Bell, Martin P; Ferguson, Richard A
2009-09-01
The effect of elevated muscle temperature on mechanical efficiency was investigated during exercise at different pedal frequencies in young and older women. Eight young (24 +/- 3 yr) and eight older (70 +/- 4 yr) women performed 6-min periods of cycling at 75% ventilatory threshold at pedal frequencies of 45, 60, 75, and 90 rpm under control and passively elevated local muscle temperature conditions. Mechanical efficiency was calculated from the ratio of energy turnover (pulmonary O(2) uptake) and mechanical power output. Overall, elevating muscle temperature increased (P < 0.05) mechanical efficiency in young (32.0 +/- 3.1 to 34.0 +/- 5.5%) and decreased (P < 0.05) efficiency in older women (30.2 +/- 5.6 to 27.9 +/- 4.1%). The different effect of elevated muscle temperature in young and older women reflects a shift in the efficiency-velocity relationship of skeletal muscle. These effects may be due to differences in recruitment patterns, as well as sarcopenic and fiber-type changes with age.
Abdulkareem, Omar A.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Binhussain, Mohammed
2013-01-01
This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates. PMID:28788339
Abdulkareem, Omar A; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Binhussain, Mohammed
2013-10-09
This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates.
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola
2017-10-01
The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1975-01-01
A study of the relation between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties depend primarily on the grain aspect ratio and sheet thickness. In general, the strength properties increased with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures. A threshold stress for creep appears to exist. Even small amounts of prior creep deformation at elevated temperatures can produce severe creep damage.
Kleiber, Catherine E
2017-01-01
A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.
Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee
2016-02-01
Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.
Net Shaped Component Fabrication of Refractory Metal Alloys using Vacuum Plasma Spraying
NASA Technical Reports Server (NTRS)
Sen, S.; ODell, S.; Gorti, S.; Litchford, R.
2006-01-01
The vacuum plasma spraying (VPS) technique was employed to produce dense and net shaped components of a new tungsten-rhenium (W-Re) refractory metal alloy. The fine grain size obtained using this technique enhanced the mechanical properties of the alloy at elevated temperatures. The alloy development also included incorporation of thermodynamically stable dispersion phases to pin down grain boundaries at elevated temperatures and thereby circumventing the inherent problem of recrystallization of refractory alloys at elevated temperatures. Requirements for such alloys as related to high temperature space propulsion components will be discussed. Grain size distribution as a function of cooling rate and dispersion phase loading will be presented. Mechanical testing and grain growth results as a function of temperature will also be discussed.
NASA Technical Reports Server (NTRS)
Sastry, S. M. L.; Yang, Charles C.; Ouyang, Shewang; Jerina, K. L.; Schwartz, D. S.
1994-01-01
The present study focuses on the investigation of the influence of hydrogen on the mechanical properties of three types of alloys at elevated temperatures. The reasons for the consideration of hydrogen effects are the potential use of hydrogen as a coolant in gas-cooled reactors and fuel in advanced hypersonic vehicles. The materials used in hydrogen atmosphere must not be embrittled by hydrogen at ambient temperature and should have good strength in hydrogen atmosphere at elevated temperature. The paucity of information concerning the mechanical performance in hydrogen atmosphere at elevated temperature has been a limiting factor in the selection and design of structural components for operation in hydrogen environment.
Nanostructure templating using low temperature atomic layer deposition
Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL
2011-12-20
Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.
Methods for structural design at elevated temperatures
NASA Technical Reports Server (NTRS)
Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.
1973-01-01
A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.
1987-01-01
The objective of the Elevated Temperature Crack Growth Program is to evaluate proposed nonlinear fracture mechanics methods for application to hot section components of aircraft gas turbine engines. Progress during the past year included linear-elastic fracture mechanics data reduction on nonlinear crack growth rate data on Alloy 718. The bulk of the analytical work centered on thermal gradient problems and proposed fracture mechanics parameters. Good correlation of thermal gradient experimental displacement data and finite element prediction was obtained.
Chan, Vera B. S.; Thiyagarajan, Vengatesen; Lu, Xing Wen; Zhang, Tong; Shih, Kaimin
2013-01-01
The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal’s ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27‰), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C. PMID:24265732
Inelastic deformation of metal matrix composites: Plasticity and damage mechanisms, part 2
NASA Technical Reports Server (NTRS)
Majumdar, B. S.; Newaz, G. M.
1992-01-01
The inelastic deformation mechanisms for the SiC (SCS-6)/Ti-15-3 system were studied at 538 C (1000 F) using a combination of mechanical measurements and detailed microstructural examinations. The objectives were to evaluate the contributions of plasticity and damage to the overall MMC response, and to compare the room temperature and elevated temperature deformation behaviors. Four different laminates were studied: (0)8, (90)8,(+ or -45)2s, and (0/90)2s, with the primary emphasis on the unidirectional (0)8, and (90)8 systems. The elevated temperature responses were similar to those at room temperature, involving a two-stage elastic-plastic type of response for the (0)8 system, and a characteristic three-stage deformation response for the (90)8 and (+ or -45)2s systems. The primary effects of elevated temperatures included: (1) reduction in the 'yield' and failure strengths; (2) plasticity through diffused slip rather than concentrated planar slip (which occurred at room temperature); and (3) time-dependent deformation. The inelastic deformation mechanism for the (0)8 MMC was dominated by plasticity at both temperatures. For the (90)8 and (+ or -45)2s MMCs, a combination of damage and plasticity contributed to the deformation at both temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, C.D.
This study investigated the fatigue behavior and damage mechanisms of a (0/90)4s SiC/MAS ceramic matrix composite under tension-tension loading at two elevated temperatures and two frequencies. Stress and strain hystereses, maximum and minimum strain, and modulus of elasticity were evaluated to characterize the material behavior. Microscopy and fractography were used to evaluate damage progression and mechanisms. Fatigue life was independent of frequency at both temperatures.
Mechanical properties of turbine blade alloys in hydrogen at elevated temperatures
NASA Technical Reports Server (NTRS)
Deluca, D. P.
1981-01-01
The mechanical properties of single crystal turbine blade alloys in a gaseous hydrogen environment were determined. These alloys are proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. Mechanical property tests included: tensile, creep, low fatigue (LCF), and crack growth. Specimens were in both transverse and longitudinal directions relative to the casting solidification direction. Testing was conducted on solid specimens exposed to externally pressurized environments of gaseous hydrogen and hydrogen-enriched steam.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan
2011-01-01
Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.
NASA Technical Reports Server (NTRS)
Chellman, D. J.
1982-01-01
In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.
Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature
NASA Astrophysics Data System (ADS)
Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana
2015-07-01
This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.
Comparison of mechanical properties for several electrical spring contact alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordstrom, Terry V.
Work was conducted to determine whether beryllium-nickel alloy 440 had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: 1) measurement of the room temperature microplastic (epsilon approximately 10/sup -6/) and macroplastic (epsilon approximately 10/sup -3/) behavior of alloy 440 in various age hardeningmore » conditions, 2) determination of applied stress effects on stress relaxation or contact force loss and 3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. The primary results of the study show that beryllium-nickel alloy 440 is from a mechanical properties standpoint, equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties.« less
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zhang, Tao; Li, Kaiyang; Li, Dongyang
2017-10-01
Due to its high oxidation resistance, 310L stainless steel is often used for thermal facilities working at high-temperatures. However, the steel may fail prematurely at elevated temperatures when encounter surface mechanical attacks such as wear. Thermal spray coatings have been demonstrated to be effective in protecting the steel from wear at elevated temperatures. In this study, we investigated the effectiveness of high velocity oxy-fuel(HVOF) spraying CoNiCrAlY/SiC coatings in resisting wear of 310L stainless steel at elevated temperature using a pin-on-disc wear tester. In order to further improve the performance of the coating, 5%SiC was added to the coating. It was demonstrated that the CoNiCrAlY/SiC coating after heat treatment markedly suppressed wear. However, the added SiC particles did not show benefits to the wear resistance of the coating. Microstructures of CoNiCrAlY coatings with and without the SiC addition were characterized in order to understand the mechanism responsible for the observed phenomena.
NASA Astrophysics Data System (ADS)
Vajente, G.; Birney, R.; Ananyeva, A.; Angelova, S.; Asselin, R.; Baloukas, B.; Bassiri, R.; Billingsley, G.; Fejer, M. M.; Gibson, D.; Godbout, L. J.; Gustafson, E.; Heptonstall, A.; Hough, J.; MacFoy, S.; Markosyan, A.; Martin, I. W.; Martinu, L.; Murray, P. G.; Penn, S.; Roorda, S.; Rowan, S.; Schiettekatte, F.; Shink, R.; Torrie, C.; Vine, D.; Reid, S.; Adhikari, R. X.
2018-04-01
Brownian thermal noise in dielectric multilayer coatings limits the sensitivity of current and future interferometric gravitational wave detectors. In this work we explore the possibility of improving the mechanical losses of tantala, often used as the high refractive index material, by depositing it on a substrate held at elevated temperature. Promising results have been previously obtained with this technique when applied to amorphous silicon. We show that depositing tantala on a hot substrate reduced the mechanical losses of the as-deposited coating, but subsequent thermal treatments had a larger impact, as they reduced the losses to levels previously reported in the literature. We also show that the reduction in mechanical loss correlates with increased medium range order in the atomic structure of the coatings using x-ray diffraction and Raman spectroscopy. Finally, a discussion is included on our results, which shows that the elevated temperature deposition of pure tantala coatings does not appear to reduce mechanical loss in a similar way to that reported in the literature for amorphous silicon; and we suggest possible future research directions.
Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia
Matsumoto, Rae R.; Seminerio, Michael J.; Turner, Ryan C.; Robson, Matthew J.; Nguyen, Linda; Miller, Diane B.; O’Callaghan, James P.
2015-01-01
Reports of methamphetamine-related emergency room visits suggest that elevated body temperature is a universal presenting symptom, with lethal overdoses generally associated with extreme hyperthermia. This review summarizes the available information on methamphetamine toxicity as it pertains to elevations in body temperature. First, a brief overview of thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, future areas of investigation are proposed, as further studies are needed to provide greater insight into the mechanisms that mediate the alterations in body temperature elicited by methamphetamine. PMID:24836729
NASA Technical Reports Server (NTRS)
Reed, Susan M.; Herakovich, Carl T.; Sykes, George F., Jr.
1987-01-01
The effects of electron radiation and elevated temperature on the matrix-dominated cyclic response of standard T300/934 and a chemically modified T300/934 graphite-epoxy are characterized. Both materials were subjected to 1.0 x 10 to the 10th rads of 1.0 MeV electron irradiation, under vacuum, to simulate 30 years in geosynchronous orbit. Cyclic tests were performed at room temperature and elevated temperature (121 C) on 4-ply unidirectional laminates to characterize the effects associated with irradiation and elevated temperature. Both materials exhibited energy dissipation in their response at elevated temperature. The irradiated modified material also exhibited energy dissipation at room temperature. The combination of elevated temperature and irradiation resulted in the most severe effects in the form of lower proportional limits, and greater energy dissipation. Dynamic-mechanical analysis demonstrated that the glass transition temperature, T(g), of the standard material was lowered 39 C by irradiation, wereas the T(g) of the modified material was lowered 28 C by irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated materials.
Elevation-dependent cooling caused by volcanic eruptions during last millennium
NASA Astrophysics Data System (ADS)
Ning, L.; Liu, J.; Bradley, R. S.; Yan, M.; Sun, W.; Liu, L.
2017-12-01
The amplified warming over the high-elevation regions in recent decades due to the increases of greenhouse gases has attracted lots of attentions, due to the potential severe impacts on mountain hydrological systems and ecosystems and corresponding social and economic influences. Similarly, the model simulations show that the rate of cooling is also amplified with elevation after volcanic eruptions during last millennium, such that high-mountain environments experience larger decreases in temperature than environments at lower elevations. This elevation-dependent cooling (EDC) testifies two important mechanisms, i.e. snow albedo feedback and tropical deep convection mechanism, which also induce the elevation-dependent warming (EDW) found in recent decades due to the increases of greenhouse gases that accelerates the rates of changes in mountain hydrological regimes and ecosystems. It can be concluded that although the influences from natural forcing and anthropogenic forcing on the high-mountain regions are opposite, the mechanisms behind the influences are the same. This finding shows that the temperature change over high-elevation regions is more sensitive to the background climate changes, and needs more attention for adaptations and mitigations due to their bio-diversity and fragile ecosystems.
Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing
2016-01-06
Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. "Ion and acid-base regulation" related genes and "amino acid metabolism" pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, "anti-oxidation"-related genes and "Toll-like receptor signaling", "arachidonic acid metabolism", "lysosome" and "other glycan degradation" pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.
Damage tolerance of nuclear graphite at elevated temperatures
Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; ...
2017-06-30
Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp 2-bonded graphene layers atmore » higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing.« less
Damage tolerance of nuclear graphite at elevated temperatures
Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; Kuball, Martin; Ritchie, Robert O.
2017-01-01
Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing. PMID:28665405
Structural, Mechanical, and Magnetic Properties of W Reinforced FeCo Alloys
NASA Astrophysics Data System (ADS)
Li, Gang; Corte-Real, Michelle; Yarlagadda, Shridhar; Vaidyanathan, Ranji; Xiao, John; Unruh, Karl
2002-03-01
Despite their superior soft magnetic properties, the poor mechanical properties of FeCo alloys have limited their potential use in rotating machines operating at elevated temperatures. In an attempt to address this shortcoming we have prepared bulk FeCo alloys at near equiatomic compositions reinforced by a relatively small volume fraction of continuous W fibers. These materials have been assembled by consolidating individual FeCo coated W fibers at elevated temperatures and moderate pressures. The mechanical and magnetic properties of the fiber reinforced composites have been studied and correlated with results of microstructural characterization.
2005-03-01
size of the interphase [22-24]. Yang and Jeng [45], in a study of the titanium aluminides Ti-24-11 and Ti-25-10, and a metastable beta titanium Ti-15-3... Titanium Aluminide Matrix Composites," Workshop proceedings on Titanium Matrix Components, P.R. Smith and W.C. Revelos, eds., Wright-Patterson AFB...Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures Final Report
Hua, Xia
2016-07-27
Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyum, E.A.
1993-12-01
This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less
Zamora-Camacho, Francisco Javier; Rubiño-Hispán, María Virtudes; Reguera, Senda; Moreno-Rueda, Gregorio
2015-08-01
Sprint speed has a capital relevance in most animals' fitness, mainly for fleeing from predators. Sprint performance is maximal within a certain range of body temperatures in ectotherms, whose thermal upkeep relies on exogenous thermal sources. Ectotherms can respond to diverse thermal environments either by shifting their thermal preferences or maintaining them through different adaptive mechanisms. Here, we tested whether maximum sprint speed of a lizard that shows conservative thermal ecology along a 2200-meter elevational gradient differs with body temperature in lizards from different elevations. Lizards ran faster at optimum than at suboptimum body temperature. Notably, high-elevation lizards were not faster than mid- and low-elevation lizards at suboptimum body temperature, despite their low-quality thermal environment. This result suggests that both preferred body temperature and thermal dependence of speed performance are co-adapted along the elevational gradient. High-elevation lizards display a number of thermoregulatory strategies that allow them to achieve high optimum body temperatures in a low thermal-quality habitat and thus maximize speed performance. As for reproductive condition, we did not find any effect of it on sprint speed, or any significant interaction with elevation or body temperature. However, strikingly, gravid females were significantly slower than males and non-gravid females at suboptimum temperature, but performed similarly well at optimal temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.
1995-01-01
An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin; Jin, Helena
Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension barmore » techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.« less
Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials
NASA Technical Reports Server (NTRS)
Keith, Theo G.
2005-01-01
The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.
NASA Astrophysics Data System (ADS)
Ishihara, Miya; Arai, Tsunenori; Kikuchi, Makoto; Nakano, Hironori; Kawauchi, Satoko; Obara, Minoru
1998-05-01
We compared infrared radiation measurement with stress wave measurement for real-time ablation monitoring during photorefractive keratectomy (PRK). We estimated temperature elevation which may be one of the most effective parameter for PRK monitoring, because the ablation mechanism is mainly attributed to thermal kinetics. The temperature elevation of ablated cornea was evaluated by the infrared radiation and the stress wave. The thermal radiation from irradiated cornea was detected by a MCT detector. The measured signal increased sharply just after the laser irradiation and decreased quasi- exponentially. We could calculate the temperature elevation by observed signal using Stefan-Boltzmann radiation law. In the case of the gelatin gel (15% wt) ablation in vitro, the temperature elevation was 97 deg. at 208 mJ/cm2 in the laser fluence. We also measured transient stress wave by the acoustic transducer which was made by polyvinylidene fluoride (PVDF) film. The temperature elevation could be calculated from the peak stress amplitude based on the short pulsed laser ablation theory. The good agreement on the temperature elevation was obtained between the infrared and the stress based estimations. Due to non-contact and non-invasive method, our infrared measurements for temperature elevation monitoring may be available to accomplish the feedback control on the PRK.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta
The present work investigates the effects of heat treatment on friction and wear behavior of electroless Ni-B coatings at elevated temperatures. Coating is deposited on AISI 1040 steel specimens and subjected to heat treatments at 350∘C, 400∘C and 450∘C. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction analysis. Improvement in microhardness is observed for the heat treated deposits. Further, the effect of heat treatment on the tribological behavior of the coatings at room temperature, 100∘C, 300∘C and 500∘C are analyzed on a pin-on-disc setup. Heat treatment at 350∘C causes a significant improvement in the tribological behavior at elevated temperatures. Higher heat treatment temperatures cause deterioration in the wear resistance and coefficient of friction. The wear mechanism at 100∘C is observed to be predominantly adhesive along with abrasion. While at 300∘C, abrasive wear is seen to be the governing wear phenomenon. Formation of mechanically mixed layers is noticed at both the test temperatures of 100∘C and 300∘C for the coatings heat treated at 400∘C and 450∘C test temperature. The predominant wear mechanisms at 500∘C are abrasive and fatigue for as-deposited and heat treated coatings, respectively.
Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature
NASA Astrophysics Data System (ADS)
Kun, Ma; Tingting, Liu; Ya, Liu; Xuping, Su; Jianhua, Wang
2018-01-01
The tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.
Process development of two high strength tantalum base alloys (ASTAR-1211C and ASTAR-1511C)
NASA Technical Reports Server (NTRS)
Ammon, R. L.
1974-01-01
Two tantalum base alloys, Ta-12W-1.0Re-0.7Hf-0.025C(ASTAR-1211C) and Ta-15W-1.0Re-0.7Hf-0.025C(ASTAR-1511C), were cast as 12.5 cm (5 inch) diameter ingots and processed to swaged rod, sheet, forged plate, and tubing. Swaged rod was evaluated with respect to low temperature ductility, elevated temperature tensile properties, and elevated temperature creep behavior. A standard swaging process and final annealing schedule were determined. Elevated temperature tensile properties, low temperature impact properties, low temperature DBTT behavior, and extended elevated temperature creep properties were determined. A process for producing ASTAR-1211C and ASTAR-1511C sheet were developed. The DBTT properties of GTA and EB weld sheet given post-weld anneal and thermal aging treatments were determined using bend and tensile specimens. High and low temperature mechanical properties of forging ASTAR-1211C and ASTAR-1511C plate were determined as well as elevated temperature creep properties. Attempts to produce ASTAR-1211C tubing were partially successful while attempts to make ASTAR-1511C tubing were completely unsuccessful.
Elevated-Temperature Tribology of Metallic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, Peter Julian
The wear of metals and alloys takes place in many forms, and the type of wear that dominates in each instance is influenced by the mechanics of contact, material properties, the interfacial temperature, and the surrounding environment. The control of elevated-temperature friction and wear is important for applications like internal combustion engines, aerospace propulsion systems, and metalworking equipment. The progression of interacting, often synergistic processes produces surface deformation, subsurface damage accumulation, the formation of tribolayers, and the creation of free particles. Reaction products, particularly oxides, play a primary role in debris formation and microstructural evolution. Chemical reactions are known tomore » be influenced by the energetic state of the exposed surfaces, and that surface energy is in turn affected by localized deformation and fracture. At relatively low temperatures, work-hardening can occur beneath tribo-contacts, but exposure to high temperatures can modify the resultant defect density and grain structure to affect the mechanisms of re-oxidation. As research by others has shown, the rate of wear at elevated temperatures can either be enhanced or reduced, depending on contact conditions and nature of oxide layer formation. Furthermore, the thermodynamic driving force for certain chemical reactions is moderated by kinetics and microstructure. The role of deformation, oxidation, and tribo-corrosion in the elevated temperature tribology of metallic alloys will be exemplified by three examples involving sliding wear, single-point abrasion, and repetitive impact plus slip.« less
NASA Astrophysics Data System (ADS)
Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing
2016-01-01
Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.
Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing
2016-01-01
Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture. PMID:26732540
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordstrom, T.V.
Purpose was to determine whether beryllium--nickel alloy 440 (Ni-1.95 Be-0.5 Ti) had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: (1) measurement of the room temperature microplastic (epsilon approximately 10/sup -6/) and macroplastic (epsilon approximately 10/sup -3/) behavior of alloy 440 in variousmore » age hardening conditions, (2) determination of applied stress effects on stress relaxation or contact force loss, and (3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. Results show that beryllium-nickel alloy 440 is equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties. 12 fig.« less
High Strain-Rate and Temperature Effects on the Response of Composites
NASA Technical Reports Server (NTRS)
Gilat, Amos
2004-01-01
The objective of the research is to expand the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, to include elevated temperature tests. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 700 per second and elevated temperatures of 50 and 80 C. The results show that the temperature significantly affects the response of epoxy.
NASA Technical Reports Server (NTRS)
Bales, T. T.; Cain, R. L.
1971-01-01
A study has been initiated to determine the effects of elevated-temperature exposure on the room-temperature mechanical properties of titanium honeycomb-core sandwich panels fabricated by brazing or spot diffusion bonding. Only flatwise tensile properties following exposure have been determined to date. Preliminary results indicate very little change in the flatwise tensile strength of sandwich panels fabricated by spot diffusion bonding following exposures of 10,000 hr at 600 and 800 F and 1000 hr at 1000 F. Titanium panels fabricated by using a Ti-Zr-Be braze alloy are susceptible to oxidation at elevated temperature and experience flatwise tensile strength degradation after continuous exposures of 7500 hr at 600 F, 1000 hr at 800 F, and less than 100 hr at 1000 F. It is possible that the exposure life of the brazed panels may be substantially increased if the panel edges are sealed to prevent oxidation of the braze alloy.
Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure.
Li, Guanghui; Zhao, Jun; Wang, Zike
2018-06-16
Fiber-reinforced polymer (FRP) bars have been widely applied in civil engineering. This paper presents the results of an experimental study to investigate the tensile fatigue mechanical properties of glass fiber-reinforced polymer (GFRP) bars after elevated temperatures exposure. For this purpose, a total of 105 GFRP bars were conducted for testing. The specimens were exposed to heating regimes of 100, 150, 200, 250, 300 and 350 °C for a period of 0, 1 or 2 h. The GFRP bars were tested with different times of cyclic load after elevated temperatures exposure. The results show that the tensile strength and elastic modulus of GFRP bars decrease with the increase of elevated temperature and holding time, and the tensile strength of GFRP bars decreases obviously by 19.5% when the temperature reaches 250 °C. Within the test temperature range, the tensile strength of GFRP bars decreases at most by 28.0%. The cyclic load accelerates the degradation of GFRP bars after elevated temperature exposure. The coupling of elevated temperature and holding time enhance the degradation effect of cyclic load on GFRP bars. The tensile strength of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 50.5% compared with that at room temperature and by 36.3% compared with that after exposing at 350 °C without cyclic load. In addition, the elastic modulus of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 17.6% compared with that at room temperature and by 6.0% compared with that after exposing at 350 °C without cyclic load.
SiC Fiber-Reinforced Celsian Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
2003-01-01
Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.
NASA Astrophysics Data System (ADS)
Montesano, John
The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.
On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Grayson, Michael A.
1999-01-01
A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.
Observations on the relationship of structure to the mechanical properties of thin TD-NiCr sheet
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1976-01-01
A study of the relationship between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties are dependent on grain aspect ratio and sheet thickness. In general, the strength properties increase with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures (not less than 1144 K). Significant creep damage as determined by subsequent tensile testing at room temperature occurs after very small amounts (less than 0.1%) of prior creep deformation over the temperature range 1144-1477 K. A threshold stress for creep appears to exist. Creep exposure below the threshold stress at T not less than 1366 K results in almost full retention of room temperature tensile properties.
NASA Astrophysics Data System (ADS)
Ang, W. C.; Kropelnicki, P.; Soe, Oak; Ling, J. H. L.; Randles, A. B.; Hum, A. J. W.; Tsai, J. M. L.; Tay, A. A. O.; Leong, K. C.; Tan, C. S.
2012-08-01
This paper describes the novel development of a micro-tensile testing method that allows testing at elevated temperatures. Instead of using a furnace, a titanium/platinum thin film micro-heater was fabricated on a conventional dog-bone-shaped test structure to heat up its gauge section locally. An infrared (IR) camera with 5 µm resolution was employed to verify the temperature uniformity across the gauge section of the test structure. With this micro-heater-integrated test structure, micro-tensile tests can be performed at elevated temperatures using any conventional tensile testing system without any major modification to the system. In this study, the tensile test of the single crystal silicon (SCS) thin film with (1 0 0) surface orientation and <1 1 0> tensile direction was performed at room temperature and elevated temperatures, up to 300 °C. Experimental results for Young's modulus as a function of temperature are presented. A micro-sized SCS film showed a low dependence of mechanical properties on temperature up to 300 °C.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.
1985-01-01
The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.
The response of a boreal deep-sea sponge holobiont to acute thermal stress.
Strand, R; Whalan, S; Webster, N S; Kutti, T; Fang, J K H; Luter, H M; Bannister, R J
2017-05-22
Effects of elevated seawater temperatures on deep-water benthos has been poorly studied, despite reports of increased seawater temperature (up to 4 °C over 24 hrs) coinciding with mass mortality events of the sponge Geodia barretti at Tisler Reef, Norway. While the mechanisms driving these mortality events are unclear, manipulative laboratory experiments were conducted to quantify the effects of elevated temperature (up to 5 °C, above ambient levels) on the ecophysiology (respiration rate, nutrient uptake, cellular integrity and sponge microbiome) of G. barretti. No visible signs of stress (tissue necrosis or discolouration) were evident across experimental treatments; however, significant interactive effects of time and treatment on respiration, nutrient production and cellular stress were detected. Respiration rates and nitrogen effluxes doubled in responses to elevated temperatures (11 °C & 12 °C) compared to control temperatures (7 °C). Cellular stress, as measured through lysosomal destabilisation, was 2-5 times higher at elevated temperatures than for control temperatures. However, the microbiome of G. barretti remained stable throughout the experiment, irrespective of temperature treatment. Mortality was not evident and respiration rates returned to pre-experimental levels during recovery. These results suggest other environmental processes, either alone or in combination with elevated temperature, contributed to the mortality of G. barretti at Tisler reef.
New membranes based on ionic liquids for PEM fuel cells at elevated temperatures
NASA Astrophysics Data System (ADS)
Ye, H.; Huang, J.; Xu, J. J.; Kodiweera, N. K. A. C.; Jayakody, J. R. P.; Greenbaum, S. G.
Proton exchange membrane (PEM) fuel cells operating at elevated temperature, above 120 °C, will yield significant benefits but face big challenges for the development of suitable PEMs. The objectives of this research are to demonstrate the feasibility of the concept and realize [acid/ionic liquid/polymer] composite gel-type membranes as such PEMs. Novel membranes consisting of anhydrous proton solvent H 3PO 4, the protic ionic liquid PMIH 2PO 4, and polybenzimidazole (PBI) as a matrix have been prepared and characterized for PEM fuel cells intended for operation at elevated temperature (120-150 °C). Physical and electrochemical analyses have demonstrated promising characteristics of these H 3PO 4/PMIH 2PO 4/PBI membranes at elevated temperature. The proton transport mechanism in these new membranes has been investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopic methods.
The Effect of Elevated CO2 and Temperature on the Hatch Rate and Survival of Estuarine Forage Fish
NASA Astrophysics Data System (ADS)
Merlo, L. R.; Gobler, C.
2016-02-01
The World Oceans are acidifying and warming, yet little is known regarding how these processes will combine to impact fish populations. In estuaries, microbial respiration of eutrophication-enhanced organic matter can create elevated CO2 levels during late spring and summer seasons when thermal extremes can occur and temperate fish spawn. Here, we report on experiments that exposed fish embryos (e.g. Menidia beryllina, inland silverside) to normal and elevated CO2 (400 and 2,000 ppm) and the range of temperatures experienced within temperate estuaries during the spawning season (16 - 30C). Fish survival and growth rates were quantified from hatching through early life, larval stages. Temperature controlled egg hatching times, with elevated temperatures leading to more rapid hatch rates. Elevated levels of CO2 significantly depressed post-hatch survival of fish. Survival rates of fish exposed to elevated CO2 at lower than ideal temperatures were significantly lower than predicted by either variable individually indicating the ability of these stressors to synergistically interact. Since embryonic stages have been identified as being highly sensitive to acidification, this finding may be associated with the extended exposure of eggs to high CO2 at lower temperatures. The physiological mechanisms driving experimental trends and broader ecological implications of the study will be discussed.
NASA Astrophysics Data System (ADS)
Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen
2017-07-01
This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.
The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials
NASA Astrophysics Data System (ADS)
Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre
Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.
Huang, Shenyan; Gao, Yanfei; An, Ke; ...
2014-10-22
In this study, the ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)Al B2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticitymore » theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed.« less
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1981-01-01
The elevated temperature tensile, stress-rupture and creep properties and residual tensile properties after creep straining have been determined for two cast superalloys and several wrought Ni-16Cr-4Al-yttria oxide dispersion strengthened (ODS) alloys. The creep behavior of the ODS alloys is similar to that of previously studied ODS nickel alloys. In general, the longitudinal direction is stronger than the long transverse direction, and creep is at least partially due to a diffusional creep mechanism as dispersoid-free zones were observed after creep-rupture testing. The tensile properties of the nickel-base superalloy B-1900 and cobalt-base superalloy MAR-M509 are not degraded by prior elevated temperature creep straining (at least up to 1 pct) between 1144 and 1366 K. On the other hand, the room temperature tensile properties of ODS nickel-base alloys can be reduced by prior creep strains of 0.5 pct or less between 1144 and 1477 K, with the long transverse direction being more susceptible to degradation than the longitudinal direction.
Stress versus temperature dependence of activation energies for creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1992-01-01
The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.
Frei, Esther R; Ghazoul, Jaboury; Pluess, Andrea R
2014-01-01
Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate.
NASA Technical Reports Server (NTRS)
Ting, E. Y.; Kennedy, J. R.
1989-01-01
Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-01
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations. PMID:28772433
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-18
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowland, Clare E.; Fedin, Igor; Diroll, Benjamin T.
Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology upmore » to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.« less
Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl
NASA Technical Reports Server (NTRS)
Yaney, D. L.; Nix, W. D.
1988-01-01
A strain rate change technique, developed previously for distinguishing between pure-metal and alloy-type creep behavior, was used to study the elevated-temperature deformation behavior of the intermetallic compounds NiAl and CoAl. Tests on NiAl were conducted at temperatures between 1100 and 1300 K while tests on CoAl were performed at temperatures ranging from 1200 to 1400 K. NiAl exhibits pure-metal type behavior over the entire temperature range studied. CoAl, however, undergoes a transition from pure-metal to alloy-type deformation behavior as the temperature is decreased from 1400 to 1200 K. Slip appears to be inherently more difficult in CoAl than in NiAl, with lattice friction effects limiting the mobility of dislocations at a much higher tmeperature in CoAl than in NiAl. The superior strength of CoAl at elevated temperatures may, therefore, be related to a greater lattice friction strengthening effect in CoAl than in NiAl.
Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam
NASA Astrophysics Data System (ADS)
Armani, Clinton J.
Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via comparisons with experimental results. Additionally, the utility of the Monkman-Grant relationship to predicting creep-rupture life of the fiber tows at elevated temperature in air and in steam was demonstrated. Furthermore, the effects of steam on the compressive creep performance of bulk ceramic materials were also studied. Performance of fine grained, polycrystalline alumina (Al2O3) was investigated at 1100 and 1300°C in air and in steam. To evaluate the effect of silica doping during material processing both undoped and silica doped polycrystalline alumina specimens were tested. Finally, compressive creep performance of yttrium aluminum garnet (YAG, Y3Al5O12) was evaluated at 1300°C in air and in steam. Both undoped and silica doped YAG specimens were included in the study. YAG is being considered as the next-generation oxide fiber material. However, before considerable funding and effort are invested in a fiber development program, it is necessary to evaluate the creep performance of YAG at elevated temperature in steam. Results of this research demonstrated that both the undoped YAG and the silica doped YAG exhibited exceptional creep resistance at 1300°C in steam for grain sizes ˜1 microm. These results supplement the other promising features of YAG that make it a strong candidate material for the next generation ceramic fiber.
Elevated temperature mechanical behavior of new low CTE superalloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowen, C.J.; Jablonski, P.D.
This paper presents the high temperature mechanical properties of several experimental low coefficient of thermal expansion (CTE) alloys. The use of such alloys facilitate the extension of advanced ferritic stainless steels to higher use temperature in advanced power generation systems. We find that one of these alloys, J5 appears to be favorable for bridging ferritic alloys (operating up to ~600°C) to traditional nickel based superalloys (operating at 750°C).
Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite
NASA Astrophysics Data System (ADS)
Gao, Chong; Wang, Yingchun; Ma, Xueya; Liu, Keyi; Wang, Yubing; Li, Shukui; Cheng, Xingwang
2018-03-01
Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle-ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.
Low toxicity high temperature PMR polyimide
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.
NASA Technical Reports Server (NTRS)
Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.
1992-01-01
The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.
This study was designed to assess the thermoregulatory mechanisms responsible for the elevation in body temperature following ethanol administration when exposed to a high ambient temperature (Ta). ale rats of the Fischer 344 strain were gavaged with 20% ethanol at doses of 0, 2....
Šigut, Ladislav; Holišová, Petra; Klem, Karel; Šprtová, Mirka; Calfapietra, Carlo; Marek, Michal V.; Špunda, Vladimír; Urban, Otmar
2015-01-01
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary. PMID:25851132
Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter
2014-03-01
Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Dae-Ho; Choi, Myung-Je; Goto, Masahiro
In this study, the fatigue crack propagation behavior of Inconel 718 turbine disc with different service times from 0 to 4229 h was investigated at 738 and 823 K. No notable change in microstructural features, other than the increase in grain size, was observed with increasing service time. With increasing service time from 0 to 4229 h, the fatigue crack propagation rates tended to increase, while the ΔK{sub th} value decreased, in low ΔK regime and lower Paris' regime at both testing temperatures. The fractographic observation using a scanning electron microscope suggested that the elevated temperature fatigue crack propagation mechanismmore » of Inconel 718 changed from crystallographic cleavage mechanism to striation mechanism in the low ΔK regime, depending on the grain size. The fatigue crack propagation mechanism is proposed for the crack propagating through small and large grains in the low ΔK regime, and the fatigue crack propagation behavior of Inconel 718 with different service times at elevated temperatures is discussed. - Highlights: • The specimens were prepared from the Inconel 718 turbine disc used for 0 to 4229 h. • FCP rates were measured at 738 and 823 K. • The ΔK{sub th} values decreased with increasing service time. • The FCP behavior showed a strong correlation with the grain size of used turbine disc.« less
Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Collins, TImothy J.
2006-01-01
Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.
Ivanina, Anna V; Dickinson, Gary H; Matoo, Omera B; Bagwe, Rita; Dickinson, Ashley; Beniash, Elia; Sokolova, Inna M
2013-09-01
The continuing increase of carbon dioxide (CO2) levels in the atmosphere leads to increases in global temperatures and partial pressure of CO2 (PCO2) in surface waters, causing ocean acidification. These changes are especially pronounced in shallow coastal and estuarine waters and are expected to significantly affect marine calcifiers including bivalves that are ecosystem engineers in estuarine and coastal communities. To elucidate potential effects of higher temperatures and PCO2 on physiology and biomineralization of marine bivalves, we exposed two bivalve species, the eastern oysters Crassostrea virginica and the hard clams Mercenaria mercenaria to different combinations of PCO2 (~400 and 800μatm) and temperatures (22 and 27°C) for 15weeks. Survival, bioenergetic traits (tissue levels of lipids, glycogen, glucose and high energy phosphates) and biomineralization parameters (mechanical properties of the shells and activity of carbonic anhydrase, CA) were determined in clams and oysters under different temperature and PCO2 regimes. Our analysis showed major inter-species differences in shell mechanical traits and bioenergetics parameters. Elevated temperature led to the depletion of tissue energy reserves indicating energy deficiency in both species and resulted in higher mortality in oysters. Interestingly, while elevated PCO2 had a small effect on the physiology and metabolism of both species, it improved survival in oysters. At the same time, a combination of high temperature and elevated PCO2 lead to a significant decrease in shell hardness in both species, suggesting major changes in their biomineralization processes. Overall, these studies show that global climate change and ocean acidification might have complex interactive effects on physiology, metabolism and biomineralization in coastal and estuarine marine bivalves. Copyright © 2013 Elsevier Inc. All rights reserved.
Properties of Free-Machining Aluminum Alloys at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Faltus, Jiří; Karlík, Miroslav; Haušild, Petr
In areas close to the cutting tool the workpieces being dry machined could be heated up to 350°C and they may be impact loaded. Therefore it is of interest to study mechanical properties of corresponding materials at elevated temperatures. Free-machining alloys of Al-Cu and Al-Mg-Si systems containing Pb, Bi and Sn additions (AA2011, AA2111B, AA6262, and AA6023) were subjected to Charpy U notch impact test at the temperatures ranging from 20 to 350°C. The tested alloys show a sharp drop in notch impact strength KU at different temperatures. This drop of KU is caused by liquid metal embrittlement due to the melting of low-melting point dispersed phases which is documented by differential scanning calorimetry. Fracture surfaces of the specimens were observed using a scanning electron microscope. At room temperature, the fractures of all studied alloys exhibited similar ductile dimple fracture micromorphology, at elevated temperatures, numerous secondary intergranular cracks were observed.
Optimization of tribological behaviour on Al- coconut shell ash composite at elevated temperature
NASA Astrophysics Data System (ADS)
Siva Sankara Raju, R.; Panigrahi, M. K.; Ganguly, R. I.; Srinivasa Rao, G.
2018-02-01
In this study, determine the tribological behaviour of composite at elevated temperature i.e. 50 - 150 °C. The aluminium matrix composite (AMC) are prepared with compo casting route by volume of reinforcement of coconut shell ash (CSA) such as 5, 10 and 15%. Mechanical properties of composite has enhances with increasing volume of CSA. This study details to optimization of wear behaviour of composite at elevated temperatures. The influencing parameters such as temperature, sliding velocity and sliding distance are considered. The outcome response is wear rate (mm3/m) and coefficient of friction. The experiments are designed based on Taguchi [L9] array. All the experiments are considered as constant load of 10N. Analysis of variance (ANOVA) revealed that temperature is highest influencing factor followed by sliding velocity and sliding distance. Similarly, sliding velocity is most influencing factor followed by temperature and distance on coefficient of friction (COF). Finally, corroborates analytical and regression equation values by confirmation test.
NASA Astrophysics Data System (ADS)
Huang, Minsheng; Li, Zhenhuan
2015-12-01
To investigate the mechanical behavior of the microlayered metallic thin films (MMMFs) at elevated temperature, an enhanced discrete-continuous model (DCM), which couples rather than superposes the two-dimensional climb/glide-enabled discrete dislocation dynamics (2D-DDD) with the linearly elastic finite element method (FEM), is developed in this study. In the present coupling scheme, two especial treatments are made. One is to solve how the plastic strain captured by the DDD module is transferred properly to the FEM module as an eigen-strain; the other is to answer how the stress field computationally obtained by the FEM module is transferred accurately to the DDD module to drive those discrete dislocations moving correctly. With these two especial treatments, the interactions between adjacent dislocations and between dislocation pile-ups and inter-phase boundaries (IBs), which are crucial to the strengthening effect in MMMFs, are carefully taken into account. After verified by comparing the computationally predicted results with the theoretical solutions for a dislocation residing in a homogeneous material and nearby a bi-material interface, this 2D-DDD/FEM coupling scheme is used to model the tensile mechanical behaviors of MMMFs at elevated temperature. The strengthening mechanism of MMMFs and the layer thickness effect are studied in detail, with special attentions to the influence of dislocation climb on them.
Characterization of Damage Accumulation in a C/SiC Composite at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Telesman, Jack; Verrilli, Mike; Ghosn, Louis; Kantzos, Pete
1997-01-01
This research is part of a program aimed to evaluate and demonstrate the ability of candidate CMC materials for a variety of applications in reusable launch vehicles. The life and durability of these materials in rocket and engine applications are of major concern and there is a need to develop and validate life prediction methodology. In this study, material characterization and mechanical testing was performed in order to identify the failure modes, degradation mechanisms, and progression of damage in a C/SiC composite at elevated temperatures. The motivation for this work is to provide the relevant damage information that will form the basis for the development of a physically based life prediction methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.H.
1992-12-01
The effects of microstructure and temperature on tensile and fracture behavior were explored for the titanium aluminide alloy Ti-25Al-lONb-3V-lMo (atomic percent). Three microstructures were selected for this study in an attempt to determine the role of the individual microstructural constituents. the three microstructures studied were an alpha-2 + beta processed microstructure with a fine Widmanstaetten microstructure, a beta processed microstructure with a fine Widmanstaetten microstructure, and a beta processed microstructure with a coarse Widmanstaetten microstructure. Tensile testing of both round and flat specimens was conducted in vacuum at elevated temperature and in air at room and elevated temperatures. Extensive fractographymore » and specimen sectioning were used to study tensile deformation and the effects of environment on this alloy. Room temperature fracture toughness testing using compact tension specimens was conducted. Elevated temperature toughness testing was performed using J-bend bar specimens in an air environment. Again, extensive fractography and specimen sectioning were used to study the elevated temperature toughening mechanisms of this alloy.... Titanium, Titanium aluminide, Intermetallic, Fracture toughness, Tensile behavior, Fractography environmental interaction.« less
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho
2001-01-01
Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho
2001-01-01
Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.
Climatic correlates of tree mortality in water- and energy-limited forests
Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
Climatic correlates of tree mortality in water- and energy-limited forests.
Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests
Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.
2013-01-01
Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Lerch, Bradley A.; Saleeb, Atef F.; Kasemer, Matthew P.
2013-01-01
Time-dependent deformation and damage behavior can significantly affect the life of aerospace propulsion components. Consequently, one needs an accurate constitutive model that can represent both reversible and irreversible behavior under multiaxial loading conditions. This paper details the characterization and utilization of a multi-mechanism constitutive model of the GVIPS class (Generalized Viscoplastic with Potential Structure) that has been extended to describe the viscoelastoplastic deformation and damage of the titanium alloy Ti-6Al-4V. Associated material constants were characterized at five elevated temperatures where viscoelastoplastic behavior was observed, and at three elevated temperatures where damage (of both the stiffness reduction and strength reduction type) was incurred. Experimental data from a wide variety of uniaxial load cases were used to correlate and validate the proposed GVIPS model. Presented are the optimized material parameters, and the viscoelastoplastic deformation and damage responses at the various temperatures.
NASA Astrophysics Data System (ADS)
Kaluvan, Suresh; Zhang, Haifeng; Mridha, Sanghita; Mukherjee, Sundeep
2017-04-01
Bulk metallic glasses are fully amorphous multi-component alloys with homogeneous and isotropic structure down to the atomic scale. Some attractive attributes of bulk metallic glasses include high strength and hardness as well as excellent corrosion and wear resistance. However, there are few reports and limited understanding of their mechanical properties at elevated temperatures. We used a nondestructive sonic resonance method to measure the Young's modulus and Shear modulus of a bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5, at elevated temperatures. The measurement system was designed using a laser displacement sensor to detect the sonic vibration produced by a speaker on the specimen in high-temperature furnace. The OMICRON Bode-100 Vector Network Analyzer was used to sweep the frequency and its output was connected to the speaker which vibrated the material in its flexural mode and torsional modes. A Polytec OFV-505 laser vibrometer sensor was used to capture the vibration of the material at various frequencies. The flexural and torsional mode frequency shift due to the temperature variation was used to determine the Young's modulus and Shear modulus. The temperature range of measurement was from 50°C to 350°C. The Young's modulus was found to reduce from 100GPa to 94GPa for the 300°C temperature span. Similarly, the Shear modulus decreased from 38.5GPa at 50°C to 36GPa at 350°C.
Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification.
Matzrafi, Maor; Seiwert, Bettina; Reemtsma, Thorsten; Rubin, Baruch; Peleg, Zvi
2016-12-01
Global warming will increase the incidence of metabolism-based reduced herbicide efficacy on weeds and, therefore, the risk for evolution of non-target site herbicide resistance. Climate changes affect food security both directly and indirectly. Weeds are the major biotic factor limiting crop production worldwide, and herbicides are the most cost-effective way for weed management. Processes associated with climatic changes, such as elevated temperatures, can strongly affect weed control efficiency. Responses of several grass weed populations to herbicides that inhibit acetyl-CoA carboxylase (ACCase) were examined under different temperature regimes. We characterized the mechanism of temperature-dependent sensitivity and the kinetics of pinoxaden detoxification. The products of pinoxaden detoxification were quantified. Decreased sensitivity to ACCase inhibitors was observed under elevated temperatures. Pre-treatment with the cytochrome-P450 inhibitor malathion supports a non-target site metabolism-based mechanism of herbicide resistance. The first 48 h after herbicide application were crucial for pinoxaden detoxification. The levels of the inactive glucose-conjugated pinoxaden product (M5) were found significantly higher under high- than low-temperature regime. Under high temperature, a rapid elevation in the level of the intermediate metabolite (M4) was found only in pinoxaden-resistant plants. Our results highlight the quantitative nature of non-target-site resistance. To the best of our knowledge, this is the first experimental evidence for temperature-dependent herbicide sensitivity based on metabolic detoxification. These findings suggest an increased risk for the evolution of herbicide-resistant weeds under predicted climatic conditions.
Wyneken, Jeanette; Lolavar, Alexandra
2015-05-01
It has been proposed that because marine turtles have environmentally determined sex by incubation temperature, elevated temperatures might skew sex ratios to unsustainable levels, leading to extinction. Elevated temperatures may also reduce availability of suitable nesting sites via sea level rise. Increased tropical storm activity can directly affect nest site moisture, embryonic development, and the probability that nests will survive. Here, we question some of these assumptions and review the limits of sex ratio estimates. Sea turtles may be more resilient to climate change than previously thought, in part because of hitherto unappreciated mechanisms for coping with variable incubation conditions. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Phillips, R. E.
1988-01-01
The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.
Meredith, Christy S.; Budy, Phaedra; Hooten, Mevin B.; Oliveira Prates, Marcos
2017-01-01
Trout species often segregate along elevational gradients, yet the mechanisms driving this pattern are not fully understood. On the Logan River, Utah, USA, exotic brown trout (Salmo trutta) dominate at low elevations but are near-absent from high elevations with native Bonneville cutthroat trout (Onchorhynchus clarkii utah). We used a spatially-explicit Bayesian modeling approach to evaluate how abiotic conditions (describing mechanisms related to temperature and physical habitat) as well as propagule pressure explained the distribution of brown trout in this system. Many covariates strongly explained redd abundance based on model performance and coefficient strength, including average annual temperature, average summer temperature, gravel availability, distance from a concentrated stocking area, and anchor ice-impeded distance from a concentrated stocking area. In contrast, covariates that exhibited low performance in models and/or a weak relationship to redd abundance included reach-average water depth, stocking intensity to the reach, average winter temperature, and number of days with anchor ice. Even if climate change creates more suitable summer temperature conditions for brown trout at high elevations, our findings suggest their success may be limited by other conditions. The potential role of anchor ice in limiting movement upstream is compelling considering evidence suggesting anchor ice prevalence on the Logan River has decreased significantly over the last several decades, likely in response to climatic changes. Further experimental and field research is needed to explore the role of anchor ice, spawning gravel availability, and locations of historical stocking in structuring brown trout distributions on the Logan River and elsewhere.
Elastic Properties and Internal Friction of Two Magnesium Alloys at Elevated Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freels, M.; Liaw, P. K.; Garlea, E.
2011-06-01
The elastic properties and internal friction of two magnesium alloys were studied from 25 C to 450 C using Resonant Ultrasound Spectroscopy (RUS). The Young's moduli decrease with increasing temperature. At 200 C, a change in the temperature dependence of the elastic constants is observed. The internal friction increases significantly with increasing temperature above 200 C. The observed changes in the temperature dependence of the elastic constants and the internal friction are the result of anelastic relaxation by grain boundary sliding at elevated temperatures. Elastic properties govern the behavior of a materials subjected to stress over a region of strainmore » where the material behaves elastically. The elastic properties, including the Young's modulus (E), shear modulus (G), bulk modulus (B), and Poisson's ratio (?), are of significant interest to many design and engineering applications. The choice of the most appropriate material for a particular application at elevated temperatures therefore requires knowledge of its elastic properties as a function of temperature. In addition, mechanical vibration can cause significant damage in the automotive, aerospace, and architectural industries and thus, the ability of a material to dissipate elastic strain energy in materials, known as damping or internal friction, is also important property. Internal friction can be the result of a wide range of physical mechanisms, and depends on the material, temperature, and frequency of the loading. When utilized effectively in engineering applications, the damping capacity of a material can remove undesirable noise and vibration as heat to the surroundings. The elastic properties of materials can be determined by static or dynamic methods. Resonant Ultrasound Spectroscopy (RUS), used in this study, is a unique and sophisticated non-destructive dynamic technique for determining the complete elastic tensor of a solid by measuring the resonant spectrum of mechanical resonance for a sample of known geometry, dimensions, and mass. In addition, RUS allows determination of internal friction, or damping, at different frequencies and temperatures. Polycrystalline pure magnesium (Mg) exhibits excellent high damping properties. However, the poor mechanical properties limit the applications of pure Mg. Although alloying can improve the mechanical properties of Mg, the damping properties are reduced with additions of alloying elements. Therefore, it becomes necessary to study and develop Mg-alloys with simultaneous high damping capacity and improved mechanical properties. Moreover, studies involving the high temperature dynamic elastic properties of Mg alloys are limited. In this study, the elastic properties and internal friction of two magnesium alloys were studied at elevated temperatures using RUS. The effect of alloy composition and grain size was investigated. The wrought magnesium alloys AZ31 and ZK60 were employed. Table 1 gives the nominal chemical compositions of these two alloys. The ZK60 alloy is a commercial extruded plate with a T5 temper, i.e. solution-treated at 535 C for two hours, quenched in hot water, and aged at 185 C for 24 hours. The AZ31 alloy is a commercial rolled plate with a H24 temper, i.e. strain hardened and partially annealed.« less
Nanoscale growth twins in sputtered metal films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Amit; Anderoglu, Osman; Hoagland, Richard G
2008-01-01
We review recent studies on the mechanical properties of sputtered Cu and 330 stainless steel films with {l_brace}1 1 1{r_brace} nanoscale growth twins preferentially oriented perpendicular to growth direction. The mechanisms of formation of growth twins during sputtering and the deformation mechanisms that enable usually high strengths in nanotwinned structures are highlighted. Growth twins in sputtered films possess good thermal stability at elevated temperature, providing an approach to extend the application of high strength nanostructured metals to higher temperatures.
Durability and Damage Development in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Haque, A.; Rahman, M.; Tyson, O. Z.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)
2001-01-01
Damage development in woven SiC/SiNC ceramic matrix composites (CMC's) under tensile and cyclic loading both at room and elevated temperatures have been investigated for the exhaust nozzle of high-efficient turbine engines. The ultimate strength, failure strain, proportional limit and modulus data at a temperature range of 23 to 1250 C are generated. The tensile strength of SiC/SiNC woven composites have been observed to increase with increased temperatures up to 1000 C. The stress/strain plot shows a pseudo-yield point at 25 percent of the failure strain (epsilon(sub r)) which indicates damage initiation in the form of matrix cracking. The evolution of damage beyond 0.25 epsilon(sub f), both at room and elevated temperature comprises multiple matrix cracking, interfacial debonding, and fiber pullout. Although the nature of the stress/strain plot shows damage-tolerant behavior under static loading both at room and elevated temperature, the life expectancy of SiC/SiNC composites degrades significantly under cyclic loading at elevated temperature. This is mostly due to the interactions of fatigue damage caused by the mechanically induced plastic strain and the damage developed by the creep strain. The in situ damage evolutions are monitored by acoustic event parameters, ultrasonic C-scan and stiffness degradation. Rate equations for modulus degradation and fatigue life prediction of ceramic matrix composites both at room and elevated temperatures are developed. These rate equations are observed to show reasonable agreement with experimental results.
Elevated Temperature Creep Deformation in Solid Solution <001> NiAL-3.6Ti Single Crystals
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Noebe, Ronald D.; Darolia, Ram
2003-01-01
The 1100 to 1500 K slow plastic strain rate compressive properties of <001> oriented NiAl-3.6Ti single crystals have been measured, and the results suggests that two deformation processes exist. While the intermediate temperature/faster strain rate mechanism is uncertain, plastic flow at elevated temperature/slower strain rates in NiAl-3.6Ti appears to be controlled by solute drag as described by the Cottrell-Jaswon solute drag model for gliding b = a(sub 0)<101> dislocations. While the calculated activation energy of deformation is much higher (approximately 480 kJ/mol) than the activation energy for diffusion (approximately 290 kJ/mol) used in the Cottrell-Jaswon creep model, a forced temperature compensated - power law fit using the activation energy for diffusion was able to adequately (greater than 90%) predict the observed creep properties. Thus we conclude that the rejection of a diffusion controlled mechanism can not be simply based on a large numerical difference between the activation energies for deformation and diffusion.
NASA Astrophysics Data System (ADS)
Steuer, Susanne; Singer, Robert F.
2014-07-01
Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).
Nanostructured carbon films with oriented graphitic planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, E. H. T.; Kalish, R.; Kulik, J.
2011-03-21
Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphiticmore » planes under different conditions.« less
NASA Technical Reports Server (NTRS)
Veazie, David R.
1998-01-01
Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo
2017-07-11
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures
Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo
2017-01-01
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144
Optical imaging characterizing brain response to thermal insult in injured rodent
NASA Astrophysics Data System (ADS)
Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.
2018-02-01
We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.
NASA Astrophysics Data System (ADS)
Wang, Baoming; Haque, M. A.
2015-08-01
With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.
NASA Astrophysics Data System (ADS)
Jost, Benjamin; Klein, Marcus; Eifler, Dietmar
This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.
Influence of hypo- and hyperthermia on death time estimation - A simulation study.
Muggenthaler, H; Hubig, M; Schenkl, S; Mall, G
2017-09-01
Numerous physiological and pathological mechanisms can cause elevated or lowered body core temperatures. Deviations from the physiological level of about 37°C can influence temperature based death time estimations. However, it has not been investigated by means of thermodynamics, to which extent hypo- and hyperthermia bias death time estimates. Using numerical simulation, the present study investigates the errors inherent in temperature based death time estimation in case of elevated or lowered body core temperatures before death. The most considerable errors with regard to the normothermic model occur in the first few hours post-mortem. With decreasing body core temperature and increasing post-mortem time the error diminishes and stagnates at a nearly constant level. Copyright © 2017 Elsevier B.V. All rights reserved.
Ceramic fibers for matrix composites in high-temperature engine applications
Baldus; Jansen; Sporn
1999-07-30
High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.
Plant molecular responses to the elevated ambient temperatures expected under global climate change.
Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng
2018-01-02
Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.
Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.
1998-01-01
This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.
Li, Shiguo; Huang, Jingliang; Liu, Chuang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing
2016-02-02
Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.
The microstructure and tensile properties of nitrogen containing vacuum atomized Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, G.E.; Hayden, S.Z.
1991-02-01
The mechanical properties and microstructure of a heat of nitrogen containing vacuum atomized A690 have been characterized. Although wrought A690 exhibits extensive grain growth during solution annealing heat treatments, only limited grain growth was observed in P/M690N{sub 2}. The presence of the nitrogen in the P/M690N{sub 2} resulted in the formation of a fine dispersion of Ti(C,N) which limited grain growth during elevated temperature exposures. The yield and ultimate tensile strength of the P/M690N{sub 2} was significantly greater than wrought A690 and elevated temperature exposures did not greatly affect the properties of the P/M690N{sub 2}. Although the P/M690N{sub 2} didmore » exhibit appreciably higher strengths than wrought A690, the ductility was not adversely affected. In general, the resulting microstructure and, hence, mechanical properties of the P/M690N{sub 2} were very stable, uniform, and reproducible, even after long-term elevated temperature exposures of up to 24 hours at 1100{degree}C. 14 refs., 5 figs., 1 tab.« less
Colwell, Robert K.; Rangel, Thiago F.
2010-01-01
Quaternary glacial–interglacial cycles repeatedly forced thermal zones up and down the slopes of mountains, at all latitudes. Although no one doubts that these temperature cycles have left their signature on contemporary patterns of geography and phylogeny, the relative roles of ecology and evolution are not well understood, especially for the tropics. To explore key mechanisms and their interactions in the context of chance events, we constructed a geographical range-based, stochastic simulation model that incorporates speciation, anagenetic evolution, niche conservatism, range shifts and extinctions under late Quaternary temperature cycles along tropical elevational gradients. In the model, elevational patterns of species richness arise from the differential survival of founder lineages, consolidated by speciation and the inheritance of thermal niche characteristics. The model yields a surprisingly rich variety of realistic patterns of phylogeny and biogeography, including close matches to a variety of contemporary elevational richness profiles from an elevational transect in Costa Rica. Mountaintop extinctions during interglacials and lowland extinctions at glacial maxima favour mid-elevation lineages, especially under the constraints of niche conservatism. Asymmetry in temperature (greater duration of glacial than of interglacial episodes) and in lateral area (greater land area at low than at high elevations) have opposing effects on lowland extinctions and the elevational pattern of species richness in the model—and perhaps in nature, as well. PMID:20980317
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.
2000-01-01
Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn Research Center at Lewis Field was undertaken to study the effect of the directional solidification growth rate on the microstructure, room temperature fracture toughness, and strength at 1027 C of a Ni-33Al-31Cr-3Mo eutectic alloy. The directionally solidified rates varied between 7.6 and 508 millimeters per hour Essentially fault-free, alternating (Cr, Mo)/NiAl lamellar plate microstructures (left photograph) were formed during growth at and below 12.7 mm/hr, whereas cellular microstructures (right photograph) with the (Cr, Mo) phase in a radial spokelike pattern were developed at faster growth rates. The compressive strength at 1027 C continuously increased with increasing growth rate and did not indicate a maxima as was reported for directionally solidified Ni-33Al-34Cr. Surprisingly, samples with the lamellar plate microstructure (left photograph) possessed a room-temperature fracture toughness of approximately 12 MPa(sup square root of m), whereas all the alloys with a cellular microstructure had a toughness of about 17 MPa(sup square root of m). These results are significant since they clearly demonstrate that Ni-33Al-31Cr-3Mo can be directionally solidified at much faster growth rates without any observable deterioration in its mechanical properties. Thus, the potential to produce strong, tough NiAl-based eutectics at commercially acceptable growth rates exists. Additional testing and alloy optimization studies are underway.
1988-04-01
factors, thermometry, and fever versus hyper- thernia. ihe review of heat illnesses includes heat "anps, heat edema, heat syncope, heat exhaustiom...clinical situations. For example, fever , the daily circadian rhythm of temperature variation, and the 0.50 C difference in rectal temperature following...thermometry is state of the art. Fever versus Hyperthermia Elevations of body temperature can occur as a result of several different mechanisms. One
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabuchi, Yoshiaki; Kondo, Takashi; Suzuki, Yoshihisa
2005-04-15
Sertoli TTE3 cells, derived from transgenic mice bearing temperature-sensitive simian virus 40 large T (tsSV40LT)-antigen, proliferated continuously at a permissive temperature (33 deg C) whereas inactivation of the large T-antigen by a nonpermissive temperature (39 deg C) led to differentiation as judged by elevation of transferrin. To clarify the detailed mechanisms of differentiation, we investigated the time course of changes in gene expression using cDNA microarrays. Of the 865 genes analyzed, 14 genes showed increased levels of expression. Real-time quantitative PCR revealed that the mRNA levels of p21{sup waf1}, milk fat globule membrane protein E8, heat-responsive protein 12, and selenoproteinmore » P were markedly elevated. Moreover, the differentiated condition induced by the nonpermissive temperature significantly increased mRNA levels of these four genes in several cell lines from the transgenic mice bearing the oncogene. The present results regarding changes in gene expression will provide a basis for a further understanding of molecular mechanisms of differentiation in both Sertoli cells and cell lines transformed by tsSV40LT-antigen.« less
Hydrothermal deformation of granular quartz sand
NASA Astrophysics Data System (ADS)
Karner, Stephen L.; Kronenberg, Andreas K.; Chester, Frederick M.; Chester, Judith S.; Hajash, Andrew
2008-05-01
Isotropic and triaxial compression experiments were performed on porous aggregates of St Peter quartz sand to explore the influence of temperature (to 225°C). During isotropic stressing, samples loaded at elevated temperature exhibit the same sigmoidal stress-strain curves and non-linear acoustic emission rates as have previously been observed from room temperature studies on sands, sandstones, and soils. However, results from our hydrothermal experiments show that the critical effective pressure (P*) associated with the onset of significant pore collapse and pervasive cataclastic flow is lower at increased temperature. Samples subjected to triaxial loading at elevated temperature show yield behavior resembling that observed from room temperature studies on granular rocks and soils. When considered in terms of distortional and mean stresses, the yield strength data for a given temperature define an elliptical envelope consistent with critical state and CAP models from soil mechanics. For the conditions we tested, triaxial yield data at low effective pressure are essentially temperature-insensitive whereas yield levels at high effective pressure are lowered as a function of elevated temperature. We interpret our yield data in a manner consistent with Arrhenius behavior expected for thermally assisted subcritical crack growth. Taken together, our results indicate that increased stresses and temperatures associated with subsurface burial will significantly alter the yield strength of deforming granular media in systematic and predictable ways.
NASA Astrophysics Data System (ADS)
Lappan, Uwe; Geißler, Uwe; Gohs, Uwe; Uhlmann, Steffi
2010-10-01
In this study, the influence of irradiation temperature on mechanical properties of three fluoropolymers and on grafting of styrene into the polymers by the pre-irradiation method was investigated. Electron paramagnetic resonance spectroscopy and infrared spectroscopy were used to characterize the irradiated polymers regarding trapped radical species and changes in the chemical structure, respectively. For poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) the irradiation temperature was found to be an important factor for tensile strength and elongation at break of the pre-irradiated film. No strong effect of irradiation temperature on the mechanical properties was noticed for poly(tetrafluoroethylene-co-ethylene) (ETFE); however the yield of grafting drops at high irradiation temperatures. Finally, mechanical properties of poly(tetrafluoroethylene) (PTFE) were found to be dramatically altered, even if the film was irradiated at elevated temperature.
Zhou, Rong; Wang, Qian; Jiang, Fangling; Cao, Xue; Sun, Mintao; Liu, Min; Wu, Zhen
2016-01-01
MicroRNAs (miRNAs) are 19–24 nucleotide (nt) noncoding RNAs that play important roles in abiotic stress responses in plants. High temperatures have been the subject of considerable attention due to their negative effects on plant growth and development. Heat-responsive miRNAs have been identified in some plants. However, there have been no reports on the global identification of miRNAs and their targets in tomato at high temperatures, especially at different elevated temperatures. Here, three small-RNA libraries and three degradome libraries were constructed from the leaves of the heat-tolerant tomato at normal, moderately and acutely elevated temperatures (26/18 °C, 33/33 °C and 40/40 °C, respectively). Following high-throughput sequencing, 662 conserved and 97 novel miRNAs were identified in total with 469 conserved and 91 novel miRNAs shared in the three small-RNA libraries. Of these miRNAs, 96 and 150 miRNAs were responsive to the moderately and acutely elevated temperature, respectively. Following degradome sequencing, 349 sequences were identified as targets of 138 conserved miRNAs, and 13 sequences were identified as targets of eight novel miRNAs. The expression levels of seven miRNAs and six target genes obtained by quantitative real-time PCR (qRT-PCR) were largely consistent with the sequencing results. This study enriches the number of heat-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in tomatoes at elevated temperatures. PMID:27653374
Kreiss, Cornelia M; Michael, Katharina; Bock, Christian; Lucassen, Magnus; Pörtner, Hans-O
2015-04-01
Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 μatm) and temperature (18°C). Isolated perfused gill preparations were established to determine gill thermal plasticity during acute exposures (10-22°C) and in vivo costs of Na(+)/K(+)-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H(+)-ATPase and Na(+)/K(+)-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na(+)/K(+)-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na(+)/K(+)-ATPase, which remained unchanged under elevated CO2 at 10°C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na(+)/K(+)ATPase and H(+)-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature. Copyright © 2014 Elsevier Inc. All rights reserved.
Shear transfer capacity of reinforced concrete exposed to fire
NASA Astrophysics Data System (ADS)
Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay
2018-04-01
Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2018-02-01
In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.
Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation
NASA Technical Reports Server (NTRS)
Herring, Helen
2003-01-01
Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.
NASA Technical Reports Server (NTRS)
Stokes, Eric H.; Shin, E. Eugene; Sutter, James K.
2003-01-01
Carbon fiber thermoset polymer matrix composites (PMC) with high temperature polyimide based in-situ polymerized monomer reactant (PMR) resin has been used for some time in applications which can see temperatures up to 550 F. Currently, graphite fiber PMR based composites are used in several aircraft engine components including the outer bypass duct for the GE F-404, exit flaps for the P&W F-100-229, and the core cowl for the GE/Snecma CF6-80A3. Newer formulations, including PMR-II-50 are being investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines that can see temperatures which exceed 550 F. Extensive FEM thermal modeling indicates that these components are exposed to rapid heat-up rates (up to -200 F/sec) and to a maximum temperature of around 600 F. Even though the predicted maximum part temperatures were within the capability of PW-II-50, the rapid heat-up causes significant through-thickness thermal gradients in the composite part and even more unstable states when combined with moisture. Designing composite parts for such extreme service environments will require accurate measurement of intrinsic and transient mechanical properties and the hygrothermal performance of these materials under more realistic use conditions. The mechanical properties of polymers degrade when exposed to elevated temperatures even in the absence of gaseous oxygen. Accurate mechanical characterization of the material is necessary in order to reduce system weight while providing sufficient factors of safety. Historically, the testing of PMCs at elevated temperatures has been plagued by the antagonism between two factors. First, moisture has been shown to profoundly affect the mechanical response of these materials at temperatures above their glass transition temperature while concurrently lowering the material's Tg. Moisture phenomena is due to one or a combination of three effects, i.e., plastization of polymeric material by water, the internal pressure generated by the volatilization of water at elevated temperatures, and hydrolytic chemical decomposition. However, moisture is lost from the material at increasing rates as temperature increases. Second, because PMCs are good thermal insulators, when they are externally heated at even mild rates large thermal gradients can develop within the material. At temperatures where a material property changes rapidly with temperature the presence of a large thermal gradient is unacceptable for intrinsic property characterization purposes. Therefore, long hold times are required to establish isothermal conditions. However, in the service environments high-heating-rates, high temperatures, high-loading rates are simultaneous present along with residual moisture. In order to capture the effects of moisture on the material, holding at- temperature until isothermal conditions are reached is unacceptable particularly in materials with small physical dimensions. Thus, the effects due to moisture on the composite's mechanical characteristics, ie., their so-called analog response, may be instructive. One approach employed in this program was rapid heat-up (approx. 200 F/sec.) and loading of both dry and wet in-plane compressive specimens to examine the effects of moisture on this resin dominated mechanical property of the material.
Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubásek, J., E-mail: Jiri.Kubasek@vscht.cz; Vojtěch, D.; Martínek, M.
2013-12-15
Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140more » MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: • Small effect of cooling rate on the compressive strength and hardness of AJ 62 • A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature • Higher resistance of the AJ 62 alloy to the creep process in compression compared to AZ91 • Excellent thermal stability and creep resistance of the alloy WE 43 • Improved thermal stability and creep resistance in order WE43 > AJ62 >> AZ91.« less
NASA Astrophysics Data System (ADS)
Wang, Huijun; White, Jesse F.; Sichen, Du
2018-04-01
A new method was developed to study the dissolution of a solid cylinder in a liquid under forced convection at elevated temperature. In the new design, a rotating cylinder was placed concentrically in a crucible fabricated by boring four holes into a blank material for creating an internal volume with a quatrefoil profile. A strong flow in the radial direction in the liquid was created, which was evidently shown by computational fluid dynamic (CFD) calculations and experiments at both room temperature and elevated temperature. The new setup was able to freeze the sample as it was at experimental temperature, particularly the interface between the solid and the liquid. This freezing was necessary to obtain reliable information for understanding the reaction mechanism. This was exemplified by the study of dissolution of a refractory in liquid slag. The absence of flow in the radial direction in the traditional setup using a symmetrical cylinder was also discussed. The differences in the findings by past investigators using the symmetrical cylinder are most likely due to the extent of misalignment of the cylinder in the containment vessel.
Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young
2014-01-01
Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514
Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature
2015-09-21
temperature calibrations, tests procedures and optical microscopy used in this research. 4.1 Mechanical Testing Equipment A Model 810 MTS servo -hydraulic...Composite Materials”. Oxford University Press , New York, NY, 2nd edition, 1994. 4. F.C. Campbell. “Structural Composite Materials” ASM International...M. “Mechanics of Composite Materials”. CRC Press , second Edition, ISBN-10: 156032712x, July 1998. 13. Ruggles-Wrenn, M. B., D. T. Christensen, A. L
NASA Technical Reports Server (NTRS)
Nagar, Arvind (Editor)
1992-01-01
The latest developments in the area of fracture and damage at high temperatures are discussed, in particular: modeling; analysis and experimental techniques for interface damage in composites including the effects of residual stresses and temperatures; and crack growth, inelastic deformation and fracture parameters for isotropic materials. Also included are damage modeling and experiments at elevated temperatures.
Leung, Jonathan Y S; Connell, Sean D; Nagelkerken, Ivan; Russell, Bayden D
2017-11-07
Many marine organisms produce calcareous shells as the key structure for defense, but the functionality of shells may be compromised by ocean acidification and warming. Nevertheless, calcifying organisms may adaptively modify their shell properties in response to these impacts. Here, we examined how reduced pH and elevated temperature affect shell mechanical and geochemical properties of common grazing gastropods from intertidal to subtidal zones. Given the greater environmental fluctuations in the intertidal zone, we hypothesized that intertidal gastropods would exhibit more plastic responses in shell properties than subtidal gastropods. Overall, three out of five subtidal gastropods produced softer shells at elevated temperature, while intertidal gastropods maintained their shell hardness at both elevated pCO 2 (i.e., reduced pH) and temperature. Regardless of pH and temperature, degree of crystallization was maintained (except one subtidal gastropod) and carbonate polymorph remained unchanged in all tested species. One intertidal gastropod produced less soluble shells (e.g., higher calcite/aragonite) in response to reduced pH. In contrast, subtidal gastropods produced only aragonite which has higher solubility than calcite. Overall, subtidal gastropods are expected to be more susceptible than intertidal gastropods to shell dissolution and physical damage under future seawater conditions. The increased vulnerability to shell dissolution and predation could have serious repercussions for their survival and ecological contributions in the future subtidal environment.
Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature
NASA Astrophysics Data System (ADS)
Wilkinson, M. P.; Ruggles-Wrenn, M. B.
2017-12-01
Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.
Long-Term Effects of Temperature Exposure on SLM 304L Stainless Steel
NASA Astrophysics Data System (ADS)
Amine, Tarak; Kriewall, Caitlin S.; Newkirk, Joseph W.
2018-03-01
Austenitic stainless steel is extensively used in industries that operate at elevated temperatures. This work investigates the high-temperature microstructure stability as well as elevated-temperature properties of 304L stainless steel fabricated using the selective laser melting (SLM) process. Significant microstructural changes were seen after a 400°C aging process for as little as 25 h. This dramatic change in microstructure would not be expected based on the ferrite decomposition studied in conventional 304L materials. The as-built additively manufactured alloy has much faster kinetic response to heat treatment at 400°C. An investigation of the structures which occur, the kinetics of the various transformations, and the mechanical properties is presented. The impact of this on the application of SLM 304L is discussed.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.
Baker, Graham; de Borst, René
2005-11-15
The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.
Elevated Temperature Crack Growth Behavior in HSCT Structural Materials
NASA Technical Reports Server (NTRS)
Saxena, Ashok
1998-01-01
Structures in super-sonic aircraft are subjected to conditions of high temperature and cyclic and sustained loading for extended periods of time. The durability of structures fabricated from aluminum and certain titanium alloys in such demanding conditions is of primary concern to the designers and manufacturers of futuristic transport aircraft. Accordingly, the major goal of this project was to evaluate the performance and durability of high temperature aluminum and titanium alloys for use in high speed civil transport (HSCT) structures. Additional goals were to develop time-dependent fracture mechanics methodology and test methods for characterizing and predicting elevated temperature crack growth behavior in creep-brittle materials such as ones being considered for use in HSCT structures and to explore accelerated methods of simulating microstructural degradation during service and measuring degraded properties in these materials.
NASA Astrophysics Data System (ADS)
Chripunow, Andre; Kubisch, Aline; Ruder, Matthias; Forster, Andreas; Korber, Hannes
2014-06-01
The presented test setup utilises a custom-built furnace realising test temperatures of up to 500°C. In order to ensure always optimal test conditions the temperature cell can be exchanged depending on the mechanical tests and specimen sizes. Cells for tensile and flexural loadings had been developed. With the latter one it is possible to perform three-point-bending tests, interlaminar-shear-strength tests as well as tests to determine the interlaminar fracture toughness. In this work the effect of fibre orientation on the mechanical properties of CFRP prepreg material under tensile and flexural loads at elevated temperatures was studied. Especially the matrix dominated layups showed a rather early decay of the mechanical properties even at temperatures quite lower than Tg. An analytical model has been used to describe the temperature-dependent properties. The model shows good agreement concerning the strength whereas the proper prediction of the moduli was only possible for the matrix dominated layups.
Thermal effects of endoscopy in a human temporal bone model: Implications for endoscopic ear surgery
Kozin, Elliott D.; Lehmann, Ashton; Carter, Margaret; Hight, Ed; Cohen, Michael; Nakajima, Hideko Heidi; Lee, Daniel J.
2015-01-01
Objective Although the theoretical risk of elevated temperatures during endoscopic ear surgery has been reported previously, neither temperature change nor heat distribution associated with the endoscope has been quantified. In this study, we measure temperature changes during rigid middle ear endoscopy in a human temporal bone model and investigate whether suction can act as a significant cooling mechanism. Study Design Human temporal bone model of endoscopic middle ear surgery. Methods Fresh human temporal bones were maintained at body temperature (~36°C). Temperature fluctuations were measured as a function of 1) distance between the tip of a 3mm 0° Hopkins rod and round window membrane, and 2) intensity of the light source. Infrared imaging determined the thermal gradient. For suction, a #20 French was utilized. Results We found: 1) an endoscope maximally powered by a xenon or LED light source resulted in a rapid temperature elevation up to 46°C within 0.5–1mm from the tip of the endoscope within 30–124 seconds; 2) elevated temperatures occurred up to 8mm from the endoscope tip; and 3) temperature decreased rapidly within 20–88 seconds of turning off the light source or applying suction. Conclusion Our findings have direct implications for avoiding excessive temperature elevation in endoscopic ear surgery. We recommend: 1) using submaximal light intensity, 2) frequent repositioning of the endoscope, and 3) removing the endoscope to allow tissue cooling. Use of suction provides rapid cooling of the middle ear space and may be incorporated in the design of new instrumentation for prolonged dissection. PMID:24604692
Elevated-temperature tensile and creep properties of several ferritic stainless steels
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1977-01-01
The elevated-temperature mechanical properties of several ferritic stainless steels were determined. The alloys evaluated included Armco 18SR, GE 1541, and NASA-18T-A. Tensile and creep strength properties at 1073 and 1273 K and residual room temperature tensile properties after creep testing were measured. In addition, 1273 K tensile and creep tests and residual property testing were conducted with Armco 18SR and GE 1541 which were exposed for 200 hours to a severe oxidizing environment in automotive thermal reactors. Aside from the residual tensile properties for Armco 18SR, prior exposure did not affect the mechanical properties of either alloy. The 1273 K creep strength parallel to the sheet-rolling direction was similar for all three alloys. At 1073 K, NASA-18T-A had better creep strength than either Armco 18SR or GE 1541. NASA-18T-A possesses better residual properties after creep testing than either Armco 18SR or Ge 1541.
Li, Nan; Demkowicz, Michael J.; Mara, Nathan A.
2017-09-12
In this paper, we summarize recent work on helium (He) interaction with various heterophase boundaries under high temperature irradiation. We categorize the ion-affected material beneath the He-implanted surface into three regions of depth, based on the He/vacancy ratio. The differing defect structures in these three regions lead to the distinct temperature sensitivity of He-induced microstructure evolution. The effect of He bubbles or voids on material mechanical performance is explored. Finally, overall design guidelines for developing materials where He-induced damage can be mitigated in materials are discussed.
2009-09-10
Calibration Tool(s) Surface Temperature ~1250oC Furnace, R-type TC & IR Gas Temperature < 1800oC R-type TC Gas Velocity ~ Mach 0.5 XS -4 High Speed...Camera Equivalence Ratio ~ 0.9 HVOFTM Flow Controller Gas Composition H 2 O, O 2 ,CO 2 , CO, NOx Testo XL 350 Gas Analyzer Mechanical Loading Fatigue...unavailability, however, gas velocity was measured using the X-StreamTM XS -4 High Speed Camera. The range of our interest was the velocity in the upstream of a
Heat induced temperature dysregulation and seizures in Dravet Syndrome/GEFS+ Gabrg2+/Q390X mice.
Warner, Timothy A; Liu, Zhong; Macdonald, Robert L; Kang, Jing-Qiong
2017-08-01
It has been established that febrile seizures and its extended syndromes like generalized epilepsy with febrile seizures (FS) plus (GEFS+) and Dravet syndrome have been associated with mutations especially in SCN1A and GABRG2 genes. In patients, the onset of FS is likely due to the combined effect of temperature and inflammation in genetically vulnerable individuals because fever is often associated with infection. Much effort has been spent to understand the mechanisms underlying fever induction of seizures. In addition to the role of cytokines in FS, previous studies in Scn1a +/- knockout mice, a model of Dravet syndrome, indicated that temperature elevation alone could result in seizure generation, and the effect of elevated temperature inducing seizures was age-dependent. Here, we report the thermal effect in a different mouse model of Dravet syndrome, the Gabrg2 +/Q390X knockin mouse. We demonstrated age-dependent dysregulated temperature control and that temperature elevation produced myoclonic jerks, generalized tonic clonic seizures (GTCSs) and heightened anxiety-like symptoms in Gabrg2 +/Q390X mice. The study indicated that regardless of other inflammatory factors, brief heat alone increased brain excitability and induced multiple types of seizures in Gabrg2 +/Q390X mice, suggesting that mutations like GABRG2(Q390X) may alter brain thermal regulation and precipitate seizures during temperature elevations. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study
NASA Technical Reports Server (NTRS)
Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)
2001-01-01
A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.
Minnick, Joanne M; Bebarta, Vikhyat S; Stanton, Marietta; Lairet, Julio R; King, James; Torres, Pedro; Aden, James; Ramirez, Rosemarie
2013-11-01
Most critically ill injured patients are transported out of the theater by Critical Care Air Transport Teams (CCATTs). Fever after trauma is correlated with surgical complications and infection. The purposes of this study are to identify the incidence of elevated temperature in patients managed in the CCATT environment and to describe the complications reported and the treatments used in these patients. We performed a retrospective review of available records of trauma patients from the combat theater between March 1, 2009, and March 31, 2010, who were transported by the US Air Force CCATT and had an incidence of hyperthermia. We then divided the cohort into 2 groups, patients transported with an elevation in temperature greater than 100.4°F and patients with no documented elevation in temperature. We used a standardized, secure electronic data collection form to abstract the outcomes. Descriptive data collected included injury type, temperature, use of a mechanical ventilator, cooling treatment modalities, antipyretics, intravenous fluid administration, and use of blood products. We also evaluated the incidence of complications during the transport in patients who had a recorded elevation in temperature greater than 100.4°F. A total of 248 trauma patients met the inclusion criteria, and 101 trauma patients (40%) had fever. The mean age was 28 years, and 98% of patients were men. The mechanism of injury was an explosion in 156 patients (63%), blunt injury in 11 (4%), and penetrating injury in 45 (18%), whereas other trauma-related injuries accounted for 36 patients (15%). Of the patients, 209 (84%) had battle-related injuries and 39 (16%) had non-battle-related injuries. Traumatic brain injury was found in 24 patients (24%) with an incidence of elevated temperature. The mean temperature was 101.6°F (range, 100.5°F-103.9°F). After evaluation of therapies and treatments, 80 trauma patients (51%) were intubated on a mechanical ventilator (P < .001). Of the trauma patients with documented fever, 22 (22%) received administration of blood products. Nineteen patients received antipyretics during their flight (19%), 9 received intravenous fluids (9%), and 2 received nonpharmacologic cooling interventions, such as cooling blankets or icepacks. We identified 1 trauma patient with neurologic changes (1%), 6 with hypotension (6%), 48 with tachycardia (48%), 33 with decreased urinary output (33%), and 1 with an episode of shivering or sweating (1%). We did not detect any transfusion reactions or deaths during flight. Fever occurred in 41% of critically ill combat-injured patients evacuated out of the combat theater in Iraq and Afghanistan. Fewer than 20% of patients with a documented elevated temperature received treatments to reduce the temperature. Intubation of patients with ventilators in use during the transport was the only factor significantly associated with fever. Serious complications were rare, and there were no deaths during these transports. Copyright © 2013 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, X.C.; Fang, H.S.
1998-03-01
In Part 2 of this article, the high-strength Al-Si/TiC composite and the elevated-temperature-resistant Al-Fe(-V-Si)/TiC composite, developed on the basis of the in situ Al-TiC composites (Part 1 of the article), have been evaluated for their room- and elevated-temperature mechanical behavior. The microstructural characteristics of ingot metallurgy (IM) or rapid solidification (RS) Al-Si/TiC and Al-Fe(-V-Si)/TiC composites could be thought of as a combination of the related alloy matrix microstructures and the IM or RS Al/TiC composites. The IM Al/TiC and the Al-Si/TiC composites show superior strength and ductility to the relevant aluminum-based composites. The RS Al/TiC and the Al-Fe-V-Si/TiC exhibit highmore » Young`s moduli and substantial improvements in room- and elevated-temperature tensile properties compared to those of rapidly solidified alloys and conventional composites. The Young`s modulus values of RS Al/TiC and Al-Fe-V-Si/TiC composites are well within Hashin-Shtrikman (H-S) limits, in keeping with the strong interfacial bonding. In the micromechanics approach, the principal strengthening mechanisms for the present dispersed, particle-hardened RS in situ Al-TiC composites would include Orowan strengthening, grain-size and substructure strengthening, and solid-solution strengthening.« less
Halász, István Zoltán; Bárány, Tamás
2016-08-24
In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.
Elevated temperature mechanical properties of line pipe steels
NASA Astrophysics Data System (ADS)
Jacobs, Taylor Roth
The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.
In situ TEM observation of FCC Ti formation at elevated temperatures
Yu, Qian; Kacher, Josh; Gammer, Christoph; ...
2017-07-04
Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less
In situ TEM observation of FCC Ti formation at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Qian; Kacher, Josh; Gammer, Christoph
Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less
Mechanics of Elevated Temperature Fatigue Damage in Fiber-Reinforced Ceramics
1993-01-01
Wang and Parvizi- Majidi 117] have measured the frictional shear stress in Nicalon"h(CAS-lI composites; shear stress ranged from 12.4±2.6 for fiber...Parvizi- Majidi . "Mechanical Behavior of NicaloniM Fiber-Reinforced Calcium-Aluminosilicate Matrix Composites," Ceram. Eng. Sci. Proc., 11 [9-101 1607
1973-10-01
intensity computation are shown in Figure 17. Using the same formal procedure outlined by Winne & Wundt . a notch geometry can be chosen to induce...Nitride at Elevated Temperatures . Winne, D.H. and Wundt , B.M., "Application of the Gnffith-Irwm Theory of Crack Propagation to the Bursting Behavior
Research in Inorganic Fluorine Chemistry.
1987-03-01
fluoride is bound to yield fluorine, the required reaction temperatures and conditions are so extreme that rapid reaction of the evolved fluorine with the... temperatures as low as -31 *C. indicating an ionic two-electra. oxidation mechanism. An unproved syntheisis of KtF’MF64 (M - As. Sb). Ramn data and...Fz. and PtF, at elevated temperature and praisurs. General aspects of the formaetion mechianisaw of coardinatively saturated complex fluoro cations
Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.
Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok
2015-08-25
The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.
Mechanical degradation temperature of waste storage materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, M.C.; Meyer, M.L.
1993-05-13
Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90{degrees}C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66{degrees}C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-densitymore » polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185{degrees}C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110{degrees}C; (2) polyvinyl chloride -- 130{degrees}C; (3) high-density polyethylene -- 140{degrees}C; (4) sealing tape -- 140{degrees}C. Testing with LDPE and PVC at temperatures ranging from 110 to 130{degrees}C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185{degrees}C) is not anticipated.« less
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Vanstone, R. H.
1992-01-01
The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.
Effects of elevated temperature on protein breakdown in muscles from septic rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall-Angeras, M.A.; Angeras, U.H.; Hasselgren, P.O.
Elevated temperature has been proposed to contribute to accelerated muscle protein degradation during fever and sepsis. The present study examined the effect of increased temperature in vitro on protein turnover in skeletal muscles from septic and control rats. Sepsis was induced by cecal ligation and puncture (CLP); control rats were sham operated. After 16 h, the extensor digitorum longus (EDL) and soleus (SOL) muscles were incubated at 37 or 40 degrees C. Protein synthesis was determined by measuring incorporation of (14C)phenylalanine into protein. Total and myofibrillar protein breakdown was assessed from release of tyrosine and 3-methylhistidine (3-MH), respectively. Total proteinmore » breakdown was increased at 40 degrees C by 15% in EDL and by 29% in SOL from control rats, whereas 3-MH release was not affected. In muscles from septic rats, total and myofibrillar protein breakdown was increased by 22 and 30%, respectively, at 40 degrees C in EDL but was not altered in SOL. Protein synthesis was unaffected by high temperature both in septic and nonseptic muscles. The present results suggest that high temperature is not the primary mechanism of increased muscle protein breakdown in sepsis because the typical response to sepsis, i.e., a predominant increase in myofibrillar protein breakdown, was not induced by elevated temperature in normal muscle. It is possible, however, that increased temperature may potentiate protein breakdown that is already stimulated by sepsis because elevated temperature increased both total and myofibrillar protein breakdown in EDL from septic rats.« less
Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors
Hinks, David G.; Capone, II, Donald W.
1992-01-01
A superconductor and precursor therefor from oxide mixtures of Ca, Sr, Bi and Cu. Glass precursors quenched to elevated temperatures result in glass free of crystalline precipitates having enhanced mechanical properties. Superconductors are formed from the glass precursors by heating in the presence of oxygen to a temperature below the melting point of the glass.
Plasticity mechanisms in HfN at elevated and room temperature.
Vinson, Katherine; Yu, Xiao-Xiang; De Leon, Nicholas; Weinberger, Christopher R; Thompson, Gregory B
2016-10-06
HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 T m ) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.
High-Temperature Photoluminescence of CsPbX 3 (X = Cl, Br, I) Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diroll, Benjamin T.; Nedelcu, Georgian; Kovalenko, Maksym
2017-03-30
Recent synthetic developments have generated intense interest in the use of cesium lead halide perovskite nanocrystals for light-emitting applications. This work presents the photoluminescence (PL) of cesium lead halide perovskite nanocrystals with tunable halide composition recorded as function of temperature from 80 to 550 K. CsPbBr 3 nanocrystals show the highest resilience to temperature while chloride-containing samples show relatively poorer preservation of photoluminescence at elevated temperatures. Thermal cycling experiments show that PL loss of CsPbBr 3 is largely reversible at temperatures below 450 K, but shows irreversible degradation at higher temperatures. Time-resolved measurements of CsPbX 3 samples show an increasemore » in the PL lifetime with temperature elevation, consistent with exciton fission to form free carriers, followed by a decrease in the apparent PL lifetime due to trapping. In conclusion, PL persistence measurements and time-resolved spectroscopies implicate thermally assisted trapping, most likely to halogen vacancy traps, as the mechanism of reversible PL loss.« less
Goncalves, Priscila; Thompson, Emma L; Raftos, David A
2017-06-02
This study characterises the molecular processes altered by both elevated CO 2 and increasing temperature in oysters. Differences in resilience of marine organisms against the environmental stressors associated with climate change will have significant implications for the sustainability of coastal ecosystems worldwide. Some evidence suggests that climate change resilience can differ between populations within a species. B2 oysters represent a unique genetic resource because of their capacity to better withstand the impacts of elevated CO 2 at the physiological level, compared to non-selected oysters from the same species (Saccostrea glomerata). Here, we used proteomic and transcriptomic analysis of gill tissue to evaluate whether the differential response of B2 oysters to elevated CO 2 also extends to increased temperature. Substantial and distinctive effects on protein concentrations and gene expression were evident among B2 oysters responding to elevated CO 2 or elevated temperature. The combination of both stressors also altered oyster gill proteomes and gene expression. However, the impacts of elevated CO 2 and temperature were not additive or synergistic, and may be antagonistic. The data suggest that the simultaneous exposure of CO 2 -resilient oysters to near-future projected ocean pH and temperature results in complex changes in molecular processes in order to prevent stress-induced cellular damage. The differential response of B2 oysters to the combined stressors also indicates that the addition of thermal stress may impair the resilience of these oysters to decreased pH. Overall, this study reveals the intracellular mechanisms that might enable marine calcifiers to endure the emergent, adverse seawater conditions resulting from climate change.
Stress versus temperature dependent activation energies in creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1990-01-01
The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.
Improvement of GRCop-84 Through the Addition of Zirconium
NASA Technical Reports Server (NTRS)
Ellis, David L.; Lerch, Bradley A.
2012-01-01
GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has excellent strength, creep resistance, low cycle fatigue (LCF) life and stability at elevated temperatures. It suffers in comparison to many commercially available precipitation-strengthened alloys below 500 C (932 F). It was observed that the addition of Zr consistently improved the mechanical properties of Cu-based alloys especially below 500 C. In an effort to improve the low temperature properties of GRCop-84, 0.35 wt.% Zr was added to the alloy. Limited tensile, creep, and LCF testing was conducted to determine if improvements occur. The results showed some dramatic increases in the tensile and creep properties at the conditions tested with the probability of additional improvements being possible through cold working. LCF testing at room temperature did not show an improvement, but improvements might occur at elevated temperatures.
Li, Longbiao
2016-01-01
In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS) criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture. PMID:28773332
Effect of Specimen Thickness on Mechanical Behavior of SiC/SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Singh, Mrityunjay; Freedman, Marc
2004-01-01
Potential composite applications in aerospace and transportation application systems have different thickness requirements. For example, space applications such as nozzle ramps or heat exchangers use very thin (less than 1 mm) structures whereas turbine blades need very thick parts greater than or equal to cm). There has been little investigation into the effect of thickness on stress-strain behavior or elevated temperature tensile properties controlled by oxidation. In this study, composites consisting of woven Hi-NicalonTM fibers, a carbon interphase, and CVI Sic matrix were fabricated with different numbers of plies to provide variable thickness. The composites ranged from a single ply (approximately 0.4 mm) to thirty-six plies (approximately 1 cm). Tensile tests were performed at room temperature with acoustic emission used to monitor matrix crack behavior. Elevated temperature tensile stress-rupture tests were performed in air. Considerably different room and elevated temperature tensile behavior was observed that will be discussed with respect to the effect of thickness on matrix crack formation, matrix crack growth and oxidation diffusion kinetics.
Thermal and Mechanical Buckling and Postbuckling Responses of Selected Curved Composite Panels
NASA Technical Reports Server (NTRS)
Breivik, Nicole L.; Hyer, Michael W.; Starnes, James H., Jr.
1998-01-01
The results of an experimental and numerical study of the buckling and postbuckling responses of selected unstiffened curved composite panels subjected to mechanical end shortening and a uniform temperature increase are presented. The uniform temperature increase induces thermal stresses in the panel when the axial displacement is constrained. An apparatus for testing curved panels at elevated temperature is described, numerical results generated by using a geometrically nonlinear finite element analysis code are presented. Several analytical modeling refinements that provide more accurate representation of the actual experimental conditions, and the relative contribution of each refinement, are discussed. Experimental results and numerical predictions are presented and compared for three loading conditions including mechanical end shortening alone, heating the panels to 250 F followed by mechanical end shortening, and heating the panels to 400 F. Changes in the coefficients of thermal expansion were observed as temperature was increased above 330 F. The effects of these changes on the experimental results are discussed for temperatures up to 400 F.
Terry, A C; Quick, W P; Beerling, D J
2000-09-01
The importance of subzero temperature interactions with elevated CO(2) on plant carbon metabolism has received rather little attention, despite their likely role in influencing future vegetation productivity and dynamics. Here we focused on the critical issues of CO(2)-enrichment effects on leaf-freezing temperatures, subsequent membrane damage, and recovery of the photosynthetic system. We show that growth in elevated CO(2) (70 Pa) results in a substantial and significant (P<0.01) increase (up to 4 degrees C) in the ice nucleation temperature of leaves of Maidenhair tree (Ginkgo biloba), which was observed consistently throughout the 1999 growing season relative to their ambient CO(2) (35 Pa) counterparts. We suggest that increased sensitivity of leaves to ice damage after growth in elevated CO(2) provides an explanation for increased photoinhibition observed in the field early and late in the growing season when low nighttime temperatures are experienced. This new mechanism is proposed in addition to the earlier postulated explanation for this phenomenon involving a reduction in the rate of triose-P utilization owing to a decrease in the rate of carbohydrate export from the leaf.
Terry, Andrew C.; Quick, W. Paul; Beerling, David J.
2000-01-01
The importance of subzero temperature interactions with elevated CO2 on plant carbon metabolism has received rather little attention, despite their likely role in influencing future vegetation productivity and dynamics. Here we focused on the critical issues of CO2-enrichment effects on leaf-freezing temperatures, subsequent membrane damage, and recovery of the photosynthetic system. We show that growth in elevated CO2 (70 Pa) results in a substantial and significant (P < 0.01) increase (up to 4°C) in the ice nucleation temperature of leaves of Maidenhair tree (Ginkgo biloba), which was observed consistently throughout the 1999 growing season relative to their ambient CO2 (35 Pa) counterparts. We suggest that increased sensitivity of leaves to ice damage after growth in elevated CO2 provides an explanation for increased photoinhibition observed in the field early and late in the growing season when low nighttime temperatures are experienced. This new mechanism is proposed in addition to the earlier postulated explanation for this phenomenon involving a reduction in the rate of triose-P utilization owing to a decrease in the rate of carbohydrate export from the leaf. PMID:10982433
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.
1977-01-01
Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.
A cool experimental approach to explain elevational treelines, but can it explain them?
Bader, Maaike Y; Loranger, Hannah; Zotz, Gerhard
2014-09-01
At alpine treeline, trees give way to low-stature alpine vegetation. The main reason may be that tree canopies warm up less in the sun and experience lower average temperatures than alpine vegetation. Low growth temperatures limit tissue formation more than carbon gain, but whether this mechanism universally determines potential treeline elevations is the subject of debate. To study low-temperature limitation in two contrasting treeline tree species, Fajardo and Piper (American Journal of Botany 101: 788-795) grew potted seedlings at ground level or suspended at tree-canopy height (2 m), introducing a promising experimental method for studying the effects of alpine-vegetation and tree-canopy microclimates on tree growth. On the basis of this experiment, the authors concluded that lower temperatures at 2 m caused carbon limitation in one of the species and that treeline-forming mechanisms may thus be taxon-dependent. Here we contest that this important conclusion can be drawn based on the presented experiment, because of confounding effects of extreme root-zone temperature fluctuations and potential drought conditions. To interpret the results of this elegant experiment without logistically challenging technical modifications and to better understand how low temperature leads to treeline formation, studies on effects of fluctuating vs. stable temperatures are badly needed. Other treeline research priorities are interactions between temperature and other climatic factors and differences in microclimate between tree canopies with contrasting morphology and physiology. In spite of our criticism of this particular study, we agree that the development of a universal treeline theory should include continuing explorations of taxon-specific treeline-forming mechanisms. © 2014 Botanical Society of America, Inc.
Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development.
Lau, On Sun; Song, Zhuojun; Zhou, Zimin; Davies, Kelli A; Chang, Jessica; Yang, Xin; Wang, Shenqi; Lucyshyn, Doris; Tay, Irene Hui Zhuang; Wigge, Philip A; Bergmann, Dominique C
2018-04-23
Environmental factors shape the phenotypes of multicellular organisms. The production of stomata-the epidermal pores required for gas exchange in plants-is highly plastic and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production, but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the basic-helix-loop-helix (bHLH) transcription factor that serves as the master regulator of stomatal lineage initiation [6, 7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high-temperature signaling [8]. Importantly, we demonstrate that, upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where warm-temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at elevated temperatures. Our work identifies a molecular link connecting high-temperature signaling and stomatal development and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly expressed environmental signaling factor. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huizhen; Zhao, Dian; Cui, Yuangjing, E-mail: cuiyj@zju.edu.cn
Temperature measurements and thermal mapping using luminescent MOF operating in the high-temperature range are of great interest in the micro-electronic diagnosis. In this paper, we report a thermostable Eu/Tb-mixed MOF Eu{sub 0.37}Tb{sub 0.63}-BTC-a exhibiting strong luminescence at elevated temperature, which can serve as a ratiometric luminescent thermometer for high-temperature range. The high-temperature operating range (313–473 K), high relative sensitivity and accurate temperature resolution, make such a Eu/Tb-mixed MOF useful for micro-electronic diagnosis. - Graphical abstract: A thermostable Eu/Tb-mixed MOF Eu{sub 0.37}Tb{sub 0.63}-BTC-a was developed as a ratiometric luminescent thermometers in the high-temperature range of 313–473 K. - Highlights: • Amore » thermostable Eu/Tb-codoped MOF exhibiting strong luminescent at elevated temperature is reported. • The high-temperature operating range of Eu{sub 0.37}Tb{sub 0.63}-BTC-a is 313–473 K. • The mechanism of Eu{sub 0.37}Tb{sub 0.63}-BTC-a used as thermometers are also discussed.« less
NASA Astrophysics Data System (ADS)
Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.
2015-03-01
Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.
Yu, Xiao-Dong; Lü, Liang; Luo, Tian-Hong; Zhou, Hong-Zhang
2013-01-01
We report on the species richness patterns of epigaeic beetles (Coleoptera: Carabidae and Staphylinidae) along a subtropical elevational gradient of Balang Mountain, southwestern China. We tested the roles of environmental factors (e.g. temperature, area and litter cover) and direct biotic interactions (e.g. foods and antagonists) that shape elevational diversity gradients. Beetles were sampled at 19 sites using pitfall traps along the studied elevational gradient ranging from 1500 m–4000 m during the 2004 growing season. A total of 74416 specimens representing 260 species were recorded. Species richness of epigaeic beetles and two families showed unimodal patterns along the elevational gradient, peaking at mid-elevations (c. 2535 m), and the ranges of most beetle species were narrow along the gradient. The potential correlates of both species richness and environmental variables were examined using linear and second order polynomial regressions. The results showed that temperature, area and litter cover had strong explanatory power of beetle species richness for nearly all richness patterns, of beetles as a whole and of Carabidae and Staphylinidae, but the density of antagonists was associated with species richness of Carabidae only. Multiple regression analyses suggested that the three environmental factors combined contributed most to richness patterns for most taxa. The results suggest that environmental factors associated with temperature, area and habitat heterogeneity could account for most variation in richness pattern of epigaeic beetles. Additionally, the mid-elevation peaks and the small range size of most species indicate that conservation efforts should give attention to the entire gradient rather than just mid-elevations. PMID:23874906
Promoted Metals Combustion at Ambient and Elevated Temperatures
NASA Technical Reports Server (NTRS)
Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie
2005-01-01
Promoted combustion testing of materials, Test 17 of NASA STD-6001, has been used to assess metal propensity to burn in oxygen rich environments. An igniter is used at the bottom end of a rod to promote ignition, and if combustion is sustained, the burning progresses from the bottom to the top of the rod. The physical mechanisms are very similar to the upward flammability test, Test 1 of NASA STD-6001. The differences are in the normal environmental range of pressures, oxygen content, and sample geometry. Upward flammability testing of organic materials can exhibit a significant transitional region between no burning to complete quasi-state burning. In this transitional region, the burn process exhibits a probabilistic nature. This transitional region has been identified for metals using the promoted combustion testing method at ambient initial temperatures. The work given here is focused on examining the transitional region and the quasi-steady burning region both at conventional ambient testing conditions and at elevated temperatures. A new heated promoted combustion facility and equipment at Marshall Space Flight Center have just been completed to provide the basic data regarding the metals operating temperature limits in contact with oxygen rich atmospheres at high pressures. Initial data have been obtained for Stainless Steel 304L, Stainless Steel 321, Haynes 214, and Inconel 718 at elevated temperatures in 100-percent oxygen atmospheres. These data along with an extended data set at ambient initial temperature test conditions are examined. The pressure boundaries of acceptable, non-burning usage is found to be lowered at elevated temperature.
NASA Technical Reports Server (NTRS)
Balckburn, Linda B.
1987-01-01
A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.
Relationship between fatigue life in the creep-fatigue region and stress-strain response
NASA Technical Reports Server (NTRS)
Berkovits, A.; Nadiv, S.
1988-01-01
On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.
NASA Astrophysics Data System (ADS)
Hui, Jun; Feng, Zaixin; Fan, Wenxin; Wang, Pengfei
2018-04-01
Cu-Sn alloy was subjected to elevated-temperature isothermal compression with 0.01 s‑1 strain rate and 500 ∼ 700 °C temperature range. The thermal compression curve reflected a competing process of work hardening versus dynamic recovery (DRV) and recrystallization, which exhibited an obvious softening trend. Meanwhile, high-temperature deformation and microstructural features in different regions of the alloy was analyzed through EBSD. The results show that grains grow as the temperature rises, competition among recrystallization, substructural, and deformation regions tends to increase with the increase of temperature, and distribution frequency of recrystallization regions gradually increases and then drops suddenly at 650 °C. At 500 ∼ 550 °C, preferentially oriented texturing phenomenon occurs, low angle boundaries(LABs) are gradually transformed into high angle boundaries (HABs) and the Σ (CSL) boundaries turn gradually into Σ3 boundaries. In tensile test of tin bronze, elongation at break increases slowly, whereas yield strength (YS) and ultimate tensile strength (TS) decrease gradually.
Analysis of Biaxial Stress Fields in Plates Cracking at Elevated Temperatures
1989-10-19
used . Based on the enhanced theory, it is predicted that the minimum resolvable stress amplitude using thermographic stress analysis will be...because of limitations in the commercial thermographic equipment used . Based on the enhanced theory, it is predicted that the minimum resolvable stress...amplitude using thermographic stress analysis will be approximately independent of temperature, provided relevant thermal and mechanical material
NASA Astrophysics Data System (ADS)
Taheri-Behrooz, Fathollah; Kiani, Ali
2017-04-01
Shape memory alloys (SMAs) are a type of shape memory materials that recover large deformation and return to their primary shape by rising temperature. In the current research, the effect of embedding SMA wires on the macroscopic mechanical behavior of glass-epoxy composites is investigated through finite element simulations. A perfect interface between SMA wires and the host composite is assumed. Effects of various parameters such as SMA wires volume fraction, SMA wires pre-strain and temperature are investigated during loading-unloading and reloading steps by employing ANSYS software. In order to quantify the extent of induced compressive stress in the host composite and residual tensile stress in the SMA wires, a theoretical approach is presented. Finally, it was shown that smart structures fabricated using composite layers and pre-strained SMA wires exhibited overall stiffness reduction at both ambient and elevated temperatures which were increased by adding SMA volume fraction. Also, the induced compressive stress on the host composite was increased remarkably using 4% pre-strained SMA wires at elevated temperature. Results obtained by FE simulations were in good correlation with the rule of mixture predictions and available experimental data in the literature.
2014-05-13
nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and...the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta...approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are
van der Poel, C; Stephenson, D G
2007-07-01
Properties of the sarcoplasmic reticulum (SR) with respect to Ca(2+) loading and release were measured in mechanically skinned fiber preparations from isolated extensor digitorum longus (EDL) muscles of the rat that were either kept at room temperature (23 degrees C) or exposed to temperatures in the upper physiological range for mammalian skeletal muscle (30 min at 40 or 43 degrees C). The ability of the SR to accumulate Ca(2+) was significantly reduced by a factor of 1.9-2.1 after the temperature treatments due to a marked increase in SR Ca(2+) leak, which persisted for at least 3 h after treatment. Results with blockers of Ca(2+) release channels (ruthenium red) and SR Ca(2+) pumps [2,5-di(tert-butyl)-1,4-hydroquinone] indicate that the increased Ca(2+) leak was not through the SR Ca(2+) release channel or the SR Ca(2+) pump, although it is possible that the leak pathway was via oligomerized Ca(2+) pump molecules. No significant change in the maximum SR Ca(2+)-ATPase activity was observed after the temperature treatment, although there was a tendency for a decrease in the SR Ca(2+)-ATPase. The observed changes in SR properties were fully prevented by the superoxide (O(2)(*-)) scavenger Tiron (20 mM), indicating that the production of O(2)(*-) at elevated temperatures is responsible for the increase in SR Ca(2+) leak. Results show that physiologically relevant elevated temperatures 1) induce lasting changes in SR properties with respect to Ca(2+) handling that contribute to a marked increase in the SR Ca(2+) leak and, consequently, to the reduction in the average coupling ratio between Ca(2+) transport and SR Ca(2+)-ATPase and muscle performance, and 2) that these changes are mediated by temperature-induced O(2)(*-) production.
Enhanced Climatic Warming in the Tibetan Plateau Due to Double CO2: A Model Study
NASA Technical Reports Server (NTRS)
Chen, Baode; Chao, Winston C.; Liu, Xiao-Dong; Lau, William K. M. (Technical Monitor)
2001-01-01
The NCAR (National Center for Atmospheric Research) regional climate model (RegCM2) with time-dependent lateral meteorological fields provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM) has been used to investigate the mechanism of enhanced ground temperature warming over the TP (Tibetan Plateau). From our model results, a remarkable tendency of warming increasing with elevation is found for the winter season, and elevation dependency of warming is not clearly recognized in the summer season. This simulated feature of elevation dependency of ground temperature is consistent with observations. Based on an analysis of surface energy budget, the short wave solar radiation absorbed at the surface plus downward long wave flux reaching the surface shows a strong elevation dependency, and is mostly responsible for enhanced surface warming over the TP. At lower elevations, the precipitation forced by topography is enhanced due to an increase in water vapor supply resulted from a warming in the atmosphere induced by doubling CO2. This precipitation enhancement must be associated with an increase in clouds, which results in a decline in solar flux reaching surface. At higher elevations, large snow depletion is detected in the 2xCO2run. It leads to a decrease in albedo, therefore more solar flux is absorbed at the surface. On the other hand, much more uniform increase in downward long wave flux reaching the surface is found. The combination of these effects (i.e. decrease in solar flux at lower elevations, increase in solar flux at higher elevation and more uniform increase in downward long wave flux) results in elevation dependency of enhanced ground temperature warming over the TP.
Elevated temperature mechanical behavior of monolithic and SiC whisker-reinforced silicon nitrides
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Choi, Sung R.; Sanders, William A.; Fox, Dennis S.
1991-01-01
The mechanical behavior of a 30 volume percent SiC whisker reinforced silicon nitride and a similar monolithic silicon nitride were measured at several temperatures. Measurements included strength, fracture toughness, crack growth resistance, dynamic fatigue susceptibility, post oxidation strength, and creep rate. Strength controlling defects were determined with fractographic analysis. The addition of SiC whiskers to silicon nitride did not substantially improve the strength, fracture toughness, or crack growth resistance. However, the fatigue resistance, post oxidation strength, and creep resistance were diminished by the whisker addition.
The Effects of Temperature on Political Violence: Global Evidence at the Subnational Level
Bollfrass, Alexander; Shaver, Andrew
2015-01-01
A number of studies have demonstrated an empirical relationship between higher ambient temperatures and substate violence, which have been extrapolated to make predictions about the security implications of climate change. This literature rests on the untested assumption that the mechanism behind the temperature-conflict link is that disruption of agricultural production provokes local violence. Using a subnational-level dataset, this paper demonstrates that the relationship: (1) obtains globally, (2) exists at the substate level — provinces that experience positive temperature deviations see increased conflict; and (3) occurs even in regions without significant agricultural production. Diminished local farm output resulting from elevated temperatures is unlikely to account for the entire increase in substate violence. The findings encourage future research to identify additional mechanisms, including the possibility that a substantial portion of the variation is brought about by the well-documented direct effects of temperature on individuals' propensity for violence or through macroeconomic mechanisms such as food price shocks. PMID:25992616
Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Kraitchman, M. D.
1985-01-01
The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.
NASA Astrophysics Data System (ADS)
Vijay Anand, M.; Ibrahim, Azmi; Patil, Anand A.; Muthu, K. U.
2017-06-01
The fact of vast usage of concrete leads to important problems regarding its design and preparation of eco-friendly to obtain an economic cost of the product on varieties of time periods. Conventional ordinary Portland concrete may not able to meet its functional requisites as it found inconsistency in high temperature. The exposing of concrete structure to elevated temperature may be in case of rocket launching space ships, nuclear power plants. In this experiment, to enhance the high temperature resistance, pozzolanic materials and steel fibres are added to preserve the strength characteristics of concrete structure. In this analysis, the pozzolanic admixture MK is used as partial replacement of cementatious materials. The volume fraction of steel fibre is varied 0.25%, 0.5%, 0.75% and 1% by preserving MK as stationary for 10% replacement of cement. The strength parameters of concrete such as compressive strength, split tensile strength and flexural strength are studied.
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.; Salem, J. A.
1999-01-01
The eutectic system Ni-33Al-31Cr-3Mo was directionally solidified at rates ranging from 7.6 to 508 mm/h. Samples were examined for microstructure and alloy chemistry, compression tested at 1200 and 1300 K, and subjected to room temperature fracture toughness measurements. Lamellar eutectic grains were formed at 12.7 mm/h; however cellular structures with a radial eutectic pattern developed at faster growth rates. Elevated temperature compression testing between 10(exp -4) to 10(exp -7)/s did not reveal an optimum growth condition, nor did any single growth condition result in a significant fracture toughness advantage. The mechanical behavior, taken together, suggests that Ni-33Al-31Cr-3Mo grown at rates from 25.4 to 254 mm/h will have nominally equivalent properties.
Halász, István Zoltán; Bárány, Tamás
2016-01-01
In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5–10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures. PMID:28773841
The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miriyala, N.; Liaw, P.K.; McHargue, C.J.
1997-04-01
Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fibermore » strength.« less
Creep deformation and mechanisms in Haynes 230 at 800 °C and 900 °C
NASA Astrophysics Data System (ADS)
Pataky, Garrett J.; Sehitoglu, Huseyin; Maier, Hans J.
2013-11-01
Creep was studied in Haynes 230, a material candidate for the very high temperature reactor's intermediate heat exchanger, at 800 °C and 900 °C. This study focused on the differences between the behavior at the two elevated temperature, and using the microstructure, grain boundary serrations and triple junction strain concentrations were quantitatively identified. There was significant damage in the 900 °C samples and the creep was almost entirely tertiary. In contrast, the 800 °C sample exhibited secondary creep. Using an Arrhenius equation, the minimum creep rate exponents were found to be n ≈ 3 and n ≈ 5 for 900 °C and 800 °C, respectively. The creep mechanisms were identified as solute drag for n ≈ 3 and dislocation climb for n ≈ 5. Strain concentrations were identified at triple junctions and grain boundary serrations using high resolution digital image correlation overlaid on the microstructure. The grain boundary serrations restrict grain boundary sliding which may reduce the creep damage at triple junctions and extend the creep life of Haynes 230 at elevated temperatures.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1972-01-01
The mechanical properties are presented of solution treated and age hardened A-286 corrosion resistant steel bar stock. Material solution treated at 899 C or 982 C, each followed by an age hardening treatment of 718 C, was evaluated. Test specimens manufactured from 1.50 inch (3.81 cm) diameter bar stock were tested at temperatures from +649 C to -253 C. The test data indicated excellent tensile, yield, elongation and reduction-in-area properties at all testing temperatures for both solution treated and aged materials. Cryogenic temperature notched tensile, impact, and shear tests indicated excellent notch strength, ductility, and shear values. There was very little difference in the mechanical properties of the two solution treated and aged materials. The only exception was that the 962 C solution treated and aged material had superior stress rupture properties at 649 C.
The effect of hot salt on the mechanical properties of several superalloys
NASA Technical Reports Server (NTRS)
Nelson, E. E.
1972-01-01
The effect of sodium chloride on unstressed, transverse, tensile, metal specimens at elevated temperatures was determined. Results indicate that the mechanical properties of Inconel 718, Rene 41, titanium base alloy 13V-11Cr-3Al, Hastelloy X, HS25 (L605), HS188, and TDNiCr suffer degradation in tensile strength and ductility due to hot salt exposure.
A self-photoprotection mechanism helps Stipa baicalensis adapt to future climate change
Song, Xiliang; Zhou, Guangsheng; Xu, Zhenzhu; Lv, Xiaomin; Wang, Yuhui
2016-01-01
We examined the photosynthetic responses of Stipa baicalensis to relative long-term exposure (42 days) to the predicted elevated temperature and water availability changes to determine the mechanisms through which the plant would acclimate to future climate change. Two thermal regimes (ambient and +4 °C) and three irrigation levels (partial, normal and excess) were used in environmental control chambers. The gas exchange parameters, light response curves and A/Ci curves were determined. The elevated temperature and partial irrigation reduced the net photosynthetic rate due to a limitation in the photosynthetic capacity instead of the intercellular CO2 concentration. Partial irrigation decreased Rubisco activation and limited RuBP regeneration. The reduction in Vcmax increased with increasing temperature. Excess irrigation offset the negative effect of drought and led to a partial recovery of the photosynthetic capacity. Although its light use efficiency was restricted, the use of light and dark respiration by Stipa baicalensis was unchanged. We concluded that nonstomatal limitation was the primary reason for photosynthesis regulation in Stipa baicalensis under relative long-term climate change conditions. Although climate change caused reductions in the light use efficiency and photosynthetic rate, a self-photoprotection mechanism in Stipa baicalensis resulted in its high ability to maintain normal live activities. PMID:27161934
Properties of materials in high pressure hydrogen at cryogenic, room, and elevated temperatures
NASA Technical Reports Server (NTRS)
Harris, J. A., Jr.; Vanwanderham, M. C.
1973-01-01
Various tests were conducted to determine the mechanical properties of 12 alloys that are commonly used or proposed for use in pressurized gaseous hydrogen or hydrogen containing environments. Properties determined in the hydrogen environments were compared to properties determined in a pure helium environment at the same conditions to establish environmental degradation. The specific mechanical properties tested include: high-cycle fatigue, low-cycle fatigue, fracture mechanics, creep-rupture, and tensile.
Effect of anisotropy on mechanical properties of Ti-6Al-4V in superplastic region
NASA Astrophysics Data System (ADS)
Wahed, MA; Gupta, AK; Singh, SK; Kotkunde, N.
2018-04-01
This paper presents an experimental investigation on the flow stress behaviour of Ti-6Al-4V alloy at elevated temperatures and very low strain rate. Though Ti-6Al-4V alloy is very hard to deform at room temperature, having only about 16 % elongation, it exhibits super-plasticity at elevated temperatures. To investigate this, the tensile tests were conducted from 700°C to 900°C temperatures at an interval of 50°C and at a very low strain rate 0.0001/s along three different directions: rolling direction, 45° to rolling direction and transverse direction. The experimental study shows more than 50% elongation in all the cases and particularly more than 250% elongation at 0.0001 / s strain rate and at 750°C to 900°C temperature in all directions, which is an indication of super-plasticity in the material. This is also corroborated by the microstructural study of the fractured specimens.
TDNiCr (ni-20Cr-2ThO2) forging studies
NASA Technical Reports Server (NTRS)
Filippi, A. M.
1974-01-01
Elevated temperature tensile and stress rupture properties were evaluated for forged TDNiCr (Ni-20Cr-2ThO2) and related to thermomechanical history and microstructure. Forging temperature and final annealed condition had pronounced influences on grain size which, in turn, was related to high temperature strength. Tensile strength improved by a factor of 8 as grain size changed from 1 to 150 microns. Stress-rupture strength was improved by a factor of 3 to 5 by a grain size increase from 10 to 1000 microns. Some contributions to the elevated temperature strength of very large grain material may also occur from the development of a strong texture and a preponderance of small twins. Other conditions promoting the improvement of high temperature strength were: an increase of total reduction, forging which continued the metal deformation inherent in the starting material, a low forging speed, and prior deformation by extrusion. The mechanical properties of optimally forged TDNiCr compared favorably to those of high strength sheet developed for space shuttle application.
Low-latitude high elevation of the leading edge of southern Eurasia throughout the Cenozoic
NASA Astrophysics Data System (ADS)
Ingalls, M.; Rowley, D. B.; Colman, A. S.; Olack, G.; Currie, B.; Li, S.
2016-12-01
The elevation history of the Tibetan Plateau promises insight into the mechanisms and dynamics that develop and sustain high topography over tens of millions of years. We present the first continuous Cenozoic elevation history from two proximal sedimentary basins on the southern Tibetan Plateau, as well as preliminary paleoaltimetry results from the south-central and central Plateau (Sangsang and Lunpola). The oxygen stable isotope and Δ47 clumped isotope compositions of non-marine carbonates allow us to constrain the carbonate formation temperatures and reconstruct the paleo-precipitation record of the Eocene to Pliocene Oiyug Basin and Paleocene to Eocene Penbo Basin. We exploit the systematic decrease of surface temperature and meteoric water δ18O with elevation. Minimally altered and unaltered pedogenic carbonates from the Oiyug Basin yield Δ47, CDES values of 0.625 to 0.755, that correspond with temperatures of 1-30 °C using a (Zaarur et al., 2013) Δ47 thermometer for low temperature carbonates. Similarly, the Penbo Basin yields Δ47, CDES values of 0.700-0.730, corresponding with temperatures of 6-12°C. Our paleoelevation estimates for the well-studied Oiyug basin ( 6100-4200 meters) support previous evidence (Spicer et al., 2003; Currie et al., 2005; Polissar et al., 2009; Currie et al., 2016) that high elevations were attained in southern Tibet by at least 30 Ma. Our paleoelevation estimates for the Penbo Basin (4100±550 meters) extends the altitude record of the southern Plateau to pre-India-Asia collision. Preliminary results from Sangsang, further west along the Indus-Yarlung Suture, and Lunpola, on the central Plateau, allow us to develop a spatially and temporally more complex paleo-altitude map and land surface evolution of the Tibetan Plateau since the onset of continent-continent collision.
2007-03-01
either inert gases or air to distinguish between the pyrolytic and oxidative degradation mechanisms. This exposure is commonly called “aging” of...and performance under use conditions. 4 This thesis explores the effects of both pyrolytic and thermal oxidative degradation on the mechanical...fatigue. A third assumption is that the mechanical properties of the pyrolytically aged samples will approximate the mechanical properties of the inner
Khan, M. Rashid
1990-01-01
A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W.
Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 10 years. The aging environments have included elevated temperature < 250 ºF (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight, dimensions and density) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAC, these models allow developmentmore » of service life predictions.« less
Diffusion mechanisms in chemical vapor-deposited iridium coated on chemical vapor-deposited rhenium
NASA Technical Reports Server (NTRS)
Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.; Franklin, J. E.
1992-01-01
Radiation-cooled rocket thruster chambers have been developed which use CVD Re coated with CVD Ir on the interior surface that is exposed to hot combustion gases. The Ir serves as an oxidation barrier which protects the structural integrity-maintaining Re at elevated temperatures. The diffusion kinetics of CVD materials at elevated temperatures is presently studied with a view to the prediction and extension of these thrusters' performance limits. Line scans for Ir and Re were fit on the basis of a diffusion model, in order to extract relevant diffusion constants; the fastest diffusion process is grain-boundary diffusion, where Re diffuses down grain boundaries in the Ir overlayer.
Relationship between fatigue life in the creep-fatigue region and stress-strain response
NASA Technical Reports Server (NTRS)
Berkovits, A.; Nadiv, S.
1988-01-01
On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.
Li, Longbiao
2016-01-01
In this paper, comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites (CMCs) under tension–tension cyclic fatigue loading at room and elevated temperatures have been investigated. Fatigue hysteresis loops models considering multiple matrix cracking modes in 2D CMCs have been developed based on the damage mechanism of fiber sliding relative to the matrix in the interface debonded region. The relationships between the fatigue hysteresis loops, fatigue hysteresis dissipated energy, fatigue peak stress, matrix multiple cracking modes, and interface shear stress have been established. The effects of fiber volume fraction, fatigue peak stress and matrix cracking mode proportion on fatigue hysteresis dissipated energy and interface debonding and sliding have been analyzed. The experimental fatigue hysteresis dissipated energy of 2D C/SiC and SiC/SiC composites at room temperature, 550 °C, 800 °C, and 1100 °C in air, and 1200 °C in vacuum corresponding to different fatigue peak stresses and cycle numbers have been analyzed. The interface shear stress degradation rate has been obtained through comparing the experimental fatigue hysteresis dissipated energy with theoretical values. Fatigue damage evolution in C/SiC and SiC/SiC composites has been compared using damage parameters of fatigue hysteresis dissipated energy and interface shear stress degradation rate. It was found that the interface shear stress degradation rate increases at elevated temperature in air compared with that at room temperature, decreases with increasing loading frequency at room temperature, and increases with increasing fatigue peak stress at room and elevated temperatures. PMID:28773966
NASA Astrophysics Data System (ADS)
Heilig, Sebastian; Ramezani, Maziar; Neitzert, Thomas; Liewald, Mathias
2018-03-01
Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2) is a typical near-α titanium alloy developed for high-temperature applications. It offers numerous enhanced properties like an outstanding strength-to-weight ratio, a low Young's modulus and exceptional creep and corrosion resistance. On the other hand, titanium alloys are known for their weak resistance to wear. Ti-6-2-4-2 is mainly applied in aero engine component parts, which are exposed to temperatures up to 565 °C. Through an increasing demand on efficiency, engine components are exposed to higher combustion pressures and temperatures. Elevated temperature tribology tests were conducted on a pin-on-disk tribometer equipped with a heating chamber. The tests were carried out under dry conditions with a constant sliding distance of 600 m with a speed of 0.16 m/s at the ball point. The sliding partner was AISI E52100 steel ball with the hardness of 58HRC. The varied input variables are normal load and temperature. It can be concluded that the coefficient of friction (CoF) increases with increasing temperature, while the wear rate decreases to its minimum at 600 °C due to increasing adhesion and oxidation mechanisms. Wear track observations using a scanning electron microscope (SEM) including energy-dispersive x-ray spectroscopy (EDS) were used to determine the occurring wear mechanisms.
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1989-01-01
Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.
Micro hot embossing for high-aspect-ratio structure with materials flow enhancement by polymer sheet
NASA Astrophysics Data System (ADS)
Murakoshi, Yoichi; Shan, Xue-Chuan; Sano, Toshio; Takahashi, Masaharu; Maeda, Ryutaro
2004-04-01
Nano imprinting or Nano embossing process have been introduced to fabricate semiconductor, optical device and Micro Electro Mechanical Systems (MEMS) and the Nano Electro Mechanical Systems (NEMS) to reduce the fabrication cost. In our previous paper, micro hot embossing of Polycarbonate (PC) and Polyetheretherketone (PEEK) for optical switch with 8x8 mirrors was reported. The PC and PEEK sheets were embossed at elevated temperature with an embossing machine designed for the MEMS. In the application, the mirrors on the optical switch had some defects, such as slump, sticking and step at side of the mirror, due to embossing process and process conditions. These defects are attributed to the poor materials flow of plastics into the e Ni mold cavity of complicate shape with different aspect ratio. Therefore, the micro hot embossing is optimized in this paper with PTFE sheet to enhance the materials flow. In this paper, the PC and the PEEK sheets, thickness of 300um, are embossed at elevated temperature with the hot embossing machine with a Nickel mold. To control material flow of the PC or the PEEK sheets, Polytetrafluoroethylene (PTFE) sheet, the thickness of 100um, is placed on the PC or the PEEK sheets at elevated temperature. Mirror shape was transferred with better fidelity on the PC and PEEK sheet, and the thickness of cantilever became thinner than previous embossed structure without the PTFE. Especially, the mirror height and the thickness of cantilever on the PC have been improved at lower embossing temperature.
Zhou, Yufeng; Gao, Xiaobin Wilson
2013-08-01
High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1 Hz. Altogether, bubble cavitation and thermal field vary with the progress of HIFU treatment with different sonication parameters, which provide insights into the interaction of ultrasound burst with the induced bubbles for both soft tissue fractionation and enhancement in thermal accumulation. Appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.
NASA Technical Reports Server (NTRS)
Wright, M. A.
1972-01-01
The effects of high temperatures on the structural properties of fiber composite materials for use in spacecraft structures are investigated. Various mechanical properties of boron reinforced aluminum alloys were measured. It was observed that cycling these materials through temperatures that varied from room temperature to 425 C could seriously degrade the properties. The extent of the observed effects depended on alloy type and the maximum cyclic temperature used. Results are discussed in terms of upper and lower strength bonds calculated from the strengths of individual fibers.
Galetz, Mathias Christian; Glatzel, Uwe
2010-05-01
The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.
A Limited Comparison of the Thermal Durability of Polyimide Candidate Matrix Polymers with PMR-15
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Papadopoulos, Demetrios S.; Scheiman, Daniel A.; Inghram, Linda L.; McCorkle, Linda S.; Klans, Ojars V.
2003-01-01
Studies were conducted with six different candidate high-temperature neat matrix resin specimens of varied geometric shapes to investigate the mechanisms involved in the thermal degradation of polyimides like PMR-15. The metrics for assessing the quality of these candidates were chosen to be glass transition temperature (T(sub g)), thermo-oxidative stability, dynamic mechanical properties, microstructural changes, and dimensional stability. The processing and mechanical properties were not investigated in the study reported herein. The dimensional changes and surface layer growth were measured and recorded. The data were in agreement with earlier published data. An initial weight increase reaction was observed to be dominating at the lower temperatures. However, at the more elevated temperatures, the weight loss reactions were prevalent and probably masked the weight gain reaction. These data confirmed the findings of the existence of an initial weight gain reaction previously reported. Surface- and core-dependent weight losses were shown to control the polymer degradation at the higher temperatures.
Mechanical behavior and failure phenomenon of an in situ-toughened silicon nitride
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Choi, Sung R.; Freedman, Marc R.; Jenkins, Michael G.
1990-01-01
The Weibull modulus, fracture toughness and crack growth resistance of an in-situ toughened, silicon nitride material used to manufacture a turbine combustor were determined from room temperature to 1371 C. The material exhibited an elongated grain structure that resulted in improved fracture toughness, nonlinear crack growth resistance, and good elevated temperature strength. However, low temperature strength was limited by grains of excessive length (30 to 100 microns). These excessively long grains were surrounded by regions rich in sintering additives.
Development of SiAlON materials
NASA Technical Reports Server (NTRS)
Layden, G. K.
1977-01-01
Cold pressing and sintering techniques were used to produce ceramic bodies in which the major phase was beta prime Si3-Al-O-N4 solid solution. A variety of foreign oxides were used to promote liquid phase sintering, and this resulted in the incorporation of additional solid phases in the ceramic bodies which controlled elevated temperature properties. None of the bodies studied to date exhibited both adequate high temperature mechanical properties and oxidation resistance. Criteria are suggested to guide the formulation of bodies with improved high temperature properties.
NASA Astrophysics Data System (ADS)
Vavilov, Vladimir P.
1998-03-01
IR thermography was used in surveying dormitory debris of Tomsk High Military School of Communication Engineering in Siberia that collapsed on July 17, 1997, with 12 students dead. In total, the debris had the ambient temperature but plentiful joints between vertical brick-made columns and horizontal concrete beams were detected to be abnormally warm. The reasons for this temperature elevation are discussed. The arguments pro and contra possibility to identify temperature patterns as abnormal mechanical stresses are considered.
NASA Astrophysics Data System (ADS)
Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman
2017-10-01
Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.
Shear wave EMAT thickness measurements of low carbon steel at 450 °C without cooling
NASA Astrophysics Data System (ADS)
Lunn, Natasha; Potter, Mark; Dixon, Steve
2017-02-01
Performing high temperature online inspection without plant shutdown is highly desirable, yet, development of portable or permanently installed high temperature ultrasonic sensors, without the need for sample surface preparation, remains a key challenge. Low carbon steel pipelines operating at elevated temperatures often develop a magnetostrictive oxide coating (magnetite), which improves electromagnetic acoustic transducer (EMAT) efficiency below the Curie temperature of magnetite (575 °C), via a magnetostrictive mechanism. Coupling the inherent non-contacting nature of EMATs with the enhanced efficiency from a magnetite coating, we are able to continuously operate an uncoded EMAT at elevated temperatures without permanent installation or surface preparation. In this work, a high temperature shear wave EMAT utilizing a high field, high Curie point, permanent magnet has been developed to generate ultrasonic bulk thickness measurements on magnetite coated steel at temperatures of up to 450 °C, without cooling. Relatively high signal-to-noise ratios, in the region of 30 dB for single shot data, have been measured at 450 °C using this technique. The EMAT design and results from high temperature trials, including the performance with change in temperature, sample thickness and EMAT-sample lift-off, are presented here.
NASA Astrophysics Data System (ADS)
Alsagabi, Sultan
The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally, irradiation-induced defect clusters and dislocation loops were observed and the irradiated samples did not show any bubble or void.
Climate change and ocean acidification effects on seagrasses and marine macroalgae.
Koch, Marguerite; Bowes, George; Ross, Cliff; Zhang, Xing-Hai
2013-01-01
Although seagrasses and marine macroalgae (macro-autotrophs) play critical ecological roles in reef, lagoon, coastal and open-water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro-autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2 ], and lower carbonate [CO3 (2-) ] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2 ]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro-autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3 (-) ; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2 -only users, lead us to conclude that photosynthetic and growth rates of marine macro-autotrophs are likely to increase under elevated [CO2 ] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up-regulate stress-response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2 ] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2 ] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2 ] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H(+) and DIC. These fluxes control micro-environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA, and it is likely that fleshy macroalgae will dominate in a higher CO2 ocean; therefore, it is critical to elucidate the research gaps identified in this review. © 2012 Blackwell Publishing Ltd.
Plant developmental responses to climate change.
Gray, Sharon B; Brady, Siobhan M
2016-11-01
Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO 2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO 2 , most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO 2 vary by cell type and by species. Variability also exists between C 3 and C 4 species in response to elevated CO 2 , especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO 2 . Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this lack of data is particularly prevalent in the case of interactive effects of multiple climate change factors. As future growing conditions will likely expose plants to multiple climate change factors simultaneously, with a sum negative influence on global agriculture, further research in this area is critical. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Tribological characteristics of silicon carbide whisker-reinforced alumina at elevated temperatures
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1991-01-01
The enhanced fracture toughness of whisker reinforced ceramics makes them attractive candidates for sliding components of advanced hear engines. Examples include piston rings and valve stems for Stirling engines and other low heat rejection devices. However, the tribological behavior of whisker reinforced ceramics is largely unknown. This is especially true for the applications described where use temperatures can vary from below ambient to well over 1000 C. An experimental research program to identify the dominant wear mechanism(s) for a silicon carbide whisker reinforced alumina composite, SiCw-Al2O3 is described. In addition, a wear mechanism model is developed to explain and corroborate the experimental results and to provide insight for material improvement.
On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
2003-01-01
A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.
Heat transfer in freeboard region of fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyikli, S.; Tuzla, K.; Chen, J.C.
1983-10-01
This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heatmore » transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.« less
Space environmental effects on graphite-epoxy compressive properties and epoxy tensile properties
NASA Technical Reports Server (NTRS)
Fox, Derek J.; Sykes, George F., Jr.; Herakovich, Carl T.
1987-01-01
This study characterizes the effects of electron radiation and temperature on a graphite-epoxy composite material. Compressive properties of the T300/934 material system were obtained at -250 F (-157 C), room temperature, and 250 F (121 C). Tensile specimens of the Fiberite 934 epoxy resin were fabricated and tested at room temperature and 250 F (121 C). Testing was conducted in the baseline (nonirradiated) and irradiated conditions. The radiation exposure was designed to simulate 30 year, worst-case exposure in geosynchronous Earth orbit. Mechanical properties tended to degrade at elevated temperature and improve at cryogenic temperature. Irradiation generally degraded properties at all temperatures.
Room temperature CO and H2 sensing with carbon nanoparticles.
Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo
2011-12-02
We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H(2) at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H(2) at room temperature even without Pd or Pt catalysts commonly used for splitting H(2) molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H(2) molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.
Díaz, Noelia; Piferrer, Francesc
2015-09-04
Sex in fish is plastic and in several species can be influenced by environmental factors. In sensitive species, elevated temperatures have a masculinizing effect. Previous studies on the effects of temperature on gene expression have been restricted to a few cognate genes, mostly related to testis or ovarian development, and analyzed in gonads once they had completed the process of sex differentiation. However, studies on the effect of temperature at the whole gonadal transcriptomic level are scarce in fish and, in addition, temperature effects at the time of sex differentiation at the transcriptomic level are also unknown. Here, we used the European sea bass, a gonochoristic teleost with a polygenic sex determination system influenced by temperature, and exposed larvae to elevated temperature during the period of early gonad formation. Transcriptomic analysis of the gonads was carried out about three months after the end of temperature exposure, shortly after the beginning of the process of sex differentiation. Elevated temperature doubled the number of males with respect to untreated controls. Transcriptomic analysis of early differentiating female gonads showed how heat caused: 1) an up-regulation of genes related to cholesterol transport (star), the stress response (nr3c1) and testis differentiation (amh, dmrt, etc.), 2) a decrease in the expression of genes related to ovarian differentiation such as cyp19a1a, and 3) an increase in the expression of several genes related to epigenetic regulatory mechanisms (hdac11, dicer1, ehmt2, jarid2a, pcgf2, suz12, mettl22). Taken together, the results of this study contribute to the understanding of how the early environment sets permanent changes that result in long-lasting consequences, in this case in the sexual phenotype. Results also show the usefulness of comparing the effects of heat on the behavior of cognate genes related to sex differentiation as well as that of genes involved in establishing and maintaining cell identity through epigenetic mechanisms.
Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties
2014-10-31
UHTCs charge (zirconium and hafnium borides , SiC) with additives (chromium carbide, nickel, chromium, etc.), which activate sintering process, is...temperature phases in a form of carboborides of zirconium and bi borides of zirconium or chromium. Elevation of densification rate of sintered borides is...superplasticity under the slip mechanism of zirconium boride and silica carbide grains on grain boundary interlayers with nanocrystalline grains of carbon
Effects of Exposures on Superalloys for Space Applications
NASA Technical Reports Server (NTRS)
Gabb, Tim; Garg, Anita; Gayda, John
2007-01-01
The industry is demanding longer term service at high temperatures for nickel-base superalloys in gas turbine engine as well as potential space applications. However, longer term service can severely tax alloy phase stability, to the potential detriment of mechanical properties. Cast Mar-M247LC and wrought Haynes 230 superalloys were exposed and creep tested for extended times at elevated temperature. Microstructure and phase evaluations were then undertaken for comparisons.
NASA Astrophysics Data System (ADS)
Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran; Verma, Shailendra Kumar; Dash, Biswaranjan; Agrawal, Priyanka; Subramanian, Karthikeyan
2017-08-01
The present work deals with synthesis, characterisation and elevated temperature mechanical property evaluation of V-4Cr-4Ti and oxide (yttria = 0.3, 0.6 and 0.9 at%) dispersion strengthened V-4Cr-4Ti alloy processed by mechanical alloying and field-assisted sintering, under optimal conditions. Microstructural parameters of both powder and sintered samples were deduced by X-ray diffraction (XRD) and further confirmed with high resolution transmission electron microscopy. Powder diffraction and electron microscopy study show that ball milling of starting elemental powders (V-4Cr-4Ti) with and without yttria addition has resulted in single phase α-V (V-4Cr-4Ti) alloy. Wherein, XRD and electron microscopy images of sintered samples have revealed phase separation (viz., Cr-V and Ti-V) and domain size reduction, with yttria addition. The reasons behind phase separation and domain size reduction with yttria addition during sintering are extensively discussed. Microhardness and high temperature compression tests were done on sintered samples. Yttria addition (0.3 and 0.6 at.%) increases the elevated temperature compressive strength and strain hardening exponent of α-V alloys. High temperature compression test of 0.9 at% yttria dispersed α-V alloy reveals a glassy behaviour.
Antioxidant systems in supporting environmental and programmed adaptations to low temperatures.
Blagojević, Dusko P
2007-01-01
Hetero and endothermic adaptive responses arising as a result of natural responses to environmental cues include antioxidant systems that support adaptations to environmental low temperatures in the broadest sense. These temperatures induce phase changes in energy production and consequently changes in the concentration of reactive oxygen species (ROS). The latter may lead to oxidative stress and the impairment of cellular homeostasis and antioxidant defence systems (ADS) scavenge the ROS so generated. In endotherms the ADS responds to oxidative pressure during acute cold stress conditions, this response is tissue specific and does not extend to prevent other oxidative damage. The early acute phase of cold exposure is accompanied by a significant depletion in redox equivalents. Under such conditions it is questionable if ADS has the capacity to neutralize elevated levels of ROS since there is also an increased energy demand and enhanced ATP consumption. Prolonged exposure to cold leads to ADS adaptation. Hibernators and freeze-tolerant species elevate their ADS before hibernation or freezing in order to prepare for and cope with re-awakening. The involvement of ROS and the role of the ADS in organisms subjected to low temperatures are features intercalated into physiological mechanisms of homestasis. The exact mechanisms for ADS regulation have not been fully defined and are the subject of many ongoing intriguing scientific investigations.
Brown, Rhonda F; Thorsteinsson, Einar B; Smithson, Michael; Birmingham, C Laird; Aljarallah, Hessah; Nolan, Christopher
2017-12-01
Overweight/obesity, sleep disturbance, night eating, and a sedentary lifestyle are common co-occurring problems. There is a tendency for them to co-occur together more often than they occur alone. In some cases, there is clarity as to the time course and evolution of the phenomena. However, specific mechanism(s) that are proposed to explain a single co-occurrence cannot fully explain the more generalized tendency to develop concurrent symptoms and/or disorders after developing one of the phenomena. Nor is there a clinical theory with any utility in explaining the development of co-occurring symptoms, disorders and behaviour and the mechanism(s) by which they occur. Thus, we propose a specific mechanism-dysregulation of core body temperature (CBT) that interferes with sleep onset-to explain the development of the concurrences. A detailed review of the literature related to CBT and the phenomena that can alter CBT or are altered by CBT is provided. Overweight/obesity, sleep disturbance and certain behaviour (e.g. late-night eating, sedentarism) were linked to elevated CBT, especially an elevated nocturnal CBT. A number of existing therapies including drugs (e.g. antidepressants), behavioural therapies (e.g. sleep restriction therapy) and bright light therapy can also reduce CBT. An elevation in nocturnal CBT that interferes with sleep onset can parsimoniously explain the development and perpetuation of common co-occurring symptoms, disorders and behaviour including overweight/obesity, sleep disturbance, late-night eating, and sedentarism. Nonetheless, a significant correlation between CBT and the above symptoms, disorders and behaviour does not necessarily imply causation. Thus, statistical and methodological issues of relevance to this enquiry are discussed including the likely presence of autocorrelation. Level V, narrative review.
Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo
2003-09-01
Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.
Recording temperature affects the excitability of mouse superficial dorsal horn neurons, in vitro.
Graham, B A; Brichta, A M; Callister, R J
2008-05-01
Superficial dorsal horn (SDH) neurons in laminae I-II of the spinal cord play an important role in processing noxious stimuli. These neurons represent a heterogeneous population and are divided into various categories according to their action potential (AP) discharge during depolarizing current injection. We recently developed an in vivo mouse preparation to examine functional aspects of nociceptive processing and AP discharge in SDH neurons and to extend investigation of pain mechanisms to the genetic level of analysis. Not surprisingly, some in vivo data obtained at body temperature (37 degrees C) differed from those generated at room temperature (22 degrees C) in spinal cord slices. In the current study we examine how temperature influences SDH neuron properties by making recordings at 22 and 32 degrees C in transverse spinal cord slices prepared from L3-L5 segments of adult mice (C57Bl/6). Patch-clamp recordings (KCH(3)SO(4) internal) were made from visualized SDH neurons. At elevated temperature all SDH neurons had reduced input resistance and smaller, briefer APs. Resting membrane potential and AP afterhyperpolarization amplitude were temperature sensitive only in subsets of the SDH population. Notably, elevated temperature increased the prevalence of neurons that did not discharge APs during current injection. These reluctant firing neurons expressed a rapid A-type potassium current, which is enhanced at higher temperatures and thus restrains AP discharge. When compared with previously published whole cell recordings obtained in vivo (37 degrees C) our results suggest that, on balance, in vitro data collected at elevated temperature more closely resemble data collected under in vivo conditions.
NASA Astrophysics Data System (ADS)
Kumarasamy, S.; Shukur Zainol Abidin, M.; Abu Bakar, M. N.; Nazida, M. S.; Mustafa, Z.; Anjang, A.
2018-05-01
In this paper, the tensile performance of glass fiber reinforced polymer (GFRP) composites at high and low temperature was experimentally evaluated. GFRP laminates were manufactured using the wet hand lay-up assisted by vacuum bag, which has resulted in average fibre volume fraction of 0.45. Using simultaneous heating/cooling and loading, glass fiber epoxy and polyester laminates were evaluated for their mechanical performance in static tensile loading. In the elevated temperature environment test, the tension mechanical properties; stress and modulus were reduced with increasing temperature from 25°C to 80°C. Results of low temperature environment from room temperature to a minimum temperature of -20°C, indicated that there is no considerable effect on the tensile strength, however a slight decrease of tensile modulus were observed on the GFRP laminates. The results obtained from the research highlight the structural survivability on tensile properties at low and high temperature of the GFRP laminates.
Coral bleaching--capacity for acclimatization and adaptation.
Coles, S L; Brown, Barbara E
2003-01-01
Coral bleaching, i.e., loss of most of the symbiotic zooxanthellae normally found within coral tissue, has occurred with increasing frequency on coral reefs throughout the world in the last 20 years, mostly during periods of El Nino Southern Oscillation (ENSO). Experiments and observations indicate that coral bleaching results primarily from elevated seawater temperatures under high light conditions, which increases rates of biochemical reactions associated with zooxanthellar photosynthesis, producing toxic forms of oxygen that interfere with cellular processes. Published projections of a baseline of increasing ocean temperature resulting from global warming have suggested that annual temperature maxima within 30 years may be at levels that will cause frequent coral bleaching and widespread mortality leading to decline of corals as dominant organisms on reefs. However, these projections have not considered the high variability in bleaching response that occurs among corals both within and among species. There is information that corals and their symbionts may be capable of acclimatization and selective adaptation to elevated temperatures that have already resulted in bleaching resistant coral populations, both locally and regionally, in various areas of the world. There are possible mechanisms that might provide resistance and protection to increased temperature and light. These include inducible heat shock proteins that act in refolding denatured cellular and structural proteins, production of oxidative enzymes that inactivate harmful oxygen radicals, fluorescent coral pigments that both reflect and dissipate light energy, and phenotypic adaptations of zooxanthellae and adaptive shifts in their populations at higher temperatures. Such mechanisms, when considered in conjunction with experimental and observational evidence for coral recovery in areas that have undergone coral bleaching, suggest an as yet undefined capacity in corals and zooxanthellae to adapt to conditions that have induced coral bleaching. Clearly, there are limits to acclimatory processes that can counter coral bleaching resulting from elevated sea temperatures, but scientific models will not accurately predict the fate of reef corals until we have a better understanding of coral-algal acclimatization/adaptation potential. Research is particularly needed with respect to the molecular and physiological mechanisms that promote thermal tolerance in corals and zooxanthellae and identification of genetic characteristics responsible for the variety of responses that occur in a coral bleaching event. Only then will we have some idea of the nature of likely responses, the timescales involved and the role of 'experience' in modifying bleaching impact.
Materials data handbook: Aluminum alloy 6061
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1972-01-01
A summary of the materials property information for aluminum alloy 6061 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.
Materials data handbook: Stainless steel type 301
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1972-01-01
A summary of the materials property information for stainless steel type 301 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.
Materials data handbook: Aluminum alloy 2219
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1972-01-01
A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.
Materials data handbook: Aluminum alloy 7075
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1972-01-01
A summary of the materials property information on aluminum alloy 7075 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.
Materials data handbooks on stainless steels
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1973-01-01
Two handbooks which summarize latest available data have been published. Two types of stainless steels, alloy A-286 and Type 301, are described. Each handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures.
Materials data handbook: Aluminum alloy 5456
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1972-01-01
A summary of the materials property information for aluminum alloy 5456 is presented. The scope of the information includes physical and mechanical property data at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.
Materials data handbook: Inconel alloy 718
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1972-01-01
A summary of the materials property information for Inconel alloy 718 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.
NASA Astrophysics Data System (ADS)
Soltani, Mohammadreza; Atrian, Amir
2018-02-01
This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.
Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders
NASA Astrophysics Data System (ADS)
Mohammadi, A.; Mahmudi, R.
2018-02-01
Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.
NASA Astrophysics Data System (ADS)
Huntington, K. W.; Wernicke, B. P.; Eiler, J. M.
2009-05-01
Topography is a first-order expression of the buoyancy of the lithosphere, and the timing and pattern of elevation change can place fundamental constraints on mantle flow and continental dynamics. We investigate the timing of Colorado Plateau uplift using clumped-isotope thermometry to independently constrain both the temperature and isotopic composition of ancient surface waters based on the 13C-18O bond enrichment in carbonates. Analyses of ancient lake sediments from the plateau interior and adjacent lowlands are compared to signals recorded by modern sediments collected over 3 km of elevation in the region. Comparison of modern and ancient samples deposited near sea level provides an opportunity to quantify the influence of climate on changes in temperature, and therefore more accurately assess the contribution from changes in elevation. Both modern and ancient (Miocene-Pliocene) carbonates record near-surface spring/summer lake water temperatures that vary strongly with elevation. Modern and ancient lake carbonate temperature lapse rates of -4.2±0.7°C/km and -4.1±0.6°C/km, respectively, suggest that little if any post-16 Ma change in elevation of the southern plateau is required to explain the data. Agreement of δ18O data for modern and ancient surface waters supports this interpretation. The zero-elevation intercept of the ancient trend is 7.7±2.0°C warmer than the modern trend, indicating significant cooling due to climate change since Late Miocene time. The temperature data are permissive of up to 450 m of uplift or 250 m of subsidence of the plateau interior since 6 Ma, but do not support km-scale changes. Combined with previous constraints, the data suggest that most uplift of the south-central plateau occurred during Late Cretaceous/earliest Tertiary time, favoring uplift mechanisms such as crustal thickening by channel flow, hydration of the mantle lithosphere due to volatile flux from the Laramide flat slab, or dynamic topography associated with slab foundering. The data do not support explanations that ascribe most uplift to ca. 40-0 Ma disposal of the Farallon or North American mantle lithosphere.
Recognizing Non-Stationary Climate Response in Tree Growth for Southern Coastal Alaska, USA
NASA Astrophysics Data System (ADS)
Wiles, G. C.; Jarvis, S. K.; D'Arrigo, R.; Vargo, L. J.; Appleton, S. N.
2012-12-01
Stationarity in growth response of trees to climate over time is assumed in dendroclimatic studies. Recent studies of Alaskan yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) have identified warming-induced early loss of insulating snowpack and frost damage as a mechanism that can lead to decline in tree growth, which for this species is documented over the last century. A similar stress may be put on temperature-sensitive mountain hemlock (Tsuga mertensiana (Bong.) Carrière) trees at low elevations, which in some cases show a decline in tree growth with warming temperatures. One of the challenges of using tree-ring based SAT, SST, PDO and PNA-related reconstructions for southern coastal Alaska has been understanding the response of tree-ring chronologies to the warming temperatures over the past 50 years. Comparisons of tree growth with long meteorological records from Sitka Alaska that extend back to 1830 suggest many mountain hemlock sites at low elevations are showing decreasing ring-widths, at mid elevations most sites show a steady increasing growth tracking warming, and at treeline a release is documented. The recognition of this recent divergence or decoupling of tree-ring and temperature trends allows for divergence-free temperature reconstructions using trees from moderate elevations. These reconstructions now provide a better perspective for comparing recent warming to Medieval warming and a better understanding of forest dynamics as biomes shift in response to the transition from the Little Ice Age to contemporary warming. Reconstructed temperatures are consistent with well-established, entirely independent tree-ring dated ice advances of land-terminating glaciers along the Gulf of Alaska providing an additional check for stationarity in the reconstructed interval.
Ribas, Laia; Liew, Woei Chang; Díaz, Noèlia; Sreenivasan, Rajini; Orbán, László; Piferrer, Francesc
2017-02-07
Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a "male-like" gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario.
Oliver, Shüné V; Brooke, Basil D
2017-02-14
Temperature plays a crucial role in the life history of insects. Recent climate change research has highlighted the importance of elevated temperature on malaria vector distribution. This study aims to examine the role of elevated temperatures on epidemiologically important life-history traits in the major malaria vector, Anopheles arabiensis. Specifically, the differential effects of temperature on insecticide-resistant and susceptible strains were examined. Two laboratory strains of A. arabiensis, the insecticide-susceptible SENN and the insecticide-resistant SENN DDT strains, were used to examine the effect of elevated temperatures on larval development and adult longevity. The effects of various elevated temperatures on insecticide resistance phenotypes were also examined and the biochemical basis of the changes in insecticide resistance phenotype was assessed. SENN and SENN DDT larvae developed at similar rates at elevated temperatures. SENN DDT adult survivorship did not vary between control and elevated temperatures, while the longevity of SENN adults at constantly elevated temperatures was significantly reduced. SENN DDT adults lived significantly longer than SENN at constantly elevated temperatures. Elevated rearing temperatures, as well as a short-term exposure to 37 and 39 °C as adults, augmented pyrethroid resistance in adult SENN DDT, and increased pyrethroid tolerance in SENN. Detoxification enzyme activity was not implicated in this phenotypic effect. Quercertin-induced synergism of inducible heat shock proteins negated this temperature-mediated augmentation of pyrethroid resistance. Insecticide-resistant A. arabiensis live longer than their susceptible counterparts at elevated temperatures. Exposure to heat shock augments pyrethroid resistance in both resistant and susceptible strains. This response is potentially mediated by inducible heat shock proteins.
Destabilization of emulsions by natural minerals.
Yuan, Songhu; Tong, Man; Wu, Gaoming
2011-09-15
This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature. Copyright © 2011 Elsevier B.V. All rights reserved.
Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution
NASA Technical Reports Server (NTRS)
Poorman, R. M.; Lovoy, C. V.
1972-01-01
The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.
Blood electrolytes and exercise in relation to temperature regulation in man
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1973-01-01
Current knowledge and theories about the relation of blood electrolytes and exercise to thermoregulation in man are reviewed. It is shown that the elevation of body temperature during physical exercise is a regulated process and is not due to a failure of the heat dissipating mechanisms. Core and skin temperatures do not provide sufficient information to account for the control of sweating during exercise. Evidence is presented that suggests an association between equilibrium levels of rectal temperature and the osmotic concentration of the blood with essentially no influence of variations in plasma volume.
Materials data handbook: Stainless steel alloy A-286
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1972-01-01
A summary of the materials property information for stainless steel alloy A-286 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.
NASA Astrophysics Data System (ADS)
Ditscherlein, L.; Peuker, U. A.
2017-04-01
For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.
Hanzawa, Taiki; Shibasaki, Kyohei; Numata, Takahiro; Kawamura, Yukio; Gaude, Thierry; Rahman, Abidur
2013-01-01
High-temperature-mediated adaptation in plant architecture is linked to the increased synthesis of the phytohormone auxin, which alters cellular auxin homeostasis. The auxin gradient, modulated by cellular auxin homeostasis, plays an important role in regulating the developmental fate of plant organs. Although the signaling mechanism that integrates auxin and high temperature is relatively well understood, the cellular auxin homeostasis mechanism under high temperature is largely unknown. Using the Arabidopsis thaliana root as a model, we demonstrate that under high temperature, roots counterbalance the elevated level of intracellular auxin by promoting shootward auxin efflux in a PIN-FORMED2 (PIN2)-dependent manner. Further analyses revealed that high temperature selectively promotes the retrieval of PIN2 from late endosomes and sorts them to the plasma membrane through an endosomal trafficking pathway dependent on SORTING NEXIN1. Our results demonstrate that recycling endosomal pathway plays an important role in facilitating plants adaptation to increased temperature. PMID:24003052
NASA Technical Reports Server (NTRS)
James, W. F.
1985-01-01
An experimental investigation was made to evaluate two nickel base alloys (Nickel-201 and Inconel-718) in three heat treated conditions. These conditions were: (1) annealed; (2) after thermal exposure simulating a braze cycle; and (3) after a thermal exposure simulating a braze cycle plus one operational lifetime of high temperature service. For the Nickel-201, two different braze cycle temperatures were evaluated. A braze cycle utilizing a lower braze temperature resulted in less grain growth for Nickel-201 than the standard braze cycle used for joining Nickel-201 to Inconel-718. It was determined, however, that Nickel-201, was marginal for temperatures investigated due to large grain growth. After the thermal exposures described above, the mechanical properties of Nickel-201 were degraded, whereas similar exposure on Inconel-718 actually strengthened the material compared with the annealed condition. The investigation included tensile tests at both room temperature and elevated temperatures, stress-rupture tests, and metallographic examination.
NASA Astrophysics Data System (ADS)
Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao
2018-04-01
Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.
Jud, Werner; Vanzo, Elisa; Li, Ziru; Ghirardo, Andrea; Zimmer, Ina; Sharkey, Thomas D.; Schnitzler, Jörg‐Peter
2016-01-01
Abstract Over the last decades, post‐illumination bursts (PIBs) of isoprene, acetaldehyde and green leaf volatiles (GLVs) following rapid light‐to‐dark transitions have been reported for a variety of different plant species. However, the mechanisms triggering their release still remain unclear. Here we measured PIBs of isoprene‐emitting (IE) and isoprene non‐emitting (NE) grey poplar plants grown under different climate scenarios (ambient control and three scenarios with elevated CO2 concentrations: elevated control, periodic heat and temperature stress, chronic heat and temperature stress, followed by recovery periods). PIBs of isoprene were unaffected by elevated CO2 and heat and drought stress in IE, while they were absent in NE plants. On the other hand, PIBs of acetaldehyde and also GLVs were strongly reduced in stress‐affected plants of all genotypes. After recovery from stress, distinct differences in PIB emissions in both genotypes confirmed different precursor pools for acetaldehyde and GLV emissions. Changes in PIBs of GLVs, almost absent in stressed plants and enhanced after recovery, could be mainly attributed to changes in lipoxygenase activity. Our results indicate that acetaldehyde PIBs, which recovered only partly, derive from a new mechanism in which acetaldehyde is produced from methylerythritol phosphate pathway intermediates, driven by deoxyxylulose phosphate synthase activity. PMID:26390316
Guthrie, T C; Nelson, D A
1995-03-01
In 1890, Uhthoff studied multiple sclerosis (MS) patients who developed amblyopia following exercise, a phenomenon later discovered to be secondary to elevated body temperature from muscular activity. Six decades later, the hot bath test and various other heating reactions (HR) began to be used diagnostically. They were essentially discontinued after 1983, being replaced by more specific and safer tests and procedures. Over 80% of MS patients develop a panoply of neurological signs during hyperthermia, 60% of which are "new" to that patient. The literature contains a number of unexplained paradoxical responses of MS patients during induced hyperthermia. These challenge the current hypothesis that, in MS, hyperthermia induces a heat-linked neuro-blockade of partially demyelinated axons. Some MS patients developed signs before temperature elevations occurred; others showed clearing of signs while temperatures were elevated or were ascending. Several MS patients improved for about 3 hours after being tested, a rebound phenomenon known as "overshoot." Conversely, other MS patients developed persistent neurological deficits after hyperthermia. The etiology of HR may be multifactorial. This includes heat itself, effects of serum calcium, blockade of ion channels, circulatory changes, heat shock proteins, and unidentified humoral substances. Research techniques are suggested to continue investigations into the enigma of HR, hopefully to widen knowledge of demyelination.
49 CFR 172.325 - Elevated temperature materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be marked...
49 CFR 172.325 - Elevated temperature materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be marked...
Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila.
Ishemgulova, Aygul; Butenko, Anzhelika; Kortišová, Lucie; Boucinha, Carolina; Grybchuk-Ieremenko, Anastasiia; Morelli, Karina A; Tesařová, Martina; Kraeva, Natalya; Grybchuk, Danyil; Pánek, Tomáš; Flegontov, Pavel; Lukeš, Julius; Votýpka, Jan; Pavan, Márcio Galvão; Opperdoes, Fred R; Spodareva, Viktoria; d'Avila-Levy, Claudia M; Kostygov, Alexei Yu; Yurchenko, Vyacheslav
2017-01-01
In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.
Mechanical Behavior of Sapphire Reinforced Alumina Matrix Composites at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eldridge, Jeffrey I.; Setlock, John A.; Gyekenyesi, John Z.
1997-01-01
Zirconia coated sapphire reinforced alumina matrix composites have been tested both after heat treatment to 1400 C and at temperatures ranging from 800 C to 1200 C in. air. Interfacial shear stress has also been measured with fiber pushout tests performed in air at room temperature, 800 C and 1OOO C. Matrix crack spacing was measured for the tensile tested composites and used to estimate interfacial shear stress up to 1200 C. Electron microscopy was used to determine the source of fiber fracture and to study interfacial failure within the composite.
Elevated temperature biaxial fatigue
NASA Technical Reports Server (NTRS)
Jordan, E. H.
1983-01-01
Biaxial fatigue is often encountered in the complex thermo-mechanical loadings present in gas turbine engines. Engine strain histories can involve non-constant temperature, mean stress, creep, environmental effects, both isotropic and anisotropic materials and non-proportional loading. Life prediction for the general case involving all the above factors is not a practicable research project. The current research program is limited to isothermal fatigue at room temperature and 1200 F of Hastalloy-X for both proportional and non-proportional loading. An improved method for predicting the fatigue life and deformation response under biaxial cycle loading is sought.
High-temperature testing of high performance fiber reinforced concrete
NASA Astrophysics Data System (ADS)
Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek
2016-06-01
The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.
Cai, Tingdong; Gao, Guangzhen; Liu, Ying
2012-10-01
A multiplexed diode-laser sensor system based on second harmonic detection of wavelength modulation spectroscopy (WMS) is developed for application at elevated temperatures with two near-infrared diode lasers multiplexed using a frequency-division multiplexing scheme. One laser is tuned over a H(2)O line pair near 7079.176 and 7079.855 cm(-1), and another laser is tuned over a pair of CO(2) and CO lines near 6361.250 and 6361.344 cm(-1). Temperature and concentrations of H(2)O, CO(2), and CO could be measured simultaneously by this system. In order to remove the need for calibration and correct for transmission variation due to beam steering, mechanical misalignments, soot, and windows fouling, the WMS-1f normalized 2f method is used. Demonstration experiments are conducted in a heated static cell. The precision of temperature and the concentrations for H(2)O, CO(2), and CO are found to be 1.57%, 3.87%, 3.01%, and 3.58%, respectively. These results illustrate the potential of this sensor for applications at high temperatures.
Thermal migration of alloying agents in aluminium
NASA Astrophysics Data System (ADS)
Cooil, S. P.; Mørtsell, E. A.; Mazzola, F.; Jorge, M.; Wenner, S.; Edmonds, M. T.; Thomsen, L.; Klemm, H. W.; Peschel, G.; Fuhrich, A.; Prieto, M.; Schmidt, Th; Miwa, J. A.; Holmestad, R.; Wells, J. W.
2016-11-01
The in situ thermal migration of alloying agents in an Al-Mg-Si-Li alloy is studied using surface sensitive photo-electron and electron diffraction/imaging techniques. Starting with the preparation of an almost oxide free surface (oxide thickness = 0.1 nm), the relative abundance of alloying agents (Mg, Li and Si) at the surface are recorded at various stages of thermal annealing, from room temperature to melting (which is observed at 550 ◦C). Prior to annealing, the surface abundances are below the detection limit ≪1%, in agreement with their bulk concentrations of 0.423% Si, 0.322% Mg and 0.101% Li (atomic %). At elevated temperatures, all three alloying agents appear at drastically increased concentrations (13.3% Si, 19.7% Mg and 45.3% Li), but decrease again with further elevation of the annealing temperature or after melting. The temperature at which the migration occurs is species dependent, with Li migration occurring at significantly higher temperatures than Si and Mg. The mechanism of migration also appears to be species dependent with Li migration occurring all over the surface but Mg migration being restricted to grain boundaries.
Li, Hai-Fang; Jiang, Li-Xue; Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Ting; He, Sheng-Gui
2018-03-01
The underlying mechanism for non-oxidative methane aromatization remains controversial owing to the lack of experimental evidence for the formation of the first C-C bond. For the first time, the elementary reaction of methane with atomic clusters (FeC 3 - ) under high-temperature conditions to produce C-C coupling products has been characterized by mass spectrometry. With the elevation of temperature from 300 K to 610 K, the production of acetylene, the important intermediate proposed in a monofunctional mechanism of methane aromatization, was significantly enhanced, which can be well-rationalized by quantum chemistry calculations. This study narrows the gap between gas-phase and condensed-phase studies on methane conversion and suggests that the monofunctional mechanism probably operates in non-oxidative methane aromatization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Almansour, Amjad; Kiser, Doug; Smith, Craig; Bhatt, Ram; Gorican, Dan; Phillips, Ron; McCue, Terry R.
2017-01-01
Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature structural applications in the aerospace and nuclear industries. Under high stresses and temperatures, creep degradation is the dominant damage mechanism in CMCs. Consequently, chemical vapor infiltration (CVI) SiCf/SiC ceramic matrix composites (CMC) incorporating SylramicTM-iBN SiC fibers coated with boron nitride (BN) interphase and CVI-SiC matrix were tested to examine creep behavior in air at a range of elevated temperatures of (2200 - 2700 F). Samples that survived creep tests were evaluated via RT fast fracture tensile tests to determine residual properties, with the use of acoustic emission (AE) to assess stress dependent damage initiation and progression. Microscopy of regions within the gage section of the tested specimens was performed. Observed material degradation mechanisms are discussed.
Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.
Bishop, David
2003-01-01
Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.
The effects of space radiation on a chemically modified graphite-epoxy composite material
NASA Technical Reports Server (NTRS)
Reed, S. M.; Herakovich, C. T.; Sykes, G. F.
1986-01-01
The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.
A review of technology and safety aspects of erbium lasers in dentistry.
Clarkson, D M
2001-01-01
This article reviews aspects of the probable mechanisms used by erbium dental lasers for cutting dentine and enamel, describes key issues of the risk of temperature elevation and speed of cutting relative to conventional techniques and looks at issues concerned with the safety of lasers.
Materials data handbook. Titanium 6Al-4V
NASA Technical Reports Server (NTRS)
Muraca, R. F.; Whittick, J. S.
1972-01-01
A summary of the materials property information for Titanium 6Al-4V alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.
ELECTRONIC BIVANE WIND DIRECTION INDICATOR
Moses, H.
1961-05-01
An apparatus is described for determining and recording three dimensional wind vectors. The apparatus comprises a rotatably mounted azimuthal wind component sensing head and an elevational wind component sensing head mounted to the azimuthal head and adapted to rotate therewith in the azimuthal plane and independently in the elevational plane. A heat source and thermocouples disposed thereabout are mounted within each of the sensing heads, the thermocouples providing electrical signals responsive to the temperature differential created by the passage of air through the sensing tuhes. The thermocouple signals are applied to drive mechanisms which position the sensing heads to a null wind position. Recording means are provided responsive to positional data from the drive mechanisms which are a measurement of the three dimensional wind vectors.
NASA Astrophysics Data System (ADS)
Luo, Hong
A multi-phase nanocrystalline Al93Fe3Cr2Ti 2 alloy containing 30 vol.% intermetallic particles was prepared via mechanical alloying starting from elemental powders, followed by hot extrusion. The grain size of 6-45 nm can be achieved after 30-hours of milling. Thermal stability of nanostructured Al93Fe3Ti2Cr 2 alloys was investigated using a variety of analytical techniques including modulated differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The MA-processed Al93Fe 3Ti2Cr2 alloy in the as-milled condition was composed of an Al-based supersaturated solid solution with high internal strains. Release of internal strains, intermetallic precipitation and grain growth occurred upon heating of the MA-processed Al alloy. Nevertheless, grain growth in the MA-processed Al alloy was very limited and fcc-Al grains with sizes in the range of 20 nm were still present in the alloys after exposure to 450°C (0.77 Tm). Systematic compressive tests and modulus measurements were performed as a function of temperature and strain rate to investigate the deformation behavior and mechanisms of the nc Al-Fe-Cr-Ti alloys. High strengths and moduli at both ambient and elevated temperatures have been demonstrated. The ductility of the nc Al93Fe3Cr2Ti2 alloy depends strongly on whether the oxide film at the prior powder particle boundary has been broken down or not. The MA-processed Al93Fe3Cr 2Ti2 alloy is brittle when the oxide film is continuous at PPB, and is ductile when the oxide film is broken down into discontinuous particles during extrusion. It is argued that the compressive strength at ambient temperature is controlled by propagation of dislocations into nc fcc-Al grains, whereas the compressive strength at elevated temperature is determined by dislocation propagation as well as dynamic recovery. Since the stress for dislocation propagation into nc fcc-Al grains increases with decreasing the grain size, the smaller the grain size, the higher the compressive strength. This new microstructural design approach could present opportunities for exploiting nc materials in structural applications at both ambient and elevated temperatures. The nanocrystalline Al-Fe-Cr-Ti alloy exhibited significant difference in deformation behavior between tension and compression at 25, 200 and 300°C. However, the strengths obtained in tension and compression were similar at 400°C. Systematic microstructure examinations and deformation mechanism analyses indicate that the asymmetry of this nc Al93Fe3Cr 2Ti2 alloy is related to its dislocation mediated plastic deformation mechanism, its nanoscale grain microstructure, and premature brittle failure in tension tests.
Coping with thermal challenges: physiological adaptations to environmental temperatures.
Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K
2012-07-01
Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.
NASA Astrophysics Data System (ADS)
Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.
2012-04-01
A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.
Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.
Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory
2017-08-21
Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.
NASA Astrophysics Data System (ADS)
Al-Rumaih, Abdullah M.
Thick-wall vessels in petrochemical applications, fabricated from 2.25Cr-1Mo steel, operate in pressurized H2 at elevated temperature for more than 20 years. There is a concern regarding the interactive effects of temper-embrittlement and hydrogen-embrittlement on fitness-for-service during startup/shutdown near ambient temperatures. The database of degraded material properties is inadequate to enable accurate assessment. Specifically, H loss from small fracture mechanics specimens was substantial during either long-term or elevated temperature experiments. In addition, the influence of temperature on H-embrittlement of Cr-Mo steel is not fundamentally understood. The objectives of this research are to (1) design a novel laboratory method to retain H in small fracture mechanics specimens, (2) characterize the temperature dependent internal hydrogen embrittlement (IHE) of Cr-Mo weld metal using the developed method, and (3) model H distribution near a stressed crack tip in a H-trap laden bainitic microstructure to fundamentally understand the temperature dependent IHE. The new slotted CT specimen approach, with 3.0 wppm total H produced on the slot surface from acidified thiosulfate charging, quantitatively characterized the temperature dependent threshold stress intensity (KIH and K TH) and kinetics (da/dtRISE and da/dtHOLD) of IHE in Cr-Mo weld metal during both rising and slowly falling K loading. IHE was produced successfully and damage was more severe during rising K loading due to the role of crack tip plasticity in H cracking of low to moderate strength steel. The critical temperature at which embrittlement ceased is in the range 45°C < Tc ≤ 60°C for the weld metal and H content studied. This method provides a useful new tool to generate fracture mechanics based fitness-for-service data. A three-dimensional finite element diffusion model, that accounts for the effect of crack tip plasticity and trapping on H transport, established K, dK/dt and temperature dependencies of H distributed about the stressed crack tip in the slotted and standard CT specimens. The slot approach provides higher H levels for long times and/or elevated temperatures, and solves the problem of H loss during testing. The diffusion model was used to understand temperature dependent ME Stress field interaction energy (EH) vs. temperature at the blunted crack tip for Cr-Mo steel is lower than the estimated binding energies (EB) for the various surrounding reversible trap sites; indicating with probability calculations that H is unlikely to repartition from these traps to the stress field. Hydrogen transport to the fracture process zone (FPZ) from the surrounding bulk is by diffusion, enhanced by a plasticity-related mechanism. Interfaces and boundaries within the FPZ in the dilated region at the crack tip are the sites that form the interconnected H-fracture path. Trapped H concentration in these fracture sites critically governs the temperature dependent IHE, with negligible effect of temperature (≤100°C) on the crack tip stress field. The measured KIH for subcritical H cracking under rising K decreases systematically with increasing H trapped in the FPZ, as established by diffusion modeling for a variety of H cracking and temperature conditions. Diffusion model predictions of the critical trapped H concentration indicate that the Tc at which IHE is eliminated from Cr-Mo weld metal should be ≥110°C for a thick-wall hydroprocessing vessel with total-peak H of ≈4.0 wppm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sames, William J.; Unocic, Kinga A.; Dehoff, Ryan R.
2014-07-28
Additive manufacturing (AM) technologies, also known as 3D printing, have demonstrated the potential to fabricate complex geometrical components, but the resulting microstructures and mechanical properties of these materials are not well understood due to unique and complex thermal cycles observed during processing. The electron beam melting (EBM) process is unique because the powder bed temperature can be elevated and maintained at temperatures over 1000 °C for the duration of the process. This results in three specific stages of microstructural phase evolution: (a) rapid cool down from the melting temperature to the process temperature, (b) extended hold at the process temperature,more » and (c) slow cool down to the room temperature. In this work, the mechanisms for reported microstructural differences in EBM are rationalized for Inconel 718 based on measured thermal cycles, preliminary thermal modeling, and computational thermodynamics models. The relationship between processing parameters, solidification microstructure, interdendritic segregation, and phase precipitation (δ, γ´, and γ´´) are discussed.« less
NASA Astrophysics Data System (ADS)
Keys, Matthew; Tilstone, Gavin; Findlay, Helen S.; Widdicombe, Claire E.; Lawson, Tracy
2018-05-01
The combined effects of elevated pCO2 and temperature were investigated during an experimentally induced autumn phytoplankton bloom in vitro sampled from the western English Channel (WEC). A full factorial 36-day microcosm experiment was conducted under year 2100 predicted temperature (+4.5 °C) and pCO2 levels (800 µatm). Over the experimental period total phytoplankton biomass was significantly influenced by elevated pCO2. At the end of the experiment, biomass increased 6.5-fold under elevated pCO2 and 4.6-fold under elevated temperature relative to the ambient control. By contrast, the combined influence of elevated pCO2 and temperature had little effect on biomass relative to the control. Throughout the experiment in all treatments and in the control, the phytoplankton community structure shifted from dinoflagellates to nanophytoplankton . At the end of the experiment, under elevated pCO2 nanophytoplankton contributed 90 % of community biomass and was dominated by Phaeocystis spp. Under elevated temperature, nanophytoplankton comprised 85 % of the community biomass and was dominated by smaller nanoflagellates. In the control, larger nanoflagellates dominated whilst the smallest nanophytoplankton contribution was observed under combined elevated pCO2 and temperature ( ˜ 40 %). Under elevated pCO2, temperature and in the control there was a significant decrease in dinoflagellate biomass. Under the combined effects of elevated pCO2 and temperature, dinoflagellate biomass increased and was dominated by the harmful algal bloom (HAB) species, Prorocentrum cordatum. At the end of the experiment, chlorophyll a (Chl a) normalised maximum photosynthetic rates (PBm) increased > 6-fold under elevated pCO2 and > 3-fold under elevated temperature while no effect on PBm was observed when pCO2 and temperature were elevated simultaneously. The results suggest that future increases in temperature and pCO2 simultaneously do not appear to influence coastal phytoplankton productivity but significantly influence community composition during autumn in the WEC.
Elevated-temperature Deformation Mechanisms in Ta2C: An Experimental Study
2013-01-01
result, tan- talum carbides have found uses in a variety of wear- resis - tant applications including machine tooling, coatings for injection molding...HIP billet. In addition , the near surface of the bil- let was mechanically ground to remove any possible inter- diffusion reaction zone between the...mounted in a conductive epoxy for handling. TEM foils were prepared by ultrasonically drilling 3 mm discs from the cross-sections using a Fischione
High performance mixed bisimide resins and composites based thereon
NASA Technical Reports Server (NTRS)
Parker, J. A.; ations.
1986-01-01
Mixtures of bismaleimide/biscitraconirnide resins produces materials which have better handling, processing or mechanical and thermal properties, particularly in graphite composites, than materials made with the individual resins. The mechanical strength of cured graphite composites prepared from a 1:1 copolymer of such bisimide resins is excellent at both ambient and elevated temperatures. The copolymer mixture provides improved composites which are lighter than metals and replace metals in many aerospace applications.
2014-07-01
5,9], W [16], Zr [17] and Nb [18]. These systems have shown moderate to extraordinarily high microstructural stability at elevated temperatures...cans were then either serial sectioned for shear punch testing or cut into compression samples using wire electric discharge machining. Through SEM...to resist deformation, but do not necessarily alter the dislocation mechanism operating during plastic deformation. There are a number of challenges
NASA Technical Reports Server (NTRS)
Hiel, C. C.; Adamson, M. J.
1986-01-01
The epoxy resins currently in use can slowly absorb moisture from the atmosphere over a long period. This reduces those mechanical properties of composites which depend strongly on the matrix, such as compressive strength and buckling instabilities. The effect becomes greater at elevated temperatures. The paper will discuss new phenomena which occur under simultaneous temperature and moisture variations. An analytical model will also be discussed and documented.
King, Michelle A; Clanton, Thomas L; Laitano, Orlando
2016-01-15
Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. Copyright © 2016 the American Physiological Society.
Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets
NASA Astrophysics Data System (ADS)
Chen, Fuh-Kuo; Chang, Chih-Kun
2005-08-01
In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures.
Bhattacharyya, P; Roy, K S; Neogi, S; Manna, M C; Adhya, T K; Rao, K S; Nayak, A K
2013-10-01
Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.
NASA Astrophysics Data System (ADS)
Korucu, Ayse; Miller, Richard
2016-11-01
Direct numerical simulations (DNS) of temporally developing shear flames are used to investigate both equation of state (EOS) and unity-Lewis (Le) number assumption effects in hydrocarbon flames at elevated pressure. A reduced Kerosene / Air mechanism including a semi-global soot formation/oxidation model is used to study soot formation/oxidation processes in a temporarlly developing hydrocarbon shear flame operating at both atmospheric and elevated pressures for the cubic Peng-Robinson real fluid EOS. Results are compared to simulations using the ideal gas law (IGL). The results show that while the unity-Le number assumption with the IGL EOS under-predicts the flame temperature for all pressures, with the real fluid EOS it under-predicts the flame temperature for 1 and 35 atm and over-predicts the rest. The soot mass fraction, Ys, is only under-predicted for the 1 atm flame for both IGL and real gas fluid EOS models. While Ys is over-predicted for elevated pressures with IGL EOS, for the real gas EOS Ys's predictions are similar to results using a non-unity Le model derived from non-equilibrium thermodynamics and real diffusivities. Adopting the unity Le assumption is shown to cause misprediction of Ys, the flame temperature, and the mass fractions of CO, H and OH.
NASA Astrophysics Data System (ADS)
Kattel, D. B.; Yao, T.; Ullah, K.; Islam, G. M. T.
2016-12-01
This study investigates the monthly characteristics of near-surface temperature lapse rates (TLRs) (i.e., governed by surface energy balance) based on the 176 stations 30-year (1980 to 2010) dataset covering a wide range of topography, climatic regime and relief (4801 m) in the HTP and its surroundings. Empirical analysis based on techniques in thermodynamics and hydrostatic system were used to obtain the results. Steepest TLRs in summer is due to strong dry convection and shallowest in winter is due to inversion effect is the general pattern of TLR that reported in previous studies in other mountainous region. Result of this study reports a contrast variation of TLRs from general patterns, and suggest distinct forcing mechanisms in an annual cycle. Shallower lapse rate occurs in summer throughout the regions is due to strong heat exchange process within the boundary layer, corresponding to the warm and moist atmospheric conditions. There is a systematic differences of TLRs in winter between the northern and southern slopes the Himalayas. Steeper TLRs in winter on the northern slopes is due to intense cooling at higher elevations, corresponding to the continental dry and cold air surges, and considerable snow-temperature feedback. The differences in elevation and topography, as well as the distinct variation of turbulent heating and cooling, explain the contrast TLRs (shallower) values in winter on the southern slopes. Distinct diurnal variations of TLRs and its magnitudes between alpine, dry, humid and coastal regions is due to the variations of adiabatic mixing during the daytime in the boundary layer i.e., associated with the variations in net radiations, elevation, surface roughness and sea surface temperature. The findings of this study is useful to determine the temperature range for accurately modelling in various field such as hydrology, glaciology, ecology, forestry, agriculture, as well as inevitable for climate downscaling in complex mountainous terrain.
Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki
2018-01-10
Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.
Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.
Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less
Temperature-controlled optical stimulation of the rat prostate cavernous nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-06-01
Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.
Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills.
Jafari, Navid H; Stark, Timothy D; Thalhamer, Todd
2017-01-01
Elevated temperatures in waste containment facilities can pose health, environmental, and safety risks because they generate toxic gases, pressures, leachate, and heat. In particular, MSW landfills undergo changes in behavior that typically follow a progression of indicators, e.g., elevated temperatures, changes in gas composition, elevated gas pressures, increased leachate migration, slope movement, and unusual and rapid surface settlement. This paper presents two MSW landfill case studies that show the spatial and time-lapse movements of these indicators and identify four zones that illustrate the transition of normal MSW decomposition to the region of elevated temperatures. The spatial zones are gas front, temperature front, and smoldering front. The gas wellhead temperature and the ratio of CH 4 to CO 2 are used to delineate the boundaries between normal MSW decomposition, gas front, and temperature front. The ratio of CH 4 to CO 2 and carbon monoxide concentrations along with settlement strain rates and subsurface temperatures are used to delineate the smoldering front. In addition, downhole temperatures can be used to estimate the rate of movement of elevated temperatures, which is important for isolating and containing the elevated temperature in a timely manner. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metallic hot wire anemometer. [for high speed wind tunnel tests
NASA Technical Reports Server (NTRS)
Lemos, F. R. (Inventor)
1977-01-01
A hot wire anemometer is described which has a body formed of heat resistant metal such as an alloy high in nickel content which supports a probe wire disposed in a V groove in the body. The V groove contains a high temperature ceramic adhesive that partially encompasses the downstream side of the probe wire. Mechanical and electrical connection to the probe wire is achieved through conductive support rods that are constructed of the same high temperature metal, insulation between the body and the conductor rods being provided by a coating of an oxide of the same material which coating is formed in situ. The oxide coating insulates the conductor rods from the body, mechanically fixes the conductors within the body, and maintains its integrity at elevated temperatures.
Wen, Bin; Zhang, Nan; Jin, Shi-Rong; Chen, Zai-Zhong; Gao, Jian-Zhong; Liu, Ying; Liu, Han-Peng; Xu, Zhe
2018-02-01
Knowledge on the impacts of microplastics (MPs) pollution on freshwater environments and biota remains limited. Meanwhile, freshwater ecosystems have been threatened by elevated temperatures caused by climate change. To date, no information exists on how MPs-especially under elevated temperature conditions-affect predatory performance, digestive processes and metabolic pathways in freshwater organisms. Here, we examined MPs, elevated temperature and their combined effects on juveniles (0+ group) of an Amazonian cichlid, the discus fish (Symphysodon aequifasciatus). For 30 days, fish were exposed to ambient or elevated temperatures (i.e., 28 or 31 °C) in the absence or presence of MPs (i.e., 0 or 200 μg/L). The following metrics were quantified: MPs accumulation; predatory performance; and biomarkers involved in neurotransmission, digestion and energy production. The results showed that survival rate and body length were not affected by MPs, elevated temperatures or their combination. Elevated temperatures resulted in an increase in MP concentrations in fish bodies. Exposure to MPs decreased the post-exposure predatory performance (PEPP) at ambient temperatures but not at elevated temperatures. Elevated temperatures, however, had no effect on the PEPP but antagonistically interacted with MPs, leading to similar predatory performances under present and future conditions. Acetylcholinesterase (AChE) activity was only affected by MPs and decreased in the presence of MPs, indicating adverse effects in nervous and neuromuscular function and, thus, potentially in predatory performance. Trypsin activity was only influenced by MPs and decreased during exposure to MPs. Elevated temperatures or MPs alone increased the amylase activity but interacted antagonistically. Lipase activity was not influenced by either of the two stressors. In contrast, alkaline phosphatase (ALP) activity was affected by MPs or elevated temperatures alone and decreased with both stressors. Such results indicate deficits in the digestive capabilities of early-stage S. aequifasciatus under elevated temperature conditions and especially during exposure to MPs. Electron transport system (ETS) activity was not influenced by either of the two stressors. Both elevated temperatures and MPs alone increased LDH activity; however, the interaction between the two stressors cancelled activity but was still higher than activity in present conditions. Citrate synthase (CS) activity decreased with elevated temperature but increased during exposure to MPs. Cytochrome c oxidase (COX) activity was only influenced by MPs and increased in the presence of MPs. Thus, S. aequifasciatus juveniles exposed to elevated temperatures and MPs not only relied on anaerobic glycolysis for energy production but also depended on aerobic metabolism in the presence of MPs. Overall, these findings suggested that MPs showed a greater impact than elevated temperatures on the predatory performance, digestion and energy production of S. aequifasciatus. Nevertheless, juvenile survival and growth were minimally impacted, and thus, S. aequifasciatus could cope with near-future temperature increases and MP exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
2017-01-01
Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a “male-like” gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario. PMID:28115725
Neutrophil elastase-mediated increase in airway temperature during inflammation.
Schmidt, Annika; Belaaouaj, Azzaq; Bissinger, Rosi; Koller, Garrit; Malleret, Laurette; D'Orazio, Ciro; Facchinelli, Martino; Schulte-Hubbert, Bernhard; Molinaro, Antonio; Holst, Otto; Hammermann, Jutta; Schniederjans, Monika; Meyer, Keith C; Damkiaer, Soeren; Piacentini, Giorgio; Assael, Baroukh; Bruce, Kenneth; Häußler, Susanne; LiPuma, John J; Seelig, Joachim; Worlitzsch, Dieter; Döring, Gerd
2014-12-01
How elevated temperature is generated during airway infections represents a hitherto unresolved physiological question. We hypothesized that innate immune defence mechanisms would increase luminal airway temperature during pulmonary infection. We determined the temperature in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. Here we show a temperature of ~38°C in neutrophil-dominated mucus plugs of chronically infected CF patients and implicate neutrophil elastase:α1-proteinase inhibitor complex formation as a relevant mechanism for the local temperature rise. Gene expression of the main pathogen in CF, P. aeruginosa, under anaerobic conditions at 38°C vs 30°C revealed increased virulence traits and characteristic cell wall changes. Neutrophil elastase mediates increase in airway temperature, which may contribute to P. aeruginosa selection during the course of chronic infection in CF. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Sweetman, C; Sadras, V O; Hancock, R D; Soole, K L; Ford, C M
2014-11-01
Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2-4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4-6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4-10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4-6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Sweetman, C.; Sadras, V. O.; Hancock, R. D.; Soole, K. L.; Ford, C. M.
2014-01-01
Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2–4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4–6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4–10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4–6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit. PMID:25180109
Warming and pCO2 effects on Florida stone crab larvae
NASA Astrophysics Data System (ADS)
Gravinese, Philip M.; Enochs, Ian C.; Manzello, Derek P.; van Woesik, Robert
2018-05-01
Greenhouse gas emissions are increasing ocean temperatures and the partial pressure of CO2 (pCO2), resulting in more acidic waters. It is presently unknown how elevated temperature and pCO2 will influence the early life history stages of the majority of marine coastal species. We investigated the combined effect of elevated temperature (30 °C control and 32 °C treatment) and elevated pCO2 (450 μatm control and 1100 μatm treatment) on the (i) growth, (ii) survival, (iii) condition, and (iv) morphology of larvae of the commercially important Florida stone crab, Menippe mercenaria. At elevated temperature, larvae exhibited a significantly shorter molt stage, and elevated pCO2 caused stage-V larvae to delay metamorphosis to post-larvae. On average, elevated pCO2 resulted in a 37% decrease in survivorship relative to the control; however the effect of elevated temperature reduced larval survivorship by 71%. Exposure to both elevated temperature and pCO2 reduced larval survivorship by 80% relative to the control. Despite this, no significant differences were detected in the condition or morphology of stone crab larvae when subjected to elevated temperature and pCO2 treatments. Although elevated pCO2 could result in a reduction in larval supply, future increases in seawater temperatures are even more likely to threaten the future sustainability of the stone-crab fishery.
Duan, Honglang; Duursma, Remko A; Huang, Guomin; Smith, Renee A; Choat, Brendan; O'Grady, Anthony P; Tissue, David T
2014-07-01
It has been reported that elevated temperature accelerates the time-to-mortality in plants exposed to prolonged drought, while elevated [CO(2)] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO(2)] and temperature on the inter-dependent carbon and hydraulic characteristics associated with drought-induced mortality in Eucalyptus radiata seedlings grown in two [CO(2)] (400 and 640 μL L(-1)) and two temperature (ambient and ambient +4 °C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO(2)] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO(2)], may be the primary contributors to drought-induced seedling mortality under future climates. © 2013 John Wiley & Sons Ltd.
Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu
2007-08-21
This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.
Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila
Ishemgulova, Aygul; Butenko, Anzhelika; Kortišová, Lucie; Boucinha, Carolina; Grybchuk-Ieremenko, Anastasiia; Morelli, Karina A.; Tesařová, Martina; Kraeva, Natalya; Grybchuk, Danyil; Pánek, Tomáš; Flegontov, Pavel; Lukeš, Julius; Votýpka, Jan; Pavan, Márcio Galvão; Opperdoes, Fred R.; Spodareva, Viktoria; d'Avila-Levy, Claudia M.; Kostygov, Alexei Yu.
2017-01-01
In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates. PMID:28328988
First-principles investigation of polarization and ion conduction mechanisms in hydroxyapatite
NASA Astrophysics Data System (ADS)
Kasamatsu, Shusuke; Sugino, Osamu
We report first-principles simulation of polarization mechanisms in hydroxyapatite to explain the underlying mechanism behind the reported ion conductivities and polarization under electrical poling at elevated temperatures. It is found that ion conduction occurs mainly in the column of OH$^-$ ions along the $c$-axis through a combination of the flipping of OH$^-$ ions, exchange of proton vacancies between OH$^-$ ions, and the hopping of the OH$^-$ vacancy. The calculated activation energies are consistent with those found in conductivity measurements and thermally stimulated depolarization current measurements.
Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Kellomäki, Seppo
2005-01-01
Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.
Do acute phase markers explain body temperature and brain temperature after ischemic stroke?
Whiteley, William N.; Thomas, Ralph; Lowe, Gordon; Rumley, Ann; Karaszewski, Bartosz; Armitage, Paul; Marshall, Ian; Lymer, Katherine; Dennis, Martin
2012-01-01
Objective: Both brain and body temperature rise after stroke but the cause of each is uncertain. We investigated the relationship between circulating markers of inflammation with brain and body temperature after stroke. Methods: We recruited patients with acute ischemic stroke and measured brain temperature at hospital admission and 5 days after stroke with multivoxel magnetic resonance spectroscopic imaging in normal brain and the acute ischemic lesion (defined by diffusion-weighted imaging [DWI]). We measured body temperature with digital aural thermometers 4-hourly and drew blood daily to measure interleukin-6, C-reactive protein, and fibrinogen, for 5 days after stroke. Results: In 44 stroke patients, the mean temperature in DWI-ischemic brain soon after admission was 38.4°C (95% confidence interval [CI] 38.2–38.6), in DWI-normal brain was 37.7°C (95% CI 37.6–37.7), and mean body temperature was 36.6°C (95% CI 36.3–37.0). Higher mean levels of interleukin-6, C-reactive protein, and fibrinogen were associated with higher temperature in DWI-normal brain at admission and 5 days, and higher overall mean body temperature, but only with higher temperature in DWI-ischemic brain on admission. Conclusions: Systemic inflammation after stroke is associated with elevated temperature in normal brain and the body but not with later ischemic brain temperature. Elevated brain temperature is a potential mechanism for the poorer outcome observed in stroke patients with higher levels of circulating inflammatory markers. PMID:22744672
Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading
NASA Astrophysics Data System (ADS)
Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.
2018-04-01
The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakowiak, Konrad J., E-mail: kjkrak@mit.edu; Thomas, Jeffrey J., E-mail: JThomas39@slb.com; Musso, Simone, E-mail: SMusso@slb.com
2015-01-15
With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found betweenmore » chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.« less
NASA Astrophysics Data System (ADS)
Minder, J. R.; Letcher, T.; Liu, C.
2016-12-01
Numerous observational and modeling studies have suggested that over mountainous terrain certain elevations can experience systematically enhanced rates of near-surface climate warming relative to the surrounding region, a phenomenon referred to as elevation-dependent warming (EDW). In many of these studies high-elevation locations were found to experience the fastest warming rates. A variety of physical mechanisms for EDW have been proposed but there is no consensus as to the dominant cause. We examine EDW in regional climate model (RCM) simulations with very high horizontal resolution (4-km horizontal grid). The simulation domain centers on the Rocky Mountains and intermountain west of the United States. Climate change simulations are conducted using the "pseudo global warming" framework to focus on the regional response to large-scale thermodynamic and radiative climate changes representative of mid-century anthropogenic global climate change. Substantial EDW is found in these simulations. Warming varies with elevation by up to 1°C depending on the season considered. The structure of EDW is only weakly sensitive to variations in horizontal grid spacing ranging from 4 to 36 km. The snow-albedo feedback (SAF) plays a major role in causing the simulated EDW. The elevation band of maximum warming varies seasonally, mostly following the margin of the seasonal snowpack where snow cover and albedo reductions are maximized under climate warming. Additional simulations where the SAF is artificially suppressed demonstrate that EDW variations of up to 0.6°C can be attributed to the SAF. Simulations with a suppressed SAF still exhibit EDW variations up to 0.8°C that must be explained by other mechanisms. This remaining EDW shows a near linear increase in warming with elevation in most months and does not appear to be inherited from the profile of large-scale free-tropospheric warming. Simple theoretical calculations suggest that the non-linear dependence of surface emission on temperature offers one promising mechanism. The role of water vapor and cloud feedbacks are also considered as alternative mechanisms.
Synergistic Effects of Physical Aging and Damage on Long-Term Behavior of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Brinson, L. Cate
1999-01-01
The research consisted of two major parts, first modeling and simulation of the combined effects of aging and damage on polymer composites and secondly an experimental phase examining composite response at elevated temperatures, again activating both aging and damage. For the simulation, a damage model for polymeric composite laminates operating at elevated temperatures was developed. Viscoelastic behavior of the material is accounted for via the correspondence principle and a variational approach is adopted to compute the temporal stresses within the laminate. Also, the effect of physical aging on ply level stress and on overall laminate behavior is included. An important feature of the model is that damage evolution predictions for viscoelastic laminates can be made. This allows us to track the mechanical response of the laminate up to large load levels though within the confines of linear viscoelastic constitutive behavior. An experimental investigation of microcracking and physical aging effects in polymer matrix composites was also pursued. The goal of the study was to assess the impact of aging on damage accumulation, in ten-ns of microcracking, and the impact of damage on aging and viscoelastic behavior. The testing was performed both at room and elevated temperatures on [+/- 45/903](sub s) and [02/903](sub s) laminates, both containing a set of 90 deg plies centrally located to facilitate investigation of microcracking. Edge replication and X-ray-radiography were utilized to quantify damage. Sequenced creep tests were performed to characterize viscoelastic and aging parameters. Results indicate that while the aging times studied have limited ]Influence on damage evolution, elevated temperature and viscoelastic effects have a profound effect on the damage mode seen. Some results are counterintuitive, including the lower strain to failure for elevated temperature tests and the catastrophic failure mode observed for the [+/- 45/9O3](sub s), specimens. The fracture toughness for transverse cracks increases with increasing temperature for both systems: transverse cracking was completely absent prior to failure in [+/- 45/903](sub s), and was suppressed for [02/903](sub s). No significant effect of damage on aging or viscoelastic parameters was observed.
Ryan, Michael G
2013-11-01
Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway spruce site with nutrient-poor soil. This special section on research at Flakaliden presents five papers that explore different facets of nutrition, atmospheric CO2 concentration, [CO2], and increased temperature treatments, using the original experiment as a base. Research at Flakaliden shows the dominant role of nutrition in controlling the response of growth to the increased photosynthesis promoted by elevated [CO2] and temperature. Experiments with whole-tree chambers showed that all treatments (air temperature warming, elevated [CO2] and optimum nutrition) increased shoot photosynthesis by 30-50%, but growth only increased with [CO2] when combined with the optimum nutrition treatment. Elevated [CO2] and temperature increased shoot photosynthesis by increasing the slope between light-saturated photosynthesis and foliar nitrogen by 122%, the initial slope of the light response curve by 52% and apparent quantum yield by 10%. Optimum nutrition also decreased photosynthetic capacity by 17%, but increased it by 62% in elevated [CO2], as estimated from wood δ(13)C. Elevated air temperature advanced spring recovery of photosynthesis by 37%, but spring frost events remained the controlling factor for photosynthetic recovery, and elevated [CO2] did not affect this. Increased nutrient availability increased wood growth primarily through a 50% increase in tracheid formation, mostly during the peak growth season. Other notable contributions of research at Flakaliden include exploring the role of optimal nutrition in large-scale field trials with foliar analysis, using an ecosystem approach for multifactor experiments, development of whole-tree chambers allowing inexpensive environmental manipulations, long-term deployment of shoot chambers for continuous measurements of gas exchange and exploring the ecosystem response to soil and aboveground tree warming. The enduring legacy of Flakaliden will be the rich data set of long-term, multifactor experiments that has been and will continue to be used in many modeling and cross-site comparison studies.
Anderson, Laurel J; Cipollini, Don
2013-08-01
Global increases in atmospheric CO2 and temperature may interact in complex ways to influence plant physiology and growth, particularly for species that grow in cool, early spring conditions in temperate forests. Plant species may also vary in their responses to environmental changes; fast-growing invasives may be more responsive to rising CO2 than natives and may increase production of allelopathic compounds under these conditions, altering species' competitive interactions. We examined growth and physiological responses of Alliaria petiolata, an allelopathic, invasive herb, and Geum vernum, a co-occurring native herb, to ambient and elevated spring temperatures and atmospheric CO2 conditions in a factorial growth chamber experiment. At 5 wk, leaves were larger at high temperature, and shoot biomass increased under elevated CO2 only at high temperature in both species. As temperatures gradually warmed to simulate seasonal progression, G. vernum became responsive to CO2 at both temperatures, whereas A. petiolata continued to respond to elevated CO2 only at high temperature. Elevated CO2 increased thickness and decreased nitrogen concentrations in leaves of both species. Alliaria petiolata showed photosynthetic downregulation at elevated CO2, whereas G. vernum photosynthesis increased at elevated temperature. Flavonoid and cyanide concentrations decreased significantly in A. petiolata leaves in the elevated CO2 and temperature treatment. Total glucosinolate concentrations and trypsin inhibitor activities did not vary among treatments. Future elevated spring temperatures and CO2 will interact to stimulate growth for A. petiolata and G. vernum, but there may be reduced allelochemical effects in A. petiolata.
Applications of optical holography to applied mechanics.
NASA Technical Reports Server (NTRS)
Aprahamian, R.
1972-01-01
This paper provides a brief summary of applications of optical holography and holographic interferometry to applied solid mechanics. Basic equations commonly used in fringe interpretation are described and used to reduce the data contained on holographic interferograms. A comparison of data obtained holographically with analytical prediction is given wherever possible. Applications contained herein include front surface physics, study of bomb breakup, transverse wave propagation, study of mode shapes of panels at elevated temperatures, nondestructive testing, and vibration analysis.
NASA Technical Reports Server (NTRS)
Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.
1980-01-01
The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Hongyi, E-mail: h.zhan@uq.edu.au; Zeng, Weidong; Wang, Gui
2015-04-15
The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentationmore » of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.« less
Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5TiZr Alloy (Postprint)
2014-04-01
vacuum arc melting. To close shrinkage porosity, it was hot isostatically pressed (HIPd) at T = 1723K and P = 207MPa for 3 h. In both as-solidified and...and 1473 K in a computer-controlled Instron (Instron, Norwood, MA) mechanical testing machine out- fitted with a Brew vacuum furnace and silicon...temperature. For Zr and Ti, the parameter a was extrapolated from elevated temperatures [8]. The calculated ( Calc ) values of the lattice parameter of
2014-03-27
created using a hammer and a punch tool provided by Material Test Systems (MTS) and were kept to a minimal depth to avoid fracture initiation at the...temperature. 76 be seen that the modulus remains relatively constant until near failure. There was no apparent correlation between modulus loss and...Normalized modulus vs. fatigue cycles of all ±45° specimens can be seen in Figure 56. There is not an evident correlation between number of cycles and
1983-04-01
transition sections on the basis of its strength, ductility, and corrosion H resistance. In addition, austenitic stainless steels , such as 304, retain their...desirable mechanical properties at both cryogenic and elevated temperatures (approaching low red heat or 650C), and since both extremes were likely... temperature incoming air combined with a fuel spray would create the effect of escaping bleed air in the test chamber, with velocities low enough to
Processable high temperature resistant addition type polyimide laminating resins
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.
1973-01-01
Basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type (A-type) polyimides are reviewed. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymers as the matrix are also reviewed. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomer reactants (PMR) on the fiber reinforcement is described. The elevated temperature properties of A-type PMR/graphite fiber composites are also presented.
On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H
NASA Technical Reports Server (NTRS)
Sankararao, K. Bhanu; Schuster, H.; Halford, G. R.
1994-01-01
The effect of strain rate on massive precipitation and the mechanism for the occurrence of massive precipitation of M23C6 in alloy 800H is investigated during elevated temperature low cycle fatigue testing. It was observed that large M23C6 platelets were in the vicinity of grain and incoherent twin boundaries. The strain controlled fatigue testing at higher strain rates that promoted cyclic hardening enabled massive precipitation to occur more easily.
NASA Astrophysics Data System (ADS)
Tulendinov, T.; Zesers, A.; Tamužs, V.
2017-09-01
Concrete samples were manufactured and strengthened with a basalt FRP (BFRP) using two kinds of winding patterns (spiral and tight). The efficiency of common and temperature-resistant epoxy binders were studied. Some of the samples were encased in an external concrete shell for an additional protection of the FRP reinforcement during heating. Both plain and polypropylene-microfiber-reinforced concretes were used for the external casing. Stress-strain relations of the samples before and after heating were obtained. The effects of high temperatures on the integrity of concrete samples with a BFRP reinforcement was investigated.
NASA Astrophysics Data System (ADS)
Nikitin, I.; Juijerm, P.
2018-02-01
The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.
Thermal Stress and Toxicity | Science Inventory | US EPA
Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.
1991-01-01
Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.
NASA Technical Reports Server (NTRS)
Diaz, J. O.
1985-01-01
Composites consisting of tungsten alloy wires in superalloy matrices are being studied because they offer the potential for increased strength compared to current materials used at temperatures up to at least 1093 C (2000F). Previous research at the NASA Lewis Research Center and at other laboratories in the U.S., Europe, and Japan has demonstrated laboratory feasibility for fiber reinforced superalloys (FRS). The data for the mechanical and physical properties used to evaluate candidate materials is limited and a need exists for a more detailed and complete data base. The focus of this work is to develop a test procedure to provide a more complete FRS data base to quantitatively evaluate the composite's potential for component applications. This paper will describe and discuss the equipment and procedures under development to obtain elevated temperature tensile stress-strain, strength and modulus data for the first generation of tungsten fiber reinforced superalloy composite (TFRS) materials. Tensile stress-strain tests are conducted using a constant crosshead speed tensile testing machine and a modified load-strain measuring apparatus. Elevated temperature tensile tests are performed using a resistance wound commercial furnace capable of heating test specimens up to 1093 C (2000 F). Tensile stress-strain data are obtained for hollow tubular stainless steel specimens serving as a prototype for future composite specimens.
Gan, Yingye; Mo, Kun; Yun, Di; ...
2017-03-19
Nanostructured ferritic alloys (NFAs) are promising structural materials for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner's model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young's modulus and Poisson's ratio of the NFAs. Temperature dependencemore » of elastic anisotropy was observed in the NFAs. Lastly, an analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less
Constitutive Law and Flow Mechanism in Diamond Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiaohui; Raterron, Paul; Zhang, Jianzhong
2012-11-19
Constitutive laws and crystal plasticity in diamond deformation have been the subjects of substantial interest since synthetic diamond was made in 1950's. To date, however, little is known quantitatively regarding its brittle-ductile properties and yield strength at high temperatures. In this paper, we report, for the first time, the strain-stress constitutive relations and experimental demonstration of deformation mechanisms under confined high pressure. The deformation at room temperature is essentially brittle, cataclastic, and mostly accommodated by fracturing on {111} plane with no plastic yielding at uniaxial strains up to 15%. At elevated temperatures of 1000°C and 1200°C diamond crystals exhibit significantmore » ductile flow with corresponding yield strength of 7.9 and 6.3 GPa, indicating that diamond starts to weaken when temperature is over 1000°C. Finally, at high temperature the plastic deformation and ductile flow is meditated by the <110>{111} dislocation glide and a very active {111} micro-twinning.« less
Phase dependent fracture and damage evolution of polytetrafluoroethylene (PTFE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E. N.; Rae, P.; Orler, E. B.
2004-01-01
Compared with other polymers, polytetrafluoroethylene (PTFE) presents several advantages for load-bearing structural components including higher strength at elevated temperatures and higher toughness at lowered temperatures. Failure sensitive applications of PTFE include surgical implants, aerospace components, and chemical barriers. Polytetrafluoroethylene is semicrystalline in nature with their linear chains forming complicated phases near room temperature and ambient pressure. The presence of three unique phases near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a comprehensive and systematic study of fracture and damage evolution in PTFE to elicit the effects of temperature-inducedmore » phase on fracture mechanisms. The fracture behavior of PTFE is observed to undergo transitions from brittle-fracture below 19 C to ductile-fracture with crazing and some stable crack growth to plastic flow aver 30 C. The bulk failure properties are correlated to failure mechanisms through fractography and analysis of the crystalline structure.« less
NASA Astrophysics Data System (ADS)
Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie
2017-04-01
Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants
Hill, R; Larkum, A W D; Frankart, C; Kühl, M; Ralph, P J
2004-01-01
Mass coral bleaching is linked to elevated sea surface temperatures, 1-2 degrees C above average, during periods of intense light. These conditions induce the expulsion of zooxanthellae from the coral host in response to photosynthetic damage in the algal symbionts. The mechanism that triggers this release has not been clearly established and to further our knowledge of this process, fluorescence rise kinetics have been studied for the first time. Corals that were exposed to elevated temperature (33 degrees C) and light (280 mumol photons m(-2) s(-1)), showed distinct changes in the fast polyphasic induction of chlorophyll-a fluorescence, indicating biophysical changes in the photochemical processes. The fluorescence rise over the first 2000ms was monitored in three species of corals for up to 8 h, with a PEA fluorometer and an imaging-PAM. Pocillopora damicornis showed the least impact on photosynthetic apparatus, while Acropora nobilis was the most sensitive, with Cyphastrea serailia intermediate between the other two species. A. nobilis showed a remarkable capacity for recovery from bleaching conditions. For all three species, a steady decline in the slope of the initial rise and the height of the J-transient was observed, indicating the loss of functional Photosystem II (PS II) centres under elevated-temperature conditions. A significant loss of PS II centres was confirmed by a decline in photochemical quenching when exposed to bleaching stress. Non-photochemical quenching was identified as a significant mechanism for dissipating excess energy as heat under the bleaching conditions. Photophosphorylation could explain this decline in PS II activity. State transitions, a component of non-photochemical quenching, was a probable cause of the high non-photochemical quenching during bleaching and this mechanism is associated with the phosphorylation-induced dissociation of the light harvesting complexes from the PS II reaction centres. This reversible process may account for the coral recovery, particularly in A. nobilis.
Jud, Werner; Vanzo, Elisa; Li, Ziru; Ghirardo, Andrea; Zimmer, Ina; Sharkey, Thomas D; Hansel, Armin; Schnitzler, Jörg-Peter
2016-06-01
Over the last decades, post-illumination bursts (PIBs) of isoprene, acetaldehyde and green leaf volatiles (GLVs) following rapid light-to-dark transitions have been reported for a variety of different plant species. However, the mechanisms triggering their release still remain unclear. Here we measured PIBs of isoprene-emitting (IE) and isoprene non-emitting (NE) grey poplar plants grown under different climate scenarios (ambient control and three scenarios with elevated CO2 concentrations: elevated control, periodic heat and temperature stress, chronic heat and temperature stress, followed by recovery periods). PIBs of isoprene were unaffected by elevated CO2 and heat and drought stress in IE, while they were absent in NE plants. On the other hand, PIBs of acetaldehyde and also GLVs were strongly reduced in stress-affected plants of all genotypes. After recovery from stress, distinct differences in PIB emissions in both genotypes confirmed different precursor pools for acetaldehyde and GLV emissions. Changes in PIBs of GLVs, almost absent in stressed plants and enhanced after recovery, could be mainly attributed to changes in lipoxygenase activity. Our results indicate that acetaldehyde PIBs, which recovered only partly, derive from a new mechanism in which acetaldehyde is produced from methylerythritol phosphate pathway intermediates, driven by deoxyxylulose phosphate synthase activity. © 2016 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Miller, G M; Kroon, F J; Metcalfe, S; Mundayi, P L
2015-04-01
Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures (28.5°C [+0.0°C], 30.0°C [-1.5°C] and 31.5°C [+3.0°C]) cross-factored with three CO2 levels (a current-day control [417 µatm] and moderate [644 µatm] and high [1134 µatm]) treatments consistent with the range of CO2 projections for the year 2100. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length, and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17β-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated. CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or Co2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17β-estradiol concentrations, suggesting that declines in reproduction with increasing temperature were due to the thermal sensitivity of reproductive hormones rather than a reduction in energy available for reproduction. Our results show that elevated temperature exerts a stronger influence than high CO2 on reproduction in A. melanopus. Understanding how these two environmental variables interact to affect the reproductive performance of marine organisms will be important for predicting the future impacts of climate change.
Riikonen, Johanna; Kontunen-Soppela, Sari; Ossipov, Vladimir; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina; Vapaavuori, Elina; Heinonen, Jaakko; Kivimäenpää, Minna
2012-09-01
Northern forests are currently experiencing increasing mean temperatures, especially during autumn and spring. Consequently, alterations in carbon sequestration, leaf biochemical quality and freezing tolerance (FT) are likely to occur. The interactive effects of elevated temperature and ozone (O(3)), the most harmful phytotoxic air pollutant, on Norway spruce (Picea abies (L.) Karst.) seedlings were studied by analysing phenology, metabolite concentrations in the needles, FT and gas exchange. Sampling was performed in September and May. The seedlings were exposed to a year-round elevated temperature (+1.3 °C), and to 1.4× ambient O(3) concentration during the growing season in the field. Elevated temperature increased the concentrations of amino acids, organic acids of the citric acid cycle and some carbohydrates, and reduced the concentrations of phenolic compounds, some organic acids of the shikimic acid pathway, sucrose, cyclitols and steroids, depending on the timing of the sampling. Although growth onset occurred earlier at elevated temperature, the temperature of 50% lethality (LT(50)) was similar in the treatments. Photosynthesis and the ratio of photosynthesis to dark respiration were reduced by elevated temperature. Elevated concentrations of O(3) reduced the total concentration of soluble sugars, and tended to reduce LT(50) of the needles in September. These results show that alterations in needle chemical quality can be expected at elevated temperatures, but the seedlings' sensitivity to autumn and spring frosts is not altered. Elevated O(3) has the potential to disturb cold hardening of Norway spruce seedlings in autumn, and to alter the water balance of the seedling through changes in stomatal conductance (g(s)), while elevated temperature is likely to reduce g(s) and consequently reduce the O(3)-flux inside the leaves.
NASA Technical Reports Server (NTRS)
Ernst, Hugo A. (Editor); Saxena, Ashok (Editor); Mcdowell, David L. (Editor); Atluri, Satya N. (Editor); Newman, James C., Jr. (Editor); Raju, Ivatury S. (Editor); Epstein, Jonathan S. (Editor)
1992-01-01
Current research on fracture mechanics is reviewed, focusing on ductile fracture; high-temperature and time-dependent fracture; 3D problems; interface fracture; microstructural aspects of fatigue and fracture; and fracture predictions and applications. Particular attention is given to the determination and comparison of crack resistance curves from wide plates and fracture mechanics specimens; a relationship between R-curves in contained and uncontained yield; the creep crack growth behavior of titanium alloy Ti-6242; a crack growth response in three heat resistant materials at elevated temperature; a crack-surface-contact model for determining effective-stress-intensity factors; interfacial dislocations in anisotropic bimaterials; an effect of intergranular crack branching on fracture toughness evaluation; the fracture toughness behavior of exservice chromium-molybdenum steels; the application of fracture mechanics to assess the significance of proof loading; and a load ratio method for estimating crack extension.
NASA Astrophysics Data System (ADS)
Li, Maoyuan; Lu, Lin; Dai, Zhen; Hong, Yiqiang; Chen, Weiwei; Zhang, Yuping; Qiao, Yingjie
Amorphous Al-Cu-Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10mm. The SPS process was conducted at the pressure of 200 and 300MPa with the temperature of 653-723K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al-Cu-Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al-Ti, Al-Cu and Al-Cu-Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.
Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.
Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark
2014-03-01
In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.
Clements, Jeff C; Hicks, Carla; Tremblay, Réjan; Comeau, Luc A
2018-01-01
Pre-spawning blue mussels ( Mytilus edulis ) appear sensitive to elevated temperature and robust to elevated p CO 2 ; however, the effects of these stressors soon after investing energy into spawning remain unknown. Furthermore, while studies suggest that elevated p CO 2 affects the byssal attachment strength of Mytilus trossulus from southern latitudes, p CO 2 and temperature impacts on the byssus strength of other species at higher latitudes remain undocumented. In a 90 day laboratory experiment, we exposed post-spawning adult blue mussels ( M. edulis ) from Atlantic Canada to three p CO 2 levels ( p CO 2 ~625, 1295 and 2440 μatm) at two different temperatures (16°C and 22°C) and assessed energetic reserves on Day 90, byssal attachment strength on Days 30 and 60, and condition index and mortality on Days 30, 60 and 90. Results indicated that glycogen content was negatively affected under elevated temperature, but protein, lipid, and overall energy content were unaffected. Reduced glycogen content under elevated temperature was associated with reduced condition index, reduced byssal thread attachment strength, and increased mortality; elevated p CO 2 had no effects. Overall, these results suggest that the glycogen reserves of post-spawning adult M. edulis are sensitive to elevated temperature, and can result in reduced health and byssal attachment strength, leading to increased mortality. These results are similar to those reported for pre-spawning mussels and suggest that post-spawning blue mussels are tolerant to elevated p CO 2 and sensitive to elevated temperature. In contrast to previous studies, however, elevated pCO 2 did not affect byssus strength, suggesting that negative effects of elevated p CO 2 on byssus strength are not universal.
Behm, Jocelyn E.; Wang, Lin; Huang, Yong; Long, Yongcheng; Zhu, Jianguo
2011-01-01
Environmental factors that affect spatiotemporal distribution patterns of animals usually include resource availability, temperature, and the risk of predation. However, they do not explain the counterintuitive preference of high elevation range in winter by the black-and-white snub-nosed monkey (Rhinopithecus bieti). We asked whether variation of sunshine along with elevations is the key driving force. To test this hypothesis, we conducted field surveys to demonstrate that there was a statistically significant pattern of high elevation use during winter. We then asked whether this pattern can be explained by certain environmental factors, namely temperature, sunshine duration and solar radiation. Finally, we concluded with a possible ecological mechanism for this pattern. In this study, we employed GIS technology to quantify solar radiation and sunshine duration across the monkey's range. Our results showed that: 1) R. bieti used the high altitude range between 4100–4400 m in winter although the yearly home range spanned from 3500–4500 m; 2) both solar radiation and sunshine duration increased with elevation while temperature decreased with elevation; 3) within the winter range, the use of range was significantly correlated with solar radiation and sunshine duration; 4) monkeys moved to the areas with high solar radiation and duration following a snowfall, where the snow melts faster and food is exposed earlier. We concluded that sunshine was the main factor that influences selection of high elevation habitat for R. bieti in winter. Since some other endotherms in the area exhibit similar winter distributional patterns, we developed a sunshine hypothesis to explain this phenomenon. In addition, our work also represented a new method of integrating GIS models into traditional field ecology research to study spatiotemporal distribution pattern of wildlife. We suggest that further theoretical and empirical studies are necessary for better understanding of sunshine influence on wildlife range use. PMID:21915329
NASA Astrophysics Data System (ADS)
Juday, G. P.; Jess, R.; Alix, C. M.; Verbyla, D.
2015-12-01
The boreal forest of Alaska and western Canada exist in a complex mosaic of environments determined by elevation, aspect of exposure, and longitudinal and latitudinal gradients of change from warm, dry continental to maritime-influenced conditions. This forest region is largely made up of trees with two growth responses to temperature increases. Trees that decrease in growth are termed negative responders, and occupy warm, dry sites at low elevations. Trees that increase in radial growth are termed positive responders, and are largely in western Alaska, and at high elevation of the Brooks and Alaska Ranges. Since the Pacific climate regime shift of the 1970s, mature trees at low elevation sites have experienced increasing climate stress in several quasi-decadal cycles of intensifying drought stress. NDVI trends and tree ring records demonstrating radial growth decline are coherent. Phenological monitoring of spruce height growth also indicates that depletion of spring soil moisture is a critical process driven by the interaction of early warm season temperatures and precipitation. Novel biotic disturbance agents including spruce budworm, outbreaks of which are triggered by warm temperature anomalies related to its biology, and aspen leaf miner are depressing realized growth below climatically predicted levels, suggesting a pathway by which tree death is likely to occur before absolute temperature limits. As a result, insect outbreaks are degrading the otherwise strong long-term climate signal in Alaska boreal trees. However, young tree (> 40 yrs.) regeneration generally does not yet display the symptoms of acute high temperature stress. Overall, on these vulnerable sites, if temperature increases similar to the past 40 years continue, long term survival prospects are questionable because the climate conditions would be outside the limits that have historically defined the species ranges of aspen, Alaska birch, and black and white spruce.
Wolfenden, Richard
2014-01-01
Kelvin considered it unlikely that sufficient time had elapsed on the earth for life to have reached its present level of complexity. In the warm surroundings in which life first appeared, however, elevated temperatures would have reduced the kinetic barriers to reaction. Recent experiments disclose the profound extent to which very slow reactions are accelerated by elevated temperatures, collapsing the time that would have been required for early events in primordial chemistry before the advent of enzymes. If a primitive enzyme, like model catalysts and most modern enzymes, accelerated a reaction by lowering its enthalpy of activation, then the rate enhancement that it produced would have increased automatically as the environment cooled, quite apart from any improvements in catalytic activity that arose from mutation and natural selection. The chemical events responsible for spontaneous mutation are also highly sensitive to temperature, furnishing an independent mechanism for accelerating evolution. PMID:25210030
Neonatal Cranial Ultrasound: Are Current Safety Guidelines Appropriate?
Lalzad, Assema; Wong, Flora; Schneider, Michal
2017-03-01
Ultrasound can lead to thermal and mechanical effects in interrogated tissues. We reviewed the literature to explore the evidence on ultrasound heating on fetal and neonatal neural tissue. The results of animal studies have suggested that ultrasound exposure of the fetal or neonatal brain may lead to a significant temperature elevation at the bone-brain interface above current recommended safety thresholds. Temperature increases between 4.3 and 5.6°C have been recorded. Such temperature elevations can potentially affect neuronal structure and function and may also affect behavioral and cognitive function, such as memory and learning. However, the majority of these studies were carried out more than 25 y ago using non-diagnostic equipment with power outputs much lower than those of modern machines. New studies to address the safety issues of cranial ultrasound are imperative to provide current clinical guidelines and safety recommendations. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Elevated temperature strengthening of a melt spun austenitic steel by TiB2
NASA Technical Reports Server (NTRS)
Michal, G. M.; Glasgow, T. K.; Moore, T. J.
1986-01-01
Mechanical properties of an iron-based alloy containing (by wt pct) 33Ni, 2Al, 6Ti, and 2B (resulting in an alloy containing 10 vol pct TiB2) were evaluated by hardness and tensile testing. The alloy was cast as a ribbon using a dual 'free-jet' variation of Jech et al. (1984) method of chill-block melt-spinning against a copper wheel; to simulate thermal cycles the alloy ribbon would experience during compaction into shapes, various segments of the ribbon were annealed under a vacuum at temperatures ranging from 500 to 1150 C. The results show that maximum strengths at 650 and 760 C were developed in ribbons annealed at 1100 C; in these ribbons an optimal combination of grain coarsening with minimum TiB2 particle growth was observed. However, the elevated-temperature strength of the TiB2-strengthened alloy under optimal annealing conditions was poorer than that of conventional iron-based superalloys strengthened by gamma-prime precipitates.
NASA Astrophysics Data System (ADS)
Tretyakov, A.; Tkalenko, I.; Wald, F.; Novak, J.; Stefan, R.; Kohoutková, A.
2017-09-01
The recent development in technology of production and transportation of steel fibre-reinforced concrete enables its utilization in composite steel-concrete structures. This work is a part of a project which focuses on development of mechanical behaviour of circular hollow section (CHS) composite steel and fibre-concrete (SFRC) columns at elevate temperature. Research includes two levels of accuracy/complexity, allowing simplified or advanced approach for design that follows upcoming changes in European standard for composite member design in fire EN1994-1-2 [1]. One part is dedicated to determination and description of flexural stiffness of the SFRC CHS columns. To determinate flexural stiffness were prepared series of pure bending tests at elevated and ambient temperature. Presented paper focuses on the results of the tests and determination of flexural stiffness at ambient temperature. Obtained outputs were compared to data of existing studies about concrete-filled tube members with plain concrete and values analytically calculated according to the existing European standard EN1994-1-1 [2].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, L.B.
1994-12-01
This research extends the existing knowledge of cross-ply metal matrix composites (MMC) to include fatigue behavior under strain-controlled fully reversed loading. This study investigated fatigue life, failure modes and damage mechanisms of the SCS-6/Ti-15-3, (O/9O)2s, MMC. The laminate was subjected to fully reversed fatigue at elevated temperature (427 deg C) at various strain levels. Stress, strain and modulus data were analyzed to characterize the macro-mechanical behavior of the composite. Microscopy and fractography were accomplished to identify and characterize the damage mechanisms at the microscopic level. Failure modes varied according to the maximum applied strain level showing either mixed mode (i.e.more » combination of both fiber and matrix dominated modes) or matrix dominated fatigue failures. As expected, higher strain loadings resulted in more ductility of the matrix at failure, evidenced by fracture surface features. For testing of the same composite laminate, the fatigue life under strain controlled mode slightly increased, compared to its load-controlled mode counterpart, using the effective strain range comparison basis. However, the respective fatigue life curves converged in the high cycle region, suggesting that the matrix dominated failure mode produces equivalent predicted fatigue lives for both control modes.« less
Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus
NASA Technical Reports Server (NTRS)
Sakimoto, Susan E. H.; Zuber, Maria T.
1995-01-01
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.
NASA Astrophysics Data System (ADS)
Ghadzali, N. S.; Ibrahim, M. H. W.; Sani, M. S. H. Mohd; Jamaludin, N.; Desa, M. S. M.; Misri, Z.
2018-04-01
Concrete is the chief material of construction and it is non-combustible in nature. However, the exposure to the high temperature such as fire can lead to change in the concrete properties. Due to the higher temperature, several changes in terms of mechanical properties were observed in concrete such as compressive strength, modulus of elasticity, tensile strength and durability of concrete will decrease significantly at high temperature. The exceptional fire-proof achievement of concrete is might be due to the constituent materials of concrete such as its aggregates. The extensive use of aggregate in concrete will leads to depletion of natural resources. Hence, the use of waste and other recycled and by-product material as aggregates replacements becomes a leading research. This review has been made on the utilization of waste materials in concrete and critically evaluates its effects on the concrete performances during the fire exposure. Therefore, the objective of this paper is to review the previous search work regarding the concrete containing waste material as aggregates replacement when exposed to elevated temperature and come up with different design recommendations to improve the fire resistance of structures.
Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys
Tan, Lizhen; Yang, Ying
2014-12-05
Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by meansmore » of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.« less
Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker
2015-11-01
Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. © 2015 Scandinavian Plant Physiology Society.
Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua
2015-09-23
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.
Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua
2015-01-01
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070
NASA Astrophysics Data System (ADS)
Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua
2015-09-01
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.
NASA Technical Reports Server (NTRS)
Hanson, M. P.; Serafini, T. T.
1971-01-01
Composites were exposed in circulating and static air environments up to 589 K for a maximum of 1000 hours. Composites of HT-S, HM-S, Thornel 50S, and Fortafil 5-Y fiber and a new addition type polyimide resin were laminated in a matched-die mold. Flexural strengths, flexural modulus, and interlaminar shear strengths were determined at 297, 533, and 598 K after various durations of exposure. Composite and fiber weight loss characteristics were determined by isothermal gravimetric analysis in air. Properties of composites exposed and tested at the environment temperatures were compared with those determined under short-term exposure. A new short beam interlaminar shear fixture is described. Environmental effects of long-term ambient temperature exposure on the elevated temperature mechanical properties of graphite/polyimide composites are presented.
Experimentally determined wear behavior of an Al2O3-SiC composite from 25 to 1200 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Farmer, Serene C.; Book, Patricia O.
1990-01-01
The sliding wear behavior of a self-mated alumina-silicon carbide whisker toughened composite was studied using optical, scanning electron (SEM) and transmission electron (TEM) microscopy. Because of its excellent strength and toughness properties this composite material is under consideration for use in heat engine applications for sliding contacts which operate at elevated temperatures. The composite's wear behavior and especially its wear mechanisms are not well understood. Pin-on-disk specimens were slid in air at 2.7 m/s sliding velocity, under a 26.5-N load, at temperatures 25 to 1200 C. Pin wear increased with increasing temperature. Based upon the microscopic analyses, the wear mechanism seems to be loosening of the reinforcing whiskers due to frictional and bulk heating. This leads to whisker pullout and increased wear.
Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Li, Shasha; Chen, Yue
2017-03-01
Thermal transport and phonon-phonon coupling in monolayer hexagonal boron nitride (h-BN) under equibiaxial strains are investigated from first principles. Phonon spectra at elevated temperatures have been calculated from perturbation theory using the third-order anharmonic force constants. The stiffening of the out-of-plane transverse acoustic mode (ZA) near the Brillouin zone center and the increase of acoustic phonon lifetimes are found to contribute to the dramatic increase of thermal transport in strained h-BN. The transverse optical mode (TO) at the K point, which was predicted to lead to mechanical failure of h-BN, is found to shift to lower frequencies at elevated temperatures under equibiaxial strains. The longitudinal and transverse acoustic modes exhibit broad phonon spectra under large strains in sharp contrast to the ZA mode, indicating strong in-plane phonon-phonon coupling.
Wang, Haimiao; Chen, Yinglong; Hu, Wei; Wang, Shanshan; Snider, John L; Zhou, Zhiguo
2017-11-01
Short-term waterlogging and chronic elevated temperature occur concomitantly in the cotton (Gossypium hirsutum) growing season. While previous research about co-occurring waterlogging and elevated temperature has focused primarily on cotton fiber, no studies have investigated carbohydrate metabolism of the subtending leaf (a major source leaf for boll development) cross-acclimation to aforementioned stressors. To address this, plants were exposed to ambient (31.6/26.5°C) and elevated (34.1/29.0°C) temperatures during the whole flowering and boll formation stage, and waterlogging (0, 3, 6 days) beginning on the day of anthesis. Both waterlogging and high temperature limited boll biomass (reduced by 1.19-32.14%), but effects of different durations of waterlogging coupled with elevated temperature on carbohydrate metabolism in the subtending leaf were quite different. The 6-day waterlogging combined with elevated temperature had the most negative impact on net photosynthetic rate (Pn) and carbohydrate metabolism of any treatment, leading to upregulated GhSusA and GhSusC expression and enhanced sucrose synthase (SuSy, EC 2.4.1.13) activity for sucrose degradation. A prior exposure to waterlogging for 3 days improved subtending leaf performance under elevated temperature. Pn, sucrose concentrations, Rubisco (EC 4.1.1.39) activity, and cytosolic fructose-1,6-bisphosphatase (cy-FBPase, EC 3.1.3.11) activity in the subtending leaf significantly increased, while SuSy activity decreased under 3 days waterlogging and elevated temperature combined relative to elevated temperature alone. Thus, we concluded that previous exposure to a brief (3 days) waterlogging stress improved sucrose composition and accumulation cross-acclimation to high temperature later in development not only by promoting leaf photosynthesis but also inhibiting sucrose degradation. © 2017 Scandinavian Plant Physiology Society.
Ecological effects of feral biofuel crops in constructed oak ...
The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesocosm held three tubs. One had six native plant species; one had five native species with the annual crop Sorghum bicolor and one had five native species along with the weedy perennial Sorghum halepense. The experimental treatments were ambient (control), elevated temperature, drought, or a combination of elevated temperature and drought. Total aboveground biomass of the community was greatest in the control and drought treatments, lowest with elevated temperature + drought, and intermediate in high temperature treatments (P<0.0001). Sorghum species produced significantly less biomass than the native grass species (P< 0.05). S. bicolor seed biomass was greatest under elevated temperature and lowest in the elevated temperature + drought treatment (P=0.0002). Neither of the Sorghum species significantly affected active soil bacterial biomass. Active bacterial biomass was lowest in the drought and elevated temperature and drought treatments (P<0.05). Active soil fungal biomass was highest in the tubs containing S. bicolor. Percent total carbon in the soil increased between 2010 and 2011 (P=0.0054); it was lowest in the elevated temperature and drought mesocosms (P<0.05). Longer term studi
Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.
Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo
2007-09-01
We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.
Design and proof of concept of an innovative very high temperature ceramic solar absorber
NASA Astrophysics Data System (ADS)
Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc
2017-06-01
Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.
The effects of intrinsic properties and defect structures on the indentation size effect in metals
NASA Astrophysics Data System (ADS)
Maughan, Michael R.; Leonard, Ariel A.; Stauffer, Douglas D.; Bahr, David F.
2017-08-01
The indentation size effect has been linked to the generation of geometrically necessary dislocations that may be impacted by intrinsic materials properties, such as stacking fault energy, and extrinsic defects, such as statistically stored dislocations. Nanoindentation was carried out at room temperature and elevated temperatures on four different metals in a variety of microstructural conditions. A size effect parameter was determined for each material set combining the effects of temperature and existing dislocation structure. Extrinsic defects, particularly dislocation density, dominate the size effect parameter over those due to intrinsic properties such as stacking fault energy. A multi-mechanism description using a series of mechanisms, rather than a single mechanism, is presented as a phenomenological explanation for the observed size effect in these materials. In this description, the size effect begins with a volume scale dominated by sparse sources, next is controlled by the ability of dislocations to cross-slip and multiply, and then finally at larger length scales work hardening and recovery dominate the effect.
NASA Technical Reports Server (NTRS)
Montana, J. W.; Nelson, E. E.
1972-01-01
The mechanical properties of bare ZM-21 magnesium alloy flat tensile specimens were determined for test temperatures of +400 F, +300 F, +200 F, +80 F, 0 F, -100 F, -200 F, and -320 F. The ultimate tensile and yield strengths of the material increased with decreasing temperature with a corresponding reduction in elongation values. Stress corrosion tests performed under: (1) MSFC atmospheric conditions; (2) 95% relative humidity; and (3) submerged in 100 ppm chloride solution for 8 weeks indicated that the alloy is not susceptible to stress corrosion. The corrosion tests indicated that the material is susceptible to attack by crevice corrosion in high humidity and chemical type attack by chloride solution. Atmospheric conditions at MSFC did not produce any adverse effects on the material, probably due to the rapid formation of a protective oxide coating. In both the mechanical properties and the stress corrosion evaluations the test specimens which were cut transverse to the rolling direction had superior properties when compared to the longitudinal properties.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-04-26
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-01-01
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812
Method of making permanent magnets
McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.
1993-09-07
A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.
Method of making permanent magnets
McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.
1993-09-07
A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.
Foster, Kenneth R; Glaser, Roland
2007-06-01
This article reviews thermal mechanisms of interaction between radiofrequency (RF) fields and biological systems, focusing on theoretical frameworks that are of potential use in setting guidelines for human exposure to RF energy. Several classes of thermal mechanisms are reviewed that depend on the temperature increase or rate of temperature increase and the relevant dosimetric considerations associated with these mechanisms. In addition, attention is drawn to possible molecular and physiological reactions that could be induced by temperature elevations below 0.1 degrees, which are normal physiological responses to heat, and to the so-called microwave auditory effect, which is a physiologically trivial effect resulting from thermally-induced acoustic stimuli. It is suggested that some reported "nonthermal" effects of RF energy may be thermal in nature; also that subtle thermal effects from RF energy exist but have no consequence to health or safety. It is proposed that future revisions of exposure guidelines make more explicit use of thermal models and empirical data on thermal effects in quantifying potential hazards of RF fields.
Fibre reinforced concrete exposed to elevated temperature
NASA Astrophysics Data System (ADS)
Novák, J.; Kohoutková, A.
2017-09-01
Although concrete when subject to fire performs very well, its behaviour and properties change dramatically under high temperature due to damaged microstructure and mesostructure. As fibre reinforced concrete (FRC) represents a complex material composed of various components with different response to high temperature, to determine its behaviour and mechanical properties in fire is a demanding task. The presented paper provides a summary of findings on the fire response of fibre FRC. Namely, the information on steel fibre reinforced concrete (SFRC), synthetic fibre reinforced concrete and hybrid (steel + synthetic) fibre reinforced concrete have been gathered from various contributions published up to date. The mechanical properties including the melting point and ignition point of fibres affect significantly the properties of concrete composites with addition of fibres. The combination of steel and synthetic fibres represents a promising alternative how to ensure good toughness of a concrete composite before heating and improve its residual mechanical behaviour and spalling resistance as well as the ductility after heating. While synthetic fibres increase concrete spalling resistance, steel fibres in a concrete mix leads to an improvement in both mechanical properties and resistance to heating effects.
Failure Mechanisms of High Temperature Semiconductor Lasers
1993-12-01
91 V.3.2. Facet Degradation 92 V.3.3. Dark Defect Degradation 95 V.3.4. Lasers Inoperational at Elevated Tempatur 96 V.3.5. Degradation Mechanism...they will be fairly easy to incorporate into the business of communications and control applications. The Air Force has a few of its own proposed uses ...demands a ho data processing Af~t which could be handled by lasems. A &W[ proposed use is a pilot chum•t-mo ited laer prwoicr to higgtthe portant dam2
Properties of materials in high pressure hydrogen at room and elevated temperatures
NASA Technical Reports Server (NTRS)
Harris, J. A., Jr.
1972-01-01
Experimental efforts in this program for this period. Mechanical property tests of wrought and cast nickel-base alloys and one wrought cobalt-base alloy were conducted in 34.5 MN/sq m (5000-psig) helium and hydrogen or hydrogen mixtures. Comparison of test results was made to determine degradation of properties due to the hydrogen environments. All testing was conducted on solid specimens exposed to external gaseous pressure. Specific mechanical properties determined and the testing methods used are summarized.
Lavola, Anu; Nybakken, Line; Rousi, Matti; Pusenius, Jyrki; Petrelius, Mari; Kellomäki, Seppo; Julkunen-Tiitto, Riitta
2013-12-01
Elevations of carbon dioxide, temperature and ultraviolet-B (UBV) radiation in the growth environment may have a high impact on the accumulation of carbon in plants, and the different factors may work in opposite directions or induce additive effects. To detect the changes in the growth and phytochemistry of silver birch (Betula pendula) seedlings, six genotypes were exposed to combinations of ambient or elevated levels of CO2 , temperature and UVB radiation in top-closed chambers for 7 weeks. The genotypes were relatively similar in their responses, and no significant interactive effects of three-level climate factors on the measured parameters were observed. Elevated UVB had no effect on growth, nor did it alter plant responses to CO2 and/or temperature in combined treatments. Growth in all plant parts increased under elevated CO2 , and height and stem biomass increased under elevated temperature. Increased carbon distribution to biomass did not reduce its allocation to phytochemicals: condensed tannins, most flavonols and phenolic acids accumulated under elevated CO2 and elevated UVB, but this effect disappeared under elevated temperature. Leaf nitrogen content decreased under elevated CO2 . We conclude that, as a result of high genetic variability in phytochemicals, B. pendula seedlings have potential to adapt to the tested environmental changes. The induction in protective flavonoids under UVB radiation together with the positive impact of elevated CO2 and temperature mitigates possible UVB stress effects, and thus atmospheric CO2 concentration and temperature are the climate change factors that will dictate the establishment and success of birch at higher altitudes in the future. © 2013 Scandinavian Plant Physiology Society.
Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers.
Angle, T Craig; Gillette, Robert L
2011-04-01
This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog.
Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers
Angle, T. Craig; Gillette, Robert L.
2011-01-01
This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog. PMID:21731189
USDA-ARS?s Scientific Manuscript database
Cold stress at the seedling stage limits rice (Oryza sativa L.) production in temperate regions or at high elevations in the tropics due to poor plant stand establishment and delayed maturity. At the heading stage, cold temperature causes sterility, thus decreasing grain yield. To explore the mechan...
Mechanical properties of gypsum board at elevated temperatures
S.M. Cramer; O.M. Friday; R.H. White; G. Sriprutkiat
2003-01-01
Gypsum board is a common fire barrier used in house and general building construction. Recently, evaluation of the collapses of the World Trade Center Towers highlighted the potential role and failure of gypsum board in containing the fires and resisting damage. The use of gypsum board as primary fire protection of light-flame wood or steel construction is ubiquitous....
Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.
Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo
2016-10-01
Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings. © 2016 American Society of Plant Biologists. All Rights Reserved.
2016-01-01
Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings. PMID:27591187
Fabrication of highly dense SiN4 ceramics without additives by high pressure sintering
NASA Technical Reports Server (NTRS)
Takatori, K.; Shimade, M.; Koizumi, M.
1984-01-01
Silicon nitride (Si3N4) is one of candidate materials for the engineering ceramics which is used at high temperatures. The mechanical strengths of hot pressed or sintered Si2N4 ceramics containing some amount of additives, however, are deteriorated at elevated temperatures. To improve the high temperature strength of Si3N4 ceramics, an attempt to consolidate Si3N4 without additives was made by high pressure sintering technique. Scanning electron micrographs of fracture surfaces of the sintered bodies showed the bodies had finely grained and fully self-bonded sintered bodies were 310N sq m at room temperature and 174N/sq m at 1200 C.
NASA Technical Reports Server (NTRS)
Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming
2016-01-01
Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.
Timbal muscle physiology in the endothermic cicada Tibicen winnemanna (Homoptera: Cicadidae).
Sanborn, A F
2001-08-01
The operative muscle temperature and contraction kinetics are described for the endothermic cicada Tibicen winnemanna (Davis). Measurements of timbal muscle temperature in the field demonstrate that timbal muscle temperature is elevated above ambient temperature during activity. Timbal muscle temperature increases as the acoustic output progresses from a 'warm-up' buzz (27.9-29.7 degrees C) to full song production (36.3-39.5 degrees C). Mean muscle-ambient temperature difference increases from 5.8 degrees C in buzzing animals to 13.1 degrees C in animals producing a full calling song. Twitch rise time and onset to 50% relaxation time decrease while tension production increases with increasing temperature to 40 degrees C. Mean force production at 20 degrees C was determined to be 0.22+/-0.06 N/cm(2). The characteristics of T. winnemanna muscle are similar to those reported in other cicada species. Analysis of the songs produced by animals with one timbal destroyed and the sounds produced by mechanical manipulation suggest that the timbals alternately contract and relax in the sequence IN(1)-IN(2)-OUT(1)-OUT(2). Measurements of the inferred period of muscle contraction from song recordings and the contraction kinetics of isolated timbal muscles measured in the laboratory show that the temperature of the timbal muscle must be elevated in order for the cicada to be able to produce the calling song.
Wen, Huijie; Zhang, Jianjun; Chai, Jingchao; Ma, Jun; Yue, Liping; Dong, Tiantian; Zang, Xiao; Liu, Zhihong; Zhang, Botao; Cui, Guanglei
2017-02-01
High-voltage lithium-ion batteries have become a major research focus. As a major part of lithium batteries, the separator plays a critical role in the development of high-voltage lithium batteries. Herein, we demonstrated a sustainable and superior heat-resistant alginate nonwoven separator for high-voltage (5 V) lithium batteries. It was demonstrated that the resultant alginate nonwoven separator exhibited better mechanical property (37 MPa), superior thermal stability (up to 150 °C), and higher ionic conductivity (1.4 × 10 -3 S/cm) as compared to commercially available polyolefin (PP) separator. More impressively, the 5 V class LiNi 0.5 Mn 1.5 O 4 (LNMO)/Li cell with this alginate nonwoven separator delivered much better cycling stability (maintaining 79.6% of its initial discharge capacity) than that (69.3%) of PP separator after 200 cycles at an elevated temperature of 55 °C. In addition, the LiFePO 4 /Li cell assembled with such alginate nonwoven separator could still charge and discharge normally even at an elevated temperature of 150 °C. The above-mentioned fascinating characteristics of alginate separator provide great probability for its application for high-voltage (5 V) lithium batteries at elevated temperatures.
We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...
We investigated the effects of elevated soil temperature and atmospheric CO2 efflux (SCE) during the third an fourth years of study. We hypothesized that elevated temperature would stimulate SCE, and elevated CO2 would also stimulate SCE with the stimulation being greater at hig...
We investigated the effects of elevated atmospheric CO2 and air temperature on C cycling in trees and associated soil system, focusing on canopy CO2 assimilation (Asys) and system CO2 loss through respiration (Rsys). We hypothesized that both elevated CO2 and elevated temperature...
John H. Fryer; F. Thomas Ledig
1972-01-01
Balsam fir seedlings were grown under uniform conditions from seed collected along an elevational gradient in the White Mountains of New Hampshire. Photosynthetic temperature optimum of the seedlings decreased with increasing elevation of the seed source. The change in temperature optimum with elevation was similar to the adiabatic lapse rate, suggesting a precise...
Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures
NASA Astrophysics Data System (ADS)
Roy, Shawoon Kumar
2011-12-01
Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.
Reptile thermogenesis and the origins of endothermy.
Tattersall, Glenn J
2016-10-01
Extant endotherms have high rates of metabolism, elevated body temperatures, usually tight control over body temperature, and a reasonable scope for further increases in metabolism through locomotor activity. Vertebrate ectotherms, on the other hand, rely on behavioural thermoregulation and cardiovascular adjustments to facilitate warming, and generally lack specific biochemical and cellular mechanisms for sustained, elevated metabolism. Nevertheless, the ancestral condition to endothermy is thought to resemble that of many extant reptiles, which raises the question of the origins and selection pressures relevant to the transitional state. Numerous hypotheses have emerged to explain the multiple origins of endothermy in vertebrates, including thermoregulatory, locomotory, and reproductive activity as possible drivers for these sustained and elevated metabolic rates. In this article, I discuss recent evidence for facultative endothermy in an extant lepidosaur, the tegu lizard. Since lepidosaurs are a sister group to the archosaurs, understanding how a novel form of endothermy evolved will open up opportunities to test the compatibility or incompatibility of the various endothermy hypotheses, with potential to elucidate and resolve long contentious ideas in evolutionary physiology. Copyright © 2016 Elsevier GmbH. All rights reserved.
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
Albo, Asaf; Flores, Yuri V.; Hu, Qing; ...
2017-09-11
The mechanisms that limit the temperature performance of diagonal GaAs/Al 0.15GaAs 0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure.more » We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Furthermore, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.« less
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf; Flores, Yuri V.; Hu, Qing
The mechanisms that limit the temperature performance of diagonal GaAs/Al 0.15GaAs 0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure.more » We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Furthermore, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.« less
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
NASA Astrophysics Data System (ADS)
Albo, Asaf; Flores, Yuri V.; Hu, Qing; Reno, John L.
2017-09-01
The mechanisms that limit the temperature performance of diagonal GaAs/Al0.15GaAs0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure. We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Moreover, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Yingye; Mo, Kun; Yun, Di
2017-04-01
Nanostructured ferritic alloys (NFAs) are a promising structural material for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner’s model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young’s modulus and Poisson’s ratio of the NFAs. Temperaturemore » dependence of elastic anisotropy was observed in the NFAs. An analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less
Roznik, Elizabeth A.; Alford, Ross A.
2015-01-01
One of the most devastating wildlife diseases ever recorded is chytridiomycosis, a recently emerged amphibian disease that is caused by the chytrid fungus Batrachochytrium dendrobatidis. Understanding, predicting, and managing the impacts of chytridiomycosis on any amphibian species will require detailed information on its ecology and behavior because this pathogen is transmitted by contact with water or other individuals, and pathogen growth rates are thermally sensitive. The common mistfrog (Litoria rheocola) is an endangered tropical rainforest frog that has declined due to chytridiomycosis. We tracked L. rheocola during the winter (cool/dry) and summer (warm/wet) seasons at a low- and high-elevation site. We found that seasonal differences in environmental temperatures and frog behavior should render this species most vulnerable to B. dendrobatidis during cooler months and at higher elevations, which matches observed patterns of infection prevalence in this species. During winter, frogs moved shorter distances than during summer, and they spent less time in vegetation and more time in the stream, which should increase exposure to aquatic B. dendrobatidis zoospores. At a low-elevation site (40 m ASL), estimated body temperatures were within the optimal range for B. dendrobatidis growth (15-25°C) most of the time during winter, but they reached temperatures above this threshold frequently in summer. At a higher elevation (750 m ASL), estimated body temperatures were within the range most favorable for B. dendrobatidis year-round, and did not exceed 25°C, even during summer. Our study provides the first detailed information on the ecology and behavior of L. rheocola and suggests ecological mechanisms for infection dynamics that have been observed in this endangered species. PMID:25993520
Roznik, Elizabeth A; Alford, Ross A
2015-01-01
One of the most devastating wildlife diseases ever recorded is chytridiomycosis, a recently emerged amphibian disease that is caused by the chytrid fungus Batrachochytrium dendrobatidis. Understanding, predicting, and managing the impacts of chytridiomycosis on any amphibian species will require detailed information on its ecology and behavior because this pathogen is transmitted by contact with water or other individuals, and pathogen growth rates are thermally sensitive. The common mistfrog (Litoria rheocola) is an endangered tropical rainforest frog that has declined due to chytridiomycosis. We tracked L. rheocola during the winter (cool/dry) and summer (warm/wet) seasons at a low- and high-elevation site. We found that seasonal differences in environmental temperatures and frog behavior should render this species most vulnerable to B. dendrobatidis during cooler months and at higher elevations, which matches observed patterns of infection prevalence in this species. During winter, frogs moved shorter distances than during summer, and they spent less time in vegetation and more time in the stream, which should increase exposure to aquatic B. dendrobatidis zoospores. At a low-elevation site (40 m ASL), estimated body temperatures were within the optimal range for B. dendrobatidis growth (15-25 °C) most of the time during winter, but they reached temperatures above this threshold frequently in summer. At a higher elevation (750 m ASL), estimated body temperatures were within the range most favorable for B. dendrobatidis year-round, and did not exceed 25 °C, even during summer. Our study provides the first detailed information on the ecology and behavior of L. rheocola and suggests ecological mechanisms for infection dynamics that have been observed in this endangered species.
Fuel retention under elevated wall temperature in KSTAR with a carbon wall
NASA Astrophysics Data System (ADS)
Cao, B.; Hong, S. H.
2018-03-01
The fuel retention during KSTAR discharges with elevated wall temperature (150 °C) has been studied by using the method of global particle balance. The results show that the elevated wall temperature could reduce the dynamic retention via implantation and absorption, especially for the short pulse shots with large injected fuel particles. There is no signature changing of long-term retention, which related to co-deposition, under elevated wall temperature. For soft-landing shots (normal shots), the exhausted fuel particles during discharges is larger with elevated wall temperature than without, but the exhausted particles after discharges within 90 s looks similar. The outgassing particles because of disruption could be exhausted within 15 s.
NASA Astrophysics Data System (ADS)
Ellis, Devon S.
Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when similar bars were tested while hot. The residual bond strength was also found to decrease with increase in exposure temperature. Residual bond mechanism and flexural behavior were found to be influenced, in complex ways, by the exposure to elevated temperatures. Additionally, an apparent "yielding plateau" and an apparent increase in bar ductility was observed in the post-heat behavior of some of the tensile specimens. This points to a potential for heat treatment of FRP bars to achieve higher ductility.
Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi
2010-04-01
This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.
Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi
2010-08-21
The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.
Flowers, B; Day, B N
1990-03-01
The effect of chronic exposure to elevated environmental temperature on gonadotropin secretion and ovarian function was studied in prepubertal gilts. Gilts were maintained under control (15.6 degrees C) or elevated temperature (33.3 degrees C) conditions from 150 to 180 days of age. Endocrine and ovarian responses to bilateral (BLO), unilateral (ULO), and sham ovariectomy were evaluated between 175 and 180 days of age. During the 96-h sampling period after BLO, plasma concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were suppressed in heat-stressed females. Similarly, elevated temperatures abolished the transient rise in FSH and subsequent follicular growth normally associated with ULO. In contrast, environmental treatment had no effect on the secretion of FSH and LH after sham ovariectomy, yet the number of small follicles was lower in gilts exposed to elevated temperatures than in females maintained under control conditions. These results indicate that a chronic exposure to elevated environmental temperature during pubertal development diminished the ability of the hypothalamo-hypophyseal axis to secrete FSH and LH, which had physiological consequences on follicular growth. When provided an appropriate stimulus (ULO), an acute period of FSH secretion and subsequent development of follicles failed to occur in females exposed to elevated temperatures. Consequently, we propose that delayed puberty in gilts during periods of elevated environmental temperatures is due, in part, to a diminished capacity for gonadotropin secretion.
Murray, T J; Ellsworth, D S; Tissue, D T; Riegler, M
2013-05-01
Understanding the direct and indirect effects of elevated [CO2 ] and temperature on insect herbivores and how these factors interact are essential to predict ecosystem-level responses to climate change scenarios. In three concurrent glasshouse experiments, we measured both the individual and interactive effects of elevated [CO2 ] and temperature on foliar quality. We also assessed the interactions between their direct and plant-mediated effects on the development of an insect herbivore of eucalypts. Eucalyptus tereticornis saplings were grown at ambient or elevated [CO2 ] (400 and 650 μmol mol(-1) respectively) and ambient or elevated ( + 4 °C) temperature for 10 months. Doratifera quadriguttata (Lepidoptera: Limacodidae) larvae were feeding directly on these trees, on their excised leaves in a separate glasshouse, or on excised field-grown leaves within the temperature and [CO2 ] controlled glasshouse. To allow insect gender to be determined and to ensure that any sex-specific developmental differences could be distinguished from treatment effects, insect development time and consumption were measured from egg hatch to pupation. No direct [CO2 ] effects on insects were observed. Elevated temperature accelerated larval development, but did not affect leaf consumption. Elevated [CO2 ] and temperature independently reduced foliar quality, slowing larval development and increasing consumption. Simultaneously increasing both [CO2 ] and temperature reduced these shifts in foliar quality, and negative effects on larval performance were subsequently ameliorated. Negative nutritional effects of elevated [CO2 ] and temperature were also independently outweighed by the direct positive effect of elevated temperature on larvae. Rising [CO2 ] and temperature are thus predicted to have interactive effects on foliar quality that affect eucalypt-feeding insects. However, the ecological consequences of these interactions will depend on the magnitude of concurrent temperature rise and its direct effects on insect physiology and feeding behaviour. © 2013 Blackwell Publishing Ltd.
A Bacterial Pathogen Displaying Temperature-Enhanced Virulence of the Microalga Emiliania huxleyi
Mayers, Teaghan J.; Bramucci, Anna R.; Yakimovich, Kurt M.; Case, Rebecca J.
2016-01-01
Emiliania huxleyi is a globally abundant microalga that plays a significant role in biogeochemical cycles. Over the next century, sea surface temperatures are predicted to increase drastically, which will likely have significant effects on the survival and ecology of E. huxleyi. In a warming ocean, this microalga may become increasingly vulnerable to pathogens, particularly those with temperature-dependent virulence. Ruegeria is a genus of Rhodobacteraceae whose population size tracks that of E. huxleyi throughout the alga’s bloom–bust lifecycle. A representative of this genus, Ruegeria sp. R11, is known to cause bleaching disease in a red macroalga at elevated temperatures. To investigate if the pathogenicity of R11 extends to microalgae, it was co-cultured with several cell types of E. huxleyi near the alga’s optimum (18°C), and at an elevated temperature (25°C) known to induce virulence in R11. The algal populations were monitored using flow cytometry and pulse-amplitude modulated fluorometry. Cultures of algae without bacteria remained healthy at 18°C, but lower cell counts in control cultures at 25°C indicated some stress at the elevated temperature. Both the C (coccolith-bearing) and S (scale-bearing swarming) cell types of E. huxleyi experienced a rapid decline resulting in apparent death when co-cultured with R11 at 25°C, but had no effect on N (naked) cell type at either temperature. R11 had no initial negative impact on C and S type E. huxleyi population size or health at 18°C, but caused death in older co-cultures. This differential effect of R11 on its host at 18 and 25°C suggest it is a temperature-enhanced opportunistic pathogen of E. huxleyi. We also detected caspase-like activity in dying C type cells co-cultured with R11, which suggests that programmed cell death plays a role in the death of E. huxleyi triggered by R11 – a mechanism induced by viruses (EhVs) and implicated in E. huxleyi bloom collapse. Given that E. huxleyi has recently been shown to have acquired resistance against EhVs at elevated temperature, bacterial pathogens with temperature-dependent virulence, such as R11, may become much more important in the ecology of E. huxleyi in a warming climate. PMID:27379036
A Bacterial Pathogen Displaying Temperature-Enhanced Virulence of the Microalga Emiliania huxleyi.
Mayers, Teaghan J; Bramucci, Anna R; Yakimovich, Kurt M; Case, Rebecca J
2016-01-01
Emiliania huxleyi is a globally abundant microalga that plays a significant role in biogeochemical cycles. Over the next century, sea surface temperatures are predicted to increase drastically, which will likely have significant effects on the survival and ecology of E. huxleyi. In a warming ocean, this microalga may become increasingly vulnerable to pathogens, particularly those with temperature-dependent virulence. Ruegeria is a genus of Rhodobacteraceae whose population size tracks that of E. huxleyi throughout the alga's bloom-bust lifecycle. A representative of this genus, Ruegeria sp. R11, is known to cause bleaching disease in a red macroalga at elevated temperatures. To investigate if the pathogenicity of R11 extends to microalgae, it was co-cultured with several cell types of E. huxleyi near the alga's optimum (18°C), and at an elevated temperature (25°C) known to induce virulence in R11. The algal populations were monitored using flow cytometry and pulse-amplitude modulated fluorometry. Cultures of algae without bacteria remained healthy at 18°C, but lower cell counts in control cultures at 25°C indicated some stress at the elevated temperature. Both the C (coccolith-bearing) and S (scale-bearing swarming) cell types of E. huxleyi experienced a rapid decline resulting in apparent death when co-cultured with R11 at 25°C, but had no effect on N (naked) cell type at either temperature. R11 had no initial negative impact on C and S type E. huxleyi population size or health at 18°C, but caused death in older co-cultures. This differential effect of R11 on its host at 18 and 25°C suggest it is a temperature-enhanced opportunistic pathogen of E. huxleyi. We also detected caspase-like activity in dying C type cells co-cultured with R11, which suggests that programmed cell death plays a role in the death of E. huxleyi triggered by R11 - a mechanism induced by viruses (EhVs) and implicated in E. huxleyi bloom collapse. Given that E. huxleyi has recently been shown to have acquired resistance against EhVs at elevated temperature, bacterial pathogens with temperature-dependent virulence, such as R11, may become much more important in the ecology of E. huxleyi in a warming climate.
Photochemical mechanisms of ocular photic injury (Abstract Only)
NASA Astrophysics Data System (ADS)
Stuck, Bruce E.; Lund, David J.; Zuclich, Joseph A.
2000-03-01
Mechanisms of photic injury to the eye can be categorized as photochemical, photothermal or photodistruptive. Exposure wavelength, exposure duration, ocular tissue characteristics and response criteria are key factors in the delineation of the ocular injury mechanisms. Depending on the exposure condition, one or all of the laser-tissue interaction mechanisms can be involved. Although photic injury to the eye was initially assumed to involve thermal mechanisms, more recent research has demonstrated that ocular effects can be produced by light exposure without a significant retinal temperature rise. Photochemical mechanisms are also implicated in UV photic injury to the cornea and lens. Exposure of the retina to short visible wavelengths for prolonged durations results in photochemical retinal damage with negligible localized retinal temperature elevation. For exposure conditions where photochemical mechanisms are dominate, the reciprocity of irradiance and exposure duration is apparent. The latency until observation of a photochemical lesion is often 24-48 hours whereas a thermal lesion is observed immediately or within a few hours after the exposure. Action spectra for photochemical injury to the eye are discussed in the context of ocular injury thresholds and current permissible exposure limits.
NASA Astrophysics Data System (ADS)
Love, Corey T.
2011-03-01
Static and dynamic thermomechanical analysis was performed with a dynamic mechanical analyzer (DMA) to identify thermal and mechanical transitions for commercially available polymer separators under mechanical loading. Clear transitions in deformation mode were observed at elevated temperatures. These transitions identified the onset of separator "shutdown" which occurred at temperatures below the polymer melting point. Mechanical loading direction was critical to the overall integrity of the separator. Anisotropic separators (Celgard 2320, 2400 and 2500) were mechanically limited when pulled in tensile in the transverse direction. The anisotropy of these separators is a result of the dry technique used to manufacture the micro-porous membranes. Separators prepared using the wet technique (Entek Gold LP) behaved more uniformly, or biaxially, where all mechanical properties were nearly identical within the separator plane. The information provided by the DMA can also be useful for predicting the long-term durability of polymer separators in lithium-ion batteries exposed to electrolyte (solvent and salt), thermal fluctuations and electrochemical cycling. Small losses in mechanical integrity were observed for separators exposed to the various immersion environments over the 4-week immersion time.
Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; ...
2013-03-12
The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H 2/CO/O 2/N 2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistrymore » for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H 2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H 2 + HO˙ 2 ↔ H˙+H 2O 2 followed by H 2O 2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H 2+HO˙ 2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values. As a result, a rate constant for this reaction is recommended based on available literature values and on our mechanism validation.« less
Enzor, Laura A.; Hunter, Evan M.
2017-01-01
Abstract The adaptations used by notothenioid fish to combat extreme cold may have left these fish poorly poised to deal with a changing environment. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly affect the energetic demands and subsequent cellular processes necessary for survival. Despite recent lines of evidence demonstrating that notothenioid fish retain the ability to acclimate to elevated temperatures, the underlying mechanisms responsible for temperature acclimation in these fish remain largely unknown. Furthermore, little information exists on the capacity of Antarctic fish to respond to changes in multiple environmental variables. We have examined the effects of increased temperature and pCO2 on the rate of oxygen consumption in three notothenioid species, Trematomus bernacchii, Pagothenia borchgrevinki, and Trematomus newnesi. We combined these measurements with analysis of changes in aerobic and anaerobic capacity, lipid reserves, fish condition, and growth rates to gain insight into the metabolic cost associated with acclimation to this dual stress. Our findings indicated that temperature is the major driver of the metabolic responses observed in these fish and that increased pCO2 plays a small, contributing role to the energetic costs of the acclimation response. All three species displayed varying levels of energetic compensation in response to the combination of elevated temperature and pCO2. While P. borchgrevinki showed nearly complete compensation of whole animal oxygen consumption rates and aerobic capacity, T. newnesi and T. bernacchii displayed only partial compensation in these metrics, suggesting that at least some notothenioids may require physiological trade-offs to fully offset the energetic costs of long-term acclimation to climate change related stressors. PMID:28852515
Enzor, Laura A; Hunter, Evan M; Place, Sean P
2017-01-01
The adaptations used by notothenioid fish to combat extreme cold may have left these fish poorly poised to deal with a changing environment. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly affect the energetic demands and subsequent cellular processes necessary for survival. Despite recent lines of evidence demonstrating that notothenioid fish retain the ability to acclimate to elevated temperatures, the underlying mechanisms responsible for temperature acclimation in these fish remain largely unknown. Furthermore, little information exists on the capacity of Antarctic fish to respond to changes in multiple environmental variables. We have examined the effects of increased temperature and p CO 2 on the rate of oxygen consumption in three notothenioid species, Trematomus bernacchii , Pagothenia borchgrevinki , and Trematomus newnesi . We combined these measurements with analysis of changes in aerobic and anaerobic capacity, lipid reserves, fish condition, and growth rates to gain insight into the metabolic cost associated with acclimation to this dual stress. Our findings indicated that temperature is the major driver of the metabolic responses observed in these fish and that increased p CO 2 plays a small, contributing role to the energetic costs of the acclimation response. All three species displayed varying levels of energetic compensation in response to the combination of elevated temperature and p CO 2 . While P. borchgrevinki showed nearly complete compensation of whole animal oxygen consumption rates and aerobic capacity, T. newnesi and T. bernacchii displayed only partial compensation in these metrics, suggesting that at least some notothenioids may require physiological trade-offs to fully offset the energetic costs of long-term acclimation to climate change related stressors.
Interfacial microstructure and mechanical properties of brazed aluminum / stainless steel - joints
NASA Astrophysics Data System (ADS)
Fedorov, V.; Elßner, M.; Uhlig, T.; Wagner, G.
2017-03-01
Due to the demand of mass and cost reduction, joints based on dissimilar metals become more and more interesting. Especially there is a high interest for joints between stainless steel and aluminum, often necessary for example for automotive heat exchangers. Brazing offers the possibilities to manufacture several joints in one step at, in comparison to fusion welding, lower temperatures. In the recent work, aluminum / stainless steel - joints are produced by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.
Tailored metal matrix composites for high-temperature performance
NASA Technical Reports Server (NTRS)
Morel, M. R.; Saravanos, D. A.; Chamis, C. C.
1992-01-01
A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.
Inhalation toxicology. XI., The effect of elevated temperature on carbon monoxide toxicity.
DOT National Transportation Integrated Search
1990-12-01
Laboratory rats were exposed (a) to experimental concentrations of carbon monoxide in air at ambient temperature, (b) to elevated temperature atmospheres from 40 C to 60 C, and (c) to selected carbon monoxide (CO) concentrations at the elevated tem...
NASA Astrophysics Data System (ADS)
Moser, K. A.; Hundey, E. J.; Porinchu, D. F.
2007-12-01
Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant cover. Paleolimnological analyses of well dated sediments from selected lakes indicate that some of these high elevation sites have undergone rapid and dramatic change beginning in the late 1800s to early 1900s. Many of these lakes have become more productive as indicated by loss-on-ignition and diatom analyses. Although the exact mechanism of these changes is uncertain, the timing closely follows recent increases in air and chironomid-inferred surface water temperatures, and increased fossil fuel burning in the region. Regardless of the exact mechanism, our results clearly indicate dramatic changes at these high elevation sites, which threaten critical water resources.
NASA Astrophysics Data System (ADS)
Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio
2016-05-01
Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (Tb) and laboratory-preferred (Tpref) body temperatures of lizards with different reproductive conditions, as well as ambient (Ta) and copper-model operative temperature (Te), which we used to determine thermal quality of the habitat (de), accuracy (db), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while Ta constrained Tb only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, Tpref dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (Te > Tpref). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, db and de-db were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.
Microstructural analysis of W-SiCf/SiC composite
NASA Astrophysics Data System (ADS)
Yoon, Hanki; Oh, Jeongseok; Kim, Gonho; Kim, Hyunsu; Takahashi, Heishichiro; Kohyama, Akira
2015-03-01
Continuous silicon carbide fiber-reinforced silicon carbide (SiCf/SiC) composites are promising structure candidates for future fusion power systems such as gas coolant fast channels, extreme high temperature reactor and fusion reactors, because of their intrinsic properties such as excellent mechanical properties, high thermal conductivity, good thermal-shock resistance as well as excellent physical and chemical stability in various environments under elevated temperature conditions. In this study, bonding of tungsten and SiCf/SiC was produced by hot-press method. Microstructure analyses were performed using SEM and TEM.
Elevated-Temperature Tensile-Testing of Foil-Gage Metals
NASA Technical Reports Server (NTRS)
Blackburn, L. B.; Ellingsworth, J. R.
1986-01-01
Automated system for measuring strain in metal foils at temperatures above 500 degrees F (260 degrees C) uses mechanical extensometer and displacement transducer. System includes counterbalance feature, which eliminates weight contribution of extensometer and reduces grip pressure required for attachment to specimen. Counterbalancing feature overcomes two major difficulties in using extensometers with foil-gage specimens: (1) Weight of extensometer and transducer represents significant fraction of total load applied to specimen and may actually damage it; and (2) grip pressure required for attachment of extensometer to specimens may induce bending stresses in foil-gage materials.
NASA Astrophysics Data System (ADS)
Panicker, Sudhy S.; Singh, Har Govind; Panda, Sushanta Kumar; Dashwood, Richard
2015-11-01
Automotive industries are very much interested in characterization of formability improvement of aluminum alloys at elevated temperatures before designing tools, heating systems, and processing sequences for fabrication of auto-body panels by warm forming technology. In this study, tensile tests of AA5754-H22 aluminum alloy were carried out at five different temperatures and three different strain rates to investigate the deformation behavior correlating with Cowper-Symonds constitutive equation. Laboratory scale warm forming facilities were designed and fabricated to perform limiting dome height and deep drawing tests to evaluate forming limit strains and drawability of sheet metal at different tool temperatures. The forming limit strain and dome height improved significantly when both the die and punch were heated to 200 °C. Remarkable improvement in deep drawn cup depth was observed when die and punch temperatures were maintained at 200 and 30 °C, respectively, producing a non-isothermal temperature gradient of approximately 93 °C across the blank from flange to center. The forming behavior at different isothermal and non-isothermal conditions were predicted successfully using a thermo-mechanical FE model incorporating temperature-dependent properties in Barlat-89 yield criterion coupled with Cowper-Symonds hardening model, and the thinning/failure location in deformed cups were validated implementing the experimental limiting strains as damage model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Jun; Quintana, Donald L.; Vigil, Gabrielle M.
2015-11-30
The Applied Engineering and Technology-1 group (AET-1) at Los Alamos National Laboratory (LANL) conducted the proof-of-concept tests of SolarSPOT LLC’s solar thermal Temperature- Clipper, or T-CLIP™ under controlled thermal conditions using a thermal conditioning unit (TCU) and a custom made environmental chamber. The passive T-CLIP™ is a plumbing apparatus that attaches to a solar thermal collector to limit working fluid temperature and to prevent overheating, since overheating may lead to various accident scenarios. The goal of the current research was to evaluate the ability of the T-CLIP™ to control the working fluid temperature by using its passive cooling mechanism (i.e.more » thermosiphon, or natural circulation) in a small-scale solar thermal system. The assembled environmental chamber that is thermally controlled with the TCU allows one to simulate the various possible weather conditions, which the solar system will encounter. The performance of the T-CLIP™ was tested at two different target temperatures: 1) room temperature (70 °F) and 2) an elevated temperature (130 °F). The current test campaign demonstrated that the T-CLIP™ was able to prevent overheating by thermosiphon induced cooling in a small-scale solar thermal system. This is an important safety feature in situations where the pump is turned off due to malfunction or power outages.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, B.P.; Mall, S.; Dennis, L.B.
1997-10-01
A study was conducted to investigate the fatigue behavior of a cross-ply metal matrix composite subjected to fully-reversed, strain-controlled fatigue cycling at elevated temperature. The stress-strain response, maximum and minimum stresses, and modulus during cycling were analyzed to characterize the macro-mechanical behavior. Additionally, microscopy and fractography were conducted to identify damage mechanisms. Damage always initiated in the 90 deg plies, but the governing factor in the fatigue life was damage in the 0 deg plies. The dominant failure mode was fracturing of fibers in the 0 deg plies when the maximum strain was greater than 0.55%, but the dominant failuremore » mode was matrix cracking when the maximum strain was less than 0.55%. Combining the fatigue life data with the macro-mechanical and microscopic observations, a fatigue life diagram was developed and partitioned into three regions. These regions showed relationships between the maximum applied strain and the dominant damage mechanisms. Also, on a strain range basis, the fatigue lives of the specimens tested under the strain-controlled mode in this study were compared with its counterpart under the load-controlled mode of the previous study. It was found that the fatigue lives for these two conditions were the same within the experimental scatter. The MMC tested in this investigation was the Ti-15V-3Cr-3Al-3Sn titanium alloy reinforced with 36 volume percent of silicon carbide fibers (SCS-6).« less
Study on bond behaviour exposed to fire using beam specimen
NASA Astrophysics Data System (ADS)
Suhaib Ahmad, Mohammad; Bhargava, Pradeep; Sharma, Umesh Kumar
2018-04-01
The composite action of concrete and steel in a reinforced concrete structure depends upon the bond between them. Bond behaviour is studied in terms of bond-slip relationship. The bond between them depends upon mechanical properties of concrete and steel. In an event of fire these mechanical properties degrades and hence the bond behaviour changes. Some researches were performed to study the effect of temperature on the bond-slip relationship which are based on pull out specimens. Generally these relationships are obtained using pull out specimen which over estimates the bond properties. In this study beam specimens were used which is recommended by Rilem. These specimens were exposed to elevated temperatures up to 650 °C and there bond-slip behaviour were studied. The study shows that bond strength decreases while peak slip increases with increases in temperature. Also an equation proposed was proposed which can predict the bond strength between concrete and steel exposed up to the temperature of 650 °C.
NASA Astrophysics Data System (ADS)
Pandey, P.; Kashyap, S.; Tiwary, C. S.; Chattopadhyay, K.
2017-12-01
Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.
Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.
Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo
2017-01-09
Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.
Fracture toughness of Alloy 690 and EN52 weld in air and water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.M.; Mills, W.J.
1999-06-01
The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content requiredmore » to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.« less
Fracture toughness of alloy 690 and EN52 welds in air and water
NASA Astrophysics Data System (ADS)
Brown, C. M.; Mills, W. J.
2002-06-01
The effect of low- and high-temperature water with high hydrogen on the fracture toughness of alloy 690 and its weld, EN52, was characterized using elastic-plastic J IC methodology. While both materials display excellent fracture resistance in air and elevated-temperature (>93 °C) water, a dramatic degradation in toughness is observed in 54 °C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism, where hydrogen is picked up from the water. Comparison of the cracking behavior in low-temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low-temperature embrittlement is on the order of 120 to 160 ppm. Loading-rate studies show that cracking resistance is improved at rates above ˜ 1000 MPa √m/h, because there is insufficient time to produce grain-boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanisms.
Impacts of fever on locust life-history traits: costs or benefits?
Elliot, Sam L; Horton, Charlotte M; Blanford, Simon; Thomas, Matthew B
2005-01-01
Fever, like other mechanisms for defence against pathogens, may have positive and negative consequences for host fitness. In ectotherms, fever can be attained through modified behavioural thermoregulation. Here we examine potential costs of behavioural fever by holding adult, gregarious desert locusts at elevated temperatures simulating a range of fever intensities. We found no effect of fever temperatures on primary fitness correlates of survival and fecundity. However, flight capacity and mate competition were reduced, although there was no relation between time spent at fever temperatures and magnitude of the response. While these effects could indicate a direct cost of fever, they are also consistent with a shift towards the solitaria phase state that, in a field context, could be considered an adaptive life-history response to limit the impact of disease. These conflicting interpretations highlight the importance of considering complex defence mechanisms and trade-offs in an appropriate ecological context. PMID:17148161
Thermomechanical means to improve the critical current density of BSCCO tapes
Balachandran, Uthamalingam; Poeppel, Roger; Haldar, Pradeep; Motowidlo, Leszek
2001-01-01
A method of preparing wires or tapes including Bi-2223 superconductor material by providing oxide and carbonate sources of Bi, Sr, Ca, Cu and Pb, milling the material for a time not to exceed about 30 minutes but preferably not greater than 20 minutes to produce a homogeneous mixture. Then heat treating by calcining the milled mixture at a temperature of at least about 830.degree. C. for a time not less than about 12 hours, followed by at least one additional milling for a time not to exceed about 20 minutes and one additional heat treatment, to produce an oxide powder having an average diameter in the 4 to 5 micron range. Then a silver or silver alloy tube is filled with the oxide powder, and shape formed into a rectangular tape. Then alternately thermally treating and mechanically working the tube filled with oxide powder by heating the filled tube to an elevated temperature of about 835.degree. C. to 840.degree. C. and reducing the diameter of the tube, repeating the thermal and mechanical treatment. The filled tube is held at the elevated temperature for a total time in the range of from about 48 hours to about 350 hours to provide Pb.sub.0.4, Bi.sub.1.8 Sr.sub.2.0 Ca.sub.2.2 Cu.sub.3 O.sub.x where x is between 10 and 11.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y. J.; Yang, H. Z.; Leong, S. H.
2014-10-20
We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The averagemore » percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.« less
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.
2017-07-01
This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.
NASA Astrophysics Data System (ADS)
Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd
2017-08-01
Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.
An Elevated-Temperature Tension-Compression Test and Its Application to Magnesium AZ31B
NASA Astrophysics Data System (ADS)
Piao, Kun
Many metals, particularly ones with HCP crystal structures, undergo deformation by combinations of twinning and slip, the proportion of which depends on variables such as temperature and strain rate. Typical techniques to reveal such mechanisms rely on metallography, x-ray diffraction, or electron optics. Simpler, faster, less expensive mechanical tests were developed in the current work and applied to Mg AZ31B. An apparatus was designed, simulated, optimized, and constructed to enable the large-strain, continuous tension/compression testing of sheet materials at elevated temperature. Thermal and mechanical FE analyses were used to locate cartridge heaters, thus enabling the attainment of temperatures up to 350°C within 15 minutes of start-up, and ensuring temperature uniformity throughout the gage length within 8°C. The low-cost device also makes isothermal testing possible at strain rates higher than corresponding tests in air. Analysis was carried out to predict the attainable compressive strains using novel finite element (FE) modeling and a single parameter characteristic of the machine and fixtures. The limits of compressive strain vary primarily with the material thickness and the applied-side-force-to-material-strength ratio. Predictions for a range of sheet alloys with measured buckling strains from -0.04 to -0.17 agreed within a standard deviation of 0.025 (0.015 excluding one material that was not initially flat). In order to demonstrate the utility of the new method, several sheet materials were tested over a range of temperatures. Some of the data obtained is the first of its kind. Magnesium AZ31B sheets were tested at temperatures up to 250°C with strain rate of 0.001/s. The inflected stress-strain curve observed in compression at room temperature disappeared between 125°C and 150°C, corresponding to the suppression of twinning, and suggesting a simple method for identifying the deformation mechanism transition temperature. The temperature-dependent behavior of selected advanced high strength steels (TWIP and DP) was revealed by preliminary tests at room temperature, 150°C and 250°C. For Mg AZ31B alloy sheets, the curvature of compressive stress-strain plots over a fixed strain range was found to be a consistent indicator of twinning magnitude, independent of temperature and strain rate. The relationship between curvature and areal fraction of twins is presented. Transition temperatures determined based on stress-strain curvature were consistent with ones determined by metallographic analysis and flow stresses, and depended on strain rate by the Zener-Hollomon parameter, a critical value for which was measured. The transition temperature was found to depend significantly on grain size, a relationship for which was established. Finally, it was shown that the transition temperature can be determined consistently, and much faster, using a single novel "Step-Temperature" test.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Olshavsky, Michael A.; Meador, Michael A.; Ahn, Myong-Ku
1988-01-01
Diels-Alder cycloaddition copolymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and anthracene end-capped polyimide oligomers appear, by thermogravimetric analysis (TGA), to undergo dehydration at elevated temperatures. This would produce thermally stable pentiptycene units along the polymer backbone, and render the polymers incapable of unzipping through a retro-Diels-Alder pathway. High resolution solid 13C nuclear magnetic resonance (NMR) of one formulation of the polymer system before and after heating at elevated temperatures, shows this to indeed be the case. NMR spectra of solid samples of the polymer before and after heating correlated well with those of the parent pentiptycene model compound before and after acid-catalyzed dehydration. Isothermal gravimetric analyses and viscosities of the polymer before and after heat treatment support dehydration as a mechanism for the cure reaction.
NASA Astrophysics Data System (ADS)
Warsinski, Karl C.
Austempered Ductile Iron (ADI) is prone to changes in microstructure and mechanical properties when exposed to elevated service temperatures. Differential Scanning Calorimetry has been used to evaluate the stabilizing effects of copper, nickel, molybdenum, and cobalt on the ausferrite structure. Previous studies have conflated the effects of various alloy additions, and little effort has been made to systematically catalog the effects of individual elements. The focus of the current research has been to identify alloying elements that more strongly stabilize the ausferrite structure in order to improve service life of ADI at elevated temperatures. Nickel has been shown to have a moderate stabilizing effect, while copper and molybdenum cause a much sharper increase in activation energy. Cobalt has a high stabilizing effect at 0.5% addition by weight, but a further increase to 2.36% results in a slight decrease in activation energy.
USDA-ARS?s Scientific Manuscript database
Seed nutrition of crops can be affected by global climate changes due to elevated CO2 and elevated temperatures. Information on the effects of elevated CO2 and temperature on seed nutrition is very limited in spite of its importance to seed quality and food security. Therefore, the objective of this...
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.
Interactive effect of elevated CO2 and temperature on coral physiology
NASA Astrophysics Data System (ADS)
Grottoli, A. G.; Cai, W.; Warner, M.; Melman, T.; Schoepf, V.; Baumann, J.; Matsui, Y.; Pettay, D. T.; Hoadley, K.; Xu, H.; Wang, Y.; Li, Q.; Hu, X.
2011-12-01
Increases in ocean acidification and temperature threaten coral reefs globally. However, the interactive effect of both lower pH and higher temperature on coral physiology and growth are poorly understood. Here, we present preliminary findings from a replicated controlled experiment where four species of corals (Acorpora millepora, Pocillopora damicornis, Montipora monasteriata, Turbinaria reniformis) were reared under the following six treatments for three weeks: 1) 400ppm CO2 and ambient temperature, 2) 400ppm CO2 and elevated temperature, 3) 650ppm CO2 and ambient temperature, 4) 650ppm CO2 and elevated temperature, 5) 800ppm CO2 and ambient temperature, 6) 800ppm CO2 and elevated temperature. Initial findings of photophysiological health (Fv/Fm), calcification rates (as measured by both buoyant weight and the total alkalinity methods), and energy reserves will be presented.
NASA Astrophysics Data System (ADS)
Amare, Belachew N.
Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural coating. During this project it was found that stiffness response to increase and remain stable to a certain level and reduce at latter stages of thermal cyclic exposure. The predominant growth and adherent Ni-rich outer oxide scale was found on top of the alumina scale throughout the oxidation cycles. The FEA analysis revealed that ODS alloys could be potential high temperature turbine coating materials if micro-channel cooling system is implemented.
Chang, Jia-Dong; Mantri, Nitin; Sun, Bin; Jiang, Li; Chen, Ping; Jiang, Bo; Jiang, Zhengdong; Zhang, Jialei; Shen, Jiahao; Lu, Hongfei; Liang, Zongsuo
2016-06-01
Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720μmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties. Copyright © 2016 Elsevier GmbH. All rights reserved.
Craig M. Clemons; Ronald C. Sabo; Michael L. Kaland; Kolby C. Hirth
2011-01-01
The influence of 3-(trimethoxysilyl)propyl methacrylate and benzoyl peroxide on gel content, crystallinity, and mechanical performance of unfilled PP-PE blends, and their composites with wood was investigated. All materials were compounded in a twin screw extruder and then injection molded. Specimens were then exposed to high-humidity and elevated temperature in a...
NASA Technical Reports Server (NTRS)
Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.
2012-01-01
Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.
NASA Astrophysics Data System (ADS)
Wang, Liqin
Intermetallic matrix composites, with ceramic particle reinforcements, are among the most important candidates for high-temperature structural applications. These composites, however, are not always stronger than their matrix materials at elevated temperatures. Some of the composites have much better high-temperature strength than their matrix materials, such as NiAl and FeAl, while others are just the opposite, e.g. TiAl, Ti_3Al, and Ni_3Al. The reasons for either the strengthening or the weakening observed in the discontinuous aluminide matrix composites are not obvious. The purpose of this research is to understand the mechanisms which caused the increase of the strength achieved by adding TiB_2 particulates to NiAl, and to recognize the fundamental principles of the deformation process in TiB_2/NiAl composites. In order to accomplish this objective, the mechanical properties and thermal activation parameters of the deformation process in TiB_2/NiAl composites have been systematically evaluated. The microstructures, dislocation structures and the interface structures of TiB _2/NiAl composites have been also thoroughly characterized before and after the deformation. Emphasis is placed on the relationship between the microstructures and mechanical properties of TiB_2/NiAl composites.
Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe
2016-05-01
Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.
46 CFR 36.01-5 - Certificate of inspection-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...
46 CFR 36.01-5 - Certificate of inspection-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...
46 CFR 36.01-5 - Certificate of inspection-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...
46 CFR 36.01-5 - Certificate of inspection-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...
Effects of MDMA on body temperature in humans
Liechti, Matthias E
2014-01-01
Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046
A Model of Thermal Aging of Hyper-Elastic Materials with an Application to Natural Rubber
NASA Astrophysics Data System (ADS)
Korba, Ahmed G.
Understanding the degradation of material properties and stress-strain behavior of rubber-like materials that has been exposed to elevated temperature is essential for rubber among components design and lifetime prediction. The complexity of the relationship between hyper-elastic materials, crosslinking density, and chemical composition present a difficult problem for the accurate prediction of mechanical properties under thermal aging. In the first part of the current research, a new and relatively simple mathematical formulation is presented to expresses the change in material properties of natural rubber subjected to various elevated temperatures and aging times. The aging temperatures ranged from 76.7 °C to 115.0 °C, and the aging times ranged from 0 to 600 hours. Based on the experimental data, the natural rubber mechanical properties under thermal aging showed a similar behavior to the rate of change of the crosslinking density (CLD) with aging time and temperature as determined as of the research. Three mechanical properties have been chosen to be studied: the ultimate tensile strength, the fracture stretch value, and the secant modulus at 11.0% strain. The proposed phenomenological model relates the mechanical properties with the rate of change of the CLD based on a form of Arrhenius equation. The proposed equations showed promising results compared to the experimental data with an acceptable error margin of less than 10% in most of the cases studied. In the second part of the current research, a closed form set of equations that was based on basic continuum mechanics assumptions has been proposed to define the material stress-strain behavior of natural rubber as an application of hyper-elastic materials. The proposed formulas include the influence of aging time and temperature. The newly proposed "Wight Function Based" (WFB) method has been verified against the historic Treloar's test data for uni-axial, bi-axial and pure shear loadings of Treloar's vulcanized rubber material, showing a promising level of confidence compared to the Ogden and the Yeoh methods. Tensile testing was performed on strip specimens that were thermally aged then subjected uni-axial tension and hardness tests. A non-linear least square optimization tool in Matlab (Lscurvefitt) was used for all fitting purposes.
Rommel, Sentiel A; Caplan, Heather
2003-01-01
Although Florida manatees (Trichechus manatus latirostris) have relatively low basal metabolic rates for aquatic mammals of their size, they maintain normal mammalian core temperatures. We describe vascular structures in the manatee tail that permit countercurrent heat exchange (CCHE) to conserve thermal energy. Approximately 1000 arteries juxtaposed to 2000 veins are found at the cranial end of the caudal vascular bundle (CVB); these numbers decrease caudally, but the 1 : 2 ratio of arteries to veins persists. Arterial walls are relatively thin when compared to those previously described in vascular countercurrent heat exchangers in cetaceans. It is assumed that CCHE in the CVB helps manatees to maintain core temperatures. Activity in warm water, however, mandates a mechanism that prevents elevated core temperatures. The tail could transfer heat to the environment if arterial blood delivered to the skin were warmer than the surrounding water; unfortunately, CCHE prevents this heat transfer. We describe deep caudal veins that provide a collateral venous return from the tail. This return, which is physically outside the CVB, reduces the venous volume within the bundle and allows arterial expansion and increased arterial supply to the skin, and thus helps prevent elevated core temperatures. PMID:12739612
Rommel, Sentiel A; Caplan, Heather
2003-04-01
Although Florida manatees (Trichechus manatus latirostris) have relatively low basal metabolic rates for aquatic mammals of their size, they maintain normal mammalian core temperatures. We describe vascular structures in the manatee tail that permit countercurrent heat exchange (CCHE) to conserve thermal energy. Approximately 1000 arteries juxtaposed to 2000 veins are found at the cranial end of the caudal vascular bundle (CVB); these numbers decrease caudally, but the 1:2 ratio of arteries to veins persists. Arterial walls are relatively thin when compared to those previously described in vascular countercurrent heat exchangers in cetaceans. It is assumed that CCHE in the CVB helps manatees to maintain core temperatures. Activity in warm water, however, mandates a mechanism that prevents elevated core temperatures. The tail could transfer heat to the environment if arterial blood delivered to the skin were warmer than the surrounding water; unfortunately, CCHE prevents this heat transfer. We describe deep caudal veins that provide a collateral venous return from the tail. This return, which is physically outside the CVB, reduces the venous volume within the bundle and allows arterial expansion and increased arterial supply to the skin, and thus helps prevent elevated core temperatures.
Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance
Bokszczanin, Kamila L.; Fragkostefanakis, Sotirios
2013-01-01
Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response (HSR) and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of HSR mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant HSR. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on HSR of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen HSR and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into this process. PMID:23986766
Mechanical properties of a fiberglass prepreg system at cryogenic and other temperatures
NASA Technical Reports Server (NTRS)
Klich, P. J.; Cockrell, C. E.
1982-01-01
The compressor driving the flow in the National Transonic Facility, which is nearing completion at the Langley Research Center, has 25 fiberglass blades. E-glass cloth with a pre-impregnated epoxy resin has been selected as the material for the fan blades because of its low cost, high damping, and fatigue resistance. A complete characterization is presented of this fan blade fiberglass system at temperatures of 367 K, room temperature, and 89 K. The characterization test results suggest that the material follows the general trends of metals and other glass-reinforced plastics at cryogenic temperatures. A slight diminution in strength was observed at the elevated temperature. The tests included the following: tensile, compression, fatigue, inplane shear, interlaminar shear, thermal expansion, creep, and thermal cycle.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2009-01-01
In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.
Zinc coated sheet steel for press hardening
NASA Astrophysics Data System (ADS)
Ghanbari, Zahra N.
Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time maintained the highest ductility when compared to the uncoated sample processed under the sample conditions. Fractography of the hot-ductility samples showed features associated with increased ductility with increased soak time for all soak temperatures. Heat treatments (without elevated temperature deformation) and subsequent room temperature deformation were conducted to investigate the "in-service" behavior of 22MnB5. The uncoated and coated specimens deformed at room temperature showed similar ultimate tensile strength and ductility values. The only notable differences in the room temperature mechanical behavior of uncoated and coated samples processed under the same conditions were a result of differences in the substrate microstructure. All samples appeared to have ductile fracture features; features characteristic of liquid metal embrittlement were not observed.
NASA Astrophysics Data System (ADS)
Vorozhtsov, S.; Kolarik, V.; Promakhov, V.; Zhukov, I.; Vorozhtsov, A.; Kuchenreuther-Hummel, V.
2016-05-01
Metal matrix composites (MMC) based on aluminum and reinforced with nonmetallic particles are of great practical interest due to their potentially high physico-mechanical properties. In this work, Al-Al4C3 composites were obtained by a hot-compacting method. Introduction of nanodiamonds produced by detonation to the Al powder in an amount of 10 wt.% led to the formation of ~15 wt.% of aluminum carbide during hot compacting. It was found that composite materials with the diamond content of 10 wt.% in the initial powder mix have an average microhardness of 1550 MPa, whilst the similarly compacted aluminum powder without reinforcing particles shows a hardness of 750 MPa. The mechanical properties of an Al-Al4C3 MMC at elevated test temperatures exceeded those of commercial casting aluminum alloys such as A356.
Life prediction of materials exposed to monotonic and cyclic loading: Bibliography
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.
1975-01-01
This bibliography is comprised of approximately 1200 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for information on life prediction for materials exposed to monotonic and cyclic loading in elevated temperature environments such as that in the hot end of a gas turbine engine. Additional citations listed are for documents on the thermal and mechanical effects on solar cells in the cryogenic vacuum environment; radiation effects on high temperature mechanical properties; and high cycle fatigue technology as applicable to gas turbine engine bearings. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States. It is a companion volume to NASA CR-134750, Life Prediction of Materials Exposed to Monotonic and cyclic Loading - A Technology Survey.
Oizumi, Takuya; Laakso, Ilkka; Hirata, Akimasa; Fujiwara, Osamu; Watanabe, Soichi; Taki, Masao; Kojima, Masami; Sasaki, Hiroshi; Sasaki, Kazuyuki
2013-07-01
The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, F
1958-11-01
A comparative study was made of the growth of yeast in various media at the optimum temperature (30 ) and at supraoptimum temperatures. It was found that at elevated temperatures there is a decrease in the ability of yeast to grow, which may be alleviated by increasing the percentage of yeast extract in the medium, adding oleic acid to the medium, or using an inoculum of cells that have previously been grown at the elevated temperature. Because of these findings, it is believed that growth at elevated temperatures results in an increased nutrient requirement which may be eliminated by inducedmore » adaptation. When yeasts were grown at elevated temperatures or exposed for a short time to lethal temperatures it was found that there was a great increase in the fraction of respiratory-deficient mutants (petites). It was shown that the increase of mutants did not arise because of selection, but that the elevated temperatures actually induced the mutation. From the results of various genetic analyses it is shown that these respiratorydeficient mutants are very similar, if not identical. to vegetative petites occurring spontaneously or induced by acriflavine. The kinetics of this mutation is discussed, with possible theoretical interpretations. (auth)« less
Effect of stacking sequence on mechanical properties neem wood veneer plastic composites
NASA Astrophysics Data System (ADS)
Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.
2018-04-01
This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.
NASA Technical Reports Server (NTRS)
Hoffmann, E. K.; Bird, R. K.; Bales, T. T.
1989-01-01
A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.
Plastic Deformation of Micromachined Silicon Diaphragms with a Sealed Cavity at High Temperatures
Ren, Juan; Ward, Michael; Kinnell, Peter; Craddock, Russell; Wei, Xueyong
2016-01-01
Single crystal silicon (SCS) diaphragms are widely used as pressure sensitive elements in micromachined pressure sensors. However, for harsh environments applications, pure silicon diaphragms are hardly used because of the deterioration of SCS in both electrical and mechanical properties. To survive at the elevated temperature, the silicon structures must work in combination with other advanced materials, such as silicon carbide (SiC) or silicon on insulator (SOI), for improved performance and reduced cost. Hence, in order to extend the operating temperatures of existing SCS microstructures, this work investigates the mechanical behavior of pressurized SCS diaphragms at high temperatures. A model was developed to predict the plastic deformation of SCS diaphragms and was verified by the experiments. The evolution of the deformation was obtained by studying the surface profiles at different anneal stages. The slow continuous deformation was considered as creep for the diaphragms with a radius of 2.5 mm at 600 °C. The occurrence of plastic deformation was successfully predicted by the model and was observed at the operating temperature of 800 °C and 900 °C, respectively. PMID:26861332
NASA Astrophysics Data System (ADS)
Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin
2013-09-01
The current decay characteristic in the time domain is studied in Y3+ and Mn2+ modified Ba0.67Sr0.33TiO3 ceramics under different temperatures (25 °C-213 °C) and voltage stresses (0 V-800 V). The decay of the current is correlated with the overlapping of the relaxation process and leakage current. With respect to the inherent remarkable dielectric nonlinearity, a simple method through curve fitting is derived to differentiate these two currents. Two mechanisms of the relaxation process are proposed: a distribution of the potential barriers mode around room temperature and an electron injection mode at the elevated temperature of 110 °C.
Delayed elasticity in Zerodur® at room temperature
NASA Astrophysics Data System (ADS)
Pepi, John W.; Golini, Donald
1991-12-01
Much has been written about structural relaxation, viscous flow, delayed elasticity, hysteresis, and other dimensional stability phenomena of glass and ceramics at elevated temperatures. Less has been documented about similar effects at room temperature. The time dependent phenomenon of delayed elasticity exhibited by Zerodur has been studied at room temperature and is presented here. Using a high-performance mechanical profilometer, a delayed strain on the order of 1 percent is realized over a period of a few weeks, under low stress levels. An independent test using optical interferometry validates the results. A comparison of Corning ULE silica glass is also made. The effect is believed to be related to the alkali oxide content of the glass ceramic and rearrangement of the ion groups within the structure during stress. The effect, apparent under externally applied load, is elastic and repeatable, that is, no hysteresis of permanent set, as measured at elevated temperature, is evidenced within measurement capabilities. Nonetheless, it must be accounted for in determining the magnitude of distortion under load (delayed elastic creep) and upon load removal (delayed elastic recovery). This is particularly important for large lightweight optics which might undergo large strain during fabrication and environmental loading, such as experienced in gravity release or in dynamic control of active optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, S.R.; Ban, V.S.; Gasparian, G.
1988-05-01
The authors measured the mean time to failure (MTTF) for a statistically significant population of planar In/sub 0.53/Ga/sub 0.47/As/InP heterostructure p-i-n photodetectors at several elevated temperatures. The probability for failure is fit to a log-normal distribution, with the result that the width of the failure distribution is sigma = 0.55 +- 0.2, and is roughly independent of temperature. From the temperature dependence of the MTFF data, they find that the failure mechanism is thermally activated, with an activation energy of 1.5 +- 0.2 eV measured in the temperature range of 170 - 250/sup 0/C. This extrapolates to a MTTF ofmore » less than 0.1 failure in 10/sup 9/ h (or < 0.1 FIT) at 70/sup 0/C, indicating that such devices are useful for systems requiring extremely high reliable components, even if operated at elevated temperatures for significant time periods. To the authors' knowledge, this activation energy is the highest value reported for In/sub 0.53/Ga/sub 0.47/As/InP photodetectors, and is significantly higher than the energies of -- 0.85 eV often suspected to these devices.« less
Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio
2016-05-01
Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (T(b)) and laboratory-preferred (T(pref)) body temperatures of lizards with different reproductive conditions, as well as ambient (T(a)) and copper-model operative temperature (T(e)), which we used to determine thermal quality of the habitat (d(e)), accuracy (d(b)), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while T(a) constrained T(b) only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, T(pref) dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (T(e) > T(pref)). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, d(b) and d(e)-d(b) were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.
Davis, M.W.; Olla, B.L.; Schreck, C.B.
2001-01-01
In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium concentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.
NASA Astrophysics Data System (ADS)
Chui, Apple Pui Yi; Ang, Put
2015-06-01
To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.
Modeling of the viscoelastic behavior of a polyimide matrix at elevated temperature
NASA Astrophysics Data System (ADS)
Crochon, Thibaut
Use of Polymer Matrix Composite Materials (PMCMs) in aircraft engines requires materials able to withstand extreme service conditions, such as elevated temperatures, high mechanical loadings and an oxidative environment. In such an environment, the polymer matrix is likely to exhibit a viscoelastic behavior dependent on the mechanical loading and temperature. In addition, the combined effects of elevated temperature and the environment near the engines are likely to increase physical as well as chemical aging. These various parameters need to be taken into consideration for the designer to be able to predict the material behavior over the service life of the components. The main objective of this thesis was to study the viscoelastic behavior of a high temperature polyimide matrix and develop a constitutive theory able to predict the material behavior for every of service condition. Then, the model had to have to be implemented into commercially available finite-element software such as ABAQUS or ANSYS. Firstly, chemical aging of the material at service temperature was studied. To that end, a thermogravimetric analysis of the matrix was conducted on powder samples in air atmosphere. Two kinds of tests were performed: i) kinetic tests in which powder samples were heated at a constant rate until complete sublimation; ii) isothermal tests in which the samples were maintained at a constant temperature for 24 hours. The first tests were used to develop a degradation model, leading to an excellent fit of the experimental data. Then, the model was used to predict the isothermal data but which much less success, particularly for the lowest temperatures. At those temperatures, the chemical degradation was preceded by an oxidation phase which the model was not designed to predict. Other isothermal degradation tests were also performed on tensile tests samples instead of powders. Those tests were conducted at service temperature for a much longer period of time. The samples masses, volume and tensile properties were recorded after 1, 4, 9 and 17 months. The results of those tests showed that after 17 months, the matrix lost about 5% of its mass and volume and as much as 19%, 30% and 10% of its Young's modulus, stress and strain at break, respectively. The second step consisted in studying the viscoelastic behavior of the matrix under various conditions and develop a constitutive theory to model its mechanical behavior. That theory was developed using the framework laid out by Schapery in 1964, using the Thermodynamics of Irreversible Processes. The main advantage of Schapery-type constitutive theories is that the effects of various parameters such as stresses, temperature and physical ageing can be taken into account by using user-defined explicit nonlinearizing functions. Tensile samples of the material were tested at service temperature using strain gages rosettes in order to study the matrix 3D behavior. It was found that the Poisson's ratio was time-independent, meaning that its retardation times spectrum was the same as the compliance function. Furthermore, at this temperature, it was found that the viscoelastic behavior was independent of the stress level. Those two observations led to the conclusion that the material was linearly viscoelastic and could be represented with a 1D constitutive theory. From this conclusion, and also due to the scarcity of material available, it was decided to use 3-point bending tests for studying the impact of temperature and physical ageing. Following Struik's methodology, the material was heated at ageing temperature and then series of creep tests at increasing intervals were performed. It was found that the material became stiffer as the ageing time increased, but it also became softer for increasing temperatures. A model was developed in which Schapery's nonlinearizing functions were obtained from experimental data. The model was validated with complex thermo-mechanical histories comprising several creep tests as well as temperature up- and down-jumps. The experimental data were predicted with excellent accuracy. Finally, the last step consisted in implementing the constitutive theory into a finite-element software. To that end, a new procedure was developed. Instead of the classical methods which deal with Schapery's hereditary integral, the method went back to the evolution equations which are the basis of the integral. The evolution equations were solved with well-known finite-difference schemes such as Backward-Euler, Crank-Nicholson or Runge-Kutta. The numerical model thus obtained could then easily be implemented into finite-element software. In this thesis, a thorough examination of the mechanical properties of a polyimide matrix was conducted. It was found that for such materials, the service temperature is so elevated that chemical ageing has a defining importance on components life. Furthermore, it was found that viscoelastic behavior was only dependent on temperature and physical ageing, but not on the stress levels. (Abstract shortened by ProQuest.).
Estimation of surface temperature variations due to changes in sky and solar flux with elevation.
Hummer-Miller, S.
1981-01-01
Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author
NASA Astrophysics Data System (ADS)
Leach, J.; Moore, D.
2015-12-01
Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.
Funk, W. C.; Murphy, M.A.; Hoke, K. L.; Muths, Erin L.; Amburgey, Staci M.; Lemmon, Emily M.; Lemmon, A. R.
2016-01-01
Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500–3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation – as would be expected if incipient speciation were occurring – and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.
NASA Astrophysics Data System (ADS)
Zhang, Teng Fei; Wan, Zhi Xin; Ding, Ji Cheng; Zhang, Shihong; Wang, Qi Min; Kim, Kwang Ho
2018-03-01
Si-doped DLC films have attracted great attention for use in tribological applications. However, their high-temperature tribological properties remain less investigated, especially in harsh oxidative working conditions. In this study, Si-doped hydrogenated DLC films with various Si content were synthesized and the effects of the addition of Si on the microstructural, mechanical and high-temperature tribological properties of the films were investigated. The results indicate that Si doping leads to an obvious increase in the sp3/sp2 ratio of DLC films, likely due to the silicon atoms preferentially substitute the sp2-hybridized carbon atoms and augment the number of sp3 sites. With Si doping, the mechanical properties, including hardness and adhesion strength, were improved, while the residual stress of the DLC films was reduced. The addition of Si leads to higher thermal and mechanical stability of DLC films because the Si atoms inhibit the graphitization of the films at an elevated temperature. Better high-temperature tribological properties of the Si-DLC films under oxidative conditions were observed, which can be attributed to the enhanced thermal stability and formation of a Si-containing lubricant layer on the surfaces of the wear tracks. The nano-wear resistance of the DLC films was also improved by Si doping.
Morley, Simon A; Hirse, Timo; Thorne, Michael A S; Pörtner, Hans O; Peck, Lloyd S
2012-05-01
To further investigate the previously reported limited acclimation capacities of Antarctic marine stenotherms, the Antarctic mud clam, Laternula elliptica (King and Broderip, 1830-1831), was incubated at 3.0°C for 89days. The thermal windows of a suite of biochemical and physiological metrics that characterise tissue aerobic status, were then measured in response to acute temperature elevation (2-2.5°C increase per week). To test if acclimation had occurred at the higher temperature, results were compared with published data, from the preceding year, for L. elliptica which had been incubated at ambient temperature (0.0°C) and then subjected to the same acute temperature treatments. Incubation to 3.0°C led to a temperature induced increase of tissue aerobic status (reduced intracellular cCO(2) with increased O(2) consumption, PLA (phospho-L-arginine) and ATP). At the highest acute temperature (7.5°C) the increase in anaerobic pathways (summed acetate/succinate and propionate) was less after 3.0°C than 0.0°C incubation. No other metric shifted its reaction norm in response to acute temperature elevation and so whole animal acclimation had not occurred, even after 3months at 3.0°C. Combined with the constant mortality throughout the 3.0°C incubation period, these data suggest that the recorded physiological changes were either the early stages of acclimation or, more likely, time limited resistance mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.
Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Adams, J. W.
1985-01-01
Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.
Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel
2004-01-01
The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.
Shear response of grain boundaries with metastable structures by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Cheng; Shibuta, Yasushi
2018-04-01
Grain boundaries (GBs) can play a role as the favored locations to annihilate point defects, such as interstitial atoms and vacancies. It is thus highly probable that different boundary structures can be simultaneously present in equilibrium with each other in the same GB, and thus the GB achieves a metastable state. However, the structural transition and deformation mechanism of such GBs are currently not well understood. In this work, molecular dynamics simulations were carried out to study the multiple structures of a Σ5(310)/[001] GB in bicrystal Al and to investigate the effect of structural multiplicity on the mechanical and kinetic properties of such a GB. Different GB structures were obtained by changing the starting atomic configuration of the bicrystal model, and the GB structures had significantly different atomic density. For the Σ5(310) GB with metastable structures, GB sliding was the dominant mechanism at a low temperature (T = 10 K) under shear stress. The sliding mechanism resulted from the uncoordinated transformation of the inhomogeneous structural units. The nucleation of voids was observed during GB sliding at the low temperature, and the voids subsequently evolved to a nanocrack at the boundary plane. Increasing the temperature can induce the structural transition of local GB structures and can change their overall kinetic properties. GB migration with occasional GB sliding dominated the deformation mechanism at elevated temperatures (T = 300 and 600 K), and the migration process of the metastable GB structures is closely related to the thermally assisted diffusion mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola
Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.
Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diabira, I.; Castanier, L.M.; Kovscek, A.R.
2001-04-19
An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.
Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B
2017-05-01
Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.
Elevated temperature crack growth in advanced powder metallurgy aluminum alloys
NASA Technical Reports Server (NTRS)
Porr, William C., Jr.; Gangloff, Richard P.
1990-01-01
Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging may play a role. Fractography showed that microvoid coalescence was the microscopic mode of fracture in FVS0812 under all testing conditions. However, the nature of the microvoids varied with test temperature and loading rate, and is complex for the fine grain and dipersoid sizes of FVS0812.
Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.
Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun
2016-12-01
Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Lerch, Bradley A.; Sellers, Cory
2013-01-01
In this paper time and/or rate dependent deformation regions are experimentally mapped out as a function of temperature. It is clearly demonstrated that the concept of a threshold stress (a stress that delineate reversible and irreversible behavior) is valid and necessary at elevated temperatures and corresponds to the classical yield stress at lower temperatures. Also the infinitely slow modulus, (Es) i.e. the elastic modulus of the material if it was loaded at an infinitely slow strain rate, and the "dynamic modulus", modulus, Ed, which represents the modulus of the material if it is loaded at an infinitely fast rate are used to delineate rate dependent from rate independent regions. As demonstrated at elevated temperatures there is a significant difference between the two modulus values, thus indicating both significant time-dependence and rate dependence. In the case of the nickel-based super alloy, ME3, this behavior is also shown to be grain size specific. Consequently, at higher temperatures viscoelastic behavior exist below k (i.e., the threshold stress) and at stresses above k the behavior is viscoplastic. Finally a multi-mechanism, stress partitioned viscoelastic model, capable of being consistently coupled to a viscoplastic model is characterized over the full temperature range investigated for Ti-6-4 and ME3.
Sliding friction and wear behavior of high entropy alloys at room and elevated temperatures
NASA Astrophysics Data System (ADS)
Kadhim, Dheyaa
Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phases, respectively. It was determined that the two HEAs Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4 and Ti V Nb Cr Al exhibit an excellent balance of high hardness, low friction coefficients and wear rates compared to 440C stainless steel, a currently used bearing steel. This was attributed to their more ductile body centered cubic (BCC) solid solution phase along with the formation of tribochemical Cr oxide and Nb oxide phases, respectively, in the wear surfaces. This study provides guidelines for fabricating novel, low-friction, and wear-resistant HEAs for potential use at room and elevated temperatures, which will help reduce energy and material losses in friction and wear applications.
We investigated the effects of elevated CO2 (EC) [ambient CO2 (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 °C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstruc...
Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih
2015-02-01
Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.
NASA Astrophysics Data System (ADS)
Benson, P. M.; Fahrner, D.; Harnett, C. E.; Fazio, M.
2014-12-01
Time dependent deformation describes the process whereby brittle materials deform at a stress level below their short-term material strength (Ss), but over an extended time frame. Although generally well understood in engineering (where it is known as static fatigue or "creep"), knowledge of how rocks creep and fail has wide ramifications in areas as diverse as mine tunnel supports and the long term stability of critically loaded rock slopes. A particular hazard relates to the instability of volcano flanks. A large number of flank collapses are known such as Stromboli (Aeolian islands), Teide, and El Hierro (Canary Islands). Collapses on volcanic islands are especially complex as they necessarily involve the combination of active tectonics, heat, and fluids. Not only does the volcanic system generate stresses that reach close to the failure strength of the rocks involved, but when combined with active pore fluid the process of stress corrosion allows the rock mass to deform and creep at stresses far lower than Ss. Despite the obvious geological hazard that edifice failure poses, the phenomenon of creep in volcanic rocks at elevated temperatures has yet to be thoroughly investigated in a well controlled laboratory setting. We present new data using rocks taken from Stromboli, El Heirro and Teide volcanoes in order to better understand the interplay between the fundamental rock mechanics of these basalts and the effects of elevated temperature fluids (activating stress corrosion mechanisms). Experiments were conducted over short (30-60 minute) and long (8-10 hour) time scales. For this, we use the method of Heap et al., (2011) to impose a constant stress (creep) domain deformation monitored via non-contact axial displacement transducers. This is achieved via a conventional triaxial cell to impose shallow conditions of pressure (<25 MPa) and temperature (<200 °C), and equipped with a 3D laboratory seismicity array (known as acoustic emission, AE) to monitor the micro cracking due to the imposed deformation. By measuring the AE generated during deformation we are then able to apply fracture forecast models to predict, retrospectively, the time of failure. We find that higher temperatures increase the strain rate during creep for the same %Ss, and that the accuracy of the forecast does not change with increasing temperature.
Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing
2017-01-01
Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming. PMID:28348933
Nanoindentation study of bulk zirconium hydrides at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang
Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less
Nanoindentation study of bulk zirconium hydrides at elevated temperatures
Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...
2017-08-02
Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less
Elevated temperature alters proteomic responses of individual organisms within a biofilm community
Mosier, Annika C.; Li, Zhou; Thomas, Brian C.; ...
2014-07-22
Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. In this paper, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entiremore » community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Finally, overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groner, D.J.
This study investigated the fatigue behavior and associated damage mechanisms in notched and unnotched enhanced SiC/SiC ceramic matrix composite specimens at 1100 deg C. Stiffness degradation, strain variation, and hysteresis were evaluated to characterize material behavior. Microscopic examination was performed to characterize damage mechanisms. During high cycle/low stress fatigue tests, far less fiber/matrix interface debond was evident than in low cycle/high stress fatigue tests. Notched specimens exhibited minimal stress concentration during monotonic tensile testing and minimal notch sensitivity during fatigue testing. Damage mechanisms were also similar to unnotched.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2007-01-01
In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.
NASA Astrophysics Data System (ADS)
Chang, Hyung-Jun; Segurado, Javier; Molina-Aldareguía, Jon M.; Soler, Rafael; LLorca, Javier
2016-03-01
The mechanical behavior in compression of [1 1 1] LiF micropillars with diameters in the range 0.5 μm to 2.0 μm was analyzed by means of discrete dislocation dynamics at ambient and elevated temperature. The dislocation velocity was obtained from the Peach-Koehler force acting on the dislocation segments from a thermally-activated model that accounted for the influence of temperature on the lattice resistance. A size effect of the type ‘smaller is stronger’ was predicted by the simulations, which was in quantitative agreement with previous experimental results by the authors [1]. The contribution of the different physical deformation mechanisms to the size effect (namely, nucleation of dislocations, dislocation exhaustion and forest hardening) could be ascertained from the simulations and the dominant deformation mode could be assessed as a function of the specimen size and temperature. These results shed light into the complex interaction among size, lattice resistance and dislocation mobility in the mechanical behavior of μm-sized single crystals.
Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foulds, J.R.; Moteff, J.; Sikka, V.K.
1983-07-01
Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25/sup 0/C and 649/sup 0/C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructuremore » in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior.« less
Structural and mechanical properties of evaporated pure and mixed MgF2-BaF2 thin films
NASA Astrophysics Data System (ADS)
Thielsch, Roland; Pommies, Matthieu; Heber, Joerg; Kaiser, Norbert; Ullmann, Jens
1999-09-01
To grow dense and hard MgF2 films substrate temperatures of about 300 degrees C are required, which unfortunately leads to high tensile film stress and the ability of crack formation. Lowering tensile stress in MgF2 films can be achieved by admixture a second fluoride material of higher cation radius than Mg2+. While former investigation were performed with non-heated films the purpose of the present work was to verify the behavior of mixed films when deposited at elevated substrate temperatures. One of the promising add material is BaF2 which enables evaporation of appropriate pre-mixed materials from a single source. The BaF2 content in the mixed films was varied from 3 to 55 mol percent in the MgF2 host. Optical, mechanical, and structural properties of samples deposited at different substrate temperatures have been studied by spectral photometry, IR spectroscopy, ex situ measurement of mechanical stress, x-ray diffraction, and -reflectometry, RBS, as well as investigation of surface morphology.
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Kim, W. J.
2015-03-01
This study reported that a combination of strip casting and high-ratio differential speed rolling (HRDSR) can produce flame-resistant Mg alloy sheets (0.7 wt%Ca-AZ31: 0.7Ca-AZ31) with good room-temperature mechanical properties and high-temperature formability. HRDSR effectively refined the coarse microstructure of the strip-casting processed 0.7Ca-AZ31 alloy. As the result, the (true) grain size was reduced to as small as 2.7 μm and the (Mg, Al)2Ca phase was broken up to fine particles with an average sizes of 0.5 μm. Due to the advantage of having such a highly refined microstructure, the HRDSR-processed 0.7Ca-AZ31 alloy sheet exhibited a high yield stress over 300 MPa and good superplasticity at elevated temperatures. The deformation mechanism of the fine-grained 0.7Ca-AZ31 alloy in the superplastic regime was identified to be grainboundary-diffusion or lattice-diffusion controlled grain boundary sliding.
Li, Hong-Bo; Zheng, Yu-Tao; Sun, Dan-Dan; Wang, Jian-Jun; Du, Yu-Zhou
2014-01-01
Temperature and pesticide are two important factors that affect survival, reproduction and other physiological processes of insects. To determine interactions of elevated temperature and avermectins treatment on the western flower thrips, Frankliniella occidentalis, newly emerged adults were exposed to combinations of three temperatures (21, 26 and 33 °C) and two avermectins concentrations (0, 45 ppm), and survival rate, reproduction, longevity, antioxidant enzymes activities and heat shock proteins (hsps) induction were analyzed. The results showed that the survival, longevity and reproduction of F. occidentalis decreased with increased temperature and avermectins treatment. While elevated temperature and avermectins treatment significantly decreased activity of SOD, activities of POD and GST significantly increased after exposure to elevated temperature, avermectins or their combination. Elevated temperature had no effect on activity of CAT, but it was obviously improved by the combination of temperature and avermectins treatment. Expression analysis of hsps showed that four heat shock proteins (hsp90, hsc702, hsp60 and hop) were up-regulated by the induction of elevated temperature with small fold changes. After treatment with avermectins, expression levels of hsp90, hsc701, hsc702 and hop were significantly up-regulated with increased temperature and higher than those of their respective control at higher temperature. Surprisingly, expression level of hps60 was down-regulated with increased temperature, but the expression level at 21 or 26 °C remained higher than that of control. Overall, our studies suggest that elevated temperature enhance toxicity of avermectins and their combination induced acute oxidative damage to F. occidentalis. Therefore, consideration of temperature in evaluating avermectins toxicity is necessary to make accurate prediction of its effect on F. occidentalis and other insects. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin
2015-10-01
Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.
Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R
2014-09-01
The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Genetic and epigenetic control of plant heat responses
Liu, Junzhong; Feng, Lili; Li, Jianming; He, Zuhua
2015-01-01
Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22–27°C), high temperature (27–30°C) and extremely high temperature (37–42°C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed. PMID:25964789
Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys
Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; ...
2016-01-22
A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti 2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less
Adams, Henry D; Germino, Matthew J; Breshears, David D; Barron-Gafford, Greg A; Guardiola-Claramonte, Maite; Zou, Chris B; Huxman, Travis E
2013-03-01
Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Elevation of liquidus temperature in a gel-derived Na2O-SiO2 glass
NASA Technical Reports Server (NTRS)
Weinberg, M. C.; Neilson, G. F.
1983-01-01
The liquidus temperatures of a 19 wt% soda-silica glass prepared by gel and conventional techniques were determined. X-ray diffraction measurements of the glasses which were heat-treated at several temperatures were used to experimentally determine the liquidus temperatures. It was found that the gel-derived glass has an elevated liquidus. This result is discussed in relation to the previous discovery that the immiscibility temperature of this gel-derived glass is elevated
Here, we investigate fine-root production, mortality and standing crop of Douglas-fir (Pseudotsuga menziesii) seedlings exposed to elevated atmospheric CO2 and elevated air temperature. We hypothesized that these treatments would increase fine-root production, but that mortality ...
NASA Astrophysics Data System (ADS)
Zhang, Yongjun
A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves more like an elastic material at room temperature and as a ductile material at temperature above 850°C. The oxidation and the plasticity of Pd phase mainly affected the mechanical properties of HTM cermet at high temperature, also as a result of thermal cycling. Residual stress induced in the HTM by thermo cycles also plays a very critical role in defining the thermo-mechanical properties.
Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M
2012-01-01
Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds. PMID:22957178
Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M
2012-07-01
Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds.
Effect of grain size on the high temperature properties of B2 aluminides
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel
1987-01-01
Measurements of the slow plastic flow behavior of cobalt, iron and nickel B2 crystal structure aluminides were conducted on materials fabricated by metallurical techniques. Due to this processing, the aluminides invariably had small equiaxed grains, ranging in size from about 3 to 60 microns in diameter. Grain size was dependent on the extrusion temperature used for powder consolidation, and it proved to be remarkably stable at elevated temperatures. Mechanical properties of all three aluminides were determined via constant velocity compression testing in air between 1000 and 1400 K at strain rates ranging from approx. 10 to the minus 3 power to 10 to the minus 7 power s (-1).