air to the formation of Fe-based scales in moist air. The Ce surface treatment was very effective in improving the oxidation resistance of the experimental steels in both moist and dry air. For instance, after exposure to moist air at 650ºC for 2000 hours, an experimental alloy with the cerium surface modification had a weight gain three orders of magnitude lower than the alloy without the Ce modification and two orders of magnitude lower than P91. The Ce surface treatment suppressed the formation of Fe-based scales and

  7. Superplastic forming and diffusion bonding of rapidly solidified, dispersion strengthened aluminum alloys for elevated temperature structural applications

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Kennedy, J. R.

    1989-01-01

    Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.

  8. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps

    NASA Astrophysics Data System (ADS)

    Nigrelli, Guido; Fratianni, Simona; Zampollo, Arianna; Turconi, Laura; Chiarle, Marta

    2017-02-01

    Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.

  9. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature.

    PubMed

    Arend, M; Brem, A; Kuster, T M; Günthardt-Goerg, M S

    2013-01-01

    Oaks are commonly considered as drought- and heat-tolerant trees that might benefit from a warmer and drier climate. Their tolerance to drought has been frequently studied in the past, whereas studies dealing with elevated temperature or its combination with drought are very limited in number. In this study we investigated seasonal photosynthetic patterns in three European oak species (Quercus robur, Q. petraea, Q. pubescens) exposed in lysimeter-based open-top chambers (OTC) to elevated daytime temperature, drought and their combination. Stomatal and non-stomatal traits of photosynthesis were followed over an entire growing season and related to changes in daytime temperature, soil moisture and pre-dawn leaf water potential (Ψ(PD) ). Elevated daytime temperature enhanced net photosynthesis (P(N) ) in a season-dependent manner, with higher mid-summer rates than in controls exposed to ambient temperature. Drought imposed in early and mid-summer reduced the soil moisture content and caused a gradual decline in Ψ(PD) , stomatal conductance (g(S) ) and P(N) . Drought effects on Ψ(PD) and P(N) were exacerbated when drought was combined with elevated daytime temperature. In general, P(N) tended to be more affected by low soil moisture content or low Ψ(PD) in Q. robur than in Q. petraea and Q. pubescens. Non-stomatal limitations may have contributed to the drought-induced decline of P(N) in Q. robur, as indicated by a down-regulation of PSII photochemistry (F(V) /F(M) ) and decreased chlorophyll content. Taken together, our findings show that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought.

  10. An experimental investigation into the behavior of glassfiber reinforced polymer elements at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Qian, Kenny Zongxi

    This thesis presents a literature review and results of an experimental study about the effects of high temperatures and cyclic loading on the physical and mechanical properties of pultruded glass fiber reinforced polymer (GFRP) square tubes used in civil engineering structural applications. Most laboratory researches have focused mainly on the effect of elevated temperature on the compressive strength of the GFRP square tubes. Limited research has focused on the tensile strength of GFRP coupons under elevated temperatures. Dynamic Mechanical Analyses (DMA) was performed to assess the viscoelastic behavior including the glass transition temperature of GFRP. Sixteen GFRP coupons were tested under elevated temperatures to investigate the tensile strength and the effect of elevated temperatures to the tensile strength of GFRP. The results of an experimental program performed on fifty GFRP square tubes with different designs in 1.83m at normal temperatures were discussed to investigate compression performance. Another experimental program was performed on 20 GFRP square tubes with different designs in 1.22m under elevated temperatures. The experiments results were discussed and showed that the compressive strength of GFRP material was influenced by several factors including the glass transition v temperature and the connection bolts. Failure modes under 25°C and 75°C were crushing and the failure modes with the temperatures above 75°C were not typical crushing due to the glass transition of GFRP. Sixteen GFRP square tubes with length of 0.61m were tested with the same experimental program under elevated temperatures as the control group. Twelve GFRP square tubes with the same size were subjected to cyclic loading under elevated temperatures to investigate the effect of the cyclic loading to the compression properties of GFRP material. According to the experimental results and the discussion, the stiffness was reduced by the cyclic loading. On the contrary, the

  11. Distributions of Direct, Reflected, and Diffuse Irradiance for Ocular UV Exposure at Different Solar Elevation Angles

    PubMed Central

    Yu, Jiaming; Hua, Hui; Liu, Yan; Liu, Yang

    2016-01-01

    To analyze intensities of ocular exposure to direct (Eo,dir), reflected (Eo,refl), and diffuse (Eo,diff) ultraviolet (UV) irradiance at different solar elevation angles (SEAs), a rotating manikin and dual-detector spectrometer were used to monitor the intensity of ocular exposure to UV irradiation (Eo) and ambient UV radiation (UVR) under clear skies in Sanya, China. Eo,dir was derived as the difference between maximum and minimum measured Eo values. Eo,refl was converted from the value measured at a height of 160 cm. Eo,diff was calculated as the minimum measured Eo value minus Eo,refl. Regression curves were fitted to determine distributions of intensities and growth rates at different wavelengths and SEAs. Eo,dir differed from ambient UVR exposure. Linear, quadratic, and linear Eo,dir distributions were obtained in SEA ranges of 14°–30°, 30°–50°, and 50°–90°, respectively, with maximum Eo,dir at 32°–38° SEA. Growth rates of Eo,dir with increasing wavelength were fitted with quadratic functions in all SEA ranges. Distributions and growth rate of Eo,refl values were fitted with quadratic functions. Maximum Eo,diff was achieved at the same SEA for all fitted quadratic functions. Growth rate of Eo,diff with increasing wavelength was fitted with a linear function. Eo,dir distributions were fitted with linear or quadratic functions in different SEA ranges. All Eo,refl and Eo,diff distributions were fitted with quadratic functions. As SEA increased, the Eo,dir portion of Eo increased and then decreased; the Eo,refl portion increased from an initial minimum; and the Eo,diff portion first decreased and then increased. The findings may provide data supporting on construction of a mathematical model of ocular UV exposure. PMID:27846278

  12. Influence of temperature-dependent thermal parameters on temperature elevation of tissue exposed to high-intensity focused ultrasound: numerical simulation.

    PubMed

    Guntur, Sitaramanjaneya Reddy; Choi, Min Joo

    2015-03-01

    High-intensity focused ultrasound (HIFU) has been used successfully as a non-invasive modality in treating solid tumors. The temperature rise HIFU irradiation causes in a tissue depends on the thermal properties of the tissue. This study was motivated by our observation that the thermal properties of a tissue vary significantly with temperature (Guntur SR, Lee KI, Paeng DG, Coleman AJ, Choi MJ. Ultrasound Med Biol 2013;39:1771-1784). This research investigated how significantly the alteration of tissue thermal parameters, in the ranges of values measured at 25°C-90°C, affects prediction of the temperature elevation of tissue under the same HIFU exposure. The numerical simulation was performed by coupling a non-linear Khokhlov-Zabolotskaya-Kuznetsov equation with a bio-heat transfer function. In the conventional method of prediction, the thermal parameters were set as constants measured at room temperature (25°C). This study compared the conventional prediction with those predicted with different thermal parameters measured at the various temperatures up to 90°C. The results indicated that the conventional method significantly overestimated the rise in focal temperature in the liver tissue exposed to a clinical HIFU field, compared with the prediction made using thermal parameters measured at temperatures that cause thermal denaturation. This finding suggests that temperature-dependent thermal parameters should be considered in predicting the temperature rise in a tissue to avoid use of an insufficient thermal dose in treatment planning for HIFU surgery.

  13. Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure.

    PubMed Central

    Gebel, T W; Suchenwirth, R H; Bolten, C; Dunkelberg, H H

    1998-01-01

    Part of the northern Palatinate region in Germany is characterized by elevated levels of arsenic and antimony in the soil due to the presence of ore sources and former mining activities. In a biomonitoring study, 218 residents were investigated for a putative increased intake of these elements. Seventy-six nonexposed subjects in a rural region in south lower Saxony were chosen as the reference group. Urine and scalp hair samples were obtained as surrogates to determine the internal exposures to arsenic and antimony. The analyses were performed using graphite furnace atomic absorption spectrometry except for arsenic in urine, which was determined by the hydride technique. This method does not detect organoarsenicals from seafood, which are not toxicologically relevant. In the northern Palatinate subjects, slightly elevated arsenic contents in urine and scalp hair (presumably not hazardous) could be correlated with an increased arsenic content in the soil. On the other hand, the results did not show a correlation between the antimony contents in the soil of the housing area and those in urine and hair. Except for antimony in scalp hair, age tended to be associated with internal exposures to arsenic and antimony in both study groups. Consumption of seafood had a slight impact on the level of urinary arsenic, which is indicative of the presence of low quantities of inorganic arsenicals and dimethylarsinic acid in seafood. The arsenic and antimony contents in scalp hair were positively correlated with the 24-hr arsenic excretion in urine. However, antimony in scalp hair was not correlated with seafood consumption as was arsenic in scalp hair and in urine. This indicated the existence of unidentified common pathways of exposure contributing to the alimentary body burden. Short time peaks in the 24-hr excretion of arsenic in urine, which could not be assigned to a high consumption of seafood, were detected for six study participants. This suggests that additional factors

  14. Alternative solvents for elevated-temperature solid-phase parallel synthesis. Application to thionation of amides.

    PubMed

    Coats, Steven J; Link, Jeffrey S; Hlasta, Dennis J

    2003-03-06

    A new class of higher-boiling solvents was investigated for elevated-temperature solid-phase parallel synthesis. Extremely low vapor pressures at high temperature and a broader range of solvent effect tuning make this new class of solvents an ideal choice for high-temperature parallel solid-phase synthesis. Benzyl benzoate is identified as a superior high-boiling solvent for parallel solid-phase Lawesson's thionation reactions.

  15. Leaf physiological responses of mature Norway Spruce trees exposed to elevated carbon dioxide and temperature

    NASA Astrophysics Data System (ADS)

    Lamba, Shubhangi; Uddling, Johan; Räntfors, Mats; Hall, Marianne; Wallin, Göran

    2014-05-01

    Leaf photosynthesis, respiration and stomatal conductance exert strong control over the exchange of carbon, water and energy between the terrestrial biosphere and the atmosphere. As such, leaf physiological responses to rising atmospheric CO2 concentration ([CO2]) and temperature have important implications for the global carbon cycle and rate of ongoing global warming, as well as for local and regional hydrology and evaporative cooling. It is therefore critical to improve the understanding of plant physiological responses to elevated [CO2] and temperature, in particular for boreal and tropical ecosystems. In order to do so, we examined physiological responses of mature boreal Norway spruce trees (ca 40-years old) exposed to elevated [CO2] and temperature inside whole-tree chambers at Flakaliden research site, Northern Sweden. The trees were exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 degree C in summer and +5.6 degree C in winter). Three replicates in each of the four treatments were used. It was found that photosynthesis was increased considerably in elevated [CO2], but was not affected by the warming treatment. The maximum rate of photosynthetic carboxylation was reduced in the combined elevated [CO2] and elevated temperature treatment, but not in single factor treatments. Elevated [CO2] also strongly increased the base rate of respiration and to a lesser extent reduced the temperature sensitivity (Q10 value) of respiration; responses which may be important for the carbon balance of these trees which have a large proportion of shaded foliage. Stomatal conductance at a given VPD was reduced by elevated temperature treatment, to a degree that mostly offset the higher vapour pressure deficit in warmed air with respect to transpiration. Elevated [CO2] did not affect stomatal conductance, and thus increased the ratio of leaf internal to external [CO2]. These results indicate that the large elevated

  16. Hepatic confinement of newly produced erythrocytes caused by low-temperature exposure in Xenopus laevis.

    PubMed

    Maekawa, Shun; Iemura, Hitomi; Kuramochi, Yuko; Nogawa-Kosaka, Nami; Nishikawa, Hironori; Okui, Takehito; Aizawa, Youichi; Kato, Takashi

    2012-09-01

    Diminished erythrocyte count and erythropoiesis have been reported during hypothermia in some ectothermic animals. In this study, the African clawed frog, Xenopus laevis, was used to investigate the cause of hypothermia-induced anemia. We developed a new model of hypothermia at 5°C and monitored blood cell count and erythropoiesis on several days. Erythrocyte count declined by 30% on the first day following cold exposure (5°C) and mRNA expression of hemeoxygenase-1 was enhanced 10-fold; accumulation of iron as a result of heme degradation was observed in the liver. One day after low-temperature exposure, erythropoietin mRNA expression was elevated in the liver and lung compared with that at normal temperature (22°C) by qRT-PCR analysis. Examination of liver sections (i.e. the erythropoietic organ) showed an increase in o-dianisidine-positive erythrocytes in the hepatic sinusoid 5 days after the onset of low-temperature exposure compared with normal liver. Peripheral erythrocyte count remained low, indicating that newly produced erythrocytes did not migrate from the liver to the circulation during hypothermia. In conclusion, this study reveals hypothermic anemia as being associated with hepatic erythrocyte destruction; prolonged anemia during low-temperature exposure is concomitant with newly produced erythrocytes being confined to the liver and may lead to new insights into vertebrate hematopoiesis.

  17. Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor.

    PubMed

    Palmer, Caroline V; McGinty, Elizabeth S; Cummings, David J; Smith, Stephanie M; Bartels, Erich; Mydlarz, Laura D

    2011-12-15

    Disease epizootics are increasing with climatic shifts, yet within each system only a subset of species are identified as the most vulnerable. Understanding ecological immunology patterns as well as environmental influences on immune defenses will provide insight into the persistence of a functional system through adverse conditions. Amongst the most threatened ecosystems are coral reefs, with coral disease epizootics and thermal stress jeopardizing their survival. Immune defenses were investigated within three Caribbean corals, Montastraea faveolata, Stephanocoenia intersepta and Porites astreoides, which represent a range of disease and bleaching susceptibilities. Levels of several immune parameters were measured in response to elevated water temperature and the presence of a commercial pathogen-associated molecular pattern (PAMP) - lipopolysaccharide (LPS) - as an elicitor of the innate immune response. Immune parameters included prophenoloxidase (PPO) activity, melanin concentration, bactericidal activity, the antioxidants peroxidase and catalase, and fluorescent protein (FP) concentration. LPS induced an immune response in all three corals, although each species responded differently to the experimental treatments. For example, M. faveolata, a disease-susceptible species, experienced significant decreases in bactericidal activity and melanin concentration after exposure to LPS and elevated temperature alone. Porites astreoides, a disease-resistant species, showed increased levels of enzymatic antioxidants upon exposure to LPS independently and increased PPO activity in response to the combination of LPS and elevated water temperature. This study demonstrates the ability of reef-building corals to induce immune responses in the presence of PAMPs, indicating activation of PAMP receptors and the transduction of appropriate signals leading to immune effector responses. Furthermore, these data address the emerging field of ecological immunology by highlighting

  18. Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Vincent, C.

    2013-05-01

    the paucity of observations, a great deal of uncertainty remains concerning temperature changes at very high altitudes over the last century. Englacial temperature measurements performed in boreholes provide a very good indicator of atmospheric temperatures for very high elevations although they are not directly related to air temperatures. Temperature profiles from seven deep boreholes drilled at three different sites between 4240 and 4300 m above sea level in the Mont Blanc area (French Alps) have been analyzed using a heat flow model and a Bayesian inverse modeling approach. Atmospheric temperature changes over the last century were estimated by simultaneous inversion of these temperature profiles. A mean warming rate of 0.14°C/decade between 1900 and 2004 was found. This is similar to the observed regional low altitude trend in the northwestern Alps, suggesting that air temperature trends are not altitude dependent.

  19. Estimation of surface temperature variations due to changes in sky and solar flux with elevation

    NASA Technical Reports Server (NTRS)

    Hummer-Miller, S.

    1981-01-01

    The magnitude of elevation effects due to changes in solar and sky fluxes, on interpretation of single thermal images and composite products such as temperature difference and thermal inertia, are examined. Simple expressions are derived for the diurnal behavior of the two parameters, by fitting field observations in one tropic (Hawaii) and two semi-arid climates (Wyoming and Colorado) (Hummer-Miller, 1981). It is shown that flux variations with elevation can cause changes in the mean diurnal temperature gradient from -4 to -14 degrees C/km, evaluated at 2000 m. Changes in the temperature-difference gradient of 1 to 2 degrees C/km are also produced which is equivalent to an effective thermal-inertia gradient of 100 W s(exp 1/2)/sq m-K-km. An example is presented showing an elevation effect of 12 degrees C on the day and night thermal scenes of a test site in Arizona.

  20. Noninvasive estimation of temperature elevations in biological tissues using acoustic nonlinearity parameter imaging.

    PubMed

    Liu, Xiaozhou; Gong, Xiufen; Yin, Chang; Li, Junlun; Zhang, Dong

    2008-03-01

    A method for noninvasively imaging temperature would assist the development of hyperthermia. In this study, the relationships between the acoustic nonlinearity parameters and the temperatures in porcine fat and liver were obtained. The temperature elevations induced by ultrasound irradiation of porcine fat and liver were then derived inversely from acoustic nonlinearity parameter imaging. These temperature elevations were compared with theoretical predictions and with those measured by a thermocouple. The temperature elevations at the focus in the fat and liver samples measured via a thermocouple were 21.1 +/- 0.8 degrees C and 15.7 +/- 0.6 degrees C, respectively, which coincided with those obtained by acoustic nonlinearity parameter imaging (22.0 +/- 1.4 degrees C in fat and 16.9 +/- 1.1 degrees C in liver). These may be compared with the theoretical predictions of elevations of 24.0 degrees C in fat and 19.7 degrees C in liver. The results of this study show that acoustic nonlinearity imaging may be a novel method for temperature evaluation in hyperthermia. (E-mail: xzliu@nju.edu.cn).

  1. Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera.

    PubMed

    van Dam, Joost W; Negri, Andrew P; Mueller, Jochen F; Altenburger, Rolf; Uthicke, Sven

    2012-01-01

    Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII) inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte) of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F'(m)), while elevated temperatures (>30 °C, only 2 °C above current average summer temperatures) were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (F(v)/F(m)), interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced F(v)/F(m) and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥ 1 µg L(-1)). The mixture toxicity model of Independent Action (IA) described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures.

  2. Additive Pressures of Elevated Sea Surface Temperatures and Herbicides on Symbiont-Bearing Foraminifera

    PubMed Central

    van Dam, Joost W.; Negri, Andrew P.; Mueller, Jochen F.; Altenburger, Rolf; Uthicke, Sven

    2012-01-01

    Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII) inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte) of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F′m), while elevated temperatures (>30°C, only 2°C above current average summer temperatures) were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (Fv/Fm), interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced Fv/Fm and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥1 µg L−1). The mixture toxicity model of Independent Action (IA) described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures. PMID:22439012

  3. Nitrogen ion beam synthesis of InN in InP(100) at elevated temperature

    SciTech Connect

    Dhara, S.; Magudapathy, P.; Kesavamoorthy, R.; Kalavathi, S.; Sastry, V.S.; Nair, K.G.M.; Hsu, G.M.; Chen, L.C.; Chen, K.H.; Santhakumar, K.; Soga, T.

    2006-06-12

    The InN phase is grown in crystalline InP(100) substrates by 50 keV N{sup +} implantation at an elevated temperature of 400 deg. C followed by annealing at 525 deg. C in N{sub 2} ambient. Crystallographic structural and Raman scattering studies are performed for the characterization of grown phases. Temperature- and power-dependent photoluminescence studies show direct band-to-band transition peak {approx}1.06 eV at temperatures {<=}150 K. Implantations at an elevated temperature with a low ion beam current and subsequent low temperature annealing step are found responsible for the growth of high-quality InN phase.

  4. Modal Acoustic Emission of Damage Accumulation in Woven SiC/SiC at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Morscher, G. N.

    1998-01-01

    Ceramic matrix composites exhibit significant nonlinear stress-strain behavior that makes them attractive as potential materials for many high temperature applications. The mechanisms for this nonlinear stress-strain behavior are all associated with various types of damage in the composites, e.g. transverse matrix cracks and individual fiber failures. Modal acoustic emission has been employed to aid in discerning the damage accumulation that occurs during elevated temperature tensile stress-rupture of woven Hi-Nicalon fiber, BN interphase, SiC matrix composites. It is shown that modal acoustic emission is an effective monitor of the relative damage accumulation in the composites and locator of the damage and failure events as a function of strain (stress), time at temperature, and temperature gradients along the length of the elevated temperature test specimen.

  5. Reliability and life prediction of ceramic composite structures at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1994-01-01

    Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.

  6. Estimating temperature exposure of burnt bone - A methodological review.

    PubMed

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez; Taylor, Gillian

    2015-05-01

    Forensic anthropologists are frequently confronted with the need to interpret burnt bone. Regardless of the context, one of the key factors for the correct interpretation of the remains and a reconstruction of the incidents leading to incineration is the estimation of the maximum exposure temperature. The recent years have seen an influx in experimental research focusing on temperature estimation, spanning from colour assessment, mechanical strength measurements, histology and structural observations, biochemical changes and crystallinity studies, vastly advancing the understanding of heat induced changes in bone, thus facilitating a more accurate interpretation. This paper draws together and evaluates all currently available methodologies for temperature estimation.

  7. Effects of elevated atmospheric CO(2) and temperature on leaf optical properties in Acer saccharum.

    PubMed

    Carter; Bahadur; Norby

    2000-06-01

    Elevated partial pressures of atmospheric carbon dioxide, similar to numerous causes of plant stress, may alter leaf pigmentation and structure and thus would be expected to alter leaf optical properties. Hypotheses that elevated CO(2) pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers and partial shade at Oak Ridge, Tennessee under the following treatments: (1) ambient CO(2) pressure and air temperature (control); (2) CO(2) pressure approximately 30 Pa above ambient; (3) air temperatures 3 degrees C above ambient; and (4) elevated CO(2) and air temperature. Under elevated CO(2) or temperature, spectral reflectance, transmittance and absorptance in the visible spectrum (400-720 nm) tended to change in patterns that generally are associated with chlorosis, with maximum differences from the control near 700 nm. However, these changes were not significant at P=0.05. Although reflectance, transmittance and absorptance at 700 nm correlated strongly with leaf chlorophyll concentration, variability in chlorophyll concentration was greater within than among treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance throughout the 739-850 nm range in leaves that developed under elevated air temperature alone. This response might have resulted from effects of air temperature on leaf internal structure.

  8. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-02-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  9. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature.

    PubMed

    Hancock, Robert D; Morris, Wayne L; Ducreux, Laurence J M; Morris, Jenny A; Usman, Muhammad; Verrall, Susan R; Fuller, John; Simpson, Craig G; Zhang, Runxuan; Hedley, Pete E; Taylor, Mark A

    2014-02-01

    Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady-state response to the mild heat stress encountered in temperate agriculture. In the present work, we therefore exposed tuberizing potato plants to mildly elevated temperatures (30/20 °C, day/night) for up to 5 weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16 °C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberization signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals.

  10. Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster Pinctada fucata

    PubMed Central

    Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian

    2012-01-01

    Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983

  11. Apparatus for direct measurement of ash fusion and sintering behavior at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Khan, M. Rashid

    1989-10-01

    Ash fusion, sintering, and deposition may impose serious operational difficulties in conventional and advanced coal-combustion systems. Conventional ash fusion techniques (e.g., ASTM methods) determine the qualitative behavior of ash samples at atmospheric pressure. Presently, there is no known available technique that can measure the behavior of coal ash at elevated temperatures and pressures. In the literature, methods based on electrical resistance or shrinkage of coal ash have been reported at atmospheric pressure (elevated temperatures) conditions. A high-pressure microdilatometer (HPMD) has been developed to investigate ash fusion and sintering behavior at elevated pressures and temperatures by the simultaneous measurement of the temperature of initial contraction and electrical resistivity of samples. This novel technique facilitates the measurement of ash properties over a wide range of temperature, pressure, and gas atmosphere (oxidizing, reducing, or inert). The operating principle of the HPMD includes measuring the temperature at which there is a significant ``shift'' in the electrical resistivity (and/or sample volume) that represents ash sintering and fusion. Sintering occurs through the formation of solid-state, particle-to-particle ``necks'' or the appearance of a molten phase, which allows a path for electrical conductance. The ability to perform both resistivity and shrinkage measurements simultaneously or independently at elevated pressures makes the HPMD truly unique. The HPMD can also be used to investigate the swelling and softening behavior of pyrolyzing coal at elevated pressures and relatively rapid heating rates. The HPMD can provide insights into the sintering/fusion of coal ash or coal swelling at a range of conditions: (a) the influences of various gas atmospheres can be investigated, (b) the effects of pressure can be studied, (c) different temperature/heating rate schemes can be used (constant rates, isothermal holds below or above the

  12. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease.

  13. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.

    PubMed

    Bilyk, Kevin T; Cheng, C-H Christina

    2014-12-01

    Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen.

  14. ELEVATED CO2 AND ELEVATED TEMPERATURE HAVE NO EFFECT ON DOUGLAS-FIR FINE-ROOT DYNAMICS IN NITROGEN-POOR SOIL

    EPA Science Inventory

    Here, we investigate fine-root production, mortality and standing crop of Douglas-fir (Pseudotsuga menziesii) seedlings exposed to elevated atmospheric CO2 and elevated air temperature. We hypothesized that these treatments would increase fine-root production, but that mortality ...

  15. Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Goyal, V.; Subrina, S.; Nika, D. L.; Balandin, A. A.

    2010-07-01

    The authors report results of experimental investigation of thermal conductivity of synthetic diamond-silicon composite substrates. Although composite substrates are more thermally resistive than silicon at room temperature they outperform conventional wafers at elevated temperatures owing to different thermal conductivity dependence on temperature. The crossover point is reached near ˜360 K and can be made even lower by tuning the polycrystalline-grain size, film thickness, and interface quality. The reduction of thermal resistance of composite wafers at temperatures, typical for operation of electronic chips, may lead to better thermal management and new phonon-engineered methods for the electron mobility enhancement.

  16. Light, temperature and nutrients as factors in photosynthetic adjustment to elevated carbon dioxide

    SciTech Connect

    Bunce, J.; Lee, D. )

    1991-05-01

    It has been noted many times that the short-term stimulation of photosynthesis by elevated carbon dioxide usually observed in C3 plants may not persist in the long-term. Experiments were designed to test the hypotheses that photosynthetic adjustment to elevated carbon dioxide is due to (a) feedback inhibition resulting from excess photosynthate production relative to use, and (b) nutrient deficiency resulting from more rapid growth. Soybeans and sugarbeets were grown in controlled environment chambers at 350 and 700 ppm carbon dioxide, at two temperatures, two levels of photosynthetically active radiation, and with three nutrient regimes in a factorial design. Net carbon dioxide uptake rates of individual leaves from all growth conditions were measured at both 350 and 700 ppm carbon dioxide to assay photosynthetic adjustment to the elevated carbon dioxide. Growth at elevated carbon dioxide reduced rates of photosynthesis measured at standard carbon dioxide levels in both species. Photosynthetic rates measured at 350 ppm were lower on average by 33% in sugarbeet and 23% in soybean after growth at elevated carbon dioxide. Photosynthetic adjustment to elevated carbon dioxide was not greater after growth at 1.0 than 0.5 mmol m{sup {minus}2}s{sup {minus}1} PPFD, was not greater at 20 than 25C growth temperature, and could not be overcome by high rates of nutrient application. These results do not support either the feedback inhibition nor nutrient deficiency hypotheses of photosynthetic adjustment to elevated carbon dioxide. In soybeans, complete photosynthetic adjustment could be induced by a single night at elevated carbon dioxide.

  17. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated-temperature

  18. The Impact of Elevated Temperatures on Continental Carbon Cycling in the Paleogene

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Handley, L.; Taylor, K. W.; Collinson, M. E.; Weijers, J.; Talbot, H. M.; Hollis, C. J.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    Recent climate and biogeochemical modelling suggests that methane flux from wetlands and soils was greater during past greenhouse climates, due to a combination of higher continental temperatures, an enhanced hydrological cycle, and elevated primary production. Here, we examine continental environments in the Paleogene using a range of biomarker proxies (complemented by palaeobotanical approaches), including air temperatures derived from the distribution of soil bacterial glycerol dialkyl glycerol tetraethers (the MBT/CBT proxy), as well as evidence from wetland and lacustrine settings for enhanced methane cycling. Previously published and new MBT/CBT records parallel sea surface temperature records, suggesting elevated continental temperatures during the Eocene even at mid- to high latitudes (New Zealand, 20-28°C; the Arctic, 17°C; across the Sierra Nevada, 15-25°C; and SE England, 20-30°C). Such temperatures are broadly consistent with paleobotanical records and would have directly led to increased methane production via the metabolic impact of temperature on rates of methanogenesis. To test this, we have determined the distributions and carbon isotopic compositions of archaeal ether lipids and bacterial hopanoids in thermally immature Eocene lignites. In particular, the Cobham lignite, deposited in SE England and spanning the PETM, is characterised by markedly higher concentrations of both methanogen and methanotroph biomarkers compared to modern and Holocene temperate peats. Elevated temperatures, by fostering either stratification and/or decreased oxygen solubility, could have also led to enhanced methane production in Paleogene lakes. Both the Messel Shale (Germany) and Green River Formation, specifically the Parachute Creek oil shale horizons (Utah and Wyoming), are characterised by strongly reducing conditions (including euxinic conditions in the latter), as well as abundant methanogen and methanotroph biomarkers. Such results confirm model predictions

  19. Feasibility demonstration of a hyperfiltration technique to reclaim shower wastewater at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Hester, J. C.; Brandon, C. A.

    1972-01-01

    A feasibility demonstration of a hyperfiltration technique to determine its capability to reclaim shower wastewater at elevated temperature was conducted. Approximately twenty (20) gallons of typical shower water were processed through a dynamically formed membrane at a temperature of 167 F. Chemical and bacterial analyses of the product water are presented which show compliance with all potable water requirements established for extended manned space missions. In addition, subsystem characteristics and capabilities are discussed.

  20. Effects of Elevated Temperatures and Thermal Cycling on Ceramic Composite Materials

    DTIC Science & Technology

    1989-12-01

    the facilities of the materials laboratory at will. Larry Zawada provided the plates for me to use and gave me much information on the processing and...Fabrication All plates were manufactured at the Air Force Materials Laboratory under the supervision of Mr. Larry Zawada . The following processing...the room temperature, elevated temperature, and thermal cycling I portions of this study were conducted. Specimen Preparation. Mr. Larry Zawada

  1. Elucidating the Effect of Alloying Elements on the Behavior of Austenitic Stainless Steels at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-12-01

    The effect of carbon and molybdenum on elevated temperature behavior of austenitic stainless steels was studied. It was revealed that carbon does not alter the overall grain coarsening behavior but molybdenum significantly retards the growth of grains toward higher temperatures and slower kinetics and effectively increases the grain growth activation energy due to an interaction energy between Mo and grain boundaries. These observations were based on especial activation energy plots, which facilitate the interpretation of results.

  2. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  3. Test System for Elevated Temperature Characterization of Thin Metallic Foils (Preprint)

    DTIC Science & Technology

    2010-01-01

    19428-2959, USA. 13. Hartman, G.A., Zawada , L.P., and Russ, S.M., “Techniques for Elevated Temperature Testing of Advanced Ceramic Composite...CT, 1988, pp. 31-38. 14. Butkus, L.M., Zawada , L.P., and Hartman, G.A., “Fatigue Test Methodology and Resutls for Ceramic Matrix Composites at

  4. Elevational Ranges of Birds on a Tropical Montane Gradient Lag behind Warming Temperatures

    PubMed Central

    Forero-Medina, German; Terborgh, John; Socolar, S. Jacob; Pimm, Stuart L.

    2011-01-01

    Background Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species. Methodology/Principal Findings We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds. Conclusions Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change. PMID:22163309

  5. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R822721C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  6. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R826694C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  7. The Application of Laser Speckle Interferometry to Measure Strain at Elevated Temperatures and Various Loading Rates

    DTIC Science & Technology

    1990-05-01

    MTL TR 90-23 lAD IAD- A225 583 JILL COPY THE APPLICATION OF LASER SPECKLE INTERFEROMETRY TO MEASURE STRAIN AT ELEVATED TEMPERATURES AND VARIOUS...specimen was visable. Then LSI was used to measure further straining in the necking regions. The second question to be answered was whc:’,- cr LSI

  8. Immobilization of imidazole moieties in polymer electrolyte composite membrane for elevated temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Bei; Ye, Gongbo; Pan, Mu; Zhang, Haining

    2015-12-01

    Development of membrane electrolyte with reasonable proton conductivity at elevated temperature without external humidification is essential for practical applications of elevated temperature proton exchange membrane fuel cells. Herein, a novel polymer electrolyte composite membrane using imidazole as anhydrous proton carriers for elevated temperature fuel cells is investigated. The imidazole moieties are immobilized inside the Nafion/poly(tetrafluoroethylene) (PTFE) composite membrane through in situ formation of imidazole functionalized silica nanoparticles in Nafion dispersion. The thus-formed membrane exhibits strong Coulombic interaction between negatively charged sulfonic acid groups of Nafion and protonated imidazole moieties, leading to an anhydrous proton conductivity of 0.018 S cm-1 at 180 °C. With the introduction of PTFE matrix, the mechanical strength of the membrane is greatly improved. The peak power density of a single cell assembled from the hybrid membrane is observed to be 130 mW cm-2 under 350 mA cm-2 at 110 °C without external humidification and it remains stable for 20 h continuous operation. The obtained results demonstrate that the developed composite membranes could be utilized as promising membrane electrolytes for elevated temperature fuel cells.

  9. ELEVATED CO2 AND TEMPERATURE ALTER NITROGEN ALLOCATION IN DOUGLAS-FIR

    EPA Science Inventory

    The effects of elevated CO2 and temperature on principal carbon constituents (PCC) and C and N allocation between needle, woody (stem and branches) and root tissue of Pseudotsuga menziesii Mirb. Franco seedlings were determined. The seedlings were grown in sun-lit controlled-envi...

  10. Rod-type extensometers in long-term elevated temperature service

    NASA Astrophysics Data System (ADS)

    Dubois, A. O.; Nelson, P. H.; Hood, M.; Binnall, E.

    1982-09-01

    At Stripa, Sweden, 35 rod type extensometers were used to measure displacements within the granite rock mass surrounding electrical heaters emplaced in the floor of an underground entry. The performance of currently available rock instrumentation when subjected to long term service at elevated temperatures are thermomechanically evaluated.

  11. Enhancement of photoheterotrophic biohydrogen production at elevated temperatures by the expression of a thermophilic clostridial hydrogenase.

    PubMed

    Lo, Shou-Chen; Shih, Shau-Hua; Chang, Jui-Jen; Wang, Chun-Ying; Huang, Chieh-Chen

    2012-08-01

    The working temperature of a photobioreactor under sunlight can be elevated above the optimal growth temperature of a microorganism. To improve the biohydrogen productivity of photosynthetic bacteria at higher temperatures, a [FeFe]-hydrogenase gene from the thermophile Clostridium thermocellum was expressed in the mesophile Rhodopseudomonas palustris CGA009 (strain CGA-CThydA) using a log-phase expression promoter P( pckA ) to drive the expression of heterogeneous hydrogenase gene. In contrast, a mesophilic Clostridium acetobutylicum [FeFe]-hydrogenase gene was also constructed and expressed in R. palustris (strain CGA-CAhydA). Both transgenic strains were tested for cell growth, in vivo hydrogen production rate, and in vitro hydrogenase activity at elevated temperatures. Although both CGA-CThydA and CGA-CAhydA strains demonstrated enhanced growth over the vector control at temperatures above 38 °C, CGA-CThydA produced more hydrogen than the other strains. The in vitro hydrogenase activity assay, measured at 40 °C, confirmed that the activity of the CGA-CThydA hydrogenase was higher than the CGA-CAhydA hydrogenase. These results showed that the expression of a thermophilic [FeFe]-hydrogenase in R. palustris increased the growth rate and biohydrogen production at elevated temperatures. This transgenic strategy can be applied to a broad range of purple photosynthetic bacteria used to produce biohydrogen under sunlight.

  12. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    NASA Astrophysics Data System (ADS)

    Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.

    2015-01-01

    The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.

  13. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  14. Elevated-temperature fracture resistances of monolithic and composite ceramics using chevron-notched bend tests

    NASA Technical Reports Server (NTRS)

    Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.

    1992-01-01

    The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.

  15. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  16. Interlaminar Fracture Toughness of CF/PEI and GF/PEI Composites at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Young; Ye, Lin; Phoa, Kim-Meng

    2004-05-01

    An experimental study has been conducted to assess temperature effects on mode-I and mode-II interlaminar fracture toughness of carbon fibre/polyetherimide (CF/PEI) and glass fibre/polyetherimide (GF/PEI) thermoplastic composites. Mode-I double cantilever beam (DCB) and mode-II end notched flexure (ENF) tests were carried out in a temperature range from 25 to 130°C. For both composite systems, the initiation toughness, G IC, ini and G IIC, ini, of mode-I and mode-II interlaminar fracture decreased with an increase in temperature, while the propagation toughness, G IC, prop and G IIC, prop, displayed a reverse trend. Three main mechanisms were identified to contribute to the interlaminar fracture toughness, namely matrix deformation, fibre/matrix interfacial failure and fibre bridging during the delamination process. At delamination initiation, the weakened fibre/matrix interface at elevated temperatures plays an overriding role with the delamination growth initiating at the fibre/matrix interface, rather than from a blunt crack tip introduced by the insert film, leading to low values of G IC, ini and G IIC, ini. On the other hand, during delamination propagation, enhanced matrix deformation at elevated temperatures and fibre bridging promoted by weakened fibre/matrix interface result in greater G IC, prop values. Meanwhile enhanced matrix toughness and ductility at elevated temperatures also increase the stability of mode-II crack growth.

  17. Effect of Temperature Cycling and Exposure to Extreme Temperatures on Reliability of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2007-01-01

    In this work, results of multiple temperature cycling (TC) (up to 1,000 cycles) of different types of solid tantalum capacitors are analyzed and reported. Deformation of chip tantalum during temperature variations simulating reflow soldering conditions was measured to evaluate the possibility of the pop-corning effect in the parts. To simulate the effect of short-time exposures to solder reflow temperatures on the reliability of tantalum capacitors, several part types were subjected to multiple cycles (up to 100) between room temperature and 240 C with periodical measurements of electrical characteristics of the parts. Mechanisms of degradation caused by temperature cycling and exposure to high temperatures, and the requirements of MIL-PRF-55365 for assessment of the resistance of the parts to soldering heat are discussed.

  18. Shift of fleshy fruited species along elevation: temperature, canopy coverage, phylogeny and origin

    PubMed Central

    Yu, Shunli; Katz, Ofir; Fang, Weiwei; Li, Danfeng; Sang, Weiguo; Liu, Canran

    2017-01-01

    Plant communities differ in their fruit type spectra, especially in the proportions of fleshy and non-fleshy fruit types. However, which abiotic and biotic factors drive this variability along elevation gradient and what drives the evolution of fruit type diversity still are puzzling. We analyzed the variations in proportions and richness of fleshy-fruited species and their correlations to various abiotic and biotic variables along elevation gradients in three mountains in the Beijing region, northeast China. Fleshy-fruited species, which are characterized by high fruit water contents, were found in great proportion and richness at relatively low elevations, where soil water content is low compared to high elevations. High temperatures in low elevations increase water availability for plants. Plants that grow in the shaded low-elevation thick-canopy forests are less exposed to evapotranspiration and thus possess water surpluses that can be invested in fleshy fruits. Such an investment in fleshy fruits is beneficial for these species because it makes the fruits more attractive to frugivores that act as seed dispersers in the close-canopied environments, where dispersion by wind is less effective. A hypothesis is proposed that plant internal water surpluses are the prerequisite conditions that permit evolution of fleshy fruits to occur. PMID:28084416

  19. High-temperature indices associated with mortality and outpatient visits: characterizing the association with elevated temperature.

    PubMed

    Lin, Yu-Kai; Chang, Chin-Kuo; Li, Ming-Hsu; Wu, Yu-Chung; Wang, Yu-Chun

    2012-06-15

    This study aimed to identify optimal high-temperature indices to predict risks of all-cause mortality and outpatient visits for subtropical islanders in warm seasons (May to October). Eight high-temperature indices, including three single measurements (average, maximum and minimum temperature) and five composite indices (heat index, humidex, temperature humidity index, apparent temperature and wet-bulb globe temperature), and their standardized Z scores, were used in distributed lag non-linear models. Cumulative 8-day (lag zero to seven days) relative risks (RRs) and 95% confidence intervals were estimated, 1 and 2 standardized deviations above the medium (i.e., at 84.1th and 97.7th percentile, respectively), by comparing with Z scores for the lowest risks of mortality and outpatient visits as references. Analyses were performed for Taipei in north, Central Taiwan and Southern Taiwan. Results showed that standardized Z-values of high-temperature indices associated with the lowest health risk were approximately 0 in Taipei and Central Taiwan, and -1 in Southern Taiwan. As the apparent temperature was at Z=2, the cumulative 8-day mortality risk increased significantly, by 23% in Taipei and 28% in Southern Taiwan, but not in Central Taiwan. The maximum temperature displayed consistently a high correlation with all-cause outpatient visits at Z=1; with the cumulative 8-day RRs for outpatient visits increased by 7%, 3%, and 4% in the three corresponding areas. In conclusion, this study has demonstrated methods to compare multiple high-temperature indices associated with all-cause mortality and outpatient visits for population residing in a subtropical island. Apparent temperature is an optimal indicator for predicting all-cause mortality risk, and maximum temperature is recommended to associate with outpatient visits. The impact of heat varied with study areas, evaluated health outcomes, and high-temperature indices. The increased extreme heat is associated with stronger

  20. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2011-12-01

    Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters—some of which may be subject to considerable uncertainty—that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg-1.

  1. Dry Sliding Wear Behavior of Hafnium-Based Bulk Metallic Glass at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Keshri, Anup Kumar; Behl, Lovish; Lahiri, Debrupa; Dulikravich, George S.; Agarwal, Arvind

    2016-09-01

    Dry sliding wear behavior of hafnium-based bulk metallic glass was studied at two loads (5 and 15 N) and two temperatures (298 and 673 K) using aluminum oxide (Al2O3) ball as a wear counterpart. At 5 N load, wear reduced by ~71% on increasing the temperature from 298 to 673 K. At a higher load of 15 N, the weight loss reduction was much lower (45%) on increasing the temperature from 298 to 673 K. Decreased wear weight loss on increasing the temperature was attributed to the increased hardness of the Hf-based metallic glass at high temperatures. Micro-hardness of the alloy at 293 K was found to be 636 Hv, which gradually increased to 655 Hv on annealing at 673 K. Improvement in the hardness at elevated temperature is attributed to: (1) free volume annihilation, (2) surface oxide formation and (3) nano-crystallites precipitation. Reduced wear at elevated temperature resulted in smaller volume of debris generation that restricted three-body wear to obtain lower coefficient of friction (COF) (0.25-0.35) compared to COF (0.65-0.75) at room temperature.

  2. Mechanical properties of long carbon fiber reinforced thermoplastic (LFT) at elevated temperature

    NASA Astrophysics Data System (ADS)

    Wang, Qiushi

    Long fiber reinforced thermoplastics (LFT) possess high specific modulus and strength, superior damage tolerance and fracture toughness and have found increasing use in transportation, military, and aerospace applications. However, one of the impediments to utilizing these materials is the lack of performance data in harsh conditions, especially at elevated temperature. In order to quantify the effect of temperature on the mechanical properties of carbon fiber reinforced thermoplastic composites, carbon fiber PAA composite plates containing 20% and 30% carbon fiber were produced using extrusion/compression molding process and tested at three representative temperatures, room temperature (RT 26°C), middle temperature (MID 60°C) and glass transition temperature (Tg 80°C). A heating chamber was designed and fabricated for the testing at elevated temperature. As temperature increases, flexural modulus, flexural strength, tensile modulus and tensile strength decrease. The highest reduction observed in stiffness (modulus) values of 30% CF/PAA at Tg in the 00 orientation is 75%. The reduction values were larger for the transverse (perpendicular to flow direction) samples than the longitudinal (flow direction) samples. The property reduction in 30% CF/PAA is larger than 20% CF/PAA. Furthermore, an innovative method was developed to calculate the fiber content in carbon fiber reinforced composites by burning off the neat resin and sample in a tube furnace. This method was proved to be accurate (within 1.5 wt. % deviation) by using burning off data obtained from CF/Epoxy and CF/Vinyl Ester samples. 20% and 30% carbon/PAA samples were burned off and carbon fiber content was obtained using this method. The results of the present study will be helpful in determining the end-user applications of these composite materials. Keywords: Long Carbon Fibers, Elevated Temperature, Mechanical Properties, Burn off Test.

  3. Use of stable tracer studies to evaluate pesticide photolysis at elevated temperatures.

    PubMed

    Hebert, V R; Hoonhout, C; Miller, G C

    2000-05-01

    New methods were developed to determine photolysis rates of medium-weight pesticides in the gas phase using elevated air temperatures and solid-phase microextraction (SPME). A 57-L glass chamber was constructed that utilized collimated xenon arc irradiation that could heat chamber air to increase the amount of pesticide in the gas phase. Gas-phase photolysis rates were determined at various air temperatures by comparing the rate of loss of each of the tested pesticides to a photochemically stable tracer, hexachlorobenzene. Interval sampling of gas-phase constituents was performed using SPME immediately followed by GC-ECD or GC-MSD analysis. The two pesticides under examination were the dinitroaniline herbicide trifluralin and the organophosphorus insecticide chlorpyrifos. The gas-phase photolysis for trifluralin was found to be rapid with half-lives of 22-24 min corrected for sunlight. These results were comparable to photochemical lifetime estimates from other investigators under sunlight conditions. Elevating temperatures from 60 to 80 degrees C did not affect photolysis rates, and these rates could be extrapolated to environmental temperatures. From 60 to 80 degrees C, gas-phase chlorpyrifos photolysis lifetimes were observed to range from 1.4 to 2.2 h corrected for sunlight and will thus be important together with hydroxyl radical reactions for removing this substance from the atmosphere. At these elevated temperatures, pesticides and tracer compounds were found to be substantially in the gas phase, and possible effects on reaction rates from wall interactions were minimized.

  4. Effects of elevated temperature postharvest on color aspect, physiochemical characteristics, and aroma components of pineapple fruits.

    PubMed

    Liu, Chuanhe; Liu, Yan

    2014-12-01

    In this work, 2 separate experiments were performed to describe the influence of elevated temperature treatments postharvest on the color, physiochemical characteristics and aroma components of pineapple fruits during low-temperature seasons. The L* (lightness) values of the skin and pulp of pineapple fruits were decreased. The a* (greenness-redness) and b* (blueness-yellowness) values of the skin and pulp were all markedly increased. The elevated temperature significantly increased the contents of total soluble solids (TSS) and slightly affected contents of vitamin C (nonsignificant). Titratable acidity (TA) of pineapple fruits were notably decreased, whereas the values of TSS/TA of pineapple fruits were significantly increased. The firmness of the pineapple fruits decreased and more esters and alkenes were identified. The total relative contents of esters were increased, and the total relative contents of alkenes were decreased.

  5. Microstructural stability of wrought, laser and electron beam glazed NARloy-Z alloy at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.

    1993-01-01

    Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.

  6. Viscoelastoplastic Deformation and Damage Response of Titanium Alloy, Ti-6Al-4V, at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Lerch, Bradley A.; Saleeb, Atef F.; Kasemer, Matthew P.

    2013-01-01

    Time-dependent deformation and damage behavior can significantly affect the life of aerospace propulsion components. Consequently, one needs an accurate constitutive model that can represent both reversible and irreversible behavior under multiaxial loading conditions. This paper details the characterization and utilization of a multi-mechanism constitutive model of the GVIPS class (Generalized Viscoplastic with Potential Structure) that has been extended to describe the viscoelastoplastic deformation and damage of the titanium alloy Ti-6Al-4V. Associated material constants were characterized at five elevated temperatures where viscoelastoplastic behavior was observed, and at three elevated temperatures where damage (of both the stiffness reduction and strength reduction type) was incurred. Experimental data from a wide variety of uniaxial load cases were used to correlate and validate the proposed GVIPS model. Presented are the optimized material parameters, and the viscoelastoplastic deformation and damage responses at the various temperatures.

  7. Leaf respiration rates are increased by warm season as well as by elevated temperature treatment in Eucalyptus globulus

    NASA Astrophysics Data System (ADS)

    Ekenstam, Angelica af; Wallin, Göran; Ellsworth, David; Uddling Fredin, Johan; Crous, Kristine

    2014-05-01

    Plant leaf respiration is one of the major CO2 fluxes between terrestrial biosphere and the atmosphere, and its responses to elevated CO2 and temperature thus have important implications for the carbon cycle and rate on ongoing climate change. Non-photorespiratory leaf respiration is reduced in light, Rlight, compared with the rate in the dark, Rdark. It is therefore important to consider both Rlight and Rdark when estimating the exchange of CO2 between the biosphere and the atmosphere, during current and future climates. This study was conducted at the Hawkesbury Forest Experiment, HFE, in Richmond, NSW, Australia. Trees of Tasmanian Blue Gum (Eucalyptus globulus Labill.) were exposed in whole tree chambers (WTC) to a complete factorial combination of ambient and elevated temperature and CO2 (+3 °C and +240 ppm CO2, respectively). The measurements of Rlight and Rdark were made in 2011 after 9 - 15 months exposure in the WTCs. The measurements were made in March (after the year's hottest months) and October (after the coldest period). Rlight was determined at four temperatures ranging between 20 and 40 °C on attached leaves using a portable gas exchange system (LI-6400XT). Rdark was measured at 20-40 °C in October and at 25 °C in March. Rdark was measured after dark acclimation for at least 30 min and Rlight was determined from the intersection of the photosynthetic CO2 responses measured at three different light intensities using the Laisk metod. Trees grown in elevated temperature had a considerably higher Rdark (+53% across all measurement temperatures in October). However, Rlight did not respond significantly to either CO2 or temperature. In October, the Rlight to Rdark ratio indicated an overall light inhibition of respiration of 31% across all temperatures and in March the light inhibition was 22 % at 25 °C. The seasonal comparisons showed that both Rlight and Rdark were considerably higher after the warm compared to cold season, especially when measured

  8. Structural Change of Aerosol Particle Aggregates with Exposure to Elevated Relative Humidity.

    PubMed

    Montgomery, James F; Rogak, Steven N; Green, Sheldon I; You, Yuan; Bertram, Allan K

    2015-10-20

    Structural changes of aggregates composed of inorganic salts exposed to relative humidity (RH) between 0 and 80% after formation at selected RH between 0 and 60% were investigated using a tandem differential mobility analyzer (TDMA) and fluorescence microscopy. The TDMA was used to measure a shift in peak mobility diameter for 100-700 nm aggregates of hygroscopic aerosol particles composed of NaCl, Na2SO4, (NH4)2SO4, and nonhygroscopic Al2O3 as the RH was increased. Aggregates of hygroscopic particles were found to shrink when exposed to RH greater than that during the aggregation process. The degree of aggregate restructuring is greater for larger aggregates and greater increases in RH. Growth factors (GF) calculated from mobility diameter measurements as low as 0.77 were seen for NaCl before deliquescence. The GF subsequently increased to 1.23 at 80% RH, indicating growth after deliquescence. Exposure to RH lower than that experienced during aggregation did not result in structural changes. Fluorescent microscopy confirmed that aggregates formed on wire surfaces undergo an irreversible change in structure when exposed to elevated RH. Analysis of 2D movement of aggregates shows a displacement of 5-13% compared to projected length of initial aggregate from a wire surface. Surface tension due to water adsorption within the aggregate structure is a potential cause of the structural changes.

  9. Warming Amplification of Minimum and Maximum Temperatures over High-Elevation Regions across the Globe.

    PubMed

    Fan, Xiaohui; Wang, Qixiang; Wang, Mengben; Jiménez, Claudia Villarroel

    2015-01-01

    An analysis of the annual mean temperature (TMEAN) (1961-2010) has revealed that warming amplification (altitudinal amplification and regional amplification) is a common feature of major high-elevation regions across the globe against the background of global warming since the mid-20th century. In this study, the authors further examine whether this holds for annual mean minimum temperature (TMIN) and annual mean maximum temperature (TMAX) (1961-2010) on a global scale. The extraction method of warming component of altitude, and the paired region comparison method were used in this study. Results show that a significant altitudinal amplification trend in TMIN (TMAX) is detected in all (four) of the six high-elevation regions tested, and the average magnitude of altitudinal amplification trend for TMIN (TMAX) [0.306±0.086 °C km-1(0.154±0.213 °C km-1)] is substantially larger (smaller) than TMEAN (0.230±0.073 °C km-1) during the period 1961-2010. For the five paired high- and low-elevation regions available, regional amplification is detected in the four high-elevation regions for TMIN and TMAX (respectively or as a whole). Qualitatively, highly (largely) consistent results are observed for TMIN (TMAX) compared with those for TMEAN.

  10. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    SciTech Connect

    Shur, V. Ya. Akhmatkhanov, A. R.; Baturin, I. S.; Chezganov, D. S.; Lobov, A. I.; Smirnov, M. M.

    2013-12-09

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation.

  11. [Effects of drought stress, high temperature and elevated CO2 concentration on the growth of winter wheat].

    PubMed

    Si, Fu-Yan; Qiao, Yun-Zhou; Jiang, Jing-Wei; Dong, Bao-Di; Shi, Chang-Hai; Liu, Meng-Yu

    2014-09-01

    The impacts of climate change on the grain yield, photosynthesis, and water conditions of winter wheat were assessed based on an experiment, in which wheat plants were subjected to ambient and elevated CO2 concentrations, ambient and elevated temperatures, and low and high water conditions independently and in combination. The CO2 enrichment alone had no effect on the photosynthesis of winter wheat, whereas higher temperature and drought significantly decreased the photosynthetic rate. Water conditions in flag leaves were not significantly changed at the elevated CO2 concentration or elevated temperature. However, drought stress decreased the relative water content in flag leaves, and the combination of elevated temperature and drought reduced the water potential in flag leaves. The combination of elevated CO2 concentration, elevated temperature, and drought significantly reduced the photosynthetic rate and water conditions, and led to a 41.4% decrease in grain yield. The elevated CO2 concentration alone increased the grain yield by 21.2%, whereas the elevated temperature decreased the grain yield by 12.3%. The grain yield was not affected by the combination of elevated CO2 concentration and temperature, but the grain yield was significantly decreased by the drought stress if combined with any of the climate scenarios applied in this study. These findings suggested that maintaining high soil water content might be a vital means of reducing the potential harm caused by the climate change.

  12. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress.

    PubMed

    Hansen, P J

    2007-09-01

    Heat stress causes large reductions in fertility in lactating dairy cows. The magnitude and geographical extent of this problem is increasing because improvements in milk yield have made it more difficult for cows to regulate body temperature during warm weather. There have been efforts to improve fertility during heat stress by exploiting determinants of oocyte and embryonic responses to elevated temperature. Among these determinants are genotype, stage of development, and presence of cytoprotective molecules in the reproductive tract. One effective strategy for increasing pregnancy rate during heat stress is to use embryo transfer to bypass effects of elevated temperature on the oocyte and early embryo. Pregnancy success to embryo transfer in the summer can be further improved by exposure of embryos to insulin-like growth factor-I during culture before transfer. Among the cytoprotective molecules that have been examined for enhancing fertility during heat stress are bovine somatotropin and various antioxidants. To date, an effective method for delivery of these molecules to increase fertility during heat stress has not been identified. Genes in cattle exist for regulation of body temperature and for cellular resistance to elevated temperature. Although largely unidentified, the existence of these genes offers the possibility for their incorporation into dairy breeds through crossbreeding or on an individual-gene basis. In summary, physiological or genetic manipulation of the cow to improve embryonic resistance to elevated temperature is a promising approach for enhancing fertility of lactating dairy cows.

  13. The Effects of Elevated Temperatures on the Response of Resins Under Dynamic and Static Loadings

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2005-01-01

    The overall objective of the research is to experimentally study the combined effects of temperature and strain rate on the response of two resins that are commonly used for the matrix material in composites. The resins are loaded at various temperatures in shear and in tension over a wide range of strain rates. These two types of loadings provide an opportunity to examine also the effect that temperature might have on the effects of the hydrostatic stress component on the material response. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate, and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 10(exp-4)/s and elevated temperatures of 50 and 8OC. The results show that the temperature significantly affects the response of epoxy.

  14. ELEVATED TEMPERATURE SENSORS FOR ON-LINE CRITICAL EQUIPMENT HEALTH MONITORING

    SciTech Connect

    James Sebastian

    2005-03-01

    The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates in the first year of the program, and additional substrates were evaluated. In the second year of the program, additional substrate research was performed with the goal of improving the performance of using SiC substrates. While greatly improved bandwidth was achieved, sensor survival at elevated temperature remains problematic. The elevated temperature coupling work continued with significant experimentation. Molten glasses were found to work within a limited temperature range, but metal foils applied with heat and pressure were found to have superior performance overall. The final year of the program will be dedicated to making further advances in AlN/ substrate behavior, and the design and implementation of a sensor demonstration experiment at very high temperature in a simulated industrial application.

  15. Analysis and testing of dynamic micromechanical behavior of composite materials at elevated temperatures

    SciTech Connect

    Pant, R.H.; Gibson, R.F.

    1996-10-01

    This paper describes the use of a recently developed high temperature impulse-frequency response apparatus to directly measure dynamic modulus and internal damping of high temperature composite materials, matrix materials, and reinforcing fibers as a function of temperature. An extensional vibration test was used for determination of the complex Young`s modulus of fiber specimens as a function of temperature. A flexural vibration test was used for determination of the complex flexural modulus of matrix and unidirectional composite specimens (0 and 90 deg fiber orientations) as a function of temperature. These results were obtained from tests done on two different fiber reinforced composite materials: boron/epoxy (B/E) and Silicon Carbide/Ti-6Al-4V (SiC/Ti). The results from these tests were then used to assess the validity of micromechanics predictions of composite properties at elevated temperatures. Micromechanics predictions of composite moduli and damping at elevated temperatures show good agreement with measured values for the 0 deg case (longitudinal) but only fair agreement for the 90 deg case (transverse). In both cases, the predictions indicate the correct trends in the properties.

  16. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants.

    PubMed

    Jagadish, S V Krishna; Bahuguna, Rajeev N; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P V Vara; Craufurd, Peter Q

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation.

  17. The interactive effect of elevated temperature on deltamethrin-induced biochemical stress responses in Channa punctata Bloch.

    PubMed

    Kaur, Manpreet; Atif, Fahim; Ansari, Rizwan A; Ahmad, Firoz; Raisuddin, Sheikh

    2011-09-30

    There are reports showing interactive effect of environmental factors with the toxic outcome of chemicals. We studied the interactive effect of elevated temperature as an abiotic stressor on deltamethrin-induced biochemical stress responses in a freshwater fish, Channa punctata Bloch. Heat stress (∼12°C above ambient temperature for 3h) and pesticide exposure (deltamethrin 0.75ppb for 48h) showed significant induction of heat shock protein-70 (HSP70) in liver, kidney and gills of fishes. Elevated temperature when followed by deltamethrin exposure showed synergistic effect showing a high level of HSP70 in liver and gills whereas response in the kidney was opposite. On the contrary, when deltamethrin exposure followed the heat stress, no significant difference was observed. Protein carbonylation was found to be more pronounced in heat-stressed group compared with control fish group. A significant increase in lipid peroxidation (LPO) was observed in different tissues of fish exposed to either of the stressors. In the kidney of fish exposed to heat stress followed by deltamethrin, LPO was relatively lower as compared to other treatments. Thiols content such as reduced glutathione (GSH), total thiols (T-SH), non-protein thiols (NP-SH) and protein thiols (P-SH) showed no consistent pattern in different tissues. In deltamethrin-exposed group that was subsequently exposed to heat stress, the GSH content was higher in liver and lower in both kidney and gills when compared with other groups. Alteration in the activities of antioxidant enzymes such as catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) was also observed when fish were exposed to heat stress and/or deltamethrin. Our study demonstrated that heat stress modulated biochemical stress responses in fish showing a tissue specific pattern. This implies that fish has the capacity to elicit differential response to exposure to abiotic stressors in order to

  18. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata.

    PubMed

    Li, Shiguo; Huang, Jingliang; Liu, Chuang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-02-02

    Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.

  19. Spatiotemporal variability of increasing temperature impacts on grassland vegetation along an elevation transect in the Alps

    NASA Astrophysics Data System (ADS)

    Niedrist, Georg; Obojes, Nikolaus; Bertoldi, Giacomo; Della Chiesa, Stefano; Tasser, Erich; Tappeiner, Ulrike

    2013-04-01

    Different manipulative approaches have been developed to study and quantify impacts of temperature increase on grassland ecosystems. Many of them share the problem of unwanted effects on the surrounding microclimatic conditions. Transplantation of grassland mesocosms along elevation gradients can be a realistic alternative, although with some restrictions. Here we present 3 years of data from a double-transplant-experiment, were 70*70*20cm grassland turves were transplanted at two elevations from 2000m to 1500m a.s.l. and from 1500m to 1000m a.s.l. respectively, along an inner-alpine elevation gradient in the Vinschgau Valley (South Tyrol, I). All donor and receiving sites are comparable regarding land use (meadows), soil conditions or exposition and are located within a few km's distance ensuring comparable weather conditions apart from the intended air temperature (0.54°K/100m) and annual precipitation (20mm/100m) lapse rate. Phytodiversity and above ground net primary production (ANPP) of the transplanted mesocosms were assessed and compared with locally transplanted monoliths of the respective donor site. Furthermore, growth dynamics was continuously observed throughout the vegetation season with a non-destructive method based on measurement of light (photosynthetic active radiation) extinction within the canopy. After 3 years no significant changes in absolute species numbers has been detected at all, whereas slight variations have been observed regarding species composition. Those shifts could be differentiated both to transplantation artifacts and effects of the elevated temperature. Total aboveground phytomass, unsurprisingly, showed higher values on transplanted (lower) mesocosms, however: data from single cuts and growth rate analysis reveal differing effects between the two transplantation steps as well as over the course of the vegetation period. Transplanted plots from 2000m to 1500m showed continuously higher productivity from spring to autumn

  20. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature

    NASA Astrophysics Data System (ADS)

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-01

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.

  1. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature

    PubMed Central

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-01

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture. PMID:26732540

  2. Low cycle fatigue behavior of polycrystalline Ni3Al alloys at ambient and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Webb, Graham; Antolovich, Stephen D.

    1994-11-01

    The low cycle fatigue (LCF) resistance of polycrystalline Ni3Al has been evaluated at ambient, intermediate (300 °C), and elevated (600 °C) temperatures using strain rates of 10-2/s and 10-4/s. Testing was conducted on a binary and a Cr-containing alloy of similar stoichiometry and B content (hypostoichiometric, 200 wppm B). Test results were combined with electron microscope investigations in order to evaluate microstructural changes during LCF. At ambient and intermediate temperatures, the cyclic constitutive response of both alloys was similar, and the LCF behavior was virtually rate independent. Under these conditions, the alloys rapidly hardened and then gradually softened for the remainder of the life. Initial hardening resulted from the accumulation of dislocation debris within the deformed microstructure, whereas softening was related to localized disordering. For these experimental conditions, crack initiation resulted within persistent slip bands (PSBs). At the elevated temperature, diffusion-assisted deformation resulted in a rate-dependent constitutive response and crack-initiation characteristics. At the high strain rate (10-2/s), continuous cyclic hardening resulted from the accumulation of dislocation debris. At the low strain rate (10-4/s), the diffusion of dislocation debris to grain boundaries resulted in cyclic softening. The elevated temperature LCF resistance was determined by the effect of the constitutive response on the driving force for environmental embrittlement. Chromium additions were observed to enhance LCF performance only under conditions where crack initiation was environmentally driven.

  3. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  4. Combined effects of temperature acclimation and cadmium exposure on mitochondrial function in eastern oysters Crassostrea virginica gmelin (Bivalvia: Ostreidae).

    PubMed

    Cherkasov, Anton S; Ringwood, Amy H; Sokolova, Inna M

    2006-09-01

    Cadmium and temperature have strong impacts on the metabolic physiology of aquatic organisms. To analyze the combined impact of these two stressors on aerobic capacity, effects of Cd exposure (50 microg/L) on mitochondrial function were studied in oysters (Crassostrea virginica) acclimated to 12 and 20 degrees C in winter and to 20 and 28 degrees C in fall. Cadmium exposure had different effects on mitochondrial bioenergetics of oysters depending on the acclimation temperature. In oysters acclimated to 12 degrees C, Cd exposure resulted in elevated intrinsic rates of mitochondrial oxidation, whereas at 28 degrees C, a rapid and pronounced decrease of mitochondrial oxidative capacity was found in Cd-exposed oysters. At the intermediate acclimation temperature (20 degrees C), effects of Cd exposure on intrinsic rates of mitochondrial oxidation were negligible. Degree of coupling significantly decreased in mitochondria from 28 degrees C-acclimated oysters but not in that from 12 degrees C- or 20 degrees C-acclimated oysters. Acclimation at elevated temperatures also increased sensitivity of oyster mitochondria to extramitochondrial Cd. Variation in mitochondrial membrane potential explained 41% of the observed variation in mitochondrial adenosine triphosphate synthesis and proton leak between different acclimation groups of oysters. Temperature-dependent sensitivity of metabolic physiology to Cd has significant implications for toxicity testing and for extrapolation of laboratory studies to field populations of aquatic poikilotherms, indicating the importance of taking into account the thermal regime of the environment.

  5. Experimental Evaluation of Cermet Turbine Stator Blades for Use at Elevated Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Chiarito, Patrick T.; Johnston, James R.

    1959-01-01

    The suitability of cermets for turbine stator blades of a modified turbojet engine was determined at an average turbine-inlet-gas temperature of 2000 F. Such an increase in temperature would yield a premium in thrust from a service engine. Because the cermet blades require no cooling, all the available compressor bleed air could be used to cool a turbine made from conventional ductile alloys. Cermet blades were first run in 100-hour endurance tests at normal gas temperatures in order to evaluate two methods for mounting them. The elevated gas-temperature test was then run using the method of support considered best for high-temperature operation. After 52 hours at 2000 F, one of the group of four cermet blades fractured probably because of end loads resulting from thermal distortion of the spacer band of the nozzle diaphragm. Improved design of a service engine would preclude this cause of premature failure.

  6. Fundamental studies of ceramic/metal interfacial reactions at elevated temperatures.

    SciTech Connect

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-12-14

    This work characterizes the interfaces resulting from exposing oxide and non-oxide ceramic substrates to zirconium metal and stainless steel-zirconium containing alloys. The ceramic/metal systems together were preheated at about 600 C and then the temperatures were increased to the test maximum temperature, which exceeded 1800 C, in an atmosphere of high purity argon. Metal samples were placed onto ceramic substrates, and the system was heated to elevated temperatures past the melting point of the metallic specimen. After a short stay at the peak temperature, the system was cooled to room temperature and examined. The chemical changes across the interface and other microstructural developments were analyzed with energy dispersive spectroscopy (EDS). This paper reports on the condition of the interfaces in the different systems studied and describes possible mechanisms influencing the microstructure.

  7. New measurements of multilayer insulation at variable cold temperature and elevated residual gas pressure

    NASA Astrophysics Data System (ADS)

    Funke, Th; Haberstroh, Ch

    2015-12-01

    New MLI measurements at the TU Dresden flow type calorimeter have been carried out. Specimens of 20 layer double side aluminized polyester film were tested. A cylindrical cold surface of 0.9 m2 is held at the desired cold boundary temperature between approximately 30 K and 300 K. The heat transfer through the MLI is measured by recording the mass flow as well as the inlet and the outlet temperature of the cooling fluid. Measurements at varied cold boundary temperatures have been performed. Moreover the effect of an additional vacuum degradation - as it might occur by decreasing getter material performance in real systems at elevated temperatures - is studied by a controlled inlet of nitrogen gas. Thus the vacuum pressure was varied over a range of 10-7 mbar to 10-2 mbar. Different cold boundary temperatures between 35 K and 110 K were investigated. Test results for 20 layer MLI are presented.

  8. Influence of elevated temperature and acid mine drainage on mortality of the crayfish Cambarus bartonii

    USGS Publications Warehouse

    Hartman, K.J.; Hom, C.D.; Mazik, P.M.

    2010-01-01

    Effects of elevated temperature and acid mine drainage (AMD) on crayfish mortality were investigated in the Stony River, Grant County, West Virginia. During summers 2003 and 2004, four-week in situ bioassays were performed along a thermal and AMD gradient with the native crayfish Cambarus bartonii. Crayfish mortality was analyzed in conjunction with temperature and AMD related variables (pH, specific conductivity). Mortality was significantly higher (48-88%) at sites with high temperatures during 2003 (max = 33.0??C), but no significant differences were observed in 2004 (max = 32.0??C). Temperatures were higher in 2003 than 2004 due to increased discharge from a cooling reservoir flowing into the river. Additionally, duration of high temperature was approximately four days in 2003 as compared with only one day in 2004. No significant relationship between acid mine drainage variables and crayfish mortality was apparent.

  9. The deformation and fracture characteristics of inconel X-750 at room temperature and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Mills, W. J.

    1980-06-01

    Electron fractographic and thin foil electron metallographic techniques were used to evaluate the deformation and fracture characteristics of Inconel X-750 at temperatures ranging from 24 to 816 °C. Operative dislocation mechanisms and fracture surface morphologies were related to the overall tensile response of this nickel-base superalloy. At room temperature, failure occurred primarily by an intergranular dimple rupture mechanism associated with microvoid coalescence along grain boundary denuded regions. A fairly high density of dislocations throughout the matrix resulted in relatively high ductility levels even though failure occurred by an intergranular mechanism. Under intermediate temperature conditions (316 to 427 °C), increased transgranular fracture coupled with extensive dislocation activity within the Inconel X-750 matrix caused a slight increase in ductility. At progressively higher temperatures, 538 to 704 °C, all dislocation activity was channeled through narrow slip bands which subsequently initiated localized separation and resulted in a very faceted fracture surface appearance. The absence of a homogeneous dislocation substructure in this temperature regime resulted in a severe degradation in ductility levels. At the highest test temperature (816 °C), a uniform dislocation network throughout the Inconel X-750 matrix coupled with intense dislocation activity in the grain boundary denuded zone resulted in a marked improvement in ductility. Furthermore, the extensive dislocation activity along grain boundary regions ultimately resulted in an intergranular fracture morphology.

  10. The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat.

    PubMed

    Nancarrow, Narelle; Constable, Fiona E; Finlay, Kyla J; Freeman, Angela J; Rodoni, Brendan C; Trebicki, Piotr; Vassiliadis, Simone; Yen, Alan L; Luck, Jo E

    2014-06-24

    Barley yellow dwarf virus-PAV (BYDV-PAV) is associated with yellow dwarf disease, one of the most economically important diseases of cereals worldwide. In this study, the impact of current and future predicted temperatures for the Wimmera wheat growing district in Victoria, Australia on the titre of BYDV-PAV in wheat was investigated. Ten-day old wheat (Triticum aestivum, cv. Yitpi) seedlings were inoculated with BYDV-PAV and grown at ambient (5.0-16.1°C, night-day) or elevated (10.0-21.1°C, night-day) temperature treatments, simulating the current Wimmera average and future daily temperature cycles, respectively, during the wheat-growing season. Whole above-ground plant samples were collected from each temperature treatment at 0 (day of inoculation), 3, 6, 9, 12, 15, 18, 21 and 24 days after inoculation and the titre of BYDV-PAV was measured in each sample using a specific one-step multiplex normalised reverse transcription quantitative PCR (RT-qPCR) assay. Physical measurements, including plant height, dry weight and tiller number, were also taken at each sampling point. The titre of BYDV-PAV was significantly greater in plants grown in the elevated temperature treatment than in plants grown in the ambient treatment on days 6, 9 and 12. Plants grown at elevated temperature were significantly bigger and symptoms associated with BYDV-PAV were visible earlier than in plants grown at ambient temperature. These results may have important implications for the epidemiology of yellow dwarf disease under future climates in Australia.

  11. Elevated CO₂ mitigates drought and temperature-induced oxidative stress differently in grasses and legumes.

    PubMed

    AbdElgawad, Hamada; Farfan-Vignolo, Evelyn Roxana; de Vos, Dirk; Asard, Han

    2015-02-01

    Increasing atmospheric CO2 will affect plant growth, including mitigation of stress impact. Such effects vary considerably between species-groups. Grasses (Lolium perenne, Poa pratensis) and legumes (Medicago lupulina, Lotus corniculatus) were subjected to drought, elevated temperature and elevated CO2. Drought inhibited plant growth, photosynthesis and stomatal conductance, and induced osmolytes and antioxidants in all species. In contrast, oxidative damage was more strongly induced in the legumes than in the grasses. Warming generally exacerbated drought effects, whereas elevated CO2 reduced stress impact. In the grasses, photosynthesis and chlorophyll levels were more protected by CO2 than in the legumes. Oxidative stress parameters (lipid peroxidation, H2O2 levels), on the other hand, were generally more reduced in the legumes. This is consistent with changes in molecular antioxidants, which were reduced by elevated CO2 in the grasses, but not in the legumes. Antioxidant enzymes decreased similarly in both species-groups. The ascorbate-glutathione cycle was little affected by drought and CO2. Overall, elevated CO2 reduced drought effects in grasses and legumes, and this mitigation was stronger in the legumes. This is possibly explained by stronger reduction in H2O2 generation (photorespiration and NADPH oxidase), and a higher availability of molecular antioxidants. The grass/legume-specificity was supported by principal component analysis.

  12. Temperature elevation profile inside the rat brain induced by a laser beam

    NASA Astrophysics Data System (ADS)

    Ersen, Ali; Abdo, Ammar; Sahin, Mesut

    2014-01-01

    The thermal effect may be a desired outcome or a concerning side effect in laser-tissue interactions. Research in this area is particularly motivated by recent advances in laser applications in diagnosis and treatment of neurological disorders. Temperature as a side effect also limits the maximum power of optical transfer and harvesting of energy in implantable neural prostheses. The main objective was to investigate the thermal effect of a near-infrared laser beam directly aimed at the brain cortex. A small, custom-made thermal probe was inserted into the rat brain to make direct measurements of temperature elevations induced by a free-air circular laser beam. The time dependence and the spatial distribution of the temperature increases were studied and the maximum allowable optical power was determined to be 2.27 W/cm2 for a corresponding temperature increase of 0.5°C near the cortical surface. The results can be extrapolated for other temperature elevations, where the margin to reach potentially damaging temperatures is more relaxed, by taking advantage of linearity. It is concluded that the thermal effect depends on several factors such as the thermal properties of the neural tissue and of its surrounding structures, the optical properties of the particular neural tissue, and the laser beam size and shape. Because so many parameters play a role, the thermal effect should be investigated for each specific application separately using realistic in vivo models.

  13. Temperature elevation profile inside the rat brain induced by a laser beam

    PubMed Central

    Ersen, Ali; Abdo, Ammar; Sahin, Mesut

    2014-01-01

    Abstract. The thermal effect may be a desired outcome or a concerning side effect in laser–tissue interactions. Research in this area is particularly motivated by recent advances in laser applications in diagnosis and treatment of neurological disorders. Temperature as a side effect also limits the maximum power of optical transfer and harvesting of energy in implantable neural prostheses. The main objective was to investigate the thermal effect of a near-infrared laser beam directly aimed at the brain cortex. A small, custom-made thermal probe was inserted into the rat brain to make direct measurements of temperature elevations induced by a free-air circular laser beam. The time dependence and the spatial distribution of the temperature increases were studied and the maximum allowable optical power was determined to be 2.27  W/cm2 for a corresponding temperature increase of 0.5°C near the cortical surface. The results can be extrapolated for other temperature elevations, where the margin to reach potentially damaging temperatures is more relaxed, by taking advantage of linearity. It is concluded that the thermal effect depends on several factors such as the thermal properties of the neural tissue and of its surrounding structures, the optical properties of the particular neural tissue, and the laser beam size and shape. Because so many parameters play a role, the thermal effect should be investigated for each specific application separately using realistic in vivo models. PMID:24474503

  14. Contrasting effects of elevated temperature and invertebrate grazing regulate multispecies interactions between decomposer fungi.

    PubMed

    A'Bear, A Donald; Murray, William; Webb, Rachel; Boddy, Lynne; Jones, T Hefin

    2013-01-01

    Predicting the influence of biotic and abiotic factors on species interactions and ecosystem processes is among the primary aims of community ecologists. The composition of saprotrophic fungal communities is a consequence of competitive mycelial interactions, and a major determinant of woodland decomposition and nutrient cycling rates. Elevation of atmospheric temperature is predicted to drive changes in fungal community development. Top-down regulation of mycelial growth is an important determinant of, and moderator of temperature-driven changes to, two-species interaction outcomes. This study explores the interactive effects of a 4 °C temperature increase and soil invertebrate (collembola or woodlice) grazing on multispecies interactions between cord-forming basidiomycete fungi emerging from colonised beech (Fagus sylvatica) wood blocks. The fungal dominance hierarchy at ambient temperature (16 °C; Phanerochaete velutina > Resinicium bicolor > Hypholoma fasciculare) was altered by elevated temperature (20 °C; R. bicolor > P. velutina > H. fasciculare) in ungrazed systems. Warming promoted the competitive ability of the fungal species (R. bicolor) that was preferentially grazed by all invertebrate species. As a consequence, grazing prevented the effect of temperature on fungal community development and maintained a multispecies assemblage. Decomposition of fungal-colonised wood was stimulated by warming, with implications for increased CO2 efflux from woodland soil. Analogous to aboveground plant communities, increasing complexity of biotic and abiotic interactions appears to be important in buffering climate change effects on soil decomposers.

  15. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings.

    PubMed

    Cheesman, Alexander W; Winter, Klaus

    2013-09-01

    Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes between 30/22 °C and 39/31 °C. Under well-watered conditions, all species showed optimal growth at temperatures above those currently found in their native range. While non-pioneer species experienced catastrophic failure or a substantially reduced growth rate under the highest temperature regime employed (i.e. daily average of 35 °C), growth in three lowland pioneers showed only a marginal reduction. In a subsequent experiment, three species (Ficus insipida, Ormosia macrocalyx, and Ochroma pyramidale) were cultivated at two temperatures determined as sub- and superoptimal for growth, but which resulted in similar biomass accumulation despite a 6°C difference in growth temperature. Through reciprocal transfer and temperature adjustment, the role of thermal acclimation in photosynthesis and respiration was investigated. Acclimation potential varied among species, with two distinct patterns of respiration acclimation identified. The study highlights the role of both inherent temperature tolerance and thermal acclimation in determining the ability of tropical tree species to cope with enhanced temperatures.

  16. Numerical Modeling of Magnesium Alloy Sheet Metal Forming at Elevated Temperature

    SciTech Connect

    Lee, Myeong-Han; Oh, Soo-Ik; Kim, Heon-Young; Kim, Hyung-Jong; Choi, Yi-Chun

    2007-05-17

    The development of light-weight vehicle is in great demand for enhancement of fuel efficiency and dynamic performance. The vehicle weight can be reduced effectively by using lightweight materials such as magnesium alloys. However, the use of magnesium alloys in sheet forming processes is still limited because of their low formability at room temperature and the lack of understanding of the forming process of magnesium alloys at elevated temperatures. In this study, uniaxial tensile tests of the magnesium alloy AZ31B-O at various temperatures were performed to evaluate the mechanical properties of this alloy relevant for forming of magnesium sheets. To construct a FLD (forming limit diagram), a forming limit test were conducted at temperature of 100 and 200 deg. C. For the evaluation of the effects of the punch temperature on the formability of a rectangular cup drawing with AZ31B-O, numerical modelling was conducted. The experiment results indicate that the stresses and possible strains of AZ31B-O sheets largely depend on the temperature. The stress decreases with temperature increase. Also, the strain increase with temperature increase. The numerical modelling results indicate that formability increases with the decrease in the punch temperature at the constant temperature of the die and holder.

  17. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2000-01-01

    Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn

  18. An assessment of buffer strips for improving damage tolerance of composite laminates at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1981-01-01

    Buffer strips greatly improve the damage tolerance of graphite/epoxy laminates loaded in tension. Graphite/polyimide buffer strip panels were made and tested to determine their residual strength at ambient and elevated (177 C) temperature. Each panel was cut in the center to represent damage. Panels were radiographed and crack-opening displacements were recorded to indicate fracture, fracture arrest, and the extent of damage in the buffer strip after arrest. All panels had the same buffer strip spacing and width. The buffer strip material was 0 deg S-glass/PMR-15. The buffer strips were made by replacing narrow strips of the 0 deg graphite plies with strips of the 0 deg S-glass on either a one-for-one or a two-for-one basis. Half of the panels were heated to 177 + or - 3 C before and during the testing. Elevated temperature did not alter the fracture behavior of the buffer configuration.

  19. Elevated Temperature Strength of Fine-Grained INCONEL Alloy MA754

    SciTech Connect

    T.C. Totemeier; T.M. Lillo; J.A. Simpson

    2005-09-01

    Elevated temperature tensile and creep-rupture tests were performed on INCONEL alloy MA754 in an as-rolled, fine-grained condition. Tensile tests were performed at 25, 800, 900, and 1000°C; creep-rupture tests were performed at 800, 900, and 1000°C. The elevated temperature strength in the fine-grained condition was approximately 25% of the standard, coarse-grained annealed condition. While good ductility was observed in tensile tests at a nominal strain rate of 1×10-3 sec-1, ductility in creep-rupture tests was very low, with failure elongations less than 5% and no reduction in area. Creep deformation appeared to occur solely by cavity formation and growth.

  20. Dynamic restoration mechanism of a Fe{sub 3}Al based alloy during elevated temperature deformation

    SciTech Connect

    Chen, M.; Shan, A.; Lin, D.

    1995-08-01

    By TEM and metallographic examination, the authors found that dynamic recovery and following continuous recrystallization, which connects with the elevated temperature ductility, takes place in a Fe{sub 3}Al based alloy during elevated temperature deformation. Dynamic restoration consists of the following process: (1) by climbing or cross-slipping, glide dislocations change into dislocation arrays, (2) the dislocation array attracts lattice dislocations, (3) with increasing dislocation density, a non-equilibrium sub boundary forms, which is easy to migrate, slide or rotate under external force, and (4) when the misorientation angle of the sub boundary increases to a critical value, the sub boundary changes into a grain boundary with continuous misfit. By relaxation, the boundary then changes into a grain boundary consisting of periodical structure units.

  1. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  2. Nonuniform temperature rise in in vitro osteoblast ultrasound exposures with associated bioeffect.

    PubMed

    Leskinen, Jarkko J; Olkku, Anu; Mahonen, Anitta; Hynynen, Kullervo

    2014-03-01

    There is a growing interest to use ultrasound to stimulate cellular material in vitro conditions for the treatment of musculoskeletal disorders. However, the beneficial effect resulting from ultrasound exposure is not accurately specified. Many in vitro ultrasound setups are very vulnerable to temperature elevation due to sound absorption, sound reflections, and inadequate heat transfer. The objective of this study is to show that temperature variations capable of modifying biological results may exist in common in vitro exposure system. Human osteoblastic MG-63 cells plated on a 24-well cell plate were treated with pulsed ultrasound in 37 °C water bath (10 min, frequency = 1.035 MHz, burst length = 200 μs, pulse repetition frequency = 1 kHz, duty cycle = 0.2, temporal-average acoustic power = 2 W, and peak pressure = 670-730 kPa) and the activation of heat-dependent canonical Wnt cell signaling was measured. The ultrasound-induced temperature rise was measured with thermocouples and infrared imaging. Chamber-to-chamber comparison showed substantial temperature variation (41.6 °C versus 49.1 °C) among the different chambers. The chamber walls were the most susceptible to heating. The variations in the chamber temperatures correlated to variations in the cell signaling levels (1.3-fold versus 11.5-fold increase). These observations underline the need for system-specific temperature measurements during in vitro exposures.

  3. The effect of exercise-induced elevation in core temperature on cold-induced vasodilatation response in toes.

    PubMed

    Dobnikar, Uros; Kounalakis, Stylianos N; Mekjavic, Igor B

    2009-06-01

    Cold-induced vasodilatation (CIVD) has been proposed as a potential protective mechanism against cold injuries during exposure of extremities to a cold environment. The purpose of this study was to evaluate the effect of exercise and the associated elevation in core temperature on toe skin temperatures during immersion of the foot in cold (8 degrees C) water. Subjects (N = 8) participated in two trials. In one, they conducted an incremental exercise to exhaustion (exercise) on a cycle ergometer, which was followed by immersion of the right foot in 8 degrees C water. In the second trial (control), immersion of the foot in cold water was not preceded by exercise. Upon completion of the exercise in the exercise trial, and at the onset of the immersion of the foot in cold water, tympanic temperature was 0.6 degrees C (P < 0.01) higher than pre-exercise levels. There was a significant increase (P < 0.05) in the number of CIVD waves, but not their amplitudes, in the exercise trial compared to the control trial. A CIVD response occurred in 57.5% of all toes in the exercise trial, and in only 27.5% in the control trial. Additionally, 50% of subjects exhibited CIVD in at least one toe in the control trial, and 87.5% during the exercise trial. It is concluded that exercise, and particularly the associated elevation in core temperature, enhances the frequency of the toe CIVD responses, and can therefore potentially act as a protective mechanism against cold injury.

  4. Mechanical properties of turbine blade alloys in hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Deluca, D. P.

    1981-01-01

    The mechanical properties of single crystal turbine blade alloys in a gaseous hydrogen environment were determined. These alloys are proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. Mechanical property tests included: tensile, creep, low fatigue (LCF), and crack growth. Specimens were in both transverse and longitudinal directions relative to the casting solidification direction. Testing was conducted on solid specimens exposed to externally pressurized environments of gaseous hydrogen and hydrogen-enriched steam.

  5. Guidelines and procedures for design of Class 1 elevated temperature nuclear system components

    SciTech Connect

    Not Available

    1986-09-01

    This standard provides guidelines and procedures which may be used by the manufacturer in satisfying the requirements given for design of class 1 elevated temperature nuclear system components. Guidance is given regarding planning and control of design analysis. A sequence for calculations is recommended. Methods of analysis, including procedures to account for environmental effects, are given which are acceptable in principle to the owner. A format is provided for use in documentation of design analyses.

  6. Environment assisted crack growth in nickel-base superalloys at elevated temperature

    NASA Astrophysics Data System (ADS)

    Evans, Jeffrey Lee

    The environmental effect on the fatigue crack growth rate of Ni-base superalloys at elevated temperature was evaluated in this study. A set of crack growth tests was performed on the turbine disk alloy ME3 at 704°C (1300°F) in vacuum and in air at 0 and 10 second hold times using two microstructures developed with two different cooling rates from the solution heat treat temperature. Fatigue crack growth tests were also conducted at 25°C (77°F) with the two microstructures. Also, a set of oxidation experiments was conducted in order to evaluate the high temperature oxidation behavior of ME3. The microstructure was analyzed and the main differences between the two cooling rates were in the amounts of minor phase particles and size of secondary gamma prime particles. The crack growth rate results suggest that there is no measurable effect of environment or microstructure at room temperature. For the tests conducted in air at elevated temperature, both hold time and microstructural effects were evident. A coupling effect was also observed between the microstructure and the environment. The samples that were slow cooled, and had larger secondary gamma prime particles, had slower crack growth rates and less intergranular fracture in air than the fast cooled samples. A possible explanation for this would be excess free chromium available along grain boundaries due to its low solubility in gamma prime, providing for greater oxidation resistance. An elevated temperature fatigue crack growth rate model for Ni-base superalloys is also proposed.

  7. Chemical and anatomical changes in Liquidambar styraciflua L. xylem after long term exposure to elevated CO2

    DOE PAGES

    Kim, Keonhee; Labbé, Nicole; Warren, Jeffrey M.; ...

    2015-01-17

    The anatomical and chemical characteristics of sweetgum were studied after 11 years of elevated CO2 (544 ppm, ambient at 391 ppm) exposure. Anatomically, branch xylem cells were larger for elevated CO2 trees, and the cell wall thickness was thinner. Chemically, elevated CO2 exposure did not impact the structural components of the stem wood, but non-structural components were significantly affected. Principal component analysis (PCA) was employed to detect differences between the CO2 treatments by considering numerous structural and chemical variables, as well as tree size, and data from previously published sources (for example, root biomass, production and turnover). The PCA resultsmore » indicated a clear separation between trees exposed to ambient and elevated CO2 conditions. Lastly, correlation loadings plots of the PCA revealed that stem structural components, ash, Ca, Mg, total phenolics, root biomass, production and turnover were the major responses that contribute to the separation between the elevated and ambient CO2 treated trees.« less

  8. Chemical and anatomical changes in Liquidambar styraciflua L. xylem after long term exposure to elevated CO2

    SciTech Connect

    Kim, Keonhee; Labbé, Nicole; Warren, Jeffrey M.; Elder, Thomas; Rials, Timothy G.

    2015-01-17

    The anatomical and chemical characteristics of sweetgum were studied after 11 years of elevated CO2 (544 ppm, ambient at 391 ppm) exposure. Anatomically, branch xylem cells were larger for elevated CO2 trees, and the cell wall thickness was thinner. Chemically, elevated CO2 exposure did not impact the structural components of the stem wood, but non-structural components were significantly affected. Principal component analysis (PCA) was employed to detect differences between the CO2 treatments by considering numerous structural and chemical variables, as well as tree size, and data from previously published sources (for example, root biomass, production and turnover). The PCA results indicated a clear separation between trees exposed to ambient and elevated CO2 conditions. Lastly, correlation loadings plots of the PCA revealed that stem structural components, ash, Ca, Mg, total phenolics, root biomass, production and turnover were the major responses that contribute to the separation between the elevated and ambient CO2 treated trees.

  9. ELEVATED CO2 AND TEMPERATURE ALTER THE ECOSYSTEM C EXCHANGE IN A YOUNG DOUGLAS FIR MESOCOSM EXPERIMENT

    EPA Science Inventory

    We investigated the effects of elevated CO2 (EC) [ambient CO2 (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 °C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstruc...

  10. Effects of intermittent flow and irradiance level on back reef Porites corals at elevated seawater temperatures

    USGS Publications Warehouse

    Smith, L.W.; Birkeland, C.

    2007-01-01

    Corals inhabiting shallow back reef habitats are often simultaneously exposed to elevated seawater temperatures and high irradiance levels, conditions known to cause coral bleaching. Water flow in many tropical back reef systems is tidally influenced, resulting in semi-diurnal or diurnal flow patterns. Controlled experiments were conducted to test effects of semi-diurnally intermittent water flow on photoinhibition and bleaching of the corals Porites lobata and P. cylindrica kept at elevated seawater temperatures and different irradiance levels. All coral colonies were collected from a shallow back reef pool on Ofu Island, American Samoa. In the high irradiance experiments, photoinhibition and bleaching were less for both species in the intermittent high-low flow treatment than in the constant low flow treatment. In the low irradiance experiments, there were no differences in photoinhibition or bleaching for either species between the flow treatments, despite continuously elevated seawater temperatures. These results suggest that intermittent flow associated with semi-diurnal tides, and low irradiances caused by turbidity or shading, may reduce photoinhibition and bleaching of back reef corals during warming events. ?? 2006 Elsevier B.V. All rights reserved.

  11. Effect of water temperature on dermal exposure to chloroform.

    PubMed

    Gordon, S M; Wallace, L A; Callahan, P J; Kenny, D V; Brinkman, M C

    1998-06-01

    We have developed and applied a new measurement methodology to investigate dermal absorption of chloroform while bathing. Ten subjects bathed in chlorinated water while breathing pure air through a face mask. Their exhaled breath was delivered to a glow discharge source/ion trap mass spectrometer for continuous real-time measurement of chloroform in the breath. This new method provides abundant data compared to previous discrete time-integrated breath sampling methods. The method is particularly well suited to studying dermal exposure because the full face mask eliminates exposure to contaminated air. Seven of the 10 subjects bathed in water at two or three different temperatures between 30 degrees C and 40 degrees C. Subjects at the highest temperatures exhaled about 30 times more chloroform than the same subjects at the lowest temperatures. This probably results from a decline in blood flow to the skin at the lower temperatures as the body seeks to conserve heat forcing the chloroform to diffuse over a much greater path length before encountering the blood. These results suggest that pharmacokinetic models need to employ temperature-dependent parameters. Two existing models predict quite different times of about 12 min and 29 min for chloroform flux through the stratum corneum to reach equilibrium. At 40 degrees C, the time for the flux to reach a near steady-state value is 6-9 min. Although uptake and decay processes involve several body compartments, the complicating effect of the stratum corneum lag time made it difficult to fit multiexponential curves to the data; however, a single-compartment model gave a satisfactory fit.

  12. Large-strain cyclic response and martensitic transformation of austenitic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hamasaki, H.; Nakano, T.; Ishimaru, E.; Yoshida, F.

    2016-08-01

    Cyclic tension-compression tests were carried out for austenitic stainless steel (SUS304) at elevated temperatures. The significant Bauschinger effect was found in the obtained stress-strain curve. In addition, stagnation of deformation induced martensitic transformation was observed just after stress reversal until the equivalent stress reached the maximum value in the course of experiment. The constitutive model for SUS304 at room temperature was developed, in which homogenized stress of SUS304 was expressed by the weighed summation of stresses of austenite and martensite phases. The calculated stress-strain curves and predicted martensite volume fraction were well correlated with those experimental results.

  13. Note: A method for minimizing oxide formation during elevated temperature nanoindentation

    SciTech Connect

    Cheng, I. C.; Hodge, A. M.; Garcia-Sanchez, E.

    2014-09-15

    A standardized method to protect metallic samples and minimize oxide formation during elevated-temperature nanoindentation was adapted to a commercial instrument. Nanoindentation was performed on Al (100), Cu (100), and W (100) single crystals submerged in vacuum oil at 200 °C, while the surface morphology and oxidation was carefully monitored using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results were compared to room temperature and 200 °C nanoindentation tests performed without oil, in order to evaluate the feasibility of using the oil as a protective medium. Extensive surface characterization demonstrated that this methodology is effective for nanoscale testing.

  14. Apparatus for Measuring Spectral Emissivity of Solid Materials at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Ren, Dengfeng; Tan, Hong; Xuan, Yimin; Han, Yuge; Li, Qiang

    2016-05-01

    Spectral emissivity measurements at high temperature are of great importance for both scientific research and industrial applications. A method to perform spectral emissivity measurements is presented based on two sample heating methods, the flat plate and tubular furnace. An apparatus is developed to measure the normal spectral emissivity of solid material at elevated temperatures from 1073 K to 1873 K and wavelengths from 2 \\upmu hbox {m} to 25 \\upmu hbox {m}. Sample heating is accomplished by a torch flame or a high temperature furnace. Two different variable temperature blackbody sources are used as standard references and the radiance is measured by a FTIR spectrometer. Following calibration of the spectral response and background radiance of the spectrometer, the effect of the blackbody temperature interval on calibration results is discussed. Measurements are performed of the normal spectral emissivity of SiC and graphite over the prescribed temperature and wavelength range. The emissivity of SiC at high temperatures is compared with the emissivity at room temperature, and the influence of an oxide layer formed at the surface of SiC on the emissivity is studied. The effect of temperature on the emissivity of graphite is also investigated. Furthermore, a thorough analysis of the uncertainty components of the emissivity measurement is performed.

  15. Ratchetting behavior of type 304 stainless steel at room and elevated temperatures

    SciTech Connect

    Ruggles, M.; Krempl, E.

    1988-01-01

    The zero-to-tension ratchetting behavior was investigated under uniaxial loading at room temperature and at 550, 600 and 650/degree/ C. In History I the maximum stress level of ratchetting was equal to the stress reached in a tensile test at one percent strain. For History II the maximum stress level was established as the stress reached after a 2100 s relaxation at one percent strain. Significant ratchetting was observed for History I at room temperature but not at the elevated temperatures. The accumulated ratchet strain increases with decreasing stress rate. Independent of the stress rates used insignificant ratchet strain was observed at room temperature for History II. This observation is explained in the context of the viscoplasticity theory based on overstress by the exhaustion of the viscous contribution to the stress during relaxation. The viscous part of the stress is the driving force for the ratchetting in History I. Strain aging is presumably responsible for the lack of short-time inelastic deformation resulting in a nearly rate-independent behavior at the elevated temperatures. 26 refs., 7 figs., 1 tab.

  16. Lifetimes statistics for single Kevlar 49 aramid filaments in creep-rupture at elevated temperatures

    SciTech Connect

    Wu, H.F.

    1987-01-01

    Kevlar 49 fibrous composites are routinely fabricated to have strengths above 1.5 GPa(200 ksi), but in many applications one would like to sustain such stresses for long time periods, sometimes at elevated temperatures. Thus the temperature dependence of the creep-rupture process in the fibers is of interest. Experimental data are presented for the lifetime of single Kevlar 49 filaments under constant stress at elevated temperatures. The goal of this research was to fully characterize the statistical strength and lifetime behavior of single filaments in order to separate fiber effects from fiber/matrix interactions in the creep-rupture lifetime of Kevlar 49/epoxy composites as described for example in Phoenix and Wu (1983). First we conducted experiments to determine distributions for the strength of filaments from the two distinct spools as a function of temperature. As expected, the data could generally be fitted by a two-parameter Weibull distribution. Lifetime experiments at 80 and 130/sup 0/C were conducted at several stress levels chosen as suitable fractions of the Weibull scale parameter for short-term strength for that temperature. The lifetime data were well modelled by a two-parameter Weibull distribution with large variability.

  17. Response and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review

    PubMed Central

    Zahid, Kashif Rafiq; Ali, Farhan; Shah, Farooq; Younas, Muhammad; Shah, Tariq; Shahwar, Durri; Hassan, Waseem; Ahmad, Zahoor; Qi, Chao; Lu, Yanli; Iqbal, Amjad; Wu, Wei

    2016-01-01

    Cotton is an important multipurpose crop which is highly sensitive to both biotic and abiotic stresses. Proper management of this cash crop requires systematic understanding of various environmental conditions that are vital to yield and quality. High temperature stress can severely affect the viability of pollens and anther indehiscence, which leads to significant yield losses. Cotton can respond to withstand adverse environmental condition in several phases among which the accumulation of chemicals is extremely vital. Calcium, kinases, reactive oxygen species, carbohydrate, transcription factors, gene expression regulation, and plant hormones signaling pathways are playing a handy role in activating the major genes responsible to encounter and defend elevated temperature stress. The production of heat shock proteins is up-regulated when crops are unleashed to high temperature stress. Molecular breeding can play a functional role to identify superior genes for all the important attributes as well as provide breeder ready markers for developing ideotypes. The development of high-temperature resistant transgenic cultivars of cotton can grant a stability benefit and can also ameliorate the production capacity in response to elevated temperature. PMID:27446165

  18. The metabolic, locomotor and sex-dependent effects of elevated temperature on Trinidadian guppies: limited capacity for acclimation.

    PubMed

    Muñoz, Nicolas J; Breckels, Ross D; Neff, Bryan D

    2012-10-01

    Global warming poses a threat to many ectothermic organisms because of the harmful effects that elevated temperatures can have on resting metabolic rate (RMR) and body size. This study evaluated the thermal sensitivity of Trinidadian guppies (Poecilia reticulata) by describing the effects of developmental temperature on mass, burst speed and RMR, and investigated whether these tropical fish can developmentally acclimate to their thermal conditions. These traits were measured following exposure to one of three treatments: 70 days at 23, 25, 28 or 30°C (acclimated groups); 6 h at 23, 28 or 30°C following 70 days at 25°C (unacclimated groups); or 6 h at 25°C following 70 days in another 25°C tank (control group). Body mass was lower in warmer temperatures, particularly amongst females and individuals reared at 30°C. The burst speed of fish acclimated to each temperature did not differ and was marginally higher than that of unacclimated fish, indicative of complete compensation. Conversely, acclimated and unacclimated fish did not differ in their RMR at each temperature. Amongst the acclimated groups, RMR was significantly higher at 30°C, indicating that guppies may become thermally limited at this temperature as a result of less energy being available for growth, reproduction and locomotion. Like other tropical ectotherms, guppies appear to be unable to adjust their RMR through physiological acclimation and may consequently be susceptible to rising temperatures. Also, because larger females have higher fecundity, our data suggest that fecundity will be reduced in a warmer climate, potentially decreasing the viability of guppy populations.

  19. Uncertainty Of The Measurement Of DC Conductivity Of Eramics At Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Štubňa, Igor; Trnovcová, Viera; Vozár, Libor; Csáki, Štefan

    2015-01-01

    The electrical DC conductivity is measured at room and elevated temperatures on green ceramic samples prepared from kaolin. The arrangement of the sample, with two platinum wire electrodes inserted in the kaolin prism that was used is suitable for measurements of temperature dependences of the DC conductivity from 20 °C to 1100 °C in the air. The uncertainty analysis taking into account thermal expansion of the sample, homogeneity of the temperature field, measurement regime, corrosion of the electrodes, and overlapping of the electrodes is done for 1000 °C. Uncertainties connected with current and voltage measurements and uncertainties connected with the instruments that were used are also considered. The sum of all the partial uncertainties gives an expanded uncertainty of the conductivity measurement. The uncertainty varies with temperature and reaches the value of ˜ 6.5% at 1000 °C.

  20. Optical Properties Of Solid Particle Receiver Materials II: Diffuse Reflectance Of Norton Masterbeads At Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Stahl, K. A.; Griffin, J. W.; Pettit, R. B.

    1985-12-01

    An experimental system to measure the diffuse reflectance of a particulate sample over the wavelength range of 300 to 2500 nm at elevated temperatures up to 1000°C has been developed and implemented. A description of the experimental apparatus and measurement procedures, as well as optical reflectance data for the Masterbeadse, are presented. Using the high temperature measurement system, the diffuse reflectance of Masterbeads changed by less than 1% for sample temperatures from 150°C to 930°C. However, after heating a sample for three hours at 1000°C in air, the solar absorptance measured at room temperature decreased from an initial value of 0.93 to 0.89.

  1. Photoluminescence in silicon implanted with erbium ions at an elevated temperature

    SciTech Connect

    Sobolev, N. A. Kalyadin, A. E.; Shek, E. I.; Sakharov, V. I.; Serenkov, I. T.; Vdovin, V. I.; Parshin, E. O.; Makoviichuk, M. I.

    2011-08-15

    Photoluminescence spectra of n-type silicon upon implantation with erbium ions at 600 Degree-Sign C and oxygen ions at room temperature and subsequent annealings at 1100 Degree-Sign C in a chlorine-containing atmosphere have been studied. Depending on the annealing duration, photoluminescence spectra at 80 K are dominated by lines of the Er{sup 3+} ion or dislocation-related luminescence. The short-wavelength shift of the dislocation-related luminescence line observed at this temperature is due to implantation of erbium ions at an elevated temperature. At room temperature, lines of erbium and dislocation-related luminescence are observed in the spectra, but lines of near-band-edge luminescence predominate.

  2. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, P. A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the 'Universal Slopes' method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio (Vf), number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  3. Effects of elevated temperatures on various restorative materials: an in vitro study.

    PubMed

    Bose, Raison S; Mohan, B; Lakshminarayanan, L

    2005-01-01

    In cases of mass disasters associated with fire, identification of the burnt victims can be a real challenge to the forensic team. Teeth and their restorations play a significant role to aid in the identification process, as various restorative materials have varying resistance to high temperatures. A study was undertaken to evaluate the changes taking place on teeth restored with amalgam, composites, glass ionomers, heat cure acrylic, and ceramics. The specimens were placed in a furnace and heated to predetermined temperatures of 200, 400, 600, 800, and 1000 degrees C and the changes were examined using a digital camera and stereomicroscope. Our observations show that while some restorations were able to withstand elevated temperatures, others were reduced to an unrecognizable mass at relatively low temperatures.

  4. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the Universal Slopes method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio, number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  5. Factors for consideration in the interpretation of the adverse effects of elevated environmental temperatures on reproduction in the male rat

    NASA Astrophysics Data System (ADS)

    Bedrak, E.; Chap, Z.; Fried, K.

    1980-06-01

    Continuous exposure of male rats to an elevated environmental temperature (33 35° C) for 3 weeks led to heat-acclimatized (HA) rats whose serum testosterone concentratrion was significantly lower (P<0.01) than that of control (C) rats (20 22° C). The decrease in the androgen level was independent of major changes in serum FSH and LH concentrations, as well as hypothalamic content of thyrotropin-releasing hormone (THR), gonadotropin-releasing hormone (GnRH) and prostaglandin E2 (PGE2). However, the prostaglandin F2α(PGF2α) content of the hypothalamus of HA rats was significantly lower (P < 0.05) than that of C. The number of receptors for human chorionic gonadotropin (hCG) was significantly lower in testicular tissue of HA rats as compared to C males. Histological examination of the testis disclosed that exposure to heat adversely affected the sperm production and integrity of the Sertoli cells. Activity of enzymes associated with testosterone biosynthesis in testicular tissue of rats incubated at temperatures similar to those prevailing in the scrotum of HA rats resembled the activity of these enzymes observed in HA animals. Catabolism of testosterone was enhanced when kidney and liver of C rats were incubated at temperatures similar to the deep-body temperatures of HA rats, supporting the thesis that acclimatization to heat is coupled, inter alin, with increase androgen catabolism and excretion. It is suggested that the lower reproductive performance of HA rats is associated with several phenomena: a low number of receptors for hCG in the testes, decreased testoster one production rate by the Leydig cells, increased cata bolism and excretion of androgen, and partial atrophy of seminiferous tubules and Sertoli cells. These changes appear to be independent of either alteration in serum gonadotropin concentration or hypothalamic contents of TRH, GnR H and PGE2. The physiological significance in the response of PGF2α awaits further clarification.

  6. Elevated CO2 Reduced Floret Death in Wheat Under Warmer Average Temperatures and Terminal Drought

    PubMed Central

    Dias de Oliveira, Eduardo; Palta, Jairo A.; Bramley, Helen; Stefanova, Katia; Siddique, Kadambot H. M.

    2015-01-01

    Elevated CO2 often increases grain yield in wheat by enhancing grain number per ear, which can result from an increase in the potential number of florets or a reduction in the death of developed florets. The hypotheses that elevated CO2 reduces floret death rather than increases floret development, and that grain size in a genotype with more grains per unit area is limited by the rate of grain filling, were tested in a pair of sister lines contrasting in tillering capacity (restricted- vs. free-tillering). The hypotheses were tested under elevated CO2, combined with +3°C above ambient temperature and terminal drought, using specialized field tunnel houses. Elevated CO2 increased net leaf photosynthetic rates and likely the availability of carbon assimilates, which significantly reduced the rates of floret death and increased the potential number of grains at anthesis in both sister lines by an average of 42%. The restricted-tillering line had faster grain-filling rates than the free-tillering line because the free-tillering line had more grains to fill. Furthermore, grain-filling rates were faster under elevated CO2 and +3°C above ambient. Terminal drought reduced grain yield in both lines by 19%. Elevated CO2 alone increased the potential number of grains, but a trade-off in yield components limited grain yield in the free-tillering line. This emphasizes the need for breeding cultivars with a greater potential number of florets, since this was not affected by the predicted future climate variables. PMID:26635837

  7. Instrumentation enabling study of plant physiological response to elevated night temperature

    PubMed Central

    Mohammed, Abdul R; Tarpley, Lee

    2009-01-01

    Background Global climate warming can affect functioning of crops and plants in the natural environment. In order to study the effects of global warming, a method for applying a controlled heating treatment to plant canopies in the open field or in the greenhouse is needed that can accept either square wave application of elevated temperature or a complex prescribed diurnal or seasonal temperature regime. The current options are limited in their accuracy, precision, reliability, mobility or cost and scalability. Results The described system uses overhead infrared heaters that are relatively inexpensive and are accurate and precise in rapidly controlling the temperature. Remote computer-based data acquisition and control via the internet provides the ability to use complex temperature regimes and real-time monitoring. Due to its easy mobility, the heating system can randomly be allotted in the open field or in the greenhouse within the experimental setup. The apparatus has been successfully applied to study the response of rice to high night temperatures. Air temperatures were maintained within the set points ± 0.5°C. The incorporation of the combination of air-situated thermocouples, autotuned proportional integrative derivative temperature controllers and phase angled fired silicon controlled rectifier power controllers provides very fast proportional heating action (i.e. 9 ms time base), which avoids prolonged or intense heating of the plant material. Conclusion The described infrared heating system meets the utilitarian requirements of a heating system for plant physiology studies in that the elevated temperature can be accurately, precisely, and reliably controlled with minimal perturbation of other environmental factors. PMID:19519906

  8. Complexation of neptunium(V) with fluoride in aqueous solutions at elevated temperatures

    SciTech Connect

    Tian, Guoxin; Rao, Linfeng; Xia, Yuanxian; Friese, Judah I.

    2009-02-01

    Over the past several decades, the production and testing of nuclear weapons in the U.S. have created significant amounts of high-level nuclear wastes (HLW) that are currently stored in underground tanks across the U.S. DOE (Department of Energy) sites. Eventually, the HLW will be made into the waste form and disposed of in geological repositories for HLW. Among the radioactive materials, neptunium is of great concern in the post-closure chemical environment in the repository because of the long half-life of 237Np (2.14•106 years) and the high mobility of Np(V), the most stable oxidation state of neptunium. It is estimated that 237Np, together with 129I and 99Tc, will be the major contributors to the potential total annual dose from the repository beyond 10000 years [1]. Due to the high radiation energy released from the HLW, the postclosure repository is expected to remain at elevated temperatures for thousands of years [1]. If the waste package is breached and becomes in contact with groundwater, neptunium, as well as other radioactive materials will be in aqueous solutions at elevated temperatures. Interactions of radioactive materials with the chemical components in groundwater play an important role in determining their migration in the repository. To predict the migration behavior of neptunium, it is necessary to have sufficient and reliable thermodynamic data on its complexation with the ligands that are present in the groundwater of the repository (e.g., OH–, F–, SO42– ,PO43– and CO32) at elevated temperatures. However, such data are scarce and scattered for 25°C, and nearly nonexistent for elevated temperatures [2]. To provide reliable thermodynamic data, we have conducted investigations of the complexation of actinides, including thorium, uranium, neptunium and plutonium, at elevated temperatures. Thermodynamic parameters, including formation constants, enthalpy and heat capacity of complexation are experimentally determined. This paper

  9. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature

    SciTech Connect

    Ye, G. . E-mail: ye.guang@citg.tudelft.nl; Liu, X.; De Schutter, G.; Taerwe, L.; Vandevelde, P.

    2007-06-15

    Self-compacting concrete, as a new smart building material with various advanced properties, has been used for a wide range of structures and infrastructures. However little investigation have been reported on the properties of Self-compacting when it is exposed to elevated temperatures. Previous experiments on fire test have shown the differences between high performance concrete and traditional concrete at elevated temperature. This difference is largely depending on the microstructural properties of concrete matrix, i.e. the cement paste, especially on the porosity, pore size distribution and the connectivity of pores in cement pastes. In this contribution, the investigations are focused on the cement paste. The phase distribution and microstructural changes of self-compacting cement paste at elevated temperatures are examined by mercury intrusion porosimetry and scanning electron microscopy. The chemical decomposition of self-compacting cement paste at different temperatures is determined by thermogravimetric analysis. The experimental results of self-compacting cement paste are compared with those of high performance cement paste and traditional cement paste. It was found that self-compacting cement paste shows a higher change of the total porosity in comparison with high performance cement paste. When the temperature is higher than 700 deg. C, a dramatic loss of mass was observed in the self-compacting cement paste samples with addition of limestone filler. This implies that the SCC made by this type of self-compacting cement paste will probably show larger damage once exposed to fire. Investigation has shown that 0.5 kg/m{sup 3} of Polypropylene fibers in the self-compacting cement paste can avoid the damage efficiently.

  10. Investigation of temperature and aridity at different elevations of Mt. Ailao, SW China.

    PubMed

    You, Guangyong; Zhang, Yiping; Liu, Yuhong; Schaefer, Douglas; Gong, Hede; Gao, Jinbo; Lu, Zhiyun; Song, Qinghai; Zhao, Junbin; Wu, Chuansheng; Yu, Lei; Xie, Youneng

    2013-05-01

    Our current understanding is that plant species distribution in the subtropical mountain forests of Southwest China is controlled mainly by inadequate warmth. Due to abundant annual precipitation, aridity has been less considered in this context, yet rainfall here is highly seasonal, and the magnitude of drought severity at different elevations has not been examined due to limited access to higher elevations in this area.In this study, short-term micrometeorological variables were measured at 2,480 m and 2,680 m, where different forest types occur. Drought stress was evaluated by combining measurements of water evaporation demand (E p) and soil volumetric water content (VWC). The results showed that: (1) mean temperature decreased 1 °C from 2,480 m to 2,680 m and the minimum temperature at 2,680 m was above freezing. (2) Elevation had a significant influence on E p; however, the difference in daily E p between 2,480 m and 2,680 m was not significant, which was possibly due to the small difference in elevation between these two sites. (3) VWC had larger range of annual variation at 2,680 m than at 2,480 m, especially for the surface soil layer.We conclude that the decrease in temperature does not effectively explain the sharp transition between these forest types. During the dry season, plants growing at 2,680 m are likely to experience more drought stress. In seeking to understand the mountain forest distribution, further studies should consider the effects of drought stress alongside those of altitude.

  11. The effects of elevated water temperature on native juvenile mussels: implications for climate change

    USGS Publications Warehouse

    Ganser, Alissa M.; Newton, Teresa J.; Haro, Roger J.

    2013-01-01

    Native freshwater mussels are a diverse but imperiled fauna and may be especially sensitive to increasing water temperatures because many species already may be living near their upper thermal limits. We tested the hypothesis that elevated water temperatures (20, 25, 30, and 35°C) adversely affected the survival and physiology of 2-mo-old juvenile mussels (Lampsilis abrupta, Lampsilis siliquoidea, and Megalonaias nervosa) in 28-d laboratory experiments. The 28-d LT50s (lethal temperature affecting 50% of the population) ranged from 25.3 to 30.3°C across species, and were lowest for L. abrupta and L. siliquoidea. Heart rate of L. siliquoidea was not affected by temperature, but heart rate declined at higher temperatures in L. abrupta and M. nervosa. However, for both of these species, heart rate also declined steadily during the experiment and a strong temperature × time interaction was detected. Juvenile growth was low for all species in all treatments and did not respond directly to temperature, but growth of some species responded to a temperature × time interaction. Responses to thermal stress differed among species, but potential laboratory artifacts may limit applicability of these results to real-world situations. Environmentally relevant estimates of upper thermal tolerances in native mussels are urgently needed to assess the extent of assemblage changes that can be expected in response to global climate change.

  12. Time constants for temperature elevation in human models exposed to dipole antennas and beams in the frequency range from 1 to 30 GHz

    NASA Astrophysics Data System (ADS)

    Morimoto, Ryota; Hirata, Akimasa; Laakso, Ilkka; Ziskin, Marvin C.; Foster, Kenneth R.

    2017-03-01

    This study computes the time constants of the temperature elevations in human head and body models exposed to simulated radiation from dipole antennas, electromagnetic beams, and plane waves. The frequency range considered is from 1 to 30 GHz. The specific absorption rate distributions in the human models are first computed using the finite-difference time-domain method for the electromagnetics. The temperature elevation is then calculated by solving the bioheat transfer equation. The computational results show that the thermal time constants (defined as the time required to reach 63% of the steady state temperature elevation) decrease with the elevation in radiation frequency. For frequencies higher than 4 GHz, the computed thermal time constants are smaller than the averaging time prescribed in the ICNIRP guidelines, but larger than the averaging time in the IEEE standard. Significant differences between the different head models are observed at frequencies higher than 10 GHz, which is attributable to the heat diffusion from the power absorbed in the pinna. The time constants for beam exposures become large with the increase in beam diameter. The thermal time constant in the brain is larger than that in the superficial tissues at high frequencies, because the brain temperature elevation is caused by the heat conduction of energy absorbed in the superficial tissue. The thermal time constant is minimized with an ideal beam with a minimum investigated diameter of 10 mm this minimal time constant is approximately 30 s and is almost independent of the radiation frequency, which is supported by analytic methods. In addition, the relation between the time constant, as defined in this paper, and ‘averaging time’ as it appears in the exposure limits is discussed, especially for short intense pulses. Similar to the laser guidelines, provisions should be included in the limits to limit the fluence for such pulses.

  13. Time constants for temperature elevation in human models exposed to dipole antennas and beams in the frequency range from 1 to 30 GHz.

    PubMed

    Morimoto, Ryota; Hirata, Akimasa; Laakso, Ilkka; Ziskin, Marvin C; Foster, Kenneth R

    2017-03-07

    This study computes the time constants of the temperature elevations in human head and body models exposed to simulated radiation from dipole antennas, electromagnetic beams, and plane waves. The frequency range considered is from 1 to 30 GHz. The specific absorption rate distributions in the human models are first computed using the finite-difference time-domain method for the electromagnetics. The temperature elevation is then calculated by solving the bioheat transfer equation. The computational results show that the thermal time constants (defined as the time required to reach 63% of the steady state temperature elevation) decrease with the elevation in radiation frequency. For frequencies higher than 4 GHz, the computed thermal time constants are smaller than the averaging time prescribed in the ICNIRP guidelines, but larger than the averaging time in the IEEE standard. Significant differences between the different head models are observed at frequencies higher than 10 GHz, which is attributable to the heat diffusion from the power absorbed in the pinna. The time constants for beam exposures become large with the increase in beam diameter. The thermal time constant in the brain is larger than that in the superficial tissues at high frequencies, because the brain temperature elevation is caused by the heat conduction of energy absorbed in the superficial tissue. The thermal time constant is minimized with an ideal beam with a minimum investigated diameter of 10 mm; this minimal time constant is approximately 30 s and is almost independent of the radiation frequency, which is supported by analytic methods. In addition, the relation between the time constant, as defined in this paper, and 'averaging time' as it appears in the exposure limits is discussed, especially for short intense pulses. Similar to the laser guidelines, provisions should be included in the limits to limit the fluence for such pulses.

  14. Effects of evening bright light exposure on melatonin, body temperature and sleep.

    PubMed

    Bunnell; Treiber; Phillips; Berger

    1992-03-01

    Five male subjects were exposed to a single 2-h period of bright (2500 lux) or dim (<100 lux) light prior to sleep on two consecutive nights. The two conditions were repeated the following week in opposite order. Bright light significantly suppressed salivary melatonin and raised rectal temperature 0.3 degrees C (which remained elevated during the first 1.5 h of sleep), without affecting tympanic temperature. Bright light also increased REM latency, NREM period length, EEG spectral power in low frequency, 0.75-8 Hz and sigma, 12-14 Hz (sleep spindle) bandwidths during the first hour of sleep, and power of all frequency bands (0.5-32 Hz) within the first NREMP. Potentiation of EEG slow wave activity (0.5-4.0 Hz) by bright light persisted through the end of the second NREMP. The enhanced low-frequency power and delayed REM sleep after bright light exposure could represent a circadian phase-shift and/or the effect of an elevated rectal temperature, possibly mediated by the suppression of melatonin.

  15. The role of competition, ecotones, and temperature in the elevational distribution of Himalayan birds.

    PubMed

    Elsen, Paul R; Tingley, Morgan W; Kalyanaraman, Ramnarayan; Ramesh, Krishnamurthy; Wilcove, David S

    2017-02-01

    There is clear evidence that species' ranges along environmental gradients are constrained by both biotic and abiotic factors, yet their relative importance in structuring realized distributions remains uncertain. We surveyed breeding bird communities while collecting in situ temperature and vegetation data along five elevational transects in the Himalayas differing in temperature variability, habitat zonation, and bird richness in order to disentangle temperature, habitat, and congeneric competition as mechanisms structuring elevational ranges. Our results from species' abundance models representing these three mechanisms differed markedly from previous, foundational research in the tropics. Contrary to general expectations, we found little evidence for competition as a major determinant of range boundaries, with congeneric species limiting only 12% of ranges. Instead, temperature and habitat were found to structure the majority of species' distributions, limiting 48 and 40% of ranges, respectively. Our results suggest that different mechanisms may structure species ranges in the temperate Himalayas compared to tropical systems. Despite recent evidence suggesting temperate species have broader thermal tolerances than tropical species, our findings reinforce the notion that the abiotic environment has significant control over the distributions of temperate species.

  16. Factor Study for the Separator Plate of Mcfc Having Uniform Stiffness at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Wook; Kim, Jung-Hyun; Jun, Joong-Hwan

    A molten carbonate fuel cell (MCFC) is composed of several stacks of unit cells. A unit cell is composed of two electrodes and a matrix that is inserted between separator plates. Separator plates should properly contact the electrodes to reduce the electricity loss arising from contact resistance. To this end, a pressure of about 2 kgf/cm2 is usually applied on the top of the stack, which results in the separator plates being somewhat compacted. Furthermore, the stiffness of the separator plates becomes degraded at elevated temperatures due to softening of the plate materials. Therefore, a nonuniform temperature distribution across the separator plates induced by exothermic reactions of the oxidant and reactant gases leads to a non-uniform plate stiffness. This study has firstly evaluated the change in separator plate stiffness as temperature changes by applying pressure to the plates. Secondly, using the Taguchi method, several design factors that affect stiffness have been investigated to determine which has the most influence. Based on these results, a new design for the separators, which allows for uniform stiffness at elevated temperatures, has been proposed.

  17. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing

    SciTech Connect

    Bakharev, T. . E-mail: tanya.bakharev@eng.monash.edu.au

    2005-06-01

    This paper reports the results of the study of the influence of elevated temperature curing on phase composition, microstructure and strength development in geopolymer materials prepared using Class F fly ash and sodium silicate and sodium hydroxide solutions. In particular, the effect of storage at room temperature before the application of heat on strength development and phase composition was studied. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SEM were utilised in this study. Long precuring at room temperature before application of heat was beneficial for strength development in all studied materials, as strength comparable to 1 month of curing at elevated temperature can develop in this case only after 24 h of heat curing. The main product of reaction in the geopolymeric materials was amorphous alkali aluminosilicate gel. However, in the case of sodium hydroxide activator in addition to it, traces of chabazite, Linde Type A, Na-P1 (gismondine) zeolites and hydroxysodalite were also present. The type of zeolite present and composition of aluminosilicate gel were dependent on the curing history.

  18. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit.

    PubMed

    Sweetman, C; Sadras, V O; Hancock, R D; Soole, K L; Ford, C M

    2014-11-01

    Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2-4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4-6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4-10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4-6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit.

  19. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants

    PubMed Central

    Jagadish, S. V. Krishna; Bahuguna, Rajeev N.; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P. V. Vara; Craufurd, Peter Q.

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143

  20. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit

    PubMed Central

    Sweetman, C.; Sadras, V. O.; Hancock, R. D.; Soole, K. L.; Ford, C. M.

    2014-01-01

    Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2–4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4–6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4–10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4–6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit. PMID:25180109

  1. Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature

    DTIC Science & Technology

    2015-09-21

    performance in elevated temperature environments. High- temperature polymer matrix composites (HTPMCs) are being considered for such applications . However...the polymer matrix in most HTPMCs cannot operate at temperatures required for many aerospace structural applications . Continuous research seeks to...temperature polymer matrix composites (HTPMCs) applications , other polyimide resins replacement are being researched and developed due to the carcinogenic

  2. High temperature causes masculinization of genetically female medaka by elevation of cortisol.

    PubMed

    Hayashi, Yuki; Kobira, Hiroshi; Yamaguchi, Toshiya; Shiraishi, Eri; Yazawa, Takashi; Hirai, Toshiaki; Kamei, Yasuhiro; Kitano, Takeshi

    2010-08-01

    In poikilothermic vertebrates, sex determination is sometimes influenced by environmental factors such as temperature. However, little is known about the molecular mechanisms underlying environmental sex determination. The medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system. Recently, it was reported that XX medaka can be sex-reversed into phenotypic males by high water temperature (HT; 32-34 degrees C) treatment during the sex differentiation period. Here we report that cortisol caused female-to-male sex reversal and that metyrapone (an inhibitor of cortisol synthesis) inhibited HT-induced masculinization of XX medaka. HT treatment caused elevation of whole-body levels of cortisol, while metyrapone suppressed the elevation by HT treatment during sexual differentiation. Moreover, cortisol and 33 degrees C treatments inhibited female-type proliferation of germ cells as well as expression of follicle-stimulating hormone receptor (fshr) mRNA in XX medaka during sexual differentiation. These results strongly suggest that HT induces masculinization of XX medaka by elevation of cortisol level, which, in turn, causes suppression of germ cell proliferation and of fshr mRNA expression.

  3. Elevation, Temperature, and Aquatic Connectivity All Influence the Infection Dynamics of the Amphibian Chytrid Fungus in Adult Frogs

    PubMed Central

    Sapsford, Sarah J.; Alford, Ross A.; Schwarzkopf, Lin

    2013-01-01

    Infectious diseases can cause population declines and even extinctions. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has caused population declines and extinctions in amphibians on most continents. In the tropics, research on the dynamics of this disease has focused on amphibian populations in mountainous areas. In most of these areas, high and low elevation sites are connected by an assemblage of streams that may transport the infectious stage of the pathogen from high to low elevations, and, also, this pathogen, which grows well at cool temperatures, may persist better in cooler water flowing from high elevations. Thus, the dynamics of disease at low elevation sites without aquatic connections to higher elevation sites, i.e., non-contiguous low elevation sites, may differ from dynamics at contiguous low elevation sites. We sampled adult common mistfrogs (Litoria rheocola) at six sites of three types: two at high (> 400m) elevations, two at low elevations contiguous with high elevation streams, and two at low elevations non-contiguous with any high elevation site. Adults were swabbed for Bd diagnosis from June 2010 to June 2011 in each season, over a total of five sampling periods. The prevalence of Bd fluctuated seasonally and was highest in winter across all site types. Site type significantly affected seasonal patterns of prevalence of Bd. Prevalence remained well above zero throughout the year at the high elevation sites. Prevalence declined to lower levels in contiguous low sites, and reached near-zero at non-contiguous low sites. Patterns of air temperature fluctuation were very similar at both the low elevation site types, suggesting that differences in water connectivity to high sites may have affected the seasonal dynamics of Bd prevalence between contiguous and non-contiguous low elevation site types. Our results also suggest that reservoir hosts may be important in the persistence of disease at low elevations. PMID:24324786

  4. CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS

    SciTech Connect

    J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

    2012-10-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  5. Rheological and Mechanical Property Measurements of PMDI Foam at Elevated Temperatures

    SciTech Connect

    Nemer, Martin Bernard; Brooks, Carlton F.; Shelden, Bion; Soehnel, Melissa Marie; Barringer, David Alan

    2014-10-01

    A study was undertaken to determine the viscosity of liquefied 20 lb/ft3 poly methylene diisocyanate (PMDI) foam and the stress required to puncture solid PMDI foam at elevated temperatures. For the rheological measurements the foam was a priori liquefied in a pressure vessel such that the volatiles were not lost in the liquefaction process. The viscosity of the liquefied PMDI foam was found to be Newtonian with a power law dependence on temperature log10(μ/Pa s) = 20.6 – 9.5 log10(T/°C) for temperatures below 170 °C. Above 170 °C, the viscosity was in the range of 0.3 Pa s which is close to the lower measurement limit (≈ 0.1 Pa s) of the pressurized rheometer. The mechanical pressure required to break through 20lb/ft3 foam was 500-800 psi at temperatures from room temperature up to 180 °C. The mechanical pressure required to break through 10 lb/ft3 was 170-300 psi at temperatures from room temperature up to 180 °C. We have not been able to cause gas to break through the 20 lb/ft3 PMDI foam at gas pressures up to 100 psi.

  6. Material property data and their use in design and analysis for an elevated temperature solar code

    NASA Astrophysics Data System (ADS)

    Berman, I.

    1981-11-01

    Specific properties of the materials, temperatures, and operating parameters for elevated temperature solar thermal power plants are considered as a basis for developing standards of implementation. Physical and mechanical properties such as thermal conductivity, elastic modulus, expansion, strength, and creep are discussed and recommendations for ASME Code I and III materials are cited where feasible. Inelastic behavior tests involving beam bending, pipe ratcheting, torsion-torsion tests, and axial cyclic tests of various stainless steel specimens and Incoloy 800 material are reported. Peculiarities of problems for solar applications are noted to be a lack of information of basic material behavior due to the low amount of actual operational experience, a large number of transient temperature cycles, and primary creep.

  7. Generation of Constant Life Diagram under Elevated Temperature Ratcheting of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Sandhya, R.; Mathew, M. D.

    2016-04-01

    Combined influence of mean stress and stress amplitude on the cyclic life under elevated temperature (823-923 K) ratcheting of 316LN austenitic stainless steel is discussed. Constant life Haigh diagrams have been generated, using different combinations of stress amplitude and mean stress. In the plastic domain, the allowable stress was found to increase or decrease with mean stress depending on the temperature and combination of mean stress - stress amplitude employed. Strong influence of dynamic strain aging (DSA) was found at 823 K which affected the mode of deformation of the material in comparison with 923 K. Failure mode expressed through a fracture mechanism map was found to change from fatigue to necking depending on the test temperature as well as combinations of mean stress and stress amplitude. Occurrence of DSA at 823 K proved to be beneficial by way of extending the safe zone of operation to higher R-ratios in comparison with 923 K.

  8. Fuel/cladding compatibility in irradiated metallic fuel pins at elevated temperatures

    SciTech Connect

    Tsai, Hanchung.

    1990-04-01

    Over fifty fuel/cladding compatibility tests on irradiated metallic fuel specimens have been conducted in an in-cell facility at elevated temperatures. At temperatures below 700--725{degree}C, no fuel/cladding interaction was noted in tests up to 7 h. Liquid-phase cladding penetration occurred in some of the tests at temperatures greater than 725--750{degree}C. The effective rates of liquid- phase cladding penetration of six different fuel/cladding combinations during 1-h testing are reported. After the initial liquefaction at the fuel/cladding interface, which may be affected by the solid-state diffusional interaction during the steady-state irradiation, the rate of further cladding penetration stays constant or decreases with time. There was no runaway cladding penetration in the latter part of a heating cycle.

  9. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  10. THERMODYNAMICS OF NEPTUNIUM(V) FLOURIDE AND SULFATE AT ELEVATED TEMPERATURES

    SciTech Connect

    L. Rao; G. Tian; Y. Xia; J.I. Friese

    2006-03-06

    Complexation of neptunium(V) with fluoride and sulfate at elevated, temperatures was studied by microcalorimetry. Thermodynamic parameters, including the equilibrium constants and enthalpy of protonation of fluoride and sulfate, and the enthalpy of complexation between Np(V) and fluoride and sulfate at 25-70 C were determined. Results show that the complexation of Np(V) with fluoride and sulfate is endothermic and that the complexation is enhanced by the increase in temperature--a threefold increase in the stability constants of NpO{sub 2}F(aq) and NpO{sub 2}SO{sub 4}{sup -} as the temperature is increased from 25 to 70 C.

  11. Difference method for analysing infrared images in pigs with elevated body temperatures.

    PubMed

    Siewert, Carsten; Dänicke, Sven; Kersten, Susanne; Brosig, Bianca; Rohweder, Dirk; Beyerbach, Martin; Seifert, Hermann

    2014-03-01

    Infrared imaging proves to be a quick and simple method for measuring temperature distribution on the pig's head. The study showed that infrared imaging and analysis with a difference ROI (region of interest) method may be used for early detection of elevated body temperature in pigs (> 39.5°C). A high specificity of approx. 85% and a high sensitivity of 86% existed. The only prerequisite is that there are at least 2 anatomical regions which can be recognised as reproducible in the IR image. Noise suppression is guaranteed by averaging the temperature value within both of these ROI. The subsequent difference imaging extensively reduces the off-set error which varies in every thermal IR-image.

  12. Analysis of Screen Channel LAD Bubble Point Tests in Liquid Methane at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; McQuillen, John

    2012-01-01

    This paper examines the effect of varying the liquid temperature and pressure on the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid methane using gaseous helium across a wide range of elevated pressures and temperatures. Testing of a 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenic Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 105 to 160K and 0.0965 - 1.78 MPa. Bubble point is shown to be a strong function of the liquid temperature and a weak function of the amount of subcooling at the LAD screen. The model predicts well for saturated liquid but under predicts the subcooled data.

  13. Modeling the effects of elevated temperatures on action potential propagation in unmyelinated axons

    NASA Astrophysics Data System (ADS)

    Ganguly, Mohit; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco

    2016-03-01

    Infrared lasers (λ=1.87 μm) are capable of inducing a thermally mediated nerve block in Aplysia and rat nerves. While this block is spatially precise and reversible in sensory and motor neurons, the mechanism of block is not clearly understood. Model predictions show that, at elevated temperatures, the rates of opening and closing of the voltage gated ion channels are disrupted and normal functioning of the gates is hindered. A model combining NEURON with Python is presented here that can simulate the behavior of unmyelinated nerve axons in the presence of spatially and temporally varying temperature distributions. Axon behavior and underlying mechanism leading to conduction block is investigated. The ability to understand the photothermal interaction of laser light and temperature dependence of membrane ion channels in-silico will help speed explorations of parameter space and guide future experiments testing the feasibility of selectively blocking pain conduction fibers (Photonic Analgesia of Nerves (PAIN)) in humans.

  14. Application of path-independent integrals to elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Van Stone, R. H.

    1990-01-01

    The applicability of the J-integral in elasto-plastic fracture mechanics is limited to isothermal, monotonic loading conditions from the theoretical viewpoint, while in many applications, for instance gas turbine engines, crack growth occurs in the presence of cyclic inelastic loading, thermomechanical loading and temperature gradients. A number of path-independent (P-I) integrals have been proposed which do not have the restrictions of the J-integral. A review indicates that four of these integrals, although they are not the classical conservation integrals, are path-independent under these complex loading conditions. This paper describes a combined analytical and experimental effort to evaluate the ability of these four P-I integrals to correlate the crack growth data of Alloy 718 at elevated temperatures. Results for uniform temperature, 538 C, cases indicate that all these integrals are capable of correlating the crack growth data over a wide range of cyclic plasticity.

  15. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature.

    PubMed

    Zhao, Hongxia; Li, Yongping; Zhang, Xiaolu; Korpelainen, Helena; Li, Chunyang

    2012-11-01

    Dioecious plants, which comprise more than 14,620 species, account for an important component of terrestrial ecosystems. Hence, understanding the sexually dimorphic responses in balancing carbon (C) supply and demand under elevated CO(2) is important for understanding leaf sink-to-source transitions. Here we investigate sex-related responses of the dioecious Populus cathayana Rehd. to elevated CO(2) and elevated temperature. The plants were grown in environmentally controlled growth chambers at two CO(2) enrichment regimes (350 ± 20 and 700 ± 20 μmol mol(-1)) with two temperature levels, elevated by 0 and 2 ± 0.2 °C (compared with the out-of-chamber environment). Plant growth characteristics, carbohydrate accumulation, C and nitrogen (N) allocation, photosynthetic capacity, N use efficiency and the morphology of mesophyll cells were investigated in the developing leaves (DLs) and expanded leaves (ELs) of both males and females. Elevated CO(2) enhanced plant growth and photosynthetic capacity in DLs of both males and females, and induced the male ELs to have a greater leaf mass production, net photosynthesis rate (P(n)), chlorophyll a/b ratio (Chl a/b), soluble protein level (SP), photosynthetic N use efficiency and soluble sugar level compared with females at the same leaf stage. Elevated temperature enhanced source activities and N uptake status during CO(2) enrichment, and the combined treatment induced males to be more responsive than females in sink capacities, especially in ELs, probably due to greater N acquisition from other plant parts. Our findings showed that elevated CO(2) increases the sink capacities of P. cathayana seedlings, and elevated temperature enhances the stimulation effect of elevated CO(2) on plant growth. Male ELs were found to play an important role in N acquisition from roots and stems under decreasing N in total leaves under elevated CO(2). Knowledge of the sex-specific leaf adaptability to warming climate can help us

  16. The effect of elevated temperature and substrate on free-living Symbiodinium cultures

    NASA Astrophysics Data System (ADS)

    Nitschke, M. R.; Davy, S. K.; Cribb, T. H.; Ward, S.

    2015-03-01

    Elevated temperatures can produce a range of serious, deleterious effects on marine invertebrate— Symbiodinium symbioses. The responses of free-living Symbiodinium to elevated temperature, however, have been little studied, especially in the context of their natural habitat. In this study, we investigated physiological responses of two Symbiodinium cultures to elevated temperature, an exclusively free-living ITS2 clade A (strain HI-0509) and the symbiosis-forming ITS2 type A1 (strain CCMP2467). Free-living Symbiodinium strains have recently been isolated from benthic sediments, and both cultures were therefore grown with or without a microhabitat of carbonate sediment at 25, 28 or 31 °C. Maximum quantum yield of photosystem II ( F v/ F m) and specific growth rate were measured as response variables. In culture, Symbiodinium cells exhibit motility in a helical swimming pattern, and therefore, revolutions per minute (RPM) were also measured with video microscopy. The exclusively free-living clade A was physiologically superior to Symbiodinium A1 across all measured variables and treatment combinations. F v/ F m remained relatively stable through time (at approximately 0.55) and was not substantially affected by temperature or the presence or the absence of sediment. Populations of the exclusively free-living Symbiodinium A reproduced faster with sediment than without and exhibited high levels of motility across all treatments (surpassing 300 RPM). In contrast, the F v/ F m of A1 dropped to 0.42 in sediment (relative to cultures without sediment) and exhibited dramatic declines in cell concentration, most severely at 31 °C. A > 50 % reduction in motility was also observed at 31 °C. Even in the absence of sediment, elevated temperature was observed to reduce population growth and cell motility of type A1. We suggest that vital behaviours linked to motility (such as vertical migration and the locating of potential hosts) may become impaired during future thermal

  17. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.

    PubMed

    Wallin, Göran; Hall, Marianne; Slaney, Michelle; Räntfors, Mats; Medhurst, Jane; Linder, Sune

    2013-11-01

    Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T

  18. Microwave-enhanced electrochemical cycling performance of the LiNi0.2Mn1.8O4 spinel cathode material at elevated temperature.

    PubMed

    Raju, Kumar; Nkosi, Funeka P; Viswanathan, Elumalai; Mathe, Mkhulu K; Damodaran, Krishnan; Ozoemena, Kenneth I

    2016-05-14

    The well-established poor electrochemical cycling performance of the LiMn2O4 (LMO) spinel cathode material for lithium-ion batteries at elevated temperature stems from the instability of the Mn(3+) concentration. In this work, a microwave-assisted solid-state reaction has been used to dope LMO with a very low amount of nickel (i.e., LiNi0.2Mn1.8O4, herein abbreviated as LMNO) for lithium-ion batteries from Mn3O4 which is prepared from electrolytic manganese oxide (EMD, γ-MnO2). To establish the impact of microwave irradiation on the electrochemical cycling performance at an elevated temperature (60 °C), the Mn(3+) concentration in the pristine and microwave-treated LMNO samples was independently confirmed by XRD, XPS, (6)LiMAS-NMR and electrochemical studies including electrochemical impedance spectroscopy (EIS). The microwave-treated sample (LMNOmic) allowed for the clear exposure of the {111} facets of the spinel, optimized the Mn(3+) content, promoting structural and cycle stability at elevated temperature. At room temperature, both the pristine (LMNO) and microwave-treated (LMNOmic) samples gave comparable cycling performance (>96% capacity retention and ca. 100% coulombic efficiency after 100 consecutive cycling). However, at an elevated temperature (60 °C), the LMNOmic gave an improved cycling stability (>80% capacity retention and ca. 90% coulombic efficiency after 100 consecutive cycling) compared to the LMNO. For the first time, the impact of microwave irradiation on tuning the average manganese redox state of the spinel material to enhance the cycling performance of the LiNi0.2Mn1.8O4 at elevated temperature and lithium-ion diffusion kinetics has been clearly demonstrated.

  19. Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides

    NASA Astrophysics Data System (ADS)

    Ross, C.; Ritson-Williams, R.; Olsen, K.; Paul, V. J.

    2013-03-01

    Coral reefs across the Caribbean are undergoing unprecedented rates of decline in coral cover during the last three decades, and coral recruitment is one potential process that could aid the recovery of coral populations. To better understand the effects of climate change on coral larval ecology, the larvae of Porites astreoides were studied to determine the immediate and post-settlement effects of elevated temperature and associated oxidative stress. Larvae of Porites astreoides were exposed to 27 °C (ambient) and +3.0 °C (elevated temperature) seawater for a short duration of 24 h; then, a suite of physiological parameters were measured to determine the extent of sublethal stress. Following the +3.0 °C treatment, larvae did not show a significant difference in maximum quantum yield of PSII ( F v/ F m) or respiratory demand when compared to controls maintained at 27 °C. The addition of micromolar concentrations of hydrogen peroxide did not impact respiration or photochemical efficiency. Catalase activity in the larvae increased (>60 %) following exposure to elevated temperature when compared to the controls. Short-term larval survival and settlement and metamorphosis were not affected by increased temperature or the H2O2 treatment. However, the settled spat that were exposed to elevated temperature underwent a 99 % reduction in survival compared to 90 % reduction for the control spat when examined 24 days following the deployment of 4-day-old settled spat on settlement tiles in the field. These results show that short-term exposure to some stressors might have small impacts on coral physiology, and no effects on larval survival, settlement and metamorphosis. However, due to post-settlement mortality, these stressors can cause a significant reduction in coral recruitment.

  20. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    PubMed Central

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-01-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070

  1. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    NASA Astrophysics Data System (ADS)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  2. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    PubMed

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  3. Hypervelocity impact damage response and characterization of thin plate targets at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Corbett, Brooke Myers

    The performance of a typical International Space Station (ISS) shield against the meteoroid and orbital debris (M/OD) impact threat is generally modeled by damage equations for the outer shield and the rear pressure wall. In their current forms, these damage equations neglect the on-orbit temperature extremes witnessed by the ISS. To address IF and HOW temperature extremes affect the performance of the ISS' typical M/OD shield, a comprehensive study was undertaken that investigated hole diameters in .063" thick 6061-T6 aluminum targets impacted at velocities from ˜2-7 km/s at 20°C, 110°C, and 210°C. Robust graphical and analytical analyses confirmed the existence of a statistically significant temperature effect, i.e., hole diameters in heated targets were larger than those in room temperature targets. A new temperature-dependent model was found via multivariable regression analysis that incorporates a linear velocity term and a temperature term based on a form of the cumulative distribution function. Numerical modeling of hypervelocity impacts (HVI) into elevated temperature targets was also performed to determine whether or not currently available material and failure models can adequately simulate the differences observed between room and elevated temperature target hole diameters. Statistical analyses showed that AUTODYN simulated the heated data almost as well as the room temperature data. However, the slightly worse Goodness of Fit (GOF) values between the heated empirical vs. simulated comparisons suggest that the simulations do not completely account for the observed temperature effect. A series of materials tests and observations were carried out on the post-impacted target plates to help explain the empirical data results with respect to material variability and deformation features. Rockwell B and K macro-hardness tests revealed that the hardness values for the targets impacted at 110°C were statistically significantly higher compared to those

  4. OSMOTIC COEFFICIENTS, SOLUBILITIES, AND DELIQUESCENCE RELATIONS IN MIXED AQUEOUS SALT SOLUTIONS AT ELEVATED TEMPERATURE

    SciTech Connect

    M.S. Gruszkiewicz; D.A. Palmer

    2006-02-22

    While thermodynamic properties of pure aqueous electrolytes are relatively well known at ambient temperature, there are far fewer data for binary systems extending to elevated temperatures and high concentrations. There is no general theoretically sound basis for prediction of the temperature dependence of ionic activities, and consequently temperature extrapolations based on ambient temperature data and empirical equations are uncertain and require empirical verification. Thermodynamic properties of mixed brines in a wide range of concentrations would enhance the understanding and precise modeling of the effects of deliquescence of initially dry solids in humid air in geological environments and in modeling the composition of waters during heating, cooling, evaporation or condensation processes. These conditions are of interest in the analysis of waters on metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada. The results obtained in this project will be useful for modeling the long-term evolution of the chemical environment, and this in turn is useful for the analysis of the corrosion of waste packages. In particular, there are few reliable experimental data available on the relationship between relative humidity and composition that reveals the eutonic points of the mixtures and the mixture deliquescence RH. The deliquescence RH for multicomponent mixtures is lower than that of pure component or binary solutions, but is not easy to predict quantitatively since the solutions are highly nonideal. In this work we used the ORNL low-temperature and high-temperature isopiestic facilities, capable of precise measurements of vapor pressure between ambient temperature and 250 C for determination of not only osmotic coefficients, but also solubilities and deliquescence points of aqueous mixed solutions in a range of temperatures. In addition to standard solutions of CaCl{sub 2}, LiCl, and NaCl used as references, precise direct

  5. Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study

    SciTech Connect

    Solovchuk, Maxim A.; Hwang, San Chao; Chang, Hsu; Thiriet, Marc; Sheu, Tony W. H.

    2014-05-15

    Purpose: High-intensity focused ultrasound is a rapidly developing medical technology with a large number of potential clinical applications. Computational model can play a pivotal role in the planning and optimization of the treatment based on the patient's image. Nonlinear propagation effects can significantly affect the temperature elevation and should be taken into account. In order to investigate the importance of nonlinear propagation effects, nonlinear Westervelt equation was solved. Weak nonlinear propagation effects were studied. The purpose of this study was to investigate the correlation between the predicted and measured temperature elevations and lesion in a porcine muscle. Methods: The investigated single-element transducer has a focal length of 12 cm, an aperture of 8 cm, and frequency of 1.08 MHz. Porcine muscle was heated for 30 s by focused ultrasound transducer with an acoustic power in the range of 24–56 W. The theoretical model consists of nonlinear Westervelt equation with relaxation effects being taken into account and Pennes bioheat equation. Results: Excellent agreement between the measured and simulated temperature rises was found. For peak temperatures above 85–90 °C “preboiling” or cavitation activity appears and lesion distortion starts, causing small discrepancy between the measured and simulated temperature rises. From the measurements and simulations, it was shown that distortion of the lesion was caused by the “preboiling” activity. Conclusions: The present study demonstrated that for peak temperatures below 85–90 °C numerical simulation results are in excellent agreement with the experimental data in three dimensions. Both temperature rise and lesion size can be well predicted. Due to nonlinear effect the temperature in the focal region can be increased compared with the linear case. The current magnetic resonance imaging (MRI) resolution is not sufficient. Due to the inevitable averaging the measured

  6. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    SciTech Connect

    Winklhofer, Johannes; Trattnig, Gernot; Sommitsch, Christof

    2010-06-15

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  7. Measurements of Young's and shear moduli of rail steel at elevated temperatures.

    PubMed

    Bao, Yuanye; Zhang, Haifeng; Ahmadi, Mehdi; Karim, Md Afzalul; Felix Wu, H

    2014-03-01

    The design and modelling of the buckling effect of Continuous Welded Rail (CWR) requires accurate material constants, especially at elevated temperatures. However, such material constants have rarely been found in literature. In this article, the Young's moduli and shear moduli of rail steel at elevated temperatures are determined by a new sonic resonance method developed in our group. A network analyser is used to excite a sample hanged inside a furnace through a simple tweeter type speaker. The vibration signal is picked up by a Polytec OFV-5000 Laser Vibrometer and then transferred back to the network analyser. Resonance frequencies in both the flexural and torsional modes are measured, and the Young's moduli and shear moduli are determined through the measured resonant frequencies. To validate the measured elastic constants, the measurements have been repeated by using the classic sonic resonance method. The comparisons of obtained moduli from the two methods show an excellent consistency of the results. In addition, the material elastic constants measured are validated by an ultrasound test based on a pulse-echo method and compared with previous published results at room temperature. The measured material data provides an invaluable reference for the design of CWR to avoid detrimental buckling failure.

  8. Control of Thermal Deflection, Panel Flutter and Acoustic Fatigue at Elevated Temperatures Using Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Huang, Jen-Kuang

    1996-01-01

    The High Speed Civil Transport (HSCT) will have to be designed to withstand high aerodynamic load at supersonic speeds (panel flutter) and high acoustic load (acoustic or sonic fatigue) due to fluctuating boundary layer or jet engine acoustic pressure. The thermal deflection of the skin panels will also alter the vehicle's configuration, thus it may affect the aerodynamic characteristics of the vehicle and lead to poor performance. Shape memory alloys (SMA) have an unique ability to recover large strains completely when the alloy is heated above the characteristic transformation (austenite finish T(sub f)) temperature. The recovery stress and elastic modulus are both temperature dependent, and the recovery stress also depends on the initial strain. An innovative concept is to utilize the recovery stress by embedding the initially strained SMA wire in a graphite/epoxy composite laminated panel. The SMA wires are thus restrained and large inplane forces are induced in the panel at elevated temeperatures. By embedding SMA in composite panel, the panel becomes much stiffer at elevated temperatures. That is because the large tensile inplane forces induced in the panel from the SMA recovery stress. A stiffer panel would certainly yield smaller dynamic responses.

  9. Effects of primary recoil energy on the production rate of mobile defects during elevated temperature irradiation

    SciTech Connect

    Okamoto, P.R.; Rehn, L.E.; Averback, R.S.

    1984-11-01

    Radiation-induced segregation rates in a Ni-12.7 at.% Si alloy have been measured as a function of temperature using ions of various masses and energies. An analysis of the segregation kinetics using a simple analytical model yielded the relative efficiency of each of the ions for producing mobile defects directly from ratios of their measured segregation rates. In this paper, we also show that the relative efficiencies can also be determined from measured shifts in the peak segregation temperature. Both methods yield a strong decrease in efficiency with increasing ion mass. The reduction in efficiency for the heavior ions was found to be significantly larger than that measured at very low temperatures by resistivity techniques. The latter are often used as a basis for correlating damage structures produced at elevated temperatures. Differences between the low and high temperature measurements indicate that relative efficiencies determined from segregation measurements are more reliable for correlating microstructural changes that are produced in different irradiation environments at high temperatures.

  10. Elevated temperature irradiation damage in CANDU spacer material Inconel X-750

    NASA Astrophysics Data System (ADS)

    Zhang, He K.; Yao, Zhongwen; Daymond, Mark R.; Kirk, Marquis A.

    2014-02-01

    Heavy ion irradiation induced damage in Inconel X-750 at low temperatures (60-400 °C) has been reported in our previous study. In the current investigation, the microstructure evolution and phase change during heavy (1 MeV Kr2+) irradiation at elevated temperatures (500 °C and 600 °C) were characterized under in situ observation of intermediate voltage electron microscope (IVEM) at Argonne National Laboratory. For each temperature, defect analyses using the weak beam dark field method were carried out at several doses, up to 5.4 dpa. Small defects (<5 nm) yielded from high temperature irradiation comprise mainly stacking fault tetrahedras (SFTs), small ⅓ <1 1 1> and ½ <1 1 0> type dislocation loops. Large interstitial Frank loops were observed and a clear characteristic for growth of loops was video-captured. Unfaulting of interstitial Frank loops was observed. The number density of the defects saturated at a relatively low dose of 0.68 dpa. No obvious change of defect fraction was found with increasing dose, but more complex dislocation structures formed at higher doses. In contrast to low temperature irradiation, the primary strengthening phase γ‧ was found to be stable during irradiation at temperatures >500 °C and was not disordered up to 5.4 dpa. No cavities were observed after the irradiation even at 600 °C.

  11. Plasticity mechanisms in HfN at elevated and room temperature

    PubMed Central

    Vinson, Katherine; Yu, Xiao-Xiang; De Leon, Nicholas; Weinberger, Christopher R.; Thompson, Gregory B.

    2016-01-01

    HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 Tm) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase. PMID:27708354

  12. Plasticity mechanisms in HfN at elevated and room temperature

    NASA Astrophysics Data System (ADS)

    Vinson, Katherine; Yu, Xiao-Xiang; de Leon, Nicholas; Weinberger, Christopher R.; Thompson, Gregory B.

    2016-10-01

    HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 Tm) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.

  13. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.

    PubMed

    Stevenson, Tim; Quast, Tatjana; Bartl, Guido; Schmitz-Kempen, Thorsten; Weaver, Paul M

    2015-01-01

    Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures.

  14. Soot surface temperature measurements in pure and diluted flames at atmospheric and elevated pressures

    SciTech Connect

    Berry Yelverton, T.L.; Roberts, W.L.

    2008-10-15

    Soot surface temperature was measured in laminar jet diffusion flames at atmospheric and elevated pressures. The soot surface temperature was measured in flames at one, two, four, and eight atmospheres with both pure and diluted (using helium, argon, nitrogen, or carbon dioxide individually) ethylene fuels with a calibrated two-color soot pyrometry technique. These two dimensional temperature profiles of the soot aid in the analysis and understanding of soot production, leading to possible methods for reducing soot emission. Each flame investigated was at its smoke point, i.e., at the fuel flow rate where the overall soot production and oxidation rates are equal. The smoke point was chosen because it was desirable to have similar soot loadings for each flame. A second set of measurements were also taken where the fuel flow rate was held constant to compare with earlier work. These measurements show that overall flame temperature decreases with increasing pressure, with increasing pressure the position of peak temperature shifts to the tip of the flame, and the temperatures measured were approximately 10% lower than those calculated assuming equilibrium and neglecting radiation. (author)

  15. Hindered diffusion of asphaltenes at elevated temperature and pressure. Semiannual report, March 20 - September 20, 1996

    SciTech Connect

    Guin, J.A.; Geelen, R.; Gregory, C.; Yang, X.

    1996-11-01

    The objectives are to: investigate the hindered diffusion of coal and petroleum asphaltenes in the pores of catalyst particles at elevated temperature and pressures; and examine the effects of concentration, temperature, solvent type, and pressure on the intraparticle diffusivity of asphaltenes. Progress was made in several areas during this time period. The high temperature/high pressure autoclave has been received from Parr Instrument Company and is in the process of being set up and checked out. During this time period we mainly worked in two areas. In the first area, we performed some measurements on the adsorption isotherms of the model compound quinoline in cyclohexane onto a Criterion 324 catalyst at three temperatures. We are looking at the effect of temperature on the adsorption isotherms of several model compounds. This area is important since the adsorptive uptake of asphaltenes is being studied and the model compound systems lend insight as to how we may expect the more complex asphaltene systems to behave during adsorption on the surface of the porous particles. We found that even for the simple model compound quinoline, the adsorption behavior vs. temperature was quite 0563 complex. The second area explored during this time period was the application of a mathematical model to adsorptive uptake data for asphaltenes on Criterion 324 catalyst particles. This adsorptive uptake data was obtained during the previous time period and was analyzed by mathematical modeling during the current time period. The detailed findings in both of these areas are presented in this report.

  16. Light and water-use efficiencies of pine shoots exposed to elevated carbon dioxide and temperature.

    PubMed

    Wang, Kai-Yun; Kellomaki, Seppo; Li, Chunyang; Zha, Tianshan

    2003-07-01

    An automatic gas exchange system was used to continuously measure water and carbon fluxes of attached shoots of Scots pine trees (Pinus sylvestris L.) grown in environment-controlled chambers for a 3-year period (1998-2000) and exposed to either normal ambient conditions (CON), elevated CO2 (+350 micro mol mol-1; EC), elevated temperature (+2-6 degrees C; ET) or a combination of EC and ET (ECT). EC treatment enhanced the mean daily total carbon flux per unit projected needle area (Fc.d) by 17-21 %, depending on the year. This corresponds to a 16-24 % increase in light-use efficiency (LUE) based on incident photosynthetically active radiation. The EC treatment reduced the mean daily total water flux (Fw.d) by 1-12 %, corresponding to a 13-35 % increase in water-use efficiency (WUE). The ET treatment increased Fc.d by 10-18 %, resulting in an 8-19 % increase in LUE, and Fw.d by 48-74 %, resulting in a reduction of WUE by 19-34 %. There was no interaction between CO2 and temperature elevation in connection with either carbon or water fluxes, as the carbon flux responded similarly in both ECT and EC, while the water flux in the ECT treatment was similar to that in ET. Regressions indicated that the increase in maximum LUE was greater with increasing air temperature, whereas changes in WUE were related only to high vapour pressure deficit. Furthermore, changes in LUE and WUE caused by ECT treatment displayed strong diurnal and seasonal variation.

  17. Early exposure to storybooks in the home: Validation of title/author checklist measures in a sample of children at elevated risk of reading difficulty

    PubMed Central

    Hamilton, Lorna

    2015-01-01

    Title/author checklists are a reliable and valid method of measuring young children’s exposure to storybooks. Early storybook exposure is robustly associated with concurrent oral language; a correlation between storybook exposure and concurrent pre-literacy skills was observed for typically developing children, but not for children at elevated risk of reading difficulty. PMID:26345597

  18. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.

    PubMed

    Kostiainen, Katri; Saranpää, Pekka; Lundqvist, Sven-Olof; Kubiske, Mark E; Vapaavuori, Elina

    2014-06-01

    We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free-air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3 ] during growing seasons 1998-2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2- and O3-exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone-specific decrease in wood density and cell wall thickness was observed under elevated CO2 . In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short-term impact studies conducted with young seedlings may not give a realistic view of long-term ecosystem responses.

  19. Surprisingly Large Generation and Retention of Helium and Hydrogen in Pure Nickel Irradiated at High Temperatures and High Neutron Exposures

    SciTech Connect

    Greenwood, Lawrence R.; Garner, Francis A.; Oliver, Brian M.; Grossbeck, Martin L.; Wolfer, W. G.

    2004-04-01

    Hydrogen and helium measurements in pure nickel irradiated to 100 dpa in HFIR at temperatures between 300 and 600C show higher gas concentrations than predicted from fast-neutron reactions and the two-step 58Ni(n,g)59Ni(n,p and n,a) reactions. This additional gas production suggests previously unidentified nuclear sources of helium and possibly hydrogen that assert themselves at very high neutron exposure. The elevated hydrogen measurements are especially surprising since it is generally accepted that hydrogen is very mobile in nickel at elevated temperatures and therefore is easily lost, never reaching large concentrations. However, it appears that relatively large hydrogen concentrations can be reached and retained for many years after irradiation at reactor-relevant temperatures. These new effects may have a significant impact on the performance of nickel-bearing alloys at high neutron fluences in both fission and fusion reactor irradiations.

  20. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    NASA Technical Reports Server (NTRS)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  1. Effects of selected thermophilic microorganisms on crude oils at elevated temperatures and pressures

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.

    1992-01-01

    The objective of this program is to determine the chemical and physical effects of thermophilic and thermoadapted organisms on crude oils and cores at elevated temperatures and pressures. Ultimately a data base will be generated which will be used in technical and economic feasibility studies leading to field applications. Progress to date are described for: construction of core-flooding systems; studies of trends in biochemical interactions between different microorganisms and crude oils; and comparative studies of interaction between different crude oils and microorganisms.

  2. Facial cold-induced vasodilation and skin temperature during exposure to cold wind.

    PubMed

    Brajkovic, Dragan; Ducharme, Michel B

    2006-04-01

    One purpose of this study was to characterize the facial skin temperature and cold-induced vasodilation (CIVD) response of 12 subjects (six males and six females) during exposure to cold wind (i.e., -10 to 10 degrees C; 2, 5, and 8 m/s wind speed). This study found that at each wind speed, facial skin temperature decreased as ambient temperature decreased. The percentage of subjects showing facial CIVD decreased significantly at an ambient temperature above -10 degrees C. A similar CIVD percentage was observed between 0 degrees C dry and 10 degrees C wet (face sprayed with fine water mist) at each wind speed. No CIVDs were observed during the 10 degrees C dry condition at any wind speed. The incidence of CIVD response was more uniform across facial sites when there was a greater cold stress (i.e., -10 degrees C and 8 m/s wind). Another objective of the study was to examine the effect of the thermal state of the body (as reflected by core temperature) on the facial skin temperature response during rest and exercise. This study found that nose skin temperature was significantly higher in exercising subjects with an elevated core temperature even though there was no significant difference in face skin temperature between the two conditions. Therefore, this finding suggests that acral regions of the face, such as the nose, are more sensitive to changes in the thermal state of the body, and hence will stay warmer relative to other parts of the face during exercise in the cold.

  3. Correlation between mobile continents and elevated temperatures in the subcontinental mantle

    NASA Astrophysics Data System (ADS)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2016-04-01

    Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) have previously shown that continents exert a first order influence on Earth's mantle flow by affecting convective wavelength and surface heat flow. With stationary continents, Heron and Lowman (JGR, 2014) highlighted the decreasing role of continental insulation on subcontinental temperatures with higher Rayleigh number (Ra). However, the question whether there exists a correlation between mobile continents and elevated temperatures in the subcontinental mantle or not remains to be answered. By systematically varying parameters like core-mantle boundary (CMB) temperature, continental size, and mantle heating modes (basal and internal); we model thermo-chemical mantle convection with 2D spherical annulus geometry (Hernlund and Tackley, PEPI 2008) using StagYY (Tackley, PEPI 2008). Starting with a simple incompressible model having mobile continents, we observe this correlation. Furthermore, this correlation still holds when the model complexity is gradually increased by introducing internal heating, compressibility, and melting. In general, downwellings reduce the mantle temperature away from the continents, thereby resulting in correlation between mobile continents and elevated temperatures in the subcontinental mantle. For incompressible models (Boussinesq approximation), correlation exists and the dominant degree of convection varies with the continental distribution. When internal heating is switched on, correlation is observed but it is reduced as there are less cold regions in the mantle. Even for compressible models with melting, big continents are able to focus the heat underneath them. The dominant degree of convection changes with continental breakup. Additionally, correlation is observed to be higher in the upper mantle (300 - 1000 km) compared to the lower mantle (1000 - 2890 km). At present, mobile continents in StagYY are simplified into a compositionally distinct field drifting at the top of

  4. Influence of elevated temperature on metabolism during aestivation: implications for muscle disuse atrophy.

    PubMed

    Young, Karen M; Cramp, Rebecca L; White, Craig R; Franklin, Craig E

    2011-11-15

    Reactive oxygen species (ROS), produced commensurate with aerobic metabolic rate, contribute to muscle disuse atrophy (MDA) in immobilised animals by damaging myoskeletal protein and lipids. Aestivating frogs appear to avoid MDA in part by substantially suppressing metabolic rate. However, as ectotherms, metabolic rate is sensitive to environmental temperature, and the high ambient temperatures that may be experienced by frogs during aestivation could in fact promote MDA. In this study, we investigated the effect of temperature on the metabolic rate of the aestivating frog Cyclorana alboguttata and its skeletal muscles in order to determine their likely susceptibility to MDA. Compared with non-aestivating frogs, a significant decrease in metabolic rate was recorded for aestivating frogs at 20, 24 and 30°C. At 30°C, however, the metabolic rate of aestivating frogs was significantly higher, approximately double that of frogs aestivating at 20 or 24°C, and the magnitude of the metabolic depression was significantly reduced at 30°C compared with that at 20°C. Temperature effects were also observed at the tissue level. At 24 and 30°C the metabolic rate of all muscles from aestivating frogs was significantly depressed compared with that of muscles from non-aestivating frogs. However, during aestivation at 30°C the metabolic rates of gastrocnemius, sartorius and cruralis were significantly elevated compared with those from frogs aestivating at 24°C. Our data show that the metabolism of C. alboguttata and its skeletal muscles is elevated at higher temperatures during aestivation and that the capacity of the whole animal to actively depress metabolism is impaired at 30°C.

  5. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy

    SciTech Connect

    Kubásek, J. Vojtěch, D.; Martínek, M.

    2013-12-15

    Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140 MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: • Small effect of cooling rate on the compressive strength and hardness of AJ 62 • A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature • Higher resistance of the AJ 62

  6. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    NASA Astrophysics Data System (ADS)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  7. Drift in ocean currents impacts intergenerational microbial exposure to temperature.

    PubMed

    Doblin, Martina A; van Sebille, Erik

    2016-05-17

    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming.

  8. Drift in ocean currents impacts intergenerational microbial exposure to temperature

    PubMed Central

    Doblin, Martina A.; van Sebille, Erik

    2016-01-01

    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034–1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming. PMID:27140608

  9. Effect of elevated temperature on the composition, structure, and mechanical properties of diffusion chromized steel

    SciTech Connect

    Osintsev, V.D.

    1986-05-01

    The author studies the effect of operating temperature for equipment in contact sections of sulfuric acid workshops on the structure and mechanical properties of the chromized coatings and core of chromized articles. The ferrite lattice spacing was determined in a DRON-0.5 diffractometer according to the line in copper K /sub alpha/ radiation exposure was carried out after layer-by-layer anodic etching of the coating in an aqueous solution. It was shown that diffusion chromizing may lead to a reduction in strength properties compared with those of unchromized steel. As a base for chromized articles intended for operation at temperatures up to 475/sup 0/C it is desirable to use steels 09G2 or 09G25, or for operation at temperatures up to 540/sup 0/C, steels 12KhM and 12MKh.

  10. Elevated temperatures increase the toxicity of pesticide mixtures to juvenile coho salmon.

    PubMed

    Laetz, Cathy A; Baldwin, David H; Hebert, Vincent R; Stark, John D; Scholz, Nathaniel L

    2014-01-01

    Pesticide mixtures and elevated temperatures are parallel freshwater habitat stressors for Pacific salmon in the western United States. Certain combinations of organophosphate (OP) insecticides are known to synergistically increase neurotoxicity in juvenile salmon. The chemicals interact to potentiate the inhibition of brain acetylcholinesterase (AChE) and disrupt swimming behavior. The metabolic activation and detoxification of OPs involve temperature-sensitive enzymatic processes. Salmon are ectothermic, and thus the degree of synergism may vary with ambient temperature in streams, rivers, and lakes. Here we assess the influence of water temperature (12-21°C) on the toxicity of ethoprop and malathion, alone and in combination, to juvenile coho salmon (Oncorhynchus kisutch). A mixture of ethoprop (0.9 μg/L) and malathion (0.75 μg/L) produced synergistic AChE inhibition at 12°C, and the degree of neurotoxicity approximately doubled with a modest temperature increase to 18°C. Slightly lower concentrations of ethoprop (0.5 μg/L) combined with malathion (0.4 μg/L) did not inhibit brain AChE activity but did produce a temperature-dependent reduction in liver carboxylesterase (CaE). The activity of CaE was very sensitive to the inhibitory effects of ethoprop alone and both ethoprop-malathion combinations across all temperatures. Our findings are an example of how non-chemical habitat attributes can increase the relative toxicity of OP mixtures. Surface temperatures currently exceed water quality criteria in many western river segments, and summer thermal extremes are expected to become more frequent in a changing climate. These trends reinforce the importance of pollution reduction strategies to enhance ongoing salmon conservation and recovery efforts.

  11. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  12. Temperature-induced elevation of basal metabolic rate does not affect testis growth in great tits.

    PubMed

    Caro, Samuel P; Visser, Marcel E

    2009-07-01

    The timing of reproduction varies from year to year in many bird species. To adjust their timing to the prevailing conditions of that year, birds use cues from their environment. However, the relative importance of these cues, such as the initial predictive (e.g. photoperiod) and the supplemental factors (e.g. temperature), on the seasonal sexual development are difficult to distinguish. In particular, the fine-tuning effect of temperature on gonadal growth is not well known. One way temperature may affect timing is via its strong effect on energy expenditure as gonadal growth is an energy-demanding process. To study the interaction of photoperiod and temperature on gonadal development, we first exposed 35 individually housed male great tits (Parus major) to mid-long days (after 6 weeks of 8 h L:16 h D at 15 degrees C, photoperiod was set to 13 h L:11 h D at 15 degrees C). Two weeks later, for half of the males the temperature was set to 8 degrees C, and for the other half to 22 degrees C. Unilateral laparotomies were performed at weeks 5 (i.e one week before the birds were transferred to mid-long days), 8 and 11 to measure testis size. Two measures of basal metabolic rate (BMR) were performed at the end of the experiment (weeks 11 and 12). Testis size increased significantly during the course of the experiment, but independently of the temperatur